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Abstract. The embedded systems continue to display as solutions of
smart surveillance systems. Background subtraction using Gaussian Mix-
ture Model (GMM) is often portrayed as a common step for video pro-
cessing. This work discusses the implementation of an embedded vision
system on system-on-a-chip (SoC) device that integrates both a pro-
cessor and an FPGA (Field Programmable Gate Array) architecture.
The conventional Register Transfer Level (RTL) design, typically used
for FPGA programming is slow, and the use of floating-point arith-
metic is complex. However, the use of High-Level Synthesis (HLS) tools
allows describing algorithms using high-level programming languages.
Three background subtraction algorithms with floating-point arithmetic
were developed using a hardware-software co-design methodology. The
paper presents the details of the implementation on a ZedBoard Zynq
Evaluation and Development Kit, considering requirements as hardware
resources and power consumption used. Also, performance comparisons
among a PC-based, ARM, FPGA and SOC-FPGA implementations are
presented. The results showed that frame rates needed for real-time video
processing were reached.
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1 Introduction

The video surveillance applications over embedded vision systems have had a
rapid growth in recent years. These systems make use of background subtrac-
tion as one of the key techniques for automatic video analysis. The state of the
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art methods make use of GMM estimators as background subtraction approach
but it has a high computational cost for real-time implementation [6,7]. Hard-
ware implementations of GMM algorithm on FPGA has been proposed in some
works to deal with the computational burden requirements. An architecture for
real-time segmentation and denoising of HD video on Xilinx and Altera FPGAs is
presented in [5]. The authors describe the implementation and performance eval-
uation of OpenCV based GMM algorithm and morphological operations applied
to a sequences of 1920 × 1080 frame size. In a latter work [6], authors present
implementation and evaluation of architectures based on the OpenCV GMM
algorithm for HD video over FPGA and ASIC technologies. In both cases, the
FPGA based implementations were developed using VHDL. Fixed-point repre-
sentation is used to achieve required performance for HD video resolution. An
FPGA based implementation of GMM for offline background subtraction using
fixed point arithmetic is presented in [1]. The block diagrams of the implemented
system modules are shown. Moreover, qualitative results for a group of 360×240
frames selected from a sequence of 1250 are presented. The implementation of
other FPGA based approaches of background subtraction techniques are found
in some works. A performance evaluation of two multimodal background subtrac-
tion algorithms implemented on a ZedBoard is presented in [3]. A performance
comparison of GMM, ViBE, and PBAS algorithms implementation on CPU,
GPU, and FPGA is presented in [2]. In [8], is presented a summary of several
FPGA based implementations of background modelling algorithms, developed
by these authors in previous works. Additionally, the authors present the eval-
uation of the PBAS implementation using the SBI dataset. An FPGA based
implementation of the codebook algorithm on a Spartan-3 FPGA is presented in
[9]. The authors describe the system architecture and performance for sequences
of 768 × 576. Hardware acceleration for real-time foreground and background
identification based on SoC FPGA is presented in [10]. The proposed architec-
ture was implemented on a Zynq-7 ZC702 Evaluation Board and is evaluated
using datasets of real-time HD video stream.

The main contribution of this paper is a implementation that allows major
flexibility in comparison to previous works with fixed-point representation and
conventional RTL description. In this paper is presented an FPGA based imple-
mentation of the GMM algorithm on a ZedBoard using floating-point arith-
metic. The OpenCV GMM function code is adapted for the Vivado-HLS, and
parallelization directives are used for optimization. Taking advantage of the SoC
architecture of the Artix-7 FPGA device, the generated HLS custom IP core is
integrated with a Zynq processing system allowing the development of a com-
plete embedded vision system. The hardware resources and power consumption
are presented for the HLS custom IP core and the complete embedded vision
system. Moreover, performance comparison with CPU software-based implemen-
tation for sequences at three different resolutions is presented in frames per
second (fps). The experimental results show that the developed system is suit-
able for real-time at 768 × 576 resolutions with low-power consumption. The
paper is organized as follows. In Sect. 2 the implemented algorithms and system
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architecture are described. Results and performance analysis are presented in
Sect. 3. Finally, conclusions are drawn in Sect. 4.

2 Proposed Method

The algorithm implementations were developed using a hardware-software co-
design methodology. The first stage is the software design that starts with
the coding of the algorithms using C++ language and OpenCV libraries to
take advantage of the rapid prototyping, visualization, and easy re-coding. The
BGSLibrary (Background Subtraction Library) [13], covers a collection of algo-
rithms from the literature. We selected three classic background subtraction
algorithms: Frame Difference, Gaussian Mixture Model (GMM1) [11], and Effi-
cient Gaussian Mixture Model (GMM2) [14]. The common steps of the GMM
methods may be summarized in Algorithm 1.

Algorithm 1. Gaussian Mixture Model
Input: Frame Image I. Max. Gaussian distributions = 3
1: for each I do
2: for each pixel j in I do
3: Select number of Gaussians
4: Represent j by sum of weighted Gaussian distributions
5: Update all distributions
6: Check for match with current pixel
7: end for
8: end for
Output: Foreground Mask, Background Model.

The hardware implementation stage proposes two steps. The first step is
the acceleration of the Algorithm 1 using Vivado HLS. Parallelization directives
are applied in the code to improve the performance of the algorithm following
the diagram showed in Fig. 1. Finally, HDL code generated by Vivado HLS is

Fig. 1. HLS flow design used for FPGA implementations of the algorithms.
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synthesized and downloaded to the FPGA. Figure 2 shows the code generated
with the name HLS Custom IP Core inside of the SoC-FPGA architecture.

The algorithms were implemented on a ZedBoard Zynq Evaluation and
Development Kit, which is a heterogeneous architecture based on FPGA. The
integrated development environment (IDE) for HDL synthesis named Vivado R©
Design Suite was used for the synthesis of each design. Vivado R© High-Level Syn-
thesis (VHLS) is included in the suite, and it is responsible for transformation of
the code written in C/C++ to HDL using a software-based approach, see Fig. 1.

The Operating System (OS) named PetaLinux was used on the ARM. This
OS is a Linux distribution customized for SoC Kit boards and it facilitates the
management of the peripherals on the development board such as Ethernet, USB,
and HDMI ports. The communication between the processor and the FPGA is
performed using AMBA AXI4-stream protocol. This is a data flow handler that
offers several end-to-end stream pipes for the data transport of the applications.
AXI4-stream works as a data transmission channel between the processing sys-
tem (PS) and the programmable logic (PL). In the PS side, it works as a memory
access control executed from a C++ function in PetaLinux. In the PL side, the
communication is done using AXI Master. AXI Master maps the memory to
stream conversion, and it performs the low-level transmission tasks, allowing to
the designer to read/write the DRAM in Linux, and read/write from FPGA to
DRAM using a high level approach. AMBA AXI4-Lite is an interface for data
transmission between PS and PL for simple communication because it has a
low-throughput memory-mapped communication and this interface is used for
the control signals and status registration of the data, see Fig. 2.

Fig. 2. Architecture of embedded vision system on SoC-FPGA.
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3 Experiments and Results

We compared implemented algorithm quantitatively and qualitatively on the
Wallflower dataset [12]. The results show that the proposed architecture can
compute the foreground of the scenarios in the first column of the Fig. 3.

Fig. 3. Qualitative results. From left to right: original image, ground truth, Frame
Difference, GMM1, GMM2. From top to bottom: bootstrap (BS), camouflage (CA),
foreground aperture (FA), lightswitch (LS), time of day (TD), waving trees (WT).

Quantitative results were calculated with three quality metrics: Precision,
Recall and F-score, as shown in Eqs. 1, 2 and 3, which are based on the amount of
false positives (FP), false negatives (FN), true positives (TP) and true negatives
(TN). The results in Table 1 are consistent with the found results in the state of
the art.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F -score =
2 · Precision · Recall

Precision + Recall
(3)
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Table 1. Performance using Wallflower dataset [12].

Algorithm Sequence

Metrics BS CA FA LS TD WT

Frame Difference Precision 0.834 0.721 0.754 0.888 0.823 0.626

Recall 0.686 0.557 0.601 0.630 0.622 0.643

F-score 0.753 0.629 0.669 0.737 0.709 0.635

GMM1 [11] Precision 0.654 0.836 0.579 0.213 0.967 0.911

Recall 0.675 0.807 0.602 0.389 0.796 0.945

F-score 0.664 0.822 0.591 0.276 0.873 0.928

GMM2 [14] Precision 0.626 0.895 0.839 0.310 0.895 0.913

Recall 0.676 0.897 0.736 0.322 0.550 0.938

F-score 0.652 0.896 0.784 0.316 0.682 0.925

The complete embedded vision system proposed is based on a heterogeneous
architecture composed of a SoC-FPGA, as seen in Fig. 2. The complete sys-
tem transmits information between ARM and FPGA, for this reason the maxi-
mum performance of the different implementations is limited for the maximum
bandwidth of communication channels. However, the complete system facilitates
management of peripherals and data using the operating system. Moreover, HLS
custom IP vision core running in the standalone FPGA can be used in applica-
tions with direct connection to the FPGA. Table 2 shows both main hardware
resources and power consumption in the algorithm implementations. This table
compares the data for the HLS custom IP vision core on FPGA and the complete
embedded vision system on the SoC-FPGA. The latter uses an amount greater
of hardware resources due primarily to the drivers for the management and the
transmission of data provided by the ARM.

Table 2. Hardware resources required on a ZedBoard FPGA after place and route.
The whole system includes processing modules.

Algorithm LUT Flip Flop Slice DSP48 Power (W)

HLS custom IP vision core (FPGA)

Frame Difference 1667/53200 2341/106400 701/13300 4/220 0.025

GMM1 [11] 18452/53200 56265/106400 9473/13300 25/220 0.446

GMM2 [14] 18872/53200 57698/106400 9623/13300 47/220 0.375

Complete embedded vision system (SoC-FPGA)

Frame Difference 4452/53200 5275/106400 1739/13300 4/220 1.593

GMM1 [11] 32336/53200 68875/106400 12860/13300 25/220 2.102

GMM2 [14] 34056/53200 72059/106400 13249/13300 47/220 2.046
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The performance of the SoC-FPGA and standalone FPGA were compared
against a PC, as can be seen in Table 3. The ZedBoard Zynq is a SoC that
contains a dual core ARM Cortex-A9 and one Artix-7 FPGA, with a FPGA
clock period of 10 ns (100 MHz). The PC is equipped with a processor AMD
Quad-Core A10-9620P running to 2.5 GHz. The average frame rate in PC, ARM
and SoC-FPGA is computed as in Eq. 4. For FPGA we need to compute a frame
rate as in Eq. 5. The performance measures for SoC-FPGA are better than the
measured for the PC, and SoC-FPGA allows the real-time implementation in all
cases. The standalone FPGA has the best performance because it does not have
the limitation of the communication channels. Additionally, a comparison against
the standalone ARM of the SoC-FPGA is included. An ARM processors is one
of a family of CPUs based on the RISC architecture that is typically used over
microprocessor boards and mobile devices used for real-time embedded system
applications. The performance of FPGA in the most of the cases exceeds by 10×
the performance of ARM, achieving over 40× in the best cases.

fps =
1

(elapsed time per frame)
(4)

fps =
1

(FPGA cycles per frame) · (clock period)
(5)

Table 3. Performance comparison for sequences at three resolutions, in fps.

Resolution Algorithm PC ARM (PS) FPGA (PL) SoC-FPGA (PS+PL)

160 × 120 [12] Frame Difference 2459 597 5019 4947

GMM1 [11] 284 30 1295 519

GMM2 [14] 623 77 1728 613

352 × 288 [13] Frame Difference 483 137 1277 1269

GMM1 [11] 63 6 246.3 128

GMM2 [14] 152 14 328 153

768 × 576 [4] Frame Difference 141 28 224 220

GMM1 [11] 19 2 56 22

GMM2 [14] 38 3 75 26

4 Conclusions

This work presented implementation of three background subtraction algorithms
in real-time using floating-point arithmetic. The HLS implementations permit a
fast design and implementation of several architectures with different paralleliza-
tion directives, in this way, it is possible to improve the performance of complex
algorithms with a standard floating-point precision. The performance measures
of the proposed architecture shown better computational times compared to PC-
based implementation, and the parallelization of the GMM algorithms reached
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the frame per seconds needed for real-time video processing with a low power
consumption. For these reasons, the heterogeneous architectures based on FPGA
shown to be an effective tool for the video surveillance applications over embed-
ded vision systems.
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