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Abstract. This paper presents an alternate form for the dynamic mod-
elling of a mechanical system that simulates in real life a gantry crane
type, using Euler’s classical mechanics and Lagrange formalism, which
allows find the equations of motion that our model describe. Moreover,
it has a basic model design system using the SolidWorks software, based
on the material and dimensions of the model provides some physical
variables necessary for modelling. The force is determined, but not as
exerted by the spring, as this will be the control variable. The objective
is to bring the mass of the pendulum from one point to another with
a specified distance without the oscillation from it, so that, the answer
is overdamped. This article includes an analysis of servo system control
in which the equations of motion of Euler-Lagrange are rewritten in the
state space, once there, they were implemented in Simulink to get the
natural response of the system to a step input in F and then draw the
desired trajectories.

Keywords: Euler Lagrange Formalism · Space of States ·
Controllability · Servo system control

1 Introduction

The cranes are used as support for heavy loads in various industrial applications
such as shipyards, ports, constructions, factories, among others. Generally, the
control of these devices is done manually by operators with wide knowledge,
practice and dexterity [1]. In industries involving cranes, the punctuality and
effectiveness of the handling system are important contributors to the produc-
tivity of the process or industry. It is for this reason that the implementation of
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a control strategy to the gantry crane can bring several advantages, such as sup-
port to the operator, safety, automatic operation and rejection or compensation
of disturbances. Port cranes are subject to the presence of external disturbances,
such as wind or carriage movement, these external forces can cause the load to
oscillate. In most applications these oscillations have negative consequences; the
load balancing makes the positioning more difficult, thus increasing the discharge
time and operator inefficiency; when the payload is dangerous or fragile, the oscil-
lations can cause load damage and insecurity [2,3]. Some examples are the neural
networks [4], Proportional Derivative Control (PD) [5], State feedback [6], fuzzy
logic [7], Nonlinear adaptive control [8], Hybrid control (nominal characteristic
trajectory (NCT) with Proportional Integral Control (PI)) [9], H infinite [10],
Linear Quadratic Regulator (LQR) [10], Output-Delayed feedback control [11],
among other strategies that feed the state of the art of these systems. Despite
the study of different control strategies, the technique known as state feedback
is undoubtedly one of the most used by researchers to mitigate position errors
and oscillations. Over the years, engineers have sought to improve ease of use,
increase operational efficiency and mitigate crane safety issues by tackling three
very important issues; Motion- induced oscillation; Disturbance-induced oscilla-
tion; And positioning capability. During the present work several aspects of study
were taken into account, starting in the Sect. 2 by the dynamic modeling of the
system through the Euler-Lagrange equations in a conservative way. Next, in
Sect. 3, the system was modeled taking into account the non-conservative forces
and the trajectory was defined for the future simulations. The simulations were
performed to compare these results, these are shown in Sect. 4. The Sect. 5 shows
each of the steps, criteria and discusses about the crane with for the design of
the servo system and finally in the Sect. 6 we present the conclusions of the work.

2 Symbolic Model

The crane type modeling system started from a model in which intervenes a
spring at the point where the force is applied for the movement of the carriage
on the rail, as shown in Fig. 1 and the real gantry crane as shown in the Fig. 2. For
this system the Lagrangian model was developed, in which initially the kinetic
and potential energies are calculated.

The Lagrangian of any system is defined,

L = T − U, (1)

where, T is the kinetic energy and U the potential, therefore, for this model it
is,

L = T1 + T2 + T3 + T4 + T5 − U1 − U2

= 1
2Mẋ2 + 1

2m2

(
1
4 l2θ̇2 + lθ̇ẋ cos θ + ẋ2

)

+ 1
2m1(l2θ̇2 + 2lθ̇ẋ cos θ + ẋ2)

+ 1
24m2l

2θ̇2 + 1
2m1θ̇

2
(
2
5r2

)
+ g l cos θ

(
m1 + m2

2

) − 1
2Kx2.

(2)
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Fig. 1. Initial system image Fig. 2. Gantry crane

In the Euler-Lagrange equations, q, represents the degrees of freedom (DOF)
generalized, in this case, there are two DOF, θ and x, therefore,

d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= 0 (3)

d

dt

(
∂L
∂ẋ

)
− ∂L

∂x
= 0. (4)

From (3) and (4), the Euler-Lagrange equation, is obtained,

θ̈l2 A + (ẍ l cos θ + g l sin θ)B = 0 (5)

ẍC − (θ̈l cos θ − lθ̇2 sin θ)B + K x = 0, (6)

where,

A =
(
m1 +

m2

3

)
+

2
5
m1 r2 (7)

B = m1 +
m2

2
(8)

C = m1 + m2 + M (9)

The solution for θ is shown in Fig. 3 and x for in Fig. 4.

Fig. 3. θ solution for the first 5 s.
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Fig. 4. x solution for the first 5 s.

3 Non-conservative Model

To control the system described above, the spring is deleted, which exerts a
force on the mass placed on the rail. The force is determined, but not as exerted
by the spring, since this will be the variable being monitored. The objective is
to bring the mass of the pendulum from one point to another with a specified
distance it to oscillate, so the answer is overdamped. From the system described
in Fig. 5, the dynamic model is determined from the Euler-Lagrange equations
for generalized force, this is

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi, i = 1, 2 (10)

where q1 = θ, q2 = x, Q1 = Qθ and Q2 = Qx; these last two represent the
generalized forces over the system, which will no longer be conservative, due to
the existence of an external force F and friction is assumed in the pendulum
axis (b1θ̇) and carriage contact with the rail (b2ẋ), according to Fig. 5. With this
variation, the new Euler-Lagrange equations, are

θ̈ D + (ẍ l cos θ + g l sin θ)B = −b1θ̇ (11)

ẍ C + (ẍ l cos θ + g l sin θ)B = F − b2 ẋ (12)

Fig. 5. Non-conservative model variables.
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where

D =
(

2
5
m1 r2

)
, (13)

and B, C are the same terms in the Eqs. (8) and (9), respectively.
A suitable trajectory for the variable x is that in which the speed starts and

ends at zero, the trigonometric function tanh, so that the function of the desired
trajectory is,

x =
d

2
tanh

[
α

(
t − T

2

)]
+

d

2
, (14)

where d is the distance to travel, t represents time, T the time and α a factor to
vary the slope of the curve. The function type proposed is more than twice dif-
ferentiable, this ensures a continuous acceleration along the way. Having defined
the trajectory to x, these values are entered into Eq. (11), and trajectories for θ
y θ̇ are found.

3.1 Matrix Representation of Dynamic Model

Starting from [12], despite the complexity of the dynamic equation (15) that
the behavior of manipulative robots, this equation and its formant terms have
properties that are of interest in themselves. In addition, these properties are of
particular value in the study of control systems for manipulators.

M(q)q̈ + C(q, q̇) q̇ + G(q) + f(q̇) = τ, (15)

so that (15) is the dynamic equation for mechanical systems of n degrees of free-
dom (DOF). Where M , is the inertia tensor of the system, C, is the centrifugal
forces and Coriolis matrix, G the vector of gravity, f , the friction matrix and τ ,
the external forces. The equations of motion (11) and (12) in matrix form are
as follows,

[
Bl cos θ D

Bl cos θ + C 0

] [
ẍ

θ̈

]
+

[
0 0
0 0

] [
ẋ

θ̇

]
+

[
Bgl sin θ
Bgl sin θ

]
+

[
0 b1
b2 0

] [
ẋ

θ̇

]
=

[
0
F

]

Clearing the accelerations of the previous representation (16), we obtain the
equations that will be used for future simulations and perform the control of the
system.

ẍ =
1

det(M)
[−D(F − b2ẋ − Bgl sin θ)], (16)

and

θ̈ =
1

det(M)
[(−Bl cos θ − C)(−b1θ̇ −Bgl sin θ) + (Bl cos θ)(F − b2ẋ −Bgl sin θ)],

(17)
where, det(M) = −D(Bl cos θ + C).
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4 Simulation

To validate the linearization obtained, we proceeded to simulate the nonlinear
model (Euler-Lagrange equations) and the state space model (Matrix A, B, and
C̃), putting them to respond to the same input F = 0.1 of 2 s.

Fig. 6. Block diagram with both models.

The Fig. 6, shows the general scheme of both simulated models, the scheme
containing the nonlinear model is shown below (Fig. 7).

Fig. 7. Nonlinear model block diagram.

The block that is called Non-linear model is a function of Matlab, which
contains the Euler-Lagrange equations of motion. The system response for the
conditions given above is shown in Fig. 8, 9, 10 and 11.
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Fig. 8. Cart position for both models

Fig. 9. Cart speed for both models

In Fig. 9, it can be seen that the system increases its velocity while the
external force F is acting on the system, after the external force is not present,
the velocity decreases until reaching a stationary zone.

Fig. 10. Pendulum position for both models

In Figs. 8, 9, 10 and 11, the red line represents the response of each of the
corresponding variables of the nonlinear model, while the blue line is the behavior
of the linearized model.
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Fig. 11. Pendulum speed for both models

5 System Control

For the design of controllers by state feedback it is necessary to work with
the subsystem of minimal realization [13], this subsystem is characterized by
complete controllability and observability, because the non-controllable part of
a system is independent of inputs, it is not possible to modify the subsystem by
any state feedback acting on this. Therefore, it is necessary to verify the complete
controllability of the system to be able to design the controller by feedback [14].
For the design of the state feedback controller, it is necessary to verify that the
system has a subsystem of minimal realization, for this it is assumed that all
states are physically measurable, So the system is fully observable, besides this,
it is necessary to know if it is totally controllable or not, For this the controller
Q = [B AB A2B A3B], matrix is calculated, this matrix has a range equal to 4,
while the matrix A has a range of 3, therefore, the system is fully controllable
(oversized system).

5.1 Transformation to Phase Variables

For the design of the controller by state feedback it is convenient to express
the matrices of the system in its controllable canonical form, which require a
transformation matrix T , which is defined as T−1 = [e; eA; eA2; eA3], where,
e = Q−1(n), being n, is the last row of the inverse of the matrix Q.

So that Af = T−1AT and Bf = T−1B, where,

Af =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 −10174 −19020 −7075.1

⎤
⎥⎥⎦ , (18)

Bf =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ , (19)
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here, Af and Bf , are the representation of the system in phase variables (con-
trollable canonical form). The vector C̃, is already in the canonical form.

5.2 Servo System Control

The servosystem is a controller that has certain advantages over other clas-
sic controllers, such as its good performance in systems sensitive to distur-
bances and with modeling inaccuracies, in addition to ensuring a zero position
error. It is necessary to know the type of system with which you are work-
ing, there are several ways to know the type of a control system, among the
most common is to calculate the transfer function or find its own values which
give us information from the poles of the system, in this case the own values
V P = [−1.95,−7077, 0,−0.737], were calculated, observing that there is a sys-
tem type 1, so the first feedback constant k1, will be 0.

5.3 Poles Allocation

The design of the controller was done by means of pole assignment, also known
as poles location technique. In this case it starts by analyzing the eigenvalues
of the system, these eigenvalues represent the poles of the closed-loop system.
Next, the desired poles of the system are located with the criterion of ts = 4T
(previously defined a T = 5 s, in the defined path), therefore, the desired poles
will be located at 20. It suffices that b0 �= 0, to place the desired poles anywhere,
being in this case b0 = 1, since it is the first value of vector C̃. For the calculation
of the vector K and the proportional action K0 we start from,

Ar = Af + BfKf − K0Bf C̃ (20)

being, Ar, the feedback matrix,

Ar =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−160000 −32000 −2400 −80

⎤
⎥⎥⎦ . (21)

The Ar matrix contains the polynomial resulting from locating the desired poles
Pd = (s + 20)4. Clearing the feedback vector Kf and the proportional constant
K0 from (20), we obtain,

K = [0,−1.0727,−13.406,−3.3737]
K0 = 160000,

being, K = KfT−1.
The matrix A and B represented in physical variables.
The Fig. 12, shows the system block diagram with the proposed path, the

feedback vector K and the proportional action K0.
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Fig. 12. Block diagram with controller

Fig. 13. Cart outputs

The Fig. 13, shows the position and speed of the cart under the action of
the controller, it is observed that the cart arrives at the desired position by
the trajectory defined in a non-abrupt way and without going back. As for the
speed, we see that this increases when the cart is starting and decreases when it
is reaching its stationary zone, so that the car remains with a null position error.
As for the position and velocity of the pendulum shown in Fig. 14, it can be seen
that the controller tries to keep the pendulum at its equilibrium point, it can
be seen in the red line that the position has few oscillations, with a maximum
amplitude of 0.014 radians (0.8063◦) and minimum of 0.0185 radians (−1.0588◦).

Fig. 14. Pendulum outputs
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6 Conclusions

Because the defined control required a linear model, it was necessary to linearize
the system, which allowed us to work with a model that would not go away
largely to the real. The servo system is a type of controller in state space that
responds well to perturbations. In addition, this driver guarantees us a null
position error. It can be seen from Fig. 8, that the controller responds correctly,
since it takes the carriage to the desired position in a good way following the
path defined in Eq. (14). The criterion selected for the pole assignment gives
good results, since the controller obtained guaranteed all the requirements of
position, trajectory and oscillations in the system.
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