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Abstract. Current computer-assisted medical imaging for the plan-
ning of radiotherapy requires high-level mathematical and computa-
tional skills. These are often paired with the case-by-case integration of
highly specialised technologies. The lack of modularity at the right level
of abstraction in this field hinders research, collaboration and transfer
of expertise among medical physicists, engineers and technicians. The
longer term aim of the introduction of spatial logics and spatial model
checking in medical imaging is to provide an open platform introduc-
ing declarative medical image analysis. This will provide domain experts
with a convenient and very concise way to specify contouring and seg-
mentation operations, grounded on the solid mathematical foundations of
Topological Spatial Logics. We show preliminary results, obtained using
the spatial model checker VoxLogicA, for the automatic identification of
specific brain tissues in a healthy brain and we discuss a selection of
challenges for spatial model checking for medical imaging.

Keywords: Spatial logics · Closure Spaces ·
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1 Introduction

Spatial and Spatio-temporal logics and model checking are enjoying an increasing
interest in Computer Science (see for instance [12,13,16,25,26,35]). The main
idea of spatial and spatio-temporal model checking is to use specifications written
in logical languages to describe spatial properties and to automatically identify
patterns and structures of interest. Spatial and spatio-temporal model checking
have recently been applied in a variety of domains, ranging from Collective
Adaptive Systems [10,17,18] to signals [35] and images [4,13,26], just to mention
a few. The origins of spatial logics can be traced back to the forties of the previous
century when McKinsey and Tarski recognised the possibility of reasoning on
space using topology as a mathematical framework for the interpretation of
modal logic (see [9] for a thorough introduction). In their work, modal logic
formulas are interpreted as sets of points of a topological space. In particular, in
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Fig. 1. Examples: open ball (left) and its topological closure (right)

that context, the modal operator � is interpreted as the (logical representation
of the) topological closure operator. Informally, this operator adds an (infinitely
thin) border to an open set of points as illustrated in Fig. 1.

In recent work [12,13], Ciancia et al. pushed such theoretical developments
further to encompass arbitrary graphs as models of space. In that work Closure
spaces, a generalisation of topological spaces, are used as underlying model for
discrete spatial logic inspired by recent work by Galton [21–23]. This resulted in
the definition of the Spatial Logic for Closure Spaces (SLCS), and a related model
checking algorithm. Furthermore, in [11], a spatio-temporal logic, combining
Computation Tree Logic with the spatial operators of SLCS was introduced. An
(extended) model checking algorithm has been implemented in the prototype
spatio-temporal model checker topochecker1.

A completely different and, so far, little explored domain of application for
spatial model checking is that of medical imaging. Medical imaging is concerned
with the creation of visual representations of parts of the human body for the
purpose of clinical analysis and in preparation of medical intervention. In our
recent work [4,6–8] we focused in particular on spatial model checking in the area
of medical imaging for radiotherapy. One of the most important steps in the plan-
ning of radiotherapy is the accurate contouring of tissues and organs at risk in
medical images, commonly produced by Computed Tomography (CT), Magnetic
Resonance (MR), and Positron Emission Tomography (PET). Recent research
efforts in the field of medical imaging are therefore focused on the introduction of
automatic contouring procedures. These procedures are used to identify particu-
lar kinds of tissues. These can be for example parts of the brain (white matter2,
grey matter3) or tissues that could indicate diseases that need treatment. Such
(semi-) automatic procedures would lead to an increase in accuracy and a con-
siderable reduction in time and costs, compared to manual contouring – the
current practice in most hospitals. The software for automatic contouring that
is starting to appear on the market is, however, highly specialised for particular
types of diseased tissue in particular parts of the body (e.g., “breast cancer”, or
“glioblastoma” – a kind of malign tumour in the brain), lacks transparency to its
users, provides little flexibility, and its accuracy is still not always satisfactory.
In the last few years also deep learning algorithms have become very popular for
medical image analysis. They are reaching good results and are computation-
ally efficient, but they are also posing their own limiting factors such as lack of

1 Topochecker: a topological model checker, see http://topochecker.isti.cnr.it, https://
github.com/vincenzoml/topochecker.

2 Part of the central nervous system in the brain.
3 Place where neurons are located in the outer part of the brain.

http://topochecker.isti.cnr.it
https://github.com/vincenzoml/topochecker
https://github.com/vincenzoml/topochecker
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sufficiently large accurately labelled data sets, labelling uncertainty and prob-
lems to deal with rare cases (see for example a recent survey [29] and references
therein) but also lack of explainability and transparency. Our recent work shows
that, when comparing the accurate contouring of brain tumour tissue using a
spatial model checking approach [8] with the best performing algorithms (among
which many based on deep learning) on the public benchmark data set for brain
tumours (BraTS 2017 [38]), our approach on 3D images is well in line with
the state of the art, both in terms of accuracy and in terms of computational
efficiency.

The work in the present paper is focusing on the identification of relevant
tissues in the healthy brain such as white matter and grey matter rather than
diseased tissue. As in our previous work, we do this using VoxLogicA, (Voxel-
based Logical Analyser)4 the free and open source spatial model checker described
in [8] which efficiently implements the spatial logic SLCS enriched with a number
of specific operators for the domain of medical imaging that were introduced
in [4,8]. Furthermore, we provide a selection of challenges laying ahead for the
use of spatial model checking in medical imaging as a valuable complementary
method in this important area of research.

In Sect. 2, we briefly recall the spatial logic framework and some of the main
aspects of spatial model checking based on Closure Spaces, and provide a number
of illustrative examples that serve as a gentle introduction to the spatial logic.
Section 3 illustrates further operators that are of particular interest in Medi-
cal Imaging. In Sect. 4 we show how these specific operators can be combined
with the basic logic to identify tissues of interest in a healthy brain. In Sect. 5
we describe some of the main challenges for successful application of spatial
model checking in the area of medical imaging for radiotherapy. Related work is
described in Sect. 6. In Sect. 7 we provide some conclusions and an outlook for
further research.

2 The Spatial Logic Framework

A 2D digital image can be modelled as an adjacency space, i.e. a set X of cells
or points—each corresponding to a distinct pixel—together with an adjacency
relation R among points. Usually, the so called orthogonal adjacency relation5 is
used, where only pixels which share an edge count as adjacent; on the other hand,
in the ortho-diagonal adjacency relation (see Fig. 2) pixels are adjacent as long as
they share at least either an edge or a corner. Each pixel of an image is associated
with one or more (colour) intensities; we model this by equipping the points
with attributes. We assume sets A and V of attribute names and values, and an
attribute valuation function A such that A(x, a) ∈ V is the value of attribute
a of point x. Attributes can be used in assertions α, i.e. boolean expressions,
with standard syntax and semantics. Consequently, we abstract from related

4 VoxLogicA: https://github.com/vincenzoml/VoxLogicA.
5 Sometimes called von Neumann adjacency. The relation is reflexive and symmetric.

https://github.com/vincenzoml/VoxLogicA
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Fig. 2. Pixels that are orthogonally adjacent to pixel A (a) and orthodiagonally adja-
cent (b) are shown in blue. Distance transform (c) with distance to pixel A as attribute
shown in each pixel for orthogonal adjacency and Manhattan distance function. (Color
figure online)

details here and assume function A extended in the obvious way; for instance,
A(x, a ≤ c) = A(x, a) ≤ c, for appropriate constant c.

A similar reasoning applies to 3D—or, in general, multi-dimensional—images,
where voxels are used instead of pixels and the (chosen) adjacency relation needs
to be extended in the obvious way (an extended introduction to these matters
is given in [4]).

Given a set of (attributed) points X with a binary relation R ⊆ X × X we
define function CR : 2X → 2X with CR(Y ) � Y ∪ {x|∃y ∈ Y.y R x}. It turns out
that CR is a closure function and (X, CR) is a closure space6. Thus, adjacency
spaces are a subclass of closure spaces.

A (quasi-discrete) path π in (X, CR) is a function π : N → X, such that for
all Y ⊆ N, π(CSucc(Y )) ⊆ CR(π(Y )), where π is implicitly lifted to sets in the
usual way (i.e. π(Y ) = {x | ∃y ∈ Y.π(y)}) and (N, CSucc) is the closure space
of natural numbers with the successor relation: (n,m) ∈ Succ ⇔ m = n + 1.
Informally: the ordering in the path imposed by N is compatible with relation
R, i.e. if π(i) 	= π(i + 1) then π(i)R π(i + 1)7.

A closure space (X, C) can be enriched with a notion of distance, i.e. a function
d : X × X → R≥0 ∪ {∞} such that d(x, y) = 0 iff x = y, leading to the
distance closure space ((X, C), d). The notion is easily lifted to sets Y 	= ∅:
d(x, Y ) � inf{d(x, y)|y ∈ Y }, with d(x, ∅) = ∞.

In this paper, we use the version of the logic presented in [8], based on a
reachability operator, as in [5], and recalled in the sequel. For given set P of
atomic predicates p, and interval of R I, the syntax of the logic is given below:

Φ :: = p | ¬Φ | Φ ∨ Φ | NΦ | ρ Φ[Φ] | DIΦ (1)
6 The reader interested in the formal definition of closure spaces and on their properties

is referred to the literature (see e.g. [12,13,21–23] and references therein). Here
it suffices to say that C(Y ) is essentially the set of points close to any point in
Y ; note that, since closure spaces generalize topological spaces, in the latter, the
closure operator C coincides with topological closure, so that, for instance, in the
monodimensional Euclidean space R, C([0, 1)) = C((0, 1)) = C((0, 1]) = C([0, 1]) =
[1, 0].

7 We refer to [13] for a discussion on paths on the more general class of closure spaces,
including e.g. Euclidean spaces, including e.g. Euclidean spaces.
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Satisfaction M, x |= Φ of a formula Φ at point x ∈ X in distance closure model
M = (((X, C), d),A,V) is defined in Fig. 3 by induction on the structure of
formulas. It is assumed that space is modelled by the set of points of a distance
closure model; each atomic predicate p ∈ P models a specific feature of points and
is thus associated with the points that have this feature. A point x satisfies N Φ if
it belongs to the closure of the set of points satisfying Φ, i.e. if x is near (or close)
to a point satisfying Φ; x satisfies ρ Φ2[Φ1] if there is a path π rooted in x—i.e.
with x = π(0)—and an index � such that π(�) satisfies Φ2—i.e. M, π(�) |= Φ2—
and all intermediate points in π, if any, satisfy Φ1—i.e. M, π(j) |= Φ1, for all
j with 0 < j < �; x satisfies DIΦ if the distance of x from the set of points
satisfying Φ falls in interval I; in the sequel we will use standard abbreviations
for denoting intervals I of interest as parameter of D, such as: ‘< r’ for [0, r) and
‘≥ r’ for [r,∞). Finally, the logic includes logical negation (¬) and disjunction
(∨); as usual, the true (�) and false (⊥) constants as well as conjunction (∧)
are defined as derived operators.

M, x |= p ∈ P ⇔ x ∈ V(p)
M, x |= ¬ Φ ⇔ M, x |= Φ does not hold
M, x |= Φ1 ∨ Φ2 ⇔ M, x |= Φ1 or M, x |= Φ2

M, x |= N Φ ⇔ x ∈ C({y|M, y |= Φ})
M, x |= ρ Φ2[Φ1] ⇔ there exists a path π and an index � such that the following holds:

π(0) = x and M, π(�) |= Φ2 and
M, π(j) |= Φ1, for all j with 0 < j < �

M, x |= DI Φ ⇔ d(x, {y|M, y |= Φ}) ∈ I

where, whenever p := α is a definition for p, we assume x ∈ V(p) if and only if A(x, α)
yields the truth-value ‘true′.

Fig. 3. Definition of the satisfaction relation

We provide a few simple examples to illustrate these basic spatial operators
in Fig. 4. The examples are shown for a spatial model based on a 2D space of
100 points arranged as a 10 × 10 grid, with an orthogonal adjacency relation.
We assume the set of atomic predicates P is the set {black, white, red} and,
in Fig. 4a, we show in black the points satisfying the atomic predicate black
and similarly for white and red. In Fig. 4b the points satisfying formula black ∨
red are shown in green8; similarly, Fig. 4c shows the points satisfying ¬(black ∨
red), and Fig. 4d shows those satisfying N black; all points of this model satisfy
ρ red[white], as shown in Fig. 4e while only the points satisfying black in the
model satisfy also black ∧ ρ red[white], as shown in Fig. 4f. Finally, Fig. 4g shows
in green the points that satisfy D[2,3]red, i.e. those points that are at a distance
of at least 2 and at most 3 from points satisfying red in Fig. 4a. In this case we
assume that the underlying notion of distance is that of the Manhattan distance
as shown in Fig. 2.
8 Note that this colour does not correspond to any atomic predicate and so it is not

part of the model; we use it only for illustration purposes.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. An example model (a); the points shown in green are those satisfying black ∨
red (b), ¬(black ∨ red) (c), N black (d), ρ red[white] (e), black ∧ ρ red[white] (f), and
D[2,3]red (g). (Color figure online)

In the version of the logic presented in [12,13] a surrounded operator S was
introduced for closure spaces, inspired by the spatial until operator discussed
in [1] for topological spaces; x satisfies Φ1 S Φ2 if it satisfies Φ1 and in any path
π with x = π(0), if there is � such that π(�) does not satisfy Φ1, then there
is j, 0 < j ≤ �, such that π(j) satisfies Φ2; in other words, x belongs to an
area satisfying Φ1 and one cannot escape from such an area without hitting a
point satisfying Φ2, i.e. x is surrounded by Φ2. In [8] it has been shown that the
surrounded operator can be expressed using the reaches operator ρ as follows:

Φ1 S Φ2 ≡ Φ1 ∧ ¬ρ (¬(Φ1 ∨ Φ2))[¬Φ2]

In this paper S will be considered as a derived operator. Again with reference
to Fig. 4a we note that the two black points also satisfy black S(N red).

3 Spatial Logic for Image Analysis

In this section we illustrate the use of the variant of SLCS briefly presented
in Sect. 2 extended with a few additional operators introduced in [4,7,8], that
are of particular interest for the domain of image analysis. In earlier work we
focused on the contouring of diseased (brain) tissue [4,8]. In the next section we
show how short but formal and unambiguous logic specifications can be used to
identify typical parts of the human brain.

Before presenting the specifications, it is convenient to introduce a few addi-
tional derived operators, defined in Fig. 5.

Let us consider a point of a model which satisfies a formula of the form
ρ Φ2[Φ1]; from the definition of the reaches operator, there is no guarantee that
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touch(Φ1, Φ2) � Φ1 ∧ ρ Φ2[Φ1]
grow(Φ1, Φ2) � Φ1 ∨ touch(Φ2, Φ1)
flt(r, Φ1) � D<r(D≥r¬Φ1)

Fig. 5. Definition of the touch, grow and flt derived operators.

such a point would also satisfy Φ1, i.e. the formula satisfied by the intermedi-
ate points of the path, if any. Such guarantee is ensured by the derived oper-
ator touch—i.e. a point satisfies touch(Φ1, Φ2) if it satisfies Φ1 and there is a
path rooted in this point that reaches a point satisfying Φ2 with all preceding
points satisfying Φ1; note that all such preceding points satisfy touch(Φ1, Φ2) too.
Figure 4c shows in green the points satisfying touch(white, red) in the model of
Fig. 4a—that, by the way, in this specific model, happen to be the same as those
satisfying ¬(black ∨ red).

The formula grow(Φ1, Φ2) is satisfied by points that satisfy Φ1 and by points
that satisfy Φ2 and that are on a path that reaches a point satisfying Φ1. Figure 6a
shows in green the points satisfying grow(red, white) in the model of Fig. 4a.

A point satisfies formula flt(r, Φ1) if it is at a distance of less than r from
the set of points that are at a distance at least r from the set of points that do
not satisfy Φ1. This operator works as a filter; only contiguous areas satisfying
Φ1 that have a minimal diameter of at least 2r are preserved; these are also
smoothened if they have an irregular shape (e.g. protrusions of less than the
indicated distance). An example of the effect of the flt operator is shown in
Figs. 6b to e. Let us consider the model of Fig. 6b—defined on only two atomic
predicates, namely black and white—and let us consider the formula flt(2,black);
Fig. 6c shows in green the points of the model of Fig. 6b satisfying ¬black, while
those satisfying D≥2(¬black) are shown in Fig. 6d and finally Fig. 6e shows those
satisfying D<2(D≥2(¬black))—i.e. flt(2,black).

Furthermore a statistical similarity operator is introduced (see [4,8]). It can
search for tissue that has the same statistical texture characteristics as a provided
texture sample by comparing the similarity of the histograms of the two textures.
With reference to a point x, the statistical similarity operator ����c

[
m M k
r a b

]
Φ

compares the region of the image constituted by the sphere (hypercube) of radius
r centred in x against the region characterised by Φ. The comparison is based
on the cross correlation of the histograms of the chosen attributes of (the points
of) the two regions, namely a and b and both histograms share the same range
([m,M ]) and the same bins ([1, k]). In summary, the operator allows to check to
which extent the sphere (hypercube) around the point of interest is statistically
similar to a given region (specified by) Φ. This implements a form of texture
similarity, which, in practice, works quite well for medical images, also since it is
by definition invariant with respect to rotation. In Fig. 7 we report an example
that was used in [4] as a benchmark. The benchmark uses a checkerboard-like
pattern with areas having differently-sized squares (see Fig. 7a). Figure 7b shows
the output of statistical cross-correlation—after thresholding—using as “target”
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(a) (b) (c) (d) (e)

Fig. 6. With reference to the model in Fig. 4a, (a) shows in green the points satisfy-
ing grow(red, white). In (c) (d, e, respectively) the points of the model shown in (b)
that satisfy ¬black (D≥2(¬black), D<2(D≥2(¬black))—i.e. flt(2,black)—respectively)
are shown in green. (Color figure online)

region the whole image. The associated histogram mostly consists of an equal
number of black and white points (plus a smaller number of points having an
intermediate value, due to grey lines separating the different areas of the image).
Therefore the points that have high local cross-correlation with the whole image
(depicted in green) are those that lay on the border of squares, whereas in the
inner part of any square, the histogram only consists of either white or black
points.

Fig. 7. A checkerboard-like pattern (a) and the result of the �� operator applied to it
(b). (Color figure online)

The maxvol operator is another operator introduced for the domain of image
analysis. A point satisfies maxvol Φ if it belongs to the largest connected compo-
nent of (the subspace induced by the) points that satisfy Φ. If there are more than
one of such largest components, then the points of all such largest components
satisfy the property maxvol Φ.

Finally, a percentiles operator is introduced that assigns to each point of
an image the percentile rank of its intensity among those that are part of the
image. The interpretation of percentiles(img ,mask , c) considers the set of points
S identified by the Boolean-valued mask mask in the image img—an image with
an intensity attribute value associated to each point—and returns an image in
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which the percentile attribute value of each voxel x is the fraction of points in
S that have an intensity below that of x in img ; c is a weight, between 0 and
1, used to take into account also the fraction of points that have intensity equal
to that of x in the computation; more precisely, the percentile value vx of each
voxel x is defined by

vx =
lx + (c · ex)

N

where lx is the number of voxels in S having intensity below that of x, ex is
the number of voxels in S that have intensity equal to that of x, and N is the
total number of voxels in S. This operator is used as a form of normalisation
of the provided image so that the specification can be used on different cases
without the need to recalibrate or explicitly normalise the intensities of the
image which may differ in a similar way as normal photographs may show some
over or under-exposition. To clarify this, let us just mention one example: the
hyperintense areas of an image can be defined as those that have percentile rank
higher than 0.95, no matter what is the range of the intensity of the source
image, or even its numeric type and precision.

The spatial logic SLCS and the additional operators discussed in this section
have been implemented in the free open source spatial model checker VoxLogicA.
VoxLogicA is specifically designed for the analysis of (possibly multi-dimensional,
e.g. 3D) digital images as a specialised image analysis tool, though it can also
be used for 2D (general purpose) image analysis. It is tailored to usability and
efficiency by employing state-of-the-art algorithms and open source libraries,
borrowed from computational image processing, in combination with efficient
spatial model checking algorithms. The source code and binaries of VoxLogicA
as well as an exhaustive list of the available built-ins, a user manual and a
mini-tutorial for the tool are available at the web site of the tool (see Footnote
4). Furthermore, a “standard library” is provided containing short-hands for
commonly used functions, and for derived operators. For further details on the
model checker and its implementation we refer to [8].

4 Illustration: Brain Segmentation

In previous work [4,7,8] we have focused on how the spatial model checker
VoxLogicA can be used for contouring of brain tumours and associated oedema.
In this section we present preliminary results on the identification of specific
tissues in the healthy head and brain such as white and grey matter, the skull,
the bone marrow and so on. For this purpose we use two simulated brain images9

from a set of twenty [2,28]. Simulated brain images have the advantage that
data is generated and therefore the ‘ground truth’ is know, i.e. it is know for
sure which points belong to which kind of tissue. This is very useful for the
quantitative testing of image analysis methods.

9 See https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic normal 20.html (Pub-
licly available).

https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html
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The specifications that we present serve the purpose to illustrate the flexibil-
ity and the potential of the approach, although we expect that our method will
be further improved to obtain more accurate results in future work.

The syntax we use for the specifications is that of VoxLogicA, namely: |,&,!
are boolean or, and, not ; distleq(c,phi) is the formula D≤cphi (similarly,
distgeq; distances are in millimeters); the statistical similarity operator (see
Sect. 6) ����c

[
m M k
r a b

]
Φ is written as crossCorrelation(r,a,b,phi,m,M,k) �� c;

where the function crossCorrelation computes the relevant cross-correlation
value. The >. and <. operators (greater than, and less than, respectively) per-
form thresholding of the attribute values of the points of an image; border is
true on voxels that lay at the border of the image. Other operators should be
self-explaining or will be explained in passing.

Specification 1: Derived operators in VoxLogicA

1 import "stdlib.imgql"

2 let grow(a,b) = (a | touch(b,a))

3 let flt(r,a) = distleq(r,distgeq(r,!a))

4 load imgT1 = "INPUTDIR/NAME t1.nii.gz"

5 let t1 = intensity(imgT1)

6 let similarT1To(a) = crossCorrelation(3,t1,t1,a,min(t1),max(t1),30)

7 let similarT1Tor1(a) =

crossCorrelation(1,t1,t1,a,min(t1),max(t1),30)

In the first part of the specification, shown in Specification 1, standard derived
operators are imported from the file stdlib.imgql (they will be explained when
they are used) and the derived operators that were presented in Sect. 3 are
defined, i.e. the operators grow and flt.

In line 4 the 3D magnetic resonance image (MRI) is loaded (which in this
case is of type T1, short for T1-weighted-Fluid-Attenuated Inversion Recovery).
In this case, the file is encoded using the NIfTI file format (.nii file name
extension)10. In line 5 the name t1 is bound to the attribute of each voxel of
the image corresponding to the intensity of that voxel in the image. In line 6
and 7 two variants of the statistical similarity operator crossCorrelation are
defined that share the same parameters, but use a different radius, 3 mm and
1 mm, respectively, around each point.

The second part of the specification is given in Specification 2, where the
operations for the identification of the head and the background in the image
are shown. Figure 8 shows a few intermediate results of Specification 2 that make
it easier to follow the informal description below. Such figures across this section
have been produced using the save command of the tool, which, when applied to
a formula, generates and saves to disk a new binary image, where exactly those
points satisfying the formula at hand are rendered using the boolean value true.

10 The NIfTI file format is a special data format by the Neuro-imaging Informatics
Technology Initiative, https://nifti.nimh.nih.gov/.

https://nifti.nimh.nih.gov/
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Specification 2: Segmentation of head and background

1 let bg = percentiles(t1,t1 >. 0,0.5)

2 let bg1 = touch(bg <. 0.6,border)

3 let head1 = maxvol(flt(2,!bg1))

4 let head2 = distleq(3,head1)

5 let bg2 = maxvol(!head2)

6 let background = distleq(3,bg2)

7 let head=!background

Such a binary image (also called region of interest) can be loaded in viewers
to produce coloured overlays that are superimposed to the original image. In
line 1 bg (short for ‘background’) is defined where each point in the image is
associated with the value of its percentile ranking attribute w.r.t. the intensity of
the points. In line 2 this is used to identify all points from which a border point
can be reached passing only through relatively dark (low intensity) points that
satisfy bg < .0.6, shown in red in Fig. 8b. Note that the formula is satisfied also
by points inside the skull; this is due to the fact that the image under analysis is a
3D image, so there are (3D) paths which do not lay in the 2D projection shown in
the figure. In line 3 this is used to obtain head1, a first approximation of the area
of the head as the maximum volume that is not identified as background—after
some smoothening using the filter operator (Fig. 8c). In line 4 also all points at
a distance of less than 3 mm from points satisfying head1 are included (Fig. 8d).
This temporary enlargement of the head area is useful to separate points that
are part of the background from those that are part of the head, so that in line 5
the operator maxvol can be used to identify all points of the background (in red
in Fig. 8e). After this, the temporary enlargement is removed using the distleq
operator in line 6 (in blue in Fig. 8f) and the points that satisfied it are again
part of the background.

The separation of the background from the part of the image that is really
of interest, namely the head, is important for the next steps. In particular, the
percentiles can now be obtained considering only the area of the head. Since
the anatomy of any adult human head is very similar, the number of points in
each percentile, i.e. the normalised grey-level, have a very similar distribution for
any head regardless of the possible fluctuations in the luminosity of the images
due to differences in the registration. Therefore, in line 1 of Specification 3 the
percentile rank for each point satisfying head is obtained in pt1. In line 2 the
similarity coefficient (cross correlation) is computed (for each voxel) and in line
3 we define the interior part of the head, i.e. those points of the head that are at
a distance of at least 30 mm from the background (Fig. 9a). The following steps
use these definitions to identify the white matter of the brain. In line 4 we seek
to obtain an area of the brain that is certainly composed of white matter and is
defined as the largest area in the inner part of the brain each point of which is
in a 3 mm ball that has a cross correlation coefficient with the complete head of
between 0.4 and 0.6 (Fig. 9b). These values have been obtained experimentally
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Fig. 8. Identification of head and background. Original axial view (a). In red points
satisfying bg1 (b); points satisfying head1 (c); points satisfying head2 (d); points sat-
isfying bg2 (e); points satisfying head (in red) and background (in blue) (f). (Color
figure online)

in such a way that they correspond to points that are white matter and not other
kind of tissue, such as the eyes, that also has a high intensity11. Then, in line 5,
we look for all the points that are similar to white1 using a rather small radius
(1 mm) to obtain good accuracy (Fig. 9c). Subsequently, in line 6 the largest
volume of points is selected that is sufficiently similar with a coefficient of at
least 0.6 (Fig. 9d). This gives already a very good approximation. In line 7 this
is somewhat refined by “closing tiny grey holes” in this area using a surrounded
operator (Fig. 9e).

Specification 3: Segmentation of white matter

1 let pt1 = percentiles(t1,head,0.5)

2 let headSim = similarT1To(head)

3 let headInt = head & !(distleq(30,!head))

4 let white1 = maxvol((headSim <. 0.6) & (headSim >. 0.4) & headInt)

5 let whiteT1 = similarT1Tor1(white1)

6 let white2 = maxvol(whiteT1 >. 0.6)

7 let white = white2 | ((headSim >. 0.3) & surrounded((headSim >.

0.3),white2))

11 Again, note that we are processing a 3D image.
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Fig. 9. Identification of white matter. In red points satisfying headInt (a); points
satisfying white1 (b); level of similarity whiteT1 (c); points satisfying white2 (d);
points satisfying white (e). (Color figure online)

In Specification 4 we proceed by identifying the grey matter of the brain. In
line 1 we take a larger internal portion of the head than that of headInt so that
we are sure that the grey matter, which is mostly situated near the white matter
towards the outside of the brain, is included. In line 2 an area is identified that
is almost certainly part of the grey area, using expert knowledge on percentile
ranking, similarity coefficient and position within the internal part of the head
(Fig. 10a). In line 3 we use the knowledge that grey matter is attached to the
white matter of the brain (Fig. 10b). We now have a good sample of grey matter,
but there are some areas that are not covered (see the grey parts that are not
red yet in the left and top part of the head in Fig. 10b). So we look for further
texture that is similar to grey matter in line 4 and 5 (Fig. 10c and d). This indeed
includes the previous grey areas that were missed out, but also includes other
areas in the bottom outer part of the head. We use again the knowledge that
grey and white matter are next to each other using touch and distleq and the
knowledge that white and grey matter do not overlap, i.e. !white to exclude the
areas on this outer part as they cannot be part of the grey matter for anatomical
reasons. This gives us the final result for grey matter as shown in (Fig. 10e).

In a very similar fashion we can also identify the cerebrospinal fluid (CSF),
the skull and the bone marrow for example. We omit the details here and only
show the final results in Fig. 11. In the same figure we show some preliminary
analysis of the quality of the described method by comparing our results with a
‘ground truth’ segmentation provided by the method in [2]. Figure 11 shows our



98 G. Belmonte et al.

Specification 4: Segmentation of grey matter

1 let headInt2 = head & !(distleq(10,!head))

2 let grey1 = (headSim >. 0.6) & (pt1 <. 0.8) & headInt2

3 let grey2 = touch(grey1,white)

4 let greyT1 = similarT1To(grey2)

5 let grey4 = (greyT1 >. 0.3) & (pt1 <. 0.8) & (pt1 >. 0.4) & (whiteT1

<. 0.8)

6 let grey = touch(grey4,white) & distleq(9,white) & !white

Fig. 10. Identification of grey matter. In red points satisfying grey1 (a); points sat-
isfying grey2 (b); level of similarity greyT1 (c); points satisfying grey4 (d); points
satisfying grey (e). (Color figure online)

results in red and the ‘ground truth’ segmentation of [2] for case study12 Pat04
in blue. The points in pink are those where both analyses coincide.

Note that all the analyses are performed in 3D and can be viewed from all
three directions. As an example, in Fig. 12 we show the three perspectives, axial,
coronal and sagittal, for the grey matter for one particular cross-section.

We have applied the same specification also on case Pat05 of the same public
database and have obtained very similar results. As a preliminary measure of
similarity between the ‘ground truth’ segmentation and that obtained via spa-
tial model checking we report here the Dice measure13, and the sensitivity and

12 See http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic normal 20.html.
13 Dice = 2∗TP/(2∗TP+FN+FP), where TP denotes True Positive and FN denotes

False Negative.

http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html
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Fig. 11. Comparison with other results. Original axial view (a). In red the points
satisfying our specification, in blue the ‘ground truth’ provided by the method in [2]
for the case study of patient nr. 04 and in pink points that satisfy both analyses. White
matter (b); grey matter (c); CSF (d); skull (e); bone marrow (f). (Color figure online)

Fig. 12. Comparison in 3D perspective for grey matter. In red points satisfying our
specification, in blue points identified by the ‘ground truth’ segmentation in [2] for the
case study of patient nr. 04 and in pink points that satisfy both analyses. Axial (a),
coronal (b) and sagittal (c) perspective. (Color figure online)
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specificity measures for the grey and the white matter of the brain. Sensitivity
measures the fraction of voxels that are correctly identified as part of a tumour
(True Positives). Specificity measures the fraction of voxels that are correctly
identified as not being part of a tumour (True Negatives). All these similarity
coefficients give a result between 0 (no similarity) and 1 (perfect similarity) and
are commonly used to provide a combined measure of the similarity of two seg-
mentations. For example a Dice index of around 0.9 is considered as indicating
very good similarity. This is so because there is no unique ‘gold standard’ for
comparison as also manual expert markings have a certain level of variability
(see also Sect. 5 and [32]).

Table 1. Similarity between the results of ‘ground truth’ segmentation and that
obtained via spatial model checking for case studies Pat04 and Pat05

Pat04 Pat05

Dice Sensitivity Specificity Dice Sensitivity Specificity

Grey matter 0.90 0.91 0.98 0.89 0.88 0.99

White matter 0.89 0.85 1.0 0.90 0.85 1.0

Table 1 provides some first indication that the specification could be a good
candidate to be applied to further cases for the segmentation of MRI images of
healthy brains, much in the same way as we have done for tumour segmenta-
tion in [8]. Also from an execution time point of view our preliminary results
obtained with VoxLogicA are encouraging as the complete segmentation (head,
background, white matter, grey matter, CSF, skull and bone marrow) of the
brain was obtained in less than 2 min on a MacBook Pro running MacOS Mojave,
with 2.7 GHz Intel core i7 and 16 GB of memory. We leave the analysis of the
other cases of the benchmark and a more complete comparison with the results
of other techniques for segmenting healthy brain tissue for future work.

5 Challenges in Spatial Model Checking for Medical
Imaging

Medical Imaging, and in particular brain tumour segmentation, is a very active
and important area of research, see for example [33] and references therein.
There are, however, also a great number of challenges. In the following we briefly
describe some of them, and in particular those where we think that an approach
based on spatial model checking may make a significant contribution to.

Modularity, Composition and Flexibility. An aspect that all logic-based
model checking techniques have in common is their reliance on a relatively small
set of basic logical operators. There are in general many choices for such minimal
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sets of operators. Ideally, this provides at the same time a good expressivity and
also the basis for the definition of a useful set of derived operators that match
the level of domain specific reasoning of the user. In case of medical imaging for
radiotherapy, for example, that could be the neuro-radiologist. Derived operators
exploit the compositionality of the basic operators so that more complicated
operators can be constructed out of the basic building blocks. Furthermore, the
basic set should allow for very efficient verification algorithms and be minimal,
such that the correctness of the algorithms can be proven with reasonable and
acceptable effort. Finally, we would also expect a certain flexibility and generality
of the approach requiring that the operators are not too much specifically tied
to a particular application or even a single case study or type of analysis.

Although these notions have been studied extensively in thewider field ofmodel
checking, the solutions in the sense of particular sets of basic operators, that have
been proposed need to be reinterpreted in the case of spatial model checking and
founded on other mathematical theories such as closure spaces. Restricting space
to more regular structures than general graphs may also lead to very significant
increases in the efficiency of spatial model checking algorithms at the cost of some
generality. Such increase in efficiency may, however, make the difference between a
tool that can effectively improve the daily work of, for example, neuro-radiologists
and a tool that is very general but too slow or requiring too much memory to be of
practical use. These increases in efficiency are also due to the fact that for example
very efficient existing image processing algorithms and related software packages
can be exploited. For example, in VoxLogicA [8] the state-of-the-art cross-platform
and open source computational imaging library ITK14 was used for the efficient
implementation of the basic spatial operators. What exactly constitutes the best
choice of basic spatial operators, given the trade-offs, is still not a fully answered
question, however some promising candidate sets have been proposed for this area
in some of our earlier work [12,13].

Interactive Feedback and Ease of Use. Whereas traditional model checkers
and their extensions are in general used by experts in formal methods or by
software engineers, in the case of spatial model checking for medical applications
the expected users have a different background. Moreover, the specific analyses
that clinicians or neuro-radiologists are envisioned to perform with these tools
should be embedded into their daily activities and must be well-integrated with
other environments that they use such as those for safe and secure archiving
of images and their results. Furthermore, other aspects should be taken into
account as well, such as cognitive fatigue and avoidance of information overload,
allowing users to easily focus on their main critical(!) task at hand without being
distracted by useless details. There are relatively few studies addressing these
issues in some depth, even if the problem has been taken up by some research
groups, see for example work by Gambino et al. [24] for a survey and some
concrete proposals.
14 The Insight Segmentation and Registration Toolkit, see https://itk.org and http://

www.simpleitk.org.

https://itk.org
http://www.simpleitk.org
http://www.simpleitk.org
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Explainability, Independent Reproducibility and Transferability. In
recent years, following the success of the use of artificial intelligence and neural
networks for image recognition tasks, much of the research in medical imag-
ing and segmentation tasks in particular, has focused on these (probabilistic)
learning algorithms (see for example [33,38]). Such algorithms, however, usually
depend on the availability of large and precisely annotated data sets for their
learning phase. During such a learning phase the software is autonomously cali-
brating the value of thousands of parameters until the resulting program provides
a satisfactory level of correct responses on the training data set. Deep learning
is based on the use of artificial neural networks, consisting of several layers, that
can extract a hierarchy of features from raw input data. Such learning algorithms
may reach surprisingly good results, but they also pose some open challenges.
First of all, developing large and precisely annotated data sets in delicate areas
such as medical imaging and tumour segmentation is a time-consuming task
that can only be performed, mostly manually, by specialists. This is difficult
to achieve, not only because it is very laborious, but also because of the rela-
tively high intra-expert and inter-expert variability; [32] quantifies the average of
disagreement in identified contours by experts as 20± 15% and 28± 12%, respec-
tively, for manual segmentations of brain tumour images. Interactive approaches
based on spatial model checking, in this context, may be of help to improve
the generation of manual ground truth labels in a more efficient, transparent
and reproducible way. Furthermore, the automatic algorithms that are obtained
with a (deep) learning approach cannot provide human intelligible insight in why
certain areas are identified as tumours. In other words, these procedures lack
explainability. This is a more serious problem than it may seem, at first sight,
since these algorithms (as any other in this context) do not always provide the
correct results, and in the critical context of radiotherapy the preparations must
comply to rigorous protocols where medical staff must be put in the condition
to take responsibility for their decisions.

Extendability and Openness. Manual segmentation by experts is still the
standard for in vivo images. This method is expensive and time-consuming, dif-
ficult to reproduce and possibly inaccurate due to human error. However, the
expertise that has been gained by many practitioners in the field is very valu-
able and could in principle be exploited in improving segmentation procedures if
such procedures could be easily expressed through and supported by computer
assisted operations at the right level of abstraction. For example, if various seg-
mentation procedures could be captured in an unambiguous way by the compo-
sition of a number of rather high-level operations in a formal specification, such
specifications could be published, exchanged, discussed and improved directly
by those experts working in the field. This challenge would call for an extend-
able framework, where new operations can be introduced, and that is sufficiently
open to be used by a wider community.
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Device Independence and Vendor Neutrality. Different research groups
and institutions employ specific best-practices for image analysis, often locally
built from home-made integration of different software technologies. This gives
rise to a plethora of incompatible systems, very often of academic significance,
but rarely used in clinical practice. Missing integration with existing hardware,
hand-crafted procedures, lack of maintenance and accountability, difficult use,
hard-coded dependence on the execution environment (e.g. specific operating
system or hardware), are just some factors that hinder clinical application, medi-
cal procedure approval processes, and ethical scrutiny, creating a barrier between
medical research and healthcare. Thus, successful technological transfer mostly
happens by specialised, proprietary software solutions that are typically bun-
dled with the hardware. The challenge here is to overcome the fragmentation of
the medical imaging ecosystem, by providing a set of open standards and ref-
erence implementations, fostering a paradigm shift in the field in several ways
such as by facilitating communication between research and healthcare providers
and by providing technologies that are appropriate for intermediaries (such as
manufacturers and vendors of Medical Imaging devices) to turn novel ideas into
clinical practice. This may be pursued through the social computing capabilities
of a spatial logic based language, that can attract experts of diverse fields to
collaborate through a common communication infrastructure.

Privacy Issues. Regulation issues, especially related to privacy, may easily
arise in an open platform. However, in the envisioned approach privacy is a key
strength, rather than an issue. The definition of an open standard for image
analysis, and its free and open source software implementation, will enable users
to exchange analysis procedures, and establish common knowledge, without out-
sourcing the actual, privacy sensitive data, which can be handled on-site, obeying
to the locally established practices.

The above is only a small selection of the many challenges in medical imag-
ing for radiotherapy. We do by no means intend to present an exhaustive list.
However, we think that the listed challenges are relevant and have shown where
we expect that further research in a spatial logic-based method may lead to a
useful contribution to advance this important field.

6 Related Work

Most of the present paper was dedicated to the potential of spatial model check-
ing in the field of medical imaging, initiated in [7], and of image segmentation and
contouring for the purpose of radiotherapy in particular (see [4,6,8]). However,
spatial model checking has been explored in a number of other applications and
it has been extended in several ways. In this section we provide a brief overview
of recent related work.
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A very valuable resource and reference on the topological origins of spatial
logic is the Handbook of Spatial Logics [1]. This handbook describes several
spatial logics, with applications far beyond topological spaces. Among them are
not only logics that treat morphology, geometry, distance, or such as dynamic
systems, but also a treatment of discrete models, that are particularly difficult
to deal with from a topological perspective. See, for example [21], introducing
the approach of Closure Spaces upon which the work in [12,13,16] is based.

Starting from a spatial formalism and from a temporal formalism, spatio-
temporal logics may be defined, by introducing a mutually recursive nesting of
spatial and temporal operators. Several combinations can be obtained, depend-
ing on the chosen spatial and temporal fragments, and the permitted forms
of nesting of the two. A large number of possibilities are explored in [27], for
spatial logics based on topological spaces. One such structure was investigated
in the setting of closure spaces, namely the combination of the Computation
Tree Logic (CTL) with SLCS, resulting in the Spatio-Temporal Logic of Closure
Spaces (STLCS). In STLCS spatial and temporal fragments may be arbitrary
and mutually nested.

STLCS is interpreted on a variant of Kripke models, where valuations are
interpreted at points of a closure space. Fix a set P of proposition letters. STLCS
em state and path formulas are defined by the grammars shown below, where p
ranges over P .

Φ :: = p | ¬Φ | Φ ∨ Φ | NΦ | ρ Φ[Φ] | Aϕ | Eϕ (2)

ϕ :: = X Φ | Φ U Φ (3)

The logic features the CTL path quantifiers A (“for all paths”), and E (“there
exists a path”). As in CTL, such quantifiers must necessarily be followed by one
of the path-specific temporal operators, such as15 XΦ (“next”), FΦ (“eventu-
ally”), GΦ (“globally”), Φ1 UΦ2 (“until”), but, unlike CTL, in this case Φ, Φ1

and Φ2 are STLCS formulas that may make use of spatial operators, e.g. N , ρ
and operators derived thereof (see Sect. 2.) The mutual nesting of such opera-
tors permits one to express spatial properties in which the involved points are
constrained to certain temporal behaviours.

As a proof of concept, a model checking algorithm has been defined, which
is a variant of the classical CTL labelling algorithm [3,19], augmented with the
algorithm in [10] for the spatial fragment. The algorithm, which operates on finite
spaces, has been implemented as a prototype tool which is described in [11]. The
same algorithm is also implemented in the tool topochecker.

The tool has been used to analyse a number of properties of vehicular move-
ment in public transport systems in the context of smart cities. In [10], a bus
transportation case study was developed, to detect problems in the automatic
vehicle location (AVL) data that is provided as input to other systems that in

15 Some operators may be derived from others; for this reason in the definition of the
language we use a minimal set of connectives. As usual in logics, there are several
different choices for such a set.
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turn provide information to passengers and system operators such as bus arrival
prediction systems. Such data may contain errors originating in a problem with
the hardware of the measurement device or also indicate operational problems
experienced by bus drivers that encountered unexpected road works or accidents
and have to deviate from their planned route.

In [15], spatio-temporal model checking has been used to study a phenomenon
known as clumping, which may occur in so-called “frequent” services – those
where a timetable is not published. Clumping occurs where one bus catches up
with – or at least comes too close to – the bus which is in front of it. In [17]
spatio-temporal model checking has been used to detect the emergent formation
of ‘clusters’ of full (and empty) stations in the simulation traces of a Markov
Renewal Process (MRP) model of large bike sharing systems [31]. Subsequently,
spatio-temporal model checking has been used in combination with statistical
model checking in [18] to analyse further properties of bike sharing systems.

The logics discussed so far characterise properties of single points in space.
In [13] an extended version of SLCS has been defined that is able to express
properties that sets of points may satisfy collectively. The resulting logic, the
Collective SLCS, CSLCS, can be used for example, for expressing that the points
satisfying a certain formula Φ1 are collectively surrounded by points satisfying
formula Φ2. The notion of region as set of points and related properties has
been studied extensively in the literature, also in the context of discrete spaces
(see [36,37] among others). For instance, RCC5D is a theory of region parthood
for discrete spaces and RCC8D extends it with the topological notion of con-
nection and the relations of disconnection, external connection, tangential and
nontangential proper parthood and their inverse relations. In [14] an encoding of
RCC8D into CSLCS is provided and it is shown how topochecker can be used
for effectively checking the existence of a RCC8D relation between two given
regions of a discrete space.

Two variants of the spatial modalities have also been added to the Signal
Temporal Logic [20,30] leading to the Signal Spatio-Temporal Logic (SSTL).
The first variant, the bounded somewhere operator �· [w1,w2] is borrowed from [34],
while the second one, the bounded surround operator S[w1,w2], is inspired by
SLCS. The logic comes with a boolean and quantitative semantics which can
be found in [34,35]. The boolean semantics defines when a formula is satisfied,
the quantitative semantics provides an indication of the robustness with which
a formula is satisfied, i.e. how susceptible it is to changing its truth value for
example as a result of a perturbation in the signals. In [5] an extension of SSTL
is presented which uses a reachability operator as a basic operator of the logic.

In [25] a variant of spatial logic is proposed where spatial properties are
expressed using quad trees. The authors show that very complex spatial struc-
tures can be identified with the support of model checking algorithms as well
as machine learning procedures. However, the formulation of spatial proper-
ties becomes rather complex. The combination of this spatial logic with linear
time signal temporal logic, defined with respect to continuous-valued signals, has
recently led to the spatio-temporal logic SpaTeL [26].
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7 Conclusions

Medical imaging is a very broad and active field of research with particular
requirements. In this work we have illustrated the basic framework of spatial
verification and how spatial logic and spatial model checking can be used to iden-
tify various kinds of tissues in the healthy brain. The field of medical imaging is
posing very particular challenges, not only of technical nature, but in particular
also in terms of responsibility, explainability, transparency and reproducibility.
Formal verification and spatial model checking may provide interesting comple-
mentary methods in this important field.

The presented specifications are a first proof of concept to show that it is
indeed possible to identify various (healthy) brain tissues with the available
operators in the presented logic. The results are promising from different per-
spectives, however, we expect that the specifications can be further improved to
obtain better accuracy. Improvements are also foreseen from the methodological
point of view. More work is needed to refine the analyses and check applicability
to a larger set of images in particular with respect to stability and accuracy of
the results, and to make the approach available in a clinical setting. The latter
requires the design of appropriate case studies and establishing experimental
protocols for clinical validation. This is planned as part of future work.
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