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Abstract. Communication networks have been one of the main drivers
of formal methods since the 70’s. The dominant role of software in the
new 5G mobile communication networks will once again foster a rele-
vant application area for formal models and techniques like model check-
ing, model-based testing or runtime verification. This chapter introduces
some of these novel application areas, specifically for Software Defined
Networks (SDN) and Network Function Virtualization (NFV). Our pro-
posals focus on automated methods to create formal models that satisfy
a given set of requirements for SDN and NFV.
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1 Introduction

Formal method techniques and tools have been very close to protocol engineering
since the 70’s, when the first errors in communication protocols were detected
with reachability analysis over their models in finite state machines [31]. In the
80’s and 90’s, standardization bodies in information and communication tech-
nologies, like ISO and ITU, recognized the benefits of formal modelling and auto-
matic verification with languages like LOTOS, ESTELLE, SDL and, later, the
sequence charts in UML. The paper by Bochmann et al. [3] is a good summary of
the history of Protocol Engineering in those decades. Another relevant milestone
at the beginning of the 21st century is the ACM System Award to SPIN, a tool
originally designed to support protocol design and validation [14,15]. However,
in recent years, the applications of formal methods for communication networks
seem to be less significant. In this position paper, we argue that 5G mobile
communication networks could once again reinforce the role of communication
networks and protocols as a relevant application domain for formal methods.
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Mobile communication networks are evolving towards new paradigms in
which softwarization is one of the key aspects. In particular, one of the most
important features of 5G networks is the shift of vendor-locked networks to
cloud-based systems to dynamically adapt the network to the changing user
needs. To achieve these objectives, 5G networks implement the so-called net-
work slice, which is similar to a private network tailored to run a service with
specific Key Performance Indicators (KPI). For instance, a critical service, such
as telesurgery, imposes hard constraints on packet latency (under 5 ms) in order
to control a surgeon robot over a cellular network. Other services, such as high-
resolution content delivery, require high downlink or uplink speed. In 5G net-
works, each kind of service will run on a different network slice that satisfies its
performance and quality of service requirements, but all these network slices will
be deployed over the same underlying infrastructure.

The implementation of the network slices will be feasible mainly thanks to
two technologies: Software-Defined Networks (SDN) and Network Function Vir-
tualization (NFV). SDN makes the key components in the network, the switches
and routers, programmable and that way a single program can control aspects
like traffic priorities, firewall capabilities or forwarding rules from a single point.
NFV removes the vendor-locked network elements and provides a cloud-like
method to deploy software versions of these components on demand.

The increasing presence and complexity of software in 5G networks will intro-
duce new risks related to reliability and security, and will make it more difficult
to predict the behavior of the whole system in case of an accident or on-purpose
malfunctioning of some parts of the network. Continuous monitoring and other
techniques from network operators will be more complex, but they will be useful
at production time. Like in other application domains, formal methods could
provide tremendous benefits by helping to design, deploy and operate such a
complex system with analysis before the deployment of the network. Recently,
some authors have been using different formal methods to ensure the correct
deployment and configuration of SDNs [1,2,4,5,17,18,20,21]. One of the first
works is the NICE [4] tool, that combines symbolic model checking and different
search strategies to find errors, for instance, host reachability problems or unde-
sirable packet lost. Compared to a general purpose model checking tool, NICE
can directly analyze the code of the software governing the network. Although
NFV technology is more recent, there are also proposals [22,28,34] to integrate
Verification and Validation processes in the NFV deployment cycle, as well as not
only to find functional bugs in the network but also to ensure the performance
requirements [29,30], which is a very important issue in 5G networks. Most of
these works are not connected to testbeds where some realistic experimentation
can be combined with the models and the automatic analysis.

In the chapter, we propose the use of formal methods focusing on two aspects.
First, modelling the SDN component of the network and checking that there are
model instances satisfying a set of requirements, and second, the use of model-
based testing and runtime verification to help in the placement and reconfigura-
tion of Virtual Network Functions (VNFs) deployments. Both applications can
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be allocated in the area of automated synthesis of formal models, and in the
wider context of Formal Methods for Industrial Critical Systems (FMICS). The
term FMICS and the FMICS Working Group1 is the main link between the first
authors of the paper and Stefania Gnesi. Stefania was one of the founders and
chair of FMICS WG and we have collaborated with her in the organization of
the annual FMICS workshops and special publications. A relevant collaborative
work co-led by Stefania is the book Formal Methods for Industrial Critical Sys-
tems: A Survey of Applications [11]. Actually, the SDN and VFV technologies
addressed in this chapter are the evolution of the active networks paradigm that
we presented as a chapter in Stefania’s book in 2013 [10].

The paper is organized as follows. Section 2 introduces the 5G architecture
and the relevant concept of network slicing. Section 3 provides a description of
the SDN technology and our proposal to use the formal language Alloy [16] as the
modelling language to support the synthesis of valid models from a given set of
requirements. In Sect. 4, we present Network Function Virtualization as support
technology of network slicing, and we propose combining model-based testing
and runtime verification to solve the problem of placement and reconfiguration
of VNFs in the network. Finally, in Sects. 5 and 6 we review the related work
and provide some conclusions.

2 Background on 5G Networks

2.1 Architecture of the Network

One of the objectives of 5G networks is to support network operators to rapidly
and flexibly deploy new services in order to meet customers’ and verticals’ needs.
In this context, verticals refers to industrial sectors such as transport, media or
manufacturing, whose digitalization and innovation relies on services with spe-
cific and different requirements. The 5G network architecture [9] aims to address
these challenges using SDN and NFV as technical enablers. Figure 1 shows an
overview of the network architecture. As can be seen, it is built on the three
main domains that are also present in the previous 4G technology: radio access
network (composed of the user equipment and the gNB access nodes), the trans-
port network (a logical connection thanks to switches, aggregation points and
communication links) and the core network. The main differences with respect
to 4G networks are the technologies in each domain and the deployment of the
services as part of the network (AF component in the figure). In the radio part,
the new standard is called 5G NR (5G new radio) and offers features like lower
latency and higher capacity than 4G networks. In the core network, the function-
ality is implemented with a number of software modules and interfaces following
the standards to create a 5G core. It is expected that these 5G core VNFs will
be deployed as VNFs in a central cloud. In the transport network, the switches
are replaced with programmable OpenFlow switches, and the whole network is
defined with apps running on top of the SDN controller.

1 http://fmics.inria.fr/.

http://fmics.inria.fr/
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Fig. 1. 5G architecture

From the service provider perspective, the main novelty is the integration
of the software to implement the service as part of the network thanks to the
deployment of their own VNFs jointly with the 5G core VNFs and other network-
oriented VNFs (e.g. caches and firewalls) in the same cloud. Multi-access Edge
Computing (MEC) technology appears in order to have a computing platform
within the RAN and in close proximity of users. MEC provides features like
low latency, high bandwidth and proximity; sometimes MEC are called Point of
Presence (PoP), which resources are shared by multiple VNFs (virtual machines
installed on top). Thanks to the MEC location at the mobile edge, routing data
that previously had to be sent to the core of the network can be eliminated and
achieve a very low latency.

2.2 Slices for Verticals

Network slicing allows Mobile Network Operators (MNOs) to manage multiple
virtual networks using a common shared physical infrastructure. These virtual
networks enable a virtual partition of the RAN (Radio Access Network), the core
network and the switching and aggregation network. Roughly speaking, Fig. 1
represents one slice, and a second slice could be created by assigning part of
the RAN resources and adding more VNFs in the Edge cloud and the Central
cloud to provide functionalities of 5G core and services. Each virtual network is
created to provide a specific service with specific requirements that usually fit
three profiles:

– enhanced Mobile Broadband (eMBB). It has the purpose of addressing
the traffic demand that increases on a daily basis due to the number of users
and new applications with increasingly demanding traffic requirements. Use
cases related to multi-media content and data that are a very high throughput
requirement (e.g. augmented reality or 4k video streaming).
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Fig. 2. 5G usage scenarios

– Ultra Reliable Low Latency Communications (URLLC). It is oriented
to low latency and high reliability transmissions, usually with low packet size.
Use cases related to critical applications (e.g. remote surgery or connected
cars).

– massive Machine Type Communications (mMTC). It is oriented to a
very large number of connected devices, usually with a low data transmission
and non-delay sensitive data. Use cases related to the Internet of Things,
where devices are required to have a long battery life (e.g. smart meters or
sensor networks).

Figure 2 shows some usage scenarios where virtual networks mentioned above,
known as Network Slices, help to provide a service that depends on use case
requirements.

In the next sections, we present more details of the SDN and NFV technolo-
gies before describing the use of formal methods for both topics.

3 Software Defined Networks

3.1 The Technology

Software Defined Network [26,32] (SDN) is a new paradigm for deploying highly
programmable and flexible communication networks. To this end, the control and
data planes of the network are clearly separated. In addition, from the logical
point of view, the control plane is a single entity that has a global view of the
network at each time instant and can modify the data plane to achieve specific
goals. Figure 3 shows the high-level architecture of a SDN:
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Fig. 3. Basic SDN architecture

– The data plane includes simple and programmable forwarding devices
(switches) that route the traffic. To do this, each switch has a routing table
with complex rules that specify the outgoing path for each input packet.

– The control plane comprises the controllers that carry out the configuration
and management of the network. From the logical point of view, the control
is centralized in an entity that has a global view of the network. However,
the control plane can be implemented as a distributed set of controllers that
communicate with each other using the east/westbound interfaces. The con-
trol plane offers interfaces to communicate with the other two layers. The
southbound is used to control the data plane devices; for instance, to install
the rules in the routing tables. There are different protocols that can be used
in the southbound; currently the most popular is OpenFlow [23]. The north-
bound is used to communicate the controller with the applications. Usually,
the controller provides its own API for applications. NOX [12] and POX [27]
are two of the most used OpenFlow controllers.

– The application plane consists of a pool of applications that specify high-
level management policies, such as routing, security or monitoring. SDN appli-
cations are dynamic in the sense that they can command the installation of
new rules based on the state of the network

Thus, an SDN is a complex concurrent event-driven distributed system whose
behavior is dynamically defined by the network applications. The separation
of planes and the dependency on software introduces new challenges from the
reliability point of view, such as the interaction of distributed controllers that
must act as a single entity, or the dynamic update of the routing tables that
lead to changes in the data plane topology. In addition, the adoption of SDN
as an enabling technology of 5G networks introduces more challenging issues.
For instance, 5G networks are characterized by the deployment of network slices
for specific services or verticals. In this case, it is important to ensure not only
the isolation of the slices but also to verify that these slices can support specific
services with a predefined Quality of Service (QoS) and Quality of Experience
(QoE). In the recent years, formal methods have used different approaches to
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model and analyze SDNs [2,4,17,21]. Most of these works focus on verifying
network invariants, such as the absence of loops or host reachability. Section 5
summarizes these related works. Below, we propose a novel application of formal
methods for SDN.

3.2 Formal Models of SDN Systems for Reachability Analysis

In this section, we propose an approach to generate valid network topologies
(including the data and control plane) whose evolution over time fulfills some
desired properties. To this end, we generate a meta-model of an SDN that
includes the switches and the controller but also the hosts, the packets flow-
ing through the data and control planes, and the logic behind the controller,
that is, the SDN application.

To this end, we use Alloy [16,24], a modelling and specification language
and also a tool that generates model instances satisfying a set of requirements.
Alloy is a declarative language based on sets and set relations. In addition,
it uses first order relational logic to describe properties and refine the models.
Although, internally, the core of Alloy tool uses a theorem prover, from the user
perspective it is a completely automatic tool (similar to a model checker) that
generates models that are correct w.r.t. the specification. All these characteristics
make Alloy suitable for modelling and analyzing structurally complex systems
such as SDN, which can present complex and varying relations between the
different network elements. The price to pay is that Alloy models are bounded
in size, i.e., it is not possible to analyze models of arbitrarily large size. Even
though this is an important restriction, in practice, small models are usually
sufficient to detect errors in the system design. In order to achieve our goal,
we have to follow three steps. First, we have to implement the model of the
static structure of a SDN; then, we have to define the dynamic behavior of the
network elements; and finally, we must define the requirements and configuration
of interest and run the Alloy tool to generate valid SDN topologies. The rest
of the section describes these steps in detail.

Modelling the Static Structure of an SDN
The static model of an SDN defines the elements of an SDN and the (static) rela-
tions between them. The model must abstract low-level details of an SDN so that
Alloy can run the analysis and return different topologies or configurations of
the network. The set of actors constitutes the Alloy metal-model, Fig. 4 shows
a graphical description, and Fig. 5 shows the corresponding Alloy code. The
main actors are hosts and switches in the data plane, and the controllers in the
control plane. These three elements are abstracted as network nodes that contain
ports to connect them with other nodes using port-to-port (bidirectional) links.
Although it is not explicitly reflected in the meta-model, each switch always has
a specific link and a port that connects it with the controller. This connection is
mainly used to configure the switches. The data transmitted between nodes are
called packets. We define two types of packets: control packets include control
plane information, such as new rules that must be installed in a specific switch,
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Fig. 4. Meta-model of the SDN model

or a request to know how to process a data packet. Data packets encapsulate
information that must be transmitted from one host to another. Data pack-
ets also contain the source and destination hosts, their type, and their current
position in the network.

Switches contain forwarding tables with rules that specify how to route data
packets. In order to simplify the model, a rule includes the type of data packet
(e.g. HTTP or FTP) and the input and output ports. The meaning of each rule
is as follows: if a data packet of a particular type arrives at port iPort, it must
be forwarded through port oPort. In addition, it is also possible to define rules
that discard incoming data packets. When a switch has no rule to deal with a
data packet, it sends a request to the controller in order to know how to process
the packet. Finally, the controller can also send new rules to switches to update
the routing tables.

Figure 5 shows how all these elements are defined using basic Alloy con-
structors: abstract signatures, signatures, and relations. Signatures are sets whose
elements are called atoms. Abstract signatures cannot have their own elements;
they can only have them through their extensions. Relations are sets of tuples of
the same arity. They are always defined in the context of a signature, which is
the type of the first element of the tuples. For instance, the signature Rule has a
relation iPort that relates each rule with the input port of the data packet. By
default, the multiplicity of relations is one. In the example, each rule only has
one iPort, but Alloy’s relations support other multiplicities such as lone (e.g.
a Rule has at most one oPort), some (a Node is connected at least to another
Node) and set (e.g. a Switch has zero or more Rule in its forwarding table).

Alloy allows us to define both the static and dynamic behavior of an SDN.
To this end, we include a special signature, called Time, whose atoms explic-
itly represent time instants. For example, we can specify that the iBuffer and
oBuffer of a Host have zero or more DataPackets in each time instant.

At this point, Alloy can generate model instances that are still far from
been structurally correct. We need to add some constraints to the model, called



556 M.-del-M. Gallardo et al.

open util/ordering[Time]
sig Time{}
sig Port{}

abstract sig Link{
p1,p2: Port

}
sig CtrLink extends Link{}
sig DataLink extends Link{}

abstract sig DataPacketT {}
one sig TCP extends DataPacketT {}
one sig HTTP extends DataPacketT {}

abstract sig Action {}
one sig Forward extends Action {}
one sig Discard extends Action {}

sig Rule{
packetType:DataPacketT ,
iPort: Port ,
action: Action ,
oPort : lone Port

}

abstract sig Packet{
position: Port lone -> Time

}
sig DataPacket extends Packet{

type: DataPacketT ,
src ,dest:Host

}
sig CtrPacket extends Packet{

newRule: lone Rule ,
request: lone DataPacket

}

abstract sig Node{
ports: some Port ,
connected: some Node

}
one sig Controller extends Node{}
sig Host extends Node{

iBuffer: DataPacket set -> Time ,
oBuffer: DataPacket set -> Time

}
sig Switch extends Node{

table: Rule set -> Time
}

Fig. 5. SDN signatures and relations in Alloy

facts in Alloy, to define, for instance, how the relations are constructed. In
total, we have added 32 facts to the SDN model. Figure 6 shows some that
define how links, ports and nodes are related.

Modelling the Dynamic Behavior of an SDN
The second step is to describe how the SDN evolves over time; for instance, how
a DataPacket can be transmitted from the source to the destination Host, or how
the forwarding table of a Switch is modified by the Controller. These actions,
or system transitions, are specified in Alloy with predicates. Each predicate
has two input parameters t and t’ that denote the time instant before and
after executing the predicate, which are used to clearly state the pre- and post-
conditions needed to execute the predicate, and the so-called frame conditions
that establish the parts of the model that remain unchanged during the predicate
execution. Figure 7 shows two predicates that define, respectively, how a Host
sends and receives a DataPacket, and the definition of the frame conditions.

We can similarly specify the actions associated to the switches and the con-
troller. For instance, we have defined predicates to describe how a switch forwards
a data packet applying a rule installed in its forwarding table, or how a new rule
is installed or updated when the controller sends a command to a switch. In
addition, the actions of the controller can be more elaborate. We can describe
not only how the controller receives a request from a switch but also the logic
or decision making process associated to an SDN application.

Generating Valid Model Instances
The final step consists of using Alloy analysis to generate correct model
instances. These instances will differ in the network topology; that is, how the
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fact {
//1-the ending ports of any link are different
all l:Link| l.p1!=l.p2

//2- each port belongs to a node
all p:Port| one node[p]

//3-each port belongs at most to a link
all p:Port| lone link[p]

// 4- The ports of each link belong to different nodes
all l:Link| node[l.p1]!= node[l.p2]

//5- connected is well defined
all n:Node| n.connected = {m:Node -Controller| some l:Link|

node[l.(p1+p2)] = n+m}
//6-Control links connect switches and Controller
all l:Link| l in CtrLink implies one node[l.(p1+p2)] & Controller and

one node[l.(p1+p2)] & Switch
//7-Data links connect two switches or a switch and a host
all l:Link| l in DataLink implies some node[l.(p1+p2)] & Switch and

Controller not in node[l.(p1+p2)]
//8-all controller links are control links
nodeLinks[Controller] in CtrLink

//9-the controller has exactly a link to each switch
all s:Switch| one nodeLinks[Controller] & nodeLinks[s]

}

Fig. 6. Examples of facts

pred sendPacket(t,t’:Time , h:Host , pack:DataPacket){
// pre
some pack & h.oBuffer.t
// post
some p’: remotePort[h.ports] | pack.position.t’=p’
h.oBuffer.t’ = h.oBuffer.t - pack
// frame
tablesUnmodifiedExc[none ,t,t’] and packetsUnmodifiedExc[pack ,t,t’]
oBuffersUnmodifiedExc[h,t,t’] and iBuffersUnmodifiedExc[none ,t,t’]

}
pred receivePacket(t,t’:Time ,h:Host ,pack:DataPacket){

// pre
some (pack.position.t & h.ports)
// post
h.iBuffer.t’ = h.iBuffer.t + pack
pack.position.t’ = none
// frame
tablesUnmodifiedExc[none ,t,t’] and packetsUnmodifiedExc[pack ,t,t’]
oBuffersUnmodifiedExc[none ,t,t’] and iBuffersUnmodifiedExc[h,t,t’]

}
pred packetsUnmodifiedExc(pp:set Packet , t,t’:Time){

all pk:Packet -pp | pk.position.t = pk.position.t’
}
pred oBuffersUnmodifiedExc(hh:set Host , t,t’:Time){

all h:Host -hh | h.oBuffer.t = h.oBuffer.t’
}
pred iBuffersUnmodifiedExc(hh:set Host , t,t’:Time){

all h:Host -hh | h.iBuffer.t = h.iBuffer.t’
}
pred TablesUnmodifiedExc(ss: set Switch , t,t’:Time){

all s:Switch - ss | s.table.t = s.table.t’
}

Fig. 7. Predicates to send and receive data packets on hosts



558 M.-del-M. Gallardo et al.

network nodes are interconnected, and in their dynamic behaviors, for instance
how packets flow through the network or how the switches’ forwarding tables
are updated. The Alloy tool can run predicates and check assertions. In the
first case, if the predicate is consistent, the tool generates model instances that
satisfy the constraints (facts) and the predicate. In the second case, Alloy looks
for counterexamples that satisfy the model specification but not the assertion.
In both cases, the Alloy model is transformed into a set of boolean formulae
that are analyzed using a SAT solver. Our objective is to produce valid SDN
network topologies that can evolve over time taking into account the applications
governing the SDN controller. The automatically generated network topologies
and configurations can be used to test the SDN applications in real or simulated
environments. To this end, we define a predicate that specifies the initial con-
figuration of the SDN network, and the possible system transitions, which are
given as non-deterministic calls to the predicates defining the dynamic behavior
of the SDN. The non-deterministic choice is implemented using the disjunction
logic and thus, for each time instant, only one system transition can be exe-
cuted. Figure 8 shows a snapshot of a valid model instance in two different time
instants (Time$0 and Time$5). To simplify the representation, we only show the
data plane. Observe that in both time instants, the network topology is the same;
that is, the interconnection of switches and host is the same, with the same links
and ports. However, we observe changes in the relations that can evolve over
time. For example, at Time$0 both data packets are in the oBuffer of Host1,
while in Time$5 DataPacket1 has reached its destination and DataPacket0 is in
an intermediate switch. At this point, the Switch1 does not have a rule in its
table that can make the system evolve. In consequence, it has to send a request
to the controller to ask how to forward the packet. The subsequent actions will
depend on the SDN applications modelled.

Assertion checking in Alloy is also useful to determine if the SDN applica-
tions are correct. For instance, if the SDN application has to discard all FTP
packets transmitted from a specific host, we can check if all model instances
satisfy this requirement. Otherwise, Alloy will return a counterexample that
will show why some packets are not correctly discarded.

4 Network Function Virtualization

4.1 The Technology

In 5G networks, the concept of NFV is especially important since it can entail a
significant transformation for this network, reducing cost or increasing flexibil-
ity, although the most important change that NFV introduces is the possibility
of providing different kinds of services and requirements on a common shared
physical network through network slicing (see Sect. 2.2).

The reference architecture for NFV, represented in Fig. 9, has been proposed
by ETSI in [6]. The deployment and reconfiguration of the VNFs in a cloud envi-
ronment is an open challenge. This task is carried out by the Management and
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Fig. 8. Evolution over time of data packets

Orchestration entity (MANO). The left part of the figure is composed of Opera-
tions Support System (OSS)/Business Support System (BSS), Element Manager
(EM) + VNF and by finally, NFV Infrastructure (NFVI) is composed of virtu-
al/hardware computing, storage and network (the hardware supporting the Edge
and Central clouds in Fig. 9). OSS/BSS are components that allow monitoring,
controlling and managing different kinds of network services. EM provides net-
work management of the virtualized and physical network elements. The VNF
is an implementation of a network function that can be deployed on NFVI. The
right part is composed of Management and Orchestration (MANO) layer, differ-
entiating between NFV Orchestration (NFVO) + VNF Manager (VNFM) and
Virtualized Infrastructure Manager (VIM). NFVO is responsible for orchestra-
tion and management of NFVI, software resources and realizing network services
on NFVI. VNFM is responsible for control, management and monitorization of
the VNF life cycle. It also controls EM. The VIM is the Virtualized Infras-
tructure Manager that, in most real deployments, is the well-known OpenStack
software.

An Example. We illustrate the NFV architecture with an example. Figure 10
shows how a service is deployed in a network slice. We assume that the MNO
offers a simple slice to deploy a video on demand service for mobile users. The
slice includes network components, such as an instance of a 5G core, and some
service-oriented VNFs, such as a video server and the cache function. The orches-
trator (the MANO) addresses the following four phases to properly configure,
deploy and terminate the service.

Phase 1: Network Service Descriptor Processing. The MANO “orches-
trator” processes the information necessary to deploy a network slice oriented
to a specific service (Netflix, in this case). This information includes the exe-
cutable code of VNF (virtualized like a container, virtual machine, etc.) and the
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Fig. 9. ETSI MANO

descriptors of the different VNFs (VNFDs), which are defined by ETSI [7] as
follows: “A VNFD is a deployment template which describes a VNF in terms
of deployment and operational behavior requirements. It also contains connec-
tivity, interface and virtualized resource requirements”. Additionally, the VNF
descriptor can include information about the quality of service expected by user
(requirements) like the value of parameters such as delay, bandwidth, number of
simultaneous users, etc. and auto-scaling properties. In cloud computing termi-
nology, these requirements are called Service Level Agreement (SLAs) [6]. The
fulfillment of SLAs is translated into the fulfillment of the expected quality by
users (e.g. max delay between video frames and max response delay). In 5G
network terminology, these quality indicators are usually referred to as Key Per-
formance Indicators (KPIs) and, with less frequently, as Quality Performance
Indicators (QPIs). The MANO also processes the Network Service Descriptor
(NSD) [8] that consists of information used by the NFV Orchestrator to instan-
tiate a Network Service constituted by one or more VNFs. Finally, Network Slice
Template (NST) represents logical network function(s), resources linked to the
services, and most importantly, the network capabilities that are required by
services which, in fact, are closely related to Service Level Agreement (SLA),
previously mentioned. In practice, all the descriptors are specified using descrip-
tion languages like TOSCA or YAML, which are widely used in cloud computing.
All the information is processed to generate internal models of objects described
in VNFD, NSD and NST which will be managed by the orchestrator in the next
phase. Listings 1.1 and 1.2 show the code of the VNFD of a Video on Demand
(VoD) VNF and the definition of the service type, respectively.
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Fig. 10. Example of a slice for video on demand

vnfd -catalog:
vnfd:
- connection -point:

- name: eth0
type: VPORT

...
description: ...
mgmt -interface: ...
name: slice_VoD_vnfd
vdu:
- count: 1

id: vdu1
image: UbuntuVoD
interface:
- external -connection -point -ref: eth0

...
virtual -interface:
...

monitoring -param:
- id: metric_vdu1_cpu

nfvi -metric: cpu_utilization
name: slice_VoD_vnfd -VM
vm-flavor:

memory -mb: 2048
storage -gb: 100
vcpu -count: 2

monitoring -param:
- id: metric_vim_vnf1_cpu

name: metric_vim_vnf1_cpu
aggregation -type: AVERAGE
vdu -monitoring -param:

vdu -ref: vdu1
vdu -monitoring -param -ref: metric_vdu1_cpu

...

Listing 1.1. Excerpt of a VNFD
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- SNSSAI -identifier:
slice -service -type: eMBB/URLLC/mMTC

Listing 1.2. Definition of the slice service type

Phase 2: Network Service Deployment. The MANO performs the deploy-
ment, inter-connection and configuration of the chain of VNFs interacting with
the points of presence of the operator computational infrastructure, commonly
known as Network Functions Virtualization Infrastructure (NFVI). The deploy-
ment consists of locating each VNF at a suitable point of presence. The con-
figuration implies the allocation of resources (CPU, RAM, disk) and the inter-
connection with other VNFs and/or physical elements. Then, the MANO must
apply some optimization algorithm to identify how many resources should be
allocated to achieve the performance and quality of service given by the SLA.

Phase 3: Network Service Execution and Re-configuration. In this phase,
the VNFs implementing the network and the service functionality are running,
and the final service users start using the service uninterruptedly for days, weeks
or months. Some examples of services are the distribution of high-resolution
video (such as the popular service Netflix shown in Fig. 10), private commu-
nications for security forces, an augmented reality to offer sightseeing activi-
ties, remote control for critical infrastructures, etc. In this phase, the number of
users and their location may vary, producing a changing network environment.
Moreover, the network and computational resources can be modified due to the
deployment or elimination of other services. The orchestrator must monitor that
VNFs fulfill the SLAs so that users receive the expected quality (KPIs or QPIs).
In addition, the orchestrator must re-locate or re-configure VNFs, if necessary.

Fig. 11. Overall approach.
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Currently, the algorithms that perform these tasks still admit a quite margin of
improvement.

Phase 4: Network Service Termination. This phase is not represented in
Fig. 10. It is devoted to the release of the resources previously allocated to the
service, as well as the elimination of VNFs images. These actions are carried out
when users are not expected to be connected for a long period of time, and thus,
the elimination and subsequent creation of resources is possible.

4.2 Model Based Testing and Runtime Verification to Support
Flexible Placement and Reconfiguration of VNFs

We now face the challenge of automatically generating useful information to help
the orchestrator decide about the deployment, configuration and re-configuration
of VNFs. To do this, it is necessary to use the description of the VNFs and the
service level agreements for each service (SLA) to predict the suitable deployment
that satisfies the SLA. This problem has been previously addressed with different
estimation tools [25,29,30,34]. However, in these previous approaches, the main
focus is the use of computational resources. They do not consider the impact of
a realistic 5G network on the final QoS perceived by the users.

Our goal is to develop a novel learning method to specialize the orchestrator
taking the whole end-to-end network into account; that is, considering the users
and the communication component. We propose using different formal methods
to generate and test the orchestrator decisions, making use of a realistic end-
to-end 5G network to run the VNFs. In particular, we combine formal meth-
ods model-based testing, model checking and runtime verification to carry out
a runtime analysis of extra-functional properties (related to time and resource
utilization) which will be evaluated over event sequences which correspond to
the executions of network service.

Figure 11 shows our approach to generate the so-called book of rules of a
MANO in order to manage a specific service according to the requirements
and performance specified in the SLA. The approach has two well differentiated
phases. The first one is devoted to the extraction of the MANO rules using model-
based testing and run-time verification techniques. The second phase focuses on
the validation of the rules over an emulated 5G environment. Both phases have
the VNF and service descriptors (VNFDs and VSFDs)as input, as well as the
SLA. Both phases can be iterated several times in order to gradually refine the
rules generated.

The first phase is shown on the left part of Fig. 11. The VNFDs and VSFDs
are transformed into a model of the service combined with a non-deterministic
model of the MANO that includes a wide variety of rules to be applied to each
network scenario. With this model, we automatically generate test cases that
show different management rules for different network scenarios. The VNFs pass
these test cases in a controlled environment, a testing platform for 5G, where they
can be monitored. We use runtime verification techniques to determine whether
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the service and the VNFs satisfy the SLA. To do this, SLAs are translated into a
set of extra-functional properties (the runtime monitors) that evaluate whether
the execution of each test case matches the desired SLA. The (non-)correct test
cases help us to obtain new management rules for the MANO satisfying the
extra-functional properties.

The objective of the second phase (shown on the right part of Fig. 11) is
to validate the synthesized rules in a production environment. To this end, the
rules are installed on a real MANO that manages and orchestrates the 5G testing
platform (and that can even handle a commercial 5G network). Again, using the
runtime verification engine, we can check the suitability of the synthesized rules
during a normal operation of the service.

We propose running multiple iterations of the approach. In each iteration, we
will refine the NFV and MANO models making use of the results of the previous
iteration. These refined models can be used to extract new test cases that produce
more precise rules. In the following section, we present some preliminary models
of the NFVs and MANO.

4.3 Modeling the MANO

We assume that the MANO model consists of a number of MANO (sub-)models
that execute concurrently. Each sub-model manages a unique service deployed on
different points of presence (PoPs) to which users are connected. In consequence,
in this section, we focus on the description of one of these sub-models. In the
following text, to simplify the presentation, we simply call it MANO model.

The MANO model is a state machine that responds to events, provided by the
infrastructure platform, executing functions to preserve the required SLA. Thus,
the MANO and the infrastructure intensively communicate with each other over
time. In addition, a complementary functionality of the MANO model is to
periodically inspect the state of the infrastructure to carry out reconfiguration
actions, if needed, even though no events are fired.

Figure 12 contains a prototype implementation of our proposal using Uppaal
timed automata. State s0 is the initial state of the monitor. At this state, the
automaton may receive events such as alarmCPU90 and newUser from the infras-
tructure through different synchronization channels. The first event occurs when
the platform detects that some instance is reaching the 90% in the CPU usage.
The second one is a notification that a new user has connected to the service.
The monitor responds to the first event by transiting to state s2. During the
transition, the identifier of the PoP which has provoked the alarm is recorded
in variable eid. The monitor also searches for a new PoP, with more resources,
that can hold a new instance of the service, if needed. From s2, the automaton
can go to states s3, s4, s6 and NO RESOURCES. This last state is an error which
should never be reached. The rest of the states represent non-exclusive alter-
natives for the monitor: to increment the CPU resources in the PoP where the
instance which fired the alarm is located, to deploy a new service instance and
balance the users, to migrate the instance to a different PoP with enough CPU
resources.
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Fig. 12. Uppaal MANO model

Similarly, the monitor responds to the newUser event transiting to state s5
and finding an instance which can hold it. From s5, the automaton can jump to
the initial state through two different transitions: assigning the new user to an
existing service instance or deploying a new service instance for the user. As in
the previous case, if both transitions are enabled, the automaton may select any
of them in a non-deterministic way.

Finally, observe that the automaton has a clock variable tp that is used to
periodically check the state of the network and update it, if necessary. Currently,
we use a bi-dimensional array with the network parameters of interest that con-
tain the network state at three ordered previous time instants. This information
may be used, for instance, to discover when a user may have disconnected to
release its resources.

We have not included transitions that deal with alarms due to the RAM or
HDD usage in the model of Fig. 12 to simplify the automaton. In addition, it
is worth noting that the model is parametric w.r.t. a number of constants that
have to be calibrated such as the thresholds to fire alarms, the maximum number
of service instances and users (MAX INST, MAX INST USERS) and so on.

The concurrent execution of the MANO model and the infrastructure pro-
duces a set of traces (sequence of infrastructure states) that constitute the test
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cases to be analyzed against the SLA. Figure 13 contains an example of a pos-
sible infrastructure execution which can be synchronized with the monitor of
Fig. 12 to produce test cases.

Fig. 13. An infrastructure execution

The execution shows changes in the network at certain time instants. For
example, at time instant t=9 the platform is already initialized and the val-
ues of HDD and RAM usage are updated (the second and third parameter of
function updateInfo). At time instant t=99, a new user is connected and the
infrastructure sends event newUser to the monitor.

As previously described, the analysis of test cases may be used to iteratively
improve the monitor rules (the transitions in the automaton of Fig. 12).

The number of different traces generated this way is very large due to the non-
deterministic character of the monitor, and the range of values of the network
variables. A way of pruning these traces is to use properties (described, for
instance, in some temporal logic) to discard some non-interesting behaviors.
For instance, we could add the TCTL property “A[](not monitor.s3)” to the
monitor to generate test cases in which the monitor has carried out at least
an upscaling CPU task. The Uppaal model checker tries to check if no trace is
eventually at state s3. The counterexamples for this property are precisely the
test cases of interest wrt the property specified.

Table 1. Problems faced by SDN verification tools

Problems faced Related work

Networks with multiple protocols [17,20]

Networks with multiple SDN slices [1,17,20]

Networks with multiple OpenFlow controllers/domains [1]

Scalability [4]

Unbounded space of input packets and control messages [4,21]

Flow tables updating at runtime in switches [2,5,18,21]

Interleaved processing of packets/events [2,4,5,13,21]

Topology changes (robustness during an execution) [2]
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5 Related Work

The formal analysis of SDNs is a challenging task as they are distributed and
open event-driven systems. Given the separation of data and control planes and
the existence of a new application plane that provides the control intelligence,
most works focus on analyzing SDN problems from the perspective of one of
these planes, without considering the relation between them. In [19], we reviewed
the state of the art of formal methods and tools to support SDN. Table 1 shows
a list of problems addressed and related works. These proposals differ not only
regarding the network plane and the problem faced, but they also use different
formal methods, such as model checking [1,4,17,21], theorem proving [2,5,20],
runtime analysis [18] or traditional network debugging [13].

The efficient management and orchestration of VNFs in the context of 5G
networks is an interesting and challenging problem that can be addressed from
different perspectives.

Currently, some proposals focus on predicting the performance behavior of
VNF chains (services deployed interconnecting VNFs) deployed in the cloud
without considering the role of the mobile network. However, the network and
the service users are an important part of the environment that stimulates and
interacts with the VNFs, and thus, they must be taken into account to predict
the service performance in terms of extra-functional properties, Service Level
Agreements (SLAs), Key Performance Indicators (KPIs) and Quality Perfor-
mance Indicators (QPIs).

Peuster and Karl [29] proposed a methodology to characterize the perfor-
mance of VNF and VNF chains prior to service deployment that can be part of
a DevOps methodology. To this end, the authors execute the VNFs in different
emulated network configurations and monitor how different performance param-
eters evolve. The paper includes an evaluation of a profiler prototype built on
the emulation platform MeDICINE, which is based on an extension of Mininet
that can execute production-ready VNFs (given as Dockers containers) in user-
defined network topologies. The prototype can emulate the effect of the network
and other services that compete for the resources. However, the emulation is
limited by the capacity of the host machine that runs Mininet, which is far from
emulating a real 5G network. The author states that the profile of the VNF
can be used to improve the decisions carried out by the MANO, but there is no
insight of how to transform the profile into MANO rules.

Gym [30] is other framework for VNF profiling. In this case, the VNF is tested
under different resource configurations of the infrastructure, which is mainly
composed of servers where the VNFs runs. However, the infrastructure lacks the
components of a mobile network. The authors’ objective is to use the framework
to build testbeds for NFVs and services extending the framework with new
components.

The characterization of VNFs performance has also been addressed from the
analytical point of view. For instance, the tool Probius [25] aims to detect abnor-
mal behaviors of NFVs due to performance uncertainties. Probius automatically
generates all possible service chains with the given VNFs, collects and analyzes
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performance-related features of each chain, and analyzes performance problems
through anomaly detection and graph-based behavior analysis, and is able to
point out the reasons of the VNFs performance issues.

The project 5GTANGO [34] proposed a testing approach for VNFs based
on TTCN-3 test cases that can be manually or automatically generated using
model-based testing techniques. However, the authors do not discuss which enti-
ties are included in the model, or what requirements guide the test generation
algorithms.

In [25,29,34], the VNFs, the services and the test cases run in an emulated
infrastructure that cannot properly represent a 5G network.

Formal methods have been also used to verify VNFs and VNF chains against
reachability and safety properties in order to determine whether services are
interfering, are isolated, or are accessed by unauthorized users. In [28] and [33],
the analysis of properties is based on SMT solvers, such as Z3, combined with
static analysis and symbolic model checking. These approaches accept a logic
formula as input and find the values (if any) that make the formula satisfiable.
The main limitation of these approaches is the transformation of the VNF code
into a model in the solver’s input language. This task is not trivial and is error
prone. To minimize this problem, in [22], a tool to automatically extract the VNF
model from its code is proposed. The approach is limited to VNFs implemented
using a set of Java libraries to facilitate the coding task.

6 Conclusions

The increasing presence of software in mobile communication networks, like 5G
networks, requires the use of rigorous methods to ensure the correct behavior.
The formal methods community can find here new challenges to demonstrate the
applicability of well-known techniques for modelling and automatic analysis. We
have introduced work in progress in the general topic of automated generation
and specialization of formal models that can help the deployment of the SDN and
NFV parts of the network. We use two different modelling languages because
the objectives for each domain are different. The use of Alloy to model SDN
overpasses the state space explosion problem of model checking when checking
for valid network configurations. The use of SAT solvers in this context has
been demonstrated with a middle size network; however we still need to confirm
the feasibility of the approach with more complex configurations. The use of
UPPAAL to model the NFV part is still a proof concept and more work will
be done to produce experimental results. One future work is to analyze whether
a single formal method could support the two domains considered in the 5G
network. We are currently working on implementing some of these methods to
be validated in realistic research networks in the context of the European H2020
research projects EuWireless and 5GENESIS.
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