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Abstract. In the setting of a simple process language featuring non-
deterministic choice and a parallel operator on the one hand and proba-
bilistic choice on the other hand, we propose an axiomatization capturing
strong distribution bisimulation. Contrary to other process equivalences
for probabilistic process languages, in this paper distributions rather
than states are the leading ingredients for building the semantics and
the accompanying equational theory, for which we establish soundness
and completeness.

1 Introduction

Probabilistic extensions of process algebraic languages have been studied since
the 90s. A frequently reoccurring issue is the interplay of indeterminacy caused
by non-determinism or stemming from probability. Process equivalences, seek-
ing to identify processes for purposes of formal analysis, need to take this into
account. A number of process equivalences for probabilistic process languages
have been proposed, including strong probabilistic bisimulation as introduced
in [27]. For logical characterizations of these process relations, equivalence of two
processes coincides with the two processes satisfying exactly the same formulas
of a particular logic, cf. [11,25,31] for example. For equational characterizations,
equivalence of two processes exactly coincides with the two processes being prov-
ably equal with respect to the axioms of the equational theory at hand. See, e.g.,
[6,14,17].

In this paper we study an equational theory for a process language which
includes non-deterministic choice and a parallel operator in the style of ACP [3,8]
as well as probabilistic choice as in PCCS [27]. We present an operational seman-
tics based on a two-sorted transition system, distinguishing non-deterministic
processes and probabilistic processes, as is usual for the set-up with both types
of indeterminacy. Following [32] we incorporate so-called combined transitions,
meaning that for any two transitions with the same action label any convex
combination of these two transitions is possible as well. The notion of process
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equivalence on the basis of which we identify processes is strong distribution
bisimulation as proposed in [16]. In particular, this process equivalence is based
on distributions rather than on single states, in line with our recent work on
branching distribution bisimulation [22]. For our process language we introduce
an equational theory which characterizes strong distribution bisimulation. Bor-
rowing from [6], the equational theory quite naturally extends the axiomati-
zations of its non-deterministic sublanguage. We prove that our set of axioms
is sound and complete indeed. Also for the proofs we manage to extend the
established approach. The latter constitutes the main contribution of the paper.

Early work on complete axiomatizations for probabilistic process algebras
includes [18]. However, it provides no treatment of a parallel operator. In [4] a
parallel operator is included, but non-determinism is resolved in favor of prob-
abilistic behavior. Completeness in [4,18] is established with respect to strong
probabilistic bisimulation [27]. In [9], in a different vein, an axiom system is
provided for a process algebra including a parallel operator in the setting of
Markovian bisimulation. The paper [6] treats both strong and weak bisimula-
tion, presenting equational theories for a process language with non-deterministic
and probabilistic choice, in the alternating model [24] and in the non-alternating
model [33]. The alternating model is also underpinning [1] where an axiomati-
zation is given for (non-convex) probabilistic version of branching bisimulation.
In [2] it is formally shown that branching bisimulation in the alternating model
and in the non-alternating model differ. In [14] a complete axiomatization is
given, with respect to both strong and weak probabilistic bisimulation, for a
language that also covers recursion, extending [34] to include non-deterministic
choice. In [15] the work of [14] is expanded further to deal with a CCS-style
parallel operator. To the best of our knowledge, [15] is the only paper propos-
ing a complete equational theory for a parallel operator in a semantical model
that supports both non-deterministic and probabilistic behavior. Recursion is
also incorporated in the process language of [17] (but no parallel operator).
This paper focuses on infinitary semantics and weak probabilistic bisimulation.
Also [17] provides a complete equational theory.

The remainder of this paper is organized as follows: After a short recollection
of preliminaries in Sect. 2, we introduce in Sect. 3 the process language under
study together with its transition system. We continue in Sect. 4 to define strong
distribution bisimulation and establish that it is a congruence for the operators
of our language. In Sect. 5 the equational theory is given and it is shown that it
is sound and complete with respect to strong distribution bisimulation. Section 6
wraps up with concluding remarks.

2 Preliminaries

Let Distr(X) be the set of distributions over the set X of finite support. A
distribution μ ∈ Distr(X) can be represented as μ =

⊕
i∈I pi∗xi when μ(xi) = pi

for i ∈ I and
∑

i∈I pi = 1. We assume I to be a finite index set. In concrete
cases, when no confusion arises, the separator ∗ is omitted from the notation.
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For convenience later, we do not require xi �= xi′ for i �= i′ nor pi > 0 for i, i′ ∈ I.
We use δ(x) to denote the Dirac distribution for x ∈ X. For μ, ν ∈ Distr(X) and
r ∈ [0, 1] we define μ ⊕r ν ∈ Distr(X) by (μ ⊕r ν)(x) = r ·μ(x) + (1−r) · ν(x).
By definition μ ⊕0 ν = ν and μ ⊕1 ν = μ. For an index set I, pi ∈ [0, 1] and μi ∈
Distr(X), we define

⊕
i∈I pi∗μi ∈ Distr(X) by (

⊕
i∈I pi∗μi)(x) =

∑
i∈I pi ·μi(x)

for x ∈ X. For μ =
⊕

i∈I pi ∗ μi, ν =
⊕

i∈I pi ∗ νi, and r ∈ [0, 1] it holds that
μ ⊕r ν =

⊕
i∈I μi ⊕r νi. For a relation R on Distr(X) we define the convex

closure cc(R) by cc(R) = { 〈⊕i∈I pi ∗ μi,
⊕

i∈I pi ∗ νi〉 | μi R νi,
∑

i∈I pi = 1 }.

3 A Process Language

We introduce a process language of non-deterministic processes featuring non-
deterministic choice and a parallel operator, intertwined with probabilistic pro-
cesses built on Dirac distributions and probabilistic choice. Since the axiomati-
zation presented in Sect. 5 requires auxiliary operators � and |, called leftmerge
and synchronization operator, we introduce an extended class of processes too.

Fix A to be a non-empty alphabet of actions. We use a to range over A.
We assume a so-called communication function γ : A × A → A to be given,
that determines the result of two synchronizing actions. The function γ is both
commutative and associative.

Definition 3.1 (syntax). The class E of non-deterministic processes over A,
with typical element E, and the class P of probabilistic processes over A, with
typical element P , are given by

E ::= 0 | a . P | E + E | E‖E

P ::= Δ(E) | P ⊕r P

where r ∈ (0, 1).

We see that a non-deterministic process is either the nil process 0, which
performs no action, a prefixed probabilistic process a . P , which performs the
action a, a non-deterministic choice E1 + E2, which can behave both like E1

and like E2, or a parallel composition E1‖E2, which interleaves or synchronizes
actions from E1 and E2. In the latter case synchronization is governed by the
communication function γ introduced above.

The subclasses E0 ⊆ E of basic non-deterministic processes and P0 ⊆ P of
basic probabilistic processes consists of processes E ∈ E and P ∈ P such that
the parallel operator ‖ doesn’t occur in E and P , respectively. The extended
classes of non-deterministic processes E ′ and of probabilistic processes P ′ are
obtained by adding (see Definition 3.2 below) the leftmerge operator � and the
synchronization operator | to the grammar of Definition 3.1.
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Definition 3.2 (basic and extended processes).

(a) The subclasses E0 ⊆ E of basic non-deterministic processes and P0 ⊆ P of
basic probabilistic processes are given by

E ::= 0 | a . P | E + E

P ::= Δ(E) | P ⊕r P

(b) The superclass E ′ ⊇ E of extended non-deterministic processes and P ′ ⊇ P
of extended probabilistic processes are defined by the BNF

E ::= 0 | a . P | E + E | E‖E | E �E | E |E
P ::= Δ(E) | P ⊕r P

The behavior of processes is defined using transition relations. We distinguish
a transition relation → for non-deterministic processes and a relation �→ for
probabilistic processes. We blur the difference of probabilistic processes and dis-
tributions over non-deterministic processes by an implicit interpretation given
by the relation �→.

Definition 3.3 (transition relation).

(a) The transition relations → ⊆ E × A × Distr(E) and �→ ⊆ P × Distr(E) are
induced by

P �→ μ

a . P
a−→ μ

(pref)

E1
a−→ μ1

E1 + E2
a−→ μ1

(nd-choice 1)
E2

a−→ μ2

E1 + E2
a−→ μ2

(nd-choice 2)

E1
a−→ μ1

E1‖E2
a−→ μ1 ‖ Δ(E2)

(par 1)
E2

a−→ μ2

E1‖E2
a−→ Δ(E1) ‖ μ2

(par 2)

E1
a−→ μ1 E2

b−→ μ2

E1 ‖ E2
c−→ μ1‖μ2

if γ(a, b) = c (par 3)

Δ(E) �→ δ(E) (Dirac)
P1 �→ μ1 P2 �→ μ2

P1 ⊕r P2 �→ r ∗ μ1 ⊕ (1−r) ∗ μ2

(p-choice)

(b) The combined transition relation → ⊆ Distr(E) × A ×Distr(E) is such that
μ

a−→ μ′ whenever μ =
⊕

i∈I pi ∗ Ei, μ′ =
⊕

i∈I pi ∗ μ′
i, and Ei

a−→ μ′
i for all

i ∈ I.

The rules (par 1) to (par 3) above use the parallel operator in combination with
distributions. For μ1, μ2 ∈ Distr(E) the distribution (μ1‖μ2) ∈ Distr(E) is such
that (μ1‖μ2)(E) = μ1(E1) · μ2(E2) if E ≡ E1‖E2 and (μ1‖μ2)(E) = 0 if E is
not a parallel composition. See e.g. [26,28] for similar use of this construction.
Note the use of the communication function γ in rule (par 3).
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The combined transition relation on Distr(E) allows one to split a distribution
μ into μ1 ⊕r μ2 and to consider transitions of μ1 and μ2 for a specific action a
independently and combining the resulting distributions. See Example 4.5 in the
next section.

Also for the classes of extended processes we provide transition relations.

Definition 3.4 (extended transition relation).

(a) The transition relations → ⊆ E ′ ×A×Distr(E ′) and �→ ⊆ P ′ ×Distr(E ′) are
induced by the transition rules pref, nd-choice 1,2, par 1,2,3, Dirac,
and p-choice together with the transition rules

E1
a−→ μ1

E1 �E2
a−→ μ1‖Δ(E2)

(left)
E1

a−→ μ1 E2
b−→ μ2

E1|E2
c−→ μ1‖μ2

if γ(a, b) = c (sync)

(b) The combined transition relation → ⊆ Distr(E ′)×A×Distr(E ′) is such that
μ

a−→ μ′ whenever μ =
⊕

i∈I pi ∗ Ei, μ′ =
⊕

i∈I pi ∗ μ′
i, and Ei

a−→ μ′
i for all

i ∈ I.

The machinery of Definition 3.4 is similar to that of Definition 3.3. The addi-
tional rules (left) and (sync) capture that in a leftmerge E1 � E2 only the
component E1 is responsible for determining a possible transition, while for the
synchronization operator the synchronization of transitions of both components
is required. The former corresponds to rule (par 1), the latter corresponds to
rule (par 3).

4 Strong Distribution Bisimulation

In this section the notion of process equivalence of strong distribution bisim-
ulation is presented. Strong distribution bisimulation has been advocated a.o.
in [12,16,25], called bisimulation, strong probabilistic distribution bisimulation,
and strong d-bisimulation, respectively.

Since strong distribution bisimulation deals with distributions rather than
states, one has to take a proviso for subsumed behavior. For example, one wants
to distinguish the deadlock process 0 and the process (a . Δ(0)) ⊕1/2 (b . Δ(0))
although both processes do not provide a transition. We follow [25] by introduc-
ing the concept of a decomposable relation.

Definition 4.1 (decomposable relation). A symmetric relation R
on Distr(E) is called decomposable iff for all μ, ν ∈ Distr(E) such that μR ν
and μ =

⊕
i∈I pi ∗ μi there are νi ∈ Distr(E), for i ∈ I, such that ν =⊕

i∈I pi ∗ νi and μi R νi for all i ∈ I.

A notion of a decomposable relation on Distr(E ′) is defined similarly. Clearly,
an arbitrary union of decomposable relations is decomposable again.

The next result is a technical aid to go from comparing distributions to
comparing states. It states that every strong distribution bisimulation can be
obtained as the convex closure of a relation on states, cf. [13].
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Lemma 4.2 Let R is a decomposable relation on Distr(E). If μR ν, then there
are an index set K and non-deterministic processes Ek, Fk ∈ E and probabili-
ties rk for each k ∈ K such that

μ =
⊕

k∈K rk ∗ E′
k ν =

⊕
k∈K rk ∗ F ′

k Δ(E′
k)RΔ(F ′

k) for all k ∈ K

Proof. Suppose μR ν and μ =
⊕

i∈I pi ∗ Ei. By decomposability of R we
can write ν =

⊕
i∈I pi ∗ νi and have Δ(Ei)R νi for suitable νi ∈ Distr(E),

for all i ∈ I. Say, νi =
⊕

j∈Ji
qij ∗ Fij . By decomposability of R, we have

Δ(Ei) =
⊕

j∈Ji
qij ∗Δ(Ei) and, more importantly, Δ(Ei)RΔ(Fij) for all j ∈ Ji.

Put K = { (i, j) | i ∈ I, j ∈ Ji }. Put E′
k = Ei, F ′

k = Fij , and rk = pi · qij

if k = (i, j). Note, E′
k RF ′

k for k ∈ K. Moreover, we have μ =
⊕

i∈I pi ∗ Ei =⊕
i∈I

⊕
j∈Ji

(pi · qij) ∗ Δ(Ei) =
⊕

k∈K rk ∗ E′
k, and ν =

⊕
i∈I pi ∗ νi =

⊕
i∈I pi ∗

(
⊕

j∈Ji
qij ∗ Fij) =

⊕
k∈K rk ∗ F ′

k as was to be shown.

The transition systems of Definitions 3.3 and 3.4 incorporate so-called combined
transitions. In order to cater for this when dealing with bisimulation we rely
on the fact that the convex closure of a decomposable relation is decomposable
again.

Lemma 4.3. If a relation R on Distr(E) is decomposable, then Rcc the convex
closure of R given by

Rcc = { (
⊕

i∈I pi ∗ μi,
⊕

i∈I pi ∗ νi) | ∀i ∈ I : μi R νi }

is decomposable as well.

Proof. Suppose μ =
⊕

i∈I pi ∗ μi, ν =
⊕

i∈I pi ∗ νi where μi R νi for i ∈ I.
By applying Lemma 4.2 for each pair μi, νi and combining the results we obtain
μ =

⊕
j∈J qj ∗ Ej and ν =

⊕
j∈J qj ∗ Fj and Δ(Ej)RΔ(Fj) for a suitable index

set J , processes Ej , Fj ∈ E and qj > 0 for j ∈ J .
Now suppose μ =

⊕
k∈K rk ∗ μ′

k. Then we have μ′
k =

⊕
j∈J rjk ∗ Ej for

suitable rjk such that
∑

k∈K rjk · rk = qj . Put ν′
k =

⊕
j∈J rjk ∗ Fj . Then we

have μ′
k Rcc ν′

k since Δ(Ej)RΔ(Fj) for all j ∈ J . Moreover, ν =
⊕

j∈J qj ∗Fj =⊕
j∈J (

∑
k∈K rjk · rk) ∗ Fj =

⊕
k∈K rk ∗ (

⊕
j∈J rjk ∗ Fj) =

⊕
k∈K rk ∗ v′

k. This
proves Rcc to be decomposable. ��
We are now ready to define the notion of equivalence of processes.

Definition 4.4 (strong distribution bisimulation).

(a) A decomposable relation R ⊆ Distr(E) × Distr(E) is called a strong distri-
bution bisimulation, iff for all μ, ν ∈ Distr(E) such that μR ν and μ

a−→ μ′

for some a ∈ A and μ′ ∈ Distr(E) then ν
a−→ ν′ and μ′ R ν′ for some

ν′ ∈ Distr(E).
(b) Strong distribution bisimulation, denoted by ↔ ⊆ Distr(E) × Distr(E), is

defined as the largest strong distribution bisimulation on Distr(E).
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By the definition of a decomposable relation we have that a strong distribution
bisimulation is symmetric. Also note that the relation ↔ on Distr(E) is well-
defined. It extends to Distr(E ′) straightforwardly.

Example 4.5. Consider the two non-deterministic processes depicted in Fig. 1.
We verify that the Dirac distributions μ and ν corresponding to these processes,
i.e. μ = δ(a .(P ⊕1/2 Q) + a .(P ⊕1/3 Q)) for the process on the left and ν =
δ(a .(P ⊕1/2 Q) + a .(P ⊕5/12 Q) + a .(P ⊕1/3 Q))) for the process on the right,
are strongly distribution bisimilar.

Let R be the relation on Distr(E) given by R = {〈μ, ν〉, 〈ν, μ〉} ∪ IdDistr(E)
with IdDistr(E) the identity relation { 〈�, �〉 | � ∈ Distr(E) }. We claim that R
is a strong distribution bisimulation. It is straightforward to check that R is
decomposable. To see that R satisfies the transfer condition of Definition 4.4
too, we let �P and �Q denote the distributions corresponding to the probabilistic
processes P and Q, respectively, and consider the transition ν

a−→ �P ⊕5/12 �Q.
Since μ = 1

2μ ⊕ 1
2μ and both μ

a−→ �P ⊕1/2 �Q and μ
a−→ �P ⊕1/3 �Q we

obtain from the operational semantics captured by Definition 3.3 μ
a−→ (�P ⊕1/2

�Q)⊕1/2(�P ⊕1/3�Q) = �P ⊕5/12�Q. Thus, the distribution μ exactly matches the
transition ν

a−→ �P ⊕5/12 �Q which is an explicit option of the non-deterministic
process on the right of Fig. 1 but not of the other.

a a

1
2

1
2

P Q

1
3

2
3

P Q

a a a

1
2

1
2

P Q

5
12

7
12

P Q

1
3

2
3

P Q

Fig. 1. Two bisimilar processes

Example 4.6. Consider the probabilistic processes P and Q given by

P = Δ(a .
(
Δ(b . Δ(0)) ⊕1/2

(
Δ(c . Δ(0)) ⊕1/2 Δ(c .(Δ(0) ⊕1/2 Δ(0))

))
)

Q = Δ(a .
((

Δ(b . Δ(0 + 0)) ⊕1/2 Δ(b . Δ(0))
) ⊕1/2 Δ(c .(Δ(0) ⊕1/2 Δ(0))

)
)

Then we have P
a−→ μ and Q

a−→ ν for distributions μ, ν ∈ Distr(E) where

μ = 1
2δ(b . Δ(0)) ⊕ 1

4δ(c . Δ(0)) ⊕ 1
4δ(c .(Δ(0) ⊕1/2 Δ(0)))

ν = 3
8δ(b . Δ(0 + 0)) ⊕ 1

8δ(b . Δ(0)) ⊕ 1
2δ(c . Δ(0))

By decomposability, bisimulation relating μ and ν should also relate δ(b . Δ(0))
to δ(b . Δ(0 + 0)) and δ(c .(Δ(0) ⊕1/2 Δ(0))) to δ(c . Δ(0)), which requires in
turn that Δ(0) and Δ(0+0)) are related. Therefore, we define R to be the least
binary relation on Distr(E) which
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(i) contains the pairs 〈P,Q〉, 〈μ, ν〉, 〈δ(0), δ(0 + 0)〉, 〈δ(b . Δ(0)), δ(b .

Δ(0 + 0))〉, and 〈δ(c .(Δ(0) ⊕1/2 Δ(0))), δ(c . Δ(0))〉
(ii) contains the diagonal IdE
(iii) is symmetric and convex closed.

It is straightforward to verify that R is a strong distribution bisimulation relation
for P and Q. In particular, because of condition (iii) it is easy to see that R indeed
relates μ1 and ν1 as well as μ2 and ν2 for the decompositions μ = μ1 ⊕1/2 μ2 =
δ(b . Δ(0)) ⊕1/2 ( 12δ(c . Δ(0)) ⊕ 1

2δ(c .(Δ(0) ⊕1/2 Δ(0))) and ν = ν1 ⊕1/2 ν2 =
(34δ(b . Δ(0 + 0) ⊕ 1

4δ(b . Δ(0)) ⊕1/2 δ(c . Δ(0)).

The next result states that strong distribution bisimulation is a process equiva-
lence indeed. The congruence property of ↔ is essential for proving the soundness
of the equational theory for strong distribution bisimulation that is introduced
in the next section.

Theorem 4.7 (congruence). The relation ↔ is an equivalence relation and
a congruence on E and P.

Proof. The proof of ↔ being an equivalence relation is straightforward. For
congruence we treat the case of the parallel operator.

Suppose R1,R2 are two strong distribution bisimulations. Put

R = cc({ (Δ(E1‖E2),Δ(F1‖F2)) | E1 R 1F1, F1 R 2F2 })

We claim that R is a strong distribution bisimulation too. By Lemma 4.3
it follows that R is decomposable. Now suppose E1 R 1F1 and E2 R 2F2 and
E1‖E2

a−→ μ. We have to show that, for some ν ∈ Distr(E), it holds that
F1‖F2

a−→ ν and μR ν. We distinguish three cases.
Case (i), E1

a−→ μ1 and μ = μ1‖E2: Pick ν1 such that F1
a−→ ν1 and μ1 R 1ν1.

Put ν = ν1‖F2. Assume, with help of Lemma 4.2, μ1 =
⊕

i∈I p1 ∗ E′
i, ν1 =⊕

i∈I pi ∗ F ′
i and Δ(E′

i)R 1Δ(F ′
i ) for i ∈ I. Since Δ(E′

i)R 1Δ(F ′
i ) for i ∈ I

and Δ(E2)R 2Δ(F2) it follows that Δ(E′
i‖E2)RΔ(F ′

i ‖F2). Since μ = μ1‖E2 =⊕
i∈I pi ∗ (E′

i‖E2) and ν = ν1‖F2 =
⊕

i∈I pi ∗ (F ′
i ‖F2) we obtain μR ν.

Case (ii), E2
a−→ μ2 and μ = E1‖μ2: Symmetric to case (i).

Case (iii), E1
a1−−→ μ1, E2

a2−−→ μ2, μ = μ1‖μ2 and γ(a1, a2) = a: Suppose
μ1 =

⊕
i∈Ipi∗E′

i, μ2 =
⊕

j∈Jqj∗E′′
j . Since Δ(E1)R 1Δ(F1) and Δ(E2)R 1Δ(F2)

we can find ν1 =
⊕

i∈Ipi∗F ′
i , ν2 =

⊕
j∈J qj∗F ′′

j in Distr(E) with Δ(E′
i)R 1Δ(F ′

i )
for i ∈ I and Δ(E′′

j )R 2Δ(F ′′
j ) for j ∈ J . Note Δ(E′

i‖E′′
j )RΔ(F ′

i ‖F ′
j) for i ∈

I, j ∈ J . Moreover,

μ = μ1‖μ2 =
⊕

i∈I

⊕
j∈J (pi · qj) ∗ (E′

i‖E′′
j )

ν = ν1‖ν2 =
⊕

i∈I

⊕
j∈J (pi · qj) ∗ (F ′

i ‖F ′′
j )

from which it follows that μR ν, as was to be shown. ��



An Axiomatization of Strong Distribution Bisimulation 457

5 A Complete Axiomatization

In Table 1 we present the equational theory AX that characterizes strong dis-
tribution bisimulation for non-deterministic and probabilistic processes. The
axioms of AX are inspired by the axiomatization of [6] regarding probabilis-
tic choice and that of [8] regarding the synchronization merge. As argued by
Moller [30] the availability of the leftmerge � is essential for a finite axiomatiza-
tion of the merge ‖ itself. This explains why we introduced extended processes
incorporating � and | in Sect. 3.

Definition 5.1 (theory AX ). The theory AX consists of the axioms listed in
Table 1.

Table 1. Axioms for strong distribution bisimulation

A1 E + F = F + E

A2 (E + F ) + G = E + (F + G)

A3 E + E = E

A4 E + 0 = E

P1 P ⊕r Q = Q ⊕1−r P

P2 P ⊕r (Q ⊕s R) = (P ⊕r′ Q) ⊕s′ R

where r = r′s′ and (1−r)(1−s) = 1−s′

P3 P ⊕r P = P

M E‖F = E � F + F � E + E|F
L1 0� F = 0

L2 (a . P ) � F = a .(P ‖F )

L3 (E1 + E2) � F = (E1 � F ) + (E2 � F )

S1a 0|F = 0

S1b E|0 = 0

S2 (a . P )|(b . Q) = c .(P ‖Q) if γ(a, b) = c

S3 (E1 + E2)|F = (E1|F ) + (E2|F )

S4 E|(F1 + F2) = (E|F1) + (E|F2)

C a . P + a . Q = a . P + a .(P ⊕r Q) + a . Q

The axioms A1 to A4 are as usual. The axioms P1 and P2 express the commu-
tativity and associativity of probabilistic choice, taking into account the proba-
bilities involved. Axiom P3 allows for splitting of a probabilistic process.

The group of processes M, L1 to L3, and S1a to S4 capture the parallel
operator ‖ with the help of the auxiliary operators � and |. Axiom M is an
interleaving rule: behavior of a parallel composition E‖F of two processes E
and F is either stemming from the process E expressed by E � F , stemming
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from the process F expressed by F �E, or stemming from the processes E and F
synchronizing expresses by E|F .

In a leftmerge E � F , by definition, the first step must be taken by the
component E. In the extended transition relation of Definition 3.4 only rule
(left) applies. This explains axioms L1 and L2. In L2 the expression P ‖F
for P ∈ P and F ∈ E is defined by Δ(E)‖F = Δ(E‖F ) and (P1 ⊕r P2)‖F =
(P1‖F )⊕r (P2‖F ). Axiom L3 expresses that non-deterministic choice distributes
over the leftmerge.

Similar considerations apply to axioms S1a to S4 capturing the synchroniza-
tion operator |. Since E|F requires a transition from both operands, deadlock
results if either of them doesn’t have such. Synchronization of an a-transition
of E and a b-transition of F results in a transition labeled with γ(a, b) ∈ A as
given by the communication function γ. Non-deterministic choice also distributes
over the synchronization operator.

The final axiom C expresses combined behavior. If a non-deterministic pro-
cess has an a-transition evolving into the probabilistic process P and has an
a-transition evolving into the probabilistic process Q, then the non-deterministic
process also admits an a-transition evolving into any convex combination of P
and Q.

Before moving to completeness of AX for ↔ we treat soundness of AX .

Theorem 5.2. The theory AX is sound with respect to strong distribution
bisimulation for E ′ and P ′, i.e. for all E,F ∈ E , if AX � E = F then Δ(E) ↔
Δ(F ) and for all P,Q ∈ P ′, if AX � P = Q then P ↔ Q.

Proof. In view of Theorem 4.7 it suffices to show that for each axiom of AX the
left-hand side and right-hand side are strongly distribution bisimilar. We only
cover the case of axiom M.

Pick E′, F ′ ∈ E arbitrarily. Define

R = {〈Δ(E′‖F ′),Δ(E′ �F ′ + F ′ �E′ + E′|F ′)〉} ∪
cc({ 〈Δ(E‖F ),Δ(F ‖E)〉 | E,F ∈ E }) ∪ IdΔ

where IdΔ = { 〈Δ(E),Δ(E)〉 | E ∈ E ′ }. We have that R is decomposable, cf.
Lemma 4.3.

To see that E′‖F ′ and E′ � F ′) + F ′ � E′ + E′|F ′ match each other, we dis-
tinguish six cases: (i) If E′‖F ′ a−→ μ‖F ′ because E′ a−→ μ, then E′ �F ′ a−→ μ‖F ′

and μ‖F ′ Rμ‖F ′.
(ii) If E′‖F ′ a−→ E′‖ν because F ′ a−→ ν, then it holds that F ′ � E′ a−→ ν‖F ′

and E′‖ν R ν‖E′.
(iii) If E′‖F ′ c−→ μ‖ν because E′ a−→ μ and F ′ b−→ ν while γ(a, b) = c , then

E′|F ′ c−→ μ‖ν and μ‖ν Rμ‖ν.
(iv) If E′ � F ′ a−→ μ‖F ′ because E′ a−→ μ, then E′‖F ′ a−→ μ‖F ′ and

μ‖F ′ Rμ‖F ′.
(v) If F ′ � E′ a−→ ν‖E′ because F ′ a−→ ν, then it holds that E′‖F ′ a−→ E′‖ν

and E′‖ν R ν‖E′.
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(vi) If E′|F ′ c−→ μ‖ν because E′ a−→ μ and F ′ b−→ ν while γ(a, b) = c , then
E′‖F ′ c−→ μ‖ν and μ‖ν Rμ‖ν.

It follows that R is a strong distribution bisimulation relating Δ(E′‖F ′) and
Δ(E′ �F ′ + F ′ � E′ + E′|F ′), hence Δ(E′‖F ′) ↔ Δ(E′ � F ′ + F ′ �E′ + E′|F ′),
which was sufficient to show. ��
In the proof of completeness of AX we make use of a complexity function c
for our inductive argument. We want c to be such that for an axiom E = F
or P = Q of AX the weight c(E) or c(P ) of the left-hand side is strictly larger
in weight than the right-hand side c(F ) or c(Q). We will deploy sequences of
natural numbers as weights.

Addition on N
∗ is defined as element-wise addition. More concretely: (i) ε +

v = v, (ii) u + ε = u, (iii) (n . u) + (m. v) = (n + m) .(u + v), for u, v ∈ N
∗ and

n,m ∈ N. The ordering of N∗ is the lexicographic order restricted to sequences
of equal length. Thus n1 · n2 · · · · · ns < m1 · m2 · · · · · mt iff s = t and for
some j, 1 � j � s it holds that ni = mi for 1 � i < j and nj < mj . Since we
only compare sequences of equal length, it holds that < is a well-founded partial
order on N

∗.

Definition 5.3 (Complexity function). The function c : E ′ ∪ P ′ → N
∗,

assigning a complexity measure to processes, is defined as follows:

c(0) = 0 c(E‖F ) = 4 + c(E) + c(F )
c(a . P ) = 1 . c(P ) c(E �F ) = 1 + c(E) + 0 . c(F )

c(E + F ) = c(E) + c(F ) c(E|F ) = 1 + c(E) + c(F )
c(Δ(E)) = 0 . c(E) c(P ⊕r Q) = c(P ) + c(Q)

Please note, with N
∗ the ‘.’-operator in the definition of c above denotes con-

catenation of strings. The complexity function c and the well-foundedness of N∗

are exploited in the technical lemma below.

Lemma 5.4.

(a) For each extended non-deterministic process E′ ∈ E ′ a basic non-
deterministic process E0 ∈ E0 exists such that AX � E′ = E0.

(b) For each extended probabilistic process P ′ ∈ P ′ there is a basic probabilistic
process P0 ∈ P0 such that AX � P ′ = P0.

Proof. Suppose AX � C[E1] = C[E2] for a context C[·] and E1 = E2 an
instance of the axiom X of AX with E1 its LHS and E2 its RHS. If the axiom X
is M, L1-L3, or S1-S4, then it holds that c(C[E1]) > c(C[E2]). Otherwise,
it holds that c(C[E1]) = c(C[E2]). Moreover, in all cases, it holds that the
strings c(C[E1]) and c(C[E2]) are of equal length.

If a process E ∈ E ′ or P ∈ P ′ contains any of the operators ‖, � or | then at
least one of the axioms M, L1–L3, or S1a–S4 applies, matching its LHS to E or
to P , respectively.

If a process E ∈ E ′ or P ∈ P ′ contains none of the operators ‖, � or |, thus
E ∈ E0 or P ∈ P0, then c(E) = 0� or c(P ) = 0� for suitable � ∈ N. This is directly
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verified by structural induction on E and P : c(0) = 0 = 01, c(a . P ) = 0 . c(P ),
c(E + F ) = c(E) + c(F ), c(Δ(E)) = 0.c(E), c(P + Q) = c(P ) + c(Q). Note, a
string 0� is a minimal element in N

∗ for the specific ordering on N
∗ introduced

above.
It follows that successive elimination of the operators ‖, � or | from an

extended non-deterministic process E ∈ E ′ by application of the axioms M, L1–
L3, or S1–S4, with the LHS of the axiom matching the redex and the RHS yield-
ing the reduct, is a terminating rewrite procedure, with a basic process E0 ∈ E0

as its normal form. The same applies to an extended probabilistic process P ∈ P ′

yielding a basic probabilistic process P0 ∈ P. ��
In view of the lemma, relating two bisimilar processes with possible occurrences
of ‖ boils down to relating their basic counterparts. However, for this argument
to be helpful, we need completeness of AX , or part of it, for bisimilar basic
processes.

Theorem 5.5. The equational theory AX 0 consists of the axioms A1–A4, P1–
P3, and C. Then it holds that AX 0 is sound and complete for strong distribution
bisimulation for P0.

As claimed in [6] the proof of Theorem 5.5 is a variation of the standard proof
method, cf. [29], and omitted here.

We are now ready to prove completeness of the proposed axiomatization.

Theorem 5.6. The equational theory AX is complete with respect to ↔ for P.

Proof. Suppose P,Q ∈ P such that P ↔ Q. Choose with help of Lemma 5.4
basic processes P0, Q0 ∈ P0 such that AX � P = P0 and AX � Q = Q0. Then
also P0 ↔ Q0 by Theorem 4.7. By Theorem 5.5 we obtain AX 0 � P0 = Q0.
Since AX 0 is subsumed by AX it follows that AX � P = Q. ��
We see that the extra complexity in proving Theorem 5.6 and subsequently
our resort to the complexity measure c is caused by the mixture P ‖F of a
probabilistic process and a non-deterministic process in the axiom L2 and the
propagation of parallel composition in P ‖Q in the axiom S2. The general outline
however is as established in [8,29].

6 Concluding Remarks

We studied an elementary process language featuring non-deterministic choice
and a parallel operator with synchronous communication on the one hand and
probabilistic choice on the other hand. For this language we presented an axiom-
atization characterizing strong distribution bisimulation and proved soundness
and completeness of the proposed set of axioms. The transition system of the
language supports so-called combined transitions and treats distributions over
non-deterministic processes as its building blocks. In order to support a finite
equational theory the processes language was extended with a leftmerge operator
and a synchronization operator.
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Soundness of the equational theory with respect to strong distribution bisim-
ulation involved, as usual, proving congruence and soundness of the axioms them-
selves. For completeness, because of the interplay of non-deterministic processes
involving the parallel operator, via the leftmerge and synchronization merge,
with probabilistic processes, some technical effort was required. The proof, how-
ever, stays in line with the standard approach known from the set-up without
probabilities.

In [22] a sound and complete equational theory for branching distribution
bisimulation, a weak variant of strong distribution bisimulation as treated in
the present paper, for a similar process language is proposed. The language
however doesn’t include a parallel construct. One may expect that establishing
a conservative extension of the theory AX , thus covering a parallel operator, that
captures branching distribution bisimulation will require substantial effort. Not
so much for the completeness proof itself, in view of Lemma 5.4, but because of
the before-mentioned interplay of non-deterministic and probabilistic processes
triggered by the parallel construct. This entanglement requires specific attention
when verifying transitivity of the process equivalence at hand and of a congruence
result for the parallel operator.

Future work aims at building a framework of a distribution-based notion of
process equivalence that allows a complete equational theory, an efficient decision
algorithm, and a logical characterization, both with respect to strong bisimula-
tion as well as to a form of weak bisimulation. Especially the construction of
a decision algorithm for branching distribution bisimulation attracts our atten-
tion. A decision algorithm for weak distribution bisimulation is proposed in [16].
A rather efficient algorithm for strong probabilistic bisimulation has been pre-
sented in [21], building on the the work of [5] and [35]. We hope to be able to
extend the approach of [21] to cater for strong distribution bisimulation first.

In the long run we aim to build a probabilistic extension of the mCRL2
toolset [10] (also see www.mcrl2.org) of which a modest part has been realized
as yet [23]. Possibly the completeness result presented in the current paper will
provide a similar building block for our framework as the completeness result
of [20], reworked in [19], does for ACTL, the action-based version of CTL, which
is underpinning the KandISTI tool family [7] developed at CNR/ISTI.
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mization algorithm as provided in the mCRL2 toolset which has been incorporated in
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EV acknowledges the warm hospitality of Stefania Gnesi and her research group at the
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