
Chapter 3
Compatibility in NOMA

In this chapter, the compatibility of NOMA will be introduced by discussing the
applications of NOMA to various techniques, such as heterogeneous networks
(HetNets), cognitive radio networks (CRNs), and multiple-input multiple-output
(MIMO). Particularly, the average performance of NOMA enabled HetNets will
be provided as an example.

3.1 NOMA in Heterogeneous Networks

HetNets and massive multiple-input multiple-output (MIMO), as two of the “big
three” technologies, laid the fundamental structure for future network designs. The
massive MIMO regime enables to equip tens of hundreds/thousands antennas at a
BS, and hence is capable of offering an unprecedented level of freedom to serve
multiple mobile users. The core idea of HetNets is to establish closer BS-user link
by densely overlaying small cells. By doing so, the promising benefits such as lower
power consumption, higher throughput, and enhanced spatial reuse of spectrum
can be experienced. Aiming to fully take advantages of both massive MIMO and
HetNets, several research contributions have been made (Adhikary et al. 2015; Ye
et al. 2015; Liu et al. 2016b). In Adhikary et al. (2015), the interference coordination
issue of massive MIMO enabled HetNets was addressed by utilizing the spatial
blanking of macro cells. In Ye et al. (2015), the authors investigated a joint user
association and interference management optimization problem in massive MIMO
HetNets. By applying stochastic geometry model, the spectrum efficiency of uplink
massive MIMO-aided HetNets was evaluated in Liu et al. (2016b).

Among the recent research contributions towards 5G and the beyond, NOMA-
based HetNets has not been well investigated yet and is still in its infancy. We believe
that the novel structure design in this work—by introducing NOMA-based small
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cells in massive MIMO enabled HetNets—can be a new highly rewarding candidate,
which will contribute to the design of a more promising future wireless networks due
to the following key advantages:

• High spectrum efficiency: NOMA improves the spectrum efficiency with multi-
plexing users in power domain and invoking successive interference cancelation
(SIC) technique for canceling interference. In NOMA-based HetNets, with
employing higher BS densities, BSs are capable of accessing the served users
closer, which can increase the signal-to-interference-plus-noise ratio (SINR)
by intelligently tracking the multi-category interference, such as inter/intra-tier
interference and intra-BS interference.

• High compatibility and low complexity: NOMA is regarded as a promising
“add-on” technology for the existing multiple-access systems due to the grad-
ually mature of superposition coding (SC) and SIC technologies, and will not
bring much implementation complexity. Additionally, with applying NOMA in
the single-antenna-based small cells, the complex precoding/cluster design for
MIMO-NOMA systems can be avoided.

• Fairness/throughput tradeoff: NOMA is capable of dealing with the fairness
issue by allocating more power to weak users, which is of great significance
for HetNets when investigating efficient resource allocation in the sophisticated
multi-tier networks.

NOMA-based HetNets will not bring much implementation complexity or
modification for the existing networks. Additionally, with applying NOMA in
the single-antenna-based small cells, the complex precoding/cluster design for the
multi-antenna NOMA can be avoided.

3.1.1 Network Model

3.1.1.1 Network Description

Motivated by the aforementioned potential benefits, we propose a novel hybrid
HetNets framework with NOMA-based small cells and massive MIMO-aided
macro cells to further enhance the performance of existing HetNets design. In this
framework, we consider a downlink K-tier HetNets, where the first tier represents
the macro cells and the other tiers represent the small cells such as pico cells and
femto cells. The positions of macro BSs and all the k-th tier (k ∈ {1, . . . , K}) BSs
are modeled as homogeneous poisson point processes (HPPPs) Φk and with density
λk , respectively. αk is the path loss exponent of the k-th tier cells. All channels are
assumed to undergo quasi-static Rayleigh fading, where the channel coefficients are
constant for each transmission block but independent between different blocks.

Motivated by the fact that it is common to overlay a high-power macro cell
with successively denser and lower power small cell, we consider to apply massive
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Fig. 3.1 Illustration of NOMA and massive MIMO-based hybrid HetNets

MIMO technologies to macro cells and NOMA transmission to small cells in
this work. As shown in Fig. 3.1, macro BSs are considered to be equipped with
M antennas, each macro BS transmit signals to N users over the same resource
block (e.g., time/frequency/code).1 We assume M � N > 1 and the linear ZFBF
technique is applied at each macro BS with assigning equal power to N data streams.
In small cells, each small cell BS is considered to be equipped with single antenna.
In other words, in this scenario, macro cells are OMA based and small cells are
NOMA based. All users are considered to be equipped with single antenna each
as well. We consider to adopt user pairing in each tier of small cells to implement
NOMA for lowering the system complexity (Liu et al. 2016c; Qin et al. 2018b).

3.1.1.2 NOMA and Massive MIMO-Based User Association

In this work, a user is allowed to access any tier BS, which provides the best
coverage. We consider the flexible user association which is based on the maximum
average received power of each tier.

Different from the convectional user association in OMA, NOMA exploits the
power sparsity for multiple access by allocating different powers to different users.
Due to the random spatial topology of the stochastic geometry model, the space
information of users are not predetermined (Qin et al. 2019). The user association
policy for the NOMA enhanced small cells assumes that near user is chosen as the
typical one first. As such, at the i-th tier small cell, the averaged power received at
users connecting to the i-th tier BS j (where j ∈ Φi) is given by

Pr,i = an,iPiL
(
dj,i

)
Bi, (3.1)

1The aim is to avoid sophisticated MIMO-NOMA design in macro cells.
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where Pi is the transmit power of a i-th tier BS, an,i is the power sharing coefficient
for the near user, L

(
dj,i

) = ηd
−αi

j,i is large-scale path loss, dj,i is the distance
between the user and a i-th tier BS, and αi is the path loss exponent of the i-th tier
small cell.

In macro cells, as the macro BS is equipped with multiple antennas, macro cell
users experience large array gains. By adopting ZFBF transmission scheme, the
array gain obtained at macro users is GM = M − N + 1 (Huh et al. 2012; Hosseini
et al. 2014). As a result, the average power received at users connecting to macro
BS � (where � ∈ ΦM ) is given by

Pr,1 = GMP1L
(
d�,1

)
/N, (3.2)

where P1 is the transmit power of a macro BS, L
(
d�,1

) = ηd
−α1
�,1 is large-scale

path loss, d�,1 is the distance between the user and a macro BS, η is the frequency
dependent factor, and Bi is the identical bias factor which is useful for offloading
data traffic in HetNets.

3.1.1.3 Channel Model

In small cells, without loss of generality, we consider that each small cell BS is
associated with one user in the previous round of user association process. With
applying NOMA protocol, we aim to squeeze a typical user into a same small cell to
improve the spectral efficiency. For simplicity, we assume that the distances between
the associated users and the connected small cell BSs are the same, which can be
arbitrary values and are denoted as rk; future work will relax this assumption. The
distance between atypical user and the connected small cell BS is random. Due to
the fact that the path loss is more stable and dominant compared to the instantaneous
small-scale fading, we assume that the SIC operation always happened at the near
user. We denote that do,km and do,kn are the distances from the k-th tier small cell BS
to user m and user n, respectively. Since it is not predetermined that atypical user is
a near user n or a far user m, we have the following cases.

Near User Case When atypical user is a near user n (x ≤ rk), then we have
do,km = rk . User n will first decode the information of the connected user m∗ to
the same BS with the following SINR

γkn→m∗ = am,kPkgo,kL
(
do,kn

)

an,kPkgo,kL
(
do,k

) + IM,k + IS,k + σ 2
, (3.3)

where am,k and an,k are the power sharing coefficients for two users in the k-th layer,
σ 2 is the additive white Gaussian noise (AWGN) power, L

(
do,kn

) = ηd
−αi

o,kn
is the

large-scale path loss, IM,k = ∑
�∈Φ1

P1
N

g�,1L
(
d�,1

)
is the interference from macro

cells, IS,k = ∑K
i=2

∑
j∈Φi\Bo,k

Pigj,iL
(
dj,i

)
is the interference from small cells,
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go,k and do,kn refer the small-scale fading coefficients and distance between atypical
user and the connected BS in the k-th tier, g�,1 and d�,1 refer the small-scale fading
coefficients and distance between a typical user and connected BS � in the macro
cell, respectively, gj,i and dj,i refer the small-scale fading coefficients and distance
between a typical user and its connected BS j except the serving BS Bo,k in the i-th
tier small cell, respectively. Here, go,k and gj,i follow exponential distributions with
unit mean. g�,1 follows Gamma distribution with parameters (N, 1).

If the information of user m∗ can be decoded successfully, user n then decodes
its own message. As such, the SINR at atypical user n, which connects with the k-th
tier small cell, can be expressed as

γkn = an,kPkgo,kL
(
do,kn

)

IM,k + IS,k + σ 2 . (3.4)

For the connected far user m∗ to the same BS, the signal can be decoded by
treating the message of user n as interference. Therefore, the SINR that for the
connected user m∗ to the same BS in the k-th tier small cell can be expressed as

γkm∗ = am,kPkgo,kL (rk)

Ik,n + IM,k + IS,k + σ 2 , (3.5)

where Ik,n = an,kPkgo,kL (rk), and L (rk) = ηrk
−αk .

Far User Case When atypical user is the far user m (x > rk), we have do,kn = rk .
As such, for the connected near user n∗, it will first decode the information of user
m with the following SINR

γkn∗→m = am,kPkgo,kL (rk)

an,kPkgo,kL (rk) + IM,k + IS,k + σ 2 . (3.6)

Once user m is decoded successfully, the interference from atypical user m can
be canceled, by applying the SIC technology. Therefore, the SINR at the connected
user n∗ to the same BS in the k-th tier small cell is given by

γkn∗ = an,kPkgo,kL (rk)

IM,k + IS,k + σ 2 . (3.7)

For user m that connects to the k-th tier small cell, the SINR can be expressed as

γkm = am,kPkgo,kL
(
do,km

)

Ik,n∗ + IM,k + IS,k + σ 2 , (3.8)

where Ik,n∗ = an,kPkgo,kL
(
do,km

)
, L

(
do,km

) = ηd
−αk

o,km
, do,kn is the distance

between atypical user m and the connected BS in the k-th tier.
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Without loss of generality, we assume that a typical user is located at the origin
of an infinite two-dimensional plane. Based on (3.1) and (3.2), the SINR at atypical
user that connects with a macro BS at a random distance do,1 can be expressed as

γr,1 =
P1
N

ho,1L
(
do,1

)

IM,1 + IS,1 + σ 2 , (3.9)

where IM,1 = ∑
�∈Φ1\Bo,1

P1
N

h�,1L
(
d�,1

)
is the interference from macro cells,

IS,1 = ∑K
i=2

∑
j∈Φi

Pihj,iL
(
dj,i

)
is the interference from small cells, ho,1 is

the small-scale fading coefficient between atypical user and the connected macro
BS, h�,1 and d�,1 refer the small-scale fading coefficients and distance between a
typical user and the connected macro BS � except the serving BS Bo,1 in the macro
cell, respectively, hj,i and dj,i refer the small-scale fading coefficients and distance
between atypical user and connected BS j in the i-th tier small cell, respectively.
Here, ho,1 follows Gamma distribution with parameters (M − N + 1, 1), h�,1
follows Gamma distribution with parameters (N, 1), and hj,i follows exponential
distribution with unit mean.

3.1.2 Coverage Probability of Non-orthogonal
Multiple-Access-Based Small Cells

In this subsection, we focus our attention on analyzing the coverage probability of
a typical user associated with the NOMA enhanced small cells, which is different
from the conventional OMA-based small cells due to the channel ordering of two
users. The analysis of coverage probability of a typical user associated with the
massive MIMO-aided macro cells is the same as the conventional massive MIMO-
aided OMA small cells.

3.1.2.1 User Association Probability and Distance Distributions

The user association of the proposed framework is based on maximizing the biased
average received power at users. As such, based on (3.1) and (3.2), the user
association of macro cells and small cells is given in the following. For simplicity,
we denote B̃ik = Bi

Bk
, α̃ik = αi

αk
, α̃1k = α1

αk
, α̃i1 = αi

α1
, P̃1k = P1

Pk
, P̃i1 = Pi

P1
, and

P̃ik = Pi

Pk
in the following parts of this treatise.

Lemma 3.1 The user association probability that a typical user connects to NOMA
enhanced small cell BSs in the k-th tier and to macro BSs can be calculated as

Ak =2πλk

∫ ∞

0
r exp

[

−π

K∑

i=2

λi

(
P̃ikB̃ik

)δi

r
2

α̃ik −πλ1

(
P̃1kGM

Nan,kBk

)δ1

r
2

α̃1k

⎤

⎦ dr.,

(3.10)
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and

A1 = 2πλ1

∫ ∞

0
r exp

⎡

⎣−π

K∑

i=2

λi

(
an,i P̃i1BiN

GM

)δi

r
2
α̃ i1−πλ1r2

⎤

⎦ dr., (3.11)

respectively, where δ1 = 2
α1

and δi = 2
αi

.

Proof Using the similar method as Lemma 1 of Jo et al. (2012), (3.10) and (3.11)
can be easily obtained.

Corollary 3.1 For the special case that each tier has the same path loss exponent,
i.e., α1 = αk = α, the user association probability of the NOMA enhanced small
cells in the k-th tier and macro cells can be expressed in closed form as

Ãk = λk

K∑

i=2
λi

(
P̃ikB̃ik

)δ + λ1

(
P̃1kGM

Nan,kBk

)δ
, (3.12)

and

Ã1 = λ1

K∑

i=2
λi

(
an,i P̃i1BiN

GM

)δ

+ λ1

, (3.13)

respectively, where δ = 2
α

.

Remark 3.1 The derived results in (3.12) and (3.13) demonstrate that by increasing
the number of antennas at the macro cell BSs, the user association probability of
the macro cells increases and the user association probability of the small cells
decreases. This is due to the large array gains brought by the macro cells to the
served users. It is also worth noting that increasing the power sharing coefficient,
an, results in higher association probability of small cells. As an → 1, the user
association becomes the same as in the conventional OMA-based approach.

Then we consider the probability density function (PDF) of the distance between
a typical user and its connected small cell BS in the k-th tier. Based on (3.10), we
obtain

fdo,k (x) =2πλkx

Ak

exp

⎡

⎣−π

K∑

i=2

λi

(
P̃ikB̃ik

)δi

x
2

α̃ik −πλ1

(
P̃1kGM

Nan,kBk

)δ1

x
2

α̃1k

⎤

⎦.

(3.14)
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We then calculate the PDF of the distance between a typical user and its
connected macro BS. Based on (3.11), we obtain

fdo,1 (x) =2πλ1x

A1
exp

⎡

⎣−π

K∑

i=2

λi

(
an,i P̃i1BiN

GM

)δi

x
2

α̃i1 −πλ1x
2

⎤

⎦. (3.15)

3.1.2.2 Laplace Transform of Interferences

The next step is to derive the Laplace transform of a typical user. We denote that
Ik = IS,k + IM,k is the total interference to the typical user in the k-th tier. The
Laplace transform of Ik is LIk (s) = LIS,k (s)LIM,k (s). We first calculate the
Laplace transform of interference from the small cell BS to a typical user LIS,k (s)

in the following lemma.

Lemma 3.2 The Laplace transform of interferences from the small cell BSs to a
typical user can be expressed as

LIS,k (s) = exp

{

−s

K∑

i=2

λi2πPiη
(
ωi,k (x0)

)2−αi

αi (1 − δi)

×2F1

(
1, 1 − δi; 2 − δi;−sPiη

(
ωi,k (x0)

)−αi
)}

, (3.16)

where 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function (Gradshteyn and Ryzhik

2000, Eq. (9.142)), and ωi,k (x0) =
(
B̃ikP̃ik

) δi
2
x

1
α̃ik

0 is the nearest distance allowed

between the typical user and its connected small cell BS in the k-th tier.

Then we calculate the Laplace transform of interference from the macro cell to a
typical user LIM,k (s) in the following lemma.

Lemma 3.3 The Laplace transform of interference from the macro cell BSs to a
typical user can be expressed as

LIM,k (s) = exp

⎡

⎣−λ1πδ1

N∑

p=1

(
N

p

)(
s
P1

N
η

)p(
−s

P1

N
η

)δ1−p

×B

(
−s

P1

N
η
[
ω1,k (x0)

]−α1;p − δ1, 1 − N

)⎤

⎦, (3.17)

where B (·; ·, ·) is the incomplete Beta function (Gradshteyn and Ryzhik 2000, Eq.

(8.319)), and ω1,k (x0) =
(

P̃1kGM

an,kBkN

) δ1
2
x

1
α̃1k is the nearest distance allowed between

a typical user and its connected BS in the macro cell.
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3.1.2.3 Coverage Probability

The coverage probability is defined as that a typical user can successfully transmit
signals with targeted data rate Rt . According to the distances, two cases are
considered in the following.

Near User Case For the near user case, x0 < rk , the success decoding will happen
when the following two conditions hold:

1. The typical user can decode the message of the connected user served by the
same BS.

2. After the SIC process, the typical user can decode its own message.

As such, the coverage probability of the typical user on the condition of the
distance x0 in the k-th tier is:

Pcov,k (τc, τt , x0)
∣
∣
x0≤rk

= Pr
{
γkn→m∗ > τc, γkn > τt

}
, (3.18)

where τt = 2Rt − 1 and τc = 2Rc − 1. Here Rc is the targeted data rate of the
connected user served by the same BS.

Based on (3.18), for the near user case, we can obtain the expressions for the
conditional coverage probability of a typical user in the following lemma.

Lemma 3.4 If am,k − τcan,k ≥ 0 holds, the conditional coverage probability of a
typical user for the near user case is expressed in closed form as

Pcov,k (τc, τt , x0)
∣∣
x0≤rk

= exp

{

−ε∗ (τc, τt ) x
αk

0 σ 2

Pkη

− λ1δ1π
(
P̃1kε

∗ (τc, τt ) /N
)δ1

x

2
α̃1k

0 Qn
1,t (τc, τt )

−
K∑

i=2

λiδiπ
(
B̃ik

) 2
αi

−1(
P̃ik

) 2
αi x

2
α̃ik

0

1 − δi

Qn
i,t (τc, τt )

⎫
⎪⎪⎬

⎪⎪⎭
.

(3.19)

Otherwise, Pcov,k (τc, τt , x0)
∣∣
x0≤rk

= 0. Here, εn
t = τt

an,k
, ε

f
c = τc

am,k−τcan,k
,

ε∗ (τc, τt ) = max
{
ε
f
c , εn

t

}
, Qn

i,t (τc, τt ) = ε∗ (τc, τt ) 2F1

(
1, 1 − δi; 2 − δi;

− ε∗(τc,τt )

B̃ik

)
, and Qn

1,t (τc, τt ) =
N∑

p=1

(
N
p

)
(−1)δ1−p× B

(
− ε∗(τc,τt )an,kBk

GM
;

p − δ1, 1 − N
)

.
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Far User Case For the far user case, x0 > rk , the success decoding will happen if
the typical user can decode its own message by treating the connected user served
by the same BB as noise. The conditional coverage probability of a typical user for
far user case is calculated in the following lemma.

Lemma 3.5 If am,k − τtan,k ≥ 0 holds, the coverage probability of a typical user
for the far user case is expressed in closed form as

Pcov,k (τt , x0)
∣∣
x0>rk

= exp

{

−ε
f
t x

αk

0 σ 2

Pkη
− λ1δ1π

(
P̃1kε

f
t /N

)δ1
x

2
α̃1k

0 Q
f

1,t (τt )

−
K∑

i=2

λiδiπ
(
B̃ik

) 2
αi

−1(
P̃ik

) 2
αi x

2
α̃ik

0

1 − δi

Q
f
i,t (τt )

⎫
⎪⎪⎬

⎪⎪⎭
. (3.20)

Otherwise, Pcov,k (τt , x0)
∣∣
x0>rk

= 0. Here ε
f
t = τt

am,k−τt an,k
, and

Q
f

1,t (τt ) =
N∑

p=1

(
N
p

)
(−1)δ1−pB

(
− ε

f
t an,kBk

GM
;p − δ1, 1 − N

)

Q
f
i,t (τt ) = ε

f
t 2F1

(
1, 1 − δi; 2 − δi;− ε

f
t

B̃ik

)
.

Based on Lemmas 3.4 and 3.5, we can calculate the coverage probability of a
typical user in the following theorem.

Theorem 3.1 The coverage probability of a typical user associated with the k-th
tier small cells is expressed as

Pcov,k (τc, τt ) =
∫ rk

0
Pcov,k (τc, τt , x0)

∣∣
x0≤rk

fdo,k (x0) dx0

+
∫ ∞

rk

Pcov,k (τt , x0)
∣∣
x0>rk

fdo,k (x0) dx0, (3.21)

where Pcov,k (τc, τt , x0)
∣
∣
x0≤rk

is given in (3.19), Pcov,k (τt , x0)
∣
∣
x0>rk

is given
in (3.20), and fdo,k (x0) is given in (3.14).

Although (3.21) has provided the exact analytical expression for the coverage
probability of typical user, it is hard to directly obtain insights from this expression.
Driven by this, we provide one special case with considering that each tier is with the
same path loss exponents. As such, we have α̃1k = α̃ik = 1. In addition, we consider
the interference limited case, where the thermal noise can be neglected. Then based
on (3.21), we can obtain the closed-form coverage probability of a typical user in
the following corollary.
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Corollary 3.2 With α1 = αk = α and σ 2 = 0, the coverage probability of a typical
user can be expressed in closed form as follows:

P̃cov,k (τc, τt ) =
bk

(
1 − e−π(bk+cn

1 (τc,τt )+cn
2 (τc,τt ))r2

k

)

bk + cn
1 (τc, τt ) + cn

2 (τc, τt )
+ bke

−π
(
bk+c

f
1 (τt )+c

f
2 (τt )

)
r2
k

bk + c
f

1 (τt ) + c
f

2 (τt )
,

(3.22)

where bk =
K∑

i=2
λi

(
P̃ikB̃ik

)δ + λ1

(
P̃1kGM

Nan,kBk

)δ

, cn
1 (τc, τt ) = λ1δ1

(
P̃1kε

∗(τc,τt )
N

)δ

Q̃n
1,t

(τc, τt ), cn
2 (τc, τt ) =

K∑

i=2

λiδi

(
B̃ik

) 2
α −1(

P̃ik

) 2
α

1−δi
Q̃n

i,t (τc, τt ), c
f

1 (τt ) = λ1δ1

(
P̃1kε

f
t

N

)δ1

Q̃
f

1,t (τt ), and c
f

2 (τt ) =
K∑

i=2

λiδi

(
B̃ik

) 2
α −1(

P̃ik

) 2
α

1−δ
Q̃

f
i,t (τt ). Here, Q̃n

1,t (τc, τt ) , Q̃n
i,t

(τc, τt ) , Q̃
f

1,t (τt ), and Q̃
f
i,t (τt ) are based on interchanging the same path loss expo-

nents, i.e., α1 = αk = α, for each tier from Qn
1,t (τc, τt ) ,Qn

i,t (τc, τt ) ,Q
f

1,t (τt ), and

Q
f
i,t (τt ).

Remark 3.2 The derived results in (3.22) demonstrate that the coverage probability
of a typical user is determined by the target rate of itself as well as the target rate
of the connected user. Additionally, inappropriate power allocation such as, am,k −
τtan,k < 0, will lead to the coverage probability always being zero.

3.1.3 Spectrum Efficiency

To evaluate the spectrum efficiency of the proposed NOMA enhanced hybrid
HetNets framework, we calculate the spectrum efficiency of each tier in this section.

3.1.3.1 Ergodic Rate of NOMA Enhanced Small Cells

Different from calculating the coverage probability of the case with fixed targeted
rate, the achievable ergodic rate for NOMA enhanced small cells is opportunistically
determined by the channel conditions of users. It is also easy to verify that if
the far user can decode the message of itself, the near user can definitely decode
the message of far user since it has a better channel condition (Ding et al. 2014).
Recall that the distance order between the connected BS and the two users are not
predetermined, as such, we calculate the achievable ergodic rate of small cells for
both the near user case and far user case in the following lemmas.
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Lemma 3.6 The achievable ergodic rate of the k-th tier small cell for the near user
case can be expressed as follows:

τn
k = 2πλk

Ak ln 2

[∫ am,k
an,k

0

F̄γkm∗ (z)

1 + z
dz +

∫ ∞

0

F̄γkn
(z)

1 + z
dz

]

, (3.23)

where F̄γkm∗ (z) and F̄γkn
(z) are given by

F̄γkm∗ (z) =
∫ rk

0
x exp

[

− σ 2zrk
αk

(
am,k − an,kz

)
Pkη

−Θ

(
zrk

αk

(
am,k − an,kz

)
Pkη

)

+ Λ(x)

]

dx, (3.24)

and

F̄γkn
(z) =

∫ rk

0
x exp

[
Λ(x) − σ 2zxαk

an,kPkη
− Θ

(
zxαk

an,kPkη

)]
dx. (3.25)

Here Λ(x) = −π
K∑

i=2
λi

(
P̃ikB̃ik

)δi

x
2

α̃ik − πλ1

(
P̃1kGM

Nan,kBk

)δ1
x

2
α̃1k and Θ (s) is given

by

Θ (s) = λ1πδ1

N∑

p=1

(
N

p

)(
s
P1

N
η

)p(
−s

P1

N
η

)δ1−p

× B

(
−s

P1

N
η
[
ω1,k (x)

]−α1;p − δ1, 1 − N

)

+ s

K∑

i=2

λi2πPiη
(
ωi,k (x)

)2−αi

αi (1 − δi)

× 2F1

(
1, 1 − δi; 2 − δi;−sPiη

(
ωi,k (x)

)−αi
)
. (3.26)

Lemma 3.7 The achievable ergodic rate of the k-th tier small cell for the far user
case can be expressed as follows:

τ
f
k = 2πλk

Ak ln 2

[∫ ∞

0

F̄γkn∗ (z)

1 + z
dz +

∫ am,k
an,k

0

F̄γkm
(z)

1 + z
dz

]

, (3.27)

where F̄γkm
(z) and F̄γkn∗ (z) are given by
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F̄γkm
(z) =

∫ ∞

rk

x exp

[

− σ 2zxαk

Pkη
(
am,k − an,kz

)

−Θ

(
zxαk

Pkη
(
am,k − an,kz

)

)

+ Λ(x)

]

dx, (3.28)

and

F̄γkn∗ (z) =
∫ ∞

rk

x exp

[
Λ(x) − σ 2zrk

αk

Pkηan,k

− Θ

(
zrk

αk

Pkηan,k

)]
dx. (3.29)

Theorem 3.2 Conditioned on the HPPPs, the achievable ergodic rate of the small
cells can be expressed as follows:

τk = τn
k + τ

f
k , (3.30)

where τn
k and τ

f
k are obtained from (3.23) and (3.27).

Note that the derived results in (3.30) is a double integral form, since even for
some special cases, it is challenging to obtain closed form solutions. However, the
derived expression is still much more efficient and also more accurate compared
to using the approach of Monte Carlo simulations, which highly depends on the
repeated iterations of random sampling.

3.1.3.2 Ergodic Rate of Macro Cells

In massive MIMO-aided macro cells, the achievable ergodic rate can be significantly
improved due to multiple-antenna array gains, but with more power consumption
and high complexity. However, the exact analytical results require high order
derivatives of Laplace transform. When the number of antennas goes large, it
becomes mathematical intractable to calculate the derivatives due to the unaccept-
able complexity. In order to evaluate the spectrum efficiency of the whole system,
we provide a tractable lower bound of throughput for macro cells in the following
theorem.

Theorem 3.3 The lower bound of achievable ergodic rate of the macro cells can
be expressed as follows:

τ1,L = log2

(

1 + P1GMη

N
∫∞

0

(
Q1 (x) + σ 2

)
xα1fdo,1 (x) dx

)

, (3.31)
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where fdo,1 (x) is given in (3.15), Q1 (x) = 2P1ηπλ1
α1−2 x2−α1 + ∑K

i=2 2πλi

(
Piη

αi−2

)

[
ωi,1 (x)

]2−αi , and ωi,1 (x) =
(

an,i P̃i1BiN

GM

) δi
2
x

1
α̃i1 is denoted as the nearest distance

allowed between the i-th tier small cell BS and the typical user that is associated
with the macro cell.

Corollary 3.3 If α1 = αk = α holds, the lower bound of achievable ergordic rate
of the macro cell is given by in closed form as

τ̃1,L = log2

(

1 + P1GMη/N

ψ(πb1)
−1 + σ 2Γ

(
α
2 + 1

)
(πb1)

− α
2

)

, (3.32)

where ψ = 2P1ηπλ1
α−2 +

K∑

i=2

(
2πλiPiη

α−2

)(
an,i P̃i1BiN

GM

)δ−1
and b1 =

K∑

i=2
λi

(
an,i P̃i1BiN

GM

)δ

+
λ1.

Remark 3.3 The derived results in (3.32) demonstrate that achievable ergordic rate
of the macro cell can be enhanced by increasing the number of antennas at the macro
cell BSs. This is because the users in macro cells can experience larger array gains.

3.1.3.3 Spectrum Efficiency of the Proposed Hybrid Hetnets

Based on the analysis of last two subsections, a tractable lower bound of spectrum
efficiency can be given in the following proposition.

Proposition 3.1 The spectrum efficiency of the proposed hybrid Hetnets is

τSE,L = A1Nτ1,L +
∑K

k=2
Akτk, (3.33)

where Nτ1 and τk are the low bound spectrum efficiency of macro cells and exact
spectrum efficiency of the k-th tier small cells, respectively. Here, Ak and A1
are obtained from (3.10) and (3.11), and τk and τ1,L are obtained from (3.30)
and (3.31), respectively.

3.1.4 Energy Efficiency

In this section, we proceed to investigate the performance of the proposed hybrid
HetNets framework from the perspective of energy efficiency, due to the fact that
energy efficiency is an important performance metric in the 5G systems.
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3.1.4.1 Power Consumption Model

To calculate the energy efficiency of the considered networks, we first need to model
the power consumption parameter of both small cell BSs and macro cell BSs. The
power consumption of small cell BSs is given by

Pi,total = Pi,static + Pi

εi

, (3.34)

where Pi,static is the static hardware power consumption of small cell BSs in the
i-th tier, and εi is the efficiency factor for the power amplifier of small cell BSs in
the i-th tier.

The power consumption of macro cell BSs is given by

P1,total = P1,static +
3∑

a=1

(
NaΔa,0 + Na−1MΔa,1

)
+ P1

ε1
, (3.35)

where P1,static is the static hardware power consumption of macro cell BSs, ε1 is the
efficiency factor for the power amplifier of macro cell BSs, and Δa,0 and Δa,1 are
the practical parameters which depended on the chains of transceivers, precoding,
coding/decoding, etc.

3.1.4.2 Energy Efficiency of NOMA Enhanced Small Cells and Macro
Cells

The energy efficiency is defined as

ΘEE = Total data rate

Total energy consumption
. (3.36)

Therefore, based on (3.36) and the power consumption model for small cells that we
have provided in (3.34), the energy efficiency of the k-th tier of NOMA enhanced
small cells is expressed as

Θk
EE = τk

Pk,total

, (3.37)

where τk is obtained from (3.30).
Based on (3.35) and (3.36), the energy efficiency of macro cell is expressed as

Θ1
EE = Nτ1,L

P1,total

, (3.38)

where τ1,L is obtained from (3.31).
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3.1.4.3 Energy Efficiency of the Proposed Hybrid Hetnets

According to the derived results of energy efficiency of NOMA enhanced small cells
and macro cells, we can express the energy efficiency in the following proposition.

Proposition 3.2 The energy efficiency of the proposed hybrid Hetnets is as follows:

ΘHetnets
EE = A1Θ

1
EE +

∑K

k=2
AkΘ

k
EE, (3.39)

where Ak and A1 are obtained from (3.10) and (3.11), and Θk
EE and Θ1

EE are
obtained from (3.37) and (3.38).

3.1.5 Numerical Results

In this section, numerical results are presented to facilitate the performance
evaluations of NOMA enhanced hybrid K-tier HetNets. The noise power is σ 2 =
−170 + 10 × log10 (BW) + Nf . The power sharing coefficients of NOMA for each
tier are same as am,k = am and an,k = an for simplicity. BPCU is short for bit
per channel use. Monte Carlo simulations marked as “◦” are provided to verify the
accuracy of our analysis. Table 3.1 summarizes the simulation parameters used in
this section.

3.1.5.1 User Association Probability and Coverage Probability

Figure 3.2 shows the effect of number of antennas equipped at each macro BS, M ,
and bias factor on user association probability, where the tiers of HetNets are set to

Table 3.1 Table of parameters

Monte Carlo simulations repeated 105 times

The radius of the plane 104 m

Carrier frequency 1 GHz

The BS density of macro cells λ1 = (
5002 × π

)−1

Pass loss exponent α1 = 3.5, αk = 4

The noise figure Nf = 10 dB

The noise power σ 2 = −90 dBm

Static hardware power consumption P1,total = 4 W, Pi,total = 2 W

Power amplifier efficiency factor ε1 = εi = 0.4

Precoding power consumption Δ1,0 = 4.8,Δ2,0 = 0

Δ3,0 = 2.08 × 10−8

Δ1,1 = 1,Δ2,1 = 9.5 × 10−8

Δ3,1 = 6.25 × 10−8
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Fig. 3.2 User association probability versus antenna number with different bias factor, with K =
3, N = 15, P1 = 40 dBm, P2 = 30 dBm and P3 = 20 dBm, rk = 50 m, am = 0.6, an = 0.4,
λ2 = λ3 = 20 × λ1, and B3 = 20 × B2

be K = 3, including macro cells and two tiers of small cells. The analytical curves
representing small cells and macro cells are from (3.10) and (3.11), respectively.
One can observe that as the number of antennas at each macro BS increases, more
users are likely to associate with macro cells. This is because that the massive
MIMO-aided macro cells are capable of providing larger array gain, which in turn
enhance the average received power for the connected users. This observation is
consistent with Remark 3.1. Another observation is that increasing the bias factor
can encourage more users to connect to the small cells, which is an efficient method
to extend the coverage of small cells or control loading balance among each tier of
HetNets.

Figure 3.3 plots the coverage probability of a typical user associated with the
k-tier NOMA enhanced small cells versus bias factor. The solid curves representing
the analytical results of NOMA are from (3.21). One can observe that the coverage
probability decreases as bias factor increases, which means that the unbiased user
association outperforms the biased one, i.e., when B2 = 1, the scenario becomes
unbiased user association. This is because by invoking biased user association, users
cannot be always associated with the BS which provides the highest received power.
But the biased user association is capable of offering more flexibility for users as
well as the whole networks, especially for the case that cells are fully overload. We
also demonstrate that NOMA has superior behavior over OMA scheme.2

2The OMA benchmark adopted in this treatise is that by dividing the two users in equal
time/frequency slots.
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Fig. 3.4 Successful probability of typical user versus targeted rates of Rt and Rc, with K = 2,
M = 200, N = 15, λ2 = 20 × λ1, rk = 15 m, B2 = 5, P1 = 40 dBm, and P2 = 20 dBm

Figure 3.4 plots the coverage probability of a typical user associated with the k-
tier NOMA enhanced small cells versus both Rt and Rc. We observe that there is a
cross between these two plotted surfaces, which means that there exists an optimal
power sharing allocation scheme for the given targeted rate. In contrast, for fixed
power sharing coefficients, e.g., am = 0.9, an = 0.1, there also exist optimal
targeted rates of two users for coverage probability. This figure also illustrates
that for inappropriate power and targeted rate selection, the coverage probability
is always zero, which also verifies our obtained insights in Remark 3.2.
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3.1.5.2 Spectrum Efficiency

Figure 3.5 plots the spectrum efficiency of small cells with NOMA and OMA versus
bias factor, B2, with different transmit power of small cell BSs, P2. The curves
representing the performance of NOMA enhanced small cells are from (3.30). The
performance of conventional OMA-based small cells is illustrated as a benchmark
to demonstrate the effectiveness of our proposed framework. We observe that the
spectrum efficiency of small cells decreases as the bias factor increases. This
behavior can be explained as follows: larger bias factor associates more macro users
with low SINR to small cells, which in turn degrades the spectrum efficiency of
small cells. It is also worth noting that the performance of NOMA enhanced small
cells outperforms the conventional OMA-based small cells, which in turn enhances
the spectrum efficiency of the whole HetNets.

Figure 3.6 plots the spectrum efficiency of the proposed whole HetNets versus
bias factor, B2, with different transmit power, P1. The curves representing the
spectrum efficiency of small cells, macro cells, and HetNets are from (3.33). We
can observe that macro cells can achieve higher spectrum efficiency compared to
small cells. This is attributed to the fact that macro BSs are able to serve multiple
users simultaneously with offering promising array gains to each user, which has
been analytically demonstrated in Remark 3.3. It is also noted that the spectrum
efficiency of macro cells improves as bias factor increases. The reason is again that
when more low SINR macro cell users are associated with small cells, the spectrum
efficiency of macro cells can be enhanced.
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3.1.5.3 Energy Efficiency

Figure 3.7 plots the energy efficiency of the proposed whole HetNets versus
bias factor, B2, with different transmit antenna of macro cell BSs, M . Several
observations are as follows: (1) One observation is that the energy efficiency of
the macro cells decreases as the number of antenna increases. Enlarging the number
of antenna at the macro BSs is capable of offering a larger array gain, which in
turn enhances the spectrum efficiency. Such operations also bring significant power
consumption from the baseband signal processing of massive MIMO, which results
in decreased energy efficiency. (2) Another observation is that NOMA enhanced
small cells can achieve higher energy efficiency than the massive MIMO-aided
macro cells. It means that from the perspective of energy consumption, densely
deploying BSs in NOMA enhanced small cell is a more effective approach. (3)
It is also worth noting that the number of antennas at the macro cell BSs almost
has no effect on the energy efficiency of the NOMA enhanced small cells. (4)
It also demonstrates that NOMA enhanced small cells have superior behavior
than conventional OMA-based small cells in terms of energy efficiency. Such
observations above demonstrate the benefits of the proposed NOMA enhanced
hybrid HetNets and provide insightful guidelines for designing the practical large-
scale networks.
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3.2 NOMA in Cognitive Radio Networks

The 2010s have witnessed the rapidly increasing penetration of mobile devices
(e.g., smart phones, tablets, and laptops) all over the world, which gave rise to
increasing demand for spectral resources. As reported by the Federal Communica-
tions Commission (FCC), there are significant temporal and spatial variations in the
exploitation of the allocated spectrum. Given this fact, the CR concept inspired the
community to mitigate the spectrum scarcity problem. The basic concept of CR is
that at a certain time of the day or in a geographic region, the unlicensed secondary
users (SUs) are allowed to opportunistically access the licensed spectrum of primary
users (PUs). These CR techniques may be categorized into the interweave, overlay,
and underlay paradigms:

• Interweave: The interweave CR can be regarded as an interference avoidance
paradigm, where the SUs are required to sense the temporary slivers of the space-
frequency domain of PUs before they access the channels (Qin et al. 2016a,b,
2018a). The concurrent transmission of SUs and PUs is not allowed under the
interweave paradigm.

• Overlay: The overlay paradigm essentially constitutes an interference mitigation
technique. With the aid of the classic dirty paper encoding technique, overlay
CR ensures that a cognitive user becomes capable of transmitting simultaneously
with a noncognitive PU (Goldsmith et al. 2009). Additionally, SUs are capable
of forwarding the information of PUs to the PU receivers, while superimposing
their own signals as a reward for their relaying services.
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• Underlay: The underlay CR operates like an intelligent interference control
paradigm, where the SUs are permitted to access the spectrum allocated to PUs
as long as the interference power constraint at the PUs is satisfied.

One of the core challenges in both CR and NOMA networks is the interference
management, while improving the bandwidth efficiency. Hence it is natural to link
them for achieving an improved bandwidth efficiency. The application of NOMA
in large-scale underlay CR networks has been investigated by using the stochastic
geometry model (Liu et al. 2016d). The diversity order of the NOMA users was
characterized analytically in two scenarios. The classic OMA-based underlay CR
was also used as a benchmark to show the benefits of the proposed CR-NOMA
scheme. Ding et al. (2016c) has proposed a novel power allocation (PA) policy
for NOMA, namely the CR-inspired NOMA PA, which constitutes a beneficial
amalgam of NOMA and underlay CR.

To the best of our knowledge, CR-NOMA studies only exist in the context of the
underlay CR paradigm. Hence both the interweave and overlay CR paradigms have
to be investigated in NOMA networks. It is worth pointing out that a significant
research challenge of NOMA is to dynamically cluster/pair the NOMA users first,
followed by dynamically allocating the clusters/pairs to different orthogonal sub-
channels. In the context of the interweave paradigm, intelligent sensing has to be
applied first, followed by user clustering/pairing of NOMA users, depending on the
specific channel conditions sensed.

3.3 NOMA with MIMO

Multiple-antenna techniques are of significant importance, since they offer the
extra dimension of the spatial domain, for further performance improvements.
The application of multiple-antenna techniques in NOMA has attached substantial
interest both from academia (Ding et al. 2016b,d; Hanif et al. 2016; Choi 2016;
Kim et al. 2013; Qureshi et al. 2016; Liu et al. 2016a; Chen et al. 2016) and from
industry (Higuchi and Kishiyama 2013; Higuchi and Benjebbour 2015; Benjebbour
et al. 2013; Saito et al. 2013). The distinct NOMA features such as channel ordering
and PA inevitably require special attention in the context of multiple antennas.
More specifically, in contrast to the SISO-NOMA scenarios whose channels are
all scalars, the channels of MIMO-NOMA scenarios are represented in form
of matrices, which makes the power-based ordering of users rather challenging.
As a consequence, conceiving an appropriate beamforming/precoding design is
essential for multi-antenna-aided NOMA systems. NOMA relying on beamforming
(BF) constitutes an efficient technique of improving the bandwidth efficiency
by exploiting both the power domain and the angular domain. There are two
popular MIMO-NOMA designs, namely the (1) Cluster-based (CB) MIMO-NOMA
design; and the (2) Beamformer-based (BB) MIMO-NOMA design, which will be
introduced in the following.
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Fig. 3.8 Illustration of cluster-based MIMO-NOMA

3.3.1 Cluster-Based MIMO-NOMA

One of the popular NOMA designs is associated with the cluster-based structure,
partitioning users into several different clusters. Explicitly, as shown in Fig. 3.8,
the NOMA users are partitioned into M clusters and each cluster consists of
Lm users, where m ∈ {1, 2, . . . ,M}. Then we design appropriate beams for the
corresponding clusters. Upon applying effective transmit precoding and detector
designs, it becomes possible to guarantee that the beam associated with a particular
cluster is orthogonal to the channels of users in other clusters. Hence the inter-
cluster interference can be efficiently suppressed. When considering each cluster
in isolation, there is a difference among the users’ channel conditions, hence we
are faced again with the conventional NOMA scenarios. Thus, SIC can be readily
invoked for mitigating the intra-cluster interference between users of the same
cluster. Recently, many important research contributions investigated beamforming
aided NOMA (Liu et al. 2016e).

Specifically, Choi (2015) proposed two-stage multicast zero-forcing (ZF)-based
beamforming for downlink inter-group/cluster interference mitigation, where the
total transmit power of each group/cluster was minimized during the second stage.
Higuchi and Benjebbour (2015) utilized receive beamformers at the NOMA users
and a transmit beamformer at the BS. Higuchi and Kishiyama (2013) then proposed
a novel scheme, which combined open-loop random beamforming in conjunction
with intra-beam SIC for downlink NOMA transmission. However, random beam-
forming fails to guarantee a constant QoS at the users’ side. To overcome this
limitation, in Ding et al. (2016a), Ding et al. proposed a TPC and detection scheme
combination for a cluster-based downlink MIMO-NOMA scenario relying on fixed
PA. By adopting this design, their MIMO-NOMA system can be decomposed
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into several independent single-input single-output (SISO) NOMA arrangements.
Furthermore, in order to establish a more general framework considering both
downlink and uplink MIMO-NOMA scenarios, the so-called signal alignment (SA)
technique was proposed in Ding et al. (2016d). Stochastic geometry-based tools
were invoked to model the impact of the NOMA users’ locations. In contrast to the
research contributions in Ding et al. (2016a,d), which are inter-cluster interference
free design, an inter-cluster interference allowance design for CB MIMO-NOMA
was proposed in Ali et al. (2017). Note that the existing NOMA designs have
routinely relied on assuming different channel conditions for the different users,
which is however a somewhat restrictive assumption. In order to circumvent this
restriction, Ding et al. (2016b) designed a new MIMO-NOMA scheme, which
distinguishes the users according to their QoS requirements with particular attention
on IoT scenarios for the sake of supporting the SIC operation. Furthermore, they
compared this new MIMO-NOMA design to two NOMA schemes, which order
users according to the prevalent channel conditions. More particularly, the ZF-
NOMA scheme of Ding et al. (2016a) and the SA-NOMA scheme (Ding et al.
2016d) were used as benchmarks in Ding et al. (2016b). Figure 3.9 illustrates
the outage probability defined as the probability of erroneously detecting the
message intended for User m in the i-th data stream, i = 1, 2, 3 at User n, where
the QR decomposition is used to augmenting the differences between the users’
effective channel conditions according to the associated QoS requirements. As
shown in Fig. 3.9, the QR-based MIMO-NOMA scheme is capable of outperforming
both ZF-NOMA and SA-NOMA3 as well as MIMO-OMA,4 since it exploits the
heterogeneous QoS requirements of different users and applications. In Liu et al.
(2016e), the fairness issues of the MIMO-NOMA scenario were addressed by
applying appropriate user allocation algorithms among the clusters and dynamic
PA algorithms within each cluster.

3.3.2 Beamformer-Based MIMO-NOMA

Another technique of implementing MIMO-NOMA is to assign different beams to
different users, as shown in Fig. 3.10. By doing so, the QoS can be satisfied by
calculating the beamformer-weights in a predefined order, commencing with the
most demanding QoS requirement. By adopting this approach, several contributions
have been made in terms of MIMO-NOMA. Considering the illustration of Fig. 3.10
as an example, User 1 to User N occupy the same RB, similar to user (N +1) to user
(N +M). Again, within the same RB we may employ SIC at each user, according to

3Note that when M = N , ZF-NOMA achieves the same performance as SA-NOMA (Ding et al.
2016b).
4Figure 3.9 is focused on the performance of User n, since the QoS requirements have been
guaranteed with the aid of appropriate PA (Ding et al. 2016b).
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Fig. 3.10 Illustration of beamformer-based MIMO-NOMA

the particular ordering of the different users’ received signal power. Sun et al. (2015)
first investigated the power optimization problem constructed for maximizing the
ergodic capacity and then showed that their proposed MIMO-NOMA schemes
are capable of achieving significantly better performance than OMA. In an effort
to reduce the decoding complexity imposed at the users, a layered transmission-
based MIMO-NOMA scheme was proposed by Choi (2016), who also investigated
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the associated PA problem. It was demonstrated that upon invoking this layered
transmission scheme, the achievable sum rate increases linearly with the number of
antennas.

3.3.3 Massive-MIMO-NOMA

Massive MIMO may be considered as one of the key technologies Andrews
et al. (2014) in 5G systems as a benefit of improving both the received SNR
and the bandwidth efficiency. It was shown in Larsson et al. (2014) that massive
MIMO is capable of substantially increasing both the capacity and the energy
efficiency. These compelling benefits of massive MIMO sparked off the interest
of researchers also in the context of NOMA. In Ding and Poor (2016), Ding and
Poor conceived a two-stage TPC design for implementing massive-MIMO-NOMA.
More particularly, a beamformer was adopted for serving to a cluster of angularly
similar users and then they decomposed the MIMO-NOMA channels into a number
of SISO-NOMA channels within the same cluster. A one-bit CSI feedback scheme
was proposed for maintaining a low feedback overhead and a low implementation
complexity.

3.3.4 Cognitive Radio Inspired Power Control

The objective of CR inspired power control relying on NOMA is to guarantee the
QoS of weak users by constraining the power allocated to the strong user. Inspired
by the CR concept Goldsmith et al. (2009), NOMA can be regarded as a special
case of CR networks (Ding et al. 2016c; Yang et al. 2016). More specifically,
still considering a downlink scenario supporting two users, Fig. 3.11 compares
conventional CR and CR inspired NOMA. The BS can be viewed as the combination
of a primary transmitter (PT) and a secondary transmitter (ST), which transmits the
superimposed signals. The strong user (User n) and the weak user (User m) can be
regarded as a secondary receiver (SR) and a primary receiver (PR), respectively. By
doing so, the strong User n becomes capable of accessing the spectrum occupied
by the weak User m under predetermined interference constraints, which is the
key feature of the classic underlay CR. The concept of CR-inspired PA in NOMA
was proposed by Ding et al. (2016c), who investigated the PA of user-pairing-based
NOMA systems.

The key advantages of cognitive PA are summarized as follows:

• Guaranteed QoS: by applying cognitive PA, the QoS requirements of the
weak user are guaranteed, which is especially vital in real-time safety-critical
applications.
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• Fairness/throughput tradeoff: cognitive PA is capable of striking a beneficial
tradeoff between the overall system throughput and the individual user fairness,
where the targeted data rate of the weak user has to be satisfied by appropriate
PA.

• High flexibility: cognitive PA offers a high degree of freedom for the BS to
explore the opportunistic support of the strong user.

• Low complexity: compared to the optimal PA approach, cognitive PA imposes a
lower complexity during PA. This becomes particularly useful when the channel
ordering and PA constraints are not convex and hence finding an appropriate
PA scheme becomes a challenge, especially in multiple-antenna-aided NOMA
scenarios.

Motivated by its advantages mentioned above, the cognitive PA policy was
invoked for characterizing MIMO-NOMA systems. More particularly, in addition to
investigating the convectional downlink cognitive PA conceived for MIMO-NOMA
scenarios, the authors of Ding et al. (2016d) also designed a more sophisticated CR
NOMA PA scheme for uplink MIMO-NOMA scenarios. In Ding et al. (2016b), in
an effort to find a PA strategy suitable for SU-MIMO IoT scenarios, a cognitive PA
policy was designed for ensuring that SIC may indeed be carried out at the strong
user.

3.3.5 NOMA-Based Device-to-Device Communications

Due to the recent rapid increase in the demand for local area services under the
umbrella of cellular networks, an emerging technique, namely device-to-device
(D2D) communication, may be invoked for supporting direct communications
among devices without the assistance of cellular BSs. The main advantages of inte-
grating D2D communications into cellular networks are: (1) low-power support of
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proximity services for improving the energy efficiency; (2) reusing the frequency of
the over-sailing cellular networks in an effort to increase the bandwidth efficiency;
and (3) the potential to facilitate new types of peer-to-peer (P2P) services (Ma et al.
2015).

Note that one of the common features of both D2D and NOMA is that of enhanc-
ing the bandwidth efficiency by managing the interference among users within
each RB. Motivated by this, it is desirable to invoke intelligent joint interference
management approaches for fully exploiting the potential benefits of both D2D and
NOMA. In Zhao et al. (2016), a novel NOMA-based D2D communication scheme
has been designed, where several D2D groups were permitted to share the same RB
with the cellular users. In contrast to the conventional D2D pair’s transmission, the
novel “D2D group” concept was introduced, where a D2D transmitter was able to
simultaneously communicate with multiple D2D receivers with the aid of NOMA.
It was demonstrated that the proposed NOMA-based D2D scheme is capable of
delivering higher throughput than conventional D2D communications.

3.4 Summary

This chapter discusses the compatibility of NOMA when it is applied to the HetNets,
MIMO, and CRNs techniques.
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