
Organization and Query Optimization
of Large-Scale Product Knowledge

You Li1, Taoyi Huang2, Hao Song2, and Yuming Lin2(B)

1 Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,
Guilin University of Electronic Technology, 541004 Guilin, China

2 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic
Technology, 541004 Guilin, China

ymlin@guet.edu.cn

Abstract. Knowledge graph is essential infrastructure of lots of intelli-
gent Web applications. Recently, various types of knowledge graphs are
designed and deployed to make the applications more smarter. However,
the large amount and heterogeneity of product knowledge bring new
challenges for managing such knowledge data. In this work, we propose
a scalable framework for organizing large-scale product knowledge, which
includes the objective product knowledge and the subject users’ opinion
knowledge. In order to improve the efficiency of knowledge query, we
design a hybrid index structure with a learned model and several B-Tree
indexes. Finally, a join strategy based on the variable combination of
aspect and opinion is proposed to implement the query optimization.
The experimental results show that the proposed method can improved
the query efficiency significantly on a large-scale product knowledge com-
pared with a states-of-the-art knowledge management system.

Keywords: Product knowledge · Organization · Query optimization

1 Introduction

With the rapid development and popularization of internet technology and E-
Commerce, the count of data including product information increases dramat-
ically on Web. However, it is till hard to meet the users’ demand on acquiring
accurate information on products. One of the fundamental reasons is that such
massive information exists on Web in unstructured or semi-structured form,
which limits severely them to be applied automatically and intelligently. On
the other hand, the lack of effective management mechanism on such informa-
tion makes users confront directly fragmented and redundant information, which
exacerbates the problem of information overload.

Knowledge graph is an effective way to solve such problem above, which
targets at extracting the knowledge from Web and managing these knowledge
efficiently. Recently, various types of knowledge graph projects (such as YAGO
[1], Freebase [2]) and knowledge management systems (such as RDF-3X [3],
c© Springer Nature Switzerland AG 2019
W. Ni et al. (Eds.): WISA 2019, LNCS 11817, pp. 492–498, 2019.
https://doi.org/10.1007/978-3-030-30952-7_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30952-7_48&domain=pdf
https://doi.org/10.1007/978-3-030-30952-7_48


Organization and Query Optimization of Large-Scale Product Knowledge 493

gStore [4]) have been proposed and developed. However, product knowledge
includes the objective knowledge (such as product taxonomy) and the subject
knowledge (such as user opinion) in general, both of them are important to
many intelligent Web applications such as product recommendation [5]. This
heterogeneity of knowledge brings new challenge for managing such knowledge.
Moreover, existing systems often need to transform texts like URIs into ID values
for query processing, which leads to extra cost for accessing the index frequently.

In this work, we propose a presentation framework for product knowledge to
organize the objective product knowledge and the subject one uniformly at first.
Then, we design a hybrid index structure to improve the retrieval efficiency based
on the learned model and the traditional B-Tree index. Further, we propose join
strategy based on the variable combination of aspect and opinion to accelerate
the product knowledge retrieval. At last, a series of experiments carried on a
large-scale dataset show that the proposed method can improve the query per-
formance on product knowledge significantly compared with a state-of-the-art
knowledge management system.

2 The Organization Framework of Product Knowledge

The product knowledge can be divided into two groups generally: the object
knowledge and the subject one. The former describes the commonsense knowl-
edge such as product taxonomy, product’s aspects; the latter includes mainly
users’ opinion on a product or product’s aspects (Fig. 1).

Fig. 1. An overview of product knowledge framework

Specifically, let product concept set C = {c1, · · · , cn1}, product instance
set P = {p1, · · · , pn2}, and product aspect set A = {a1, · · · , an3}. Then, the
entity set E = C ∪ P ∪ A ∪ T ∪ F , where F = {f1, · · · , fn5} is the set of facts,
fi = <x, pi, y> is a fact, x ∈ E, y ∈ E and pi is a predicate. We define some
predicates used in this work in Table 1. Based on these symbols, we can present
the product knowledge with the form of RDF (Resource Description Framework)
triples.



494 Y. Li et al.

Table 1. Some defined predicates and the corresponding descriptions

Predicate Fact Description

subCategory <x, subCategory, y> x is the sub category of y

productOf <x, productOf y> x is a product of y

aspectOf <x, aspectOf, y> x is an aspect of y

write <x, write, y> user x writes review y

reviewOn <x, reviewOn, y> review x is on product/aspect y

3 The Hybrid Mapping Index Structure

In existing knowledge management systems, lots of URI texts need to be trans-
formed into ID values with mapping index for query processing. The B-Tree index
is often used to speed up this process. However, as the size of index increasing,
the query efficiency is gradually reduced. The learned index structure is a novel
technique to build indexes by utilizing the distribution of data being indexed,
which could provide benefits over state-of-the-art database indexes [6].

In order to applying machine learning model to index the URI texts, each
URI is transformed into an one-dimensional array with ASCII code. Based on
these sorted one-dimensional arrays, we design a two-layer mapping structure
shown in Fig. 2, which combines a learned model and multiple B-Tree indexes.

The learned model

B-Tree [0~1·s) B-Tree [1·s~2·s) B-Tree [(h-1)·s~h·s)• • •

Layer 1

Layer 2

Fig. 2. An overview of product knowledge framework

The first layer is a learned model trained on the distribution of the sorted
URI arrays, which tries to find the approximate location of each URI. Specially,
we apply the neural network with one fully-connected hidden layer as the learned
model, where the activation function is the ReLu function defined as follows.

RuLu(x) =
{

0 x ≤ 0
x x > 0 (1)

In the training phase, we apply the variance of predicted value and true value
of URI’s location as the loss function. Since the product knowledge is coming
from the Web, the URI of entity is relatively long. Then, it needs more nodes in
input layer of neural network, which reduces the execution efficiency of model.



Organization and Query Optimization of Large-Scale Product Knowledge 495

Considering the types of namespaces included in URIs is relatively few and fixed,
we construct a prefix tree to compress the redundant namespace prefix. By this
way, we can reduce the count of nodes in input layer greatly.

Ideally, the learned model would predict the exact value of each URI. How-
ever, there is a relatively large error between the predicted value and the true
value of a URI’s location because of the data distribution’s complexity. Then,
the second layer contains h B-Tree structures, which locate the URI accurately
based on the approximate location predicted by the learned model. In order to
improve the retrieval performance, we apply a threshold s to divide the URIs
into multiple blocks for keeping the B-Trees even.

4 Query Optimization of Product Knowledge

The join operation is an important factor for influencing the query performance.
When a SPARQL query is executed on product graph, the query is transformed
into a query graph at first. Then, we will generate the candidates of each variable
according to the adjacency of the variable node at first. At last, the join operation
is executed to generate the result set by joining the candidate sets of variables
based on the structure of query graph.

In the existing graph-based query systems, the query processes focus on the
cases of the edge label being constant in query graph. When the query involves
variables of edge label, the node variables are joined at first, then generate the
values of edge variables. This strategy often leads to relatively low efficiency
because of lots of intermediate results. However, user opinion is an important
knowledge in product knowledge, on which users often query. There are lots of
opinion expressions in product graph, which are in the forms shown in Fig. 3a
and b. The former describes two reviews express different opinions on the same
product aspect, the latter describes two reviews contain same opinion on different
product aspects.

r1 r2a1o1 o2

(a) Different opinion on a aspect

r1 r2

a1

a2

o1

o1

o3

o2

(b) Same opinion on differ-
ent aspects

Fig. 3. Two forms of opinion data in product knowledge

When user try to find out all reviews including same opinion, the existing meth-
ods treat the product aspect and opinion separately, which would generate lots



496 Y. Li et al.

Algorithm 1.Joining on a variable combination of product aspect and opinion

Input: Current table of intermediate results IRT ,
Variable combination (e, v)

Output: Final table of intermediate results nIRT

1: if the candidate set of v is empty then
2: return nIRT ;
3: for each intermediate result r ∈ IRT do
4: tmp = ∅, tmpv = ∅;
5: for each ele ∈ r do
6: if there is not edge between ele and e then
7: continue;
8: tmpv ← ele;
9: generating the other candidate set S of v by ele;
10: if tmp = ∅ then
11: tmp ← S ∩ Cv; /* Cv is the candidate set of v */
12: else tmp ← S ∩ tmp;
13: if tmp = ∅ then
14: continue;
15: for each ele ∈ tmp do
16: generating the candidate set tmpe of edge ele;
17: for each edge ∈ tmpe do
18: generating the candidate set S by ele and edge;
19: if tmpv ⊆ S then
20: creating r’s duplicate rc and rc ← (edge, ele);
21: nIRT ← rc;
22: return nIRT ;

of noneffective intermediate results and reduce the query process effectiveness. In
reality applications, product aspect and opinion are often retrieved together.Then,
we should treat the aspect variable of and the opinion variable as a combination
for query processing. The detail of the join strategy based on the combination of
aspect variable and opinion variable is shown in Algorithm 1.

5 Experiments

We evaluate our method on a large-scale product knowledge, which is constructed
with the Amazon data and the artificial data. This dataset includes 116,174,460
triples, 11,979,407 entities, 478,626 products, 10,573 product aspects, 1,000,000
users and 10,566 opinion terms. We compare our approach with the state-of-the-
art knowledge management system gStore. Four queries are executed to evaluate
the query performances:

– Q1: Querying the products in the product category c1, of which users hold
the opinion term o1 on product aspect a1.

– Q2: Querying users’ opinion and corresponding aspects of the product p1.



Organization and Query Optimization of Large-Scale Product Knowledge 497

– Q3: Querying the count of product aspects users are more focused on and the
products belong to category c1.

– Q4: Querying the users who have bought the same product(s) and have the
same opinion on certain product aspects as those of user u1.

In the first experiment, we compare the query respond time of the proposed
method and the gStore for the four queries Q1–Q4 above. As shown in Table 2,
our method outperforms the gStore significantly on query respond time for the
Q2, Q3 and Q4. That is because the proposed method avoids lots of useless
intermediate results are avoided in the query processes. For the query Q1, our
method’s query performance is similar to gStore’s. The main reason is that
the proposed optimization strategy does not work for Q1, because Q1 does not
involve the aspect variable and opinion variable.

Table 2. Query respond time

Q1 Q2 Q3 Q4

gStore 290 ms 913 ms >30 min >30 min

Our method 287 ms 271 ms 2285 ms 2389 ms

In the following experiment, we verify the performance of the hybrid mapping
index structure (HMIS). Firstly, we analyze the influence of B-Tree’s order on
respond time, where the count of querying URI is set to 100,000. As shown
in Fig. 4a, We can find that HMIS takes less average respond time than B-
Tree. Moreover, the performance of HMIS improves more significantly with the
increase in B-Tree’s order. The Fig. 4b shows that the average respond time of
HMIS is less than that of the B-Tree for different numbers of random access.

(a) The order of B-Tree (b) The number of random access

Fig. 4. Performance comparisons of two index structures



498 Y. Li et al.

Acknowledgements. This work is supported by National Natural Science Foundation
of China (61562014), Guangxi Natural Science Foundation (2018GXNSFDA281049), the
project of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments
(YQ17111), and the general scientific research project of Guangxi Provincial Depart-
ment of Education (2017KY0195).

References

1. Hoffart, J., Suchanek, F.M., et al.: YAGO2: a spatially and temporally enhanced
knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

2. Bollacker, K.D., Evans, C., et al.: Freebase: a collaboratively created graph database
for structuring human knowledge. In: SIGMOD, pp. 1247–1250 (2008)

3. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

4. Zou, L., Ozsu, M.T., Chen, L., et al.: gStore: a graph-based SPARQL query engine.
VLDB J. 23(4), 565–590 (2014)

5. Yu, J., An, Y., Xu, T., Gao, J., Zhao, M., Yu, M.: Product recommendation method
based on sentiment analysis. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X.,
Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 488–495. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02934-0 45

6. Kraska, T., Beutel, A., Chi, E.H., et al.: The case for learned index structures. In:
SIGMOD, pp. 489–504 (2018)

https://doi.org/10.1007/978-3-030-02934-0_45

	Organization and Query Optimization of Large-Scale Product Knowledge
	1 Introduction
	2 The Organization Framework of Product Knowledge
	3 The Hybrid Mapping Index Structure
	4 Query Optimization of Product Knowledge
	5 Experiments
	References




