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Abstract. With the advance of Semantic Web and development of
Linked Data, the scale of knowledge graphs has surged dramatically.
On the one hand, RDF graph is a mainstream data model of the knowl-
edge graph. On the other hand, property graphs are widely accepted in
graph databases. How to manage large-scale RDF and property graphs
in an interchangeable way has become popular in both academic and
industrial communities. Thus we present an effective unified relational
storage scheme, that can seamlessly accommodate both RDF and prop-
erty graphs. Furthermore, we have implemented the storage schema on
an open-source graph database to verify its effectiveness. Ultimately,
our experimental results show that the proposed unified storage schema
for both RDF and property graphs can effectively manage large-scale
knowledge graphs, efficiently avoid data redundancy, and achieve high-
performance queries.

Keywords: Knowledge graph · RDF · Property graph ·
Efficient storage

1 Introduction

Knowledge graphs have become the cornerstone of artificial intelligence. The
construction and publishing of large-scale knowledge graphs in various domains
have posed new challenges on the management of those graphs.

Currently, there are two mainstream data models of knowledge graphs,
namely the RDF [8] (Resource Description Framework) model and the prop-
erty graph model. The former has been standardized by the W3C (World Wide
Web Consortium), and the latter has been widely accepted in industrial commu-
nities of graph databases. Unlike the relational database communities, however,
the two models of knowledge graphs and their query languages have not yet been
unified. For RDF graphs, their model has a profound mathematical foundation
and relatively complete model characteristics, and with the Linked Data [11]
initiative, an increasingly large number of RDF data have been published on
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the Semantic Web; whereas for property graphs, their model has built-in sup-
port for properties and several query languages, including Cypher [9], Gremlin
[10], and PGQL [12]. Property graphs, which have not been standardized yet,
have been widely recognized in industrial communities with the application of
graph databases. Due to the hypergraph structure of RDF graphs, it has been
demonstrated that RDF graphs are more expressive than property graphs. How
to effectively manage both RDF and property graphs in a unified storage schema
has become an urgent problem. In this paper, we firstly focus on the integration
of RDF and property graphs at the storage layer.

The relational model has increasingly turned mature over several decades.
It has concise and universal relational structures, and expresses the operations
and constraints of relationships using relational algebra with strict mathematical
definitions. Therefore, it can provide a solid theoretical foundation to store RDF
and property graphs.

Our contributions can be summarized as follows:

(1) We propose a unified relational storage schema, that can seamlessly accom-
modate both RDF and property graphs.

(2) We then implement the storage schema on an open-source database, Agens-
Graph, to verify its effectiveness and efficiency.

(3) To some extent, we manage RDF and property graphs in an interchangeable
way and realize the interoperability between the two models.

The remainder of this paper is organized as follows: Sect. 2 introduces the
related work and the formal definitions of RDF and property graphs are given in
Sect. 3. The unified storage schema we proposed is illustrated in Sect. 4, the sub-
sequent Sect. 5 describes the implementation on an open-source graph database
with the experimental results. Finally, we conclude the paper by discussing future
research directions in Sect. 6.

2 Related Work

The knowledge graph data model is based on the graph structure, with vertices
representing entities and edges representing the relationships between those enti-
ties. This kind of general data representation can naturally depict the extensive
connections between things in the real world.

2.1 The RDF Storage Schema

There are two typical approaches to designing RDF data management sys-
tems: relational approaches and graph-based approaches [18]. The relational
approaches map RDF data to a tabular representation and then execute
SPARQL queries on it while the latter approach is graph-based, which model
both RDF and the SPARQL query as graphs and execute the query by subgraph
matching using homomorphism [16].
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Relationship-Based Knowledge Graphs Storage Management. Rela-
tional databases are still the most widely used database management system at
present, and the storage scheme based on relational database is a main storage
method of knowledge graphs data currently [1]. The triple table storage scheme
directly stores RDF data; the horizontal table storage scheme [3,7,15] records
all predicates and objects of a subject in each row; the property table storage
scheme is a subdivision of the horizontal table, and the same subject will be
stored in a table, which solves the problem of too many columns in the table;
the vertical partitioning storage scheme creates a two-column table for each
predicate [2]; the sextuple indexing storage scheme divides all six permutations
of a triple into six tables [14]. Last but not least, DB2RDF [6] has been used
to improve query performance recent years by creating entity-oriented storage
structures that reduce the Cartesian product operations in queries.

Graph-Based Knowledge Graphs Storage Management. The advantage
of graph-based approach is that it maintains the original representation of the
RDF data as well as it enforces the intended semantics of SPARQL. The disad-
vantage, however, is that the cost of subgraph matching by graph homomorphism
is NP-complete [18]. Systems such as that proposed by Bönström et al. [5], gStore
[15,17], and chameleon-db [4] follow this approach.

2.2 The Property Graph Storage Scheme

A property graph is a directed, labeled, and attributed multi-graph. It means
that the edges of a property graphs are directed, and both vertices and edges
can be labeled and can have any number of properties, and there can be multiple
edges between any two nodes [13]. Neo4j1 is a native graph database that sup-
ports transactional applications and graph analytics, and it is currently the most
popular property graphs database. Neo4j is also based on a network-oriented
model where relations are first-class objects.

At present, the knowledge graph data model and the query language are
not unified. The main reason for the surge of relational databases is that it has
a precisely defined relational data model and a unified query language SQL.
The unified data model and query language not only reduce the development
and maintenance costs of the database management system, but also reduce the
learning difficulty of users. Therefore, based on the existing work, we propose a
unified relational storage scheme for RDF and property graph model.

3 Preliminaries

In this section, we provide the formal definitions of RDF triple, RDF graph,
and property graph, which can be the basis for the transformations to relational
tables in the document.

1 https://neo4j.com/.

https://neo4j.com/
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Definition 1 (RDF triple). Let U , B and L be disjoint sets of URIs, blank nodes
and literals, respectively. An RDF triple (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L)
states the fact that the resource s has the relationship p to the resource o ∈ U ,
or the resource s has the property p with the value o ∈ L, where s is called the
subject, p the predicate (or property), and o the object.

Definition 2 (RDF graph). A finite set of RDF triples is called an RDF graph.
Given an RDF graph T , we use S(T ), P (T ), and O(T ) to denote the set of
subjects, predicates, and objects in T , respectively. For a certain subject si ∈
S(T ), we refer to the triples with the same subject si collectively as the entity si,
denoted by Ent(si) = {t ∈ T | ∃p, o s.t. t = (si, p, o)}.

We can use RDF Schema (RDFS) to define classes of entities and the rela-
tionships between these classes. For example, (s, rdf:type, C) declares that the
entity s is an instance of the class C. Given an RDF graph T , we assume that
for each subject s ∈ S(T ) there exists at least a triple (s, rdf:type, C) ∈ Ent(s),
denoted by s ∈ C. We believe that this assumption is reasonable since every
entity should belong to at least one type in the real world.

Definition 3 (Property graph). Let L and T be countable sets of node labels
and relationship types, respectively [16]. A property graph is a tuple G =
(N,R, src, tgt, l, λ, τ) where:

– N is a finite subset of N , whose elements are referred to as the nodes of G.
– R is a finite subset of R, whose elements are referred to as the relationships

of G.
– src: R → N is a function that maps each relationship to its source node.
– tgt: R → NN is a function that maps each relationship to its target node.
– l: (N ∪ R) × K → V is a finite partial function that maps a (node or rela-

tionship) identifier and a property key to a value.
– λ: N → 2L is a function that maps each node id to a finite (possibly empty)

set of labels.
– τ : R → T is a function that maps each relationship identifier to a relationship

type.

4 The Unified Relational Storage Schema

Originally, we propose a unified relational storage schema for both RDF and
property graphs. Then we elaborate on the specific rules for transforming RDF
and property graphs into relational tables to effectively realize the storage inte-
gration.

4.1 Integration of RDF and Property Graphs in Relational Tables

As the representations of knowledge graph models, RDF and property graphs
are relatively independent with expressivity difference, increasing the difficulty
of the direct mapping. As shown in Fig. 1, we select the mature relational model
as the physical storage model to realize the integration of RDF and property
graphs.
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Fig. 1. The unified relational storage schema

4.2 Transforming RDF Graphs into Relational Tables

Since an RDF graph is defined as a finite set of triples, an RDF graph can
be mapped into multiple relational tables. Mapping rules for an RDF graph to
relational tables will be defined as follows.

RDF triples, by definition, will be formalized as (s, p, o) ∈ (U ∪B)×U ×(U ∪
B ∪ L). For simplicity, the namespace prefix of the resource and predicate URI
names will be omitted in this paper (RDF built-in names is not omitted, such
as rdf:type). Since the introduction of blank nodes will not make a fundamental
change to the RDF data management method, the blank node in the RDF graph
will be equated to the URI in this paper.

For three different forms of RDF triples, we define the basic mapping rules
for RDF to relational tables as follows:

Rule 1. An RDF triple in the form of 〈U1〉 〈rdf:type〉 〈U2〉, that the predicate of
the RDF triple is 〈rdf:type〉, then it can be expressed as a row with id (primary
key) and properties in relational table U2.

Rule 2. An RDF triple in the form of 〈U1〉 〈U2〉 〈L〉, that the object of the RDF
triple is literal, then it can be expressed as a property {U2 : L} in properties of
U1.

Rule 3. An RDF triple in the form of 〈U1〉 〈U2〉 〈U3〉, that the subject, the
predicate, and the object of the RDF triple are all URI, then it can be expressed
as a row with id (primary key), start that is the foreign key referencing the id
of U1, end that is the foreign key referencing the id of U3, and properties in
relational table U2.

As shown in Fig. 2, most RDF graphs can be mapped to relational schemata
according to the above basic rules.

In particular, the intersection of vertices and edges is not empty in RDF
graphs. Specifically, the predicate can also act as the subject or the object of
another RDF triple. We then propose a solution to implementation of RDF
reification. In the relational schema, we artificially create a relational table
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Fig. 2. The basic mapping from RDF graphs to relational tables

called “Edge Vertex” with column V ertexid (primary key), column Edgeid
that is the foreign key referencing the id of the edge, and column properties.
The Edge Vertex table stores edges as vertices to realize following relationships
between edges and vertices or between edges and edges. Namely, as presented in
Fig. 3, we use the dual storage to reserve the complete information of RDF in
the relational model.

4.3 Transforming Property Graphs into Relational Tables

Property graphs also play a considerable role in knowledge graphs. In property
graphs, an entity is represented as a vertex. Vertices and edges can have an
arbitrary number of properties and can be categorized with labels. Labels are
used to gather vertices and edges that have the same category. Furthermore,
edges are directionally connected between two vertices, a start vertex and an
end vertex.

We explore the transformation from property graphs to relational tables. For
vertices and edges, we define the mapping rules for property graphs to relational
tables as follows:

Rule 1. Labels can be represented as relational tables within vertices and edges
of the same category.

Rule 2. Vertex tables have two columns, namely id (primary key) and
properties.

Rule 3. Edge tables have four columns, namely id (primary key), start and end
that are both the foreign keys referencing the id of vertex tables, and properties.

Rule 4. A vertex or an edge can be expressed as a row of the relational table.
According to the above rules, Fig. 4 visually shows the mapping from property

graphs to relational tables.
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Fig. 3. The complete mapping from RDF graphs to relational tables

Fig. 4. The mapping from property graphs to relational tables
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5 Experiments

We have conducted experiments on synthetic RDF datasets to verify the effec-
tiveness and efficiency of our method. The database is deployed on a desktop
computer that has an Intel i54520 CPU with 2 cores of 2.31 GHz, 8 GB memory,
512 GB disk, and 64-bit Centos7.0 as the OS.

We implemented the storage schema on AgensGraph v2.1.12. AgensGraph
is a new generation multi-model graph database for the modern complex data
environment, that is very robust, fully-featured and ready for enterprise use.
AgensGraph both supports relational tables and property graphs, and it has
already realized the mapping from property graphs to relational tables. Conse-
quently, RDF graphs are required to be imported into AgensGraph as relational
tables.

As shown in Fig. 5, based on the existing storage mechanism, we extended
the storage schema to accommodate RDF storage for AgensGraph with no effect
to the original storage of relational tables and property graphs. According to the
extension, RDF and property graphs can be stored and managed independently
and compatibly in AgensGraph.

Fig. 5. The complete mapping from RDF graphs to relational tables

We generated five synthetic datasets using the LUBM (Lehigh University
Benchmark), which is developed to facilitate the evaluation of Semantic Web
repositories in a standard and systematic way, as a test sample imported into
AgensGraph. LUBM consists of a university domain ontology, customizable and
repeatable synthetic data, a set of test queries, and several performance metrics.
The characteristics of each dataset are shown in Table 1.

2 https://bitnine.net/.

https://bitnine.net/
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Table 1. Characteristics of experimental datasets

Datasets Sizes Triple #

LUBM10 168.4M 1,316,700

LUBM20 358.0M 2,781,322

LUBM30 529.6M 4,107,812

LUBM40 709.0M 5,494,144

LUBM50 889.5M 6,888,642

Experiment 1: Storage Performance Analysis. We considered two indi-
cators to evaluate the storage performance, namely storage time and storage
space.

Storage time overhead is a significant indicator to evaluate the performance
of the storage schema for importing RDF triples. Figure 6(a) shows the storage
time to store RDF datasets of different sizes.

Fig. 6. The storage time and space of RDF

Additionally, storage space overhead is also important to measure storage per-
formance. By importing RDF into AgensGraph, the number of established vertices
and edges are shown in Table 2. Figure 6(b) plots the storage space of different RDF
datasets in AgensGraph. From Fig. 6(b) we can see that with continued accretion

Table 2. Number of vertex and edge

Datasets Vertex# Edge#

LUBM10 219,680 673,602

LUBM20 463,296 1,422,567

LUBM30 684,222 2,101,605

LUBM40 915,519 2,810,798

LUBM50 1,147,136 3,524,142
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of the size of RDF data, the storage scheme can significantly reduce the spatial
storage of knowledge graphs and the redundancy of data storage.

Experiment 2: Interoperability of RDF and Property Graphs. LUBM
provides 14 SPARQL query statements to measure the performance. Therefore,
we tested them on AgensGraph to realize the interoperability of RDF and prop-
erty graphs. For instance, Query number, answer, and query time of LUBM50
are shown in Table 3. From Table 3, we found the storage schema can effectively
achieve the interoperability.

Table 3. Query Results of LUBM50

QueryNo. Answer Time/ms

Q1 4 8.438

Q2 130 9,099.834

Q3 6 32.527

Q4 34 29.932

Q5 678 105.774

Q6 519,842 17,578.083

Q7 67 56.935

Q8 7,790 5,515.660

Q9 13,639 10,193.622

Q10 4 43.472

Q11 0 25.351

Q12 0 0.561

Q13 0 10.739

Q14 393,730 546.531

Experiment 3: Comparison Between Import Methods. To verify the
effectiveness of the storage schema, we compared the unified relational storage
schema (Our-Method) with importing RDF graphs as property graphs (Agens-
Grpah) on storage time. From the experimental results, as shown in Fig. 7, the
storage time and storage space are positively correlated with the size of the
datasets. The efficiency of the proposed relational storage schema has increased
hundreds of times with the roughly equivalent storage space, which is valid for
large-scale RDF storage.
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Fig. 7. The comparison between our method and AgensGraph

6 Conclusion and Outlook

In this paper, we have developed a unified relational storage schema of RDF
and property graphs. On the one hand, we have solved the large-scale knowl-
edge graph storage problem to some extent. On the other, the proposal of the
unified storage schema promotes the integration of two mainstream data models
of knowledge graph, playing an important role in the establishment of dominant
knowledge graph databases.

The Unified data model not only lowers the development and maintenance
cost of database management system, but also reduces the learning difficulty of
users. Based on the unified storage schema, a unified query schema of Cypher and
SPARQL needs to be proposed to realize a real sense of RDF to property graph
interoperability. Therefore, it is an important research direction in the future to
develop a unified knowledge graph query language with precise grammar and
semantics. Furthermore, the research and development of distributed storage of
large-scale knowledge graph data is still in its infancy, and the efficient algorithm
of distributed queries is to be improved.
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