
Dummy-Based Trajectory Privacy Protection
Against Exposure Location Attacks

Xiangyu Liu1,2(&), Jinmei Chen1, Xiufeng Xia1, Chuanyu Zong1,
Rui Zhu1, and Jiajia Li1

1 School of Computer Science, Shenyang Aerospace University,
Shenyang 110136, Liaoning, China

liuxy@sau.edu.cn
2 School of IT and Business, Wellington Institute of Technology,

Lower Hutt 5010, New Zealand
Xiangyu.Liu@weltec.ac.nz

Abstract. With the development of positioning technology and location-aware
devices, moving objects’ location and trajectory information have been collected
and published, resulting in serious personal privacy leakage. Existing dummy
trajectory privacy preserving method does not consider user’s exposure loca-
tions, which causes the adversary can easily exclude the dummy trajectories,
resulting in a significant reduction in privacy protection. To solve this problem,
we propose a dummy-based trajectory privacy protection scheme, which hides
the real trajectory by constructing dummy trajectories, considering the spatio-
temporal constraints of geographical environment of the user, the exposure
locations in trajectory and the distance between dummy trajectories and real
trajectory. We design a number of techniques to improve the performance of the
scheme. We have conducted an empirical study to evaluate our algorithms and
the results show that our method can effectively protect the user’s trajectory
privacy with high data utility.
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1 Introduction

In recent years, with an increasing popularity of positioning technology and location-
aware devices, the location and trajectory information of moving objects have been
collected and published. Many new applications have emerged because of the mining
and analysis of trajectory information. For example, Investors can make business
decisions by analyzing trajectory information of users in a specific area, such as where
to build a mall. At the same time, government agencies can optimize the design of
traffic management systems and traffic routes by analyzing vehicle trajectories in cities.
Although publishing of trajectory information plays a significant role in its mobility-
related decisions, it also causes serious threats to personal privacy. If a malicious

The work is partially supported by Key Projects of Natural Science Foundation of Liaoning Province
(No. 20170520321) and the National Natural Science Foundation of China (Nos. 61502316,
61702344).

© Springer Nature Switzerland AG 2019
W. Ni et al. (Eds.): WISA 2019, LNCS 11817, pp. 368–381, 2019.
https://doi.org/10.1007/978-3-030-30952-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30952-7_37&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30952-7_37&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30952-7_37&amp;domain=pdf
https://doi.org/10.1007/978-3-030-30952-7_37


adversary obtains trajectory information, he can get privacy information of user
through data mining technology [1–3], such as: home address, hobbies, living habits
and health conditions, sensitive relationship etc. Therefore, the privacy protection of
trajectory information has been widely concerned by scholars at home and abroad.

The dummy based trajectory privacy protection method has been widely used in
practical research due to its simplicity, no need for trusted third-party entities, and the
ability to retain complete trajectory information. However, existing dummy based tra-
jectory protection method does not consider user’s exposure location when generating
the dummy trajectory, which may reduce the effect of anonymous protection or even
directly reveal user’s true trajectory. Figure 1(a) shows an example of user’s real tra-
jectory tr ¼ l1; t1ð Þ; l2; t2ð Þ; l3; t3ð Þ; l4; t4ð Þ; l5; t5ð Þf g, he posts a dynamic through Weibo
in location l2 at time t2, showing that he is now in location l2, this information can be
obtained by the adversary. When the user exploits existing dummy based trajectory
privacy protection scheme to protect his real trajectory, adversary can use this exposure
location l2 to identify some false trajectories. As shown in Fig. 1(b), there are two
dummy trajectories generated by algorithm in [14] and a real trajectory. Since the
trajectory d2 does not pass the location l2 at t2, adversary can identify it as a false
trajectory, so the probability of identifying real trajectory becomes 1

2, which is greater
than anonymous requirement of 13, resulting in user trajectory privacy leakage. We define
this attack model as exposure location attack (the specific definition is given later).

Aiming at this problem, we propose a dummy based trajectory privacy protection
scheme. The basic idea is to construct k � 1 dummy trajectories that are similar to real
trajectory and contain exposure locations to hide the real trajectory. It is worth men-
tioning that the trajectory privacy protection means to protect both whole real trajectory
not to be re-identified and sensitive locations (locations of real trajectory except
exposure locations) not to be exposed. Figure 1(c) shows the trajectory set after adding
dummy trajectories, each dummy trajectory contains the exposure location l2. The
experimental results show that our algorithms can effectively protect the user’s real
trajectory.
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Fig. 1. A real trajectory tr, dummy trajectories of tr generated by random algorithm and the
anonymized trajectory set TRS of tr
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The rest of this paper is organized as follows. Section 2 reviews some related works
and Sect. 3 provides preliminaries. Section 4 presents the main steps of DTPP,
including generate dummy locations and construct dummy trajectories. Section 5 is
devoted to the experimental results. Finally, Sect. 6 concludes this paper.

2 Related Work

Trajectory privacy protection is mainly classified into following categories: dummy
trajectories, trajectory k-anonymity and trajectory suppression. In [6] Yarovoy et al.
proposed two algorithms to generate anonymity groups that satisfies the novel
k-anonymity. In [14], Moreale et al. proposed a method based on spatial generalization
and k-anonymity to transform the original GPS trajectory to achieve anonymity in
trajectory dataset. In [7], Abul et al. presented a method named Never walk Alone
(NWA) to achieve (k, d)-anonymity through trajectory clustering and space translation.
In [8], Huo et al. proposed an approach called You Can Walk Alone (YCWA) to protect
trajectory privacy through generalization of stay points.

The trajectory suppression method is to selectively publish trajectory data by
removing sensitive or frequently accessed locations. In [9], Terrvitis et al. deviced a
data suppression technique, which protect privacy while keeping the posted data as
accurate as possible. In [10], Zhao et al. proposed two methods based on frequency in
trajectories publishing to improve the utility of anonymous data.

The basic idea of dummy trajectory privacy protection was first put forward by
Kido et al. in [11, 15]. In [12], Lei et al. proposed two ways to generate false trajec-
tories, namely random pattern and intersection pattern-based scheme. In [13], Lei et al.
argued that spatio-temporal correlation should be considered when generating dummy
trajectory. In [4], Wu et al. hold that generating dummy trajectory should considering
the user mobility pattern and propose a method to protect trajectory privacy based on
gravity mobility pattern.

However, the existing dummy trajectory privacy protection methods does not take
into account the user’s exposure location when generating dummy trajectories, making
it easy for the adversary to identify some dummy trajectories or even real trajectory by
using the exposure location. Based on this, we design the dummy trajectory privacy
protection scheme.

3 Preliminaries

In this section, we define the concepts and notations used throughout the paper. In this
paper, a location is a point of interest on the map (e.g. hospital, restaurant, store, bank,
etc.), it can be expressed as l ¼ x; yð Þ, where x is the longitude and y is the latitude of
location l, we directly use l to represent the location. A trajectory tr is a sequence of n
locations, it can be expressed as tr ¼ l1; t1ð Þ; l2; t2ð Þ; . . . ln; tnð Þf g, where (li; ti) repre-
sents the user checked in the location li at ti, the dummy trajectory is described as
d ¼ l01; t1

� �
; l01; t2
� �

; . . . l0n; tn
� �� �

. The length of trajectory tr is denoted by trj j.
The trajectory set formed by tr and k � 1 dummy trajectories is defined as
TRS ¼ d1; d2; . . .dk�1; trf g.
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Exposure Location: Given real trajectory tr ¼ l1; t1ð Þ; . . .; k; tkð Þ; . . . ln; tnð Þf g, if the
user posts k to the social network at time tk which all people can know it, we say k is a
exposure location of tr.

It is worth mentioning that there may be multiple exposure locations defined in the
trajectory, we use EL ¼ k1; tk1ð Þ; . . . km; tkmð Þf g (m < n) to represent the set of expo-
sure locations of tr, other locations in trajectory except exposure locations are sensitive
locations. As shown in Fig. 1(a), l2 is the exposure location, and other locations
l1; l3; l4; l5f g in the trajectory are sensitive locations.

Exposure Location Attack: Assume TRS be trajectory set with respect to tr, and the
exposure location set of tr is EL. The adversary utilizes the exposure location ki; tkið Þ 2
EL as priori knowledge to attack the trajectory set TRS, when a trajectory in TRS does
not pass the exposure location ki at time tki , it can be identified by adversary as a false
trajectory, resulting in user trajectory privacy leakage. We define this type of attack as
exposure location attack.

For example, as shown in Fig. 1(b), the trajectory d2 is identified as a false trajectory
because it does not pass the location l2 at time t2.

Trajectory Leakage Rate (TE): Given the trajectory set TRS with respect to tr, the
adversary uses his background knowledge to identify the false trajectories of TRS and
the probability of predicting user’s real trajectory is defined as follows:

TE ¼ 1
TRSj j � TRS0j j

where TRS0j j indicates the number of false trajectories identified by the adversary.

Average Location Leakage Rate (LE): Given the trajectory set TRS with respect to
tr, the length of tr is n, and the location set containing the real and dummy locations of
TRS at ti is Li, location leakage rate of anyone location in trajectory tr at ti is defined as
1
Lij j, so average location leakage rate is defined as follows:

LE ¼ 1
n

Xn

i¼1

1
Lij j

(p, k)-anonymity: Given the trajectory set TRS with respect to tr, and anonymity
threshold p; k, if the location leakage rate of anyone location in trajectory tr is not
greater than 1

p, the trajectory leakage rate is not more than 1
k, we say that the trajectory

set TRS satisfies p; kð Þ-anonymity.
For example, as shown in Fig. 1(c), the trajectory set satisfies 2; 3ð Þ-anonymity.

Location Distance: Given two locations li and lj, the location distance is defined as
Euclidean distance between them.

dist li; lj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li � x� lj � x
� �2 þ li � y� lj � y

� �2q
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Trajectory Distance: Given two trajectories tr1 ¼ l1; t1ð Þ; l2; t1ð Þ; . . . ln; tnð Þf g,
tr2 ¼ ðl01; t1Þ; l02; t2

� �
; . . . l0n; tn

� �� �
1� i� nð Þ, the trajectory distance is defined as

follows:

TDist tr1; tr2ð Þ ¼
Xn

i¼1
dist li; l

0
i

� �
1� i� nð Þ

4 Dummy-Based Trajectory Privacy Protection Scheme

In this section, we present dummy-based trajectory privacy protection algorithm (de-
noted as DTPP). The main idea of algorithm 1 is to select k � 1 dummy trajectories to
form anonymous trajectory set with real trajectory. In this paper, we hold the view to
protect both trajectory and location privacy. Therefore, each dummy trajectory needs to
be similar to the real trajectory in shape as much as possible, and can increase the
number of dummy locations for sensitive locations in the trajectory set. Algo-
rithm DTPP first obtains a list Candtr of candidate dummy trajectories sorted by Score
in descending order (line 2), where Score is a heuristic function that measures the
impact on both trajectory similarity and location diversity. A dummy trajectory with
higher Score indicates that more trajectory similarity and location diversity would be
achieved by its generation. Then DTPP runs a loop (lines 3–5) while k � 1 dummy
trajectories have been generated, and it attempts to select a dummy trajectory with
highest Score, which is selected from the top one of Candtr. After getting k � 1 dummy
trajectories, DTPP examines whether the Lij j of sensitive location satisfies the location
anonymity threshold p, if not, it indicates that the dummy locations of this location
cannot make the trajectory set satisfy p; kð Þ-anonymity (lines 7–9). So we suppress the
location to ensure the user’s location privacy. Finally DTPP returns the anonymous
trajectory set (line 10). The details will be introduced in the followings.
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Metric for a Dummy Trajectory. In this section, we consider a goodness metric for a
dummy trajectory. We use d ¼ l01; l

0
2; . . .l

0
n

� �
to represent a dummy trajectory, the effect

of a dummy trajectory is summarized by “trajectory similarity”, denoted by Sim d; trð Þ,
and the “location diversity”, denoted by Div d; TRSð Þ. To maximize the effect of
dummy trajectory, we designed a heuristic function as shown in Eq. (1) to select the
dummy trajectory.

Score ¼ Sim d; trð Þ � Div d; TRSð Þ ð1Þ

Trajectory similarity Sim d; trð Þ is defined as Eq. (2), it shows how similar the
dummy trajectory is to the real trajectory, and we measure it by the standard deviation
of the location distance between the dummy trajectory and real trajectory. In order to
match the semantics, we take it countdown. The larger the Sim d; trð Þ, the more similar
dummy trajectory is to the real trajectory.

Sim d; trð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 dist li; l

0
ið Þ � 1

n

Pn
i¼1 dist li; l

0
ið Þ� �2q ð2Þ

The larger the Lij j of sensitive location in the TRS, the lower the location leak rate. We
use location diversity Div d; TRSð Þ to measure the effect of dummy trajectory to LE. It is
defined as Eq. (3), it indicates the proportion of location sets with increasing amounts
after adding the dummy trajectory. Where div l0i; TRSi

� �
is the change of location set at

time ti after adding the dummy location l
0
i, there is a change of 1, no change is 0.

Div d; TRSð Þ ¼
Pn

i¼1 div l0i; TRSi
� �
trj j ð3Þ

4.1 Generating Dummy Trajectory Candidate Set

In this section, we present Algorithm 2 to generate dummy trajectory candidate set. We
propose to construct a dummy trajectory through connecting dummy locations. Sup-
pose a trajectory with s sensitive locations, which generates m dummy locations at each
sensitive location, if the enumeration method is used to generate dummy trajectories,
there exists ms trajectories, the number of dummy trajectories increases exponentially
with the number of sensitive locations. Considering that the real trajectory has spatio-
temporal characteristics, spatio-temporal reachability should be satisfied between
adjacent locations of the dummy trajectory. Therefore, we present to model the dummy
trajectory candidate set as a directed graph according to whether the adjacent locations
of the dummy trajectories is reachable, and formalize it as G ¼ V ;Ef g, which will
greatly reduce the number of dummy trajectory candidates. V is a set of locations, E is
a set of edges. Spatio-temporal reachability is judged by formula (4), where ti and tiþ 1

represent the timestamps of accessing locations li and liþ 1 respectively, vmax is the
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user’s maximum speed. Obviously, if the formula (4) does not hold, it means that the
user could not attend location viþ 1;j before tiþ 1 when he starts moving from ti.

dist vij; viþ 1;j
� �
vmax

� tiþ 1 � tið Þ 1� i� n; 0� j� Candlij jð Þ ð4Þ

As shown in Fig. 2, there is a trajectory directed graph of dummy trajectory can-
didate set for real trajectory in Fig. 1(a), wherein the location v20 is an exposure
location. If the adjacent locations are reachable, there is an edge between them. From
the directed graph, we can get all possible trajectories.

Fig. 2. Trajectory directed graph

374 X. Liu et al.



In Algorithm 2, each dummy trajectory uses the location l0 or a dummy location of
Candl0 as starting point and terminates with ln or a location in Candln , DTC performs a
Depth-First Search (DFS) taking li 2 l0 [Candl0f g as a starting point on the G, then
can get all dummy trajectory candidates (lines 5–6). If the distance between dummy
trajectory and real trajectory conforms to trajectory distance threshold (a, b), calculates
Score of the dummy trajectory, and inserts <tri, Score (tri)> to the dummy trajectory
candidate set Candtr (lines 7–10). Finally, returns Candtr (line 11).

The algorithm TDG first merges li and Candli into Vi to obtain all points in the
directed graph (lines 3–4). Then it iterates all points and judges the spatiotemporal
reachability between adjacent locations, if it is satisfied, there exists an edge
E vij; viþ 1;j
	 


, and finally returns the directed graph G (lines 5–13).

4.2 Generating Dummy Location Candidate Set

In this section, we propose algorithm DLC to generate dummy location candidate set.
In the real world, the adversary can obtain the map information from Internet, thus, he
can easily exclude the dummy locations according to the geographic feature of the area
the dummy locations belong to. For example, if the adversary have captured a location
of user is a lake, he can derive that it is a dummy location. So we advocate using real
and meaningful locations on the map as dummy locations to protect privacy.

In order to improve the operational efficiency, we propose to divide the map based
on grid. The grid increment is set to 2b according to the trajectory distance threshold
(a, b). As shown in Fig. 3(a), if the sensitive location is just at the center of the grid,
only need to inquire a grid; as shown in Fig. 3(b), if the sensitive location is not in the
center of the grid, need to demand four grids, the time is greatly shortened.
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In algorithm DLC, the whole map of California is uniformly divided into grids with
size of 2b (line 2). For each location in the trajectory, if it is an exposure location, its
dummy location candidate set is£; if not, query grids according to location coordinate
and if the location l0i of grids satisfies dist li; l

0
i

� �� b, add this location to the candidate
set Candli (lines 3–11). If Candlij j\p, it indicates that the region where li belongs to is
sparse, and cannot generate enough dummy locations to anonymize it. So we suppress
it to ensure the user’s location privacy (lines 12–13).

5 Experiments

In this section, we provide extensive experiments to evaluate our methods. The user’s
trajectory data comes from two real datasets:Gowalla and Brightkite, we also obtain the
map data of California, which contains 21,047 nodes and 21,692 edges. In this paper,

(a) sensitive location at the center of grid  (b) sensitive location not at the center of grid 

Fig. 3. Query grids according to sensitive location
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we select 5,000 trajectories of 5,000 users from two datasets respectively for experi-
ment. Table 1 shows the statistics of the experimental data.

We first conduct experiments to obtain the optimal trajectory distance threshold of
the algorithm (DTPP), then evaluate the performance of DTPP by comparing with the
algorithm in [4], denoted by GM, and the algorithm in [14], denoted by SM. Finally,
we evaluate the influence of the parameters only involved in our algorithm. All pro-
grams were implemented in Java and performed on a 2.33 GHz Intel Core 2 Duo CPU
with 4 GB DRAM running the Windows 7 operating system. The location anonymity
threshold p is set 6; 27½ � (default value 15), the trajectory anonymity threshold k is set
3; 9½ �(default value 3), and the number of exposure location set EL is set 1; 4½ � (default
value 1). We obtain the optimal trajectory distance threshold by testing the trajectory
similarity, average location leakage rate (LE) and running time of DTPP at different
trajectory distances.

Figure 4 shows that: (1) with the trajectory distance increases, the trajectory sim-
ilarity and the average location leakage rate gradually decreases, the running time
gradually increases. This is because DLC generate more dummy locations when tra-
jectory distance is larger. (2) When the trajectory distance is 2 km, the average location
leakage rate is very large although the trajectory similarity is high, the Gowalla even
reaches 60%; when the trajectory distance is greater than 6 km, the trajectory similarity
is reduced, but the average location leakage rate is basically stable at 20%. (3) When
the trajectory distance is less than 6 km, the running time of the algorithm is within 4 s.
So we set the trajectory distance threshold (a, b) to (3, 6). (4) From the comparison of
the two datasets, the Gowalla dataset is better than Birghtkite in terms of trajectory
similarity and average positional leakage rate, but the running time is longer than
Birghtkite, that is due to the location distribution density in Gowalla dataset is slightly
higher than Birghtkite.

Table 1. Statistics of datasets

Gowalla Birghtkite

Number of users 5000 5000
Number of trajectories 5000 5000
Number of locations 42683 38916
Average length of trajectory 8.536 7.7832
Total time of trajectories (h) 14734 12176
Total distance of trajectories (km) 40560 37916
Maximum speed of users (km/min) 1.13 1.22
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We compare the performance of the algorithms DTPP, GM and SM by three
metrics: trajectory leakage rate, trajectory similarity and running time.

It can be seen from Figs. 5, 6 and 7 that: (1) The trajectory similarity of DTPP is
about 5% lower than GM, this is because DTPP considers the exposure locations,
resulting in a difference in the location distance between the dummy trajectory and the
real trajectory larger than GM, but it is about 4 times higher than SM. (2) When there is
an exposure location in real trajectory, the adversary cannot identify any false trajectory
because DTPP considers this exposure location; while the adversary can uniquely
identify the real trajectory in GM due to it does not intersect with the real trajectory
when generating dummy trajectories; SM randomly generates a dummy trajectory, so it
may contain the exposure location, but the average trajectory leakage rate is as high as
about 50%. (3) The running time of DTPP is almost the same as RM, which is lower
than 5 s, but much lower than GM. This is because the algorithm GM generates
dummy trajectories by using the enumeration method, so it’s running time increases
exponentially with the number of locations. DTPP greatly reduces the dummy trajec-
tory candidate set by constructing a reasonable data structure, which saves a lot of time.
Combining the above points, it can be concluded that the algorithm DTPP can maintain
high trajectory similarity and consume little running time while considering the
exposure locations, so the algorithm DTPP can effectively protect the user’s real
trajectory.

(a)Trajectory similarity (b) Average location leakage rate  (c) Running time

Fig. 4. Trajectory similarity, average location leakage rate and running time with varying
trajectory distance

(a) (b)

Fig. 5. Trajectory similarity with varying k

(a) (b)

Fig. 6. Trajectory leakage rate with varying k
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Next, we evaluate the influence of the parameters only involved in our algorithm.
First, evaluate the impact of the number of exposure locations on trajectory similarity
and running time. Then use the location suppression ratio to measure the impact of the
location anonymity threshold p on the algorithm. The location suppression ratio is
defined as the percentage of locations that are suppressed.

It can be seen from Fig. 8 that: (1) when the number of exposure location ELj j is
between 1 and 3, trajectory similarity decreases with increasing the number of exposure
location, while ELj j [ 3, the trajectory similarity increases. This is because when the
number of exposure location is increased to a certain extent, the overlapping portions
between the dummy and real trajectory become more, so the trajectory similarity is
correspondingly improved. (2) The running time of the algorithm DTPP decreases
greatly with the increase of the number of exposure location. When ELj j [ 2, the
running time is lower than 2 s, this is because the more the number of exposure
location, the fewer dummy locations need to be generated, so the overall time con-
sumption is very small.

As shown in Fig. 9, the location suppression ratio increases with the increase of the
location anonymity threshold p, but the location suppression ratio does not exceed 1%,
indicating that the algorithm does not need to suppress too many locations to satisfy the
location anonymity threshold.

Fig. 7. Running time of different protection models

Fig. 9. The effect of p on
DTPP

(a)Trajectory Similarity  (b) Running time

Fig. 8. The effect of ELj j on DTPP
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6 Conclusions

In this paper, we propose to consider user’s exposure locations in the case of using
dummy trajectories to protect trajectory privacy for the first time, and based on this, a
trajectory privacy protection algorithm (DTPP) is studied. The algorithm generates the
dummy location candidate set based on girds, constructs the trajectory directed graph to
store the dummy trajectory candidate set, and establishes a heuristic rule to select the
dummy trajectory, which making dummy trajectories have better trajectory similarity
while protecting real trajectory. Experiments based on real trajectory datasets show that
the algorithm DTPP can effectively protect the trajectory privacy against exposure
location attacks.
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