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Abstract. Predictive maintenance aims at enabling proactive scheduling of
maintenance, and thus prevents unexpected equipment failures. Most approa-
ches focus on predicting failures occurring within individual sensors. However,
a failure is not always isolated. The complex dependencies between different
sensors result in complex temporal dependencies across multi anomaly events.
Therefore, mining such temporal dependencies are valuable as it can help
forecast future anomalies in advance and identifying the possible root causes for
an observable anomaly. In this paper, we transform the temporal dependency
mining problem into a frequent co-occurrence pattern mining problem and
propose a temporal dependency mining algorithm to capture temporal depen-
dency among multi anomaly events. Finally, we have made a lot of experiments
to show the effectiveness of our approach based on a real dataset from a coal
power plant.

Keywords: Predictive maintenance � Root causes � Temporal dependency �
Frequent co-occurrence pattern

1 Introduction

Predictive maintenance aims to help anticipate equipment failures to allow for advance
scheduling of corrective maintenance. It is usually performed based on an assessment
of the health status of equipment [1, 2]. Thanks to the rapid development of IoT,
massive sensors are deployed on industrial equipment to monitor health status. As a
key phase for predictive maintenance, anomaly detection technologies have given us
the ability to monitor anomalies from multivariate time-series sensor data or events [3].

In recent years, lot of researches have paid attention to the problem of anomaly
detection/prediction from multivariate time-series sensor data. Anomaly detection
within individual variables, referred to as “univariate anomaly”, have already been
extensively studied [4, 5]. However, it is much more challenging but common in the
real applications to mine and analyze temporal dependencies among sensor data or
“univariate anomaly” events. It means the possibility of finding new anomaly type or
inferring the root cause of an anomaly [6–8].
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In Sect. 2, a simple example shows the temporal dependencies found among
“univariate anomaly” events. Actually, in a complex industrial system, an
anomaly/failure is not always isolated. Owing to the obscure physical interactions,
trivial anomalies will propagate among different sensors and devices, and gradually
deteriorate into a severe one in some device [9]. Mining such temporal dependencies
are valuable as it can help forecast future anomalies/failures in advance and identifying
the possible root causes for an observable device anomaly/failure [10].

In the paper, we try to propose an effective and explainable approach to predict the
anomaly based on mining the temporal dependencies from multi-sensor event
sequences. To reach this goal, we detect “univariate anomaly” events from sensor data
and output multi-sensor event sequences. Then, we transform the temporal dependency
mining problem into a frequent co-occurrence pattern mining problem. Next, a graph-
based anomaly prediction model is built based on choosing and connecting the mined
temporal dependencies for event predict in the experiment. Furthermore, a lot of
experiments are done to show the effectiveness of our approach based on a real dataset
from a coal power plant.

2 Motivation

An anomaly event carries much information about an anomaly like its occurrence time,
sources and type. Here, we use a 4-tuple to depict an anomaly event: e = (timestamp,
eventid, sourceid, type), where timestamp is the occurrence time of e; eventid is the
unique identifier of e; sourceid is the unique identifier of the source sensor; and type is
the type of anomaly event.

A time-ordered list of events from the same sensor construct an event sequence
Ei ¼ e1; e2; . . .; emf g. All the event sequences construct the event space H ¼ E1;f
E2; . . .;Eng. These events are not isolated with each other. They imply complex tem-
poral dependencies.

Definition 1. Temporal Dependency: Let A ¼ E1;E2; . . .;Ekf g; 1� k\m be an event
set contains k event sequences, B ¼ E

0
1;E

0
2; . . .;E

0
h

� �
1 � h\m be another event set

contains another h event sequences, and A\B ¼ £. A temporal dependency [10, 11] is
typically denoted as . It means that B will happen within time interval t1; t2½ �
after A occurs.

Figure 1 shows a sample about temporal dependency among several anomaly events.
There are several types of anomaly events have occurred on the different sensors. These
events construct five event sequences which are shown in Fig. 1. In which, the event
sequence E1 ¼ e1i ; i ¼ 1; 2; 3; 4; 5; 6; 7

� �
is constructed by H-CF events, and the event

sequences E3 ¼ e3j ; j ¼ 1; 2; 3; 4; 5
n o

is constructed by the H-IAP event. According to
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the maintenance log, when every event e3j in E3 happen, the event e1i in E1 will happen
within an average time lag Dt ¼ 18min. Thus, there is a temporal dependency between
the H-CF event and H-IAP event, i.e. . Thus, if there is a H-CF
event, we can predict that in the flowing 18 min, there will happen the H-IAP event.

Besides the temporal dependency among two event sequences, there is temporal
dependency among multi sequences. For example in Fig. 1, the part covered by a
shadow contains three event sequences, E1, E2 ¼ e3k ; k ¼ 1; 2; 3; 4; 5; 6

� �
which is

constructed by the H-DPGB events and E3, when events in E1 and E3 occurs, the event
in E2 also occur within an average time lag Dt ¼ 61min. Thus, we can see that there is
a temporal dependency between the H-CF event, H-IAP event and H-DPGB event,

donated as .

This case illustrates that if we can discovery such temporal dependency for multi
events, we have chances of predicting the anomaly event or inferring the root cause of
an observable anomaly. Thus, the goal of this paper is mining the temporal dependency
from multi event sequences.

3 Temporal Dependency Mining

3.1 Overview

For now, there are lots of excellent techniques have been developed to detect the
univariate events. The common ones include range-based approaches, outlier detection
approaches [4, 5]. A range-based approach customizes value bounders for individual
sensor based on inspectors’ experiences, sensor/device instructions and so on. Outliers
are widely known as the values which sufficiently deviate from most ones, the original
outlier detection methods were arbitrary, but in recent years statistics techniques are
used [12].
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Fig. 1. A real case: Temporal dependencies among event sequences.
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The main idea of mining the temporal dependency is to transform temporal
dependency into a frequent co-occurrence pattern across multi event sequences.
Essentially, a temporal dependency among the means that an event set B frequently
occurs within time interval Dt after an event set A occurs. In other words, the temporal
dependency is a relationship among the objects in a frequent co-occurrence pattern
within a time interval. It inspires us to mine frequent co-occurrence patterns so as to
discover event temporal dependencies. This process will be detailed described in
Sects. 3.2 and 3.3.

3.2 The Frequent Co-occurrence Pattern Mining

In this section, we explain what a frequent co-occurrence pattern across multi event
sequences is, what the differences between the novel pattern mining and traditional
frequent co-occurrence pattern mining are, and how to mine the novel patterns. We first
list some related concepts in mining the frequent co-occurrence patterns.

Co-occurrence Pattern: For a set of objects O ¼ o1; o2; . . .; okf g that appear in the

same event sequence Ei, an object refers to an event type. T Oð ÞEi¼ toEi1
; toEi2

; . . .; toEik

n o
,

toEij
is the occurrence time of oj j ¼ 1; 2; . . .;mð Þ in Ei, if the O satisfies that

max T Oð Þsið Þ � min T Oð Þsið Þ� n, then we say that O is a co-occurrence pattern (CP), n
is a user-specified threshold.

However, the challenge is how to identify the time lag between two event sets who
has the temporal dependency. It actually reflects how long that a set of events will be
affected by its related events. Unfortunately, most traditional frequent co-occurrence
pattern mining algorithms cannot directly solve such problem. They only focused on
the occurrence frequency of a group of unordered objects [13]. Hence, we try to design
an algorithm to discover a constrained frequent co-occurrence pattern. Such pattern
consists of two object groups, where intra-group objects are unordered and inter-group
objects are time-ordered, and all objects span no more than Dt. We call such pattern as
frequent co-occurrence pattern across multi event sequences.

Frequent Co-occurrence Pattern Across Multi Event Sequences: For a Co-
occurrence pattern O ¼ Opre [ Opost

� �
that occurs in a set of l event sequences

E1;E2; . . .;Elf g. The Opre and Opost will form the multi-dimensional co-occurrence
pattern, donated asMCP Opre;Opost

� �
, if theO satisfies the following conditions: (1) every

object oi 2 Opre [ Opost comes from different event sequences; (2) the object in Opost

always occurs after the occurrence of object in Opre; (3) max T Opost
� �� ��

min T Opre
� �� ��Dt, inwhichDt is the time lag,Opre containsm events andOpost contains

n events, i.e. Opre

�� �� ¼ m and Opost

�� �� ¼ n. Thus, theMCP Opre;Opost
� �

also can be donated
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as MCPm;n Opre;Opost
� �

. If the MCPm;n Opre;Opost
� �

have occurred more than k times in
l event sequences E1;E2; . . .;Elf g, then theMCPm;n Opre;Opost

� �
will be regarded as the

Multi-dimensional Frequent Co-occurrence Pattern, denoted as FMCP Opre;Opost
� �

or
FMCPm;n Opre;Opost

� �
. In which,Opre is the antecedent, Opost is the consequent, Dt is the

time lag between them.
Based the above definition, it is obviously that, our FMCP mining task is signifi-

cantly different from the traditional one. The difference is a MCP is supposed to be
divided into two groups, where intra-group objects are unordered and inter-group
objects are time-ordered. This time constraint raises the complexity of our task. Assume
that the frequency of a FMCP O ¼ o1; o2; . . .; omf g is l. To find out all valid divisions
by traditional ideas, we have to count the frequency for any possible division of O. The
number of possible divisions is 2 � C2

m þ . . .þC m=2d e
m

� �
, where m=2d e will return the

closest integer greater than or equal to m=2, not to mention the number of object
groups. Owing to this difference, our task is unable to be simply solved by the well-
known generation and counting strategy.

3.3 FMCP Mining Algorithm

In this paper, we use c A ;Bð Þ to denoted the temporal dependency between event
sequences, and we use the c A;Bð Þ:sup to donate the occurrence probability of B given
the knowledge that A have occurred. It is used to filter the mined temporal dependency.

c A;Bð Þ:sup ¼ sup OpostjOpre
� � ¼ freq OpostjOpre

� �
freq Oð Þ

In which, freq OpostjOpre
� �

is the frequency of the occurrence of Opost after with
Opre, and freq Oð Þ is the frequency of O.

Assume that the occurrences threshold freqmin ¼ supmin, where supmin is the
threshold of support, and assume that FP is the set constructed by all the FMCP in H.
All temporal dependency relationships whose satisfied that sup[ supmin constitute the
set R, then 8c Ei;Ej

� � 2 R and there is and only one TFCP Opre;Opost
� � 2 FP satisfy

that c Ei;Ej
� �

is the temporal dependency of Opre and Opost, and vice versa.
Because of that c Ei;Ej

� � 2 R, so c Ei;Ej
� �

:sup� supmin, thus, the number of occur-
rences of Ej is over supmin after the occurrence of Ei within a time range c Ei;Ej

� �
:Dt. In a

conclusion, Ei and Ej be a FMCP, denoted as TFCP Ei;Ej
� �

, i.e. TFCP Ei;Ej
� � 2 FP.

Every FMCP is constructed with antecedent and the consequent, and the item is the set is

unique. Therefore, if there isMCP O
0
pre;O

0
post

� �
6¼ FMCP Opre;Opost

� �
and FMCP O

0
pre;

�

O
0
postÞ 2 P, which satisfy that c Ei;Ej

� �
is the temporal dependency of O

0
pre and O

0
post,
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then O
0
pre ¼ Ei;O

0
post ¼ Ej, and the number of occurrences is freq FMCP O

0
pre;

��

O
0
postÞÞ ¼ c Ei;Ej

� �
:sup, and time lag is FMCP O

0
pre;O

0
post

D E
:Dt ¼ c Ei;Ej

� �
:Dt.

Then TFCP O
0
pre;O

0
post

� �
¼ FMCP Opre;Opost

� �
, but this is conflict. Thus, it is proofed

that 8c Ei;Ej
� � 2 R, there is and only one FMCP Opre;Opost

� � 2 FP satisfy that c Ei;Ej
� �

is the temporal dependency of Opre and Opost.
Therefore, if we can get all the FMCP in H, we can calculate support of temporal

dependencies and filter the candidate temporal dependency sets that satisfy the con-
ditions. Thus, based on the traditional method of frequent co-occurrence pattern min-
ing, in this paper, we proposed an approach called as ETD-mining with a three-stage
process, that is “Generation-Filter-Extension”, to mine the FMCP.

Given a Frequent Co-occurrence Pattern FMCP Opre;Opost
� �

, the frequent number
is donated as freq FMCP Opre;Opost

� �� �
, and the freq MCP Opre;Opost

� �� � ¼
c Opre;Opost
� �

:sup. If the freqmin ¼ supmin, then for any temporal dependency c Ei;Ej
� �

that satisfied c Ei;Ej
� �

:sup[ supmin, there is freq MCP Ei;Ej
� �� � � freqmin, it means

that MCP Ei;Ej
� �

is a FMCP. Thus, for any event e 2 Ei [Ej, the occurrence number in
some sequence satisfy freq eð Þ � freqmin. Therefore, the first step of mining FMCP is to
find all the events whose occurrence number over freqmin, these events denoted as F1.
This step is consistent with the traditional method of frequent co-occurrence pattern
mining.

According to the analysis of the above, any support more than the threshold value
of event correlation, which incorporates the event set and the target event set can only
consist of the event in F1. Therefore, we can get the source through the events in
combination F1 events set and target set, and then to filter out support more than the
threshold value of event temporal dependency.

The more the event sequences, the higher the cost of filter. If there is nseq event
sequences in H, and every event sequence contains mi types of events, then in H there

are _m ¼ Pi¼nseq
i¼1 mi types of events. These events construct the temporal dependency

sets can be denoted as canP ¼ Ei;Ej
	 
� �

, then the number of canP is
canPj j ¼ C2

_m � C1
2 þ . . .þCk

_m � C1
k þ . . .þCk�1

k

� �þ . . .þC _m
_m � C1

_m þ . . .þC _m�1
_m

� �
.

And for any Ei;Ej
	 
 2 canP, it is need to verify that if c Ei;Ej

� �
:sup� supmin. It is

obviously that the temporal dependency number need to be filter is very large.
Thus, we designed an extension strategy to avoid this problem based on the fol-

lowing Theorem.

262 W. Cao et al.



Theorem 1: For any FMCP Ei;Ej
� �

and the temporal dependency c Ei;Ej
� �

of event
Ei;Ej. Assume that the frequency threshold is equal to the support threshold, i.e.

freqmin ¼ supmin, then for any subset E
0
i �Ei and E

0
j �Ej, they also be FMCP E

0
i;E

0
j

� �
.

Besides, when they satisfied that the time lag of temporal dependency

c E
0
i;E

0
j

� �
:Dt � c Ei;Ej

� �
:Dt, then there is c E

0
i;E

0
j

� �
:sup� c Ei;Ej

� �
:sup.

Proof: It is obviously that the occurrence count number of Ej is c Ei;Ej
� �

:sup within a

time range c Ei;Ej
� �

:Dt after the occurrence ofEi. For thatE
0
i �Ei andE

0
j �Ej, thus, theE

0
j

will occur at last c Ei;Ej
� �

:sup times in a time range c Ei;Ej
� �

:Dt after the occurrence ofE
0
i .

Based on the Theorem 1, we can inference that for any c Ei;Ej
� �

(the support has
over the threshold), assume that Eij j[ 1, Ej

�� ��[ 1, the we can get the FMCP Ei;Ej
� �

of
c Ei;Ej
� �

by extending some FMCP eaf g; eb
� �� �

, in which ea 2 Ei and eb 2 Ej. We can
compose the event in F1 to get all the patterns such as eaf g; eb

� �� �
, then verify that if

the pattern satisfied c eaf g; eb
� �� �

:sup� supmin, and filter the temporal dependencies
whose support over the threshold. Thus, we can get FMCP eaf g; eb

� �� �
. Then, choose

the remaining event in F1 to extend the antecedent and consequent of
FMCP eaf g; eb

� �� �
. At the same time, to verify that if the supports of temporal

dependencies for antecedent and consequent are more than the threshold.
Algorithm 1 is the pseudocode of mining the temporal dependency. It first finds the

events who had occurred more that supmin times from the event space H, and put them
into the F1 (line 1–2). Then, modeling any two events into the pattern ea; eb

� �
, and

verifying that if the formed pattern is TFCP1;1 (line 3–6). Next, it uses the extend ()
function (line 18–26) to expand antecedents of FMCP1;1 recursively (line 7–8). The
extension process will break up until the extended pattern is not FMCP or there is no
object in F1 can be extended. Based on the result of extension for antecedents, we use
extend () function to expand consequents of FMCP1;1 recursively (line 9–11). Finally,
we put all the FMCP into the set P, the event relationship between antecedents and
consequents components in P constitute the set R.
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4 Experiments

4.1 Experiment Dataset and Environment

Environments: The experiments are done on a PC with four Intel Core i5-6300HQ
CPUs 2.30 GHz and 16.00 GB RAM. The operating system is Centos 6.4. All the
algorithms are implemented in Java with JDK 1.8.5.

Dataset: There are totally 361 sensors deployed on 8 important devices. Each sensor
generates one record per second, the dataset size is about 3.61 GB. And the dataset is
divided into the training dataset and test dataset. The training set is from 2014-10-01
00:00:00 to 2015-03-31 23:59:59. The testing set is from 2015-04-01 00:00:00 to
2015-04-30 23:59:59.

We use real faults contained in the maintenance records of the plant power from
2014-07-01 00:00:00 to 2015-06-30 23:59:59 to verify our warnings.

4.2 Experiment Setup

Firstly, we conduct the temporal mining algorithm on the training dataset to find the
temporal dependencies. We can get the temporal dependency quantity (TDQ) of the
training data. We observe the variation trend of the TDQ under the different parameters
of algorithm and different time of dataset.

Then, we built an anomaly prediction model with a directed graph over the anomaly
events based on choosing and connecting their mined temporal dependencies. The graph
is defined as G ¼ V ;Eh i, where V is the set of anomaly events, and E�V 	 V is a non-
empty set of edges. Each direct edge vi ! vj along with a weight, the weight is the time
lag Dt, it means that if the anomaly event vi occurs, we can predict that the anomaly
event vj will occur after a time lag Dt.
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Based on the anomaly prediction graph, we conduct the experiment on test data set.
We compare our anomaly prediction model with the other two typical approaches, they
are the range-based approach [4], the outlier detection approach [5]. Once the asso-
ciated anomalies are detected by them, they will make a warning of maintenance to the
corresponding fault.

For evaluations, we consider the following performance metrics.

The Temporal Dependency Quantity (TDQ): The Number of temporal dependen-
cies mined in the input data set;

Warning Time: Warning time is the difference between the timestamp an approach
makes a warning of maintenance for a fault and the starting time of this fault;

Precision: Precision represents how many abnormities are accurate according to
failure records;

Recall: It presents the probability of being able to classify positive cases, which is
defined as following.

4.3 Experiment Result

Firstly, we conduct the experiment to verify how the value of TDQ changes under
different data size with different time range when the parameter supmin ¼ 0:8
andDt ¼ 10. The data size increase from 1-month data to 6-months (the whole training
set) dataset and each time for 1month. This experiment mining the temporal dependences
with no less than 0.8 probability (i.e., supmin ¼ 0:8). Table 1 shows the result of TDQ.

The Table 1 shows that as the size of the data set increases, the total TDQ also
shows an upward trend. However, it is clearly that there is no linear correlation between
the TDQ and the size of the data set. Overall, the size of the data set has risen from one
month to six months, and the TDQ generated is relatively close, always between 4,000
and 5,000. It is indicated that, as the time goes on increases, the TDQ does not rise
rapidly, but increases relatively slowly and slowly, and may even be controlled within a
certain range. The reason is that as the time goes on, the more temporal dependencies
gradually enriched, but the growth rate trend is stable. This result indicated that our
algorithm has a certain robustness.

Table 1. Experiment results of TDQ under different data size supmin ¼ 0:8; Dt ¼ 10minð Þ.
Time range Data size TDQ

2014.07 (1 month) 180 MB 4274
2014.07-2014.08 (2 months) 378 MB 4338
2014.07-2014.09 (3 months) 534 MB 4269
2014.07-2014.10 (4 months) 750 MB 4407
2014.07-2014.11 (5 months) 912 MB 4430
2014.07-2014.12 (6 months) 1128 MB 4954
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Then, we compare the precision results and recall results of different methods.
Notably, in this paper, we only consider the predict events with finally failures
occurring both in training set and testing set. Figure 2 shows the final average results.

Figure 2 indicates that our methods performs well among the three methods, and
achieves the highest accuracy and the second highest recall rate.

As shown in the Fig. 2, the precision of our approach is 88.33%, and the recall rate
is 85.48%. The analysis of the intermediate results revealed that some of the repetitive
anomaly propagation paths excavated in the training cannot be detected in the test set.
For the same type of faults, the abnormal propagation path excavated in the test data set
has changed compared to the training set. This phenomenon is essentially caused by
caused by the character of uncertainty in the stream data.

The precision of the ranged-based approach and the outlier detection approach are
65.24% and 85.92%, and the recall of them are 72.62% and 78.26%. Analysis of the
intermediate results revealed that the two approaches are based on the single sensor
data. However, usually one fault may be caused by multiple anomalies, it can corre-
spond to multiple isolated anomalous points. The signal sensor data-based detection
method cannot detect such a fault. Our approach will find the correlation between multi
sensors and then form the anomaly propagation paths, this helps us to find more hidden
anomalies.

The above results show that the temporal dependency has an effective effect in
constructing fault prediction logic and fault detection.

5 Related Works

Recently, researchers have designed several approaches dealing with the problem of
anomaly prediction for the predictive maintenances. Several quantitative models
ranging from simple linear discriminant analysis, more complex logistic regression
analysis, and neural networks have been proposed for prediction [14]. Zhang et al. [1]
presented a novel system that automatically parses streamed console logs and detects

Fig. 2. Experiment Results of Precision and Recall under different approach
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early warning signals for IT system failure prediction based on the LSTM neural
network. Susto et al. [15] developed a multiple classifier machine learning method-
ology to deal with the unbalanced datasets that arise in maintenance classification
problems. Baban et al. [16] used a fuzzy logic approach to develop a decision-making
system that allows determining the lifetime of the needle and plane predictive main-
tenance of the needle of a sewing machine. However, it required expert knowledge and
depends on datasets of small quantity.

The above works have performed well to detect or predict the univariate anomaly
for the IoT applications. However, we cannot explain why and how these approach
works. Besides, more and more IoT applications need to analyze and identify the root
causes of the anomalies, while these approaches cannot answer the root causes.

Mining temporal dependency provide essential clues to identify the cause rela-
tionship among anomalies [17]. Several types of dependent pattern mining tasks have
been induced from practical problems and carefully studied. Song and et al. mined
activity dependencies (i.e., control dependency and data dependency) to discover
process instances when event logs cannot meet the completeness criteria [7]. A de-
pendency graph is utilized to mine process instances. However, the authors do not
consider the dependency among events. Plantevit et al. presented a new approach to
mine temporal dependencies between streams of interval-based events [8]. Friedberg
et al. proposed a novel anomaly detection approach. It keeps track of system events,
their dependencies and occurrences, and thus learns the normal system behavior over
time and reports all actions that differ from the created system model [18].

In this paper, we introduce the temporal dependency into the predictive mainte-
nance to improve the explanation of prediction approaches and discovery the root cause
of anomaly.

6 Conclusion

In this paper, we try to propose an effective and explainable approach to predict the
anomaly based on mining the temporal dependencies from multi-sensor event
sequences. To reach this goal, we detect “univariate anomaly” events from sensor data
and output multi-sensor event sequences. Then, we transform the temporal dependency
mining problem into a frequent co-occurrence pattern mining problem. Furthermore, a
lot of experiments have been done to show the effectiveness of our approach based on a
real dataset from a coal power plant. But the speed of our method can also be improved.
So, for future work, we are interested in parallel optimization algorithms to speed up
our method.
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