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Abstract. Defect prediction could help software practitioners to pre-
dict the future occurrence of bugs in the software code regions. In order
to improve the accuracy of defect prediction, dozens of supervised and
unsupervised methods have been put forward and achieved good results
in this field. One limiting factor of defect prediction is that the data
size of defect data is not big, which restricts the scope of application
with defect prediction models. In this study, we try to construct bigger
defect datasets by merging available datasets with the same measurement
dimension and check whether bigger data will bring better defect predic-
tion performance with supervised and unsupervised models or not. The
results of our experiment reveal that larger-scale dataset doesn’t bring
improvements of both supervised and unsupervised classifiers.
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1 Introduction

Fixing software defects is a very difficult and time-consuming job for software
practitioners during the development of a large-scale software project [3], at the
start of which we need to identify potential locations of these defects. In last
decades, software defect prediction has been proposed to locate defect-prone
code regions [7,9,11,18,19], most of which are constructed by supervised clas-
sifiers (e.g. trained with label information in the training set and tested on the
disjoint test set). Generally, these supervised prediction models have helped a
lot in software test and alleviate debug burden of software engineers. In most
of previous studies, it has been reported that these prediction models have a
promising performance in defect prediction.

Recently, unsupervised prediction defect has drawn more attention from aca-
demic fields. Zhou et al. [24] pointed out that a simple unsupervised prediction
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defect model (simple module size models) has a prediction performance com-
parable or even superior to most of the existing defect prediction models in
cross-project scenario. Yang et al. [21] showed that in effort-aware just in time
defect prediction settings, many simple unsupervised models have a better per-
formance compared with the state-of-the-art supervised models.

One limiting factor of defect prediction is that the data size of defect data
extracted from the real-world software projects is not big, which prevents defect
prediction models from employing popular methods of analyzing and mining big
data and restricts the scope of application with defect prediction models. In this
study, we try to construct bigger defect datasets by merging available datasets
with the same measurement dimension and check whether bigger data will bring
better defect prediction performance or not.

In detail, we introduce traditional supervised classifiers and the state-of-the-
art supervised classifier (simple module size model [24]) to test their perfor-
mances on the bigger datasets we collected. Besides, due to the curiosity about
if the promotion of the scale of dataset would boost the performances of super-
vised classifiers, we will organize a comparative experiment between raw smaller
datasets and merged bigger datasets. The results of our experiment reveal that
larger-scale dataset doesn’t bring improvements of supervised classifiers, and
simple module size model is also comparable to traditional supervised models
on bigger datasets.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground. Section 3 describes the preparations, including studied dataset, classifiers
and evaluation measures. Section 4 presents the experimental results. Section 5
summarizes the threats to the validity. Section 6 concludes the paper.

2 Background and Related Work

There are two kinds of defect predict models: supervised and unsupervised.
Supervised models are widely used and proved effective in prior work [22]. While
unsupervised models could classify objects directly without training process, so
it’s time-saving and easy to implement. Clustering and simple module size model
are two common unsupervised techniques used in software field.

According to the dataset based on, we also could divide defect prediction
into two scenarios, one of them is within-project defect prediction (WPDP).
In WPDP, the dataset used to train classifiers and the one used for prediction
come from a same project. The other scenario is cross-project defect prediction
(CPDP). In practice, some companies may find it’s hard to collect enough data
in their project to train the classifier [25], so it’s essential for them to seek for
CPDP solutions, which could utilize data from a different source project. In this
study, we will leverage both supervised and unsupervised models, and organize
experiments on both WPDP and CPDP.
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3 Experimental Setup

In this section, we will introduce our preparations for the experiment. In the
following statement, you will have a primary understanding about how we collect
dataset, select classifier and other similar things.

3.1 Collected Datasets

We use data from 15 projects of three groups - AEEEM, Eclipse and
JURECZKO. The data in one group have unified metrics, so they are easy to
be merged up and conduct further testing. Each project has both code metrics
and clear defect label. More specifically, each file’s defect label is marked as 1
(buggy file) or 0 (clean file). Table 1 describes the 43 data sets used. The first
to the third columns respectively list the group name, project name and version
number. For each project, the fourth to the sixth columns respectively list the
number of modules, the number of metrics, and the percent of defective modules.

Table 1. Information of collected data sets.

Group Project Version #Modules #Metrics %Defective

AEEEM JDT core - 997 31 20.66%

Equinox - 324 31 39.81%

Lucene - 691 31 9.26%

Mylyn - 1862 31 13.16%

PDE - 1497 31 13.96%

Eclipse eclipse 2.0,2.1,3.0 6729–10593 31 10.8%–14.8%

JURECZKO ant 1.3,1.4,1.5,1.6,1.7 125–745 20 10.9%–26.2%

camel 1.0,1.2,1.4,1.6 339–965 20 3.83%–35.5%

jedit 3.2,4.0,4.1,4.2,4.3 272–492 20 2.2%–33.1%

lucene 2.0,2.2,2.4 195–340 20 46.7%–59.7%

poi 1.5,2.0,2.5,3.0 237–442 20 11.8%–64.4%

synapse 1.0,1.1,1.2 157–256 20 10.2%–33.6%

velocity 1.4,1.5,1.6 196–229 20 34.1%–75.0%

xalan 2.4,2.5,2.6,2.7 723–909 20 15.2%–98.8%

xerces 1.2,1.3,1.4,init 162–588 20 15.2%–74.2%

In this study, we try to figure out how these defect prediction models perform
on datasets with larger scale, so all the versions in a project are merged into
one file (they have the same measurement dimension). Group AEEEM is an
exception, because the projects of it don’t process series of versions for us to
merge. Hence, we merge all the projects in AEEEM into one file, so this one
could be seen as test on CPDP, while others are on WPDP. All these merged
files are called combination in the following description. In contrast, original
raw files are called individual. All the merged files are listed in Table 2.
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3.2 Classifiers

In this study, we leverage three common supervised learning models and a simple
module size model. They are DNN (Deep Neural Network), RF (Random Forest),
LR (Logistic Regression) and ManualDown. Compared with other frequently-
used supervised learning models such as Linear Regression or Decision Tree,
the models we chose are more suitable and representative to be applied on our
dataset. Notions and implement details are presented below in sequence.

Table 2. Information of merged datasets.

Merged Project #Modules #Metrics %Defective

AEEEM 5371 31 15.88%

eclipse 17999 31 13.43%

ant 1567 20 21.06%

camel 2784 20 20.19%

jedit 1749 20 17.32%

lucene 782 20 56.01%

poi 1378 20 51.31%

synapse 635 20 25.51%

velocity 639 20 57.43%

xalan 3320 20 54.4%

xerces 1643 20 39.81%

Deep Neural Network. Deep Neural Network (DNN) is a classical machine
learning technique and is widely used in a variety of learning scenarios. In our
study, we build DNN model with the help of tensorflow. The DNN we use equips
2 hidden layers and 15 neural nodes in each layer. We select AdamOptimizer
provided by tensorflow as training algorithm and Cross Entropy as loss function.

Random Forest. Random forest (RF) is an ensemble learning method usually
used for classification. Nowadays it has been used more and more frequently
in software engineering field study, and have been proved to be effective by
former related work [5,15]. In our experience, we leverage the package in R
named randomForest to implement the model. The number of trees grown
(a parameter in RF function) is set 100, which is a apropos value after our
testing.

Logistic Regression. Logistic regression (LR) is a technique borrowed by
machine learning from the field of statistics. As a typical machine learning model,
logistic regression is also chosen as one of traditional defect prediction model.
we use function glm in R package to the model, which is used to fit generalized
linear models.
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ManualDown. ManualDown is a simple module size model coming from the
idea that we could use module size in a target project to predict bugs’ location.
Project with larger module is thought to be more defect-prone. Since Manu-
alDown do not need any data from the source projects to build the models,
they are free of the challenges on different data metric sets of the source and
target project data. In particular, they have small calculation demand and are
easy to implement. Furthermore, previous studies show that module size has an
intense confounding effect on the associations between code metrics and defect-
proneness [2,23]. We hence include ManualDown as a baseline model for following
comparison.

3.3 Prediction Setting

In order to decrease test error and estimate the accuracy of a predictive model in
practice, we apply one round of 5-fold cross-validation for each test in our study.
Firstly, we partition all the instances (or called module) in the data set into 5
complementary subsets, each pass one of them is chose as testing set, others as
training set. After 5 passes, we could obtain 5 performance indexes, which reflect
classifier’s performance and constitute box plots exhibited in Sect. 4.

3.4 Evaluation Measures

There are numerous evaluation measures in defect prediction field. We mainly
consider effort-aware scenarios and select three typical evaluation measures to
evaluate our prediction models’ performance.

AUC (The area under ROC curve). In Machine Learning, we usually count
on AUC for evaluation when it comes to a classification problem. AUC is the area
under ROC curve, which reflects classification model’s performance variation at
various thresholds settings. Hence AUC could fairly tell model’s capability of
distinguishing between classes. AUC is between 0 and 1 (inclusive). The closer
AUC is to 1, the better the model performs to distinguish between instances
with buggy and clean.

F1 (F1-Score). F1 (F1 score) is the harmonic mean of precision and recall:

F1 = (
recall−1 + precision−1

2
)−1 = 2 · precision · recall

precision + recall

By the way of harmonic mean, F1 combines precision and recall to give a com-
prehensive description of how much model is able to distinguish two classes. If
you get a good F1 score, it means that your false positives and low false negatives
is low, so you correctly identify real buggy instances. A F1 score is also between
0 and 1 (inclusive), and is considered perfect when its value is close to 1.

CE (Cost-Effectiveness). During defect prediction process, software practi-
tioners prefer to check those files with high defect-proneness and small module
size due to limited resources. Therefore, we could rank files in descending order
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using their probability of being buggy. The effort-aware ranking effectiveness of
classifiers is usually measured by cost-effectiveness (CE) curve, which is a com-
mon evaluation measure in the field of defect prediction. And it’s widely used in
prior work [12,16]. CE could be calculated by the following formula introduced
by Arisholm et al. [1]:

CEπ =
Areaπ(M) − Areaπ ∗ (Random)

Areaπ(Optimal) − Areaπ ∗ (Random)

Where Areaπ(M) is the area under the curve of model M (likewise to Optimal
and Random) for a given π. π is a cut-off varying from 0 to 1, and it indicates the
percentage of cumulative LOC we take into account. A larger CEπ represents a
better ranking effectiveness. In this work, we discuss CEπ at π = 0.2.

3.5 Analysis Methods

In order to make the results in Sect. 4 more convincing, we introduce two prac-
tical analysis methods to help us analyze in detail.

Scott-Knott Test. Scott-Knott (SK) test [17] is an analysis method used for
group classifiers into statistically distinct ranks. When a plot appears before our
eyes, it’s hard to identify if there is significant distinction between classifiers,
and SK test could help on it. The SK test recursively ranks the given classifiers
through hierarchical clustering analysis. It clusters the given classifiers into two
group based on evaluation indicators and recursively executes until there is no
significant distinct group created [4]. The SK test used in classifiers’ comparation
can be found in prior works [4,8,13]. In this study, we use SK test in 95%
confidence level.

Win/Tie/Loss. Win/Tie/Loss result is another analysis method which is useful
in performance comparation between different techniques and has been widely
used in prior works [10,14]. Once we get classifiers’ performance evaluation data,
Wilcoxon signed-rank test [20] and Cliff’s delta δ [6] could be conducted to
compare their performance. If one outperforms another based on the Wilcoxon
signed-rank test (p <0.05), and there is distinct difference between the two based
on Cliff’s delta δ (δ ≥ 0.147), we mark test as a ‘Win’. In contrast, test is marked
as a ‘Loss’ if p <0.05 and δ ≤ -0.147. Otherwise, the case is marked as a ‘Tie’. The
Win/Tie/Loss result shows if one of them outperforms the other one actually in
all conditions.

4 Experimental Results

This section will provide a detailed description of our experimental results. We
focus on how different defect predict models perform on combination and indi-
vidual datasets, and answer the following research question:
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Fig. 1. Comparision between combinations and individuals on AUC, F1 and CE0.2

(Color figure online)
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4.1 RQ1: Does Improvement of the Size of Dataset Promote
the Effect of Defect Prediction?

The answer we give is NO. Generally speaking, training on the combination of a
project doesn’t outperform the one on the individual versions evaluated by AUC,
F1 and CE0.2. And the result is convincingly supported by Win/Tie/Loss.

Figure 1 shows an overview of the comparison between prediction on combina-
tions and individuals. The boxplots show the distribution of evaluation measures
(AUC, F1 and CE0.2) of each classifier in the studied datasets. Green boxes rep-
resent the performances on merged files. Blue boxes represent the performances
on individual files. Generally speaking, the results of the two don’t exist signifi-
cant discrepancy. But if you observe the plot more carefully, you could find that
almost all the blue boxes are slightly higher than green boxes. Take the second
plot in Fig. 1 as an example, except the performance on lucene with LR, all the
blue boxes are higher than green boxes. This trend means that, surprisingly, the
merge operation on the data set slightly reduces the performance of the classifier.
This may be due to the hidden differences in different versions of a project.

Table 3. Information of Win/Tie/Loss indicator.

Index Win Loss Tie Relation Result

AUC 11 1 21 win + tie >loss Not significantly bad

F1 3 1 29 win + tie >loss Not significantly bad

CE0.2 1 1 31 win + tie >loss Not significantly bad

In order to have a more detailed observation, we also apply the Win/Tie/Loss
indicator to help analyzing. The Win/Tie/Loss result manifests whether com-
bination is significantly better or not when compared with individual. Table 3
displays the details of Win/Tie/Loss result - it gives the number of Win/Tie/Loss
in our test. Take the first row of table for illustration, it shows that performances
of test on individuals wins 11 times, losses 1 time and ties 21 times against test
on combinations. (11 merged files, 3 classifiers, so 33 competitions in total) This
result manifests that our prior observation based on Fig. 1 is correct: individuals’
performances slightly surpass the combination ones. In general, combination is
not significantly better than individual on all three measure indexes. This result
evinces the combination of software engineering dataset does not achieve distinct
improvement.

We have considered many possibilities why increase in dataset scale didn’t
achieve distinct improvement, and the most possible reason comes to hetero-
geneity between different projects and different versions. Due to heterogeneous
nature, increase in sample size doesn’t provide supervised model with consistent
and valid information, no matter on WPDP or on CPDP. So, it’s hard to elevate
classifiers’ performances.
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In summary, combination is not significantly better than individual on AUC,
F1 and CE0.2, which is supported by Win/Tie/Loss evaluation.

4.2 RQ2: Does ManualDown Outperforms Other Supervised
Techniques?

In addition to differences between combinations and individuals, we also want to
make a thorough inquiry on different performances of the four defect prediction
model - DNN, RF, LR and ManualDown. Our question is if ManualDown could
outperform other three typical supervised learning model, and it will be answered
on both the merged and independent datasets.

First let’s inspect the performance on independent datasets, and the three
box plots in Fig. 2 show our effort. The models from left to right on the
x-axis are in turn DNN, LR, ManualDown and RF. Three pictures represent
the performance on AUC, F1 and CE0.2. Our approach is to calculate the eval-
uation measure values of individual version and put them into box plot, so we
can clearly discern the discrepancy between different model.
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(c) CE0.2 Performance.

Fig. 2. Comparision between classifiers on individuals

To explain with more detail, taking picture 1 for example. ant is one of
the projects in the study, and firstly, we have a 5-fold DNN training and test
on each version of ant (ant1.3, ant1.4, ant1.5, ant1.6, ant1.7) get 5 mean
AUC values out of it. Then we calculate the mean of these values from different
versions, so we get a synthesis AUC value of ant. In our experience we have
prepared 11 projects, therefore we could procure 11 synthesis AUC value, which
constitute the leftmost box in the plot. Similarly we could complement this box
plot by using other models to have 5-fold training and test on the same dataset.
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Besides, Scott-Knott (SK) test is also applied here to depict if distinct dif-
ference exists among models. In Fig. 2, clusters with high SK values have been
tinted into carnation, while others are staying gray. From the three pictures we
can tell that RF outperforms other models. And RF is significantly distinct from
DNN, LR and ManualDown on AUC, and from DNN, LR on CE0.2 through SK
test. As a result, we could draw a conclusion that ManualDown doesn’t outper-
form other supervised techniques on independent datasets.

Now let’s pay our attention on the performs on merged datasets, and this is
showed on Fig. 3. Unlike the experience on independent datasets, taking picture
1 for example. Firstly, we combine all the instances in different versions of a
project. Hence, we get 11 combined datasets (because we have 11 projects).
Then we have a 5-fold DNN training and test on each combined dataset and
calculate AUC value of it, which make up the leftmost box in the picture 1 plot.
In a similar way it’s easy to draw up the performance box plot on CE0.2 and F1
on merged datasets.
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Fig. 3. Comparision between classifiers on combinations

From Fig. 3, it’s conspicuous that there doesn’t exist obvious difference
among the performance on these defect predict models. On the other hand, along
with the increase of the instance’s number in one dataset, the performance of
model which has week performance on independent datasets makes a measly
progress. And this lead to differences between different models is less obvious.
In summary, ManualDown doesn’t outperform other supervised techniques on
merged datasets as well, and ManualDown is not significantly worse than tra-
ditional supervised models. Considering the complexity of traditional models,
ManualDown is undoubtedly a predict method with more practical significance
based on us experience.
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In conclusion, ManualDown is also comparable to traditional supervised
models on bigger combination datasets.

5 Threats to Validity

Project Selection. In this study, we select 15 open-source projects which have
been used in prior works. These projects equip large enough data scale and
regular metric information, which is conducive to train classifiers. Whereas limits
still exist since these projects only come from 3 groups, thus there may be a
different result if more diverse data is introduced in the experiment. So, it’s
necessary to replicate our study in the future with a wider variety of datasets.

Classifier Selection. The classifiers we select in this work are DNN, RF and
LR. Although these are common investigated in defect prediction literatures,
they cannot represent all the classifiers. There would be a chance to get a better
prediction performance if some newly proposed effective techniques are used
during model training. Replication studies using different classifiers may prove
fruitful.

Study Replication. DNN and ManualDown are implemented in Python. LR
and RF are implemented using R packages. The three evaluation measures are
implemented in Python. All these open source implementations and datasets can
be accessed online at https://github.com/NJUaaron/2019DataTest.

6 Conclusions

Accurate software defect prediction plays an important role in the software indus-
try to alleviate burden of software engineers. Many supervised and unsupervised
methods have been proposed in prior works and are proved effective in the lit-
erature. However, for supervised methods, there is a limiting factor of defect
prediction - the size of data used for training is not big, which restricts the
scope of application with defect prediction models in practice. In this study, we
construct bigger defect datasets by merging available datasets with same mea-
surement dimension and check whether the promotion in data size will lift defect
prediction performance or not. Meanwhile, ManualDown, one of simple module
size models, is introduced as a baseline model to measure supervised models’
performances.

In the experience, we test DNN, RF, LR and ManualDown on individual files
and merged files. Their prediction performances are evaluated by AUC, F1 and
CE0.2, and the experimental results are analyzed by SK test and Win/Tie/Loss
technique. In summary, our conclusions are as follow:

https://github.com/NJUaaron/2019DataTest


Is Bigger Data Better for Defect Prediction? 149

– Performance on larger-scale dataset is not significantly better than perfor-
mance on raw smaller dataset under AUC, F1 and CE0.2. More precisely,
the increase in the size of dataset even makes the classifier perform worse,
although the degree of deterioration is not distinct.

– There is not significant difference between performances of ManualDown and
other supervised techniques. In other words, classical supervised models can-
not outperform simple module size model on our merged bigger data.
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