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Abstract. Anomaly detection, though, is a common and intensively
studied data mining problem in many applications, its online (incremen-
tal) algorithm is yet to be proposed and investigated, especially with
respect to the use of tensor technique. As online (incremental) learn-
ing is becoming increasingly more important, we propose a novel online
anomaly detection algorithm using incremental tensor decomposition.
The online approach keeps updating the model while new data arrive,
in contrast to the conventional approach that requests all data to re-
build the model. In addition, the online algorithm can not only track the
trend in time evolving data, but also requests less memory since only
the new data is necessary for model updating. The experimental results
show that the presented algorithm has sound discriminative power that
is essential for anomaly detection. In addition, the number of anomalies
can be flexibly adjusted by the parameters in the algorithm, which is
necessary in some real-world scenarios. The effects of these parameters
are also consistent using two experimental datasets.

Keywords: Tensor decomposition · Online machine learning ·
Anomaly detection · Incremental · Streaming

1 Introduction

Anomaly detection [3] is a classic problem existing in a variety of areas, such
as fraud detection in finance. It aims at finding patterns that behave differently
from the rest of the main population. Anomaly detection and outlier detec-
tion are often used interchangeably, and it does not necessarily requires labelled
data. In fact, unsupervised anomaly detection is of great practical interest, since
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labelled data are scare to obtain in many real-world applications. We reveal sev-
eral challenges in anomaly detection: (a): The definition of normality is a hard
task due to the absence of labelled data; (b): The noise and trend in data lend
the problem even more difficult; (c): Abnormal patterns may evolve with time.

To date, time evolving data are becoming more prevalent. At the same time,
different problems, such as changing patterns, arise due to the streaming/non-
stationary data. As a result, online machine learning or similarly incremental
machine learning draws much attention in recent years [4]. In contrast to the con-
ventional machine learning approach, incremental machine learning keeps updat-
ing the model with respect to the underlying characteristics of the incoming data.
The classic approach trains the model using the entire data, which may result in
two drawbacks, namely neglecting the time-evolving phenomenon and costing too
much time. An early example of incremental machine learning is the very fast deci-
sion tree (VFDT) proposed by Domingos [5], modifying the decision tree using
Hoeffding’s inequality as a statistics to handle the streaming data. Massive online
analysis (MOA) [2] is particularly developed for analysis of incremental data with
abundant methods devised for classification, regression etc.

Commonly, machine learning and data mining algorithms deal with matrix.
In some scenarios, tensor may be more suitable to represent the data, which is
an extension to matrix. In the movie recommendation application, a matrix can
be formed by users and items, and a tensor can be shaped by adding time as the
third dimension. The relational learning via tensor approach proposed by Nickel
[13] stresses that the tensor factorization can capture the essential information
via the decomposed latent factors. With all information reside in a tensor, the
interrelationship between different dimensions can be better captured by tensor
compared to matrix. Hence, decomposing the tensor uncovers useful patterns
which may not be obtained by matrix factorization.

Having mentioned the usefulness of anomaly detection, online machine learn-
ing and tensor decomposition, we propose a new anomaly detection algorithm
using incremental tensor decomposition, and demonstrate the results using two
datasets. This work is a contribution to the anomaly detection community by
introducing the tensor decomposition in the manner of incremental learning. The
unsupervised algorithm is suitable for applications where the data are multivari-
ate and vary with time, such as data collected by sensors used in IoT scenarios.

The paper is organized as follows: The introduction is followed by related
work. The third section presents the preliminary knowledge on tensor, and the
incremental tensor decomposition is introduced subsequently. The experimental
results on two datasets are then shown in a later section, along with results
discussion. Finally, conclusions are drawn in the last section.

2 Related Work

Recently, tensor factorization has gain popularity due to its ability in finding
interesting patterns in data. A survey [14] offers an overview of a range of appli-
cations based on tensor decomposition. They show that the tensor decomposition
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is able to extract hidden correlations and meaningful structure in the data min-
ing field. Furthermore, a few open challenges in tensor decomposition are high-
lighted for future research direction. Kolda and Bader [9] study several methods
of higher-order tensor decompositions and suggest relevant applications as well
as available software. CANDECOMP/PARAFAC (CP) [8] and Tucker decom-
positions [17] are the primary focused methods. Moreover, they mention that a
flourish of research focuses on more efficient and better methods and a range
of applications is developed. A similar work [16] introduces an incremental ten-
sor analysis (ITA) that efficiently computes a summary for high-order data and
finds latent correlations. They propose three related methods that are dynamic,
streaming and window-based, showing significant gain in performance. Another
work conducted by Sun et al. [15] further shows experiments on anomaly detec-
tion and multi-way latent semantic indexing using two real-world large datasets.
The result shows that the dynamic tensor analysis and streaming tensor analy-
sis are effective and efficient. They can find interesting pattern, such as outliers.
Most recently, Gujral et al. [7] introduce a sample-based batch incremental tensor
decomposition algorithm (SamBasTen). This algorithm can update the existing
decomposition without recomputing the entire decomposition by summarizing
the existing tensor and incoming updates. Then, it updates the reduced sum-
mary space. This method can be regarded as an approach to decomposing the
tensor incrementally, rather than an approach devised for anomaly detection.

A research work [6] suggests an online self-organizing map (SOM) to model
the large number of behavior patterns in the crowed. The proposed online learn-
ing method has been proved to efficiently reduce the false alarms while still
keep the ability to detect most of the anomalies. In 2011, Li et al. [12] presents
a tensor-based incremental learning algorithm for anomaly detection in back-
ground modeling. Compared to the other vector-based methods, this algorithm
is a robust tensor subspace learning algorithm that has ability to fit the variation
of appearance model via adaptively updating the tensor subspace. Their experi-
mental results show the robustness of tensor subspace-based incremental learning
for anomaly detection. An unsupervised incremental learning method [18] was
developed to detect maritime traffic patterns. It can automatically derive knowl-
edge of maritime traffic in an unsupervised way without any Automatic Identifi-
cation System (AIS) description. In 2014, Rikard Laxhammar and Göran Falkma
[10] propose an improved online learning and sequential anomaly detection algo-
rithm based on their previous works. The new algorithm is called Sequential
Hausdorff Nearest-Neighbor Conformal Anomaly Detector (SHNN-CAD) that is
a kind of parameter-light anomaly detection algorithm. It has good performance
on unsupervised online learning and sequential anomaly detection in trajecto-
ries. The biggest advantage of SHNN-CAD is the ability to achieve competitive
classification performance by utilizing minimum parameter tuning. A review [19]
introduces the challenges, current techniques and applications with respect to
the online aggregation.
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3 Methods

Prior to introducing the proposed method, we first briefly reveal the related
knowledge as background information.

3.1 Background Knowledge

Tensor is a natural extension to matrix, with N distinct dimensions (also known
as orders, modes, ways). The data used in this study can be denoted as an order-
3 tensor T ∈ R

N×P×Q, where N,P,Q are the dimensions. n, p, q can take on the
specific value in the N,P and Q respectively. An order-3 tensor T can be factor-
ized (decomposed) into three components bases (factor matrices A, B, C) with
a pre-defined rank R. The CANDECOMP/PARAFAC (CP) [8] decomposition1

is employed in this work. In contrast to the tensor decomposition, principal com-
ponent analysis (PCA) is a classic unsupervised dimensionality reduction tech-
nique, being applied to numerous applications such as face recognition. PCA
assumes that the low-dimensional manifold is an affine space, transforming the
data into another linear space. The original data X ∈ R

N×M can be reduced to
new data X ∈ R

N×R (R � M) by the projection matrix U ∈ R
R×M . Figure 1

(a) shows the basic concepts relevant to tensor, while sub-figures (b) and (c)
demonstrate how the tensor data are constructed in our experiments.

T ≈
R∑

r=1

λrar ◦ br ◦ cr. (1)

Equation 1 suggests that the tensor T can be computed by the outer product
(“◦”) of ar ∈ R

N , br ∈ R
P and cr ∈ R

Q. Given the rank R (dimension after
decomposition), the factor matrices are in the form of A = [a1 a2 · · · aR] ∈
R

N×R, B = [b1 b2 · · ·bR] ∈ R
P×R and C = [c1 c2 · · · cR] ∈ R

Q×R respectively.
Generally, the A, B, C are normalized by a scalar λr, representing some latent
structure in the data such that they can be used to perform data mining task [14].

3.2 Incremental Tensor Decomposition

According to the work proposed by Kolda [9], the CP decomposition tries to
approximate the tensor T with R components, i.e.,

min
T̂

‖T − T̂ ‖ with T̂ =
R∑

r=1

λrar ◦ br ◦ cr. (2)

The solution of Eq. 2 can be reduced to a least-squares problem by fixing
all but one matrix using the alternating least squares (ALS) approach. As sug-
gested in the work [9], T A,BC

1 is roughly equal to A(C � B)T . T A,BC
1 ∈ R

N×PQ

represents that the data T1 is unfolded by concatenating the second and third
1 Tensor decomposition and tensor factorization (TF) are often used interchangeably.
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Fig. 1. (a): Illustration of vector, matrix, tensor and CP decomposition. (b): The con-
struction of tensor data using MNIST dataset. (c): The construction of tensor data
using the real-world (in-house) dataset.

mode (order) into a long matrix, while keeping the first mode intact2. Similarly,
T B,AC
1 ∈ R

P×NQ is achieved by unfolding the first and third mode while keep-
ing the second mode unchanged. According to the Eq. 2, the optimal solution is
then boiled down to Â = T A,BC

1 [(C � B)T ]+. One of the core parts in our algo-
rithm is to keep updating the matrix Â (similarly B̂ and Ĉ) to perform online
anomaly detection. To simplify the computation, we give the detailed following
proof showing that Â can be calculated straightforwardly3.

Â = T A,BC
1 [(C � B)T ]+ (3)

= T A,BC
1 [((CTC) ◦ (BTB)) ∗ (C � B)+]+ (4)

due to (C � B)T (C � B) = (CTC) ◦ (BTB), cf. [11] (5)

hence (C � B)T = ((CTC) ◦ (BTB)) ∗ (C � B)+ (6)

= T A,BC
1 (C � B)+((CTC) ◦ (BTB)) (7)

The detailed algorithm description and a graphical illustration are presented
in Algorithm 1 and Fig. 2 respectively. It is essential to explain some key param-
eters in the algorithm before elaborating the approach.

1. S: mini-batch, a chunk of streaming data that are supposed to be processed.
2. T : reference interval length, every T data points are selected as reference

(non-anomaly) points for similarity calculation.

2 We use A, B, C on the superscripts to represent the respective modes in the tensor T .
3 “�” denotes the Khatri–Rao product, “◦” denotes the vector outer product, “∗”

denotes the Hadamard product that is the elementwise matrix product, the super-
script “+” denotes pseudo inverse.
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Algorithm 1. Online Anomaly Detection via Incremental Tensor Decom-
position
Data: Input: T1: the historical data used for tensor decomposition, T2: the streaming

data. R: the dimension after decomposition. S: the mini-batch streaming data.
T : the length of the interval for selecting reference training points. δ: threshold
used for anomaly detection.

Result: Output: detected anomaly time point OADt of a certain instance OADi.
The first phase infers the decomposed matrices A, B, C, and detects all anomaly points1

using historical data.
A, B, C ← decomposes the historical data T1 using CP decomposition.2

Â ← T A,BC
1 × (C � B) ∗ (BT B ∗ CT C)+.3

T T
1 ← sampled training (reference) data points in the T1 according to the defined4

interval T .
for i = 1 : |T1|, “| • |” denotes the cardinality of a set do5

for j = 1 : |T T
1 | do6

similarity(i, j) =
√∑

(Â(i, :) − Â(T T
1 (j), :))27

end8

end9

d ∈ R
N×1 ← min(similarity(i, :)), the smallest distance of each point to sampled data10

dmax ← max(max(similarity(i, :))), the greatest distance used for distance11

normalization
d ← d

dmax12

anomalies ← for all the d > δ13

The second phase detects anomalies on the incoming streaming data.14

while T2 is not empty do15

i = i + 1, new instances in T2 go to T1 for following similarity computation16

if (i − 1 mod T ) = 0 then17

append index i to the T T
118

end19

Â(i, :) ← T A,BC
2 × (C � B) ∗ (BT B ∗ CT C)+.20

for i = 1 : |T1| do21

for j = 1 : |T T
1 | do22

similarity(i, j) =
√∑

(Â(i, :) − Â(T T
1 (j), :))223

end24

end25

dscore ← min(similarity(i, :))26

dsmax ← max(max(similarity(i, :))), the s in dsmax denotes the distance in the27

streaming data
dscore ← dscore

dsmax28

end29

for j = 1 : |S| do30

distance =

√
∑

(T2(i,j,:)−T2(i−1,j,:))2∑
T2(i,j,:)31

if distance > δ then32

collect anomaly time point and the instance as results33

end34

end35

T1 ← T1 + T236

Â ← T A,BC
1 × (C � B) ∗ (BT B ∗ CT C)+37

B̂ ← T B,AC
1 × (C � A) ∗ (AT A ∗ CT C)+.38

Ĉ ← T C,AB
1 × (B � A) ∗ (AT A ∗ BT B)+.39

Go to the while loop to continue the process.40
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Fig. 2. An illustrative workflow of proposed online anomaly detection algorithm.

3. δ: threshold, a data point is abnormal if the similarity is greater than the
threshold.

4. R: dimension after CP decomposition.
5. D1: the historical data (or base data) used for CP decomposition.
6. D2: the streaming data to be processed.

We take the MNIST dataset (cf. Sect. 4.1) as a running example (cf . Fig. 2),
setting parameters S = 5, T = 3, δ = 0.1, R = 2, with 10 examples (images) in
T1, i.e., T1 ∈ R

28×28×10. We format the tensor data by adding images on the third
dimension, with an aim to detect images that are not “1”. Therefore, the matrix
Ĉ should be used and updated to compute the abnormal level (dissimilarity).
Alternatively, we would then compute the matrix Â if we form the tensor as
T1 ∈ R

10×28×28. After CP decomposition, we obtain the decomposed matrices A
and B that can further approximate the Ĉ. It is worthy mentioning that C and Ĉ
are numerically very close. In the subsequent procedures, Ĉ is constantly updated
so that we also apply Ĉ in the very beginning. T1 ∈ R

28×28×10 is transformed into
a matrix T C,AB

1 ∈ R
10×784 along the first and second modes (28 × 28 = 784),

while the third mode is remained. Within the first ten samples in T1, sample
points 1, 4, 7, 10 are chosen as the reference (training, normal) points because
the reference interval length T = 3. Thus, the distance between each data point
to the reference point can be readily calculated by the Euclidean distance based
on Â, cf. line 7 in Algorithm 1. Taking the smallest distance values for each
line in the similarity matrix (line 10 in Algorithm 1), we receive a vector that
can be directly used for anomaly judgement using the δ. The anomaly point is
determined if its minimum distance to all the reference points is greater than
the pre-defined threshold, which suggests that it is dissimilar to normal points
and hence should be noted as anomaly. Calculation of the Euclidean distance
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using decomposed factor matrices directly suggests the similarity between data
points, since the decomposed matrices inherently capture some latent structural
information in the data. In the newly coming data (every S = 5 samples), the
13th data point is picked as a reference point based on the previous 10 base
points. New anomalies are found given an updated similarity matrix. Finally,
the key matrices Â, B̂, Ĉ are recalculated in the presence of new data.

4 Experiments

4.1 Datasets and Baseline Methods

To demonstrate the effectiveness of the proposed method, we use one benchmark
and an in-house dataset, which can be formed in the shape of tensor. The use of
MNIST dataset is motivated by its feasibility in transforming images into tensor
data as well as with known labels. Due to the simple fact that it is hard to obtain
publicly free tensor datasets which contain ground truth abnormal labels, we,
therefore, employ the in-house dataset to demonstrate the experimental results.

Introduction to MNIST Dataset: The MNIST dataset is composed of hand-
written digits, containing 60,000 training images with each of dimension 28×28.
It has been intensively used for image classification task, in particular for deep
learning. The image data can be represented as a two-dimensional matrix, and
a tensor is formed when we stack the images on top of each other. In the experi-
mental setting, we regard digit “1” as the normal class with 6742 instances, and
all the rest as the abnormal class. As we know the true labels of the data, we
therefore employ the F1-Score = 2((precision × recall)/(precision + recall)) to
compare the results.

Introduction to In-house Dataset: Different from the MNIST data, the in-
house data come from a real-world scenario that contains five same type equip-
ments running in long period of time. Ten variables represent the equipments’
running condition. Therefore, time (2039 recordings), equipments (five) and vari-
ables (ten) constitute the tensor data of size 2039 × 5 × 10 as depicted in Fig. 1
(c). The anomaly can first be detected by the time. Further, we are able to know
which equipment is running abnormally by calculating the distance (using vari-
ables) to the neighbouring time points. However, the dataset is in shortage of
ground truth anomaly labels, although there may be some abnormal states in
the data. Hence, it is a completely unsupervised anomaly detection task.

Introduction to Compared Methods: We compare the methods with dif-
ferent updating batch sizes, namely Online Anomaly Detection (OAD) with
mini-batch of size 10, i.e., OAD-10 and so on. Regarding the MNIST, we apply
the well-known k-means clustering as a baseline comparison, since both k-means
and the presented approach are unsupervised algorithms. We used the Matlab
tensor toolbox [1] implementation in the experiments. To the best of our knowl-
edge, similar algorithms using tensor for online anomaly detection are very rare.
Thus, k-means is the only chosen compared method.
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Fig. 3. MNIST dataset results. (a): The F1-Score affected by number of anomalies,
R = 20, T = 20, δ = 0.1. (b): The F1-Score affected by the number of dimensions (R),
T = 20, δ = 0.1, T1 contains 5000 samples as initial base, T2 contains 6742 anomalies
and 1742 normal points. (c): The F1-Score affected by the size of initial decomposition
bases, T = 20, δ = 0.1, decomposition base T1 and T2 contain 13484 samples as a
whole. (d): Runtime comparison.

4.2 Experimental Results

In Fig. 3 (a), the number of anomalies is randomly sampled from all digits except
“1”, i.e., the rest numbers are treated as abnormal ones. As the number of
anomalies increases, the k-means (k = 2) performs gradually better which means
that k-means has trouble in separating abnormal points when the two clusters are
too imbalanced. The batch method, without online updating, seems to behave
the best. We see better performance when the size of mini-batches increases.
Figure 3 (b) reveals that we may obtain poor results if the R is set to a low value,
especially for the batch method. Figure 3 (c) illustrates that the performance
tend to be poor when the mini-batch size is small. In terms of the running time,
the time drops dramatically when the mini-batch reaches 200. In fact, the smaller
the mini-batch the longer running time.

Regarding the in-house real-world dataset, we investigate the effects of several
parameters to offer an insight into parameters. From Fig. 4 (a), we see that
smaller mini-batch finds more anomalies than greater ones. In Fig. 4 (b), we
observe more anomalies as the interval becomes larger, since fewer data points are
selected as reference (normal) points in larger interval. In Fig. 4 (c), the goodness
of fit (definition is referred to [7]) is a measure of how well the decomposed
model explains the underlying data, which were tested using the remaining data
points after excluding the base data. Figure 4 (d) clearly shows that smaller
mini-batches cost more time.
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Fig. 4. In-house dataset results, R = 5, T1 contains 1000 samples as initial base. (a):
The number of anomalies affected by the thresholds, T = 30. (b): The number of
anomalies affected by the interval length (c): The goodness of fit varies with the time
series. (d): Runtime comparison.

In Fig. 5, we can conclude three trends, (1): The number of anomalies declines
as we increase the decomposition bases. (2): The number of anomalies is inverse
proportional to the value of R. (3): Small mini-bathes detect more anomalies,
which is consistent with the observation in MNIST data.

4.3 Discussion of Experimental Results

From above experiments, we see that the mini-batch size S and reference interval
length T play essential role in finding the number of anomalies. The introduction
of T may lead to some biased results, because the selected reference points
(depends on value T ) can be actually anomalies whereas they are regarded as
normal training data for model updating. As we frequently update the model,
more anomalies can be detected. A larger S also means less computational time.
The number of decomposition base (historical data for initial model) is not as
critical as S and T . The parameter threshold δ is certainly an important factor
influencing the number of anomalies, which can be tuned according to domain
specific knowledge or by a training dataset.

From the algorithmic point of view, the algorithm can still be further studied
in following aspects. A forgetting factor can be introduced to serve as a memory
mechanism to remember or forget the historical data. In addition, we may con-
sider excluding the anomaly points prior to updating the model, which would
yield different results and may be beneficial in some scenarios. Furthermore,
we may use more benchmark datasets to validate the approach. Regarding the
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Fig. 5. The number of detected anomalies affected by the size of initial decomposition
bases using various parameter settings. The green line in subplot (b) is the average
value calculated from the four lines in subplot (a), and the shaded area represents the
standard deviation of these lines. (Color figure online)

algorithm, extra efforts need to be paid to study the higher order (mode) incre-
mental tensor learning, which is beyond the scope of this work.

5 Conclusion

The present study proposed a new online anomaly detection algorithm using
incremental tensor decomposition. The updating process is achieved by refresh-
ing the factor matrices, and the anomalies are detected by computing a distance
based on the information captured in these matrices. Since anomaly detection
is often a hard task by itself due to the fact of lacking true anomaly labels,
we therefore used MNIST dataset to show the discriminative effectiveness. The
other real-world in-house dataset demonstrates the effects of various parameters
influencing the results. Our proposed algorithm can be a suitable approach for
applications that involve large amount of data, because online algorithm does
not request large memory space, whereas tensor decomposition on a large matrix
can be computationally very expensive. The online algorithm can be a consid-
ered candidate for applications in which the data is hard to fit in memory and
change with time, because the updating algorithm and the tunable parameters
allow the model to track the changes.
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