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Abstract. This paper proposes IELE, an LLVM-style language,
together with a tool ecosystem for implementing and formally reason-
ing about smart contracts on the blockchain. IELE was designed by
specifying its semantics formally in the K framework. Its implementa-
tion, a IELE virtual machine (VM), as well as a formal verification tool
for IELE smart contracts, were automatically generated from the for-
mal specification. The automatically generated formal verification tool
allows us to formally verify smart contracts without any gap between the
verifier and the actual VM. A compiler from Solidity, the predominant
high-level language for smart contracts, to IELE has also been (manu-
ally) implemented, so Ethereum contracts can now also be executed on
IELE.

1 Introduction

Ethereum [5], with more that 500,000 daily transactions [13] is the largest
blockchain network supporting smart contracts. The smart contracts used in the
context of Ethereum transactions are written in the language of the Ethereum
Virtual Machine (EVM) [38], a stack-based assembly-level language.

Unfortunately, recent exploits on EVM smart contracts have led to losses in
the range of hundreds of millions USD [1,4,7,34,35]. In response, KEVM [15]
was developed, a formal semantics of the EVM in K [29], to provide formal verifi-
cation assistance to the EVM smart contract world [26,32]. We and others in the
Ethereum community have embraced and adopted KEVM, as a more rigorous
and thus precise alternative to the Yellow paper [38]. Through our own experi-
ence with KEVM and the reports of others, we became aware of the limitations
of EVM as a language: it includes features that are easily exploitable and its
low-level nature makes formal verification efforts tedious and time-consuming.
On the positive side, as reported in [15], the EVM interpreter automatically gen-
erated from KEVM by the K framework [29] was only one order of magnitude
slower than the official EVM client written in C++ [10]. Since the node client
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code takes only a small fraction of the total execution time on a blockchain,
the KEVM performance was considered acceptable by IOHK (http://iohk.io),
the company that is in charge of the Ethereum Classic blockchain, to deploy a
testnet that is entirely powered by the auto-generated KEVM client [17].

In response to these limitations of EVM, we have designed and implemented
IELE, a new language for smart contracts. IELE is a low-level language with
syntax similar to that of LLVM [22]. It is designed to be both human readable
and suitable as a compilation target for more high-level languages. IELE has var-
ious high-level features, such as function calls/returns, static jumps, arbitrary-
precision integer arithmetic among others, that both make automatic formal
verification more straight-forward and the language itself more secure.

IELE was designed using a formal specification, and its implementation was
automatically generated from its specification using the same technology that was
used to generate the implementation of KEVM [15], namely K [29]. In contrast,
other languages have separate specifications and implementations, and it is hard
to keep them from differing. Sometimes the specification is informal, like that
of LLVM [22] and sometimes formal, like that of SML [23], but in either case
the implementation is separate so it is not possible to execute test cases against
the specification. To bridge the gap between specification and tools, K provides
support for developing language semantic definitions as well as a host of tools
for such a definition, such as parser, interpreter, deductive verifier, and more.
These tools are automatically generated so any change to the formal seman-
tics is automatically propagated to the tools. For IELE, we use the generated
parser/interpreter to obtain a IELE Virtual Machine (IELE VM) tool (also ref-
erence implementation). We also use the capability of K to generate sound and
relatively complete deductive program verifiers for the defined languages [6], to
obtain a IELE smart contract formal verification tool. As a result, IELE is for-
mally specified and its implementation and verifier are correct by construction
and remain correct, with zero effort, in the presence of updates to the language.

We have deployed the IELE VM in a testnet supported by IOHK, a major
blockchain company [16]. To do so, we have built appropriate infrastructure
around the IELE VM: a full compiler for Solidity [11], a popular high-level
language for smart contracts that until now could only be compiled to EVM, as
well as integration with the Mantis Ethereum client [18]. This allows us to run
real-world Solidity contracts on IELE (see appendix B in [20] for more details).

In summary, our contributions are:

– IELE, a smart contract language designed from the ground up using for-
mal methods with the goals of security, verification, human-readability, and
portability in mind, using the K framework. IELE is publicly available [33].

– Useful tools for IELE: A IELE virtual machine that was deployed as a testnet
by a major blockchain company and a IELE smart contract verifier automat-
ically generated by the K framework from the IELE formal semantics.

More details can be found on Github [33] and on the IELE testnet [16].

http://iohk.io
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2 Background

We briefly discuss the K framework, Ethereum and the EVM, as well as other
smart contract languages currently under development.

The K Language Semantic Framework. K [29] is a rewriting-/reachability-
based framework for defining executable semantic specifications of programming
languages. Given the syntax and semantics of a language, K automatically gener-
ates a parser, an interpreter, as well as formal analysis tools such as a deductive
verifier. This avoids duplication while improving efficiency and consistency. For
example, using the interpreter, one can test the semantics immediately, which
significantly increases the efficiency of and confidence in semantics development.
There exists a rich literature on using K for formalizing existing languages, such
as C [9,14], Java [3] and JavaScript [25], among others. K has also been used to
formally specify the Ethereum Virtual Machine (EVM) [15], the current smart
contract language for Ethereum. In fact, the process of formalizing EVM as an
executable semantics uncovered various inconsistencies and unspecified behav-
iors in its original English specification (the Yellow paper) [38].

Blockchain and Ethereum. A blockchain is an append-only ledger that is
commonly used for synchronization in distributed protocols. Cryptocurrencies
such as Bitcoin [24], refer to such protocols that allow a set of clients to trans-
fer and maintain a balance of virtual coins. A cryptocurrency network consists
of accounts (essentially encrypted client IDs) with cryptocurrency balances, a
blockchain of verified transactions, and a set of so-called miners, computation
resources that process pending transactions and append them in the blockchain.

Ethereum [5] is a blockchain-based network that provides a decentralized,
replicated computer for distributed applications and uses a blockchain to store
its global state. Ethereum supports a programming language for writing smart
contracts, which are programs associated with Ethereum accounts. Ethereum
accounts interact with each other using transactions over a cryptocurrency called
Ether. When an Ethereum account associated with a smart contract receives a
transaction, execution of its smart contract code is triggered. Such transactions
can both transfer Ether and pass input data to the smart contract.

Ethereum smart contracts often manage large monetary amounts, in the
range of 100M USD. Ethereum’s popularity is largely due to the fact that there
is no need for a trusted third party (such as a bank) to verify the transactions;
the trust comes from the consensus algorithm and the fact that smart contract
code is binding. Ethereum transactions are irreversible and the source code of
the involved smart contracts is public and immutable. Moreover, any transaction
can be replicated through the information stored in the blockchain.

EVM. Currently, Ethereum contracts should be translated to the language of
the Ethereum Virtual Machine (EVM) [38]. The EVM is a stack-based VM with
an assembly-level language with no code/data separation or function-level call-
s/returns. The language is loosely specified in the Yellow Paper [38], but has been
recently formally specified as a K definition in KEVM [15]. KEVM provides a ref-
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erence implementation that is considered for adoption by the Ethereum Founda-
tion, a deductive verifier that has been used to verify real-world contracts [26,32],
and the Jello Paper [21], an English language specification of EVM generated
from the documentation of the KEVM semantics definition.

Other Smart Contract Languages. Several smart contract programming lan-
guages have been proposed either as alternatives to EVM or as higher-level, more
programmer-friendly options. Solidity [11] and Vyper [12] are popular high-level
languages for Ethereum contracts that are typically compiled down to EVM.
Plutus [19] is a high-level functional language that offers increased security
due to features such as type safety. Rholang [28] is a functional, concurrency-
oriented language that powers RChain, an evolution of traditional blockchain
networks that allows for concurrent transactions. We believe that IELE could
serve as a compilation target of all these languages. In fact, we have imple-
mented a Solidity-to-IELE compiler as part of our evaluation (see appendix B.1
in [20]). Intermediate-level smart contract languages include Michelson [36], a
stack-based, but also statically typed language, Scilla [39], a language that offers
clear separation between in-contract computation and inter-contract communi-
cation to facilitate formal reasoning about smart contracts, and Simplicity [2],
a language designed to have simple semantics which lend themselves to static
analysis and formal reasoning. IELE shares the goals of enhanced security and
ease of formal verification with these languages. We believe that the novelty in
the design of IELE, compared to those efforts, stems from the fact that its formal
specification and its de-facto implementation are one and the same artifact: any
change to IELE’s specification is automatically propagated to the implementa-
tion of the language execution engine and verification tools.

3 The IELE Language

Based on experience with KEVM and formal verification of EVM smart con-
tracts, we identified five desired properties for an ideal blockchain low-level
language and designed IELE around them. Our design was done using formal
semantics, and the implementation was generated automatically [16,33].

Security. Smart contracts often manage large monetary amounts and have been
targets of attackers that seek to exploit any vulnerabilities in their code [1].
Very often, language design weaknesses such as undefined behaviors, execution
of arbitrary data as code, and silent integer overflow act as enablers for attackers
to exploit corresponding bugs. IELE avoids all of the above (and more) design
weaknesses and hence eliminates many possible attack vectors by design.

Formal Verification. No matter how many insecure features are avoided at
the language definition level, software bugs can always allow for exploits. The
three most expensive exploits of Ethereum smart contracts are all due to soft-
ware errors [4,7,35]. A strong defense against such exploits is formal correctness
verification and IELE is designed with the goal of formal verification in mind.
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Human Readable. Smart contracts act as binding agreements between human
end-users. Being human readable reinforces this intention, as it is easier for the
agreeing parties to trust a formal agreement they can read and understand.
Ideally smart contracts should be human readable at the exact level they are
stored in the blockchain and executed. This is true for IELE contracts, since
the IELE syntax was designed to be almost identical to that of LLVM [22], a
state-of-the-art intermediate language designed to be human readable.

Determinism. Ethereum’s blockchain stores transactions that can be replicated
by any Ethereum client and many of these transactions require execution of
smart contract code to be replayed. For this reason it is important that the
underlying smart contract language and its implementation are deterministic.
The IELE specification contains no undefined and/or implementation-defined
behaviors, as well as no by-design non-deterministic features.

Gas Model. The philosophy behind IELE’s gas model is simple: no limitations
in code execution, but costs are analogous to the resource consumption. For
example, IELE programs have access to an unlimited number of registers, but
more used registers incur steeper gas charges. Similarly IELE uses unbounded
integer arithmetic, but the larger the numbers at runtime, the more gas required.
A detailed discussion of IELE’s gas model can be found in appendix A in [20].

Listing 1 shows a simple forwarder contract in IELE. The contract forwards
any amount of Ether1 sent to it to the account that created the contract. The
@init function of the contract is executed when a transaction creates this con-
tract. The built-in @iele.caller returns the account address of the account
that posted the transaction, which is the creator of this contract. This address is
saved in the account storage of the forwarder. The @deposit function is a pub-
lic function meaning it can be invoked by incoming transactions. The built-in
@iele.callvalue returns the amount of Ether that was sent to the forwarder
with the incoming transaction. This amount is forwarded to the creator account
by invoking its own @deposit function with the IELE instruction call .. at.
Note that the forwarder specifies an upper limit of gas to spend at the creator
during the account call. If the forwarding fails (e.g., due to lack of gas), the
built-in @iele.invalid is called that reverts any global state change made so
far, including the Ether receipt for the forwarder account.

The full formal semantics of the IELE language, given as an executable K
definition that also serves as a reference implementation, can be found in [33].
In the remainder of this section we give a high-level presentation of IELE and
discuss the improvements over the state-of-the-art EVM.

3.1 IELE Contracts

A IELE contract is the main compilation unit of code that can be associated with
a blockchain account. A IELE contract has a name and contains one or more

1 IELE can be used in any Ethereum-style blockchain, where the cryptocurrency may
be called differently. We use Ether throughout the paper for the sake of concreteness.
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functions, global variables, and external contract declarations. Public functions
can be invoked from other accounts while private functions only from within the
contract. Global variables are accessible from anywhere within the contract and
hold a constant value. The Listing 1 contract has one global variable, @creator,
one private function, @init, and one public function, @deposit.

Account Storage. An account includes a storage that is an unbounded sparse
array of arbitrary-precision signed integers. The storage is persistent, i.e., it holds
its contents throughout the account’s lifetime. As such the storage contents
of all accounts are part of the global state and any modification on them is
recorded in the blockchain. IELE code associated with an account can access
the account storage through the dedicated sload and sstore instructions. IELE
global variables are typically used to hold specific storage addresses, so that the
contract code can refer to those addresses by the name of the variable. See, e.g.,
how the global variable @creator is used in the contract of Listing 1.

Listing 1. Forwarder contract in IELE
� �

// Contract forwards any funds it receives to its creator account

contract Forwarder {

// account storage index holding the creator account address

@creator = 1

// initializes a forwarder

define @init() {

// get the address of the creator account

%creator = call @iele.caller()

// store the creator ’s address in the storage

sstore %creator , @creator

}

// forwards the received funds to the creator of this account

define public @deposit() {

// get the received funds

%value = call @iele.callvalue()

// get the creator account address from the storage

%creator = sload @creator

// forward funds by calling deposit at the creator account

%status = call @deposit at %creator () send %value ,

gaslimit 2300

br %status , throw // contract call failed

ret void

throw:

call @iele.invalid()

}

}
� �

Contract Creation. An account can be created and associated with a IELE
contract manually by an end user, by posting of an appropriate transaction, or
dynamically by another executing IELE contract, using IELE’s create instruc-
tion. We say that a new contract created this way is deployed, since an exe-
cutable object (including smart contract code and state) is literally stored in the
blockchain. Listing 2 shows a contract that dynamically creates accounts asso-
ciated with the Forwarder contract shown in Listing 1. The create instruction
dynamically creates a new account, deploys the Forwarder smart contract, and
finally returns the new account’s address. The send attribute specifies that no
initial amount of Ether is sent to the new account.

The smart contract code to be associated with a newly created account should
be available at creation time. In case of dynamic account creation, we chose to
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design IELE with the stricter requirement that the code should have been avail-
able at creation time of the creator contract. For this purpose, a IELE contract
contains a list of external contracts that it is allowed to create at runtime, and
the code for each of these contracts should be available when the contract itself
is created. Recursively, the code of each contract that these contracts may create
should also be available. Hence, all code that can be stored in the blockchain is
available at the time when some end user posts an account creation transaction.

In Listing 2, the Wallet contract declares the Forwarder contract as external.
This means that if a new Wallet contract is to be created and deployed, at
that time both the code of the Wallet contract and the code of the Forwarder
contract should be provided and will be stored in the blockchain as part of the
creation transaction. Later, during execution, the Wallet contract is able to
dynamically create Forwarder contracts using the available Forwarder code.

Listing 2. Wallet contract that creates Forwarder contracts
� �

// Wallet contract that creates new accounts that forward funds sent to them to this wallet.

contract Wallet {

external contract Forwarder

define @init() {}

// @deposit is empty: any received funds are simply added the associated account ’s balance

define public @deposit() {}

// creates a new account that simply forwards any funds sent to it to this wallet and

// returns the address of the created forwarder account

define public @newForwarder() {

// ensure that the caller is the account associated with the wallet

%caller = call @iele.caller()

%owner = call @iele.address()

%isnotowner = cmp ne %caller , %owner

br %isnotowner , throw

// create a new account associated with a Forwarder contract and return its address

%status , %addr = create Forwarder () send 0

br %status , throw

ret %addr

throw:

call @iele.invalid()

}

}
� �

Dynamic contract creation is thus guaranteed to only use code that has
already become available in the blockchain; no dynamic code generation is
allowed. This design has two major advantages. Expensive code validation checks
(well-formedness, formal verification, etc.) need only take place when account
creation transactions are posted and never during code execution. Also code can
be stored in the blockchain separately from the account it is associated with:
contracts can be stored in a separate storage (with no duplicate contract code)
and accounts need only store a pointer to their associated code. This allows
for cheap dynamic account creation that doesn’t generate duplicate code in the
blockchain.

Contract Initialization. A special private @init function can be defined and
will be executed at contract creation time. This function typically contains ini-
tialization code, e.g. initialization of the account storage. It is not callable and
it can only be invoked at contract creation time. This way, IELE guarantees
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that the state of an already deployed contract cannot be reset maliciously by
invoking initialization code after contract creation, thus avoiding a weakness of
the current Ethereum design that has been exploited in the past [4].

3.2 IELE Functions

IELE functions are the main structural units of a IELE contract. A function
definition includes the function signature, the function body and whether or not
the function is public. A function signature includes a function name and names
of formal arguments. A public function can be called by other accounts, while
a private one can only be called by other functions within the same contract.
Listing 3 shows a simple implementation of the factorial as a IELE function.

Listing 3. IELE function for factorial
� �

define public @factorial(%n) {

// ensure %n >= 0

%lt = cmp lt %n, 0

br %lt, throw

%result = 1

condition:

%cond = cmp le %n, 0

br %cond , after_loop

loop_body:

%result = mul %result , %n

%n = sub %n, 1

br condition

after_loop:

ret %result

throw:

call @iele.invalid()

}
� �

Control Flow. The function body code is organized in labeled blocks. The
execution falls through from the last instruction of a block to the first of the
next one, or jumps to the start of a specific block. IELE supports jumps to
statically known targets only: The branch instruction accepts a block label as
an argument for the target of the jump. This differs from the EVM, where jumps
amount to pushing a possibly computed number on the stack and then jumping
to it regarded as an address. IELE ensures a statically known control flow graph
and thus makes static analysis and formal verification easier.

Function Calls. A public function can be invoked manually by an end user
posting a transaction, or dynamically by another executing contract using IELE’s
account call instruction, call .. at. The address of the callee and the name of
the called function are provided at call time. The call may be accompanied with
an Ether amount to be transferred from the caller to the callee. IELE defines
a simple call/return convention: Called functions expect a specific number of
arguments (the number of formal arguments) and return a specific number of
return values (the number of return values at ret plus an exit status). If an
ABI error occurs (e.g. incorrect number of arguments, function not found or not
public, etc), a corresponding erroneous exit status is returned.
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For reference, in EVM the caller just sends an arbitrary bytestream con-
taining the call arguments. There is an externally defined ABI convention that
most EVM compilers follow, but it is not enforced. EVM does not have a notion
of callable function; instead, the execution always starts at the contract’s first
instruction. The higher abstraction level of IELE’s calls and its more structured
design makes IELE contracts more readable and less tedious to formally verify.

EVM supports another type of account call, namely delegatecall, that
differs from the normal call, in that the code of the callee is executed in the
environment of the caller. This essentially means that the storage of the caller
account becomes accessible and writable from the callee code. EVM offers this
feature to avoid code duplication: typically library code is associated with a
single account and invoked with delegatecall by multiple clients. IELE offers
a different solution to the code duplication problem as discussed in Sect. 3.1. For
this reason and because delegatecall poses serious security concerns and has
been exploited in the past [35], we decided to drop delegatecall in IELE.

Deposit Handler. A special public function, @deposit, can be defined for a
IELE contract and it is invoked whenever the account receives a payment that
is not accompanied with a specific function call. A contract can forbid such
payments by refusing to define a @deposit function.

3.3 IELE Instructions

IELE instructions take the form of opcodes that accept a specific number of
arguments and return a specific number of values. There are various families of
instructions, including arithmetic, bitwise, comparison, and hashing operations.
There are also dedicated instructions for accessing the local memory, accessing
the account storage, and appending to the account log. Finally there are branch
instructions, the function call/return instructions, and the account create/selfde-
struct instructions. In addition to instructions, IELE supports a number of useful
intrinsics that can be called like private functions and provide functionality such
as querying the local or network state, cryptographic functions, etc.

IELE is register-based: Instructions operate on and store their output in
virtual registers. An infinite number of virtual registers is available, but the
actual number of registers used by the function can be determined statically by
counting the different register names used in its code. We chose to design IELE as
a register-based language, unlike the stack-based EVM, for two reasons. First,
it makes IELE code significantly more human-readable. Second, IELE formal
verification tools do not need to reason about the size of the operation stack
(bounded to 1024 words, a tedious requirement for verifying EVM programs).

3.4 IELE Datatypes

IELE uses arbitrary-precision signed integers. All virtual registers and account
storage locations hold values of this type. They can also be stored in and loaded
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from the local memory. Arbitrary-precision arithmetic removes arithmetic over-
flows thus making specification and formal verification less tedious, as well as
making attacks like [27] that exploit arithmetic overflow bugs not viable.

4 Formal IELE Language Definition in K

Here we describe the formal semantics of IELE, from which several of our IELE
tools are generated automatically by the K framework, such as an interpreter,
a well-formedness checker, and a program verifier. In total, the IELE semantics
consists of 3122 lines of K code (not including literate comments), including 729
productions (for syntactic or semantic constructs) and 1255 semantic rules [33].
For comparison, the K EVM semantics in [15] consists of 2628 lines of K code,
including 510 productions and 1025 semantic rules; these total less than 20% the
size of the VM code component of the official EVM client implemented in C++
(about 15k LOC) [10]. A similar save would be seen if IELE had a conventional
VM implementation in C++, although such an implementation was never needed
because the IELE VM was automatically generated from the formal semantics.

Listing 4. K syntax productions for IELE contracts
� �

syntax ContractDefinition ::= "contract" IeleName "{" TopLevelDefinitions "}"

syntax TopLevelDefinitions ::= List{TopLevelDefinition, ""}

syntax TopLevelDefinition ::= FunctionDefinition

| GlobalDefinition

| ContractDeclaration

syntax GlobalDefinition ::= GlobalName "=" IntConstant

syntax ContractDeclaration ::= "external" "contract" IeleName

syntax FunctionDefinition ::= "define" FunctionSignature "{" Blocks "}"

| "define" "public" FunctionSignature "{" Blocks "}"

syntax FunctionSignature ::= GlobalName "(" FunctionParameters ")"

syntax FunctionParameters ::= LocalNames

syntax GlobalName ::= "@" IeleName

syntax LocalName ::= "%" IeleName

syntax LocalNames ::= List{LocalName, ","}
� �

4.1 IELE Formal Semantics Overview

The formal semantics of IELE [33] is spread among several files: iele-syntax.md
contains a quick introduction to the various features of the language along with
their syntactical definitions. iele.md contains the semantics of the various lan-
guage features and the specification of the program execution state. iele-gas.md
contains the semantics of the gas model of IELE. welformdness.md contains a
formal definition of a well-formed IELE contract, a syntactically valid IELE
contract free from type errors and other malformed instructions and/or func-
tions. Finally, data.md contains the semantics of various data structures and
utilities used in the rest of the specification. In the following paragraphs, we
discuss examples from the formal specification of IELE along with features of K
as needed.

Syntax. The syntax of IELE is specified as a collection of EBNF-style produc-
tions. As an example, the productions shown in Listing 4 define the syntax for
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a IELE contract and its contents. The left-hand side of each syntax production
defines a K sort and the right-hand side of the production gives one or more
syntactically valid ways to construct a value of the sort. The keywords enclosed
in double quotes represent terminal symbols. K uses these productions to auto-
matically derive a parser for the language.

Execution State (Configuration). The execution state of a IELE program
is defined as a K configuration, that is an ordered list of potentially nested
cells, specified with an XML-like notation. At any given time during execution,
each cell contains a corresponding value that reflects the current execution state.
When declaring a K configuration, initial values for the cell contents are supplied.
Among other components, the configuration for IELE contains a description of
the local state and the network state.

(1) The local state is created when a transaction is sent to a specific account
and contains information about the smart contract code associated with the
account, the intra-contract call stack, the amount of gas remaining, and the
state of the local memory and virtual register file (see Listing 5).

Listing 5. Configuration for local state
� �

<id> 0 </id> // Currently executing account

<caller> 0 </caller> // Account that called current account

<gas> 0 </gas> // Current gas remaining

<program>

<functions>

<function multiplicity="*" type="Map">

<funcId> deposit </funcId> // Name of the function

<nparams> 0 </nparams> // Number of parameters

<jumpTable> .Map </jumpTable> // Jump table

<nregs> 0 </nregs> // Number of registers

<instructions>

(.Instructions .LabeledBlocks ):Blocks

</instructions> // The blocks of the function

</function>

</functions>

// ... more cells ...

</program>

<localCalls> .List </localCalls> // Intra -contract call stack

<regs> .Array </regs> // Current values of registers

<localMem> .Map </localMem> // Current values of local memory
� �

The id cell contains the address of the currently executing account and the
caller cell contains the address of the account that initiated the transaction.
The program cell and its nested cells contain the code of the currently executing
smart contract. The code is contained in one or more function cells, one for
each function of the smart contract. These cells in turn contain the code for
the corresponding function as a list of blocks and other information, such as the
function name and number of formal parameters, and a jump table mapping
label names to corresponding blocks. The gas cell contains the amount of gas
remaining. This cell is initialized upon receiving the transaction to the amount
of gas sent from the caller and is being reduced while the smart contract code
executes. Finally, the cells regs and localMem map virtual register names and
local memory addresses to their containing values, while the cell localCalls
contains a stack of frames for all the functions in the current call stack.
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(2) The network state contains information about the Ethereum network,
such as active accounts, their balance in Ether, their storage contents, whether
or not they are associated with code, pending transactions, and more. The
Ethereum network state at any point in time can be reached by replaying all the
transactions that are stored in the blockchain up to this point. Instead of specify-
ing the network state as a transaction log, we choose to describe only the current
network state, as only it is relevant for the rest of the formal specification.

Listing 6 shows part of the network state that describes the state of active
Ethereum accounts. The accounts cell contains one cell per account in the net-
work. Active accounts have their address in the acctID cell and their balance in
the balance cell. The code cell contains any associated smart contract code. The
storage cell maps storage addresses to their current contents for the account’s
storage. The nonce cell contains a monotonically increasing integer that counts
the number of transactions performed by this account.

Listing 6. Configuration for network state
� �

<network>

<accounts>

<account multiplicity="*" type="Map">

<acctID> 0 </acctID> // ID of account

<balance> 0 </balance> // Funds in account

<code> #emptyCode </code> // Contract of account

<storage> .Map </storage> // Permanent storage

<nonce> 0 </nonce> // Nonce of account

</account>

</accounts>

// ... more cells ...

</network>
� �

Transition Rules. Transition rules define valid rewrites of the current config-
uration to a next one. Each rule consists of a left-hand side that is a pattern
over one or more configurations (meaning it may contain variables) and a right-
hand side that describes how a matched configuration should be rewritten to the
next valid configuration. A pattern matches an actual configuration when there
exists an assignment of its variables that makes it equal to the configuration.
The derived interpreter that K generates matches patterns found in the left-
hand side of rules with the contents of the current configuration, and rewrites
it according to the right-hand side. The program verifier does the same, except
that it applies the rules symbolically, using unification instead of matching.

The k cell of the configuration drives the execution: It contains at any time a
list of execution steps to be matched and rewritten. The IELE semantics defines
a set of internal operators that represent different such execution steps and
maintains a list of such operators inside the k cell during execution.

As an example, Listing 7 shows the rules that specify the behavior of the
div instruction. The syntax production defines the internal operator #exec,
which represents the execution of a single IELE instruction. Both rules match
a configuration where the top of the k cell contains the #exec operator with a
division instruction. The first rule matches when the denominator is different
from zero, as specified in the requires clause. Then, the top of the k cell is
rewritten to another internal operator, #load, that loads the result of the division
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to the left-hand side virtual register. The /Int and =/=Int operators are K built-
in operators for arbitrary-precision signed integers.

Listing 7. Rules for the div instruction
� �

syntax InternalOp ::= "#exec" Instruction

// ------------------------------------------------

rule <k> #exec REG = div W0 , W1 => #load REG W0 /Int W1 ... </k>

requires W1 =/=Int 0

rule <k> #exec REG = div W0 , 0 => #exception USER_ERROR ... </k>
� �

The second rule matches in the case of division by zero and rewrites the top of
the k cell to an #exception with the appropriate error code (here USER ERROR is a
macro that stands for corresponding error code). Other parts of the specification
provide rules that handle exceptions by reverting all account state changes since
the account started execution for the current transaction and returning the error
code to the caller. The ellipses (...) is K syntax for a pattern that matches the
rest of the k cell, which is a list of internal operators.

Listing 8. Rules for the #load internal operator
� �

syntax InternalOp ::= "#load" LValue Int

| "#load" Int Int Int [klabel(#loadAux)]

// ------------------------------------------------------------

rule <k> #load % REG VALUE => #load REG VALUE {REGS [ REG ]} ...</k>

<regs> REGS </regs>

rule <k> #load REG VALUE OLD => . ... </k>

<regs> REGS => REGS [ REG <- VALUE ] </regs>

<currentMemory>

CURR => CURR -Int intSize(OLD) +Int intSize(VALUE)

</currentMemory>
� �

The rules shown in Listing 8 specify the behavior of the #load internal oper-
ator, used to store values in virtual registers. Note that the syntax for a virtual
register (after desugaring) is % Int and the integer that is the name of the
register is used as an index in the register file to look up its value.

The first rule accesses the current register file in the regs cell and looks up
the old value of the register to be updated. It then rewrites the #load operator
to an auxiliary operator that matches the second rule. The second rule updates
the register file using the K built-in operator [ <- ] for writing array elements.
It also updates the total size of the register file in the currentMemory cell; this
information is needed to compute the gas cost of the operation. The top of the
k cell is rewritten to “.”, which is a K idiom for the empty string.

As a last example, intSize, used above to compute the size in 64-bit words
of the given arbitrary-precision signed integer, is defined as shown in Listing 9.

Listing 9. Rules for the intSize operator
� �

syntax Int ::= intSize ( Int ) [function]

// -----------------------------------------

rule intSize(N) => (log2Int(N) +Int 2) up/Int 64 requires N >Int 0

rule intSize(0) => 1

rule intSize(N) => intSize(~Int N) requires N <Int 0
� �

The syntax production specifies the pattern intSize( ) as a member of the
Int sort (the arbitrary-precision signed integers) and attaches the function
attribute to it. This attribute informs K that the pattern is “pure”, as in the
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rules for rewriting it do not depend on any context other than its argument. The
K rewrite engine will attempt to rewrite these pattern as much as possible when
they appear anywhere in the current configuration.

5 Formal Verifier of IELE Smart Contracts

K provides a sound and relatively complete language-parametric program ver-
ifier. That is, given a language semantics as input, K yields a program verifier
for that language that can prove, modulo a domain reasoning oracle (currently
Z3 [8]), any reachability property about any program in that language. This
important capability of K, that generalizes and eliminates the need for Hoare
logic, has already been demonstrated with languages that are much larger than
IELE, such as C, Java and JavaScript, and shown to offer the same level of
automation and performance as program verifiers crafted specifically for the
languages in question (e.g., VCC for C) [6]. Here we briefly explain how the
K verifier works with IELE as input language, to verify IELE smart contracts.
We emphasize how it compares with the same generic verifier instantiated with
the EVM semantics [15], which has been used extensively as part of commercial
services [26,32].

As discussed in Sect. 3, formal verification of smart contracts was one of the
main forces driving the design of IELE, often in sharp contrast to the design of
the EVM: statically known jumps allow us to write and compose code properties
modularly; eliminating stack bounds for arithmetic expression evaluation allows
us to soundly focus only on functional properties of code and write simpler,
higher-level properties; eliminating the ABI encoding conventions allow us to
reason about any programs, not only about those that obey the conventions;
unbounded integers eliminate the need to reason about arithmetic overflow; etc.

We now discuss how to verify in IELE the most popular smart contract,
ERC20 [37], which provides functionality for maintaining and exchanging tokens.
Details about the verification of ERC20 in EVM can be found in [26,32].

Formal Specification. We start with ERC20-K [30], a complete language-
independent formalization of the high level business logic of the ERC20 standard.
ERC20-K clarifies what data (e.g., balances and allowances) are handled by
the various ERC20 functions and the precise meaning of those functions on
such data. More importantly, ERC20-K clarifies the meaning of all the corner
cases that the ERC20 standard omits to discuss, such as transfers to itself and
transfers that result in arithmetic overflow. From ERC20-K, we can easily derive
the specification for the ERC20 contract written in IELE by mapping ERC20-K
to the configuration of IELE. We follow the same approach and DSL used for
EVM [26], but taking the specifics of IELE into account. Mathematically, the
ERC20 specification consists of a set of reachability formulae of the form φ ⇒ ψ,
with the meaning that the set of states satisfying/matching the pattern φ will
either reach a state in ψ or not terminate when executed with IELE.

Listing 10 shows a snippet of the specification for two possible behaviors
of transfer. For each case, it specifies the function name (fid), the function



IELE: A Rigorously Designed Language for the Blockchain 607

parameters (callData and regs), the return value (output), whether an excep-
tion occurred (k), the log generated (log), the storage update (storage), and
the path-condition (requires). The success case ([transfer-success]) spec-
ifies that the function succeeds in transferring the VALUE tokens from the FROM
account to the TO account, with generating the corresponding log message, and
returns 1 (i.e., true), provided that the FROM account has sufficient balance. The
failure case ([transfer-failure]) specifies that the function throws an excep-
tion without modifying the account balances, if the FROM balance is insufficient.

Listing 10. Formal specification of ERC20 transfer
� �

[transfer -success]

k: #execute => #end ...

callData: TO, VALUE , .Ints

output: _ => (1, .Ints)

regs: (0 |-> TO_ID 1 |-> VALUE .Map) => _

fid: transfer

log: ... (. => #eventLog(FROM , #topics(TransferEvent , FROM , TO), Int2Bytes(VALUE)))

storage: #mapKey({BALANCE}, FROM) |-> (BAL_FROM => BAL_FROM -Int VALUE)

#mapKey({BALANCE}, TO) |-> (BAL_TO => BAL_TO +Int VALUE)

...

requires: andBool 0 <=Int VALUE

andBool FROM =/=Int TO

andBool VALUE <=Int BAL_FROM

[transfer -failure]

k: #execute => #exception(4) ...

callData: TO, VALUE , .Ints

output: _ => _

regs: (0 |-> TO_ID 1 |-> VALUE .Map) => _

fid: transfer

log: ...

storage: #mapKey({BALANCE}, FROM) |-> BAL_FROM

#mapKey({BALANCE}, TO) |-> BAL_TO

...

requires: andBool 0 <=Int VALUE

andBool FROM =/=Int TO

andBool VALUE >Int BAL_FROM
� �

Formal Verification. We verified the hand-written IELE implementation of
ERC20 at [31], following the same automatic process used for EVM-level ver-
ification described in [26]. All 15 high-level ERC20 properties were seamlessly
proved, automatically. It is insightful to compare the IELE and EVM verifica-
tion experiences. We found that most of the EVM-level verification challenges
described in [26] are addressed by the IELE language design. For example:

(Arithmetic Overflow). Since EVM performs modular arithmetic (i.e., mod
2256), detecting arithmetic overflow is critical for preventing security attacks.
When writing EVM-level specifications, one needs to reverse engineer constraints
on the input such that the arithmetic overflow checks in the program pass. For
example, in case transfer-success, one needs to add constraints to make sure
that the balance of TO account does not overflow. This is not only tedious, but
also imposes non-trivial proof obligations on SMT solvers. In contrast, IELE
arithmetic instructions admit unbounded integers, which not only makes the
smart contract more secure but also makes it much easier to specify correctly.
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(Hash Collision). Due to the storage limitation of EVM, compilers such as
Solidity and Vyper use SHA3 hash to implement the builtin map. However, SHA3
is not cryptographically collision free. The contract developers simply assume
collisions will not occur during normal execution and SHA3 hash is modeled as an
injective function during the verification of EVM smart contracts. Unfortunately,
that is unsound: one can derive false, using the pigeonhole principle. In contrast,
IELE provides infinite memory and storage, so injective functions can be defined
to map different keys to different locations instead of SHA3 hashing.

6 Conclusion

We presented IELE, a new low-level language for smart contracts. The full formal
specification of IELE is available as a K specification, serving at the same time
as the implementation as well as a formal documentation of the language. The
specification/implementation of IELE is in par with the state of the art in the
world of smart contract virtual machines. With the support of a Solidity to IELE
compiler (see appendix B.1 in [20]) and a fully functional Ethereum client that
is based on Mantis and powered by the IELE virtual machine (see appendix
B.2 in [20]), we were able to deploy and execute IELE contracts in a real-world
blockchain testnet. This makes IELE the first practical language to be defined
and implemented directly as a formal semantics specification and significantly
raises the bar for how virtual machines for the blockchain must be developed.
In this new and disruptive field where security and correctness are paramount,
it is in our view unjustified to adopt any lower standards anymore.
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