
Reasoning Formally About Database
Queries and Updates

Jon Haël Brenas1, Rachid Echahed2 , and Martin Strecker3(B)

1 UTHSC - ORNL, Memphis, TN, USA
2 CNRS and University Grenoble Alpes, Grenoble, France

3 Toulouse, France
http://martin-strecker.org/

Abstract. This paper explores formal verification in the area of
database technology, in particular how to reason about queries and
updates in a database system. The formalism is sufficiently general to be
applicable to relational and graph databases. We first define a domain-
specific language consisting of nested query and update primitives, and
give its operational semantics. Queries are in full first-order logic. The
problem we try to solve is whether a database satisfying a given pre-
condition will satisfy a given post-condition after execution of a given
sequence of queries and updates. We propose a weakest-precondition cal-
culus and prove its correctness. We finally examine a restriction of our
framework that produces formulas in the guarded fragment of predicate
logic and thus leads to a decidable proof problem.

Keywords: Automated theorem proving · Modal logic ·
Graph transformations · Program verification

1 Introduction

1.1 Context and Contributions

The work reported here has initially grown out of an effort to verify graph-
manipulating programs that owe much to a traditional imperative programming
style. The transformation language presented in this paper is inspired by query
and update primitives found in graph databases such as Cypher [27], but we
do not try to mimic a specific DB language, and our language is sufficiently
general that it is also interesting for relational DBs. The structure of the lan-
guage is in principle very simple, consisting of nested match constructs (however
with queries that are full first-order logic formulas) and addition and deletion of
relations. We are here interested in structural aspects, dealing only with unin-
terpreted relations. The transformation language (syntax and well-formedness
constraints and semantics) will be defined in Sect. 2.

The transformation language has a clearly imperative (as opposed to func-
tional) flavour, with a notion of DB state that coincides with a non-standard
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 556–572, 2019.
https://doi.org/10.1007/978-3-030-30942-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_33&domain=pdf
http://orcid.org/0000-0002-8535-8057
http://orcid.org/0000-0001-9953-9871
https://doi.org/10.1007/978-3-030-30942-8_33

Reasoning Formally About Database Queries and Updates 557

notion of interpretation of formulas. The main focus of the paper is on verifying
whether a DB satisfying a given pre-condition will satisfy a given post-condition
after the transformation. These conditions are again full first-order formulas. It
is important to emphasise that we are dealing with the verification of the cor-
rectness of transformations as such, and not the validation of the satisfaction
of constraints for particular instances of a DB (thus a kind of model check-
ing problem). The program correctness calculus (a particular form of weakest
pre-condition calculus) is described in Sect. 3. The resulting proof obligations
are undecidable in general. However, in Sect. 4, we restrict our attention to the
Guarded Fragment of predicate logic. By imposing suitable restrictions on the
formulas occurring in assertions and selection statements, we identify a natural
class of transformations that give rise to decidable proof obligations.

A particular challenge of our formalism is to take into account contextual
information stemming from nested match statements, and to deal with relational
update (an essentially second-order construct) in a first-order framework.

Related Work. The view of a database transformation as an imperative program,
with pre- and post-conditions, seems to be new.

Work in the context of deductive DBs ([8,26], also see [23] for an overview)
mainly seems to address the problem of maintaining the consistency of DB w.r.t.
specific constraints after individual updates, and not deductive verification. Con-
sistency maintenance is then often enforced by Prolog-like inference rules. The
more general question of DB updates as theory updates, for example in [11], has
triggered an extensive amount of work, including investigations in non-monotonic
logics. This line of research is not at all related to our approach that is situated
in classical logic, with the credo that updates modify models and not theories.

A notable exception to the above is the work by Benedikt, Griffin and Libkin
[5] that considers the problem of definability of database transactions for a very
abstract notion of transformation language, leading mainly to negative decidabil-
ity results. Contrary to this, we start with a specific (and, in particular in Sect. 4,
restricted) language, to arrive at a proposal for a practically useful verification
framework.

XML transformations [19,22] are transformations of particular tree-like struc-
tures, and the powerful type systems developed for them can be assimilated with
program correctness assertions. However, XML transducers have a functional
flavour, the verification method is not comparable to ours.

As mentioned before, our work has its origin in the verification of graph
transformations. The landscape is heterogeneous, ranging from approaches based
on category theory [16] to work in Monadic Second Order logic [10,20]. The graph
decompositions inherent to this latter approach are often not compatible with
updates performed naturally in graph structures (insertion or deletion of arcs,
updates of attributes).

Our own work [6,7,9] has so far concentrated on particular decidable log-
ics (modal or description logics). We have evoked the problem of the procedural
transformation language; we mention in particular the difficulty with loops whose
verification requires an annotation with invariants, so the verification approach

558 J. H. Brenas et al.

is not fully automatic. Work that is very similar in spirit, also based on descrip-
tion logics and consistency management in ontologies, is [1–3]. The limitation
of expressiveness of description logics leads to unpleasant circumlocutions: the
logics are often not closed under simple operations like substitutions of relational
expressions, with the consequence that extraction of proof obligations and proof
procedures are intertwined. In order to have a clearer picture of the underlying
mechanisms, we choose a plain first-order setting in this paper.

The modification of databases in conjunction with an imperative program-
ming language is described in [21], with a verification procedure based on
two-variable first order logic. To obtain decidability, severe restrictions on
the domains (bounded domains and only one unbounded domain) have to be
imposed.

As mentioned in the outset, we want to capture the spirit of DB languages
like Cypher, without reproducing these languages in detail; our nested match
statements seem to go beyond what is currently available in Cypher, and there
are a huge number of features we do not cover, in particular paths. We are aware
of a formal definition of the semantics of Cypher [12] and hope that a merger
of this semantics and our language might make it possible to formally reason
about integrity constraints in languages like Cypher.

1.2 Introductory Example

Before starting with the technical development, we present an example that
informally introduces the principal notions and gives an overview of the verifi-
cation methodology.

We consider the scenario of a database of a service provider for subscrip-
tion of potential clients to its services. The database maintains some integrity
constraints:

– ValidClient : All clients C registered in the database have to have their sub-
scription approved (V alid) by an employee (E) of the company: (∀c.C(c) −→
∃e.E(e) ∧ V alid(e, c))

– ActiveIfSubscr : A service is activated for a client only if the client has previ-
ously subscribed to it: (∀s c. Active(s, c) −→ Subscr(s, c)). The provider may
suspend a service, so the inverse is not necessarily the case.

After registering at the service provider and subscribing to some services,
the potential clients first get the status of applicants (A). At regular intervals,
the database runs the program of Fig. 1 to integrate applicants into its standard
client base. This program proceeds as follows: it first retrieves all the applicants a
that have their subscription approved (outer match) and adds these applicants as
clients (first add statement). It then retrieves all the services s a given applicant
a has subscribed to and activates these services (inner match). Finally, it removes
the selected applicants from the set A (del statement).

The program is annotated with a pre-condition (the integrity constraint men-
tioned before) and a post-condition: the integrity constraint and the knowledge
that all applicants remaining in A have not had their demand validated so far.

Reasoning Formally About Database Queries and Updates 559

Fig. 1. An example program

Let us run the program on a particular instance of a DB (the operational
semantics in full generality is defined in Sect. 2.3). The extensions of the unary
predicates are sets of elements; and of the binary relations are sets of pairs. At
the start of the program, we assume:

A = {a1, a2, a3} E = {e1, e2}
C = {c1, c2} S = {s1, s2}
V alid = {(e1, c1), (e1, c2), (e1, a1), (e2, a2)}
Subscr = {(s1, c1), (s2, c2), (s1, a1), (s2, a1), (s2, a2)}
Active = {(s1, c1)}
Before looking in more detail at the execution of the program, it is impor-

tant to understand the notion of a state of a program, which coincides with
our non-standard notion of interpretation of a formula, which is set-based and
not instance-based, as explained in the following. An interpretation is made up
of three components: a domain (in this case, the set {a1, a2, . . . s1, s2}) and an
interpretation of the predicate symbols (as above); all this is standard. The dif-
ference is in the way individual variables are interpreted: instead of having a
single function mapping variables into the domain, we take a set of such func-
tions. We are in particular interested in maximal interpretations that contain all
the individual interpretation functions satisfying certain requirements.

As the precondition contains no free variables, the maximal interpretation
set is initially the set of all functions mapping the set of variables to elements of
the domain. The first match restricts the set of variable interpretations to those
that map variable a to a1 or a2, as only these satisfy the condition of the match
(the relation interpretations are not modified by match, and the domain remains
invariant for all operations). The first add operation has an effect on the inter-
pretation of relation C, adding the elements a1, a2 so that it will then become
{c1, c2, a1, a2} (here, the individual interpretations are not modified). The inner
match limits the set of admissible individual interpretations still further to the
set {(a �→ a1, s �→ s1), (a �→ a1, s �→ s2), (a �→ a2, s �→ s2)}. These pairs are then
added to Active, whose extension is {(s1, c1), (s1, a1), (s2, a1), (s2, a2)} at the
end of the inner match statement. Note in particular that we do not simply take
the cross-product of the elements {s1, s2} bound to s and the elements {a1, a2}
bound to a: the pair (s1, a2) is not added to Active. We finally execute the del

560 J. H. Brenas et al.

statement, which sets A to {a3}. The net effect of the program is therefore an
update of the relations A, C and Active in the DB.

Reasoning about these programs proceeds by backwards propagation of post-
conditions, by computing weakest pre-conditions (wp). There are in particular
two challenges for wp reasoning: taking into account contextual information
(given by the conditions in the match clauses), and reasoning about sets and
relations, instead of individuals.

When reasoning backwards, we first have to take the effect of del(A(a)) into
account. We look up the contextual information about variable a. Its defining
clause is A(a) ∧ ∃e.E(e) ∧ V alid(e, a), so we symbolically remove from A in
the post-condition all the elements satisfying this predicate. The subformula
(∀a.A(a) −→ ¬∃e.E(e)∧V alid(e, a)) then becomes (∀a.(A(a)∧¬(A(a)∧∃e.E(e)∧
V alid(e, a))) −→ ¬∃e.E(e)∧V alid(e, a)), which reduces to true. The subformula
ValidClient ∧ ActiveIfSubscr is not affected by the delete statement.

We next examine the effective of add(Active(s, a)) on the remaining post-
condition. The contextual information for variable a is as before, and for variable
s is S(s) ∧ Subscr(s, a). In ActiveIfSubscr , we replace Active(s, c) by a formula
describing the union of Active and the conjunction of the characterising formulas
of a and s, which yields ∀s c. (Active(s, c)∨A(c)∧(∃e.E(e)∧V alid(e, c))∧S(s)∧
Subscr(s, c)) −→ Subscr(s, c). It is easy to see that this formula is implied by
ActiveIfSubscr in the precondition of the program. In a similar spirit, we reason
about add(C(a)), replacing C(c) in the precondition ValidClient by C(c)∨A(c)∧
∃e.E(e) ∧ V alid(e, c).

2 Transformation Language

This section defines the syntax of the transformation language (Sect. 2.1); it
presents two notions of interpretation of formulas that are also instrumental for
the concept of program state (Sect. 2.2); and it gives the operational semantics
of programs (Sect. 2.3). The rest of this paper uses a semi-formal, mathematical
style. A fully formal development in the Isabelle proof assistant is under way.1

2.1 Syntax

The syntax of statements stmt and programs prog is defined by the following
grammar, where boldface v stands for a list of variables v1, . . . , vn:

stmt ::= Skip
| add(R(v))
| del(R(v))
| match v where form { stmt }
| stmt; stmt

prog ::= Pre : form stmt Post : form

1 Parts of the development can be found in the repository https://bitbucket.org/
Martin Strecker/db queries updates/.

https://bitbucket.org/Martin_Strecker/db_queries_updates/
https://bitbucket.org/Martin_Strecker/db_queries_updates/

Reasoning Formally About Database Queries and Updates 561

Formulas form are occurring in match clauses and the pre- and post-
conditions. They are formulas of standard first-order logic, defined by

form ::=⊥ | R(v) | x = y | ¬form | form ∧ form | ∀v.form

featuring constant symbol ⊥, relational application R(v), equality x = y between
individual variables, negation, binary connectors, first-order quantification over
individual variables v. Other connectors and quantifiers than those shown are
defined as usual.

Renaming individual variable x by y in formula φ is written φ[x := y]. In
formula manipulations like these, we assume that bound variables are correctly
renamed to avoid clashes.

We assume that relation symbols have a fixed arity which can be enforced by
typing or a naming convention; we do not describe the details here. Well-typing
of a statement c in a context (list of variables) Γ , written Γ 	 c, is defined by:

– Γ 	 add(R(v)) if v ⊆ Γ and similarly for del
– Γ 	 match v where b {c} if Γ ∩ v = {} and Γ@v 	 c and fv(b) ⊆ Γ@v,

where @ is list concatenation and fv(b) is the set of free individual variables
of b. In particular, match binds the variables v in b and c, and these variables
should not occur in the context.

– Γ 	 c1; c2 if Γ 	 c1 and Γ 	 c2

Pre- and post-conditions and statements may contain free individual variables,
whose declaration constitutes the initial context for type checking. Since the
programs we present in the examples are all closed, we have omitted the variable
declaration clauses.

Apart from typing, we have to impose another restriction on the programs
we analyse: There are no modifications of defining relations before use.

Example 1. Before defining this notion, we will look at a counter-example:

match a where A(a) {
match b where B(b) {

add(A(b))
};
del(C(a))

}
When reasoning about relation updates (add or del), we describe the changes
induced w.r.t. the defining properties of the variables. Before the add in Exam-
ple 1, the defining properties of a and b are A(a) and B(b) respectively. Intu-
itively and using a set-theoretic notation, the effect of the add is that the new
A becomes A0 ∪ B, where A0 is the original value of A. Computing this effect is
not difficult.

The problem is the following del(C(a)), where we cannot proceed in a similar
fashion. We cannot say that new C is C0 − A by looking up how a was defined

562 J. H. Brenas et al.

in the corresponding match statement, because relation A has been modified
between definition and use of a, but the variable a is still bound to the original
values: before the del statement, A(a) is not true any more. In fact, it should
be that C = C0 − A0. Intuitively speaking, it seems that our analysis would
become considerably more complex if it were necessary to precisely track which
property was true for a variable in the execution history of the program, instead
of taking its defining value.

We give a series of definitions that are reminiscent of the notion of definition-
use chains in compiler technology [24], whence the name of DU-stability intro-
duced below.

Definition 1 (DU-stability). For a statement match v where P , we say that
the v ∈ v are defined by this statement, and we say that P is their defining
property. Note that in a well-typed program, a variable occurs in at most one
match, so this notion is well-defined. The set of defining relations of a variable
v, def rels(v), is the set of relation symbols R that occur in the defining property
of v. We say that a variable is used in the predicate of a match or in an add

or del statement if it is among the free variables of the respective predicates.
We say that a relation R is modified by an update if this update is add(R(v))
or del(R(v)). We say that a variable v defined in a match is DU-stable if in
none of the execution paths leading from the definition to a use of v, any of the
defining relations of v is modified. We say that a program is DU-stable if all its
variables are.

In order to avoid clutter, these definitions have been kept semi-formal in the
sense that they are not defined inductively over the syntax and some parameters
(such as the underlying program) remain implicit. Some related, more formal
definitions are provided in Sect. 3.2.

The program of Example 1 is not DU-stable because the defining relation A
is modified between the use of a in del(C(a)) and its definition. The program in
Fig. 1 is DU-stable, but it would not be if swapping add(C(a)) and del(A(a)),
because then, the defining relation A of variable a would be modified before the
uses of a.

Note that the restriction to property-preserving bindings is not a limitation,
at least in principle and disregarding questions of efficiency of execution. Indeed,
any breach of DU-stability can be avoided by storing values in an auxiliary
relation and then retrieving this copy instead of referring to the modified relation.

2.2 Interpretations

We will introduce two kinds of semantics:

– an individual semantics that is the traditional logical semantics;
– a set-based semantics allowing to reason about sets of assignments of indi-

vidual variables.

Reasoning Formally About Database Queries and Updates 563

The individual semantics is given by interpretations ι = (ιd, ιr, ιi) where ιd
is a domain, ιr is a function that assigns to each n-ary relation symbol of the
language a subset of ιnd , and ιi a function that assigns to each individual variable
an element of ιd. The relation ι |= φ (interpretation ι is a model of formula φ)
is defined as usual:

– ι �|=⊥
– ι |= R(v) if ιi(v) ∈ ιr(R), where ιi(v) is the obvious mapping of ιi on a

vector of variables.
– ι |= x = y if ιi(x) = ιi(y)
– ι |= ¬ψ if ι �|= ψ
– ι |= ψ ∧ φ if ι |= ψ and ι |= φ
– ι |= ∀v.ψ (first-order quantification) if for all vi ∈ ιd, we have ιv:=vi |= ψ.

Here, if ι = (ιd, ιr, ιi), then ιv:=vi = (ιd, ιr, ιi(v := vi)) and ιi(v := vi) is the
update of function ιi at variable v with value vi.

The set-based semantics is given by interpretations σ = (σd, σr, σi) where
σd and σr are as for the individual semantics, and σi is a set of individual
assignments. We write ι ∈ σ if ι = (ιd, ιr, ιi) with ιd = σd and ιr = σr and
ιi ∈ σi.

For instance, in the example of Sect. 1.2, we considered a set-based interpre-
tation σ with a domain σd and relational assignment σr as defined there, and
σi = {(a �→ a1, s �→ s1), (a �→ a1, s �→ s2), (a �→ a2, s �→ s2)}. One of the individ-
ual interpretations ι ∈ σ has the same domain and relational assignment, and
individual variable assignment ιi = (a �→ a1, s �→ s1).

The model relation2 for the set-based semantics is defined by σ |= φ iff for
all ι ∈ σ, ι |= φ. The intuitive meaning of σ |= φ is that σ is a result for a query
φ, where σi is the (not necessarily maximal) set of solutions, i.e. assignments to
the free variables that satisfy φ, given the extension of the database as defined
by σr.

A possibly bewildering consequence of this definition is that also formulas
that are inconsistent (according to the individual semantics) have a model in the
set-based semantics. Indeed, (σd, σr, {}) |=⊥. This choice is motivated by the
intended behaviour of the operational semantics, which should be non-blocking:
execution can always proceed after a match statement, even for an inconsistent
match condition, but then with an empty solution set.

As usual, a formula is called valid if it is true under every interpretation. The
notions coincide for the two semantics:

Lemma 1. A formula is valid under the individual semantics iff it is valid under
the set-based semantics.

2 We use the same relation symbol |= and disambiguate individual and set-based
semantics with the designation of the model (ι resp. σ).

564 J. H. Brenas et al.

Fig. 2. Big-step semantics rules

2.3 Operational Semantics

The operational semantics defines how the program state evolves when executing
the instructions of a program. In our case, a program state is precisely a set-
based interpretation in the sense of Sect. 2.2. Intuitively, in an interpretation σ =
(σd, σr, σi), the component σr corresponds to the extension of the database that
is manipulated by add and del statements, and the component σi corresponds
to variable bindings established by the match clauses. The domain σd remains
unchanged throughout the program.

The rules of the operational semantics have the form (c, σ) ⇒ σ′, meaning
that execution of statement c transforms state σ to state σ′. The inductive
definition of the transition relation is given in Fig. 2.

Before commenting on these rules, we introduce some more notation for
manipulating interpretations. In an interpretation σ = (σd, σr, σi), we retrieve
the component σd, σr, resp. σi with σ.d, σ.r, resp. σ.i. Component update is
written in banana brackets. Thus, σ′′�i := σ.i� (as in rule Match) is the inter-
pretation (σ′′

d , σ′′
r , σi).

The rule for the add statement is defined with the aid of an auxiliary function
that adds to relation R the values bound to variables v in state σ. The precise
definition of add rel si R v σ is: σ�r := σ.r(R := (σ.r(R) ∪ ((λii.map ii v) �
σ.i)))�.

In a similar spirit, the definition of del rel si R v σ is: σ�r := σ.r(R :=
(σ.r(R) − ((λii.map ii v) � σ.i)))�.

Let us decipher the definition of add rel si: We update the relational inter-
pretation of σ for relation R, so that the new interpretation of R becomes
(σ.r(R) ∪ ((λii.map ii v) � σ.i)). This is the old interpretation of relation R,
plus new elements resulting from mapping the individual interpretations on the
variable vector v. Here, map is the mapping of a function on a list, and � is the
image of a set under a function. For example, if the relation to be updated is
Active with interpretation σ.r(Active) = {(s1, c1)} and the individual variable
interpretation σ.i = {(a �→ a1, s �→ s1), (a �→ a1, s �→ s2), (a �→ a2, s �→ s2)}, the
expression ((λii.map ii (s, a)) � σ.i) yields {(s1, a1), (s2, a1), (s2, a2)} which are
added to σ.r(Active) (cf. example of Sect. 1.2).

Reasoning Formally About Database Queries and Updates 565

For executing the match statement, we first compute the maximal model
satisfying condition b in σ. Note that σ already incorporates the cumulative
effect of surrounding match statements. The auxiliary function is defined as
max model b σ := fusion σ {ι ∈ σ | ι |= b}, where fusion σ I := (σd, σr,

⋃
ι ∈

I.{ι.i}). “Maximality” of a set-based interpretation is here understood as “con-
taining the maximum of individual interpretations”. If σ is the maximal interpre-
tation satisfying the surrounding match conditions, then max model b σ is the
maximal model satisfying in addition the current condition. Note that for a con-
dition b that is inconsistent with the surrounding conditions, max model b σ =
(σd, σr, {}).

Starting from this model, we execute the body c of the match statement, to
reach a state σ′′. We finally obtain the result state by restoring the individual
variable bindings of the outer scope; of course, we keep the modifications induced
by c on the relational assignment σr. The rules for Skip (no-op) and sequential
composition are standard.

3 Program Logic

In this section, we show how to reason about the programs introduced in Sect. 2.
For the programming language, we introduce extended Hoare triples (Sect. 3.1)
that take contextual information into account, and establish a correspondence
with the operational semantics, in the form of a soundness result (Sect. 3.2). We
then show how to derive weakest pre-conditions (Sect. 3.3).

3.1 Hoare Triples: Definition

As is common practice in program logics, we reason about programs with Hoare
triples {P} c {Q} which express that when started in a program state that satis-
fies condition P , execution of statement c ends up in a program state satisfying
condition Q. The programs of our language always terminate, never get stuck,
and the language is deterministic, so there is no need to distinguish between
partial and total correctness of programs.

To this triple, we add a context β that is the list of conditions accumulated
while diving into nested match statements. This list dynamically grows or shrinks
as we move into or out of a match statement. The conjunction of these formulas
can be assumed to hold at the given point of the program. Indeed, in formulas
(such as R(v)∨β), β does not stand for a list of formulas, but for the conjunction
of the elements of the list. The inductive definition of the relation β 	 {P} c {Q}
is given in Fig. 3. At the start of a program, the context is assumed to be empty:
β = []. In spite of its four components, we continue speaking about Hoare triples.

Again, the rules Skip and Seq are standard, and so is Conseq that per-
mits to weaken pre- respectively post-conditions and that is provided to ensure
completeness of the calculus.

The Match rule adds the match condition b to the list of bindings β (list
concatenation β@[b]) and then computes the pre-condition P for the body of the

566 J. H. Brenas et al.

Fig. 3. Hoare triples

match statement. Whereas Q is outside the scope of the variables v bound by
match, these variables could appear in P . The pre-condition of match therefore
discharges the local condition b and abstracts over the local variables v.

In rules Add and Del, we use relation update:

Definition 2. The update of relation R by relation S in formula Q is written
as Q[R := λv.S], where the variables v may occur in S. It is defined recursively
with base case R(a1, . . . , an)[R := λv1, . . . , vn.S] = (λv1, . . . , vn.S)(a1, . . . , an) =
S[v1 := a1, . . . vn := an] and R′(a1, . . . , an)[R := λv1, . . . , vn.S] = R′(a1, . . . , an)
for R �= R′. The propagation of update [R := λv.S] through Boolean connectives
is standard, with variable renaming in (∀v.ψ)[R := λv.S] = (∀v′.ψ[v := v′][R :=
λv.S]) to avoid free variable capture.

Please refer back to Sect. 1.2 for an illustration: For example, for state-
ment add(Active(s, a)), the context β is the conjunction of A(a) ∧ ∃e.E(e) ∧
V alid(e, a) and S(s) ∧ Subscr(s, a), and relation update (∀s c. Active(s, c) −→
Subscr(s, c))[Active := λs a.Active(s, a) ∨ β] yields ∀s c. (Active(s, c) ∨ A(c) ∧
(∃e.E(e) ∧ V alid(e, c)) ∧ S(s) ∧ Subscr(s, c)) −→ Subscr(s, c).

3.2 Hoare Triples: Soundness

The proof of soundness follows a general approach that is relatively standard, see
for example [25]. We first define a semantic notion of validity of a Hoare triple
and then show that the inductively defined relation of Fig. 3 implies semantic
validity. We first define a simplified variant of validity (Definition 3), from which
soundness is not directly provable. For the induction to go through and to take
into account the notion of DU-stability, we have to define a more complex notion
of validity (Definition 6) with a more involved soundness lemma (Lemma 2) of
which the desired theorem (Theorem 1) is an instance.

Reasoning Formally About Database Queries and Updates 567

Definition 3 (Validity of Hoare Triples). For formulas P and Q and state-
ment c, we define the relation |= {P} c {Q} as: For all states σ, σ′, if (c, σ) ⇒ σ′

and σ |= P , then σ′ |= Q.

Theorem 1 (Soundness). Let c be a well-typed and DU-stable program. If
[] 	 {P} c {Q}, then |= {P} c {Q}.

We prove this theorem later and first introduce additional notation.
An exclusion set X is a set of variables, with the intended meaning that if

v ∈ X at a particular point in program execution, then there exists an R that
is a defining relation of v (see Definition 1) and R has been modified since the
definition of v. Intuitively, this has as a consequence that if P (v) is the defining
property of v, then there is a risk that P (v) is not true at this point any more.

To keep track of how exclusion sets evolve during execution of a program, we
define a relation of exclusion propagation.

Definition 4 (Exclusion Propagation). For statement c and exclusion sets
X,X ′, we inductively define the relation of exclusion propagation (c,X) ×−→ X ′

by:

– (Skip,X) ×−→ X

– (add(R(v)),X) ×−→ X ∪ D(R) where D(R) is the set of variables v such that
R is a defining relation of v

– (del(R(v)),X) ×−→ X ∪ D(R)
– (match v where b {c},X) ×−→ (X ′ − v) if (c,X) ×−→ X ′

Note that the local variables v are not visible outside of c and can therefore
be removed after the match.

– ((c1; c2),X) ×−→ X ′ if (c1,X) ×−→ X ′′ and (c2,X ′′) ×−→ X ′

Example 2. Let us look back at the introductory example in Fig. 1. When start-
ing exclusion propagation with an empty set at the beginning of the program, it
remains empty most of the time, until after the del statement, when it becomes
{a}, so the defining property of a is not usable in the following, but this is not
problematic as there are no further statements (a fortiori, statements where a
is used).

Now please refer back to the program of Example 1. When starting exclusion
propagation with an empty set, after the add statement, the exclusion set is {a},
and it remains so until the del statement. The problem is that variable a is still
used at this point.

Definition 5 (Admissible Predicates). For a list of formulas β and an exclu-
sion set X, the set of admissible predicates is adm(β,X) = {b ∈ β | fv(b)∩X =
{}}. Taken as a formula, adm(β,X) is understood to be the conjunction of the
formulas contained in the set.

Consider an exclusion propagation of a program that starts with an empty
exclusion set. Assume that at a point before a statement add(R(v)) (or similarly

568 J. H. Brenas et al.

del), there is a v ∈ v that is also contained in the current exclusion set. Then this
would contradict DU-stability of v and thus of the whole program. Differently
said, in a DU-stable program, the variables of an add or del do not occur in an
exclusion set.

Definition 6 (Validity of Hoare Triples with Exclusion Sets). For a list
of formulas β, exclusion set X, formulas P and Q and statement c, we define
the relation β,X |= {P} c {Q} as: For all states σ, σ′, if (c, σ) ⇒ σ′ and
σ |= adm(β,X) ∧ P , for all X ′, if (c,X) ×−→ X ′, then σ′ |= adm(β,X ′) ∧ Q.

Lemma 2 (Soundness with Exclusion Sets). Let c be a sub-statement of
a well-typed and DU-stable program. If β 	 {P} c {Q}, then β,X |= {P} c {Q}
for all X.

A proof of this lemma is given in the formal Isabelle development.

Proof. (of Theorem 1): The theorem is an instance of Lemma 2, for β = [] and
X = {}.

3.3 Weakest Pre-conditions

The weakest pre-condition wp for a given post-condition Q and statement c is
a pre-condition that is implied by any other pre-condition. We compute the wp
with function wp(β, c,Q) that also takes into account the local bindings. The
recursive definition of wp is given in Fig. 4.

Fig. 4. Weakest pre-conditions

The correspondence between the weakest pre-conditions and the program
calculus of Sect. 3.1 is established by the following lemma, whose proof is by an
easy induction over c.

Lemma 3. β 	 {wp(β, c,Q)} c {Q}.
Initially, β is assumed to be empty. Proving the correctness of a pro-

gram {Pre} prog {Post} therefore amounts to showing that Pre −→
wp([], prog, Post) is valid, by an application of rule Conseq.

Let us emphasise one point: in Sect. 2.2, we have defined two semantics.
Because the notion of validity of Hoare triples is defined with reference to the set-
based semantics, the whole soundness argument is carried out in this semantics.
Showing that Pre −→ wp([], prog, Post) is valid can be done w.r.t. the set-based
semantics, but according to Lemma 1, it is equivalent to the standard individual
semantics, so it is more convenient to switch to this semantics here to be able
to use standard proof procedures of predicate logic.

Reasoning Formally About Database Queries and Updates 569

4 Guarded Fragment

The results established in the previous section are sound for programs containing
full first-order formulas, but application of the wp calculus to such programs will
in general produce proof problems that are undecidable. The Guarded Fragment
(GF) is a fragment of first-order predicate logic that has been introduced by
Andréka, Németi and van Benthem [4] and studied in depth [14,15]. The aspect
of interest for us is that GF is decidable; several decision procedures have been
described [13,17] and implemented [18].

We summarise the essential features of GF: An atomic formula or atom is
defined as an equality x = y or the application of a relation symbol to a tuple
of variables, R(v). On this basis, we define GF:

Definition 7 (Guarded Fragment, GF).

– All quantifier-free first-order formulas are formulas of GF.
– If ψ and φ are formulas of GF, then so are ¬ψ and (ψ ∧ φ).
– If ψ(x,y) is a formula of GF and α(x,y) is an atom and fv(ψ(x,y)) ⊆

fv(α(x,y)), then ∃y.α(x,y) ∧ ψ(x,y) and ∀y.α(x,y) −→ ψ(x,y) are for-
mulas of GF. Here, we call α(x,y) the guard and ψ(x,y) the body of a
quantified formula.

We say that a formula is guarded if it belongs to the guarded fragment of
first-order logic. The definitions of ValidClient and ActiveIfSubscr of Sect. 1.2
are examples of guarded formulas.

Definition 8 (Guarded statement and program). We say that a formula
b is a quasi-guard if it can be written as α1(v1) ∧ . . . ∧ αn(vn) ∧ ψ, where ψ is
a guarded formula and the αi are atoms, where different vi,vj are disjoint.

We say that a match clause match v where b is guarded if b is a quasi-guard.
We say that a statement is guarded if all its match clauses are guarded. We

say that a program is guarded if its pre- and post-conditions and its constituting
statement are guarded.

For example, the program of Fig. 1 is guarded. A program with a clause
match v1, v2 where (∃x.R(x, v1)) ∧ (∃y.R(y, v2)) is not guarded.

Theorem 2. If c is a guarded statement, Q a guarded formula and β a list of
quasi-guards, then wp(β, c,Q) is a guarded formula.

Proof. The proof is by induction on the structure of the statement. The propo-
sition is evident for Skip. For a sequence c1; c2 of instructions and guarded
Q, by induction hypothesis, we obtain a guarded formula for wp(β, c2, Q).
Similarly, for a match statement, wp(β@[b], c,Q) is a guarded formula G. If
match v where b is guarded and b a quasi-guard, we can write ∀v.b −→ G as
∀v1.α1(v1) −→ . . . −→ ∀vn.αn(vn) −→ ψ −→ G, which is again guarded.

The main concern is therefore preservation of guardedness in relation update;
we first discuss the case Q[R := λv.(R(v)∨β)]. We reason by induction on Q. The

570 J. H. Brenas et al.

only critical cases are existential and universal quantification; we only look at
the latter, the former is similar. Thus, assume Q is of the form ∀y.α(x,y) −→
ψ(x,y). The case where α �= R poses no problem, so assume Q of the form
∀y.R(x,y) −→ ψ(x,y), with Q[R := λv.(R(v) ∨ β)] = ∀y.(R(x,y) ∨ β[v :=
x,y]) −→ ψ′, where ψ′ is the result of the relation update in ψ(x,y). This
formula is not guarded any longer, but we can rewrite it to a conjunction of
∀y.R(x,y) −→ ψ′ (which is guarded) and ∀y.β[v := x,y] −→ ψ′, with β a list
of quasi-guards, which can be turned into a guarded formula in a similar form
as seen for the match statement.

The reasoning for a relation update Q[R := λv.(R(v) ∧ ¬β)] for a delete
statement proceeds along the same line, but is slightly simpler: the intermediate
formula ∀y.(R(x,y) ∧ ¬β[v := x,y]) −→ ψ′ can directly be rewritten to the
guarded ∀y.R(x,y) −→ (¬β[v := x,y]) −→ ψ′.

From this theorem, the fact that a program {Pre} c {Post} yields a proof
obligation Pre −→ wp([], c, Post), and the decidability of GF, we obtain:

Corollary 1.

– Application of the weakest pre-condition calculus of Sect. 3.3 to a guarded
program produces a guarded proof obligation.

– The correctness problem of guarded programs is decidable.

5 Conclusions

This paper has presented a language combining queries and updates that can be
used for graph and relational databases. The focus of the paper is on verifying
assertions in the form of pre- and post-conditions, the operational aspect of
the language was secondary. It might nevertheless be interesting to make this
language executable, which is not possible when bluntly taking the operational
semantics as it stands, because the semantics is manipulating possibly infinite
sets of individual interpretations. We are however convinced that it is easy to
derive a realistic operational semantics, by a restriction to relevant variables (the
variables occurring in the program).

Our current efforts concentrate on formally verifying the theory developed
in this paper in the Isabelle proof assistant, in order to obtain a fully verified
proof obligation generator. Completeness of the calculus presented here is an
open question. Further steps in the theory are extensions of the logic permitting
to reason about paths in graphs, leading us to consider logics with transitive
closure.

Acknowledgements. We are grateful to Lison Kardassevitch for implementing a pro-
totype of the verification framework.

Reasoning Formally About Database Queries and Updates 571

References

1. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. In: Proceedings of the 28th AAAI Con-
ference on Artificial Intelligence (AAAI 2014), pp. 966–973. AAAI Press (2014).
http://www.inf.unibz.it/∼calvanese/papers-html/AAAI-2014-graph-dbs.html

2. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. ACM Trans. Comput. Log. 18(4), 27:1–
27:35 (2017). https://doi.org/10.1145/3143803

3. Ahmeti, A., Calvanese, D., Polleres, A.: Updating RDFS ABoxes and TBoxes in
SPARQL. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 441–456.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 28

4. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded
fragments of predicate logic. J. Philos. Log. 27(3), 217–274 (1998).
http://www.fenrong.net/teaching/Andreka.pdf

5. Benedikt, M., Griffin, T., Libkin, L.: Verifiable properties
of database transactions. Inf. Comput. 147(1), 57–88 (1998).
https://core.ac.uk/download/pdf/82337092.pdf

6. Brenas, J.H., Echahed, R., Strecker, M.: Ensuring correctness of model transfor-
mations while remaining decidable. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016.
LNCS, vol. 9965, pp. 315–332. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46750-4 18

7. Brenas, J.H., Echahed, R., Strecker, M.: A Hoare-like calculus using the SROIQσ

logic on transformations of graphs. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.)
TCS 2014. LNCS, vol. 8705, pp. 164–178. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44602-7 14

8. Bry, F., Decker, H., Manthey, R.: A uniform approach to constraint satisfaction
and constraint satisfiability in deductive databases. In: Schmidt, J.W., Ceri, S.,
Missikoff, M. (eds.) EDBT 1988. LNCS, vol. 303, pp. 488–505. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-19074-0 69

9. Chaabani, M., Echahed, R., Strecker, M.: Logical foundations for reasoning about
transformations of knowledge bases. In: Eiter, T., Glimm, B., Kazakov, Y.,
Krötzsch, M. (eds.) DL - Description Logics. CEUR Workshop Proceedings, vol.
1014, pp. 616–627. CEUR-WS.org (2013)

10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, a
Language Theoretic Approach. Cambridge University Press (2011). http://www.
labri.fr/perso/courcell/Book/TheBook.pdf

11. Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases.
In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pp. 352–365. ACM (1983)

12. Francis, N., et al.: Cypher: An evolving query language for property graphs.
In: Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, 10–15 June 2018, pp. 1433–
1445 (2018). https://doi.org/10.1145/3183713.3190657. https://doi.org/10.1145/
3183713.3190657

13. Grädel, E.: Decision procedures for guarded logics. In: Ganzinger, H. (ed.) CADE
1999. LNCS, vol. 1632, pp. 31–51. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48660-7 3

14. Grädel, E.: On the restraining power of guards. J. Symb. Log. 64, 1719–1742
(1999). http://www.logic.rwth-aachen.de/pub/graedel/Gr-jsl99.ps

http://www.inf.unibz.it/~calvanese/papers-html/AAAI-2014-graph-dbs.html
https://doi.org/10.1145/3143803
https://doi.org/10.1007/978-3-319-11964-9_28
http://www.fenrong.net/teaching/Andreka.pdf
https://core.ac.uk/download/pdf/82337092.pdf
https://doi.org/10.1007/978-3-319-46750-4_18
https://doi.org/10.1007/978-3-319-46750-4_18
https://doi.org/10.1007/978-3-662-44602-7_14
https://doi.org/10.1007/978-3-662-44602-7_14
https://doi.org/10.1007/3-540-19074-0_69
http://www.labri.fr/perso/courcell/Book/TheBook.pdf
http://www.labri.fr/perso/courcell/Book/TheBook.pdf
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1007/3-540-48660-7_3
https://doi.org/10.1007/3-540-48660-7_3
http://www.logic.rwth-aachen.de/pub/graedel/Gr-jsl99.ps

572 J. H. Brenas et al.

15. Grädel, E.: Decidable fragments of first-order and fixed-point logic. From prefix-
vocabulary classes to guarded logics. In: Proceedings of Kalmár Workshop on
Logic and Computer Science, Szeged (2003). http://www.logic.rwth-aachen.de/
pub/graedel/Gr-kalmar03.ps

16. Habel, A., Pennemann, K.-H., Rensink, A.: Weakest preconditions for high-level
programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841883 31

17. Hirsch, C.: Guarded logics: algorithms and bisimulation. Ph.D. thesis, RWTH
Aachen (2002). http://www.logic.rwth-aachen.de/pub/hirsch/hirsch.pdf

18. Hladik, J.: Implementation and optimisation of a tableau algorithm for the guarded
fragment. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381,
pp. 145–159. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45616-
3 11

19. Hosoya, H.: XML Processing - The Tree-Automata Approach. Cambridge Univer-
sity Press, Cambridge (2011)

20. Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-transformation verifi-
cation using monadic second-order logic. In: International ACM SIGPLAN Sympo-
sium on Principles and Practice of Declarative Programming (PPDP), pp. 17–28,
July 2011. http://dl.acm.org/authorize?442117

21. Itzhaky, S., et al.: On the automated verification of web applications with embed-
ded SQL. In: Benedikt, M., Orsi, G. (eds.) 20th International Conference on
Database Theory (ICDT 2017). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 68, pp. 16:1–16:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.ICDT.2017.16.
http://drops.dagstuhl.de/opus/volltexte/2017/7050

22. Martens, W., Neven, F.: Frontiers of tractability for typechecking simple XML
transformations. J. Comput. Syst. Sci. 73(3), 362–390 (2007)

23. Martinenghi, D., Christiansen, H., Decker, H.: Integrity checking and maintenance
in relational and deductive database and beyond. In: Intelligent Databases: Tech-
nologies and Applications, pp. 238–285. IGI Global (2007)

24. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
Burlington (1997)

25. Nipkow, T., Klein, G.: Concrete Semantics (2014). http://concrete-semantics.org/
26. Olivé, A.: Integrity constraints checking in deductive databases. In: VLDB, pp.

513–523. Citeseer (1991)
27. openCypher Project: Cypher Query Language Reference, version 9 edn. (2018).

http://www.opencypher.org/

http://www.logic.rwth-aachen.de/pub/graedel/Gr-kalmar03.ps
http://www.logic.rwth-aachen.de/pub/graedel/Gr-kalmar03.ps
https://doi.org/10.1007/11841883_31
http://www.logic.rwth-aachen.de/pub/hirsch/hirsch.pdf
https://doi.org/10.1007/3-540-45616-3_11
https://doi.org/10.1007/3-540-45616-3_11
http://dl.acm.org/authorize?442117
https://doi.org/10.4230/LIPIcs.ICDT.2017.16
http://drops.dagstuhl.de/opus/volltexte/2017/7050
http://concrete-semantics.org/
http://www.opencypher.org/

	Reasoning Formally About Database Queries and Updates
	1 Introduction
	1.1 Context and Contributions
	1.2 Introductory Example

	2 Transformation Language
	2.1 Syntax
	2.2 Interpretations
	2.3 Operational Semantics

	3 Program Logic
	3.1 Hoare Triples: Definition
	3.2 Hoare Triples: Soundness
	3.3 Weakest Pre-conditions

	4 Guarded Fragment
	5 Conclusions
	References

