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Abstract. Many important system properties, particularly in security
and privacy, cannot be verified statically. Therefore, runtime verification
is an appealing alternative. Logics for hyperproperties, such as Hyper-
LTL, support a rich set of such properties. We first show that black-box
monitoring of HyperLTL is in general unfeasible, and suggest a gray-
box approach. Gray-box monitoring implies performing analysis of the
system at run-time, which brings new limitations to monitorability (the
feasibility of solving the monitoring problem). Thus, as another contri-
bution of this paper, we refine the classic notions of monitorability, both
for trace properties and hyperproperties, taking into account the com-
putability of the monitor. We then apply our approach to monitor a
privacy hyperproperty called distributed data minimality, expressed as a
HyperLTL property, by using an SMT-based static verifier at runtime.

1 Introduction

Consider a confidentiality policy ϕ that requires that every pair of separate exe-
cutions of a system agree on the position of occurrences of some proposition a.
Otherwise, an external observer may learn some sensitive information about the
system. We are interested in studying how to build runtime monitors for prop-
erties like ϕ, where the monitor receives independent executions of the system
under scrutiny and intend to determine whether or not the system satisfies the
property. While no such monitor can determine whether the system satisfies
ϕ—as it cannot determine whether it has observed the whole (possibly infinite)
set of traces—it may be able to detect violations. For example, if the monitor
receives finite executions t1 = {a}{}{}{a}{} and t2 = {a}{a}{}{}{a}, then it is
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straightforward to see that the pair (t1, t2) violates ϕ (the traces do not agree
on the truth value of a in the second, fourth, and fifth positions).

Now, if we change the policy to ϕ′ requiring that, for every execution, there
must exist a different one that agrees with the first execution on the position
of occurrences of a, the monitor cannot even detect violations of ϕ′. Indeed, it
is not possible to tell at run-time whether or not for each execution (from a
possibly infinite set), there exists a related one. Such properties for which no
monitor can detect satisfaction or violation are known as non-monitorable.

Monitorability was first defined in [26] as the problem of deciding whether
any extension of an observed trace would violate or satisfy a property expressed
in LTL. We call this notion semantic black-box monitorability. It is semantic
because it defines a decision problem (the existence of a satisfying or violat-
ing trace extension) without requiring a corresponding decision procedure. In
settings like LTL the problem is decidable and the decision procedures are well-
studied, but in other settings, a property may be semantically monitorable even
though no algorithm to monitor it exists. This notion of monitorability is “black-
box” because it only considers the temporal logic formula to determine the plau-
sibility of an extended observation that violates or satisfies the formula. This is
the only sound assumption without looking inside the system. Many variants of
this definition followed, mostly for trace logics [17] (see also [4]).

The definition of semantic monitorability is extended in [1] to the context of
hyperproperties [10]. A hyperproperty is essentially a set of sets of traces, so mon-
itoring hyperproperties involves reasoning about multiple traces simultaneously.
The confidentiality example discussed above is a hyperproperty. The notion of
monitorability for hyperproperties in [1] also considers whether extensions of an
observed trace, or of other additional observed traces, would violate or satisfy
the property. An important drawback of these notions of monitorability is that
they completely ignore the role of the system being monitored and the possible
set of executions that it can exhibit to compute a verdict of a property.

Fig. 1. The monitorability cube.

In this paper, we consider a landscape
of monitorability aspects along three dimen-
sions, as depicted in Fig. 1. We explore the
ability of the monitor to reason about mul-
tiple traces simultaneously (the trace/hy-
per dimension). We first show that a large
class of hyperproperties that involve quanti-
fier alternations are non-monitorable. That
is, no matter the observation, no verdict can
ever be declared. We then propose a solution
based on a combination of static analysis and
runtime verification. If the analysis of the sys-
tem is completely precise, we call it white-
box monitoring. Black-box monitoring refers
to the classic approach of ignoring the system and crafting general monitors
that provide sound verdicts for every system. In gray-box monitoring, the mon-
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itor uses an approximate set of executions, given for example as a model, in
addition to the observed finite execution. The combination of static analysis and
runtime verification allows to monitor hyperproperties of interest, but it involves
reasoning about possible executions of the system (the black/gray dimension in
Fig. 1). This, in turn, forces us to consider the computability limitations of the
monitors themselves as programs (the computability dimension).

We apply this approach to monitoring a complex hyperproperty of interest in
privacy, namely, data minimization. The principle of data minimization (intro-
duced in Article 5 of the EU General Data Protection Regulation [13]) from a
software perspective requires that only data that is semantically used by a pro-
gram should be collected and processed. When data is collected from independent
sources, the property is called distributed data minimization (DDM) [3,24]. Our
approach for monitoring DDM is as follows. We focus on detecting violations of
DDM (which we express in HyperLTL using one quantifier alternation). We then
create a gray-box monitor that collects dynamically potential witnesses for the
existential part. The monitor then invokes an oracle (combining symbolic execu-
tion trees and SMT solving) to soundly decide the universally quantified inner
sub-formula. Our approach is sound but approximated, so the monitor may give
an inconclusive answer, depending on the precision of the static verification.

Contributions. In summary, the contributions of this paper are the following:

(1) Novel richer definitions of monitorability that consider trace and hyper-
properties, and the possibility of analyzing the system (gray-box monitor-
ing). This enables the monitoring, via the combination of static analysis and
runtime verification, of properties that are non-monitorable in a black-box
manner. Our novel notions of monitorability also cover the computability
limitations of monitors as programs, which is inevitable once the analysis is
part of the monitoring process.

(2) We express DDM as a hyperproperty and study its monitorability within
the richer landscape defined above. We then apply the combined approach
where the static analysis in this case is based on symbolic execution (Sect. 4).

Full proofs as well as a detailed description of our proof-of-concept implemen-
tation and its empirical evaluation can be found in the extended version of this
paper [27]. The source code of our implementation is freely available online.1

2 Background

Let AP be a finite set of atomic propositions and Σ = 2AP be the finite alphabet.
We call each element of Σ a letter (or an event). Throughout the paper, Σω

denotes the set of all infinite sequences (called traces) over Σ, and Σ∗ denotes
the set of all finite traces over Σ. For a trace t ∈ Σω (or t ∈ Σ∗), t[i] denotes the
ith element of t, where i ∈ N. We use |t| to denote the length (finite or infinite) of

1 At https://github.com/sstucki/minion/.

https://github.com/sstucki/minion/
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trace t. Also, t[i, j] denotes the subtrace of t from position i up to and including
position j (or ε if i > j or if i > |t|). In this manner t[0, i] denotes the prefix of
t up to and including i and t[i, ..] denotes the suffix of t from i (including i).

Given a set X, we use P(X) for the set of subsets of X and Pfin(X) for the
set of finite subsets of X. Let u be a finite trace and t a finite or infinite trace.
We denote the concatenation of u and t by ut. Also, u � t denotes the fact that
u is a prefix of t. Given a finite set U of finite traces and an arbitrary set W
of finite or infinite traces, we say that W extends U (written U � W ) if, for
all u ∈ U , there is a v ∈ W , such that u � v. Note that every trace in U is
extended by some trace in W (we call these trace extensions), and that W may
also contain additional traces with no prefix in U (we call these set extensions).

2.1 LTL and HyperLTL

We now briefly introduce LTL and HyperLTL. The syntax of LTL [25] is:

ϕ:: = a
∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ © ϕ

∣
∣ ϕ U ϕ

where a ∈ AP. The semantics of LTL is given by associating to a formula the set
of traces t ∈ Σω that it accepts:

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t �|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2

t |= ©ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for somei, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

We will also use the usual derived operators ( ϕ ≡ trueUϕ) and (�ϕ ≡ ¬ ¬ϕ).
All properties expressible in LTL are trace properties (each individual trace sat-
isfies the property or not, independently of any other trace). Some important
properties, such as information-flow security policies (including confidentiality,
integrity, and secrecy), cannot be expressed as trace properties but require rea-
soning about two (or more) independent executions (perhaps from different
inputs) simultaneously. Such properties are called hyperproperties [10]. Hyper-
LTL [11] is a temporal logic for hyperproperties that extends LTL by allowing
explicit quantification over execution traces. The syntax of HyperLTL is:

ϕ:: = ∀π.ϕ
∣
∣ ∃π.ϕ

∣
∣ ψ ψ:: = aπ

∣
∣ ¬ψ

∣
∣ ψ ∨ ψ

∣
∣ © ψ

∣
∣ ψ U ψ

A trace assignment Π : V → Σω is a partial function mapping trace variables in
V to infinite traces. We use Π∅ to denote the empty assignment, and Π[π → t]
for the same function as Π, except that π is mapped to trace t. The semantics
of HyperLTL is defined by associating formulas with pairs (T,Π), where T is a
set of traces and Π is a trace assignment:

T,Π |= ∀π.ϕ iff for all t ∈ T the following holds T,Π[π → t] |= ϕ
T,Π |= ∃π.ϕ iff there exists t ∈ T such that T,Π[π → t] |= ϕ
T,Π |= ψ iff Π |= ψ



410 S. Stucki et al.

The semantics of the temporal inner formulas is defined in terms of the traces
associated with each path (here Π[i, ..] denotes the map that assigns π to t[i, ..]
if Π(π) = t):

Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2

Π |= ¬ψ iff Π �|= ψ
Π |= ©ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i,Π[i, ..] |= ψ2, and for all j < iT,Π[j, ..] |= ψ1

We say that a set T of traces satisfies a HyperLTL formula ϕ (denoted T |= ϕ)
if and only if T,Π∅ |= ϕ.

Example 1. Consider the HyperLTL formula ϕ = ∀π.∀π′.�(aπ ↔ aπ′) and
T = {t1, t2, t3}, where t1 = {a, b}{a, b}{}{b} · · · , t2 = {a}{a}{b} · · · and
t3 = {}{a}{b} · · · Although traces t1 and t2 together satisfy ϕ, t3 does not
agree with the other two, i.e., a ∈ t1(0), a ∈ t2(0), but a /∈ t3(0). Hence, T �|= ϕ.

2.2 Semantic Monitorability

Runtime verification (RV) is concerned with (1) generating a monitor from a
formal specification ϕ, and (2) using the monitor to detect whether or not ϕ holds
by observing events generated by the system at run time. Monitorability refers
to the possibility of monitoring a property. Some properties are non-monitorable
because no finite observation can lead to a conclusive verdict. We now present
some abstract definitions to encompass previous notions of monitorability in
a general way. These definitions are made concrete by instantiating them for
example to traces (for trace properties) or sets of traces (for hyperproperties),
see Example 2 below.

– Observation. We refer to the finite information provided dynamically to the
monitor up to a given instant as an observation.
We use O and P to denote individual observations and O to denote the set
of all possible observations, equipped with an operator O � P that captures
the extension of an observation.

– System behavior. We use B to denote the universe of all possible behaviors
of a system. A behavior B ∈ B may, in general, be an infinite piece of infor-
mation. By abuse of notation, O � B denotes that observation O ∈ O can
be extended to a behavior B.

Example 2. When monitoring trace properties such as LTL, we have O = Σ∗,
an observation is a finite trace O ∈ Σ∗, O � O′ is the prefix relation on finite
strings, and B = Σω. When monitoring hyperproperties such as HyperLTL, an
observation is a finite set of finite traces O ⊂ Σ∗, that is, O = Pfin(Σ∗). The
relation � is the prefix for finite sets of finite traces defined above. That is, O � P
whenever for all t ∈ O there is a t′ ∈ P such that t � t′. Finally, B = P(Σω).
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We say that an observation O ∈ O permanently satisfies a formula ϕ, if every
B ∈ B that extends O satisfies ϕ:

O |=s ϕ iff for all B ∈ B such that O � B, B |= ϕ

where |= denotes the satisfaction relation in the semantics of the logic. Similarly,
we say that an observation O ∈ O permanently violates a formula ϕ, if every
extension B ∈ B violates ϕ:

O |=v ϕ iff for all B ∈ B such that O � B, B �|= ϕ

Monitoring a system for satisfaction (or violation) of a formula ϕ is to decide
whether a finite observation permanently satisfies (resp. violates) ϕ.

Definition 1 (Semantic Monitorability). A formula ϕ is (semantically)
monitorable if every observation O has an extended observation P  O, such
that P |=s ϕ or P |=v ϕ.

A similar definition of monitorability only for satisfaction or only for violation
can be obtained by considering only P |=s ϕ or only P |=v ϕ. Instantiating
this definition of monitorability for LTL and finite traces as observations (O =
Σ∗ and B = Σω) leads to the classic definitions of monitorability for LTL by
Pnueli and Zaks [26] (see also [17]). Similarly, instantiating the definitions for
HyperLTL and observations as finite sets of finite traces leads to monitorability
as introduced by Agrawal and Bonakdarpour [1].

Example 3. The LTL formula � a is not (semantically) monitorable since it
requires an infinite-length observation, while formulas �a and a are moni-
torable. Similarly, ∀π.∀π.�(aπ ↔ ¬aπ′) is monitorable, but ∀π.∃π.�(aπ ↔ ¬aπ′)
is not, as it requires an observation set of infinite size. We will prove this claim
in detail in Sect. 3.

3 The Notion of Gray-Box Monitoring

Most of the previous definitions of monitorability make certain assumptions: (1)
the logics are trace logics, i.e. do not cover hyperproperties, (2) the system under
analysis is black-box in the sense that every further observation is possible, (3)
the logics are tractable, in that the decision problems of satisfiability, liveness,
etc. are decidable. We present here a more general notion of monitorability by
challenging these assumptions.

3.1 The Limitations of Monitoring Hyperproperties

Earlier work on monitoring hyperproperties is restricted to the quantifier alter-
nation-free fragment, that is either ∀∗.ψ or ∃∗.ψ properties. We establish now an
impossibility result about the monitorability of formulas of the form ∀π.∃π′.�F ,
where F is a state predicate. That is, F is formed by atomic propositions, aπ or
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aπ′ and Boolean combinations thereof, and can be evaluated given two valuations
of the propositions from AP, one from each path π and π′ at the current position.
For example, the predicate F = (aπ ↔ ¬aπ′) for AP = {a} depends on the
valuation of a at the first state of paths π and π′. We use v and v′ in F (v, v′) to
denote that F uses two copies of the variables v (one copy from π and another
from π′). A predicate F is reflexive if for all valuations v ∈ 2AP, F (v, v) is true.
A predicate F is serial if, for all v, there is a v′ such that F (v, v′) is true.

Theorem 1. A HyperLTL formula of the form ψ = ∀π.∃π′.�F is non-
monitorable if and only if F is non-reflexive and serial.

Proof (Sketch). For the “⇐” direction, it is easy to see that seriality implies
that Σω is a model of ϕ. Also, non-reflexivity means any observation can be
extended to a non-model by adding v to every trace, so that ¬F (v, v). Since every
observation can be extended to a model and a non-model, ϕ is non-monitorable.

For the “⇒” direction, we prove that reflexivity or non-seriality imply mon-
itorability. Reflexivity implies that ϕ is vacuously true by taking the same trace
for π and π′. Then, assume non-seriality, and append to one path in the obser-
vation v such that for no v, F (v, v′), generating a permanent violation. ��

The fragment of ∀∃ properties captured by Theorem 1 is very general (and
this result can be easily generalized to ∀+∃+ hyperproperties). First, the tem-
poral operator is just safety (the result can be generalized for richer temporal
formulas). Also, every binary predicate can be turned into a non-reflexive predi-
cate by distinguishing the traces being related. Moroever, many relational prop-
erties, such as non-interference and DDM, contain a tacit assumption that only
distinct traces are being related. Seriality simply establishes that F cannot be
falsified by only observing the local valuation of one of the traces. Intuitively, a
predicate that is not serial can be falsified by looking only at one of the traces, so
the property is not a proper hyperproperty. The practical consequence of Theo-
rem 1 is that many hyperproperties involving one quantifier alternation cannot
be monitored.

3.2 Gray-Box Monitoring. Sound and Perfect Monitors

To overcome the negative non-monitorability result, we exploit knowledge about
the set of traces that the system can produce (gray-box or white-box monitor-
ing). Given a system that can produce the set of system behaviors S ⊆ B, we
parametrize the notions of permanent satisfaction and permanent violation to
consider only behaviors in S:

O |=s
S ϕ iff for all B ∈ S such that O � B,B |= ϕ

O |=v
S ϕ iff for all B ∈ S such that O � B,B �|= ϕ

First, we extend the definition of monitorability (Definition 1 above) to consider
the system under observation.
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Definition 2 (Semantic Gray-Box Monitorability). A formula ϕ is
semantically gray-box monitorable for a system S if every observation O has
an extended observation P  O in S, such that P |=s

S ϕ or P |=v
S ϕ.

In this definition, monitors must now analyze and decide properties of extended
observations which is computationally not possible with full precision for suffi-
ciently rich system descriptions.

We now introduce a novel notion of monitors that consider S and the com-
putational power of monitors (the diagonal dimension in Fig. 1). A monitor for
a property ϕ and a set of traces S is a computable function MS : O → {�,⊥, ?}
that, given a finite observation O, decides a verdict for ϕ: � indicates success,
⊥ indicates failure, and ? indicates that the monitor cannot declare a definite
verdict given only u. To avoid clutter, we write M instead of MS when the sys-
tem is clear from the context. The following definition captures when a monitor
for a property ϕ can give a definite answer.

Definition 3 (Sound monitor). Given a property ϕ and a set of behaviors S,
a monitor M is sound whenever, for every observation O ∈ O,

1. if O |=s
S ϕ, then M(O) = � or M(O) = ?,

2. if O |=v
S ϕ, then M(O) = ⊥ or M(O) = ?,

3. otherwise M(O) = ?.

If a monitor is not sound then it is possible that an extension of O forces M to
change a � to a ⊥ verdict, or vice-versa. The function that always outputs ? is
a sound monitor for any property, but this is the least informative monitor. A
perfect monitor precisely outputs whether satisfaction or violation is inevitable,
which is the most informative monitor.

Definition 4 (Perfect Monitor). Given a property ϕ and a set of traces S, a
monitor M is perfect whenever, for every observation O ∈ O,

1. if O |=s
S ϕ then M(O) = �,

2. if O |=v
S ϕ then M(O) = ⊥,

3. otherwise M(O) = ?.

Obviously, a perfect monitor is sound. Similar definitions of perfect monitor only
for satisfaction (resp. violation) can be given by forcing the precise outcome only
for satisfaction (resp. violation).

A black-box monitor is one where every behavior is potentially possible, that
is S = B. If the monitor uses information about the actual system, then we say
it is gray-box (and we use white-box when the monitor can reason with absolute
precision about the set of traces of the system). In some cases, for example to
decide instantiations of a ∀ quantifier, a satisfaction verdict that is taken from
S can be concluded for all over-approximations (dually under-approximations
for violation and for ∃). For space limitations, we do not give the formal details
here.
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Using Definitions 3 and 4, we can add the computability aspect to capture
a stronger definition of monitorability. Abusing notation, we use O ∈ S to say
that observation O can be extended to a trace allowed by the system.

Definition 5 (Strong Monitorability). A property ϕ is strongly monitorable
for a system S if there is a sound monitor M s.t. for all observations O ∈
O, there is an extended observation P ∈ S for which either M(P ) = � or
M(P ) = ⊥.

A property is strongly monitorable for satisfaction if the extension with M(P ) =
� always exists (and analogously for violation). In what follows we will use the
term monitorability to refer to strong monitorability whenever no confusion may
arise. It is easy to see that if a property is not semantically monitorable, then it
is not strongly monitorable, but in rich domains, some semantically monitorable
properties may not be strongly monitorable. One trivial example is termination
for deterministic programs (that is, the halting problem). Given a prefix of the
execution of a deterministic program, either the program halts or it does not, so
termination is monitorable in the semantics sense. However, it is not possible to
build a monitor that decides the halting problem.

Lemma 1. If ϕ is strongly monitorable, then ϕ is semantically monitorable.

A property may not be monitorable in a black-box manner, but monitorable in
a gray-box manner. In the realm of monitoring of LTL properties, strong and
semantic monitorability coincide for finite state systems (see [28]) both black-box
and gray-box (for finite state systems), because model-checking and the problem
of deciding whether a state of a Büchi automaton is live are decidable.

Following [8] we propose to use a combination of static analysis and runtime
verification to monitor violations of ∀+∃+ properties (or dually, satisfactions of
∃+∀+). The main idea is to collect candidates for the outer ∃ part dynamically
and use static analysis at runtime to over-approximate the inner ∀ quantifiers.

4 Monitoring Distributed Data Minimality

In this section, we describe how to monitor DDM, which can be expressed as a
hyperproperty of the form ∀+∃+. In the particular case of DDM, although we
mainly deal with the input/output relation of functions and are not concerned
with infinite temporal behavior, we still need to handle possibly infinite set
extensions S for black-box monitoring.

In the remainder of this section, we discuss the following, seemingly contra-
dictory aspects of DDM:

(P1) DDM is not semantically black-box monitorable,
(P2) DDM is semantically white-box monitorable (for programs that are not

DDM),
(P3) checking DDM statically is undecidable,
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(P4) DDM is strongly gray-box monitorable for violation, and we give a sound
monitor.

The apparent contradictions are resolved by careful analysis of DDM along the
different dimensions of the monitorability cube (Fig. 1).

We will show how to monitor DDM and similar hyperproperties using a gray-
box approach. In our approach, a monitor can decide at run time the existence
of traces using a limited form of static analysis. The static analyzer receives the
finite observation O collected by the monitor, but not the future system behavior.
Instead it must reason under the assumption that any system behavior in S that
is compatible with O, may eventually occur. For example, given an ∃∀ formula,
the outer existential quantifier is instantiated with a concrete set U of runtime
traces, while possible extensions of U provided by static analysis can be used to
instantiate the inner universal quantifier.

4.1 DDM Preliminaries

We briefly recapitulate the formal notion of data-minimality from [3]. Given
a function f : I → O, the problem of data minimization consists in finding a
preprocessor function p : I → I, such that f = f ◦ p and p = p ◦ p. The goal of p
is to limit the information available to f while preserving the behavior of f .

There are many possible such preprocessors (e.g. the identity function), which
can be ordered according to the information they disclose, that is, according to
the subset relation on their kernels. The kernel ker(p) of a function p is defined
as the equivalence relation (x, y) ∈ ker(p) iff p(x) = p(y). The smaller ker(p) is,
the more information p discloses. The identity function is the worst preprocessor
since it discloses all information (its kernel is equality—the least equivalence
relation). An optimal preprocessor, or minimizer, is one that discloses the least
amount of information.

A function f is monolithic data-minimal (MDM), if it fulfills either of the
following equivalent conditions:

1. the identity function is a minimizer for f ,
2. f is injective.

Condition 1. is an information-flow-based characterization that can be general-
ized to more complicated settings in a straightforward fashion. Condition 2. is
a purely logical or data-based characterization more suitable for implementation
in e.g. a monitor.

MDM is the strongest form of data minimality, where one assumes that
all input data is provided by a single source and thus a single preproces-
sor can be used to minimize the function. If inputs are provided by multi-
ple sources (called a distributed setting) and access to the system implement-
ing f is restricted, it might be impossible to use a single preprocessor. For
example, consider a web-based auction system that accepts bids from n bid-
ders, represented by distinct input domains I1, . . . , In, and where concrete bids
xk ∈ Ik are submitted remotely. The auction system must compute the function
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m(x1, . . . , xn) = maxk{xk}, which is clearly non-injective and, hence, non-MDM.
In this case, a single, monolithic minimizer cannot be used since different bidders
need not have any knowledge of each other’s bids. Instead, bidders must try to
minimize the information contained in their bid locally, in a distributed way,
before submitting it to the auction.

The problem of distributed data minimization consists in building a collec-
tion p1, . . . , pn of n independent preprocessors pk : Ik → Ik for a given function
f : I1 × · · · × In → O, such that their parallel composition p(x1, . . . , xn) =
(p1(x1), . . . , p(xn)) is a preprocessor for f . Such composite preprocessors are
called distributed, and a distributed preprocessor for f that discloses the least
amount of information is called a distributed minimizer for f . Then, one can
generalize the (information-flow) notion of data-minimality to the distributed
setting as follows. The function f is distributed data-minimal (DDM) if the
identity function is a distributed minimizer for f . Returning to our example, the
maximum function m defined above is DDM. As for MDM, there is an equivalent,
data-based characterization of DDM defined next.

Definition 6 (distributed data minimality [3,23]). A function f is dis-
tributed data-minimal (DDM) if, for all input positions k and all x, y ∈ Ik such
that x �= y, there is some z ∈ I, such that f(z[k �→ x]) �= f(z[k �→ y]).

We use Definition 6 to explore how to monitor DDM. In the following, we assume
that the function f : I1 × · · · × In → O has at least two arguments (n ≥ 2).
Note that for unary functions, DDM coincides with MDM. Since MDM is a
∀+-property (involving no quantifier alternations), most of the challenges to
monitorability discussed here do not apply [24]. We also assume, without loss
of generality, that the function f being monitored has only nontrivial input
domains, i.e. |Ik| ≥ 2 for all k = 1, . . . n. If Ik is trivial then this constant input
can be ignored. Finally, note that checking DDM statically is undecidable (P3)
for sufficiently rich programming languages [3].

4.2 DDM as a Hyperproperty

We consider data-minimality for total functions f : I → O. Our alphabet, or set
of events, is the set of possible input-output (I/O) pairs of f , i.e. Σf = I × O.
Since a single I/O pair u = (uin, uout) ∈ Σf captures an entire run of f , we
restrict ourselves to observing singleton traces, i.e. traces of length |u| = 1. In
other words, we ignore any temporal aspects associated with the computation
of f . This allows us to use first-order predicate logic—without any temporal
modalities—as our specification logic.

DDM is a hyperproperty, expressed as a predicate over sets of traces, even
though the traces are I/O pairs. The set of observable behaviors Of of a given
f consists of all finite sets of I/O pairs Of = Pfin(Σf ). The set of all possible
system behaviors Bf = P(Σf ) additionally includes infinite sets of I/O pairs.

Example 4. Let f : N × N → N be the addition function on natural numbers,
f(x, y) = x+y. Then I = N×N, O = N, and a valid trace u ∈ Σf takes the form
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u = ((x, y), z), where x, y and z are all naturals. Both U = {((1, 2), 3), ((2, 1), 3)}
and V = {((1, 1), 3)} are considered observable behaviors U, V ∈ Of , even
though V does not correspond to a valid system behavior since f(1, 1) �= 3.
Remember that we do not discriminate between valid and invalid system behav-
iors in a black-box setting.

We now express DDM as a hyperproperty, using HyperLTL, but with only
state predicates (no temporal operators). Given a tuple x = (x1, x2, . . . , xn), we
write proji(x) or simply xi for its i-th projection. Given an I/O pair u = (x, y)
we use uin for the input component and uout for the output component (that is
uin = x and uout = y). Given trace variables π, π′, we define

output(π, π′) def= πout = π′
out π and π′ agree on their output,

samei(π, π′) def= proji(πin) = proji(π
′
in) π and π′ agree on the i-th input,

almosti(π, π′) def=
∧

k �=i

projk(πin) = projk(π′
in) π and π′ agree on all but the

i-th input

Example 5. Let u = ((1, 2), 3), u′ = ((2, 1), 3), and Π = {π �→ u, π′ �→ u′}.
Then Π |= output(π, π′), but Π �|= same1(π, π′) and Π �|= almost1(π, π′).

We define DDM for input argument i as follows:

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π′) →
(

samei(π, τ) ∧ samei(π′, τ ′) ∧
almosti(τ, τ ′) ∧ ¬ output(τ, τ ′)

)

In words: given any pair of traces π and π′, if πin and π′
in differ in their i-th posi-

tion, then there must be some common values z for the remaining inputs, such
that the outputs of f for τin = z[i �→ proji(πin)] and τ ′

in = z[i �→ proji(π′
in)] dif-

fer. Note that z does not appear in ϕi directly, instead it is determined implicitly
by the (existentially quantified) traces τ and τ ′. Finally, distributed data mini-
mality for f is defined as

ϕdm =
n∧

i=1

ϕi.

The property ϕdm follows the same structure as the logical characterization of
DDM from Sect. 4.1. The universally quantified variables range over the possible
inputs at position i, while the existentially quantified variables τ and τ ′ range
over the other inputs and the outputs. Note also that, given the input coordinates
of π, π′, and τ , all the output coordinates, as well as the input coordinates of
τ ′, are uniquely determined.2

2 For simplicity, even though ϕdm is not in prenex normal form, it is a finite conjunction
of ∀∀∃∃ formulas in prenex normal form so a finite number of monitors can be built
and executed in parallel, one per input argument.
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Example 6. Consider again U = {((1, 2), 3), ((2, 1), 3)} and V = {((1, 1), 3)}
from Example 4. Then, V |= ϕdm trivially holds, but U �|= ϕdm because
when Π(π) �= Π(π′) there is no choice of Π(τ),Π(τ ′) ∈ U for which Π |=
¬ output(τ, τ ′) holds.

Note that, in the above example, V |= ϕdm holds despite the fact that V is not
a valid behavior of the example function f(x, y) = x+ y. Indeed, whether or not
U |= ϕdm holds for a given U is independent of the choice of f . In particular, Σf |=
ϕdm, for any choice of f regardless of whether f is data-minimal or not. This is
already a hint that the notion of semantic black-box monitorability is too weak to
be useful when monitoring ϕdm. Since Σf is a model of ϕdm, no observation U can
have an extension that permanently violates ϕdm. As we will see shortly, gray-
box monitoring does not suffer from this limitation. Monitorability of DDM for
violations becomes possible once we exclude potential models such as Σf which
do not correspond to valid system behaviors.

Remark. Note that though our definition and approach work for general (reac-
tive) systems, the DDM example is admittedly a non-reactive system with traces
of length 1. This, however, is not a limitation of the approach. Extending DDM
for reactive systems is left as future work.

4.3 Properties of DDM

Since ϕdm is a ∀+∃+ property, it should not come as a surprise that it is not
semantically black-box monitorable in general (P1). Although DDM is not a
temporal property, the proof of non-monitorability follows the same basic struc-
ture as that of Theorem 1 [27]. In particular, since Σf |= ϕdm for any f , no set
of I/O pairs U can permanently violate ϕdm. In other words, ϕdm is clearly not
black-box monitorable for violations.

However, and perhaps surprisingly, ϕdm is semantically white-box moni-
torable for violations (P2). That is, if f is not DDM, there is hope to detect
it. To make this statement more precise, we first need to identify the set of valid
system behaviors Sf of f . We define Σ#

f = {(x, y) | f(x) = y} to be the set
of I/O pairs that correspond to executions of f . Then Sf = P(Σ#

f ) precisely
characterizes the set of valid system behaviors.

Example 7. Define g : N×N → N as g(x, y) = x, i.e. g simply ignores its second
argument. Then Σ#

g = {((x, y), x) | x, y ∈ N}. It is easy to show that DDM is
white-box monitorable for g. Any finite set of valid traces U can be extended
to include a pair of traces u, u′ that only differ in their second input value,
e.g. u = ((1, 1), 1) and u′ = ((1, 2), 1). Now, consider any T ∈ Sf that extends
U ∪ {u, u′}. Clearly, T cannot contain any trace v for which proj1(vin) = 1 but
vout �= 1 as that would constitute an invalid system behavior. But T would have
to contain such a trace to be a model of ϕ2. Hence, T �|= ϕdm for any such T ,
which means U ∪ {u, u′} permanently violates ϕdm.
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Note the crucial use of information about g in the above example: it is the
restriction to valid extensions T ∈ Sf that excludes trivial models such as Σf and
thereby restores (semantic) monitorability for violations. The apparent conflict
between (P1) and (P2) is thus resolved.

With the extra information that gray-box monitoring affords, we can make
more precise claims about properties like DDM: whether or not a property is
monitorable may, for instance, depend on whether the property actually holds
for the system under scrutiny. Concretely, for the case of DDM, we show the
following.

Theorem 2. Given a function f : I → O, the formula ϕdm is semantically gray-
box monitorable in Sf if and only if either f is distributed non-minimal or the
input domain I is finite.

Proof (Sketch). If I is finite, Σ#
f ∈ Sf is a finite extension of any U and also

permanently satisfies or violates ϕdm. If, instead, I is infinite and f is not dis-
tributed minimal, then there must be some input position i and some pair of
distinct inputs x �= x′ ∈ Ii, such that f(z[i �→ x]) = f(z[i �→ x′]) for any choice
of z ∈ I. Any set U extended by a pair of traces featuring these inputs at posi-
tion i (permanently) violates ϕdm. The proof for the case where I is infinite and
f is distributed minimal uses a similar idea to construct counterexamples to
permanent satisfaction of ϕdm. (See our tech-report for the full proof [27].) ��
Intuitively, this means that f cannot be monitored for satisfaction. Note that
the semantic monitorability property established by Theorem2 is independent
of whether we can actually decide DDM for the given f . We address the question
of strong monitorability later on in this section.

If I is finite, it is easy to strengthen Theorem2 by providing a perfect monitor
Mdm for ϕdm. Since f is assumed to be a total function with a finite domain, we
can simply check the validity of ϕdm for every trace U ⊆ Σ#

f and tabulate the
result. To do so, the ∃ and ∀ quantifiers in ϕdm can be converted into conjunctions
and disjunctions over U .

Corollary 1. For f : I → O with finite I, ϕdm is strongly monitorable in Sf .

If I is infinite, then ϕdm is not semantically monitorable for satisfaction, but we
can still hope to build a sound monitor for violation of ϕdm.

4.4 Building a Gray-Box Monitor for DDM

In what follows, we assume a computable function capable of deciding DDM
only for some instances. This function, that we call oracle, will serve as the basis
for a sound monitor for DDM (P4). This monitor will detect some, but not
all, violations of DDM when given sets of observed traces, thus resolving the
apparent tension between (P3) and (P4).
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Given f : I1 × · · · × In → O, we define the predicate ϕf as

ϕf (i, x, y) = ∃z ∈ I. f(z[i �→ x]) �= f(z[i �→ y]),

and assume a total computable function Nf,i : Ii × Ii → {�,⊥, ?} such that

Nf,i(x, y) =

{

� or ? if ϕf (i, x, y) holds,
⊥ or ? otherwise.

The function Nf,i acts as our oracle to instantiate the existential quantifiers
in ϕdm. As discussed earlier, such oracles may be implemented by statically
analyzing the system under observation (here, the function f). In our proof-of-
concept implementation, we extract ϕf (i, x, y) from f using symbolic execution,
and use an SMT solver to compute Nf,i(x, y) [27].

We now define a monitor Mdm for ϕdm as follows:

Mdm(U) =

⎧

⎪⎨

⎪⎩

? if f(uin) �= uout for some u ∈ U,

? if
∧n

i=1

∧

u,u′∈U Nf,i(proji(uin),proji(u′
in)) �= ⊥,

⊥ otherwise.

Intuitively, the monitor Mdm(U) checks the set of traces U for violations of DDM
by verifying two conditions: the first condition ensures the consistency of U , i.e.
that every trace in U does in fact correspond to a valid execution of f ; the second
condition is necessary for U not to permanently violate ϕdm. Hence, if it fails,
U must permanently violate ϕdm. Since Nf,i is computable, so is Mdm. Note
that Mdm never gives a positive verdict �. This is a consequence of Theorem 2:
if f is DDM, then ϕdm is not monitorable in Sf . In other words, DDM is not
monitorable for satisfaction.

The second condition in the definition of Mdm is an approximation of ϕdm:
the universal quantifiers are replaced by conjunctions over the finite set of input
traces U , while the existential quantifiers are replaced by a single quantifier
ranging over all of Σ#

f (not just U). This approximation is justified formally by
the following theorem [27].

Theorem 3 (soundness). The monitor Mdm is sound. Formally,

1. U |=s
Sf

ϕdm if Mdm(U) = �, and
2. U |=v

Sf
ϕdm if Mdm(U) = ⊥.

4.5 Proof-of-Concept Implementation

We have implemented the ideas described above in a proof-of-concept monitor for
data minimization called minion. The monitor uses the symbolic execution API
and the SMT backend of the KeY deductive verification system [2,18] to extract
logical characterizations of Java programs (their symbolic execution trees). It
then extends them to first-order formulas over sets of observed traces, and checks
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the result using the state-of-the-art SMT solver Z3 [20,21]. The minion monitor
is written in Scala and provides a simple command-line interface (CLI). Its source
code is freely available online at https://github.com/sstucki/minion/. A detailed
description of minion, including examples, appears in the extended version of
this paper [27].

5 Related Work

LTL Monitorability. Pnueli and Zaks [26] introduced monitorability as the
existence of extension of the observed traces that permanently satisfy or violate
an LTL property. It is known that the set of monitorable LTL properties is a
superset of the union of safety and co-safety properties [5,6] and that it is also a
superset of the set of obligation properties [14,15]. Havelund and Peled [17] intro-
duce a finer-grained taxonomy distinguishing between always finitely satisfiable
(resp. refutable), and sometimes finitely satisfiable where only some prefixes are
required to be monitorable (for satisfaction). Their taxonomy also describes the
relation between monitorability and classical safety properties. This is a new
dimension in the monitorability cube in Fig. 1 which we will study in the future.
While all the notions mentioned above ignore the system, predictive monitor-
ing [28] considers the traces allowed in a given finite state system.

Monitoring HyperLTL. Monitoring hyperproperties was first studied in [1],
which introduces the notion of monitorability for HyperLTL [11] and gives an
algorithm for a fragment of alternation-free HyperLTL. This is later generalized
to the full fragment of alternation-free formulas using formula rewriting in [9],
which can also monitor alternating formulas but only with respect to a fixed
finite set of finite traces. Finally, [16] proposes an automata-based algorithm for
monitoring HyperLTL, which also produces a monitoring verdict for alternating
formulas, but again for a fixed trace set. The complexity of monitoring different
fragments of HyperLTL was studied in detail in [7]. The idea of gray-box moni-
toring for hyperproperties, as a means for handling non-monitoriable formulas,
was first proposed in [8].

Data Minimization. A formal definition of data minimization and the con-
cept of data minimizer as a preprocessor appear in [3], which introduces the
monolithic and distributed cases. Minimality is closely related to information
flow [12]. Malacaria et al. [19] present a symbolic execution-based verification of
non-interference security properties for the OpenSSL library. In our paper, we
have focused on a version of distributed minimization which is not monitorable
in general. For stronger versions (cf. [3]), Pinisetty et al. [23,24] show that mon-
itorability for satisfaction is not possible, but it is for violation. (the paper also
introduces an RV approach for similar safety hyperproperties for deterministic
programs).

https://github.com/sstucki/minion/
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6 Conclusions

We have rephrased the notion of monitorability considering different dimensions,
namely (1) whether the monitoring is black-box or gray-box, (2) whether we con-
sider trace properties or hyperproperties, and (3) taking into account the com-
putatibility aspects of the monitor as a program. We showed that many hyper-
properties that involve quantifier alternation are non-monitorable in a black-box
manner and proposed a technique that involves inspecting the behavior of the
system. In turn, this forces to consider the computability limitations of the mon-
itor, which leads to a more general notion of monitorability.

We have considered distributed data minimality (DDM) and expressed this
property in HyperLTL, involving one quantifier alternation. We then presented
a methodology to monitor violations of DDM, based on a model extracted from
the program being monitored in the form of its symbolic execution tree, and an
SMT solver. We have implemented a tool (minion) and applied it to a number
of representative examples to assess the feasibility of our approach [27].

As future work, we plan to extend the proposed methodology for other hyper-
properties, particularly in the concurrent and distributed setting. We are also
planning to use bounded model checking as our verifier at run-time by combin-
ing over- and under-approximated methods to deal with universal and existen-
tial quantifiers in HyperLTL formulas. Another interesting problem is to apply
gray-box monitoring for hyperproperties with real-valued signals (e.g., Hyper-
STL [22]). Finally, we intend to extend the definition and results of data mini-
mality in order to capture reactivity, and study monitorability in this setting.
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