
Circus2CSP: A Tool for Model-Checking
Circus Using FDR

Artur Oliveira Gomes1(B) and Andrew Butterfield2

1 Universidade Federal de Mato Grosso do Sul, Corumbá, Brazil
artur.gomes@ufms.br

2 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
butrfeld@tcd.ie

Abstract. In this paper, we introduce Circus2CSP, a tool that auto-
matically translates Circus into CSPM , with an implementation based
on a published manual translation scheme. This scheme includes new and
modified translation rules that emerged as a result of experimentation.
We addressed issues with FDR state-space explosion, by optimising our
models using the Circus Refinement Laws. We briefly describe the usage
of Circus2CSP along with a discussion of some experiments comparing
our tool with the literature.

1 Introduction

Among the range of verification techniques, model checking is used for exploring
all the possible states a reactive system can reach. The focus of model-checking
is on the system’s behaviour rather than how the model would manage its data.
Therefore, a system whose behaviour strongly relies on its data may become
difficult to check, since the data may range over infinite domains.

There has been an effort from the community in order to design a systematic
approach for model-checking Circus, which due to its combination of formalisms,
is quite a challenge. Circus [33] is a formal language that combines structural
aspects of a system using the Z language [35] and the behavioural aspects using
CSP [31], along with the refinement calculus [22] and Dijkstra’s guarded com-
mands [7]. Its semantics is based on the Unifying Theories of Programming
(UTP) [15]. As an initial attempt to model-check Circus, we participated in the
ABZ’16 haemodialysis case study [12], producing a Circus specification, manually
translating it into CSPM , which we then checked with FDR [9]. Moreover, when
translating Circus into CSP, we adapted the Circus model to map the structural
Z parts into appropriate CSP.

Unlike in Circus processes, an explicit notion of state variables is not present
in CSP processes. Therefore, in order to translate Circus state, we would either
translate it into a memory process [17,23,29], allowing other processes to read
and write the values by synchronising on memory ‘get’ and ‘put’ events, or to
transform the state variables into process parameters, as used by Beg [4]. For
instance, we captured the state-based features of Circus in CSP using a memory
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 235–242, 2019.
https://doi.org/10.1007/978-3-030-30942-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_15

236 A. O. Gomes and A. Butterfield

process synchronising on channels for reading and updating the values of the
state variables. Such an approach was also used while model checking [10] the
ARINC 653 [2] architecture.

In this paper, we present Circus2CSP1 [13], a tool capable of model-checking
specifications designed in Circus using FDR. It was developed by extending
JAZA [32], a Z animator written in Haskell, in order to cover the Circus abstract
syntax. The rest of the paper is organized as follows: In Sect. 2, we discuss the
main goal of this work. A brief description of some experiments using Circus2CSP
is presented in Sect. 3. The paper is concluded in Sect. 4.

2 Circus2CSP: Requirements and Goals

Our translation is based on that developed by Oliveira in the Compass
project [26,27], which is based on repeated application of carefully selected Cir-
cus refinement laws, all of which happen to be equivalences. Such a translation
uses set of rules for refining state-rich Circus into stateless processes that can be
mapped into CSPM .

Our focus while model-checking Circus is to produce a model in CSPM

where FDR can evaluate using as little computing resources as possible. As
such, we provide a refined model from the strategy presented by Oliveira et al.
[26], where our tool is capable of producing CSPM models from larger specifica-
tions and making it possible for model-checking them using FDR. We highlight
that because FDR is a refinement checker, it is not possible to perform temporal
logic checks, which is further discussed by Lowe [20].

The entire toolset is developed as an extension of JAZA, which parses Z
specifications written in LATEX, the same input used by the Community Z Tools.
Our goal was to produce a framework using the infrastructure available from
JAZA, where the parser for Z was extended and now supports Circus, and from
there, we include new modules like the translation tool and the refinement calcu-
lator for Circus. Moreover, our tool is linked to FDR, and may also be integrated
with other tools in the future. Our contribution here is mainly related to the
fulfilment of a tool for automatically model-checking Circus.

The reason we adopted the translation presented by Oliveira et al., is that,
even though it is a manual translation, with no tool support involved, each trans-
lation step is justified by the Circus refinement laws, which have been formally
proved to be correct. Currently, their approach covers a subset of Circus. How-
ever, our investigation [14] through experiments with the implementation of such
rules demonstrated that such an initial and theoretical approach was restricted
to a subset of the possible Circus specifications: those dealing with only one
same type for all variables within the state of those processes. Thus, we had to
implement not only a tool for the translation but also to refine that translation
strategy in order to support a more realistic set of specifications: those using
mixed types among their state variables.

1 https://bitbucket.org/circusmodelcheck/circus2csp.

https://bitbucket.org/circusmodelcheck/circus2csp

Circus2CSP: A Tool for Model-Checking Circus Using FDR 237

We also experimented with the efficiency of FDR concerning the scale of the
specifications. For such, we used the haemodialysis case study [3,12], a com-
plex system which behaves according to the values of dozens of state variables.
Thus, we refined the memory model in order to optimise the task of reading and
updating the state variables from the Circus processes.

The outcome is that we now have a mechanised translator from Circus to
CSPM that produces tractable models, and allows the use of FDR on larger
case studies than have been possible up to now. The new developed approach,
as described in this paper, is sound since we were able to prove, by hand as well
as using FDR as a refinement checker, that the memory model from Oliveira et
al. is refined by the model discussed here [11, p. 77].

Our tool has an automatic refinement calculator for Circus2CSP, which han-
dles a selected set of Circus refinement laws used according to [26, Appendix A,
p. 147]. Moreover, we experimented with a strategy for refining Z schemas into
“schema-free” Circus actions using Z Refinement Calculus [6].

Deliverables. In summary, our research towards model checking Circus resulted
in the following contributions:

– A tool for automatically translating a subset of Circus into CSPM :
Implementation of a tool based on the work of Oliveira et al. [26] where one
is able to translate Circus models written in LATEX into CSPM , and then, be
able to perform model-checking and refinement checks using FDR.

– An automatic Circus refinement calculator: As part of the translation
strategy, the Circus refinement laws are applied to the processes and actions.
In order to automate the translation as much as possible, we provide an
automatic Circus refinement calculator.

– A transformation of some Z schemas into appropriate Circus con-
structs for translating into CSPM : The translation approach presented
by Oliveira does not handle Z schemas directly, but only after normalisation.
However, such a translation was not yet formally proved to be correct. We
explored ways of translating Z schemas into Circus actions, specifically, those
schemas where the translation results in a set of assignments.

– An improved Circus model that supports multiple types within a
specification: The generated CSPM model from Oliveira et al. using multi-
ple types is not supported by FDR, since it contains some auxiliary functions
that are seen by FDR as polymorphic functions, which are not supported by
such a tool. We, however, introduce a new data structure that treats each
type with its own set of auxiliary functions.

– A refinement of the memory model from Oliveira et al. [26]: We
provide a refined memory model with distributed memory cells updating and
retrieving the values of the state variables, allowing FDR to handle a large
number of state variables in a process, optimizing FDR’s effort to check such
models.

238 A. O. Gomes and A. Butterfield

– New rules for mapping Circus to CSPM : We extended the mapping func-
tions for expressions and predicates from Z, as well as mapping functions for
those actions specifically related to the Memory model.

– A mechanism that integrates Circus2CSP with FDR: We connected our
tool to the “terminal-mode” interface of FDR, in order to be able to run
checks straight from our tool. Unfortunately, we have no direct access to
the code of FDR, and thus, we have to manually parse the results from the
execution of FDR’s “refine” command.

– An automatic assertion generator for checking with FDR: Our tool
is able to generate assertion checks for refinement, deadlock, livelock and
determinism checks for the loaded specification.

Tool Restrictions. Our tool expects Circus specifications as input, written in
LATEX, very similar to the way Z paragraphs are written in LATEX, which is a
de facto standard for writing Circus specifications. We assume that the Circus
document is already type checked by existing tools [21].

Our tool supports most of the Circus syntax, avoiding those constructs not
handled in [26, p. 78] such as: no writting to input variables; external choice
only among prefixed actions (those guaranteed to participate in an event before
doing anything else, such as assignment); and no miraculous specifications.

Furthermore, some features are not yet supported such as: dealing with state
invariants or preconditions in the Z schemas; non-determinism of data is not
supported; and the consequences of nested parallelism and hiding with non-
disjoint name sets have not been handled yet. These are a consequence of this
being an automated translation, rather than the manual one prescribed in [26].
Finally, the translation of Z schemas used as Circus actions is restricted to those
resulting in assignments.

3 Experiments with Circus2CSP

During our research we performed tests using our tool, Circus2CSP, exploring
ways of overcoming any limitations from FDR, as well as comparing our approach
with others from the literature.

Firstly, we explore the interference of invariants and preconditions in CSPM ,
using the chronometer model from Oliveira [25, pp. 34–41], comparing the model
from Circus2CSP with the translation from Oliveira [26]. We identified that using
Circus2CSP, the time spent by FDR to check for deadlock freedom, for example,
with a model with the natural numbers ranging from zero to sixty (0..60), was
of around 3 min. However, using Oliveira’s approach it took nearly three hours.
In general, the CSPM models translated using our tool were evaluated by FDR
using a much smaller state space and were checked in up to 95% less time than
all the other models we tried derived from Oliveira’s. However, we observed no
correlation between time and state visited.

Then, we compare the translation of the HD model using Circus2CSP with
the model from [12]. We observed a reduction of over 91% of the state explored,

Circus2CSP: A Tool for Model-Checking Circus Using FDR 239

as well as the execution time. Moreover, the manual translation didn’t allow us
to run FDR with a larger range of values for natural numbers, usually ranging
from 0 up to 2. However, with Circus2CSP, we were able to go beyond the range
0 up to 90 in less than a minute. Such a result demonstrated that our approach is
capable of handling large-scale case studies like the haemodialysis machine [12]
and the ring buffer [26,37].

We also evaluated the effects of using some compression techniques available
in FDR using the HD model as an example. Although the states/transitions/plys
visited were considerably reduced using the compression techniques such as
sbisim, which determines the maximal strong bisimulation [5], and wbisim,
which computes the maximal weak bisimulation, there was little impact on over-
all execution time, and the number of states visited are independent of the range
of natural numbers used, while the number of transitions grows slowly. However,
it is difficult to identify which compression technique will be most effective in a
general case, and indeed, further experiments are required.

Finally, we compare different approaches for modeling the Ring Buffer case
study [26,37], using FDR, in order to test the capabilities of our tool while
model-checking the translated models, in contrast to the limitations of ProB [19].
Unfortunately, the structure defined for our translation strategy is not fully sup-
ported by ProB, which was used to test the model generated with the translation
strategy from Ye [37]. ProB is another model-checker, which was originally devel-
oped for the B language, and was extended to support CSP, Z, Event-B [1], as
well as combined languages such as CSP||B. We observed that some of the con-
structs used in our CSPM model, such as subtype, are not yet supported by
ProB. Nevertheless, we were able to use ProB’s animator and to execute the
same assertion check, as in FDR, obtaining similar results.

However, the tests performed with the CSPM specification of Ye using FDR
failed to checks for deadlock freedom and determinism. The results obtained from
ProB can be related to what we obtained in FDR in terms of the behavior of the
system: the counterexample given from FDR can be used to animate the CSP||B
model in ProB, causing the same effect: deadlock. Although, our experiment was
limited since CSP||B takes into account the system state in ProB. In such model,
the CSPM file generated from Ye captures only the behavior of the system, but
does not captures the system state. We reckon that the deadlock was caused
because the state (modeled in B) can interfere in the system behavior in order
to avoid deadlocks.

4 Conclusions

In this paper, we briefly introduced Circus2CSP, a tool capable of model-checking
Circus specifications using FDR, through a translation strategy from Circus
into CSPM . It comprises a series of translation rules, combined with Circus
refinement laws. One can perform refinement checks using FDR directly from
Circus2CSP’s command-line. The tool can be downloaded freely from https://
bitbucket.org/circusmodelcheck/.

https://bitbucket.org/circusmodelcheck/
https://bitbucket.org/circusmodelcheck/

240 A. O. Gomes and A. Butterfield

We improved Oliveira’s [26] translation strategy in a few ways: handling a
wider mix of datatypes; translating Z schemas easily “compiled” to assignments;
coping better with potentially large state spaces; and close integration with FDR.
Some of the equivalence laws used in the translation have side-conditions that
lead to proof obligations. Our tool does not discharge these, leaving them to the
user to handle by other means.

The modifications for the memory model developed for our tool are similar
to what was presented by Mota et al. [24], where interleaving between processes,
one for each state variable, was proposed. In fact, the memory model used in [26]
was based on the one by Mota et al., and was expanded with the inclusion of a
terminate signal, and, rather than one process for each variable, it would offer
all possible mget and mset for all state variables at the same time.

A key principle in critical software development methods is that all global
variables should be intialised pretty much immediately [2]. In a Circus context,
if all the assignments are done are before any observable event occurs, then
its behaviour is that of a (simultaneous) assignment s′ = sinit, where s is the
(aggregated) global state. This allows us to introduce an additional translation
step that replaces a non-deterministic choice over all possible starting values
of s by one arbitrary choice of starting value for s. This is normally a proper
refinement, but with initialisation as above, results in being an equivalence. This
trick dramatically improved the performance of FDR.

Some related work on techniques for model-checking Circus was presented by
Freitas [8] where a refinement model checker based on automata theory [16] and
the operational semantics of Circus [34] was formalised in Z/Eves [30]. However,
Freita’s Circus model checker is restricted to a subset of Circus actions and does
not support the notion of Circus processes. Moreover, Nogueira et al. [23] also
presented a prototype of a model checker for Circus within the Microsoft FOR-
MULA [18] framework. However, they could not provide a formal proof of the
soundness of their approach, since FORMULA does not have an available for-
mal semantics. Model-checking Circus was investigated by Ye and Woodcock [36],
who defined a link from Circus to CSP‖B with model-checking using ProB [28].
However, ProB is a limited tool not supporting multiprocessors nor multithread-
ing. Finally, Beg [4] prototyped an automatic translation that supports a subset
of Circus constructs, supporting only Skip, prefixing action, sequential compo-
sition, assignments, if statements, and guards with simple predicates.

For future work, we have plans for specifying a translation strategy for Z
schemas used as Circus actions within a process. The best approach would be to
use Z Refinement Calculus [6]. For now, our tool deals only with those schemas
that in fact can be translated into assignments. We intend to explore the oper-
ators for Z schemas and the refinement laws that can be applied accordingly.

Acknowledgements. This work was funded by CNPq (Brazilian National Council
for Scientific and Technological Development) within the Science without Borders pro-
gramme, Grant No. 201857/2014-6, and partially funded by Science Foundation Ireland
grant 13/RC/2094.

Circus2CSP: A Tool for Model-Checking Circus Using FDR 241

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Aeronautical Radio, I.A.: ARINC 653: Avionics Application Standard Software
Interface, November 2006

3. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

4. Beg, A., Butterfield, A.: Development of a prototype translator from Circus to
CSPm. In: 2015 International Conference on Open Source Systems and Technolo-
gies, Proceedings, ICOSST 2015, pp. 16–23, December 2016

5. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal weak and
other bisimulations. Formal Aspects Comput. 28(3), 381–407 (2016). https://doi.
org/10.1007/s00165-016-0366-2

6. Cavalcanti, A., Woodcock, J.C.P.: ZRC - a refinement calculus for Z. Formal
Aspects Comput. 10(3), 267–289 (1998). https://doi.org/10.1007/s001650050016

7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). http://portal.acm.org/citation.cfm
doid=360933.360975%5Cn

8. Freitas, L.: Model checking circus. Ph.D. thesis, Department of Computer Science,
The University of York, UK (2005)

9. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 - a
modern model checker for CSP. Tools Algorithms Constr. Anal. Syst. 8413, 187–
201 (2014). https://www.cs.ox.ac.uk/projects/fdr/manual/

10. Gomes, A.O.: Formal Specification of the ARINC 653 Architecture Using Circus
(2012). https://etheses.whiterose.ac.uk/id/eprint/2683

11. Gomes, A.O.: Model-checking circus with FDR using Circus2CSP. Ph.D. thesis,
Trinity College Dublin (2019). https://www.tara.tcd.ie/handle/2262/86009

12. Gomes, A.O., Butterfield, A.: Modelling the haemodialysis machine with circus.
In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 409–424. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33600-8 34

13. Gomes, A.O., Butterfield, A.: Circus2CSP - a translator from circus to CSPm
(2018). https://bitbucket.org/circusmodelcheck/circus2csp

14. Gomes, A.O., Butterfield, A.: Towards a model-checker for circus. In: 3rd World
Congress on Formal Methods. Springer, Berlin (2019)

15. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper Saddle
River (1998)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation - International Edition, 2nd edn. Addison-Wesley,
Boston (2003)

17. Hopkins, D., Roscoe, A.W.: SVA, a tool for analysing shared-variable programs.
Electronic Notes in Theoretical Computer Science, pp. 1–5 (2007). https://www.
cs.ox.ac.uk/people/bill.roscoe/publications/119.pdf

18. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 48

19. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

https://doi.org/10.1007/978-3-319-33600-8_29
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/s001650050016
https://dl.acm.org/citation.cfm?doid=360933.360975%7B%25%7D5Cn
https://dl.acm.org/citation.cfm?doid=360933.360975%7B%25%7D5Cn
https://www.cs.ox.ac.uk/projects/fdr/manual/
https://etheses.whiterose.ac.uk/id/eprint/2683
https://www.tara.tcd.ie/handle/2262/86009
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-319-33600-8_34
https://bitbucket.org/circusmodelcheck/circus2csp
https://www.cs.ox.ac.uk/people/bill.roscoe/publications/119.pdf
https://www.cs.ox.ac.uk/people/bill.roscoe/publications/119.pdf
https://doi.org/10.1007/978-3-642-24485-8_48

242 A. O. Gomes and A. Butterfield

20. Lowe, G.: Specification of communicating processes: temporal logic versus
refusals-based refinement. Formal Aspects Comput. 20(3), 277–294 (2008).
https://link.springer.com/content/pdf/10.1007%2Fs00165-007-0065-0.pdf

21. Malik, P., Utting, M.: CZT: a framework for Z tools. In: Treharne, H., King, S.,
Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 65–84. Springer,
Heidelberg (2005). https://doi.org/10.1007/11415787 5. http://czt.sourceforge.net

22. Morgan, C.: Programming from Specifications. Prentice Hall International Series
in Computer Science, 2nd edn. vol. 16. Prentice Hall (1994). https://dl.acm.org/
citation.cfm?id=184737

23. Mota, A., Farias, A., Didier, A., Woodcock, J.: Rapid prototyping of a semantically
well founded circus model checker. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 235–249. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10431-7 17

24. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects Comput. 26(3), 441–490 (2014)

25. Oliveira, M.V.M.: Formal derivation of state-rich reactive programs using circus.
Ph.D. thesis, University of York, UK (2005). https://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.428459

26. Oliveira, M.V.M., Sampaio, A., Antonino, P., Ramos, R., Cavalcanti, A., Wood-
cock, J.C.P.: Compositional analysis and design of CML models. Technical report
D24.1, COMPASS Deliverable (2013). https://www.compass-research.eu/Project/
Deliverables/D241.pdf

27. Oliveira, M.V.M., Sampaio, A.C.A., Conserva Filho, M.S.: Model-checking circus
state-rich specifications. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 39–54. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10181-1 3

28. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator and
model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-
5 25

29. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River (1973)

30. Saaltink, M., Meisels, I., Saaltink, M.: The Z/EVES Reference Manual (for Ver-
sion 1.5). Reference Manual, ORA Canada, pp. 72–85 (1997). https://dl.acm.org/
citation.cfm?id=647282.722913

31. Schneider, S.: Concurrent and Real-Time Systems. Wiley, Chichester (2000)
32. Utting, M.: Jaza User Manual and Tutorial, June 2005
33. Woodcock, J., Cavalcanti, A.: The semantics of circus. In: Bert, D., Bowen,

J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1 10

34. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model checking
circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582,
pp. 237–252. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841 17

35. Woodcock, J.C.P., Davies, J.: Using Z, Specification, Refinement, and Proof. Pren-
tice Hall International Series in Computer Science. Prentice Hall Inc., Upper Saddle
River (1996)

36. Ye, K.: Model checking of state-rich formalisms. Ph.D. thesis, University of York
(2016)

37. Ye, K., Woodcock, J.C.P.: Model checking of state-rich formalism circus by linking
to CSP—B. Int. J. Softw. Tools Technol. Transf. 19(1), 73–96 (2017). https://doi.
org/10.1007/s10009-015-0402-1

https://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007%2Fs00165-007-0065-0.pdf
https://doi.org/10.1007/11415787_5
http://czt.sourceforge.net
https://dl.acm.org/citation.cfm?id=184737
https://dl.acm.org/citation.cfm?id=184737
https://doi.org/10.1007/978-3-319-10431-7_17
https://doi.org/10.1007/978-3-319-10431-7_17
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://www.compass-research.eu/Project/Deliverables/D241.pdf
https://www.compass-research.eu/Project/Deliverables/D241.pdf
https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/978-3-540-73210-5_25
https://dl.acm.org/citation.cfm?id=647282.722913
https://dl.acm.org/citation.cfm?id=647282.722913
https://doi.org/10.1007/3-540-45648-1_10
https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/s10009-015-0402-1
https://doi.org/10.1007/s10009-015-0402-1

	Circus2CSP: A Tool for Model-Checking Circus Using FDR
	1 Introduction
	2 Circus2CSP: Requirements and Goals
	3 Experiments with Circus2CSP
	4 Conclusions
	References

