
Towards a Model-Checker for Circus

Artur Oliveira Gomes1(B) and Andrew Butterfield2

1 Universidade Federal de Mato Grosso do Sul, Corumbá, Brazil
artur.gomes@ufms.br

2 School of Computer Science and Statistics,
Trinity College Dublin, Dublin 2, Ireland

butrfeld@tcd.ie

Abstract. Among several approaches aiming at the correctness of sys-
tems, model-checking is one technique to formally assess system mod-
els regarding their desired/undesired behavioural properties. We aim at
model-checking the Circus notation that combines Z, CSP, and Morgan’s
refinement calculus, based on the Unifying Theories of Programming.
In this paper, we experiment with approaches for capturing Circus pro-
cesses in CSP, and for each approach, we evaluate the impact of our
decisions on the state-space explored as well as the time spent for such
a checking using FDR. We also experimented with the consequences of
model-checking CSP models that capture both state invariants and pre-
conditions of Circus models.

1 Introduction

The use of formal methods provides a way to rigorously specify, develop,
and verify complex systems. Among several approaches aiming at the correct-
ness of systems, model-checking formally assesses given systems regarding their
desired/undesired behavioural properties, through exhaustive checking of a finite
model of that system.

Woodcock and Cavalcanti defined Circus [38], which is a formal language
that combines structural aspects of a system using the Z language [40] and the
behavioural aspects using CSP [36], along with the refinement calculus [23] and
Dijkstra’s guarded commands [10]. Its semantics is based on the Unifying The-
ories of Programming (UTP) [18]. In addition, a refinement calculus for Circus
was developed by Oliveira [27], currently considered the de-facto reference for
Circus, using tool support with ProofPower-Z [28]. More recently, Foster et al.
introduced Isabelle/UTP, supporting Circus [11]. Moreover, Circus has a refine-
ment calculator, CRefine [8], and an animator for Circus, Joker [26]. However, for
model-checking, Circus is usually translated by hand to machine-readable CSP
(CSPM ) [35] and then FDR [14] is used. We applied that method in our response
to the Haemodialysis case study for ABZ’16 [16]. Model checking through FDR
allows the user to perform a wide range of analysis, such as checks for refinement,
deadlock, livelock, determinism, and termination.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 217–234, 2019.
https://doi.org/10.1007/978-3-030-30942-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_14


218 A. O. Gomes and A. Butterfield

Some related work on techniques for model-checking Circus was presented by
Freitas [12] where a refinement model checker based on automata theory [19]
and the operational semantics of Circus [39] was formalised in Z/Eves [34]. He
also prototyped a model checker in Java. Moreover, Nogueira et al. [24] also
presented a prototype of a model checker based on the operational semantics of
Circus within the Microsoft FORMULA [21] framework. However, they could not
provide a formal proof of the soundness of their approach, since FORMULA does
not have an available formal semantics. Yet another approach for model-checking
Circus was defined by Ye and Woodcock [41], who defined a link from Circus to
CSP‖B with model-checking using ProB [31]. Finally Beg [4] prototyped and
investigated an automatic translation that supports a subset of Circus constructs.

Since CSPM does not have a notion of variables for state as in Z, Circus
or even the B-Method, we have to somehow capture them in order to obtain a
CSPM model as similar as possible to the original Circus one. Therefore, one
could either use a memory model [25,30] in order to manage the values of the
state variables, or else, to adopt the idea of state-variable parametrised pro-
cesses [4].

Following the results presented in ABZ’16 [16], which involved manual trans-
lation, we decided to develop Circus2CSP 1, an automatic translator from Circus
into CSPM , aiming at model-checking with FDR. Our tool was then built based
on the strategy presented in Sect. 5.3 of Deliverable 24.1 [29], from the COM-
PASS project [37], that defines a rigorous but manual translation strategy aiming
at obtaining CSPM specifications from Circus.

This paper reports design decisions regarding different approaches for model
checking and experimental results obtained for Circus specifications. Such exper-
iments were enough to identify an effective general form for any CSPM model
derived from Circus, where FDR could perform refinement checks with reduced
time and memory consumption compared to existing approaches from the liter-
ature.

2 Circus Background

A Circus specification is in some sense an extension of Z [40] in that it takes the
paragraphs of Z and adds new paragraph forms that can define Circus channels,
processes and actions. Channels correspond to CSP events:

channel c : T

Circus actions can be considered as CSP processes extended with the ability to
read and write shared variables, usually defined using a Z schema:

LocV ars =̂ [v1 : T1, . . . , vn : Tn]

1 See https://bitbucket.org/circusmodelcheck/circus2csp.

https://bitbucket.org/circusmodelcheck/circus2csp


Towards a Model-Checker for Circus 219

A Circus process is an encapsulation of process-local shared variables and Circus
actions that access those local variables, along with a ‘main’ action.

process ProcName =̂ begin

state PState == LocV ars

PBody =̂ 〈action defn.〉
PInit =̂ 〈action defn.〉
PMain =̂ PInit;PBody

• PMain

end

Circus processes can only communicate with the external environment via chan-
nels, while Circus actions can also communicate via the local variables of their
containing process. Processes can be modified and combined with each other,
using the following CSP operators: sequential composition (; ), non-deterministic
choice (�), external choice (�), alphabetised parallel ([[. . .]]), interleaving (|||),
iterated versions of the above (e.g., �e∈E • . . . ), and hiding (\).

Circus actions can be built with the CSP operators detailed above, as
well as the following CSP constructs: termination (Skip), deadlock (Stop),
abort(Chaos), event prefix (→), guarded action (&), and recursion (μ). In addi-
tion a Circus action can be defined by a Z schema, or Dijkstra-style guarded com-
mands, including variable assignment (:=). Note that actions cannot be defined
as standalone entities at the top level of a Circus specification.

Parallel composition of Circus actions differs from that in CSP, in that we
need to also specify which variables each side is allowed to modify. Parallel
action composition, written as A1 [[ns1 | cs |ns2 ]]A2 states that action Ai may
only modify variables listed in nsi, where ns1 and ns2 are disjoint, and both
actions must synchronise on events listed in cs. The semantics is that each side
runs on its own copy of the shared variables, and the final state is obtained by
merging the (disjoint) changes when both sides have terminated.

Circus also allows the use of local declarations in a variety of both process and
action contexts. For actions, we can declare local variables, using var x : T • A
which introduces variable v of type T which is only in scope within A. Variations
of these can be used to define parameterised actions, of which the most relevant
here is one that supports read-write parameters.

Finally, there is a refinement calculus for Circus, which is a fusion of those
for both Z and CSP (failures-divergences)[27].

3 Translating Circus to CSPM using Circus2CSP

Our first attempt to model check the Circus haemodialysis (HD) specifica-
tion [16], was to manually translate it into CSPM , and adjust its state-space
until the desired checks could be successfully completed. This manual trans-
lation was error-prone, and this motivated the development of a mechanised



220 A. O. Gomes and A. Butterfield

translator. Our plan was to provide a high degree of automation to minimise
error-prone human interventions, in such a way that we have a basis for arguing
for its correctness.

We started the development based on the Circus-to-CSPM translation strat-
egy developed for the EU COMPASS project and described in deliverable
D24.1 [29, Section 5]. It specifies the translation in two parts: a function Ω that
maps a Circus specification to an equivalent Circus specification using only the
CSP subset of the Circus language; and a function Υ that translates CSP-as-
Circus into machine-readable CSPM (Fig. 1).

Fig. 1. Mapping Circus into CSPM (derived from [29, Fig. 7, p77])

Function Ω has two phases: ΩP and ΩA. Function ΩP extracts mutable
state from the input state-rich (CircusSR) process PSR and gathers it in a new
Memory action, while replacing direct references to state in PSR with appropri-
ate “get” and “set” messages that communicate with that Memory, to obtain
a state-poor (CircusSP ) process P ′

SP . Function ΩA then translates P ′
SP into

its CSP equivalent P ′′
SP , by replacing Circus-specific actions by CSP-as-Circus

(CircusCSP ) equivalents. All of the transformations done by ΩP and ΩA are
valid Circus refinement steps, each of which are in fact equivalences, defined in
D24.1 [29, §5.3 and App. A].

3.1 The Memory Model

The need for a memory model arises from the fact that CSP does not natu-
rally capture the notion of mutable state. One solution for that is to produce
a state-poor process that communicates with a Memory model [25] that stores
the values of state components and local variables from the original state-rich
processes. Initially, our memory model was very similar to that in D24.1, with
some differences in naming conventions. In our approach, we defined a notation
for renaming the variables allowing the user to easily identify which are (global)
state components, or local variables. Variables are renamed by adding a prefix
sv or lv indicating respectively a state or local variable.

As part of the translation strategy, the CSPM environment is redefined in
terms of the type system. Based on the work of Mota et al. [25], D24.1 defined a
union type UNIV ERSE containing any type defined in the specification. When
translated into CSPM , use is made of the subtype facility of that language to



Towards a Model-Checker for Circus 221

manage the universe construction. Moreover, the names of every state component
and local variable are defined as elements of a type NAME.

NAME :: = sv v1|sv v2| . . . |sv vn|lv l1| . . . |lv lk

The approach makes use of a set of bindings, BINDING, which maps all the
names, NAME, into the UNIV ERSE type. In [29], a function δ is defined as
a mapping between each variable in NAME and its type, where each type (Ti

is a subtype of UNIV ERSE), and is used to define Memory.

BINDING == NAME → UNIV ERSE

δ == {sv v1 �→ T1, sv v2 �→ T2, . . . , sv vn �→ T3, . . . , lv lk �→ Tm}
As a result of applying the Ω functions, the state of a Circus process is replaced by
a Memory action parameterised by a read/write binding (vres b), which man-
ages the mutable state, offering mget and mset channels carrying name/value
pairs (n.v).

Memory =̂ vres b : BINDING •
(�n : dom b • mget.n!b(n) → Memory(b))
� (�n : dom b • mset.n?nv : (nv ∈ δ(n)) → Memory(b ⊕ {n �→ nv}))
� terminate → Skip

Note, that while syntactically a Circus action, Memory uses only the CSP subset
of Circus Such a Memory process runs in parallel with the main action of the
translated Circus process, communicating through the channels mget and mset.
Moreover, the process execution ends when the terminate signal is triggered. The
above three channels compose the MEMI channel set: channelset MEMI ==
{|mget,mset, terminate|}.

The final specification puts the original process after Ω-translation in parallel
with the memory model, synchronising on the MEMI channels, which are them-
selves hidden at the top-level, with the binding as a top-level parameter. Note
that the semantics of this at the top-level involves a non-deterministic choice2

of the values in the initial binding b. This results in the following CSP form:

�b : BINDING •
(

(ΩA(P ); terminate → Skip)
‖MEMI

Memory(b)

)

\MEMI

Deliverable D24.1 contains manual proofs of the correctness of the transla-
tion [29, Appendix K].

4 Upgrading the Memory Model

With the initial version of the tool, we took examples from D24.1 (e.g. the ring-
buffer example [29, Appendix D.2, p163]) and automatically translated them and
2 A non-deterministic choice of values means that the bindings are picked randomly

among the possible combinations of bindings.



222 A. O. Gomes and A. Butterfield

then succesfully performed FDR checks. However, when we turned our attention
to the somewhat larger HD model, we immediately uncovered some limitations
of the basic translation, which were overcome by changing the memory model.

4.1 Limitation 1: Z Types vs. CSPM Types

The use of the UNIV ERSE type, the CSPM subtype feature, and a func-
tion written in CSPM to map a name to its specific type, worked fine if all the
types in UNIV ERSE were a sub-type of one supertype. In the D24.1 exam-
ples, all types were sub-types of the natural numbers. However, in the HD model
we were developing, we had a mixture of natural sub-types, and enumerations.
The type system in CSPM does not consider enumeration types to be isomor-
phic to subtypes of any sufficiently large number type. We could have gener-
ated those isomorphisms, but these would have complicated the back-annotation
problem, whenever a counter-example was found using FDR. Instead, we par-
titioned UNIV ERSE and BINDING into the distinct supertypes present in
the Circus model.

Memory =̂ vres bT1 : BINDINGT1 , . . . , bTk
: BINDINGTk

•

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(�n1 : dom b1 • mget.n1!b1(n1) → Memory(b1, . . . , bk))

�
(

�n1 : dom b1 • mset.n1?nv : (nv ∈ δ(n1))
→ Memory(b1 ⊕ {n1 �→ nv}, . . . , bk)

)

� . . . �(�nk : dom bk • mget.nk!bk(nk) → Memory(b1, . . . , bk))

�
(

�nk : dom bk • mset.nk?nv : (nv ∈ δ(nk))
→ Memory(b1, . . . , bk ⊕ {nk �→ nv})

)

� terminate → Skip

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We then changed the top-level view to have a non-deterministic choice over all
the distinct bindings.

�bT1 : BINDINGT1 , . . . , bTk
: BINDINGTk

•
(

(ΩA(P ); terminate → Skip)
‖MEMI

Memory(bT1 , . . . , bTk
)

)

\MEMI

4.2 Limitation 2: FDR Time/Space Explosion

We quickly discovered that using this translation, we could only check Circus
models with a small number of state variables, usually less than ten, with even
the hand-translation of the HD model done for the original case-study being
more effective. We proceeded to experiment with transformations to the memory
model, justified by the Circus refinement laws.

Variables Have Non-deterministic Start Values. We first changed the
top-level non-deterministic choice over the various bindings by replacing it with
parameters.



Towards a Model-Checker for Circus 223

var bT1 : BINDINGT1 , . . . , bTk
: BINDINGTk

•
(

(ΩA(P ); terminate → Skip)
‖MEMI

Memory(bT1 , . . . , bTk
)

)

\MEMI

This is an equivalence, as (var x : T • A(x)) = (�x : T • A(x)). However,
FDR treats the latter as being parameterised by x and requires it to be given an
initial value. This means that we can only check a very strong proper refinement,
rather than the full equivalence. However, we argue that in the safety-critical
domain in general, it is always mandatory to initialise all variables. If Init is an
action that initialises each variable precisely once with a constant value, with no
intervening participation in events, then, regardless of the assignment ordering
or any arbitrary initial value of any variable, the outcome is always the same:
s′ = S0, where S0 is the assignment of those constants to the coprresponding
variables. If we insist on proper initialisation, then equivalence is restored. Given
that the main usage of model-checking takes place in safety critical domains, we
consider this a reasonable trade-off, particularly because it resulted in FDR
performance improvements. However, our experiments revealed that a process
translated this way, with more than ten state variables, still could not be checked
with FDR in a reasonable time.

Distributed Memory Model. The final step, was to do more partitioning,
moving to a situation were every variable gets its own memory process. The
supertype bindings were retained at the top-level, but each variable’s memory
process was parameterised by the relevant binding with its domain restricted to
just the name of that variable. So, for example, if variable ni has a type whose
supertype is T , then we first define a binding bT for that supertype, and use
it to parameterise a memory action for all variables of that supertype, which is
itself the parallel composition of a memory process for each such variable, all
synchronising on terminate, but interleaving all the mget and mset events:

MemoryT (bT ) =̂
[[{|terminate|}]]n : dom bT • MemoryTV ar(n, {n} � bT )

Here N � μ restricts the domain of map μ to set N . We then define a parame-
terised process that represents a single variable:

MemoryTV ar(n, b) =̂
mget.n.b(n) → MemoryTV ar(n, b)

� mset.n?nv : δ(n) → MemoryTV ar(n, b ⊕ n �→ nv)
� terminate → Skip

The entire memory is constructed by putting the memories for each supertype
in parallel, in the same way as for the individual variable processes.

Memory(bT1 , . . . , bTk
) =̂

MemoryT1(bT1)[[{|terminate|}]] . . . [[{|terminate|}]]MemoryTk(bTk
)



224 A. O. Gomes and A. Butterfield

This last transformation produced a marked improvement in the time and mem-
ory consumption of FDR when checking models.

In the next section we describe and discuss our experiments on the HD
machine mode comparing some of approaches above. Moreover, we also com-
pare the results obtained using other tools as a way of assessing our results.

5 Experimental Results

In this section we present the tests we performed using our tool, Circus2CSP,
exploring ways of overcoming any limitations from FDR, as well as comparing
our approach with others from the literature. Firstly, we explore the interference
of invariants and preconditions in CSPM . Then, we compare Circus2CSP with
the model from [16]. We also the effects of using some compression techniques
available in FDR. Finally, we compare different approaches for modeling the
Ring Buffer case study.

One of the requirements when model-checking a system is to produce a model
whose range of values is enough for covering any condition imposed by an oper-
ation. However, when including the state invariant, we are also restricting the
range of values permitted to be used within the system. From the example of
the chronometer [27], we know that both min and sec was declared as natural
numbers. However, while thinking of a chronometer in the real world, we know
that neither a second, nor a minute goes beyond 59 units, without flipping the
next unit counter. Therefore, it is safe to restrict the range of min and sec to
0 .. 60, where 60 is an unexpected value in the system.

We experimented with the impact of explicitly including invariant and pre-
condition checks using the example of the Chronometer [27], with a new process
Chrono. When using the translation rules presented in [29], we noticed that it
is hard for FDR to check the model: it was translated using the conversion from
normalised schemas to specification statements and from there, to the appropri-
ate rules that introduce a condition that checks if pre is satisfied. If satisfied,
it behaves as a non-deterministic choice of values from the state variables that
satisfies both invariant and precondition, followed by updating these values in
the memory model. Otherwise, if pre is not satisfied, it behaves like Chaos.

Our example of the chronometer has only two state variables and the results
obtained using FDR are enough to show how the invariant checks throughout
the specification increase the time spent during the assertion check in FDR. We
deliberately modified the original model with the inclusion of the state invariant
restricting both min and sec to values below 60, in order to experiment with
the translated model in FDR.



Towards a Model-Checker for Circus 225

We illustrate our experiment in Table 1 while exploring the inclusion of state
invariants and precondition verification in the chronometer model, and used the
following derived models3:

D241 Model manually translated using the approach from [29] without
invariants and preconditions, using a non-deterministic choice of
any set of bindings.

D241Inv Model manually translated using the approach from [29] including
the invariants as a restriction to the bindings set.

D241Pre Model manually translated using the approach from [29] which
includes precondition checks before the operations, but no invari-
ants in the main action.

D241InvPre Combination of D241Inv and D241Pre.
CTOC Model translated using our improved translation rules, the result

from our tool Circus2CSP, as discussed in Sect. 4 (no invariant
checks).

CTOCPre Extension of CTOC model where pre-condition checks, as done
for D241Pre, are entered manually.

From the models above, our tool is able to automatically generate CTOC,
CTOCPre was obtained by manually modifying CTOC, while the others were
generated by hand. We performed checks for deadlock freedom4 using the trans-
lated models in the six variants above, combined with a different range of values
for natural numbers, ranging from . . . 3 to 0 . . . 60. For example, in a specifica-
tion where the values for natural numbers are restricted to the range 0 .. 10, the
process state was defined as [min, sec : 0 .. 10 |min < 10 ∧ sec < 10].

We noticed a first difference between models D241 and D241Inv, on one
hand, and CTOC and CTOCPre on the other. The number of states visited
for checks with the models D241 and D241Inv was over 10-fold larger than for
CTOC and CTOCPre. However, the influence of a precondition check within
an operation makes a significant reduction in the state exploration, but with
the price of spending more time computing preconditions, as seen in Table 1,
between CTOC and CTOCPre. Moreover, we also observed that the checks

3 The files used in this experiment can be found in the tool repository at https://bit.
ly/2ONnk2T.

4 The tests were performed using Intel Core i7 2.8 GHz CPU with 16GB of RAM.

https://bit.ly/2ONnk2T
https://bit.ly/2ONnk2T


226 A. O. Gomes and A. Butterfield

Table 1. Interference of invariants and preconditions in CSPM—Deadlock freedom
checks (in seconds unless indicated otherwise)

CTOC CTOCPre D241 D241Inv D241InvPre D241Pre

Values

range

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

0..3 0.116 68 0.134 21 0.206 1085 0.177 610 0.173 190 0.187 337

0..6 0.242 260 0.373 42 0.416 12734 0.35 9355 0.393 1513 0.428 2059

0..9 0.559 578 1.4 63 1.158 57791 1.138 46810 1.826 5104 1.955 6301

0..12 1.246 1022 4.197 84 2.714 172706 2.57 147157 5.22 12097 5.45 14197

0..15 2.533 1592 9.867 105 5.846 407537 5.452 358186 11.988 23626 12.6 26881

0..60 3m27s 25262 22m29s 1024 2h48 99M 1h40 91M 52m28s 3.7M 1h05 3.8M

for invariants has a weaker effect on states visited, when comparing the results
between D241InvPre and D241Pre. We also noticed that all variants of D241
were executed in a much larger time frame than the approaches using the trans-
lation from our tool, Circus2CSP. However, the models generated by our tool do
not include either invariants or preconditions.

Finally, as a way of experimenting with the real world example of the
chronometer, we examined the models with numbers ranging from 0 up to 60,
as presented in the last row of Table 1. We see a significant difference among
the results from the approaches evaluated, where the model using CTOC was
evaluated (3 min) by FDR, which is 97% less time than the time spent to check
the model using D241Inv (over 1h40) and 94% less than D241Pre (1h05). In
general, the CSPM models (CTOC) translated using our tool were evaluated
by FDR using a much smaller state space and were checked in less time than all
the other models we tried. Such a result shows how different models of the same
system can be affected by the checks of invariants and preconditions, as well as
how optimising the memory model can result in much smaller state exploration
when using FDR. Finally, we observed no correlation between time and state
visited, in spite of the use (or not) of compression by default in FDR.

5.1 Haemodialysis (HD) Machine Experiments

The manual translation (herein byHand) of the Circus [16] HD model resulted in
a CSPM specification with twice as many lines as the Circus model. Using the
CTOC translation results in CSPM with approximately 75% fewer lines than the
corresponding Circus file.

Our reference Circus model was that of the HD machine running in parallel
with a model of one of the case study requirements (R-1 [2, Section 4.2, p11]).
The requirement model is effectively a monitor that observes the machine model,
checking that it is satisfied, and deadlocking if it observes a violation. We then
check the proposition that the HD model is correct w.r.t R-1 by showing that
the combination is deadlock free. In addition to comparing various translation
schemes, we also explored the effect of changing the size of our “natural number”
type: NatV alue == 0 .. N , in order to estimate the number of states visited in
FDR.



Towards a Model-Checker for Circus 227

We explored the byHand and CTOC translation schemes with four ranges of
NatV alue size, with N up to a maximum of 90, as shown in Table 2. The only
case where we could compare the two approaches was our first case, with N = 2:
it resulted in 9,409 states visited using byHand, in contrast with 811 states vis-
ited using CTOC, demonstrating a reduction of 91% in terms of states explored.
Moreover, the execution time with the model generated using CTOC was equally
reduced by 91% compared to the model using byHand. The “Plys” column indi-
cates how deep the breadth-first search algorithm used by FDR went while check-
ing. This is larger for the byHand model, and is independent of the value of N .
Interestingly, after waiting more than 2 h, we were unable to obtain results from
the model generated with byHand when we increased the N to 3. However, the
model generated with CTOC, when tested using n = 90, was executed in 35 s,
which is still quicker than byHand with N = 2. We also note that amount of
memory used was constant, at 240 MB approx.

Table 2. Time for asserting deadlock freedom of the HD Machine in FDR4

Approach NatValue
range

Result States visited Transitions
visited

Plys visited Exec. time

CTOC 0..1 Passed 811 1,800 39 0.375 s

0..2 Passed 1,761 3,786 39 0.407 s

0..10 Passed 21,169 44,586 39 0.937 s

0..90 Passed 1,369,809 1,369,809 39 35.097 s

byHand 0..1 Passed 9,409 301,617 47 40.826 s

0..2 Incomplete ? ? ? >2 h

We could not get results here for the D241 scheme as its translation of the
HD model resulted in type errors being reported by FDR.

In addition to experiments that varied N above, we also explored how the
number of variables, rather than the size of their datatypes, influenced the check-
ing time. Using a hypothetical example having 12 state variables, checks using
D241 were performed in 35 min, compared to 76 ms using CTOC. We observed
segmentation faults using D241 with a more than 12 variables. However, checks
using CTOC in an example with 42 state variables and NatV alue = 0 .. 30, were
performed in 870 ms. What is clear is that with the CTOC translation scheme,
namely one memory-process per state-variable, we can now handle Circus models
of considerable complexity.

5.2 Ring-Buffer Experiments

Another interesting example was to take the Circus specification of the bounded
reactive ring buffer, RB, from D24.1 [29, Appendix D.2, p. 163], based on the
model presented in [7]. We compared the CTOC translation of this using Cir-
cus2CSP (RBCTOC), with the by-hand translation in D24.1 [29, Appendix D.4,



228 A. O. Gomes and A. Butterfield

Table 3. RingBuffer checks: deadlock and livelock freedom, and determinism.

Test Model Result States visited Transitions Plys Exec. time

Deadlock free RBbyH Passed 8,297,025 16,805,249 44 26.657 s

RBCTOC Passed 1,628 3,109 38 0.145 s

Livelock free RBbyH Passed 8,297,025 16,805,249 44 25.476 s

RBCTOC Passed 1,628 3,109 38 0.151 s

Deterministic RBbyH Passed 9,869,889 19,852,673 69 54.863 s

RBCTOC Passed 2,012 3,853 63 0.159 s

Table 4. Refinement checks between models of the Ring Buffer example

Refinement check Result States visited Transitions visited Plys visited Exec. time

1 RBbyH �FD RBCTOC Passed 1,628 3,109 38 58.019 s

2 RBCTOC �FD RBbyH Passed 8,297,025 16,805,249 44 42.543 s

p166] (RBCTOC). We firstly perform the usual tests like deadlock freedom and
termination checks for theRBCTOC and for the RBCTOC specifications, as illus-
trated in Table 3.

We can see a clear difference between the states visited between the three
approaches, notably those between RBbyH and RBCTOC where the number of
states and transitions visited was reduced considerably, as well as the amount
of time spent by FDR4 to check the assertions.

We also experimented to check the failures-divergences refinement (P �FD

Q) between the three approaches, each pair in both directions. Since we know
that the specification RBCTOC is a translation from the same Circus model of
the handmade translation of RBbyH , we expect that RBbyH and RBCTOC are
equivalent to each other, RBbyH �FD RBCTOC and RBCTOC �FD RBbyH ,
which is true, as seen below in row 1 and 3.

Interestingly, if we compare the states and transitions visited, as well as the
execution time from Tables 3 with 4, given a refinement A �FD B, the states
and transitions visited are almost the same as when checking B for deadlock
freedom.

During our experiments, we also compared our Circus2CSP model with the
Ring Buffer model RBKW , based on [40, Chapter 22], produced using the app-
roach of Ye and Woodcock [41] for translating Circus into CSP||B, for model
checking using ProB [22]. Such an approach is similar [29, p. 116] but makes use
of Z schemas as Circus actions that are currently not available in our translation
scheme. In our experiments, we observed that the model RBKW is refined by
both RBCTOC and RBbyH , but the refinement in the reverse direction does not
hold, i.e., RBKW is not a refinement of neither RBCTOC nor RBbyH , as it is a
more abstract model since its data aspects of specification are defined in B.

Unfortunately, the structure defined for our translation strategy is not fully
supported by ProB, which was used to test RBKW [42]. ProB is another model-



Towards a Model-Checker for Circus 229

checker, which like FDR, also allows the user to animate specifications. It was
originally developed for the B language, but it has been extended and now it
supports other formal languages such as CSP, Z, Event-B [1], as well as combined
languages such as CSP||B. We observed that the use of subtype, in our models,
is not fully supported by the ProB tool, causing some commands like “model-
check” to result in errors. However, we were able to animate our translated
specification using ProB, and to execute the same assertion check, as in FDR:
we obtained similar results to those when running FDR.

On the other side, the tests performed with the CSPM specification of RBKW

using FDR failed the checks for deadlock freedom and determinism. The results
obtained from ProB can be related to what we obtained in FDR in terms of
the behavior of the system: the counterexample given can be used to animate
the CSP||B model in ProB, causing the same effect: deadlock. However, we have
no way to fully compare both approaches since CSP||B takes into account the
system state in ProB, whereas we only have the CSPM side of the model, which
captures the behavior of the system, but does not captures the system state. The
most obvious explanation for the deadlock in RBKW is that the state (modeled
in B) influences control-flow that results in deadlock situations being avoided.

5.3 Compression Experiments

An important aspect when using FDR is the availability of compression tech-
niques [33] in order to reduce the number of states, reducing the time spent
for refinement checking. A compression transforms a labelled-transition system
(LTS) into a corresponding one, which is expected to be smaller and more effi-
cient whilst using it for checks in FDR. Currently, FDR applies compressions
in parallel compositions by default, which is the main structure we use in our
memory model. We explored a few other compression tecniques, such as sbisim,
which determines the maximal strong bisimulation [5], and wbisim, which com-
putes the maximal weak bisimulation. Depending on the compression used, the
number of states visited, were indeed reduced, as illustrated in Table 5.

Table 5. Experimenting CSPM compression techniques with the HD Machine

sbisim+diamond No compression sbisim wbisim

Values

range

States

visited

Exec time

(seconds)

States

visited

Exec time

(seconds)

States

visited

Exec time

(seconds)

States

visited

Exec time

(seconds)

0..10 77 0.499 21,169 0.458 302 0.479 87 0.56

0..120 77 25.096 2,416,749 18.805 302 21.793 87 35.839

0..240 77 114.845 9,556,509 84.803 302 100.112 87 175.846

0..360 77 327.815 21,419,469 235.236 302 269.414 Killed 286.079

0..480 77 668.437 38,005,629 467.602 302 523.825 Killed 525.889

Although the states/transitions/plys visited were considerably reduced using
the compression techniques mentioned above, there was little impact on overall



230 A. O. Gomes and A. Butterfield

execution time, and the number of states visited are independent of the size of
NatV alue, while the number of transitions grows slowly. However, the results
obtained here are related to the model of the HD machine, and it is difficult to
identify which compression technique will be most effective in a general case,
and indeed, further experiments are required.

6 Future Work

Our plans for future work include exploring other industrial-scale case stud-
ies [3,15,17], as a way of identifying the kind of Circus constructs that would be
suitable to have available in our translation tool. We have a particular interest
in specifying a translation strategy for Z schemas used as Circus actions within a
process. The best approach would be to use Z Refinement Calculus [6]. For now,
our tool deals only with those schemas that in fact can be translated into assign-
ments. We intend to explore the operators for Z schemas and the refinement
laws that can be applied accordingly.

In addition, we also plan to establish a link between Circus2CSP and
Isabelle/UTP [11], so that we can use their mechanised UTP semantics for Cir-
cus to verify the correctness of our Haskell implementation. Moreover, our tool
also has a Circus refinement “calculator” embedded in it, which implements the
laws listed in Appendix A of the Deliverable 24.1 [29, p.147], which can easily be
extended to the other refinement laws proved by Oliveira [27] in the near future.

We can eliminate the use of CSPM subtyping in CTOC (the process-per-
variable model), and simplify “get” and “set” prefixes of the forms mget.n.v
and mset.n.v to get n.v and set n.v respectively, where we now have dedicated
channels per variable. However, the relationship of this new form to CTOC is no
longer a simple equivalence as there are now different events in the two models.

Finally, in terms of improvement of our tool, compared to other
approaches [9], it would also be interesting to review the parser of Z and Circus
from Circus2CSP in order to rewrite it to be in conformance with the Interna-
tional Standards Organization (ISO) standards, ISO/IEC 13568:2002 [20], which
describes the syntax, type system and semantics of Z formal notation. Moreover,
we would like to include the libcspm library5 into Circus2CSP in order to be able
to parse the relevant code included in our definition of the assertion LATEX envi-
ronment. Such an attempt would help a Circus2CSP user wishing to review any
fault in the CSPM specification translated from Circus.

Finally, we can envisage work in the future that might extend the benefits
gained here to the wider model-checking community. One possibility is extending
the translator to target model-checkers other than FDR. This would require us
to have either a rigourosly defined embedding, of the subset of CSP that we
produce, into the modelling language of the proposed checker, or have a way
of linking the semantics of the target modelling language to Circus and/or CSP
to verify the correctness of direct output in that language. The second aspect

5 https://github.com/tomgr/libcspm.

https://github.com/tomgr/libcspm


Towards a Model-Checker for Circus 231

concerns the possibility that our approach can be adapted to work within another
model-checking eco-system entirely. ne key advantage in having a state-rich form
is the ability to easily describe state changes that only modify small parts of the
state (compare P = w := y−x;Q with P (u, v, w, x, y, z) = Q(u, v, y−x, x, y, z)).
We note that the CADP system, which is based on LOTOS (state-poor), has
already moved in this direction, with tools now working with LTN (LOTOS
New Technology, state-rich), using a LTN to LOTOS translator [13]. Do other
modelling notations have state-rich forms that are hard to check, but have good
checkers for state-poor forms?

7 Conclusions

In this paper we evaluated possible approaches for translating Circus into CSPM ,
for model checking using FDR. Our main concern was how the state of a Circus
process could be captured in CSPM in such a way that FDR could handle a large
amount of state variables and an even larger range of values. We then produced
several models of CSPM specifications translated from Circus and also explored
the consequences of including both state invariants and preconditions of Circus
actions in the CSPM models. Such a research resulted in the development of
Circus2CSP, a tool for model checking Circus, through the automatic translation
from Circus to CSPM , and therefore, being able to use FDR for refinement
checks. Circus2CSP development was developed in 24 months, and has a total of
over 26 thousand lines of Haskell code.

We observed that a distributed memory model, rather than a centralised
one, as proposed by Mota et al. [24] is beneficial for larger states. Moreover,
the time spent as well as the state exploration from FDR’s refinement checks is
larger when capturing preconditions and state invariants. Another observation
from our experiments is that we were able to reduce the state exploration even
more by refining our model to one where the bindings were explicitly defined
by Circus2CSP, rather than considering a non-deterministic choice over such
bindings, as per the original manual translation. This is justified by assuming
that every state variable should be initialised prior to its use in the process. The
outcome is that we now have a mechanised translator from Circus to CSPM that
produces tractable models, and allows the use of FDR on larger case studies
than has been possible up to now.

We should clarify that our approach to produce parametrised processes is
not an attempt to use the bindings data-independently [32, p. 453]. That is
solving a different problem, namely finding a finite size of a type that is suitable
to demonstrate the correctness for any finite or even infinite size of such type.
Moreover, to date, our approach is unable to generate counterexamples or any
kind of back annotation to the Circus models, and thus is in our plans for future
work.

We used the HD machine and the ring buffer case studies as examples in
order to test the capabilities of our tool whilst model checking the automati-
cally translated models in FDR. Our aim was to contribute to reducing FDR’s



232 A. O. Gomes and A. Butterfield

workload in order to model check larger systems. We learned that a practical
implementation/mechanisation of a theory may reveal difficulties that could not
otherwise be discovered without extensive use of a tool prototype, especially
when applying it to larger case studies.

Acknowledgments. This work was funded by CNPq (Brazilian National Council
for Scientific and Technological Development) within the Science without Borders pro-
gramme, Grant No. 201857/2014-6, and partially funded by Science Foundation Ireland
grant 13/RC/2094.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

3. Beg, A., Butterfield, A.: Linking a state-rich process algebra to a state-free algebra
to verify software/hardware implementation. In: Proceedings of the 8th Interna-
tional Conference on Frontiers of Information Technology - FIT 2010, pp. 1–5
(2010). http://portal.acm.org/citation.cfm?doid=1943628.1943675

4. Beg, A., Butterfield, A.: Development of a prototype translator from Circus to
CSPm. In: Proceedings of ICOSST 2015–2015 International Conference on Open
Source Systems and Technologies, pp. 16–23, December 2016

5. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal weak and
other bisimulations. Form. Asp. Comput. 28(3), 381–407 (2016). https://doi.org/
10.1007/s00165-016-0366-2

6. Cavalcanti, A., Woodcock, J.C.P.: ZRC - a refinement calculus for Z. Form. Asp.
Comput. 10(3), 267–289 (1998). http://link.springer.com/10.1007/s001650050016,
https://doi.org/10.1007/s001650050016

7. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A refinement strategy for
Circus. Form. Asp. Comput. 15, 146–181 (2003). https://doi.org/10.1007/s00165-
003-0006-5

8. Conserva Filho, M., Oliveira, M.V.M.: Implementing tactics of refinement in CRe-
fine. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS,
vol. 7504, pp. 342–351. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33826-7 24

9. CZT Partners: Community Z tools, October 2006. czt.sourceforge.net/
10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM 18(8), 453–457 (1975). http://portal.acm.org/citation.
cfm?doid=360933.360975%5Cn

11. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14806-9 2

12. Freitas, L.: Model checking Circus. Ph.D. thesis, Department of Computer Science,
The University of York, UK (2005)

13. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

https://doi.org/10.1007/978-3-319-33600-8_29
http://portal.acm.org/citation.cfm?doid=1943628.1943675
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/s00165-016-0366-2
http://springerlink.bibliotecabuap.elogim.com/10.1007/s001650050016
https://doi.org/10.1007/s001650050016
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/978-3-642-33826-7_24
https://doi.org/10.1007/978-3-642-33826-7_24
http://czt.sourceforge.net/
http://portal.acm.org/citation.cfm?doid=360933.360975%5Cn
http://portal.acm.org/citation.cfm?doid=360933.360975%5Cn
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/978-3-319-68270-9_1


Towards a Model-Checker for Circus 233

14. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 – a
modern model checker for CSP. Tools Algorithms Constr. Anal. Syst. 8413, 187–
201 (2014). http://www.cs.ox.ac.uk/projects/fdr/manual/

15. Gomes, A.O.: Formal Specification of the ARINC 653 Architecture Using Circus
(2012). http://etheses.whiterose.ac.uk/id/eprint/2683

16. Gomes, A.O., Butterfield, A.: Modelling the haemodialysis machine with Circus.
In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 409–424. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33600-8 34

17. Gomes, A.O., Oliveira, M.V.M.: Formal specification of a cardiac pacing system.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 44

18. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper Saddle
River (1998)

19. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation - International Edition, 2nd edn. Addison-Wesley,
Boston (2003)

20. ISO/IEC: ISO/IEC 13568:2002 Information Technology - Z formal specification
notation - Syntax, type system and semantics. Technical report (2002). http://
standards.iso.org/ittf/PubliclyAvailableStandards/c021573 ISO IEC 13568 2002
(E).zip

21. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 48

22. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

23. Morgan, C.: Programming from Specifications. Prentice Hall International Series
in Computer Science, vol. 16, 2nd edn. Prentice Hall, Upper Saddle River (1994).
https://dl.acm.org/citation.cfm?id=184737

24. Mota, A., Farias, A., Didier, A., Woodcock, J.: Rapid prototyping of a semanti-
cally well founded Circus model checker. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 235–249. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 17

25. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Form. Asp. Comput. 26(3), 441–490 (2014)

26. Oliveira, D., Oliveira, M.V.M.: Joker: an animation framework for formal specica-
tions. In: SBMF 2011 - Short Papers, pp. 43–48. ICMC/USP, September 2011

27. Oliveira, M.V.M.: formal derivation of state-rich reactive programs using Circus.
Ph.D. thesis, University of York, UK (2005). http://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.428459

28. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.C.P.: Unifying theories in
ProofPower-Z. Form. Asp. Comput. 25, 133–158 (2013). https://doi.org/10.1007/
s00165-007-0044-5

29. Oliveira, M.V.M., Sampaio, A., Antonino, P., Ramos, R., Cavalcanti, A., Wood-
cock, J.C.P.: Compositional analysis and design of CML models. Technical report
D24.1, COMPASS Deliverable (2013). http://www.compass-research.eu/Project/
Deliverables/D241.pdf

http://www.cs.ox.ac.uk/projects/fdr/manual/
http://etheses.whiterose.ac.uk/id/eprint/2683
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-642-05089-3_44
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
https://doi.org/10.1007/978-3-642-24485-8_48
https://doi.org/10.1007/978-3-540-45236-2_46
https://dl.acm.org/citation.cfm?id=184737
https://doi.org/10.1007/978-3-319-10431-7_17
https://doi.org/10.1007/978-3-319-10431-7_17
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://doi.org/10.1007/s00165-007-0044-5
https://doi.org/10.1007/s00165-007-0044-5
http://www.compass-research.eu/Project/Deliverables/D241.pdf
http://www.compass-research.eu/Project/Deliverables/D241.pdf


234 A. O. Gomes and A. Butterfield

30. Oliveira, M.V.M., Sampaio, A.C.A., Conserva Filho, M.S.: Model-checking Circus
state-rich specifications. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 39–54. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10181-1 3

31. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator and
model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-
5 25

32. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River (1973)

33. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 7

34. Saaltink, M., Meisels, I., Saaltink, M.: The Z/EVES reference manual (for ver-
sion 1.5). Reference manual, ORA Canada, pp. 72–85 (1997). http://dl.acm.org/
citation.cfm?id=647282.722913

35. Scattergood, B.: The semantics and implementation of machine-readable CSP, pp.
1–179 (1998). http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299037

36. Schneider, S.: Concurrent and Real-Time Systems. Wiley, Chichester (2000)
37. Woodcock, J.C.P., Bryans, J., Canham, S., Foster, S.: The COMPASS modelling

language: timed semantics in UTP, pp. 1–32 (2014)
38. Woodcock, J.C.P., Cavalcanti, A.: The semantics of Circus. In: ZB 2002: formal

specification and development in Z and B. In: 2nd International Conference of B
and Z Users Grenoble (2002)

39. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model checking
Circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582,
pp. 237–252. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841 17

40. Woodcock, J.C.P., Davies, J.: Using Z, Specification, Refinement, and Proof. Pren-
tice Hall International Series in Computer Science. Prentice-Hall Inc., Upper Saddle
River (1996)

41. Ye, K.: Model checking of state-rich formalisms. Ph.D. thesis, University of York
(2016)

42. Ye, K., Woodcock, J.C.P.: Model checking of state-rich formalism Circus by linking
to CSP——B. Int. J. Softw. Tools Technol. Transf. 19(1), 73–96 (2017). https://
doi.org/10.1007/s10009-015-0402-1

https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/3-540-60630-0_7
http://dl.acm.org/citation.cfm?id=647282.722913
http://dl.acm.org/citation.cfm?id=647282.722913
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299037
https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/s10009-015-0402-1
https://doi.org/10.1007/s10009-015-0402-1

	Towards a Model-Checker for Circus
	1 Introduction
	2 Circus Background
	3 Translating Circus to CSPM using Circus2CSP
	3.1 The Memory Model

	4 Upgrading the Memory Model
	4.1 Limitation 1: Z Types vs. CSPM Types
	4.2 Limitation 2: FDR Time/Space Explosion

	5 Experimental Results
	5.1 Haemodialysis (HD) Machine Experiments
	5.2 Ring-Buffer Experiments
	5.3 Compression Experiments

	6 Future Work
	7 Conclusions
	References




