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Abstract. One approach to verify a property expressed as a modal μ-
calculus formula on a system with several concurrent processes is to
build the underlying state space compositionally (i.e., by minimizing
and recomposing the state spaces of individual processes, keeping visi-
ble only the relevant actions occurring in the formula), and check the
formula on the resulting state space. It was shown previously that,
when checking the formulas of the Ldsbr

μ fragment of μ-calculus (con-
sisting of weak modalities only), individual processes can be minimized
modulo divergence-preserving branching (divbranching) bisimulation. In
this paper, we refine this approach to handle formulas containing both
strong and weak modalities, so as to enable a combined use of strong or
divbranching bisimulation minimization on concurrent processes depend-
ing whether they contain or not the actions occurring in the strong
modalities of the formula. We extend Ldsbr

μ with strong modalities and
show that the combined minimization approach preserves the truth value
of formulas of the extended fragment. We implemented this approach on
top of the CADP verification toolbox and demonstrated how it improves
the capabilities of compositional verification on realistic examples of con-
current systems.

1 Introduction

We consider the problem of verifying a temporal logic property on a concurrent
system P1 || ... || Pn consisting of n processes composed in parallel. We work in
the action-based setting, the property being specified as a formula ϕ of the modal
μ-calculus (Lμ) [18] and the processes Pi being described in a language with
process algebraic flavour. A well-known problem is the state-space explosion that
happens when the system state space exceeds the available computer memory.

Compositional verification is a set of techniques and tools that have proven
efficient to palliate state-space explosion in many situations [11]. These tech-
niques may be either independent of the property, i.e., focus only on the con-
struction of the system state space, such as compositional state space construc-
tion [14,19,22,29,31–33]. Alternatively, they may depend on the property, e.g.,
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verification of the property on the full system is decomposed in the verifica-
tion of properties on (expectedly smaller) sub-systems, such as in compositional
reachability analysis [4,36], assume-guarantee reasoning [28], or partial model
checking [1].

Nevertheless, the frontier between property-independent and property-
dependent techniques is loose. In compositional state space construction, to be
able to reduce the system size, a set of actions is selected and a suitable equiva-
lence relation (e.g., strong bisimulation, branching bisimulation, or divergence-
preserving branching bisimulation—divbranching for short) is chosen, restricting
the set of properties preserved after hiding the selected actions and reducing the
system w.r.t. the selected relation. Therefore, there is still a dependency between
the state space construction and the set of properties that can be verified. Given
a formula ϕ of Lμ to be verified on the system, Mateescu and Wijs [24] have
pushed this idea and shown how to extract a maximal hiding set of actions and an
equivalence relation (either strong or divbranching bisimulation) automatically
from ϕ, thus inviting the compositional state space construction technique to the
table of property-dependent reductions. To select the equivalence relation from
the formula, they have identified an Lμ fragment named Ldsbr

μ , which is adequate
with divbranching bisimulation [24]. This fragment consists of Lμ restricted to
weak modalities, which match actions preceded by arbitrary sequences of hid-
den actions, as opposed to traditional strong modalities 〈α〉ϕ0 and [α]ϕ0, which
match only a single action satisfying α. If ϕ belongs to Ldsbr

μ , then the system
can be reduced for divbranching bisimulation; otherwise, it can be reduced for
strong bisimulation, the weakest equivalence relation preserving full Lμ.

In this paper, we revisit and refine this approach to accommodate Lμ for-
mulas containing both strong and weak modalities. To do so, we define a logic
named Lstrong

μ (As), which extends Ldsbr
μ with strong modalities matching only

the actions belonging to a given set As of strong actions. The set As induces a
partition of the processes P1 || ... || Pn into those containing at least one strong
action, and those that do not. We show that a formula ϕ of Lstrong

μ (As) is still
preserved if the processes containing strong actions are reduced modulo strong
bisimulation and the other ones modulo divbranching bisimulation. We also pro-
vide guidelines for extracting the set As from particular Lμ formulas encoding the
operators of widely-used temporal logics, such as CTL [5], ACTL [26], PDL [9],
and PDL-Δ [30]. This combined use of bisimulations to reduce different parts of
the same system makes possible a fine-tuning of the compositional state space
construction by going smoothly from strong bisimulation (when all modalities
are strong) to divbranching bisimulation (when As is empty, as in the previ-
ous approach based on Ldsbr

μ ). We implemented this approach on top of the
CADP verification toolbox [12], and demonstrated how it improves the capa-
bilities of compositional verification on two realistic case studies, namely the
TFTP plane-ground communication protocol specified in [13] and the parallel
CTL benchmark of the RERS’2018 challenge.

The paper is organized as follows. Section 2 recalls some definitions. Section 3
defines Lstrong

μ (As) and proves the main result of its adequacy with the combined



198 F. Lang et al.

use of strong and divbranching bisimulations. Section 4 presents the experimental
results obtained on the two case studies. Finally, Sect. 5 contains concluding
remarks and directions of future work. Formal proofs and code of case studies
are available at https://doi.org/10.5281/zenodo.2634148.

2 Background

2.1 LTS Compositions and Reductions

We consider systems whose behavioural semantics can be represented using an
LTS (Labelled Transition System).

Definition 1 (LTS). Let A denote an infinite set of actions, including the
invisible action τ , which denotes internal behaviour. All other actions are called
visible. An LTS is a tuple (Σ,A,−→, pinit), where Σ is a set of states, A ⊆ A
is a set of actions, −→ ⊆ Σ × A × Σ is the (labelled) transition relation, and

pinit ∈ Σ is the initial state. We write p
a−→ p′ if (p, a, p′) ∈ −→ and p

τ∗
−→ p′

if there is a (possibly empty) sequence of τ -transitions from p to p′, i.e., states
p0, . . . , pn (n ≥ 0) such that p = p0, p′ = pn, and pi

τ−→ pi+1 for i = 0, . . . , n−1.

LTS can be composed in parallel and their actions can be abstracted away
using the parallel composition and hiding operators defined below. Prior to hid-
ing, an action mapping operator is also introduced for the generality of the
approach.

Definition 2 (Parallel composition of LTS). Let P = (ΣP , AP ,−→P ,
pinit), Q = (ΣQ, AQ,−→Q, qinit), and Async ⊆ A \ {τ}. The parallel compo-
sition of P and Q with synchronization on Async, “P |[Async ]| Q”, is defined
as (ΣP × ΣQ, AP ∪ AQ,−→, (pinit , qinit)), where (p, q) a−→ (p′, q′) if and only if
either (1) p

a−→ p′, q′ = q, and a /∈ Async, or (2) p′ = p, q
a−→ q′, and a /∈ Async,

or (3) p
a−→ p′, q

a−→ q′, and a ∈ Async.

Definition 3 (Action mapping). Let P = (ΣP , AP ,−→P , pinit) and a total
function ρ : AP → 2A. We write ρ(AP ) for the image of ρ, defined by⋃

a∈AP
ρ(a). We write ρ(P ) for the action mapping ρ applied to P , defined as the

LTS (ΣP , ρ(AP ),−→′
P , pinit) where −→′

P = {(p, a′, p′) | p
a−→P p′ ∧ a′ ∈ ρ(a)}.

An action mapping ρ is admissible if τ ∈ AP =⇒ ρ(τ) = {τ}.
Action mapping enables a single action a to be mapped onto the empty set

of actions, onto a single action a′, or onto more than one actions a′
0, . . . , a

′
n+1

(n ≥ 0). In the first case, every transition labelled by a is removed. In the second
case, a is renamed into a′. In the third case, every transition labelled by a is
replaced by n + 2 transitions with same source and target states, labelled by
a′
0, . . . , a

′
n+1. Action hiding is a special case of admissible action mapping.

Definition 4 (Action hiding). Let P = (ΣP , AP ,−→P , pinit) and A ⊆ A \
{τ}. We write “hide A in P” for the LTS ρ(P ), where ρ is the admissible action
mapping defined by (∀a ∈ AP ∩ A) ρ(a) = {τ} and (∀a ∈ AP \ A) ρ(a) = {a}.

https://doi.org/10.5281/zenodo.2634148


Compositional Verification of Concurrent Systems 199

Parallel composition and admissible action mapping subsume all abstrac-
tion and composition operators encodable as networks of LTS [7,11,20], such
as the parallel composition, hiding, renaming, and cut (or restriction) operators
of CCS [25], CSP [2], mCRL [15], LOTOS [16], E-LOTOS [17], and LNT [3],
as well as synchronization vectors1. In the sequel, we write P1 || . . . ||Pn for
any expression composing P1, . . . , Pn using these operators. Given any partition
of P1, . . . , Pn into arbitrary subsets P1 and P2, it is always possible to rewrite
P1 || . . . || Pn in the form (||Pi∈P1Pi) || (||Pj∈P2Pj), even for non-associative par-
allel composition operators (e.g., |[. . .]|), using appropriate action mappings2.

LTS can be compared and reduced with respect to well-known bisimulation
relations. In this paper, we consider strong bisimulation [27] and divbranching
bisimulation, which itself derives from branching bisimulation [34,35].

Definition 5 (Bisimulations). A strong bisimulation is a symmetric relation
R ⊆ Σ × Σ such that if (p1, p2) ∈ R then: for all p1

a−→ p′
1, there exists p′

2

such that p2
a−→ p′

2 and (p′
1, p

′
2) ∈ R. A branching bisimulation is a symmetric

relation R ⊆ Σ × Σ such that if (p1, p2) ∈ R then: for all p1
a−→ p′

1, either

a = τ and (p′
1, p2) ∈ R, or there exists a sequence p2

τ∗
−→ p′

2
a−→ p′′

2 such that
(p1, p′

2) ∈ R and (p′
1, p

′′
2) ∈ R. A divergence-preserving branching bisimulation

(divbranching bisimulation for short) is a branching bisimulation R such that if
(p01, p

0
2) ∈ R and there is an infinite sequence p01

τ−→ p11
τ−→ p21

τ−→ . . . with
(pi

1, p
0
2) ∈ R for all i ≥ 0, then there is an infinite sequence p02

τ−→ p12
τ−→ p22

τ−→
. . . such that (pi

1, p
j
2) ∈ R for all i, j ≥ 0. Two states p1 and p2 are strongly

(resp. branching, divbranching) bisimilar, written p1 ∼ p2 (resp. p1 ∼br p2,
p1 ∼dsbr p2), if there exists a strong (resp. branching, divbranching) bisimulation
R such that (p1, p2) ∈ R. Two LTS P1 and P2 are strongly (resp. branching,
divbranching) bisimilar, written P1 ∼ P2 (resp. P1 ∼br P2, P1 ∼dsbr P2), if their
initial states are strongly (resp. branching, divbranching) bisimilar.

Strong, branching, and divbranching bisimulations are congruences for par-
allel composition and admissible action mapping. This allows reductions to be
applied at any intermediate step during the state space construction, thus poten-
tially reducing the overall cost of reduction. However, since processes may con-
strain each other by synchronization, composing LTS two by two following the
algebraic structure of the composition expression and applying reduction after
each composition can be orders of magnitude less efficient than other strategies
in terms of the largest intermediate LTS. Finding an optimal strategy is difficult.
One generally relies on heuristics to select a subset of LTS to compose at each
step of the compositional reduction. In this paper, we will use the smart reduction
heuristic [6,11], which is implemented within the SVL [10] tool of CADP [12].

1 For instance, the composition of P and Q where action a of P synchronizes with
either b or c of Q, can be written as ρ(P ) |[b, c]| Q, where ρ maps a onto {b, c}.

2 For instance, P1 |[a]| (P2 |[]| P3) is equivalent to ρ0((ρ1(P1) |[a1]| ρ2(P2)) |[a2]| ρ3(P3))
—observe the different associativity— where ρ1 maps a onto {a1, a2}, ρ2 renames a
into a1, ρ3 renames a into a2, and ρ0 renames a1 and a2 into a.
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This heuristic tries to find an efficient composition order by analysing the syn-
chronization and hiding structure of the composition expression.

2.2 Temporal Logics

Definition 6 (Modal µ-calculus [18]). The modal μ-calculus (Lμ) is built
from action formulas α and state formulas ϕ, whose syntax and semantics w.r.t.
an LTS P = (Σ,A,−→, pinit) are defined as follows:

α :: = a [[a]]A = {a}
| false [[false]]A = ∅
| α1 ∨ α2 [[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A
| ¬α0 [[¬α0]]A = A \ [[α0]]A

ϕ :: = false [[false]]P δ = ∅
| ϕ1 ∨ ϕ2 [[ϕ1 ∨ ϕ2]]P δ = [[ϕ1]]P δ ∪ [[ϕ2]]P δ
| ¬ϕ0 [[¬ϕ0]]P δ = Σ \ [[ϕ0]]P δ

| 〈α〉ϕ0 [[〈α〉ϕ0]]P δ = {s ∈ Σ | ∃s
a−→ s′.a ∈ [[α]]A ∧ s′ ∈ [[ϕ0]]P δ}

| X [[X]]P δ = δ(X)
| μX.ϕ0 [[μX.ϕ0]]P δ =

⋃
k≥0 Φ0

k
P,δ(∅)

where X ∈ X are propositional variables denoting sets of states, δ : X → 2Σ is a
context mapping propositional variables to sets of states, [ ] is the empty context,
δ[U/X] is the context identical to δ except for variable X, which is mapped to
state set U , the functional Φ0P,δ : 2Σ → 2Σ associated to the formula μX.ϕ0 is
defined as Φ0P,δ(U) = [[ϕ0]]P δ[U/X], and Φk means k-fold application. We write
P |= ϕ (read P satisfies ϕ) for p0 ∈ [[ϕ]]P [ ].

Action formulas α are built from actions and boolean operators. State formulas
ϕ are built from boolean operators, the possibility modality 〈α〉ϕ0 denoting the
states with an outgoing transition labeled by an action satisfying α and leading
to a state satisfying ϕ0, and the minimal fixed point operator μX.ϕ0 denoting
the least solution of the equation X = ϕ0 interpreted over 2Σ .

The usual derived operators are defined as follows: boolean connectors true =
¬false and ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2); necessity modality [α]ϕ0 = ¬〈α〉 ¬ϕ0; and
maximal fixed point operator νX.ϕ0 = ¬μX.¬ϕ0[¬X/X], where ϕ0[¬X/X] is
the syntactic substitution of X by ¬X in ϕ0. Syntactically, 〈〉 and [] have the
highest precedence, followed by ∧, then ∨, and finally μ and ν. To have a well-
defined semantics, state formulas are syntactically monotonic [18], i.e., in every
subformula μX.ϕ0, all occurrences of X in ϕ0 fall in the scope of an even number
of negations. Thus, negations can be eliminated by downward propagation.

Although Lμ subsumes most action-based logics, its operators are rather low-
level and lead to complex formulas. In practice, temporal logics or extensions of
Lμ with higher-level operators are used, avoiding (or at least reducing) the use of
fixed point operators and modalities. We review informally some of these logics
(whose operators can be translated to Lμ), which will be useful in the sequel.
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Propositional Dynamic Logic with Looping. The logic PDL-Δ [30] introduces the
modalities 〈β〉ϕ0 and 〈β〉@, where β is a regular formula defined as follows:

β :: = ϕ? | α | β1 · β2 | β1|β2 | β∗
0

Regular formulas β denote sets of transition sequences in an LTS: the testing
operator ϕ? denotes all zero-step sequences consisting of states satisfying ϕ; α
denotes all one-step sequences consisting of a transition labeled by an action sat-
isfying α; the concatenation β1 ·β2, choice β1|β2, and transitive-reflexive closure
β∗
0 operators have their usual semantics transposed to transition sequences.

The regular diamond modality 〈β〉ϕ0 denotes the states with an outgoing
transition sequence satisfying β and leading to a state satisfying ϕ0. The infinite
looping operator 〈β〉@ denotes the states having an outgoing transition sequence
consisting of an infinite concatenation of subsequences satisfying β.

Action Computation Tree Logic. The logic ACTL\X (ACTL without next oper-
ator) [26] introduces four temporal operators, whose semantics can be found in
terms of Lμ formulas in [8,24], where α1, α2 are interpreted over visible actions:

E(ϕ1 α1Uϕ2),E(ϕ1 α1Uα2 ϕ2),A(ϕ1 α1Uϕ2),A(ϕ1 α1Uα2 ϕ2)

A transition sequence satisfies the path formula ϕ1 α1Uα2 ϕ2 if it contains a
visible transition whose action satisfies α2 and whose target state satisfies ϕ2,
whereas at any moment before this transition, ϕ1 holds and all visible actions
satisfy α1. A sequence satisfies ϕ1 α1Uϕ2 if it contains a state satisfying ϕ2 and at
any moment before, ϕ1 holds and all visible actions satisfy α1. A state satisfies
E(ϕ1 α1Uα2 ϕ2) (resp. E(ϕ1 α1Uϕ2)) if it has an outgoing sequence satisfying
ϕ1 α1Uα2 ϕ2 (resp. ϕ1 α1Uϕ2). It satisfies A(ϕ1 α1Uα2 ϕ2) (resp. A(ϕ1 α1Uϕ2)) if
all its outgoing sequences satisfy the corresponding path formula. The following
abbreviations are often used:

EFα(ϕ0) = E(true trueUα ϕ0) AGα(ϕ0) = ¬EF¬α(true) ∧ ¬E(true trueU¬ϕ0)

A state satisfies EFα(ϕ0) if it has an outgoing sequence leading to a transition
whose action satisfies α and target state satisfies ϕ0. A state satisfies AGα(ϕ0)
if none of its outgoing sequences leads to a transition labeled by an action not
satisfying α or to a state not satisfying ϕ0.

Computation Tree Logic. The logic CTL [5] contains the following operators:

E(ϕ1 Uϕ2),A(ϕ1 Uϕ2),E(ϕ1 Wϕ2),A(ϕ1 Wϕ2),EF(ϕ0),AG(ϕ0),AF(ϕ0),EG(ϕ0)

A state satisfies E(ϕ1 Uϕ2) (resp. A(ϕ1 Uϕ2)) if some of (resp. all) its outgoing
sequences lead to states satisfying ϕ2 after passing only through states satisfying
ϕ1. It satisfies E(ϕ1 Wϕ2) (resp. A(ϕ1 Wϕ2)) if some of (resp. all) its outgoing
sequences either contain only states satisfying ϕ1, or lead to states satisfying ϕ2

after passing only through states satisfying ϕ1. A state satisfies EF(ϕ0) (resp.
AF(ϕ0)) if some of (resp. all) its outgoing sequences lead to states satisfying
ϕ0. A state satisfies EG(ϕ0) (resp. AG(ϕ0)) if some of (resp. all) its outgoing
sequences contain only states satisfying ϕ0.
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2.3 Compositional Property-Dependent LTS Reductions

Given a formula ϕ ∈ Lμ and a composition of processes P1 || . . . ||Pn, [24] shows
two results that allow an LTS equivalent to P1 || . . . ||Pn to be reduced compo-
sitionally, while preserving the truth value of ϕ. The first result is a procedure,
called maximal hiding, which extracts systematically from ϕ a set of actions H(ϕ)
that are not discriminated by any action formula occurring in ϕ. It is shown that
P1 || . . . || Pn |= ϕ if and only if hide H(ϕ) in (P1 || . . . || Pn) |= ϕ. The sec-
ond result is the identification of a fragment of Lμ, called Ldsbr

μ , which is strictly
more expressive than μACTL\X3 and adequate with divbranching bisimulation.
This fragment is defined as follows.

Definition 7 (Modal µ-calculus fragment Ldsbr
µ [24]). By convention, we

use the symbols ατ and αa to denote action formulas such that τ ∈ [[ατ ]]A and
τ /∈ [[αa]]A. The fragment Ldsbr

μ of Lμ is defined as the set of formulas that are
semantically equivalent to some formula of the following language:

ϕ :: = false | ϕ1 ∨ ϕ2 | ¬ϕ0 | X | μX.ϕ0

| 〈(ϕ1?.ατ )∗〉ϕ2 | 〈(ϕ1?.ατ )∗.ϕ1?.αa〉ϕ2 | 〈ϕ1?.ατ 〉@

The ultra-weak modality 〈(ϕ1?.ατ )∗〉ϕ2, weak modality 〈(ϕ1?.ατ )∗.ϕ1?.αa〉ϕ2,
and weak infinite looping modality 〈ϕ1?.ατ 〉@ are shorthand notations for the
respective Lμ formulas μX.ϕ2 ∨ (ϕ1 ∧ 〈ατ 〉X), μX.ϕ1 ∧ (〈αa〉ϕ2 ∨ 〈ατ 〉X), and
νX.ϕ1 ∧ 〈ατ 〉X. Derived operators are also defined as follows:

[(ϕ1?.ατ )∗]ϕ2 = ¬〈(ϕ1?.ατ )∗〉 ¬ϕ2

[ϕ1?.ατ ] � = ¬〈ϕ1?.ατ 〉@
[(ϕ1?.ατ )∗.ϕ1?.αa]ϕ2 = ¬〈(ϕ1?.ατ )∗.ϕ1?.αa〉 ¬ϕ2

Depending on the Lμ fragment ϕ belongs to, it is thus possible to determine
whether the system can or cannot be reduced for divbranching bisimulation.

3 Combining Bisimulations Compositionally

The above approach is a mono-bisimulation approach: either the formula is in
Ldsbr

μ and then the system is entirely reduced for divbranching bisimulation, or it
is not and then the system is entirely reduced for strong bisimulation. We show
in this section that, even if the formula is not in Ldsbr

μ , it may still be possible to
reduce some processes among the parallel processes P1, . . . , Pn for divbranching
instead of strong bisimulation. This approach relies on the fact that, in general,
an arbitrary temporal logic formula ϕ may be rewritten in a form that contains
both weak modalities, as those present in Ldsbr

μ , and non-weak modalities of Lμ

(called strong modalities in this context).

3 μACTL\X denotes ACTL\X plus fixed points. The authors of [24] claim that Ldsbr
μ is

as expressive as μACTL\X, but they omit that the 〈ϕ1?.ατ 〉 @ weak infinite looping
modality cannot be expressed in μACTL\X.
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To do so, we characterize a family of fragments of Lμ, each of which is written
Lstrong

μ (As), where As is the set of actions that can be matched by strong modal-
ities. We then prove that if ϕ belongs to Lstrong

μ (As) and some process Pi does
not contain any action from the set As, then Pi can be reduced for divbranching
bisimulation. Throughout this section, we assume that the concurrent system
P1 || . . . || Pn is fixed, and we write A for the set of actions occurring in the
system.

3.1 The Lstrong
µ (As) Fragments of Lµ

Definition 8 (Lstrong
μ (As)). Let As ⊆ A be a fixed set of actions, called strong

actions, and let αs denote any action formula such that [[αs]]A ⊆ As, called
a strong action formula. The fragment Lstrong

μ (As) of Lμ is defined as the set
of formulas that are semantically equivalent to some formula of the following
language:

ϕ :: = false | ϕ1 ∨ ϕ2 | ¬ϕ0 | 〈αs〉ϕ0 | X | μX.ϕ0

| 〈(ϕ1?.ατ )∗〉ϕ2 | 〈(ϕ1?.ατ )∗.ϕ1?.αa〉ϕ2 | 〈ϕ1?.ατ 〉@

We call 〈αs〉ϕ0 a strong modality. Lstrong
μ (As) is the fragment of Lμ consisting

of formulas expressible in a form where strong modalities match only actions in
As. Its formal relationship with Ldsbr

μ and Lμ is given in Theorem 1.

Theorem 1. The following three propositions hold trivially: Lstrong
μ (∅) = Ldsbr

μ ,
Lstrong

μ (A) = Lμ, and if As ⊂ A′
s then Lstrong

μ (As) ⊂ Lstrong
μ (A′

s).

Given ϕ ∈ Lμ, there exists a (not necessarily unique, see Theorem 3 page
10) minimal set As such that ϕ ∈ Lstrong

μ (As). Obviously, Lstrong
μ (As) is not

adequate with divbranching bisimulation when As is not empty, as illustrated
by the following example.

Example 1. Consider the LTS P , P ′, Q, and Q′ depicted in Fig. 1. P ′ (resp. Q′)
denotes the minimal LTS equivalent to P (resp. Q) for divbranching bisimula-
tion. The formula ϕ = [(true?.true)∗.true?.a1] [a2] false of Lstrong

μ ({a2}) (which

Fig. 1. LTS used in Examples 1 and 2
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is equivalent to the PDL formula [true∗.a1.a2] false) expresses that the system
does not contain two successive transitions labelled by a1 and a2 respectively. ϕ
does not belong to Ldsbr

μ . Indeed, P |[a1]| Q satisfies ϕ because a1 is necessarily
followed by a τ transition, but P ′ |[a1]| Q′ (which is isomorphic to Q′) does not.

3.2 Applying Divbranching Bisimulation to Selected Components

The following theorem states the main result of this paper, namely that every
component process containing no strong action can be replaced by any div-
branching equivalent process, without affecting the truth value of the formula4.

Theorem 2. Let P = (ΣP , AP ,→P , pinit), Q = (ΣQ, AQ,−→Q, qinit), Q′ =
(ΣQ′ , AQ′ ,−→Q′ , q′

init), Async ⊆ A, and ϕ ∈ Lstrong
μ (As). If AQ ∩ As = ∅ and

Q ∼dsbr Q′, then P |[Async ]|Q |= ϕ if and only if P |[Async ]|Q′ |= ϕ.

Proof. The proof looks like the one in [24], showing that divbranching bisimu-
lation preserves the properties of Ldsbr

μ , but reasoning concerns product states
and additionally handles the case of strong modalities. ��

Note that τ may belong to As. If so, every Pi containing τ cannot be reduced
for divbranching bisimulation. On the contrary, processes that do not contain
strong actions do not contain τ . Reducing them for divbranching bisimulation
is thus allowed, but coincides with strong bisimulation reduction. In the end,
all τ -transitions of the system are preserved, as expected for the truth value of
formulas containing strong modalities matching τ to be preserved.

Example 2. In Example 1, P does not contain a2, the only strong action of the
system. Thus, ϕ can be checked on P ′ |[a1]| Q (which is isomorphic to Q and has
only 3 states) instead of P |[a1]| Q (6 states), while preserving its truth value.

Theorem 2 is consistent with Andersen’s partial model checking [1] and the
mono-bisimulation approach [24]. Given P ||Q such that the strong actions of
ϕ occur only in P , one can observe that the quotient ϕ//P (defined in [1,21])
belongs to Ldsbr

μ , because quotienting removes all strong modalities, leaving only
weak modalities in the quotiented formula. It follows that Q, on which ϕ//P has
to be checked, can be reduced for divbranching bisimulation. This observation
could serve as an alternative proof of Theorem 2.

3.3 Identifying Strong Actions in Derived Operators

In the general case, identifying a minimal set of strong actions is not easy, if even
feasible. One cannot reasonably assume that formulas are written in the obscure
Lstrong

μ (As) syntax (see Example 1) and that the remaining strong modalities
cannot be turned to weak ones. Instead, users shall continue to use “syntactic
sugar” extensions of Lμ, with operators of e.g., CTL, ACTL, PDL, or PDL-Δ. In
Lemma 1, we provide patterns that can be used to prove that a formula written
using one of those operators belongs to a particular instance of Lstrong

μ (As).
4 Theorem 2 generalizes easily to more general compositions P || Q (with admissible

action mappings) if Q does not contain any action that maps onto a strong action.
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Lemma 1. Let ϕ0, ϕ1, ϕ2 ∈ Lstrong
μ (As), τ ∈ [[ατ ]]A, τ /∈ [[αa]]A, [[αs]]A ⊆

As, and α0, α1, α2 be any action formulas. The following formulas belong to
Lstrong

μ (As) (the list may be not exhaustive):

1. Modal µ-calculus:
〈αs〉ϕ0 [αs]ϕ0 ¬ϕ0 ϕ1 ∨ ϕ2 ϕ1 ∧ ϕ2 ϕ1 ⇒ ϕ2

2. Propositional Dynamic Logic:
〈α∗

τ 〉ϕ0 [α∗
τ ]ϕ0 〈α∗

τ · αa〉ϕ0 [α∗
τ · αa]ϕ0 〈ατ 〉@ [ατ ] �

3. Action Computation Tree Logic:
A(ϕ1 α1Uϕ2) A(ϕ1 α1Uα2 ϕ2) AGα0(ϕ0)
E(ϕ1 α1Uϕ2) E(ϕ1 α1Uα2 ϕ2) EFα0(ϕ0)

4. Computation Tree Logic:
A(ϕ1 Uϕ2) A(ϕ1 Wϕ2) AG(ϕ0) AF(ϕ0)
E(ϕ1 Uϕ2) E(ϕ1 Wϕ2) EF(ϕ0) EG(ϕ0)
A([αa]ϕ1 Uϕ2) A([αa]ϕ1 Wϕ2) AG([αa]ϕ0) EF(〈αa〉ϕ0)
AG(ϕ1 ∨ [αa]ϕ2) EF(ϕ1 ∧ 〈αa〉ϕ2)

Example 3. Let a1, a2, and a3 be visible actions and recall that A denotes the
set of all actions of the system. Lemma 1 allows the following to be shown (this
is left as an exercise):

〈true∗.a1.(¬a2)∗.a3〉 true ∈ Lstrong
μ (∅) [true] false ∈ Lstrong

μ (A)
A(〈a1〉 true ¬a2Ua3 true) ∈ Lstrong

μ ({a1}) AG([a1] false) ∈ Lstrong
μ (∅)

E(true trueUτ true) ∈ Lstrong
μ (A) 〈a∗

1.a2〉 true ∈ Lstrong
μ ({a1, a2})

E(true trueU 〈τ〉 true) ∈ Lstrong
μ ({τ}) [a1.a2] false ∈ Lstrong

μ ({a1, a2})
EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong

μ ({a1}) EF(〈a1〉 〈a2〉 true) ∈ Lstrong
μ ({a2})

EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong
μ ({a2}) EF(〈¬a1〉 true) ∈ Lstrong

μ (A \ {a1})

Theorem 3. There is not a unique minimal set As such that ϕ ∈ Lstrong
μ (As).

Proof. EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong
μ ({a1}) ∩ Lstrong

μ ({a2}), because it is
semantically equivalent to both formulas EF(〈(〈a1〉 true?.true)∗.〈a1〉 true?.a2〉
true) and EF(〈(〈a2〉 true?.true)∗.〈a2〉 true?.a1〉 true). Yet, it is not in Lstrong

μ (∅)
as it has not the same truth value on the divbranching equivalent LTS P and
P ′ below:

P = p0

a1

��
a2 ��

τ
��

p1 P ′ = q0
a1 ��

τ

��
q1 q2

a2��

τ

��

Thus, {a1} and {a2} are non-unique minimal sets of strong actions. ��

4 Applications

We consider two examples to illustrate our new verification approach combining
strong and divbranching bisimulation and show how it can reduce both time
and memory usage when associated to the smart reduction heuristic. In both
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examples, the aim is to perform a set of verification tasks, each consisting in
checking a formula ϕ on a system of parallel processes P1 || . . . || Pn. Since our
approach can only improve the verification of formulas containing both strong
and weak modalities, we consider only the pairs of formulas and systems such
that the formula is part of Lstrong

μ (As) for some minimal As that is not empty
and that is strictly included in the set of visible actions of the system5. For each
verification task, we compare the largest LTS size, the verification time, and the
memory peak obtained using the following two approaches:

Mono-bisimulation approach: ϕ is verified on hide H(ϕ) in (P1 || . . . || Pn)
(where H(ϕ) is the maximal hiding set mentioned in Sect. 2.3) reduced com-
positionally for strong bisimulation (since ϕ is not in Ldsbr

μ ) using the smart
reduction heuristic.

Refined approach combining bisimulations: The set {P1, . . . , Pn} is parti-
tioned in two groups Ps and Pw such that Pi ∈ Ps if it contains actions
in As and Pi ∈ Pw otherwise, so that P1 || . . . || Pn can be rewritten
in the equivalent form (||Pi∈Ps

Pi) || (||Pj∈Pw
Pj). The set AI of actions on

which at least one process of Ps and one process of Pw synchronize (inter-
group synchronization) is then identified. Using the smart reduction heuris-
tic, hide H(ϕ) \ AI in ||Pi∈Ps

Pi (corresponding to the processes contain-
ing strong actions) is reduced compositionally for strong bisimulation, lead-
ing to a first LTS Ps, and hide H(ϕ) \ AI in ||Pj∈Pw

Pj (corresponding to
the processes containing no strong action) is reduced compositionally for
divbranching bisimulation, leading to a second LTS Pw. Finally, ϕ is veri-
fied on hide H(ϕ) ∩ AI in (Ps |[AI ]| Pw) reduced for strong bisimulation.

All experiments were done on a 3GHz/12GB RAM/8-core Intel Xeon computer
running Linux, using the specification languages and 32-bit versions of tools
provided in the CADP toolbox [12] version 2019-a “Pisa”.

4.1 Trivial File Transfer Protocol

The TFTP (Trivial File Transfer Protocol) case-study6 addresses the verification
of an avionic communication protocol between a plane and the ground [13].
It comprises two instances (A and B) of a process named TFTP, connected
through a FIFO buffer. Since the state space is very large in the general case, the
authors defined five scenarios named A, B, C, D, and E, depending on whether
each instance may write and/or read a file. The system corresponding to each
scenario is a parallel composition of eight processes. The requirements consist
of 29 properties parameterized by the identity of a TFTP instance, defined in
MCL [23] (an implementation of the alternation-free modal μ-calculus including
PDL-Δ modalities and macro definitions enabling the construction of libraries of
5 Otherwise, our approach coincides with the mono-bisimulation approach of [24]. In

all the examples addressed in this section, there is always a unique minimal set As,
whose identification is made easy using Lemma 1.

6 Specification available at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo 05.

ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_05
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Table 1. TFTP properties (strong action formulas are highlighted)

Nr. Property

08 [true∗ · a1 · a2] false

09 [true∗ · a1 · a2 · ((a3 · (¬a4)
∗ · a5)|(a6 · (¬a7)

∗ · a8))] false

14 [true∗ · a1 · a2 · (¬a3)
∗ · a4 · a5] false

16 [(¬a1)
∗ · a2 · (¬a3)

∗ · a4] 〈((¬a5)
∗ · a6 · a7) · ((¬a5)

∗ · a6 · a7)〉 true
17 Same shape as property Nr. 16

operators), 24 of which belong to Ldsbr
μ . The remaining five, namely properties

08, 09, 14, 16, and 17, contain both weak and strong modalities. The shape of
these properties is described in Table 1, where we do not provide the details of the
action formulas, but instead denote them by letters a1, a2, . . ., where τ /∈ [[ai]]A
for all i. Strong action formulas are highlighted and one shows easily that the
other are weak using Lemma 1-2.

We consider 31 among a potential of 50 verification tasks (five properties, five
scenarios, and two instances) as some properties are not relevant to every TFTP
instance and scenario (e.g., in a scenario where one TFTP instance only receives
messages, checking a property concerning a message emission is irrelevant). All 31
verification tasks return true and the strong actions occur in only three (although
not the same three) out of the eight parallel processes.

Fig. 2. Experimental results of the TFTP case-study

Figure 2 shows that the refined approach always reduces LTS size (for both
intermediate and final LTS), memory and time following similar curves, up to a
factor 7 (the vertical axis is on a logarithmic scale). Time does not include LTS
generation of the component processes from their LNT specification, which takes
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Table 2. RERS 2018 properties (strong action formulas are highlighted)

Nr. Property Result

101#21 AG([A21] [A23] [A4] [true] false) false

101#22 AG([A3]AF(〈A2〉 true)) false

101#23 AG(〈A20〉 true ⇒ 〈A20〉A([A23] falseW 〈A8〉 true)) true

102#21 EF(AG([A5] false)) true

102#22 EG([A35] E([A23] false U 〈A35〉 true)) false

102#23 AG([A22]A([A8] false U 〈A22〉 true)) false

103#21 AG([A11]A([A2] falseW 〈A6〉 true) ⇒ [A11]A([A5] falseW 〈A6〉 true)) true

103#22
EG([A14] false ∧ (〈A18〉 true ⇒ [A18] EG([A21] false ∧ EF(〈A19〉 true))))
= EG([A14] false ∧ [A18] EG([A21] false ∧ EF(〈A19〉 true))) true

103#23
AG(〈A34〉 true ⇒ [A34]A([A68] falseW 〈A59〉 true))
= AG([A34]A([A68] falseW 〈A59〉 true)) false

only a few seconds and is common to both approaches. In these experiments,
time is dominated by the last step of generation and minimization, whereas
memory usage is dominated by minimization.

4.2 Parallel Benchmark of the RERS 2018 Challenge

The RERS (Rigorous Examination of Reactive Systems)7 challenge is an interna-
tional competition on a benchmark of verification tasks. Since 2018 (8th edition),
the challenge features a set of parallel problems where systems are synchroniz-
ing LTS and properties are expressed using CTL and modalities. This section
illustrates the benefits of our approach on these problems.

The benchmark comprises three specifications of concurrent systems, num-
bered 101, 102, and 103, each accompanied by three properties to be checked,
numbered p#21, p#22, and p#23, where p is the system number. Thus, nine
verification tasks have to be solved. The properties are presented in Table 2,
where the strong action formulas are highlighted. One easily shows that all other
action formulas are weak using Lemmas 1-1 and 1-4. However, for 103#22 and
103#23, the identity (〈α〉 true ⇒ [α]ϕ) = ([α] false ∨ [α]ϕ) = [α]ϕ (because
[α] false =⇒ [α]ϕ for all ϕ) was applied to obtain the simplified formulas
occurring after the = sign in the table. For 102#23, this simplification allowed
us to prove that A34 is not a strong action, unlike what appears at first sight.

Table 3 gives, for each of the nine verification tasks, the number #act of
actions in the system, the number #hide of actions in the maximal hiding set,
the number #sact of strong actions, the number #proc of parallel processes,
the number #sproc of processes in the strong group, the number #sync of
inter-group actions, and the best reduction relation among strong bisimulation,
divbranching bisimulation, or a combination of both. We observe that:

– The set of weak actions of 101#21 is empty due to the presence of the “true”
strong action formula, whereas the set of strong actions of 102#21 is empty,

7 http://rers-challenge.org.

http://rers-challenge.org
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Table 3. Some numbers about the RERS 2018 parallel benchmark

Task #act #hide #sact #proc #sproc #sync Relation

101#21 24 21 24 9 9 - Strong

101#22 24 22 1 9 4 11 Combination

101#23 24 21 2 9 3 9 Combination

102#21 28 27 0 20 0 - Divbranching

102#22 28 26 2 20 10 14 Combination

102#23 28 26 1 20 4 12 Combination

103#21 70 66 2 34 8 12 Combination

103#22 70 66 3 34 6 18 Combination

103#23 70 67 1 34 7 10 Combination

i.e., the property belongs to Ldsbr
μ . In both cases, our approach coincides

with the mono-bisimulation approach. The verification of 101#21 (reduced for
strong bisimulation) takes 75 s, with a memory peak of 11 MB and a largest
LTS of 83, 964 states and 374, 809 transitions. The verification of 102#21
(reduced for divbranching bisimulation) takes 261 s, with a memory peak of
22 MB and a largest LTS of 243 states and 975 transitions.

– 101#22, 101#23, 102#22, 102#23, 103#21, 103#22, and 103#23 contain
both weak and strong actions. They are used to evaluate our approach.

Table 4 compares the performance of verifying the latter seven verification tasks
using the approaches described above. LTS sizes are given in kilostates, memory
in megabytes, and time in seconds. Tasks using more than 3 GB of memory
were aborted. We see that our approach reduces both time and memory usage
and allows all problems of the challenge to be solved, whereas using strong
bisimulation alone fails in five out of those seven tasks.

Table 4. Experimental results of the RERS 2018 parallel benchmark

Task Strong bisimulation Combined bisimulations

Kstates Verif. Kstates Verif.

Largest Final MB Sec. Largest Final MB Sec.

101#22 84 77 10 77 1.4 1.4 10 72

101#23 84 77 11 80 0.5 0.5 8 73

102#22 - - - - 611 585 57 295

102#23 - - - - 17 9.8 22 260

103#21 - - - - 734 313 101 604

103#22 - - - - 14,143 14,141 1575 2533

103#23 - - - - 122 122 35 566
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The negligible reductions in time and memory usage observed for tasks
101#22 and 101#23 are due to the fact that time and memory usage are domi-
nated by the algorithm in charge of selecting a sub-set of processes to be com-
posed and reduced (implemented in smart reduction). The complexity of this
algorithm does not depend on the state space size, but on the number of actions
and parallel processes, which is almost the same using both approaches. When
considering larger examples, memory usage gets dominated by minimisation.
In particular, for tasks 102#22, 102#23, 103#21, and 103#23 (and likely also
103#22), memory usage is reduced by several orders of magnitude.

Note that some of these tasks can be verified more efficiently using non-
compositional approaches, such as on-the-fly model checking, in cases where
proofs or counter-examples can be detected much before having explored the
full state space. The main drawback of maximal hiding is that the generated
counter-examples are given only in terms of the actions visible in the formula,
which abstracts out a lot of intermediate transitions. However, this is the price
to pay for being able to verify most of the tasks, such as 103#21, for which
on-the-fly verification aborts due to memory exhaustion.

5 Conclusion and Future Work

In this paper, we proposed a compositional verification approach that extends the
state of the art [24] and consists of three steps: First, so-called strong actions are
identified, corresponding to those actions of the system that the formula cannot
match using weak modalities in the sense of the Lμ fragment Ldsbr

μ adequate
with divbranching bisimulation. These actions are used to partition the parallel
processes into those containing strong actions and the others. Second, maximal
hiding and compositional reduction are used to minimize the composition of
processes not containing strong actions for divbranching bisimulation, and the
other processes for strong bisimulation. Finally, the property is verified on the
reduced system.

The originality of this approach is to combine strong and divbranching bisim-
ulation, as opposed to the mono-bisimulation approach of [24]. We proved it cor-
rect by characterizing a family of fragments of the logic Lμ, called Lstrong

μ (As),
parameterized by the set As of strong actions. We also showed under which
conditions action-based branching-time temporal logic formulas containing well-
known operators from the logics CTL, ACTL, PDL, and PDL-Δ are part of
Lstrong

μ (As) when As is fixed. In the future, it might be worth investigating
whether more operators can be considered, e.g., from the linear-time logic LTL.

This approach may significantly improve the verification performance for
systems containing both processes with and without strong actions, as illustrated
by two case-studies. In particular, it allowed the whole parallel CTL benchmark
of the RERS 2018 challenge to be solved on a standard computer.

Identifying (close to minimal) sets of strong actions for arbitrary formulas
manually is a cumbersome task, prone to errors. We shall investigate ways to
compute such sets automatically. As illustrated by verification task 103#23 of
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RERS 2018, the problem is not purely syntactic: considering non-trivial semantic
equivalences may prove useful to eliminate actions that appear strong at first
sight. Yet, we trust that the presented approach has potential to be implemented
in automated software tools, such as those available in the CADP toolbox.
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