
Verifying Correctness of Persistent
Concurrent Data Structures

John Derrick1, Simon Doherty1, Brijesh Dongol2(B), Gerhard Schellhorn3,
and Heike Wehrheim4

1 University of Sheffield, Sheffield, UK
2 University of Surrey, Guildford, UK

b.dongol@surrey.ac.uk
3 University of Augsburg, Augsburg, Germany
4 Paderborn University, Paderborn, Germany

Abstract. Non-volatile memory (NVM), aka persistent memory, is a
new paradigm for memory preserving its contents even after power loss.
The expected ubiquity of NVM has stimulated interest in the design of
persistent concurrent data structures, together with associated notions of
correctness. In this paper, we present the first formal proof technique for
durable linearizability, which is a correctness criterion that extends lin-
earizability to handle crashes and recovery in the context of NVM. Our
proofs are based on refinement of IO-automata representations of con-
current data structures. To this end, we develop a generic procedure for
transforming any standard sequential data structure into a durable speci-
fication. Since the durable specification only exhibits durably linearizable
behaviours, it serves as the abstract specification in our refinement proof.
We exemplify our technique on a recently proposed persistent memory
queue that builds on Michael and Scott’s lock-free queue.

1 Introduction

Recent technological advances indicate that future architectures will employ
some form of non-volatile memory (NVM) that retains its contents after a system
crash (e.g., power outage). NVM is intended to be used as an intermediate layer
between traditional volatile memory (VM) and secondary storage and has the
potential to vastly improve system speed and stability. Software that uses NVM
has the potential to be more robust; in case of a crash, a system state before
the crash may be recovered using contents from NVM, as opposed to being
restarted from secondary storage. However, because the same data is stored in
both a volatile and non-volatile manner, and because NVM is updated at a
slower rate than VM, recovery to a consistent state may not always be possi-
ble. This is particularly true for concurrent systems, where coping with NVM
requires introduction of additional synchronisation instructions into a program.

Derrick, Dongol and Doherty are supported by EPSRC grants EP/R032351/1,
EP/R032556/2, EP/R019045/2; Wehrheim by DFG grant WE 2290/12-1.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 179–195, 2019.
https://doi.org/10.1007/978-3-030-30942-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_12


180 J. Derrick et al.

Recently, researchers have developed persistent extensions to existing con-
current objects (e.g., concurrent data structures or transactional memory). This
work has been accompanied by extensions to known notions of consistency, such
as linearizability and opacity that cope with crashes and subsequent recovery.

In this paper, we examine correctness of the recently developed persistent
queue by Friedman et al. [11], against the (also) recently developed notion
of durable linearizability [14]. Friedman et al.’s queue extends the well-known
Michael-Scott queue [20], whereas durable linearizability extends the standard
notion of linearizability [12] so that completed executions are guaranteed to sur-
vive a system crash.

Our verification follows a well-established methodology: (1) we develop an
operational model of durable linearizability that is parameterised by a generic
sequential object (e.g., a queue data structure with enqueue and dequeue oper-
ations), (2) we prove that this operational model is sound, and (3) we establish
a series of refinements between the operational model and the concrete imple-
mentation. The final (and most complex) of these steps, which establishes that
the implementation refines the operational model, is fully mechanised in the KIV
theorem prover [10]. It is important to note that the operational model is generic
and for any particular verification one needs therefore just to establish step (3)
in order to show that a particular algorithm is durable linearizable.

Ours is the first paper to address formal verification of persistent data struc-
tures. We consider the development of our sound operational characterisation
of durable linearizability and the refinement proofs, including mechanisation in
KIV, to be the main contributions of this paper. The mechanisation and the full
version of the paper may be accessed from [17].

We present Friedman et al.’s queue in Sect. 2, durable linearizability in Sect. 3,
an operational characterisation of durable linearizability in Sect. 4, and address
correctness of the queue in Sect. 5.

2 A Persistent Queue

The persistent queue of Friedman et al. [11] is an extension of the Michael-Scott
queue (MSQ) [20] to cope with NVM (see Algorithms 1 and 2). The MSQ uses a
linked list of nodes with global head and tail pointers. The first node is a sentinel
that simplifies handling of empty queues. The MSQ is initialised by allocating
a dummy node with a null next pointer, then setting the global head and tail
pointers to this dummy node.

The enqueue operation creates a new node that is inserted at the end of
the linked list. The insertion is performed using an atomic compare-and-swap
(CAS) instruction that atomically updates the next pointer of the last node
provided this next pointer hasn’t changed since it was read at the beginning of
the enqueue operation. The CAS returns true if it succeeds and false otherwise.
Immediately after a new node is inserted, the tail pointer is lagging one node
behind the true tail of the queue, and hence, must be updated to point to the
last node in a separate step.



Verifying Correctness of Persistent Concurrent Data Structures 181

Algorithm 1. Constructors
1: class Node
2: T val;

3: Node* next;

4: int deqID;

5: Node(T k):

6: val(k), deqID(-1), next(null);

1: class DurableQueue
2: Node* head;

3: Node* tail;

4: T* RVals[MAX];

5: DurableQueue()
6: T* node := new Node(T());

7: flush(node);
8: head := node;

9: flush(&head);
10: tail := node;

11: flush(&tail);
12: RVals[i] := null; //all i

13: flush(&RVals[i]);

The dequeue operation returns empty if the head and tail pointer both point
to the sentinel node and the tail is not lagging. If the queue is not empty,
the dequeue reads from the value of the node immediately after the sentinel
and atomically swings the head pointer to this next node provided it has not
changed. Thereby, the next node becomes the new sentinel node of the queue.

A key feature of MSQ is a helping mechanism where a different thread from
the original enqueue may advance the tail pointer if it is lagging. In the case of
a dequeue, this only occurs if head and tail pointers are equal, but the queue is
not empty.

Friedman et al. [11] adapt MSQ to a system comprising both VM and NVM.
In such systems, computations take place in VM as normal, but data is periodi-
cally flushed to NVM by the system. In addition to system controlled flushes, a
programmer may introduce explicit flush events that transfer data from VM to
NVM. Only data in NVM persists after a crash (e.g., power loss). A persistent
data structure must enable recovery from such an event, as opposed to a full
system restart. In doing this, it must ensure some notion of consistency in the
presence of crashes and a subsequent recovery operation. Following Friedman et
al. [11], the notion of consistency we use is durable linearizability (see Sect. 3).

The persistent queue uses the same underlying data structure as MSQ (see
Algorithm 1), but nodes contain an additional field, deqID (initialised to −1),
which holds the ID of the thread that removed the node from the queue. In
addition to the head and tail pointers, it uses an array of pointers, RVals, with
one index for each thread, containing either null (which is the initial value),
of a pointer to a cell which itself either contains empty (which signifies that
the thread last saw an empty queue), or a value (which is the value that was
last dequeued). Unlike MSQ, the persistent dequeue operation does not return
a value; instead the returned value for tid is stored in the cell pointed to by
RVals[tid].

Persistent Enqueue. The basic structure (see Algorithm 2) is the same as
the enqueue of MSQ. In addition, to ensure that the linked list data structure



182 J. Derrick et al.

Algorithm 2. Enqueue and dequeue methods of Friedman et al. [11]
1: procedure Enq(T val)

2: Node* node := new Node(val);

3: flush(node);
4: while true do
5: Node* last := tail;

6: Node* nxt := last→next;

7: if (last = tail)

8: if (nxt = null)

9: if CAS(&last→next,nxt,node)

10: flush(&last→next);

11: CAS(&tail, last, node);

12: return;

13: else
14: flush(&last→next);

15: CAS(&tail, last, nxt);

1: procedure Deq(int tid)

2: T* newRVal := new T();

3: flush(newRVal);
4: RVals[tid] := newRVal;

5: flush(&RVals[tid]);
6: while true do
7: Node* first := head;

8: Node* last := tail;

9: Node* nxt := first→next;

10: if (first = head)

11: if (first = last)

12: if (nxt = null)

13: *RVals[tid] := empty;

14: flush(RVals[tid]);
15: return;

16: flush(&last→next);

17: CAS(&tail, last, nxt);

18: else
19: T val := nxt→val;

20: if CAS(&nxt→deqID,-1,tid)

21: flush(&nxt→deqID);

22: *RVals[tid] := val;

23: flush(RVals[tid]);
24: CAS(&head, first, nxt);

25: return;
26: else
27: T* addr:=RVals[nxt→deqID];

28: if (head = first)

29: flush(&nxt→deqID);

30: *addr := val;

31: flush(addr);
32: CAS(&head,first,nxt);

is recoverable after a crash, nodes and next pointers have to be persisted after
being modified in VM.

This is achieved by using three flush operations in lines 3, 10 and 14. The first
ensures that the node is persisted before it is inserted into the queue; the second
and third ensure that the next pointer of a lagging tail pointer is persisted before
the tail is advanced. Note that updates to tail do not need to be explicitly flushed
because it can be recomputed during recovery by traversing the persistent list.

Persistent Dequeue. The basic structure of the dequeue operation also resem-
bles the dequeue of MSQ. In addition it uses variables RVals and deqID to guar-
antee durable linearizability. RVals is an array of pointers to cells that are used
to store the value returned by each dequeue. A dequeue creates a new cell at



Verifying Correctness of Persistent Concurrent Data Structures 183

Line 2, then flushes it at Line 3. The pointer to this cell is stored in RVals at
Line 4, and this pointer is made persistent at Line 5.

The deqID field is used to logically mark nodes that are dequeued, which
occurs at the successful CAS at Line 20. This logical dequeue is made persistent
by flushing the deqID at Line 21. After a node has been logically dequeued,
the dequeued value is stored in the cell pointed to by RVals[tid] (see Line 22)
where tid is the thread ID of the dequeuing thread. This dequeued value is made
persistent at Line 23. A dequeue by thread tid stores empty in RVals[tid] if
the queue is empty in Line 13, and this value is made persistent at Line 14.

The persistent dequeue operation employs an additional helping mechanism
to ensure that these new fields are made persistent in the correct order. In par-
ticular, a node that has been logically dequeued in VM must be made persistent
before another dequeue is allowed to succeed. Therefore, if a thread recognises
that deqID is not −1 at Line 20, it helps the other thread by flushing the deqID
field, writing the dequeued value into the cell pointed to by RVals[nxt→tid],
flushing this cell, and finally advancing the head pointer. Note that the helping
thread may be delayed between the read at Line 27 and the write at Line 30,
and the original thread tid may begin a new dequeue operation in this interval.
In this case, since tid allocates a fresh cell at Line 2, the helping thread’s write
at Line 30 will harmlessly modify a previous cell.

After a crash, and prior to resuming normal operation, persistent data struc-
tures must perform a recovery operation that restores the state of the data
structure in VM from NVM. The recovery procedure proposed by Friedman
et al. is multithreaded (and complex), so we elide its details here. Instead, we
provide a simpler single-threaded recovery operation (see Sect. 5.1).

3 Durable Linearizability

We now define durable linearizability [14], a central correctness condition for
persistent concurrent data structures. Like linearizability, durable linearizability
is defined over histories recording the invocation and response events of opera-
tions executed on the concurrent data structure. Unlike linearizability, durably
linearizable histories include crash events.

Formally, we let Σ be the set of operations. For a queue, Σ = {Enq, Deq}. A
history is a sequence of events, each of which is either (a) an invocation of an
operation op by a thread t ∈ T with values v, written inv t(op,v), (b) responses
of op in thread t with value v, written rest(op, v), or (c) a system-wide crash c.

Given a history h, we let ops(h) denote h restricted to non-crash events, and
h|t denote h restricted to (non-crash) events of thread t ∈ T . The crash events
partition a history into h = h0c1h1c2...hn−1cnhn, such that n is the number of
crash events in h, ci is the ith crash event and ops(hi) = hi (i.e., hi contains no
crash events). We call the subhistory hi the i-th era of h. For a history h and
events e1, e2, we write e1 <h e2 whenever h = h0e1h1e2h2.

A history h is said to be sequential iff every invocation event (except if it is
the last event in h) is immediately followed by its corresponding response event;



184 J. Derrick et al.

it is well formed if and only if (a) h|t is sequential for every thread t and (b) each
thread id appears in at most one era. Any invocation that is not followed by its
response event is called a pending invocation. We consider well-formed histories
only. A history h defines a happens-before ordering on the events occuring in h
by letting e1 ≺h e2 iff e1 <h e2 and e1 is a response and e2 an invocation event.
Linearizability (and durable linearizability) requires a notion of a legal history,
which we define using a sequential object. Every history of a sequential object
is both sequential and legal.

Definition 1 (Sequential Object). A sequential object over a base type Val
is a 5-tuple (Σ,S, s0, in, ρ) where

– Σ is an alphabet of operations, S is a set of states and s0 the initial state,
– in : Σ → N is an input function telling us the number of inputs an operation

op ∈ Σ takes, and
– ρ : S × Σ × Val∗ → S × (Val ∪ {empty,⊥}) is a partial transition function.

We assume outputs of operations to consist of a single value which possibly is the
symbol empty or no value denoted by ⊥. In the following we let v = v1v2 . . . vn
denote a string of n elements and write #v to denote its length n. We write
inv t(op,v) for an invocation of the operation op with n = #v inputs by thread
t and let Inv be the set of all such invocations. Similarly, we let Res be the set
of all responses.

The legal histories of a sequential object S = (Σ,S, s0, in, ρ) are defined as
follows. We write s −invt(op,v)rest(op,v)−−−−−−−−−−−−−→ s′ for ρ(s, op,v) = (s′, v) and t ∈ T . For
a sequence w of invocations and responses, we write s −w→ s′ iff either w = 〈〉 and
s = s′, or w = u◦w′ and there exists an s′′ such that s −u→ s′′ and s′′ −w′−→ s′. The
set of legal histories of S is given by legalS = {w ∈ (Inv∪Res)∗ | ∃s ∈ S. s0 −w→ s}.

Example 2. A sequential queue, Q, storing elements of type V is defined by
Σ = {Enq, Deq}, in(Enq) = 1, in(Deq) = 0, q0 = 〈〉, and

ρ = {(
(q, Enq, v), (q · v,⊥)

) | v ∈ V ∧ q ∈ V ∗} ∪
{(

(v · q, Deq, ε), (q, v)
) | v ∈ V ∧ q ∈ V ∗} ∪ {((〈〉, Deq, ε), (〈〉, empty))}

where ε is the empty string, 〈〉 is the empty sequence and · is used for sequence
concatenation. For Q, the history h below is sequential and legal

h = 〈inv1(Enq, a), res1(Enq,⊥), inv2(Deq, ε), res2(Deq, a)〉

whereas the history h · 〈inv3(Deq, ε), res3(Deq, b)〉 is sequential but not legal.

For the definition of durable linearizability some more notation is needed.
We write h ≡ h′ if h|t = h′

|t for all threads t. We let compl(h) (the completion)
be the set of histories that can be obtained from h by appending (some) missing
responses at the end, and use trunc(h) to remove pending invocations from a
history h (or a set of histories). Following Herlihy and Wing [12], h is linearizable



Verifying Correctness of Persistent Concurrent Data Structures 185

if there is some h′ ∈ trunc(compl(h)) and some legal sequential history hS such
that (i) h′ ≡ hS and (ii) ∀e1, e2 ∈ h′ : e1 ≺h′ e2 ⇒ e1 ≺hS

e2.
For durable linearizability, this definition is now simply lifted to histories

with crashes.

Definition 3 (Durable Linearizability [14]). A history h is durably lineariz-
able if it is well formed and ops(h) is linearizable.

Informally, durable linearizability guarantees that even after a crash the state
of the concurrent object remains consistent with the abstract specification. This
means that the effect of any operations that completed before a crash are pre-
served after the crash. The effect of operations that did not complete before a
crash may or may not be preserved. For example, the concurrent history

hc = 〈inv1(Enq, a), inv3(Deq, ε), res1(Enq,⊥), c, inv2(Deq, ε), res2(Deq, a)〉

is durably linearizable since ops(hc) = 〈inv1(Enq, a), inv3(Deq, ε), res1(Enq,⊥),
inv2(Deq, ε), res2(Deq, a)〉 is linearizable with respect to the history h in Exam-
ple 2. On the other hand the history

〈inv1(Enq, a), inv3(Enq, b), res1(Enq,⊥), c, inv2(Deq, ε), res2(Deq, empty)〉

is not durably linearizable since the effect of the completed operation Enq(a) is
not preserved after the crash.

Our methodology for proving durable linearizability does not use Definition 3
directly; instead it uses the following characterisation, which defines the set of
all durably linearizable histories for a sequential object.

We let Lin(S) be the set of histories linearizable wrt. the legal histories of
sequential object S and define

DurLin(S) = {h ∈ (Inv ∪ Res ∪ {c})∗ | ops(h) ∈ Lin(S)}

For a given concurrent durable data structure implementing a sequential object
S, proving its correctness thus amounts to showing that all histories of the imple-
mentation are in DurLin(S). To this end, for a given S, we develop an opera-
tional model DurAut(S) whose behaviours generate DurLin(S). We then use
a standard refinement approach to show that the implementation model is a
refinement of DurAut(S). This is enough to guarantee that the original imple-
mentation is durably linearizable.

4 An Operational Model for Durable Linearizability

The operational model for durable linearizability is formalised in terms of an
Input/Output automaton (IOA) [18]. This framework is often used for proving
linearizability via refinement [9].



186 J. Derrick et al.

Fig. 1. Durable automaton A = DurAut(S) for S = (Σ, S, s0, in, ρ)

Definition 4. An IOA is a labeled transition system A with

– a set of states states(A),
– a set of start states start(A) ⊆ states(A),
– a set of actions acts(A), and
– a transition relation trans(A) ⊆ states(A)×acts(A)× states(A) (so that the

actions label the transitions).

The set acts(A) is partitioned into internal actions, internal(A) and external
actions, external(A).1 The internal actions represent events of the system that
are not visible to the environment, whereas the external actions represent the
automaton’s interactions with its environment.

An execution of an IOA A is a sequence σ = s0a1s1a2s2a3 . . . of alternating
states and actions such that s0 ∈ start(A) and for each i, (si, ai+1, si+1) ∈
trans(A). A reachable state of A is a state appearing in an execution of A. An
invariant of A is any superset of the reachable states of A (equivalently, any
predicate satisfied by all reachable states of A). A trace of A is any sequence
of (external) actions obtained by projecting onto the external actions of any
execution of A. The set of traces of A, traces(A), represents A’s externally visible
behaviour. If every trace of an automaton C is also a trace of an automaton A,
then we say that C implements or refines A.

For an arbitrary sequential object S, we next construct a durable automaton
DurAut(S) (see Fig. 1) whose traces are histories in DurLin(S) only. This
automaton can serve as a specification automaton in a refinement proof. The
state of this automaton incorporates the state s of the sequential object S, plus
for every thread t ∈ T :
1 In the standard IOA setting, external actions are further subdivided into input and

output actions; this distinction is not needed for this current work.



Verifying Correctness of Persistent Concurrent Data Structures 187

– a program counter fixing whether the thread is still idle, is ready to be started,
is crashed (i.e., has been active during a crash), or is currently executing an
operation,

– possible input values of the thread’s operations and a possible output value.

The transition relation of the automaton is – as usual – given in the form
of pre- and postconditions of actions. For every operation op in the sequential
object, the automaton has actions inv(op), do(op) and res(op), where do(op)
corresponds to execution of the abstract operation op, potentially changing the
state of the sequential object. We use inv t(op,v) and rest(op, v) for inv(op)t(v)
and res(op)t(v), respectively. Any step of the implementation that refines do(op)
is a step that persists the corresponding operation op (i.e., a persistence point,
see Sect. 5). Persistence points in durable linearizability are analogous to lin-
earization points in linearizability [9]. Note that a thread may only invoke an
operation if it is ready. We furthermore have a dedicated crash action that may
be executed at any time that sets all active threads to crashed . To ensure that
crashed threads are confined to a single era, we use a separate action run that
enables idle threads to become ready. While inv(op), res(op) and crash are
external actions, run and do(op) are internal.

The theorem below ensures that traces of the durable automaton are the
durably linearizable histories of S.

Theorem 5. If S is a sequential object, then traces(DurAut(S)) ⊆ DurLin(S).

Proof. Let σ = cs0a1cs1 . . . ancsn be an execution of DurAut(S) and let csi.s,
csi.out etc. be the components of state csi. Let tr be the trace of σ. We construct
the history h by making the following changes to tr (in this order).

Completion For every ai being a do action dot(op) in σ without matching
rest(op), we add rest(op, v) such that v = csi.out(t) to the end of tr.

Truncation We remove all invt(op,v) without matching response.

Next, we need to construct a legal sequential history hS such that ops(h) ≡ hS .
Let i1, . . . , ik be the indices of σ such that aij is a do action dot(op). Then
ρ(csij−1 .s, op,v) = (csij .s, csij .out(t)) by definition of the durable automaton.
We set

wij = invt(op,v) rest(op, csij .out(t)) .

We let hS = wi1 . . . wik and hS ∈ legal(S).
Now assume e1 ≺h e2. By definition, e1 = rest(op, v) and e2 = invt′(op′,v)

for some t, t′ ∈ T . Then e1 has not been added to the trace tr by completion
since responses are added to the end. By construction of the durable automaton
threads execute inv, do and res operations in this ordering only. Hence the exe-
cution σ contains an action dot(op) prior to e1 and an action dot′(op′) following
e2. Hence e1 ≺hS

e2. �

In fact, we believe that the two sets in Theorem 5 are equal. However, we do
not need this property for our proof methodology.



188 J. Derrick et al.

Fig. 2. Possible state of persistent queue; volatile data represented using shading and
volatile pointers represented using dashed arrows

5 Correctness of the Persistent Queue

In this section we present a formal verification of the persistent queue. In
Section 5.1, we describe a model of the queue. In Sect. 5.2 we describe the appli-
cation of the refinement-based verification to this example, where we establish
the relationship between an intermediate automaton and the durable automaton.
Section 5.3 describes the persistence points in the concrete implementation that
are used in the proof, and Sect. 5.4 describes the main invariants and abstraction
relations.

5.1 Modelling the Persistent Queue

To verify durable linearizability we need to model the persistent queue. The
persistent queue contains two versions of each variable: one in VM and one in
NVM. We model this in the automaton by two mappings ps, vs : Loc → X,
where Loc is a set of locations and X is a generic set that contains enqueued
values, references, thread ids, etc. Mappings ps and vs represent the persistent
and volatile states, respectively. A flush of location k updates the value of ps(k)
to vs(k), while recovery moves data from ps(k) to vs(k). All other operations
take place in vs(k).

In order to help illustrate the structure of the queue, Fig. 2 depicts a possible
state of the persistent queue. Each node contains three values: a data value, a
thread id (possibly −1, which is the initial value), and a next pointer. Variables
phead and vhead are the persistent and volatile head pointers, respectively, and
vtail is the volatile tail pointer. In the KIV model phead = ps(head), vhead =
vs(head), etc. The values depicted by shading and the dashed arrows in the
figure are volatile; in Fig. 2, these are the deqID of node d and the next pointer
of node f , as well as the volatile head and tail pointers. Here enqueues for nodes
labelled a to f have all taken place and persisted, whereas node labelled g has
been partly enqueued but not yet persisted. Nodes labelled a to c have been
dequeued and persisted, but the node labelled d has been marked for dequeue,
but not persisted. Here, the phead is lagging behind vhead; in an execution,
phead may be lagging by an arbitrary amount as the flush of vhead is controlled
by the system as opposed to an explicit flush statement in the program code.

The persistent contents of the queue (which we refer to as the queue reference
list) corresponds to the abstract queue 〈d, e, f〉. In addition, our proof makes use



Verifying Correctness of Persistent Concurrent Data Structures 189

Fig. 3. The intermediate automaton IDQ

of the so called old reference list, which are elements that had been persistently
enqueued, but have also been persistently dequeued.

5.2 Refinement-Based Verification

As outlined in Sect. 3, we verify durable linearizability by proving refinement
between the implementation model and DurAut(Q) using the IO automata
formalism introduced in Sect. 4. Refinement can be proven via forward or back-
ward simulations [19]; such simulations allow a step-by-step comparison between
the operations using an abstraction relation. In our proof, we establish a back-
ward simulation between the intermediate automaton and DurAut(Q) as well
as a forward simulation between the implementation of the persistent queue and
the intermediate automaton. The proof uses an intermediate automaton that
resolves non-determinism at the abstract level as used in existing proofs of MSQ
[8,9]. Since refinement guarantees trace inclusion, this is sufficient to show that
the persistent queue is durably linearizable.

The intermediate automaton IDQ , presented in Fig. 3, is similar to the
durable automaton for the queue datatype, DurAut(Q) (see Fig. 1 instanti-
ated for the queue from Example 2). As with DurAut(Q), it has variables pc,
val and out, which play the same role, and variable q instantiates the state s.



190 J. Derrick et al.

Furthermore, all its actions except for checkEmp are also actions of DurAut(Q),
and have essentially the same effect. For IDQ we get the following property2.

Theorem 6. traces(IDQ) ⊆ traces(DurAut(Q)) .

The additional features of IDQ exist to model a behaviour where a dequeue
thread first observes that the queue is empty, and later decides to return empty,
at a point when the queue may no longer be empty. The observation is modelled
by a checkEmpt action, which records in the obsEmpt variable the fact that the
queue was empty during the execution of t’s dequeue operation. In this automa-
ton, it is possible for a thread t to execute a dot(Deq) transition and set the
output value to empty whenever obsEmp(t) has been set to true. We note that
the queue may not actually be empty when this transition takes place, but this
does not affect soundness of the proof method since obsEmp(t) being set to true
indicates that the queue has been empty at some point during the operation’s
execution. Further details of this technique, in the context of linearizability, may
be found in [4,8,9].

5.3 Identification of Persistence Points

To match executions of the concrete implementation with the abstract level, we
must identify the persistence points of the implementation, which are atomic
events whose execution causes the effect of the corresponding operations to take
effect at the abstract level. These are analogous to standard linearizability, where
proofs proceed via identification of linearization points [9]. In durable lineariz-
ability, persistence points are typically statements (flush events) that cause the
operation under consideration to become durable. Thus these statements must
be simulated by the abstract do operation. Note that persistent points must
occur after an operation has taken effect in NVM, but before the operation
returns.

In MSQ, the enqueue operation linearizes upon successful execution of the
CAS at line 9. However, in the persistent queue, this line is not the persistence
point of the operation, rather it is the first operation that flushes the effect of
this CAS, i.e., the first flush of the next pointer to the enqueued element. This
may occur in line 10 of the same thread, line 14 executed by another thread, or
due to a system-controlled flush. Despite there being several possible choices for
the persistence point, it is possible to prove forward simulation with respect to
the do(Enq) operation of the intermediate automaton IDQ .

The verification of the empty dequeue follows a similar pattern to the veri-
fication of the empty dequeue of MSQ. The persistence point is conditional on
the future execution of the operation, thus we refer to the persistence point as a
potential persistence point (this is similar to the concept of potential linearization
points [4,8,9]). The empty dequeue potentially takes effect at line 9 if the value

2 For the proof, see the full paper at [17].



Verifying Correctness of Persistent Concurrent Data Structures 191

loaded for nxt is null, but this decision is not resolved until later in the opera-
tion (line 12). Using the intermediate automaton (Fig. 3), it allows the proof to
proceed via forward simulation, like earlier proofs of linearizability [8,9].

A non-empty dequeue linearizes in VM when the node that is dequeued is
marked for deletion by updating its deqID field at line 20. Like the enqueue, the
persistence point of the dequeue is the first flush of this deqID field. This may
occur either at line 21 of the same thread, line 29 of another thread, or a system
flush. Again, we show that each of these steps simulates the do(Deq) operation
of the intermediate automaton.

5.4 Key Invariants and Abstraction Relation

There are several key properties that the persistent queue must maintain in order
to ensure correctness. These are formalised as invariants in our proof. Here we
describe them in plain English:

1. We keep track of two sublists: old reference list, which are elements that
have been dequeued, and queue reference list, which are elements that form
the current queue. Formalising the structure of these lists and ensuring global
correctness of the invariant is one of the most difficult parts of the proof. This
is particularly true for steps that correspond to persistence points (see below)
since the volatile pointers can be “lagging” immediately after persistence.

2. All nodes of the queue must be reachable in NVM (i.e., ps) from phead. This
means that the nodes including the next pointers must be made persistent
prior to inserting a new node.

3. All nodes in the old reference list must have a deqID field different from −1
in ps, indicating that they have been dequeued.

4. All nodes in the queue reference list must have a deqID field value −1 in ps.
5. Only the first node in queue reference list may have a deqID field value

different from −1 in vs.
6. Pointers phead and ptail may be lagging behind vhead and vtail, respectively.

However, vhead may not overtake vtail.

We now describe the state of the queue after execution of some key steps of the
algorithm.

Dequeue Persistence Point. A node is considered to be dequeued if its logical
deletion is flushed, i.e., the deqID marked by a thread id is flushed. For the queue
depicted in Fig. 2, the queue immediately after the volatile deqID of node d is
flushed is as follows.

a 1 b 3 c 7 d 2 e -1 f -1 g -1

phead vhead vtail

old reference list queue reference list



192 J. Derrick et al.

The abstract queue corresponding to this queue is 〈e, f〉. Note that in the queue
above, vhead pointer is now lagging and must be updated to point to the new
sentinel node d.

Enqueue Persistence Point. A node is considered to be enqueued if it can be
reached from phead in NVM, and its deqID field in persistent memory is −1.
Consider again the queue in Fig. 2. The queue immediately after the next pointer
of f becomes persistent is as follows.

a 1 b 3 c 7 d 2 e -1 f -1 g -1

phead vhead vtail

old reference list queue reference list

Note that this transformation must be performed before moving vtail, otherwise
the nodes after g could be lost upon system crash. In the queue above vtail is
lagging, and hence, must be updated before a new node can be enqueued. As
soon as the next pointer of f becomes persistent, the node g is considered to be
part of the queue, i.e., the abstract queue corresponding to the queue above is
〈d, e, f, g〉.
Crash and Recovery. Finally, consider the queue in Fig. 2 after a crash and recov-
ery:

a 1 b 3 c 7 d -1 e -1 f -1

phead vhead vtail

old reference list queue reference list

The volatile deqID value for node d is restored from persistent memory, but the
node g is lost.

Abstraction Relation and Mechanisation in KIV. These invariants enable us to
prove a refinement between the implementation and IDQ in Fig. 3. The main
part of the abstraction relation states that the abstract queue corresponds to
values in the queue reference list. For an enqueue, the first flush that persists the
next pointer (i.e., the effect of line 9) must match dot(op) with op = Enq. For a
non-empty dequeue, the first flush that persists deqID must match dot(op) with
op = Deq in Fig. 3. An empty dequeue must match checkEmpt when it loads
nxt at line 9 and dot(Deq) if the test at line 12 succeeds.

This refinement has been interactively, mechanically proven in the KIV the-
orem prover [10] (see [17] for the KIV proof and the encodings), which has been
used extensively in the verification of concurrent data structures (e.g., [4,24]).
The proof of the invariant in KIV is simplified via the use of a rely condition [15]
that captures interference from a thread’s environment in an abstract manner.
Roughly speaking, a rely condition is a relation over the states of an automaton
that must preserve the invariant of each transaction, and that must abstract the



Verifying Correctness of Persistent Concurrent Data Structures 193

transitions of each transaction. Similar techniques have been used in previous
proofs of concurrent algorithms [6].

6 Conclusion

There are numerous approaches to proving (standard) linearizability of concur-
rent data structures (e.g., [1,24,27]; see [9] for an overview), including special-
isations to cope with weak memory models (e.g., [2,5,7,22,25,26]). The recent
development of NVM has been accompanied by persistent versions of well-known
concurrent constructs, including concurrent objects [3,11], synchronisation prim-
itives [13,21] and transactional memory [16]. This paper has focussed on a per-
sistent queue [11], against the recently developed notion of durable linearizabil-
ity [14].

Development of objects implemented for NVM presents a similar challenge
to weak memory, in the sense that there are multiples levels of memory to con-
sider. Moreover, caches and registers are volatile, while cache flush instructions
allow reordering with store instructions in accordance with the memory model
of the system (e.g., [23]). Correctness in the presence of crashes and recovery
can be affected by the order in which elements are persisted, which necessitates
the use of programmer-controlled flush operations, increasing complexity. Unfor-
tunately, proofs of correctness (e.g., of durable linearizability) are either given
informally or are entirely lacking. This gives little confidence in the correctness
of the underlying persistent objects.

Verification of persistent memory algorithms is inherently more complex than
in the standard setting. Since an operation only takes effect after a flush event,
helping is inevitably required to bring the data structure into a consistent state
and for an operation to take effect. For proofs by refinement, these additional
helping steps have to be considered in the simulation proof. This ultimately com-
plicates the invariant since the helping is performed by another thread (including
a system thread). Moreover, since the state of the data structure can be “lag-
ging” immediately after helping is performed, precisely formalising the under-
lying helping mechanism further complicates the invariant. Future work will
consider how best to manage this additional proof complexity.

Acknowledgements. We thank Lindsay Groves for comments that have helped
improve this paper.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated speci-
fication and verification technique for highly concurrent data structures. In: Piter-
man, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 324–338. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 23

2. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: Giacobazzi, R., Cousot, R. (eds.) Symposium on Principles of Programming
Languages, POPL, pp. 235–248. ACM (2013). https://doi.org/10.1145/2429069.
2429099

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/2429069.2429099


194 J. Derrick et al.

3. Cohen, N., Aksun, D.T., Larus, J.R.: Object-oriented recovery for non-volatile
memory. PACMPL 2(OOPSLA), 153:1–153:22 (2018)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with poten-
tial linearisation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, pp. 323–337. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21437-0 25

5. Derrick, J., Smith, G., Groves, L., Dongol, B.: A proof method for linearizability on
TSO architectures. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably
Correct Systems. NMSSE, pp. 61–91. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48628-4 4

6. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opac-
ity of a pessimistic STM. In: OPODIS, LIPIcs, vol. 70, pp. 35:1–35:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

7. Doherty, S., Dongol, B., Wehrheim, H., Derrick, J.: Making linearizability compo-
sitional for partially ordered executions. In: Furia, C.A., Winter, K. (eds.) IFM
2018. LNCS, vol. 11023, pp. 110–129. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98938-9 7

8. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30232-2 7

9. Dongol, B., Derrick, J.: Verifying linearisability: a comparative survey. ACM Com-
put. Surv. 48(2), 19:1–19:43 (2015). https://doi.org/10.1145/2796550

10. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV–overview
and verifythis competition. Softw. Tools Technol. Transf. (STTT) 17(6), 677–694
(2015)

11. Friedman, M., Herlihy, M., Marathe, V.J., Petrank, E.: A persistent lock-free queue
for non-volatile memory. In: Krall, A., Gross, T.R. (eds.) ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP, pp. 28–40.
ACM (2018). https://doi.org/10.1145/3178487.3178490

12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

13. Huang, Y., Pavlovic, M., Marathe, V.J., Seltzer, M., Harris, T., Byan, S.: Closing
the performance gap between volatile and persistent key-value stores using cross-
referencing logs. In: USENIX Annual Technical Conference, pp. 967–979. USENIX
Association (2018)

14. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory
objects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 313–327. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53426-7 23

15. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983). https://doi.org/
10.1145/69575.69577

16. Joshi, A., Nagarajan, V., Cintra, M., Viglas, S.: DHTM: durable hardware trans-
actional memory. In: ISCA, pp. 452–465. IEEE Computer Society (2018)

17. KIV proofs for the durable linearizable queue (2019). http://www.informatik.uni-
augsburg.de/swt/projects/Durable-Queue.html

18. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC, pp. 137–151. ACM, New York (1987). https://doi.org/10.1145/
41840.41852

https://doi.org/10.1007/978-3-642-21437-0_25
https://doi.org/10.1007/978-3-642-21437-0_25
https://doi.org/10.1007/978-3-319-48628-4_4
https://doi.org/10.1007/978-3-319-48628-4_4
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1145/2796550
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
http://www.informatik.uni-augsburg.de/swt/projects/Durable-Queue.html
http://www.informatik.uni-augsburg.de/swt/projects/Durable-Queue.html
https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/41840.41852


Verifying Correctness of Persistent Concurrent Data Structures 195

19. Lynch, N., Vaandrager, F.W.: Forward and backward simulations part I: untimed
systems. Inf. Comput. Inf. Control - IANDC 121, 214–233 (1995). https://doi.org/
10.1006/inco.1995.1134

20. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Proceedings of 15th ACM Symposium on
Principles of Distributed Computing, pp. 267–275 (1996)

21. Pavlovic, M., Kogan, A., Marathe, V.J., Harris, T.: Brief announcement: persistent
multi-word compare-and-swap, In: PODC, pp. 37–39. ACM (2018)

22. Raad, A., Doko, M., Rozic, L., Lahav, O., Vafeiadis, V.: On library correctness
under weak memory consistency: specifying and verifying concurrent libraries
under declarative consistency models. PACMPL 3(POPL), 68:1–68:31 (2019).
https://dl.acm.org/citation.cfm?id=3290381

23. Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: integrating epoch
persistency with the TSO memory model. PACMPL 2(OOPSLA), 137:1–137:27
(2018)

24. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4),
31:1–31:37 (2014). https://doi.org/10.1145/2629496

25. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
311–326. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 21

26. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 3–24.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 1

27. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1006/inco.1995.1134
https://dl.acm.org/citation.cfm?id=3290381
https://doi.org/10.1145/2629496
https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1007/978-3-319-46750-4_1
https://doi.org/10.1007/978-3-642-14295-6_40

	Verifying Correctness of Persistent Concurrent Data Structures
	1 Introduction
	2 A Persistent Queue
	3 Durable Linearizability
	4 An Operational Model for Durable Linearizability
	5 Correctness of the Persistent Queue
	5.1 Modelling the Persistent Queue
	5.2 Refinement-Based Verification
	5.3 Identification of Persistence Points
	5.4 Key Invariants and Abstraction Relation

	6 Conclusion
	References




