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Abstract. Reactive systems are composed of a well defined set of event
handlers by which the system responds to environment stimulus. In con-
current environments, event handlers can interact with the execution of
other handlers such as hardware interruptions in preemptive systems,
or other instances of the reactive system in multicore architectures. The
rely-guarantee technique is a suitable approach for the specification and
verification of reactive systems. However, the languages in existing rely-
guarantee implementations are designed only for “pure programs”, sim-
ulating reactive systems makes the program and rely-guarantee condi-
tions unnecessary complicated. In this paper, we decouple the system
reactions and programs using a rely-guarantee interface, and develop
PiCore, a parametric rely-guarantee framework for concurrent reactive
systems. PiCore has a two-level inference system to reason on events and
programs associated to events. The rely-guarantee interface between the
two levels allows the reusability of existing languages and their rely-
guarantee proof systems for programs. In this work we show how to inte-
grate in PiCore two existing rely-guarantee proof systems. This work has
been fully mechanized in Isabelle/HOL. As a case study, we have applied
PiCore to the concurrent buddy memory allocation of a real-world OS,
providing a verified low-level specification and revealing bugs in the C
code.

1 Introduction

Nowadays high-assurance systems are often designed as concurrent reactive sys-
tems (CRSs) [3]. CRSs react to their computing environment by executing a
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sequence of commands under an input event. Some examples of CRSs are oper-
ating systems (OSs), control systems, and communication systems, which imple-
mentation follow an event-driven paradigm. The rely-guarantee technique [16]
represents a fundamental approach to compositional reasoning of concurrent pro-
grams with shared variables, where programs are represented in imperative lan-
guages with extensions for concurrency. Whilst rely-guarantee provides a general
framework and can certainly be applied for CRSs, the languages in existing mech-
anizations of rely-guarantee (e.g. [18,20,23,24,28]) are imperative and designed
only for pure programs, i.e, programs following a flow of procedure calls from an
entry point. Examples of reactive systems mentioned above are far more complex
than pure programs because they involve many different agents and also heavy
interactions with their environment. Without dedicated statements for such sys-
tem behavior, we often use imperative programs to simulate them, making the
formal specification cumbersome, in particular the rely-guarantee conditions. A
more detailed motivation will be presented in detail in Sect. 2.

In this paper, we propose PiCore, a two-level event-based rely-guarantee
framework for CRSs (Sect. 3). PiCore detaches the specification and the logic
of the reactive aspect of systems from event behaviours. Rather than creating
yet another framework for modelling and reasoning on events behaviour, PiCore
allows to reuse existing rely-guarantee frameworks. The top level introduces the
notion of “events” [2,6] into the rely-guarantee method for system reactions.
This level defines the events composing a system, and how and when they are
triggered. It specifies the language, semantics, and mechanisms to reason on
sequences of events and their execution conditions. The second level focuses on
the specification and reasoning of the behaviour of the events composing the
first level. PiCore parametrizes the second level using a rely-guarantee interface,
allowing to easily reuse existing rely-guarantee frameworks. This design allows
PiCore to be independent of the language used to model the behaviour of events.

We have integrated two existing languages and their rely-guarantee proof sys-
tems into the PiCore framework. As a result we create two instances of PiCore:
πIMP and πCSimpl (Sect. 4). πIMP integrates the HOL-Hoare Parallel library in
Isabelle/HOL that uses a general imperative language [23]. πCSimpl integrates
the CSimpl language in [24]. CSimpl is a generic and realistic imperative lan-
guage by extending Simpl [25] and providing a rely-guarantee proof system in
Isabelle/HOL. Simpl is able to represent a large subset of C99 code and has been
applied to the formal verification of seL4 OS kernel [17] at C code level.

We have developed the PiCore framework and its integration with the two
languages in Isabelle/HOL, the sources are available at https://lvpgroup.github.
io/picore/. As a case study, we have applied PiCore to the formal specification
and mechanized proof of the concurrent buddy memory allocation of a real-world
OS, Zephyr RTOS [1] (Sect. 5). The formal specification represented in πIMP is
fine-grained providing a high level of detail. It closely follows the Zephyr C
code, covering all the data structures and imperative statements present in the
implementation. We use the rely-guarantee proof system in πIMP for the formal
verification of functional correctness and invariant preservation in the model,
revealing three bugs in the C code.

https://lvpgroup.github.io/picore/
https://lvpgroup.github.io/picore/
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2 Motivation and Approach Overview

Reactive systems respond to continuous stimulus from their computing environ-
ment [12] by changing their state and, in turn, affecting their environment by
sending back signals to it or initiating other operations. We consider concurrent
reactive systems (CRSs), which may involve many different competitive agents
executing concurrently with shared resources due to multicore setting, task pre-
emption or embedded interrupts, e.g. concurrent OS kernels [7,27] and interrupt
driven control systems, where the execution of handlers is not atomic. More-
over, the configuration and context of the underlying hardware of systems are
not usually encoded in programs, which represent only a portion of the whole
system behaviour. For instance, although interrupt handlers (e.g. kernel services
and scheduling) in OS kernels are programmed in the C language, when and
how interrupts are triggered and which handlers are invoked to react with an
interrupt are out of the handler code.

In the setting of imperative languages, CRSs are usually modelled as the par-
allel composition of reactive systems, each of which is simulated by a while(true)
loop program sharing data with its environment and invoking the relevant han-
dlers in the loop body (e.g. [4]). First, The environment non-deterministically
decides which event handler is triggered and what are the arguments of the han-
dler for this triggering. Second, some critical properties, such as noninterference
of OS kernels [21], concern execution traces of reaction sequences rather than
program states only. Without native support in the language semantics, the while
loop programs have to use auxiliary logical/program variables to simulate the
two non-determinisms together and store the event context of each reactive sys-
tem. This will make the program and the rely-guarantee conditions unnecessary
complicated, in particular for realistic CRSs with many event handlers.

Fig. 1. An example of event

The cause of the above problems is
the lack of a rely-guarantee approach for
system reactions and, as a result, the
mixture of system and program behav-
ior together. In this paper, we take the
level of abstraction and reusability of
the rely-guarantee method a step fur-
ther by decoupling the two levels using
a rely-guarantee interface. The result is
a flexible rely-guarantee framework for
CRSs, which is able to integrate existing
rely-guarantee implementations at pro-
gram level while being unchanged. At the system reaction level, we consider a
reactive system as a set of event handlers called event systems responding to
stimulus from the environment. Fig. 1 illustrates an event, which has an event
name, a list of input parameters, a guard condition to determine the conditions
triggering the event, and an imperative program as its body. In addition to the
input parameters, an event has a additional parameter κ which indicates the
execution context, e.g. the thread invoking the service and the external devices
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triggering the interrupt. The execution of an event system concerns the contin-
uous evaluation of guards of the events with their input arguments. From the
set of events for which their associated guard condition holds in the current
state, one event is non-deterministically selected to be triggered, and its body
executed. After the event finishes, the evaluation of guards starts again look-
ing for the next event to be executed. We call the semantics of event systems
reactive semantics, where the event context shows the event currently being exe-
cuted. A CRS is modeled as the parallel composition of event systems that are
concurrently executed.

As shown in the Zephyr case study in Sect. 5, the formal specification of CRSs
with support for reactions and their composition is much simpler than those
represented by pure programs. Furthermore, PiCore supports verifying total
correctness of events, whose execution is usually assumed to be terminating, as
well as the properties of event systems, whose execution is often non-terminating.

3 PiCore: The Rely-guarantee Framework

This section introduces the event language in PiCore as well as its rely-guarantee
proof system, the soundness of proof rules and invariant verification.

3.1 The Event Language

Fig. 2. Abstract syntax of PiCore

The abstract syntax of PiCore and its
semantics are shown in Figs. 2 and 3
respectively. The syntax for events dis-
tinguishes basic events pending to be
triggered from already triggered events
that are under execution. A basic
event is defined as Event (l, g, P ),
where l is the event name, g the guard
condition, and P the body of the
event. When Event (l, g, P ) is trig-
gered, its body begins to be executed

(BasicEvt rule in Fig. 3) and it becomes a triggered event �P �. The execution
of �P � just simulates the program P (see TrgdEvt rule in Fig. 3). ⊥ is the
notation to represent the termination of programs. Instead of defining a lan-
guage for programs, PiCore reuses existing languages and their rely-guarantee
proof systems, which will be discussed in Sect. 4. Events are parametrized in
the meta-logic as “λ(plist, κ). Event (l, g, P )”, where plist is the list of input
parameters, and κ is the event system identifier that the event belongs to. These
parameters are not part of the syntax of events to make the guard g and the
event body P , as well as the rely and guarantee relations, more flexible, allowing
to define different instances of the relations for different values of plist and κ.

An event system has two forms that we call event sequence and event set.
Event sequences model a sequential execution of events, and event sets model
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Fig. 3. Operational semantics of PiCore

the continuous execution of events from the evaluation of the guards of the
events in the set. When the system is not executing any event, one event whose
guard condition holds in the current state is non-deterministically chosen to
be triggered (EvtSet rule) and its body P executed (EvtSeq1 rule). After P
finishes, the evaluation of the guards starts again looking for the next event to be
executed (EvtSeq2 rule). A CRS is modeled by a parallel composition of event
systems with shared states. It is a function from K to event systems, where K
indicates the identifiers of event systems. This design is more general and could
be applied to track executing events. For instance, we use K to represent the
core identifier in multicore systems.

The semantics of PiCore is defined via transition rules between configura-
tions. We define a configuration C in PiCore as a triple (�, s, x) where � is a
specification, s is a state, and x : K → E is an event context. The event context
indicates which event is currently being executed in an event system κ. Tran-
sition rules in events, event systems, and parallel event systems have the form
Σ � (�1, s1, x1)

δ−→� (�2, s2, x2), where δ = t@κ is a label indicating the type
of transition, the subscript “�” (e, es or pes) indicates the transition objects,
and Σ is used for some static configuration for programs (e.g. an environment
for procedure declarations). Here t indicates a program action c or an occur-
rence of an event E . @κ means that the action occurs in event system κ. The
program transition is denoted as −→p in the TrgdEvt rule. Environment tran-
sition rules have the form Σ � (�, s, x) env−→� (�, s′, x′). Intuitively, a transition
made by the environment may change the state but not the event context nor
the specification. The parallel composition of event systems is fine-grained since
small steps in events are interleaved in the semantics of PiCore. This design
relaxes the atomicity of events in other approaches (e.g., Event-B [2]).

A computation of PiCore is a sequence of transitions. We define the set of
computations of all parallel event systems with static information Σ as Ψ(Σ),
which is a set of lists of configurations inductively defined as follows. The single-
ton list is always a computation (1). Two consecutive configurations are part of
a computation if they are the initial and final configurations of an environment
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(2) or action transition (3). The operator # in e#l represents the insertion of
element e in list l.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)[(PS, s, x)] ∈ Ψ(Σ)

(2)(PS, s1, x1)#cs ∈ Ψ(Σ) =⇒ (PS, s2, x2)#(PS, s1, x1)#cs ∈ Ψ(Σ)

(3)Σ � (PS2, s2, x2)
δ−→pes (PS1, s1, x1) ∧ (PS1, s1, x1)#cs ∈ Ψ(Σ)

=⇒ (PS2, s2, x2)#(PS1, s1, x1)#cs ∈ Ψ(Σ)

Computations for events and event systems are defined in a similar way. We
use Ψ(Σ,PS) to denote the set of computations of a parallel event system PS.
The function Ψ(Σ,PS, s, x) denotes the computations of PS starting up from
an initial state s and event context x.

3.2 Rely-Guarantee Proof System

We consider the verification of two different kinds of properties in the rely-
guarantee proof system for reactive systems: pre and post conditions of events
and invariants in the fine-grained execution of events. We use the former for
the verification of functional correctness of the event, where the pre and post
conditions have to be respectively satisfied only before and after the execution
of the event. The latter is used on the verification of safety properties concerning
the small steps inside events and that must be preserved by any internal step of
the event. For instance, in the case of Zephyr RTOS, a safety property is that
memory blocks do not overlap each other even during internal steps of the alloc
and free services. Other critical properties can also be defined considering the
execution trace of events, e.g. noninterference [19,21,22].

A rely-guarantee specification in PiCore is a quadruple 〈pre,R,G, pst〉, where
pre is the precondition, R is the rely condition, G is the guarantee condition,
and pst is the post condition. The assumption and commitment functions are
denoted by A and C respectively. For each computation 	 ∈ Ψ(Σ, E), we use 	i

to denote the configuration at index i. ��i
, s�i

, and x�i
represent the projection

of each component in the tuple 	i = (�, s, x).

A(Σ, pre, R) ≡ {� | s�0 ∈pre ∧ (∀i < len(�) − 1. (Σ � �i
env−→ �i+1) −→ (s�i , s�i+1 )∈R)}

C(Σ, G, pst) ≡ {� | (∀i < len(�) − 1. (Σ � �i
δ−→e �i+1) −→ (s�i , s�i+1 ) ∈ G)

∧ (�last(�) = �⊥
 −→ s�n ∈ pst)}

We define validity of rely-guarantee specification for events as

Σ |= E sat 〈pre, R, G, pst〉 ≡ ∀s, x. Ψ(Σ, E , s, x) ∩ A(Σ, pre, R) ⊆ C(Σ, G, pst)

Intuitively, validity represents that the set of computations cpts starting at
the configuration (E , s, x), with s ∈ pre and environment transitions in a com-
putation cpt ∈ cpts belonging to the rely relation R, is a subset of the set of
computations where action transitions belong to the guarantee relation G and
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Fig. 4. Rely-guarantee proof rules for PiCore

if an event terminates, then the final states belongs to pst. Validity for event
systems and parallel event systems are defined in a similar way.

Next, we present the rely-guarantee proof rules in PiCore and their sound-
ness w.r.t validity. The proof rules are shown in Fig. 4, which give us a relational
proof method for concurrent systems. We first define stable(f, g) ≡ ∀x, y. x ∈
f ∧ (x, y) ∈ g −→ y ∈ f . Thus, stable(pre, rely) means that the precondi-
tion is stable when the rely condition holds. Rules may assume stability of the
precondition with regards to the rely relation stable(pre,R) to ensure that the
precondition holds after environment transitions.

The TrgdEvt inference rule says that a triggered event �P � satisfies the rely-
guarantee specification if the program P satisfies the specification. This rule is
directly derived from the semantics for triggered events in Fig. 3, where triggered
events modifies the state according to how the program modifies the state. A
basic event satisfies its rely-guarantee specification (inference rule BasicEvnt)
if its body satisfies the rely-guarantee strengthening the precondition with the
guard of the event. Since the occurrence of an event does not change the state, it
is necessary that the guarantee relation includes the identity relation to accept
stuttering transitions.

Regarding the proof rules for event systems, sequential composition of events
is modeled by EvtSeq rule, which is similar to that of the sequential command
in imperative languages. In order to prove that an event set satisfies its rely-
guarantee specification, we have to prove eight premises (EvtSet rule in Fig. 4).
It is necessary that each event together with its specification is derivable in
the system (Premise 1). Since the event set behaves as itself after an event
finishes, each event postcondition has to imply each event precondition (Premise
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2), and the precondition for the event set has to imply the preconditions of all
events (Premise 3). An environment transition for the event set corresponds to
a transition from the environment of any event i in the event set (Premise 4).
The guarantee condition Gsi of each event must be in the guarantee condition
of the event set, since an action transition of the event set is performed by one
of its events (Premise 5). The postcondition of each event must be in the overall
postcondition (Premise 6). The last two refer to stability of the precondition and
identity of the guarantee relation.

The parallel rule in Fig. 4 establishes compositionality of the proof system,
where verification of the parallel specification can be reduced to the verifi-
cation of individual event systems and then to the verification of individual
events. It is necessary that each event system PS(κ) satisfies its specification
〈presκ, Rsκ, Gsκ, pstsκ〉 (Premise 1). The precondition for the parallel compo-
sition implies all the event system’s preconditions (Premise 2). An environment
transition Rsκ for the event system κ corresponds to a transition from the overall
environment R (Premise 3). Since an action transition of the concurrent system
is performed by one of its event system, the guarantee condition Gsκ of each
event system must be a subset of the overall guarantee condition G (Premise
4). The overall postcondition must be a logical consequence of all postcondi-
tions of event systems (Premise 5). An action transition of an event system κ
should be defined in the rely condition of another event system κ′, where κ = κ′

(Premise 6).
Finally, the soundness theorem for a specification � relates rely-guarantee

specifications proven on the proof system with its validity.

Theorem 1 (Soundness). Σ � � sat 〈pre,R,G, pst〉 =⇒ Σ |= � sat 〈pre,R,
G, pst〉

3.3 Invariant Verification

In many cases, we would like to show that CRSs preserve certain data invariants.
Since CRSs may not be closed systems, i.e. their environment may change the
system state that is represented by rely conditions of CRSs, the reachable states
of CRSs are dependent on both the initial states and the environment. We define
as follows that a CRS PS with static information Σ, starting up from a set of
initial states init under an environment R, preserves an invariant inv when its
reachable states satisfy the predicate:

∀s0 x0 �. � ∈ Ψ(Σ, PS, s0, x0) ∩ A(Σ, init, R) −→ (∀i < len(�). inv(s�i))

In this definition, 	 denotes an arbitrary computation of PS from a set of
initial states init and under an environment R. It requires that all states in 	
satisfy the invariant inv. {s | P (s)} denotes the set of states s satisfying P .

To show that inv is preserved by a system PS, it suffices to show the invari-
ant verification theorem as follows. This theorem indicates that (1) the system
satisfies its rely-guarantee specification 〈init, R,G, post〉, (2) inv initially holds
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in the set of initial states, and (3) each action transition as well as each envi-
ronment transition preserve inv. Later, by the proof system of PiCore, invariant
verification is decomposed to the verification of individual events.

Theorem 2 (Invariant Verification). For formal specification PS and Σ, a
state set init, a rely condition R, and inv, if

– Σ � PS sat 〈init, R,G, post〉.
– init ⊆ {s | inv(s)}.
– stable({s | inv(s)}, R) and stable({s | inv(s)}, G) are satisfied.

then inv is preserved by PS w.r.t. init and R.

4 Integrating Concrete Languages

We present the rely-guarantee interface of PiCore framework in this section as
well as the integration of the IMP and CSimpl languages.

4.1 Rely-Guarantee Interface of PiCore Framework

To implement a flexible integration of languages for programs on event bodies,
PiCore provides a rely-guarantee interface that program languages must respect.
The interface is an abstraction for common rely-guarantee components required
by PiCore (Fig. 5). These components are represented as a set of parameters
and assumptions to guarantee the correctness of the proof system, since the
language, semantics, proof rules and soundness proof of PiCore in Sect. 3 are
developed using this interface.

Following this interface, third-party languages and their rely-guarantee proof
systems are embedded into PiCore as interpretations using an adapter that
implements the interface. Since these languages may have existed for years, they
are not necessary completely consistent with the PiCore interface. Hence, for
each language that we want to integrate in PiCore it is necessary to provide
a rely-guarantee adapter to bridge the differences of rely-guarantee components
between PiCore and the languages. The adapter implements the interface by
delegating functionality of the event language to the integrated language. This
architecture makes it possible to integrate existing languages without modifying
their specification, semantics, and rely-guarantee inference system.

The interface requires specifications and assumptions for four differentiated
elements: language definition (syntax and semantics), rely-guarantee definitions
(computation and rely-guarantee validity), rely-guarantee proof rules, and their
soundness.

As a parametric framework, PiCore does not define the syntax for languages
of programs. It only requires a notation to represent the termination of programs,
which is denoted as ⊥ in PiCore (Parameter 1 in Table 1). PiCore also needs
the transition relations representing the event behaviour (event action) and the
environment (Parameters 2 and 3). To reason about event behaviors, PiCore
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Fig. 5. PiCore framework and its integration with imperative languages

assumes that (1) program ⊥ cannot take a step to another state (Assumption 1
in Table 2), (2) if a program P takes an action transition, the program is changed
in the next configuration (Assumption 2), and (3) environment transitions do
not change the program itself (Assumption 3).

Since the body of events in PiCore is specified using external languages, com-
putations and the reasoning of events are dependent on those languages. PiCore
requires the specification for computation of programs (Parameters 4 and 5) and
assumes that (1) a computation of any program is not empty (Assumption 4),
(2) if 	 is a computation of a language and the program of its first configuration
is P , then 	 is a computation for the program P (Assumption 5), and (3) there
are three constructions for computation of programs (Assumption 6), which is
similar to the definition of events we have presented in Sect. 3.

Finally, the interface requires the components related to the validity of rely-
guarantee specification and the proof rules (Parameters 6–9). The definitions of
the assume/commit functions and validity are similar to those in PiCore (see
Sect. 3), and are relaxed to be not necessarily equivalent. PiCore requires that
the rely-guarantee proof rules in languages are sound (Assumption 10). Other
rely-guarantee components, such as rely and guarantee condition, are defined in
the above parameters at the same time.

Table 1. Parameters of PiCore

No. Name Notation No. Name Notation

(1) Terminating
statement

⊥ (2) Program
transition

Σ � (P, s)−→p(Q, t)

(3) Environment
transition

Σ � (P, s)
env−→p (Q, t) (4) Computations Ψ(Σ)

(5) Computations
of a program

Ψ(Σ, P ) (6) Assume A(Σ, pre, R)

(7) Commit C(Σ, G, pst) (8) Validity Σ |= P sat 〈pre, R, G, pst〉
(9) Proof rule Σ � P sat 〈pre, R, G, pst〉
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Table 2. Assumptions of parameters

(1) ¬(Σ � (⊥, s)−→p(P, t)) (2) ¬(Σ � (P, s)−→p(P, t))

(3) Σ � (P, s)
env−→p (Q, t) =⇒ P = Q (4) [] /∈ Ψ(Σ)

(5) �0 = (P, s) ∧ � ∈ Ψ(Σ) =⇒ � ∈ Ψ(Σ, P )

(6)

(∃P s. � = [(P, s)]) ∨ (∃P t xs s. � = (P, s)#(P, t)#xs ∧ (P, t)#xs ∈ Ψ(Σ))∨
(∃P s Q t xs. � = (P, s)#(Q, t)#xs ∧ Σ � (P, s)−→p(Q, t) ∧ (Q, t)#xs ∈ Ψ(Σ)))

=⇒ � ∈ Ψ(Σ)

(7) Σ |= P sat 〈pre, R, G, pst〉 =⇒ ∀s. Ψ(Σ, P, s) ∩ A(Σ, pre, R) ⊆ C(Σ, G, pst)

(8)
(∀i < len(�) − 1. (Σ � �i

env−→p �i+1) −→ (s�i , s�i+1 ) ∈ R) ∧ s�0 ∈ pre

=⇒ � ∈ A(Σ, pre, R)

(9)
� ∈ C(Σ, G, pst) =⇒ (∀i < len(�) − 1. (Σ � �i−→p�i+1) −→ (s�i , s�i+1 ) ∈ G)

∧ (�last(�) = �⊥
 −→ s�n ∈ pst)

(10) Σ � P sat 〈pre, R, G, pst〉 =⇒ Σ |= P sat 〈pre, R, G, pst〉

4.2 Integrating the IMP and CSimpl languages

To integrate a language and its rely-guarantee framework into PiCore, we first
create an adapter for the language providing the PiCore interface. For each
parameter in the interface, there is a corresponding definition (or function) in
the adapter instantiating the parameter. Moreover, the adapter provides the
necessary set of lemmas and theorems to show that the instances of the interface
specifications satisfy the interface assumptions.

In the mechanized implementation of PiCore in Isabelle/HOL, we use locales
to create the framework, where parameters and assumptions of PiCore are rep-
resented as parameters and assumptions of locales. Locales are the Isabelle’s
approach for dealing with parametric theories. Using locale interpretations, they
may be instantiated by assigning concrete data to parameters, and conclusions
of locales will be propagated to the current theory or the current proof con-
text. Using the notion of locales, we create PiCore instances by interpreting the
PiCore locale using adapters for IMP and CSimpl .

Since the definitions of rely-guarantee components in IMP [23] are consistent
with the PiCore interface, except that there is no static information Σ in IMP ,
the adapter for IMP is straightforward from its rely-guarantee specification, we
omit the details here and the interested reader can refer to the Isabelle/HOL
sources.

More interesting is CSimpl that supports most of the features of real world
programming languages including exceptions, and is substantially more complex
than IMP . Here, we show the adapter for CSimpl . The language and its rely-
guarantee proof system are presented in detail in [24]. The abstract syntax of
CSimpl is defined as in Fig. 6 in terms of states, of type ’s; a set of fault types,
of type ’f; a set of procedure names of type ’p, and a set of simulation events
’e (simulation events are not addressed in this work). Type (’s,’p,’f,’e) config
defines the configuration used in its transition semantics and (’s,’p,’f,’e) body
denoted as Γ defines the procedure declarations as mapping from procedure
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Fig. 6. Syntax and state definition of the CSimpl Language [24]

names to CSimpl programs. (’s,’p,’f,’e) confs defines the type of computations.
To support reasoning about procedure invocations, CSimpl uses the notation
Θ to maintain the rely-guarantee specification for procedures. The validity in
CSimpl requires that each procedure satisfies its specification.

In the adapter, we first use the pair (Γ,Θ) to instantiate the environment
Σ in PiCore. We instantiate the termination statement as the Skip command
in CSimpl . The program transition in CSimpl is Γ �c (P, s) −→ (Q, t), and
it is adapted as (Γ,Θ) �cI (P, s) −→ (Q, t) ≡ Γ �c (P, s) −→ (Q, t). CSimpl
semantics for programs can transit from a Normal state to a different type.
However, it does not allow transitions from a non Normal state to any other
state. Therefore, the environment transition in CSimpl is defined as follows.

{
Γ �c (P, Normal s) −→env (P, t)

(∀t′. t = Normal t′) =⇒ Γ �c (P, t) −→env (P, t)

To adapt the restricted environment transition, we first define the environ-
ment transition in the adapter as (Γ,Θ) �cI (P, s) −→env (P, t), which allows any
state transition and is compatible with that in the interface. Then, we restrict
the rely condition in the definition of proof rules in the adapter to bridge this
difference, which will be discussed later. Based on the transition functions, the
computation function Ψ of the adapter is defined in the same form as in CSimpl .

The rely-guarantee specification in CSimpl is in the form [p,R,G, (q, a)],
where the postcondition (q, a) is a pair of state sets. The set q constrains the
final state if the program terminates as Skip representing a normal state, whilst a
constrains abrupt terminations in an exception with the command Throw. The
assume and commit functions in CSimpl are like PiCore, but considering the
fault states and abrupt termination. The validity function of CSimpl is defined in
the same form as in PiCore. For procedure invocations, CSimpl defines another
validity function using the general one, which also requires that each procedure
satisfies its rely-guarantee specification.

We define the assume, commit and validity functions in the adapter as the
same form as in PiCore. In CSimpl preconditions are over normal states. For type
consistency PiCore does not impose that restriction, but rather it is enforced
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by the adapter to bridge the difference, which will be discussed later. PiCore
does restrict the final statement to Skip thus exceptions have to be handled at
program level. This restriction is motivated by the second assumption in the
rule EvtSet for PiCore proof system in Fig. 4, since postconditions of events
must imply their preconditions, and preconditions in CSimpl are sets of normal
states, a final configuration of an event cannot throw an exception.

Finally, based on the definition of the proof rules Γ ,Θ �/F P sat [q, R, G,

q,a] in CSimpl , we define proof rules in the adapter as follows. (1) The validity
in CSimpl only concerns preconditions of Normal states, so we restrict the pre-
condition p to Normal. (2) Programs of an event body cannot throw exceptions
to the event level, so final states when reaching the final statement Skip are
Normal. Thus, we restrict the postcondition q to Normal. (3) Events assume the
normal execution of their program body, and furthermore the program cannot
fall into a Fault state. So we assume the Fault set F to be empty. In addition,
the program P should satisfy its rely-guarantee specification in CSimpl . (4) The
environment transition in CSimpl does not allow transitions from a non Normal
state to a different state, we represent it in the rely condition R. (5) Finally, the
rely-guarantee specification for each procedure in Θ has to be satisfied.

(Γ ,Θ) �I P satp [p, R, G, q] ≡

(1)
︷ ︸︸ ︷

(p ⊆ Normal ‘ UNIV) ∧

(2)
︷ ︸︸ ︷

(q ⊆ Normal ‘ UNIV) ∧
(3)

︷ ︸︸ ︷

(Γ,Θ �
/{} P sat [{s | Normal s ∈ p}, R, G, {s | Normal s ∈ q}, UNIV ]) ∧

(4)
︷ ︸︸ ︷

(∀ (s,t)∈R. s /∈ Normal ‘ UNIV −→ s = t) ∧

(5)
︷ ︸︸ ︷

(∀ (c,p,R,G,q,a)∈ Θ. Γ ,{} �
/{} (Call c) sat [p, R, G, q,a])

To interpret the PiCore framework using the adapter, we have to show that
the assumptions in Table 2 are preserved on the adapted definitions. The preser-
vation of assumptions 1–9 are straightforward. To show assumption 10, we prove
that

(Γ ,Θ) �I P satp [p, R, G, q] =⇒ (Γ ,Θ) |=I P satp [p, R, G, q]

5 Concurrent Memory Management of Zephyr RTOS

In this section, we use πIMP , the instantiation of PiCore with IMP , to formally
specify and verify the concurrent memory management of Zephyr RTOS (for
more detail refer to [29]). During the formal verification, we found 3 bugs in
the C code of Zephyr: an incorrect block split, an incorrect return, and non-
termination of a loop in the k mem pool alloc service. The first two bugs are
critical and have been repaired in the latest release of Zephyr.

The buddy memory allocation can split large blocks into smaller ones to fit
as best as possible the requested size. This allows blocks of different sizes to be
allocated and released efficiently while limiting memory fragmentation concerns.
The memory is organized by levels, each “level n” block is a quad-block that
can be split into four smaller “level (n+1)” blocks of equal size. This process is
repeated until blocks reach a minimum level for which splitting is not possible. In
our formal specification, we define the structure of a memory pool as illustrated
in Fig. 7. The top of the figure shows the real memory of the first block at level 0.
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Fig. 7. Structure of memory pools

Thread preemption and fine-grained locking make kernel execution of mem-
ory services concurrent. Zephyr provides two kernel services k mem pool alloc
and k mem pool free, for memory allocation and release respectively. When an
application requests a memory block, Zephyr first computes a value free l that
is the lowest level containing free memory blocks. Due to concurrency, when a
service tries to allocate a free block blk from level free l, blocks at that level
may be allocated or merged into a bigger block by other concurrent threads.
In such a case the service will back out to retry. Allocation supports a timeout
parameter to allow threads waiting for that pool for a period of time when the
call does not succeed. If the allocation fails and the timeout is not K NO WAIT,
the thread is suspended and the context is switched to another thread.

We define a rich set of invariants on the kernel state clarifying the constraints
and consistency of quad trees, free block lists, memory pool configuration, and
waiting threads. From the well-shaped properties of quad trees, we derive a crit-
ical property to prevent memory leaks: memory blocks cover the whole memory
address of the pool, but do not overlap each other. Memory blocks of a memory
pool mp are a partition of the pool where for any memory address addr in the
address space of a memory pool, i.e. addr < n max ∗ max sz, there is one and
only one memory block whose address space contains addr. The predicate is
defined as follows.
addr-in-block mp addr i j ≡
i < length (levels mp) ∧ j < length (bits (levels mp ! i))
∧ (is memblock(bits (levels mp ! i) ! j))
∧ addr ∈ {x | j ∗ (max-sz mp div (4 ˆ i)) � x < Suc j ∗ (max-sz mp div (4 ˆ i))}
mem-part s ≡ ∀ p∈mem-pools s. let mp = mem-pool-info s p in

(∀ addr < n-max mp ∗ max-sz mp. (∃ !(i ,j ). addr-in-block mp addr i j ) )
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From the invariants of the well-shaped bitmap, we derive the general property
for the memory partition.

Theorem 3 (Memory Partition). For any kernel state s, If the memory pools
in s are consistent in their configuration, and their bitmaps are well-shaped, the
memory pools satisfy the partition property in s:

inv mempool info s ∧ inv bitmap s ∧ inv bitmap0 s ∧ inv bitmapn s =⇒ mem part s

In the formal specification, we consider a scheduler S and a set of threads
t1, ..., tn. Each user thread ti invokes allocation and release services, thus the
event system for ti is

esysti ≡(
⋃

blk. {mem pool free[blk]@ti}) ∪
(
⋃

(p, sz, tmout). {mem pool alloc[p, sz, tmout]@ti})
which is a set of alloc and free events, where the input parameters for these
events correspond with the arguments of the service implementation in the C
code. Events are parametrized by a thread identifier ti used to control access to
the execution context of the thread invoking it. Together with the threads we
model the event service for the scheduler esyssched consisting of a unique event
sched whose argument is a thread t to be scheduled when it is in the READY
state. The formal specification of the memory management is thus defined as:
Sys-Spec ≡ λ k. case k of (T ti) ⇒ esysti | S ⇒ esyssched. This is much simpler
than the specification obtained from a non-event oriented language.

Using the compositional reasoning of πIMP , correctness of Zephyr memory
management can be specified and verified with the rely-guarantee specification
of each event. The functional correctness of a kernel service is specified by its
pre/post conditions. The preservation of invariants, memory configuration, and
separation of local variables is specified in the guarantee condition of each service.
Although IMP does not have proof rules for loop termination, we use a logical
variable α to parametrize the loop invariants and prove the termination of loop
statements in Zephyr by finding a convergent relation to show that the number
of iterations is finite.

The guarantee condition for both memory services is defined as:

Mem-pool-free-guar t ≡
(1)
︷︸︸︷

Id ∪ (

(2)
︷ ︸︸ ︷

gvars conf stable ∩

{(s,r). (
(3.1)

︷ ︸︸ ︷

cur s �= Some t −→ gvars-nochange s r ∧ lvars-nochange t s r )

∧ (

(3.2)
︷ ︸︸ ︷

cur s = Some t −→ inv s −→ inv r ) ∧ (

(4)
︷ ︸︸ ︷

∀ t ′. t ′ �= t −→ lvars-nochange t ′ s r ) })

This relation states that a step from alloc or free may not change the state
(1), e.g., selecting a branch on a conditional statement. If it changes the state
then: (2) static configuration of memory pools in the model does not change;
(3.1) if the scheduled thread is not the thread invoking the event then its local
variables do not change; (3.2) if it is, then the relation preserves the memory
invariant; (4) a thread does not change the local variables of other threads.
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Using PiCore and IMP proof rules we verify that the invariant is preserved
by all the events. Additionally, we prove that when starting in a valid memory
configuration given by the invariant, and if the service does not return an error
code, then it returns a valid memory block with size bigger or equal to the
requested capacity.

6 Evaluation and Conclusion

Evaluation. We use Isabelle/HOL as the specification and verification system.
All derivations of our proofs have passed through the Isabelle proof kernel. We
use ≈9,200 lines of specification and proof (LOSP) to develop the PiCore frame-
work. The IMP language and its rely-guarantee proof system consist of ≈2,400
LOSP, and CSimpl ≈15,000 LOSP. The two parts of specification and proof
are completely reused in πIMP and πCSimpl respectively. The adapter of IMP
is ≈650 LOSP including new proof rules and their soundness as well as a con-
crete syntax. The adapter of CSimpl is ≈400 LOSP. Finally, we develop ≈17,600
LOSP for the Zephyr case study, 40 times more than the lines of the C code due
to the in-kernel concurrency, where invariant proofs represent the largest part.

Related Works. The rely-guarantee approach has been mechanized in
Isabelle/HOL (e.g. [13,14,23,24,26]) and Coq (e.g. [18,20]). In [13,14], an
abstract algebra of atomic steps is developed, and rely/guarantee concurrency
is an interpretation of the algebra. To allow a meaningful comparison of rely-
guarantee semantic models, two abstract models for rely-guarantee are developed
and mechanized in [26]. None of both work consider any concrete imperative
languages for rely-guarantee. The works [20,23] mechanize the rely-guarantee
approach for simple imperative languages. Later, a rely-guarantee proof system
is developed in Isabelle/HOL for CSimpl [24], a generic and realistic concurrent
imperative language by extending the sequential language Simpl [25]. These
mechanizations focus on imperative languages for pure programs, of which two
of them [23,24] have been integrated in PiCore.

Refinement of reactive systems [5] and the subsequent Event-B approach
[2] propose a refinement-based formal method for system-level modeling and
analysis. In [15], an Event-B model is created to mimic rely-guarantee style rea-
soning for concurrent programs, but not to provide a rely-guarantee framework
for Event-B. The rely-guarantee reasoning for event-based applications has been
studied in [8–11]. The definition of events is similar to PiCore. They extend a sim-
ple, sequential, imperative language by primitives for announcing and consuming
events, announce(e) and consume(e(x)) where e is an event. Therefore, events
are triggered by imperative programs in another event. This is very different
from the reactive semantics in PiCore where the system is non-deterministically
executed simulating a real reactive system. Moreover, the language to spec-
ify events in these works is a simple imperative language, whilst PiCore has
an open interface for the integration and reusability of different languages and
frameworks.
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Conclusion and Future Work. In this paper, we propose an event-based rely-
guarantee framework for concurrent reactive systems. This approach is open to
the specification of event behaviours. It provides an interface to integrate systems
for specification and reasoning at that level that eases formal methods reusability.
We have mechanized the integration of the IMP and CSimpl languages and their
proof systems into PiCore in the Isabelle/HOL theorem prover. We show the
simplicity of events to represent concurrent reactive systems and the usefulness of
PiCore for realistic systems in the verification of the concurrent buddy memory
allocation of Zephyr RTOS. As future work, we plan to extend PiCore to support
more event structures and step-wise refinement.
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