
Maurice H. ter Beek
Annabelle McIver
José N. Oliveira (Eds.)

Third World Congress, FM 2019
Porto, Portugal, October 7–11, 2019
Proceedings

Formal Methods –
The Next 30 YearsLN

CS
 1

18
00

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 11800

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Maurice H. ter Beek • Annabelle McIver •

José N. Oliveira (Eds.)

Formal Methods –
The Next 30 Years
Third World Congress, FM 2019
Porto, Portugal, October 7–11, 2019
Proceedings

123

Editors
Maurice H. ter Beek
Consiglio Nazionale delle Ricerche
Pisa, Italy

Annabelle McIver
Macquarie University
Sydney, NSW, Australia

José N. Oliveira
University of Minho
Braga, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30941-1 ISBN 978-3-030-30942-8 (eBook)
https://doi.org/10.1007/978-3-030-30942-8

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0002-2405-9838
https://orcid.org/0000-0002-0196-4229
https://doi.org/10.1007/978-3-030-30942-8

Preface

This volume contains the papers presented at the 23rd Symposium on Formal Methods
(FM 2019), held in Porto, Portugal, in the form of the Third World Congress on Formal
Methods, during October 7–11, 2019. These proceedings also contain five papers
selected by the Program Committee (PC) of the Industry Day (I-Day).

FM 2019 was organized under the auspices of Formal Methods Europe (FME), an
independent association whose aim is to stimulate the use of, and research on, formal
methods for software development. It has been more than 30 years since the first VDM
symposium in 1987 brought together researchers with the common goal of creating
methods to produce high-quality software based on rigor and reason. Since then the
diversity and complexity of computer technology has changed enormously and the
formal methods community has stepped up to the challenges those changes brought by
adapting, generalizing, and improving the models and analysis techniques that were the
focus of that first symposium. The theme for FM 2019, “The Next 30 Years,” was a
reflection on how far the community has come and the lessons we can learn for
understanding and developing the best software for future technologies.

To reflect the fact that it has been 20 years since FM 1999 in Toulouse and 10 years
since FM 2009 in Eindhoven, FM 2019 was organized as a World Congress, and we
composed a PC of renowned scientists from 42 different countries spread across all
continents except for Antarctica. We originally received a stunning total of 185 abstract
submissions, which unfortunately resulted in ‘only’ 129 paper submissions from 36
different countries. Each submission went through a rigorous review process in which
95% of the papers were reviewed by four PC members. Following an in-depth dis-
cussion phase lasting two weeks, we selected 37 full papers and 2 short tool papers, an
acceptance rate of 30%, for presentation during the symposium and inclusion in these
proceedings. The symposium featured keynotes by Shriram Krishnamurthi (Brown
University, USA), Erik Poll (Radboud University, The Netherlands), and June
Andronick (CSIRO-Data61 and UNSW, Australia). We hereby thank these invited
speakers for having accepted our invitation. The program also featured a Lucas Award
and FME Fellowship Award Ceremony.

We are grateful to all involved in FM 2019. In particular the PC members and
subreviewers for their accurate and timely reviewing, all authors for their submissions,
and all attendees of the symposium for their participation. We also thank all the other
committees (I-Day, Doctoral Symposium, Journal First Track, Workshops, and
Tutorials), itemized on the following pages, and particularly the excellent local orga-
nization and publicity teams. In addition to FM 2019 they also managed the FM week
consisting of another 8 conferences, 17 workshops, and 7 tutorials, as well as ‘X’, the
secret project of a colloquium in honor of Stefania Gnesi based on a Festschrift to
celebrate her 65th birthday.

We are very grateful to our platinum sponsors: Amazon Web Services (AWS),
Google, and Sony; our gold sponsors: Springer, Semmle, ASML, and PT-FLAD Chair

in Smart Cities & Smart Governance; our silver sponsors: Oracle Labs, Runtime
Verification Inc., Standard Chartered, GMV, United Technologies Research Center
(UTRC), and Efacec; our bronze sponsors i2S, Foundations of Perspicuous Software
Systems Collaborative Research Center, and the Mathematical research center of the
University of Porto (CMUP); and our basic sponsors: Natixis and Neadvance.

Finally, we thank Springer for publishing these proceedings in their FM subline and
we acknowledge the support from EasyChair in assisting us in managing the complete
process from submissions to these proceedings to the program.

August 2019 Maurice H. ter Beek
Annabelle McIver
José N. Oliveira

vi Preface

Organization

General Chair

José N. Oliveira University of Minho and INESC TEC, Portugal

FM Program Chairs

Maurice H. ter Beek ISTI–CNR, Italy
Annabelle McIver Macquarie University, Australia

Industry Day Chairs

Joe Kiniry Galois Inc., USA
Thierry Lecomte ClearSy, France

Doctoral Symposium Chairs

Alexandra Silva University College London, UK
Antónia Lopes University of Lisbon, Portugal

Journal First Track Chair

Augusto Sampaio Federal University of Pernambuco, Brazil

Workshop and Tutorial Chairs

Emil Sekerinski McMaster University, Canada
Nelma Moreira University of Porto, Portugal

FM Program Committee

Bernhard Aichernig TU Graz, Austria
Elvira Albert Complutense University of Madrid, Spain
María Alpuente Polytechnic University of Valencia, Spain
Dalal Alrajeh Imperial College, UK
Mário S. Alvim Federal University of Minas Gerais, Brazil
June Andronick CSIRO-Data61, Australia
Christel Baier TU Dresden, Germany
Luís Barbosa University of Minho and UN University, Portugal
Gilles Barthe IMDEA Software Institute, Spain
Marcello Bersani Polytechnic University of Milan, Italy
Gustavo Betarte Tilsor SA and University of the Republic, Uruguay

Nikolaj Bjørner Microsoft Research, USA
Frank de Boer CWI, The Netherlands
Sergiy Bogomolov Australian National University, Australia
Julien Brunel ONERA, France
Néstor Cataño Universidad del Norte, Colombia
Ana Cavalcanti University of York, UK
Antonio Cerone Nazarbayev University, Kazakhstan
Marsha Chechik University of Toronto, Canada
David Chemouil ONERA, France
Alessandro Cimatti FBK–IRST, Italy
Alcino Cunha University of Minho and INESC TEC, Portugal
Michael Dierkes Rockwell Collins, France
Alessandro Fantechi University of Florence, Italy
Carla Ferreira New University of Lisbon, Portugal
João Ferreira Teesside University, UK
José L. Fiadeiro Royal Holloway University of London, UK
Marcelo Frias Buenos Aires Institute of Technology, Argentina
Fatemeh Ghassemi University of Tehran, Iran
Silvia Ghilezan University of Novi Sad, Serbia
Stefania Gnesi ISTI–CNR, Italy
Reiner Hähnle TU Darmstadt, Germany
Osman Hasan University of Sciences and Technology, Pakistan
Klaus Havelund NASA Jet Propulsion Laboratory, USA
Anne Haxthausen TU Denmark, Denmark
Ian Hayes University of Queensland, Australia
Constance Heitmeyer Naval Research Laboratory, USA
Jane Hillston University of Edinburgh, UK
Thai Son Hoang University of Southampton, UK
Zhenjiang Hu National Institute of Informatics, Japan
Dang Van Hung Vietnam National University, Vietnam
Atsushi Igarashi Kyoto University, Japan
Suman Jana Columbia University, USA
Ali Jaoua Qatar University, Qatar
Einar Broch Johnsen University of Oslo, Norway
Joost-Pieter Katoen RWTH Aachen University, Germany
Laura Kovács TU Vienna, Austria
Axel Legay UCLouvain, Belgium
Gabriele Lenzini University of Luxembourg, Luxembourg
Yang Liu Nanyang Technical University, Singapore
Alberto Lluch Lafuente TU Denmark, Denmark
Malte Lochau TU Darmstadt, Germany
Michele Loreti University of Camerino, Italy
Anastasia Mavridou NASA Ames, USA
Hernán Melgratti University of Buenos Aires, Argentina
Sun Meng Peking University, China
Dominique Méry LORIA and University of Lorraine, France

viii Organization

Rosemary Monahan Maynooth University, Ireland
Olfa Mosbahi University of Carthage, Tunisia
Mohammad Mousavi University of Leicester, UK
César Muñoz NASA Langley, USA
Tim Nelson Brown University, USA
Gethin Norman University of Glasgow, UK
Colin O’Halloran D-RisQ Software Systems, UK
Federico Olmedo University of Chile, Chile
Gordon Pace University of Malta, Malta
Jan Peleska University of Bremen, Germany
Marielle Petit-Doche Systerel, France
Alexandre Petrenko Computer Research Institute of Montréal, Canada
Anna Philippou University of Cyprus, Cyprus
Jorge Sousa Pinto University of Minho and INESC TEC, Portugal
André Platzer Carnegie Mellon University, USA
Jaco van de Pol Aarhus University, Denmark
Tahiry Rabehaja Macquarie University, Australia
Steve Reeves University of Waikato, New Zealand
Matteo Rossi Polytechnic University of Milan, Italy
Augusto Sampaio Federal University of Pernambuco, Brazil
Gerardo Schneider Chalmers University of Gothenburg, Sweden
Daniel Schwartz Narbonne Amazon Web Services, USA
Natasha Sharygina University of Lugano, Switzerland
Nikolay Shilov Innopolis University, Russia
Ana Sokolova University of Salzburg, Austria
Marielle Stoelinga University of Twente, The Netherlands
Jun Sun University of Technology and Design, Singapore
Helen Treharne University of Surrey, UK
Elena Troubitsyna Äbo Akademi University, Finland
Tarmo Uustalu Reykjavik University, Iceland
Andrea Vandin TU Denmark, Denmark
R. Venkatesh TCS Research, India
Erik de Vink TU Eindhoven and CWI, The Netherlands
Willem Visser Stellenbosch University, South Africa
Farn Wang National Taiwan University, Taiwan
Bruce Watson Stellenbosch University, South Africa
Tim Willemse TU Eindhoven, The Netherlands
Kirsten Winter University of Queensland, Australia
Jim Woodcock University of York, UK
Lijun Zhang Chinese Academy of Sciences, China

Organization ix

Additional Reviewers

Rui Abreu
Arthur Américo
Hugo Araujo
Myla Archer
Sepideh Asadi
Florent Avellaneda
Eduard Baranov
Davide Basile
Cláudio Belo Lourenço
Philipp Berger
František Blahoudek
Martin Blicha
Jean-Paul Bodeveix
Brandon Bohrer
Ioana Boureanu
Laura Bozzelli
Daniel Britten
James Brotherston
Richard Bubel
Doina Bucur
Juan Diego Campo
Laura Carnevali
Gustavo Carvalho
Davide Cavezza
Xiaohong Chen
Yu-Ting Chen
Robert Colvin
Jesús Correas Fernández
Silvano Dal Zilio
Carlos Diego Damasceno
Quoc Huy Do
Sebastian Ehmes
Santiago Escobar
Marco Faella
Paul Fiterau Brostean
Simon Foster
Maria João Frade
Maciej Gazda
Lorenzo Gheri
Eduardo Giménez
Pablo Gordillo

Gloria Gori
Friedrich Gretz
Jerry den Hartog
Raju Halder
Hossein Hojjat
Karel Horak
Zhe Hou
Thomas Hujsa
Andreas Humenberger
Antti Hyvarinen
Peter Häfner
Fabian Immler
Miguel Isabel
Shaista Jabeen
Phillip James
Seema Jehan
Saul Johnson
Violet Ka I Pun
Eduard Kamburjan
Minh-Thang Khuu
Sascha Klüppelholz
Dimitrios Kouzapas
Robbert Krebbers
Shrawan Kumar
Luca Laurenti
Maurice Laveaux
Corey Lewis
Jianlin Li
Yi Li
Yong Li
Ai Liu
Wanwei Liu
Martin Lukac
Carlos Luna
Lars Luthmann
Joshua Moerman
Hendrik Maarand
Kumar Madhukar
Shahar Maoz
Matteo Marescotti
Bojan Marinkovic

Paolo Masci
Mieke Massink
Franco Mazzanti
Larissa Meinicke
Alexandra Mendes
Stephan Merz
Ravindra Metta
Andrea Micheli
Stefan Mitsch
Alvaro Miyazawa
Carroll Morgan
Mariano Moscato
Toby Murray
David Müller
Koji Nakazawa
Pham Ngoc Hung
Omer Nguena-Timo
Hans de Nivelle
Quentin Peyras
Paul Piho
Danny Bøgsted Poulsen
James Power
Tim Quatmann
Jean-Baptiste Raclet
Markus Roggenbach
Guillermo Román-Díez
Jurriaan Rot
Albert Rubio
Enno Ruijters
Sebastian Ruland
David Sanan
Julia Sapiña
Andy Schürr
Ramy Shahin
Neeraj Singh
Andrew Sogokon
B. Srivathsan
Dominic Steinhöfel
Ivan Stojic
Sandro Stucki
Martin Tappler

x Organization

Laura Titolo
Andrea Turrini
Ben Tyler
Evangelia Vanezi
Alicia Villanueva

Inna Vistbakka
Matthias Volk
Jingyi Wang
Shuling Wang
Markus Weckesser

Stephan Wesemeyer
Pengfei Yang
Haodong Yao

I-Day Program Committee

M. Antony Aiello AdaCore, USA
Flemming Andersen Galois Inc., USA
Stylianos Basagianni United Technologies Research Centre, Ireland
Roderick Chapman Protean Code Limited, UK
David Cok GrammaTech, USA
Alessandro Fantechi University of Florence, Italy
Chris Hawblitzel Microsoft, USA
Peter Gorm Larsen Aarhus University, Denmark
Michael Leuschel University of Düsseldorf, Germany
Yannick Moy AdaCore, France
Jan Peleska Verified Systems International GmbH, Germany
Etienne Prun ClearSy, France
Kenji Taguchi CAV Technologies Co., Ltd., Japan
Stefano Tonetta FBK–IRST, Italy
Daniel Zimmerman Galois Inc., USA

DS Program Committee

Ana Cavalcanti University of York, UK
André Platzer Carnegie Mellon University, USA
Alessandro Fantechi University of Florence, Italy
Carlo A. Furia USI, Switzerland
Dalal Alrajeh Imperial College, UK
Einar Broch Johnson University of Oslo, Norway
Elvira Albert Complutense University of Madrid, Spain
Jaco van de Pol Aarhus University, Denmark
Matteo Rossi Polytechnic University of Milan, Italy
Stefania Gnesi ISTI-CNR, Italy
Stephan Merz Inria, France

JFT Program Committee

Cliff Jones University of Newcastle, UK
Manfred Broy TU Munich, Germany

Organization xi

Organizing Committee

Luís Soares Barbosa University of Minho and INESC TEC, Portugal
José Creissac Campos University of Minho and INESC TEC, Portugal
João Pascoal Faria University of Porto and INESC TEC, Portugal
Sara Fernandes University of Minho and INESC TEC, Portugal
Luís Neves Critical Software, Portugal
Ana Paiva University of Porto and INESC TEC, Portugal

Local Organizers

Catarina Fernandes University of Minho and INESC TEC, Portugal
Paula Rodrigues INESC TEC, Portugal
Ana Rita Costa INESC TEC, Portugal

Web Team

Francisco Neves University of Minho and INESC TEC, Portugal
Rogério Pontes University of Minho and INESC TEC, Portugal
Paula Rodrigues INESC TEC, Portugal

FME Board

Ana Cavalcanti University of York, UK
Lars-Henrik Eriksson Uppsala University, Sweden
Stefania Gnesi ISTI–CNR, Italy
Einar Broch Johnsen University of Oslo, Norway
Nico Plat Thanos, The Netherlands

xii Organization

Formal Methods for Security Functionality
and for Secure Functionality

(Invited Presentation)

Erik Poll

Digital Security group, Radboud University Nijmegen, The Netherlands
erikpoll@cs.ru.nl

With cyber security becoming a growing concern, it has naturally attracted the attention
of researchers in formal methods. One recent success story here is TLS: the devel-
opment of the new TLS 1.3 specification has gone hand-in-hand with efforts to verify
security properties of formal models [5] and the development of a fully verified
implementation [3]. Earlier well-known success stories in using formal methods for
security are the verifications of operating system kernels or hypervisors, namely seL4
[7] and Microsoft’s Hyper-V [10].

These examples – security protocols and OS kernels – are applications whose
primary purpose is to provide security. It is natural to apply formal methods to such
systems: they are by their very nature security-critical and they provide some security
functionality that we can try to specify and verify.

However, we want all our systems to be secure, not just these security systems.
There is an important difference between secure functionality and security function-
ality, or – given that most functionality and most security problems are down to
software – between software security and security software [11]. Many, if not most,
security problems arise in systems that have no specific security objective, say PDF
viewers or video players, but which can still be hacked to provide attackers with
unwanted functionality they can abuse.

Using formal methods to prove security is probably not on the cards of something
as complex as a PDF viewer or video player. Just defining what it would mean for such
a system to be secure is probably already infeasible. Still, formal methods can be
useful, to prove the absence of certain types of security flaws or simply find security
flaws. Successes here have been in the use of static analysis in source code analysers,
e.g. tools like Fortify SCA that look for flaws in web applications and tools like
Coverity that look for memory vulnerabilities in C(++) code. Another successful
application of formal methods is the use of symbolic (or concolic) execution to generate
test cases for security testing, as in SAGE [6] or, going one step further, not just
automatically finding flaws but also automatically generating exploits, as in angr [16].

Downside of these approaches is that they are post-hoc and can only look for flaws
in existing code. The LangSec paradigm [4, 9], on the other hand, provides ideas on
how to prevent many security problems by construction. Key insights are that most
security flaws occur in input handling and that there are several root causes in play
here. Firstly, the input languages involved (e.g. file formats and network protocols) are
complex, very expressive, and poorly, informally, specified. Secondly, there are many

of these input languages, sometimes nested or stacked. Finally, parsers for these lan-
guages are typically hand-written, with parsing code scattered throughout the appli-
cation code in so-called shotgun parsers [12]. With clearer, formal specifications of
input languages and generated parser code much security misery could be avoided.
(Recent initiatives in tools for parser generation here include Hammer [1] and Nail [2].)
Given that formal languages and parser generation are some of the most basic and
established formal methods around, it is a bit of an embarrassment to us as formal
methods community that sloppy language specifications and hand-coded parsers should
cause so many security problems.

Some security flaws in input handling are not so much caused by buggy parsing of
inputs, but rather by the unexpected parsing of input [13]. Classic examples of this are
command injection, SQL injection, and Cross-Site Scripting (XSS). Tell-tale sign that
unwanted parsing of input may be happening in unexpected places is the heavy use of
strings as data types [14].

Information or data flow analysis can be used to detect such flaws; indeed, this is a
standard technique used in the source code analysis tools mentioned above. These
flaws can also be prevented by construction, namely by using type systems. A recent
example of this is the ‘Trusted Types’ browser API [8] by Google, where different
types are used to track different kinds of data and different trust level of data to prevent
XSS vulnerabilities, esp. the DOM-based XSS vulnerabilities that have proved so
difficult to root out.

To conclude, formal methods cannot only be used to prove security of
security-critical applications and components – i.e. the security software –, but they can
be much more widely used to improve security by ruling out of the root causes behind
security flaws in input handling, and do so by construction, and hence improve soft-
ware security in general. Moreover, some very basic and lightweight formal methods
can be used for this: methods that we teach – or should be teaching – our students in the
first years of their Bachelor degree, such as regular expressions, finite state machines,
grammars, and types. Indeed, in my own research I have been surprised to see how
useful the simple notion of finite state machine for describing input sequences is to
discover security flaws [15].

That we have not been able to get these basic techniques into common use does not
say much for our success in transferring formal methods to software engineering
practice. Still, looking at the bright side, it does suggest opportunities for improvement.

References

1. Anantharaman, P., Millian, M.C., Bratus, S., Patterson, M.L.: Input handling done right:
building hardened parsers using language-theoretic security. In: Cybersecurity Development
(SecDev), pp. 4–5. IEEE (2017)

2. Bangert, J., Zeldovich, N.: Nail: A practical tool for parsing and generating data formats. In:
OSDI 2014, pp. 615–628. Usenix (2014)

xiv E. Poll

3. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implementations
for the TLS 1.3 standard candidate. In: Security and Privacy (S&P 2017), pp. 483–502. IEEE
(2017)

4. Bratus, S., Locasto, M.E., Patterson, M.L., Sassaman, L., Shubina, A.: Exploit program-
ming: from buffer overflows to weird machines and theory of computation. Login, 13–21
(2011)

5. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehensive
symbolic analysis of TLS 1.3. In: SIGSAC Conference on Computer and Communications
Security (CCS 2017), pp. 1773–1788. ACM (2017)

6. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: Whitebox fuzzing for security testing.
Commun. ACM 55(3), 40–44 (2012)

7. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: ACM SIGOPS, pp. 207–220.
ACM (2009)

8. Kotowicz, K.: Trusted types help prevent cross-site scripting (2019). https://developers.
google.com/web/updates/2019/02/trusted-types. blog

9. LangSec: Recognition, validation, and compositional correctness for real world security
(2013). http://langsec.org/bof-handout.pdf. uSENIX Security BoF hand-out

10. Leinenbach, D., Santen, T.: Verifying the microsoft hyper-V hypervisor with VCC. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009, LNCS, vol. 5850, pp. 806–809. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_51

11. McGraw, G.: Software security. IEEE Secur. Priv. 2(2), 80–83 (2004)
12. Momot, F., Bratus, S., Hallberg, S.M., Patterson, M.L.: The seven turrets of Babel: a

taxonomy of LangSec errors and how to expunge them. In: Cybersecurity Development
(SecDev 2016), pp. 45–52. IEEE (2016)

13. Poll, E.: LangSec revisited: input security flaws of the second kind. In: Workshop on
Language-Theoretic Security (LangSec 2018). IEEE (2018)

14. Poll, E.: Strings considered harmful. Login, 43(4), 21–26 (2018)
15. Poll, E., de Ruiter, J., Schubert, A.: Protocol state machines and session languages: speci-

fication, implementation, and security flaws. In: Workshop on Language-Theoretic Security
(LangSec 2015), pp. 125–133. IEEE (2015)

16. Shoshitaishvili, Y., et al.: SoK:(state of) the art of war: offensive techniques in binary
analysis. In: Symposium on Security and Privacy (SP 2016), pp. 138–157. IEEE (2016)

Formal Methods for Security Functionality and for Secure Functionality xv

https://developers.google.com/web/updates/2019/02/trusted-types
https://developers.google.com/web/updates/2019/02/trusted-types
http://langsec.org/bof-handout.pdf
https://doi.org/10.1007/978-3-642-05089-3_51

Contents

Invited Presentations

The Human in Formal Methods . 3
Shriram Krishnamurthi and Tim Nelson

Successes in Deployed Verified Software
(and Insights on Key Social Factors) . 11

June Andronick

Verification

Provably Correct Floating-Point Implementation
of a Point-in-Polygon Algorithm . 21

Mariano M. Moscato, Laura Titolo, Marco A. Feliú,
and César A. Muñoz

Formally Verified Roundoff Errors Using SMT-based Certificates
and Subdivisions. 38

Joachim Bard, Heiko Becker, and Eva Darulova

Mechanically Verifying the Fundamental Liveness Property
of the Chord Protocol . 45

Jean-Paul Bodeveix, Julien Brunel, David Chemouil, and Mamoun Filali

On the Nature of Symbolic Execution . 64
Frank S. de Boer and Marcello Bonsangue

Synthesis Techniques

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 83
Gal Amram, Shahar Maoz, and Or Pistiner

Counterexample-Driven Synthesis for Probabilistic Program Sketches 101
Milan Češka, Christian Hensel, Sebastian Junges,
and Joost-Pieter Katoen

Synthesis of Railway Signaling Layout from Local Capacity Specifications 121
Bjørnar Luteberget, Christian Johansen, and Martin Steffen

Pegasus: A Framework for Sound Continuous Invariant Generation. 138
Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell,
and André Platzer

Concurrency

A Parametric Rely-Guarantee Reasoning Framework for Concurrent
Reactive Systems . 161

Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu

Verifying Correctness of Persistent Concurrent Data Structures 179
John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn,
and Heike Wehrheim

Compositional Verification of Concurrent Systems
by Combining Bisimulations. 196

Frédéric Lang, Radu Mateescu, and Franco Mazzanti

Model Checking Circus

Towards a Model-Checker for Circus . 217
Artur Oliveira Gomes and Andrew Butterfield

Circus2CSP: A Tool for Model-Checking Circus Using FDR. 235
Artur Oliveira Gomes and Andrew Butterfield

Model Checking

How Hard Is Finding Shortest Counter-Example Lassos
in Model Checking? . 245

Rüdiger Ehlers

From LTL to Unambiguous Büchi Automata via Disambiguation
of Alternating Automata. 262

Simon Jantsch, David Müller, Christel Baier, and Joachim Klein

Generic Partition Refinement and Weighted Tree Automata 280
Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann

Equilibria-Based Probabilistic Model Checking for Concurrent
Stochastic Games . 298

Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos

Analysis Techniques

Abstract Execution . 319
Dominic Steinhöfel and Reiner Hähnle

Static Analysis for Detecting High-Level Races in RTOS Kernels 337
Abhishek Singh, Rekha Pai, Deepak D’Souza, and Meenakshi D’Souza

xviii Contents

Parallel Composition and Modular Verification of Computer Controlled
Systems in Differential Dynamic Logic . 354

Simon Lunel, Stefan Mitsch, Benoit Boyer, and Jean-Pierre Talpin

An Axiomatic Approach to Liveness for Differential Equations. 371
Yong Kiam Tan and André Platzer

Local Consistency Check in Synchronous Dataflow Models 389
Dina Irofti and Paul Dubrulle

Gray-Box Monitoring of Hyperproperties . 406
Sandro Stucki, César Sánchez, Gerardo Schneider,
and Borzoo Bonakdarpour

Quantitative Verification of Numerical Stability for Kalman Filters 425
Alexandros Evangelidis and David Parker

Concolic Testing Heap-Manipulating Programs . 442
Long H. Pham, Quang Loc Le, Quoc-Sang Phan, and Jun Sun

Specification Languages

Formal Semantics Extraction from Natural Language Specifications
for ARM . 465

Anh V. Vu and Mizuhito Ogawa

GOSPEL—Providing OCaml with a Formal Specification Language 484
Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço,
and Mário Pereira

Unification in Matching Logic . 502
Andrei Arusoaie and Dorel Lucanu

Embedding High-Level Formal Specifications into Applications 519
Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings,
and Michael Leuschel

Reasoning Techniques

Value-Dependent Information-Flow Security on Weak Memory Models. 539
Graeme Smith, Nicholas Coughlin, and Toby Murray

Reasoning Formally About Database Queries and Updates 556
Jon Haël Brenas, Rachid Echahed, and Martin Strecker

Abstraction and Subsumption in Modular Verification of C Programs 573
Lennart Beringer and Andrew W. Appel

Contents xix

Modelling Languages

IELE: A Rigorously Designed Language and Tool Ecosystem
for the Blockchain. 593

Theodoros Kasampalis, Dwight Guth, Brandon Moore,
Traian Florin Șerbănuță, Yi Zhang, Daniele Filaretti, Virgil Șerbănuță,
Ralph Johnson, and Grigore Roşu

APML: An Architecture Proof Modeling Language 611
Diego Marmsoler and Genc Blakqori

Learning-Based Techniques and Applications

Learning Deterministic Variable Automata over Infinite Alphabets 633
Sarai Sheinvald

L�-Based Learning of Markov Decision Processes . 651
Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci,
Maria Eichlseder, and Kim G. Larsen

Star-Based Reachability Analysis of Deep Neural Networks 670
Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau,
Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang,
and Taylor T. Johnson

Refactoring and Reprogramming

SOA and the Button Problem . 689
Sung-Shik Jongmans, Arjan Lamers, and Marko van Eekelen

Controlling Large Boolean Networks with Temporary
and Permanent Perturbations. 707

Cui Su, Soumya Paul, and Jun Pang

I-Day Presentations

Formal Methods Applicability on Space Applications Specification
and Implementation Using MORA-TSP . 727

Daniel Silveira, Andreas Jung, Marcel Verhoef, and Tiago Jorge

Industrial Application of Event-B to a Wayside Train Monitoring System:
Formal Conceptual Data Analysis . 738

Robert Eschbach

Property-Driven Software Analysis (Extended Abstract) 746
Mathieu Comptier, David Déharbe, Paulin Fournier,
and Julien Molinero-Perez

xx Contents

Practical Application of SPARK to OpenUxAS. 751
M. Anthony Aiello, Claire Dross, Patrick Rogers, Laura Humphrey,
and James Hamil

Adopting Formal Methods in an Industrial Setting: The Railways Case 762
Maurice H. ter Beek, Arne Borälv, Alessandro Fantechi, Alessio Ferrari,
Stefania Gnesi, Christer Löfving, and Franco Mazzanti

Author Index . 773

Contents xxi

Invited Presentations

The Human in Formal Methods

Shriram Krishnamurthi(B) and Tim Nelson

Brown University, Providence, RI, USA
{sk,tn}@cs.brown.edu

Abstract. Formal methods are invaluable for reasoning about complex
systems. As these techniques and tools have improved in expressiveness
and scale, their adoption has grown rapidly. Sustaining this growth, how-
ever, requires attention to not only the technical but also the human side.
In this paper (and accompanying talk), we discuss some of the challenges
and opportunities for human factors in formal methods.

Keywords: Human factors · User Interfaces · Education ·
Formal methods

1 Humans and Formal Methods

Formal methods are experiencing a long-overdue surge in popularity. This ranges
from an explosion in powerful traditional tools, like proof assistants and model
checkers, to embeddings of formal methods in program analysis, to a growing
recognition of the value to writing formal properties in other settings (like soft-
ware testing). Whereas traditionally, corporate use was primarily in hardware
(e.g., Seger [26]), now major software companies like Amazon [1,7,21], Facebook
[6], and Microsoft [3,12] are growing their use of formal methods.

What does it take to support this growth? Researchers will, naturally, con-
tinue to work on formal techniques. We believe, however, that not enough atten-
tion has been paid to the humans in the loop. In this paper and accompanying
talk, we discuss some of the challenges and opportunities in this area.

To set a context for what follows, our own work has focused largely on auto-
mated methods, specifically model finding [18,34], as typified by tools like Alloy
[15] and SAT/SMT solvers. This is not to decry the value of other techniques,
including deductive methods, which we have worked with in some of our research.
However, we find that model-finding tools offer a useful sweet spot:

– Because of their automation, they provide a helpful separation between spec-
ification and proof, enabling the user to focus on the former without having
to dwell very much on the latter. This separation of concerns is invaluable in
training contexts, since it enables us to focus on one skill at a time.

– Because model-finders can be used without properties, they enable exploration
in addition to verification and proof. Furthermore, this can start with small
amounts of partial specification. This idea, which is one aspect of lightweight
formal methods [16], is a powerful enabler for quickly seeing the value that
formal methods can provide.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 3–10, 2019.
https://doi.org/10.1007/978-3-030-30942-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_1

4 S. Krishnamurthi and T. Nelson

– The manifestation of these methods in tools like Alloy proves particularly
convenient. An Alloy user can write a small part of a specification and click
“Run” (an action already familiar from programming environments), and
immediately get at least somewhat useful feedback from the system.

Due to these factors, in our experience, we have found these methods more
accessible than others to a broad range of students. Since, in particular, our
emphasis is not just on cultivating the small group of “hard core” students but
to bring the “other 90%” into the fold, tools that immediately appeal to them—
and hold their attention, while they are choosing between courses in formal
methods and in other exciting areas such as machine learning—are important.

In the rest of this paper, we focus on two human-facing concerns: the human-
factors qualities of model finding tools (Sect. 2), and education (Sect. 3). We
believe both are vital: the latter to growing the number of people comfortable
with formal methods, and the former to their effectiveness.

2 User Experience

We believe that the user experience of formal-methods tools has largely been
understudied, although there have been promising past venues such as the Work-
shops on User Interfaces for Theorem Provers (e.g., [2]) and Human-Oriented
Formal Methods (e.g., [19]). The majority of this work focuses on interactive
tools such as proof assistants, which is to be expected. For instance, in deduc-
tive methods, the experience of stating and executing deduction steps is critical.
(For early student-facing work, see the efforts of Barker-Plummer, Barwise, and
Etchemendy [4]).

However, other formal tools could also benefit from user-focused research. For
instance, model finders are often integrated into higher-level tools (with their
model output presented in a domain-specific way). Thus, questions of quality
and comprehensibility by lay users are key.

Our own work [8] has found that a model finder’s choice of output and
its presentation can make a major difference in user experience. Experiments
with students found that output minimality, while intutively appealing, is not
necessarily helpful for comprehending systems. Moreover, experiments with users
on Amazon’s Mechanical Turk crowdsourcing platform seem to suggest that
providing a small amount of additional information alongside output can be
helpful for comprehension.

3 Education

An equally important—and critically human-centric—problem is thinking about
education. Numerous authors have books that present different educational view-
points but, to our knowledge, most of these have not been subjected to any
rigorous evaluation of effectiveness. Nevertheless, beyond books and curricula,

The Human in Formal Methods 5

we believe much more attention should be paid to design methods and student-
centric tools. There is a large body of literature on these topics in programming
education, but its counterparts are often missing in formal methods education.

We are focusing primarily on the task of writing specifications, because:

– It is a near-universal requirement shared between different formal methods—
indeed, it is perhaps a defining characteristic of the field.

– Specifications are sufficiently different from programs that we cannot blindly
reuse existing knowledge about programming education, though of course
there are many problems in common and we should try to port ideas. If
anything, we conjecture that the need for formal methods to consider all
possible behaviors, thanks to attributes like non-determinism, might make it
harder than programming.

– Specifications are useful even outside traditional formal methods settings,
such as in property-based testing, monitoring, etc. Hence, they increasingly
affect a growing number of programmers, even ones who don’t think of them-
selves as using traditional formal methods.

We will in turn discuss design methods (Sect. 3.1) and tools (Sect. 3.2).

3.1 A Design Recipe for Writing Specifications

One of the challenges every author faces is the “blank page syndrome” [9]: given a
problem statement, they must fill a blank page (or editor) with magical incanta-
tions that match the given statement. For many students, this can be a daunting
and even overwhelming experience; ones for whom it is not are sometimes merely
overconfident in their abilities.

However, in other design disciplines—from electrical engineering to building
architecture—designers produce not just one final artifact but a series of inter-
mediate artifacts, using a range of representations with distinct viewpoints that
hide some aspects and make others salient. What might that look like in our
discipline?

One answer is provided by How to Design Programs [9], which breaks down
the programming process into a series of steps called the Design Recipe. These
steps incrementally build towards a solution, alternating abstract and concrete
steps that build on previous ones. For programming, these steps are:

1. Data definitions: translating what is given in the problem statement into
abstract descriptions for the computer system.

2. Data examples: constructing examples of each data definition to ensure the
student understands it, has created a well-formed definition, and can cover
the cases the problem demands.

3. Function outline: translating the function expected in the problem into an
abstract computational representation, including type signatures, purpose
statements, and a function header.

6 S. Krishnamurthi and T. Nelson

4. Function examples: constructing input-output examples of the function’s use,
using the data examples and the function outline components. These ensure
the student actually understands the problem before they start working on it.
These are usually written using the syntax of test cases, so they can eventually
be run against the final function, but they are conceptually different: they
represent exploration and understanding of the problem.

5. Function template: Using the data definition and function outline to create a
skeleton of the body based purely on the structure of the data.

6. Function definition: Filling in the template to match the specific function
definition, using the examples as a guide.

7. Testing: Constructing tests based on the chosen implementation strategy,
checking for implementation-specific invariants. The goal of tests, in contrast
to function examples, is to falsify the purported implementation.

There is significant cognitive theory backing the use of this recipe. The pro-
cess corresponds to Bruner’s notion of scaffolding [31], while the steps reflect
Vygotsky’s theory of zones of proximal development [29]. The progression from
data through examples to code and tests provides a form of concreteness fading
[13]. Completed sequences form worked examples [28] that students can apply to
new problems. The templates are a form of program schema [22,27] that students
can recall and reuse in constructing solutions to new problems.

How can we translate this from writing programs to writing specifications?
We believe many of the steps carry over directly (and serve the same purpose),
while others need some adaptation, depending on what students are authoring
(the process for specifications would look different than that for models given
to a model-checker, etc.). For instance, the “function examples” stage translates
well to students creating concrete instances of behavior that they believe should
or should not satisfy the eventual specification.

We will not go here into the details of how to adapt this process to different
settings, especially authoring specifications. However, we believe the basic ideas
are fairly universal: of proceeding in a step-wise way with new artifacts building
on old artifacts; of proceeding from the concrete to the abstract; of writing
illustrative, concrete examples of preceding abstract steps to test well-formedness
and understanding; and so on.

3.2 Tools

Researchers and developers have invested significant effort into formal methods
tools, many of which are then brought into the classroom. On the one hand,
industrial-strength tools tend to be robust and performant, and are endowed
with authenticity, which can make a difference for some students. On the other
hand, they may expose too much power: they accept full and complex languages
that contain features that may confuse students, they produce errors and other
feedback with terminology that students may not understand, and so on. In light
of this, projects have advocated the use of language levels [5,10,14], arguing that

The Human in Formal Methods 7

students would benefit from a graduated introduction through a sequence of sub-
languages (and corresponding tool interfaces), each sub-language presenting an
epistemic closure that corresponds to a student’s learning at that point.

Beyond this, we argue that educational settings have one key advantage that
conventional industrial use does not: the presence of ground truth, i.e., someone
already knows the answer! In industry, users rarely build a whole new specifica-
tion that precisely matches one that already exists. In education, however, that
is exactly what students do almost all the time. Therefore, we can ask:

How does the presence of a ground truth affect formal tools in education?

We argue that “knowing the answer” especially helps in light of the Design
Recipe discussed above, because we can build tools to help with each step. We
discuss a concrete manifestation of this below. These should be thought of as
training wheels to help beginners become comfortable with formal methods;
naturally, we need to study how to wean students so that they can engage in the
more authentic experience of writing specifications and models un-aided.

Understanding Before Authoring. A growing body of literature in programming
education [17,25,30] shows that students frequently start to write programs
before they have understood the problem. As a result they “solve” the wrong
problem entirely. Not only is this frustrating, it also leads to learning loss: the
stated problem presumably had certain learning goals, which the student may
not have met as a result of their misdirection.

Recent work [24,32] has begun to address this issue by devising techniques
to make sure students can check their understanding of the problem before they
embark on a solution. These critically rely on having intermediate artifacts
authored by the student in the process of authoring, precisely matching the
intermediate steps proposed by the Design Recipe. In particular, function exam-
ples are a valuable way for them to demonstrate their understanding; because
they are written in executable form, they can be run against implementations.

We especially draw on the perspective of Politz et al. [23] and Wrenn et
al. [33], which think of tests (and examples) as classifiers. That is, the quality
of a suite of tests or examples can be judged by how well they classify a pur-
ported implementation as correct or faulty. If we want a quantitative result, we
can compute precision and recall scores to characterize these classifiers. Thus,
students can rapidly obtain concrete feedback about how well they are doing in
terms of understanding the problem, and our evidence in the context of program-
ming [32] suggests that they take great advantage of this. Initial explorations for
specification authoring suggests that this phenomenon carries over.

More Artifacts. More broadly, there are several artifacts that can be produced
on both sides for specification-authoring assignments, including:

– Student’s concrete examples
– Student’s properties
– Student’s completed specification

8 S. Krishnamurthi and T. Nelson

– Instructor’s concrete examples
– Instructor’s properties
– Instructor’s completed specification

the latter three of which are ground truth components. Furthermore, instruc-
tional staff can be pressed to produce multiple kinds of each of these, such as
correct and faulty specifications to enable classification.

Given this rich set of artifacts, it is instructive to consider all their (at
least) pairwise combinations. For example, consider the point where the student
believes they have completed their specification. This can now be compared for
semantic difference [11,20] against the instructor’s specification, with the differ-
ences presented as concrete examples that the student has to determine how to
incorporate to adjust their specification. There are several interesting questions
of mechanism design, i.e., how to structure rewards and penalties for students
using these modes.

4 Conclusion

In sum, we believe there are large human-facing aspects of formal methods that
have not yet been explored, and that exploring them is vital for the field to
thrive. With enough emphasis, we believe formal methods can be democratized
and made accessible to large numbers of users—not only scientists and trained
operators, but even the general public, from children to retirees. Even the most
non-technical user has to make consequential decisions every time they set a
configuration option on a system, and would hence benefit from the specification
and state-exploration powers that characterize our field. These problems are
intellectually exciting and challenging, and serious progress requires wedding
technical results to cognitive and social ones.

Acknowledgements. This work was partially supported by the U.S. National Sci-
ence Foundation. We are grateful for numerous valuable conversations with Daniel
J. Dougherty, Natasha Danas, Jack Wrenn, Kathi Fisler, Daniel Jackson, and Emina
Torlak.

References

1. Amazon Web Services: Provable security. https://aws.amazon.com/security/
provable-security/. Accessed 5 July 2019

2. Autexier, S., Benzmüller, C. (eds.): User Interfaces for Theorem Provers, Proceed-
ings of UITP 2006, Electronic Notes in Theoretical Computer Science, vol. 174.
Elsevier (2007)

3. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside microsoft. In: Boiten, E.A., Derrick,
J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24756-2 1

https://aws.amazon.com/security/provable-security/
https://aws.amazon.com/security/provable-security/
https://doi.org/10.1007/978-3-540-24756-2_1

The Human in Formal Methods 9

4. Barker-Plummer, D., Barwise, J., Etchemendy, J.: Language, Proof, and Logic,
2nd edn. Center for the Study of Language and Information/SRI, Stanford (2011)

5. du Boulay, B., O’Shea, T., Monk, J.: The black box inside the glass box. Int. J.
Hum.-Comput. Stud. 51(2), 265–277 (1999)

6. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

7. Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 3

8. Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 168–184. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1 11

9. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs,
2nd edn. MIT Press, Cambridge (2018). https://www.htdp.org/

10. Findler, R.B., et al.: DrScheme: a programming environment for Scheme. J. Funct.
Prog. 12(2), 159–182 (2002)

11. Fisler, K., Krishnamurthi, S., Meyerovich, L., Tschantz, M.: Verification and
change impact analysis of access-control policies. In: International Conference on
Software Engineering, pp. 196–205 (2005)

12. Fogel, A., et al.: A general approach to network configuration analysis. In: Net-
worked Systems Design and Implementation (2015)

13. Fyfe, E.R., McNeil, N.M., Son, J.Y., Goldstone, R.L.: Concreteness fading in math-
ematics and science instruction: a systematic review. Educ. Psychol. Rev. 26(1),
9–25 (2014)

14. Holt, R.C., Wortman, D.B.: A sequence of structured subsets of PL/I. SIGCSE
Bull. 6(1), 129–132 (1974)

15. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT
Press, Cambridge (2012)

16. Jackson, D., Wing, J.: Lightweight formal methods. IEEE Comput. (1996)
17. Loksa, D., Ko, A.J.: The role of self-regulation in programming problem solving

process and success. In: SIGCSE International Computing Education Research
Conference (2016)

18. McCune, W.: Mace4 reference manual and guide. CoRR (2003). https://arxiv.org/
abs/cs.SC/0310055

19. Milazzo, P., Varró, D., Wimmer, M. (eds.): STAF 2016. LNCS, vol. 9946. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50230-4

20. Nelson, T., Ferguson, A.D., Krishnamurthi, S.: Static differential program analysis
for software-defined networks. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 395–413. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 25

21. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

22. Pirolli, P.L., Anderson, J.R.: The role of learning from examples in the acquisition
of recursive programming skills. Canadian Journal of Psychology/Revue canadi-
enne de psychologie 39(2), 240–272 (1985)

23. Politz, J.G., Krishnamurthi, S., Fisler, K.: In-flow peer-review of tests in test-
first programming. In: Conference on International Computing Education Research
(2014)

https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-66197-1_11
https://www.htdp.org/
https://arxiv.org/abs/cs.SC/0310055
https://arxiv.org/abs/cs.SC/0310055
https://doi.org/10.1007/978-3-319-50230-4
https://doi.org/10.1007/978-3-319-19249-9_25
https://doi.org/10.1007/978-3-319-19249-9_25

10 S. Krishnamurthi and T. Nelson

24. Prather, J., et al.: First things first: providing metacognitive scaffolding for inter-
preting problem prompts. In: ACM Technical Symposium on Computer Science
Education (2019)

25. Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., Cohen, M.: Metacog-
nitive difficulties faced by novice programmers in automated assessment tools. In:
SIGCSE International Computing Education Research Conference (2018)

26. Seger, C.H.: Combining functional programming and hardware verification
(abstract of invited talk). In: International Conference on Functional Program-
ming (ICFP) (2000)

27. Spohrer, J.C., Soloway, E.: Simulating Student Programmers. In: IJCAI 1989, pp.
543–549. Morgan Kaufmann Publishers Inc. (1989)

28. Sweller, J.: The worked example effect and human cognition. Learn. Instr. 16(2),
165–169 (2006)

29. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Pro-
cesses. Harvard University Press, Cambridge (1978)

30. Whalley, J., Kasto, N.: A qualitative think-aloud study of novice programmers’
code writing strategies. In: Conference on Innovation and Technology in Computer
Science Education (2014)

31. Wood, D., Bruner, J.S., Ross, G.: The role of tutoring in problem solving. J. Child
Psychol. Psychiatry 17, 89–100 (1976)

32. Wrenn, J., Krishnamurthi, S.: Executable examples for programming problem com-
prehension. In: SIGCSE International Computing Education Research Conference
(2019)

33. Wrenn, J., Krishnamurthi, S., Fisler, K.: Who tests the testers? In: SIGCSE Inter-
national Computing Education Research Conference, pp. 51–59 (2018)

34. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: International
Joint Conference on Artificial Intelligence (1995)

Successes in Deployed Verified Software
(and Insights on Key Social Factors)

June Andronick(B)

CSIRO’s Data61 and UNSW, Sydney, Australia
june.andronick@data61.csiro.au

Abstract. In this talk, we will share our experience in the successful
deployment of verified software in a wide range of application domains,
and, importantly, our insights on the key factors enabling such successful
deployment, in particular the importance of the social aspects of a group
working effectively together.

Our formally verified microkernel, seL4, is now used across the world
in a number of applications that keeps growing. Our experience is that
such an uptake is enabled not only by a technical strategy, but also by
a tight integration of people from multiple disciplines and with both
research and engineering profiles. This requires a strong social culture,
with well designed processes, for working as one unified team. We share
our observations on what concrete social structures have been key for us
in creating real-world impact from research breakthroughs.

1 The Dream

Precisely fifty years ago, Tony Hoare, in his seminal paper [1], outlined a dream;
a dream where verifying properties of programs can be achieved by purely deduc-
tive reasoning; a dream where such reasoning could be applied to non-trivial pro-
grams as long as considerably more powerful proof techniques became available;
a dream where software systems would not be deployed unless they were for-
mally verified; a dream where verified software would have become the standard
produced by industry; a dream where it would be legally considered negligence
to deploy unverified software.

We share this dream, and –with many others– have contributed towards it
by demonstrating that verified software is feasible and can be deployed on real-
world systems. We can, however, observe that, in fifty years, this dream has not
been fully achieved yet.

The main reason for verified software not yet being the standard could be
phrased as: it has not yet achieved the status of being the state-of-the-art. Ten
years ago, Hoare was invited to write a retrospective article [2], to share his
personal views on progress made since his first article forty years before, and
reflect on what he had hoped for back then and what actually happened. One
thing he realised he had not predicted correctly was what actually would drive
the push for more verified software; he had thought that it would be the fear
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 11–17, 2019.
https://doi.org/10.1007/978-3-030-30942-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_2

12 J. Andronick

of expensive lawsuits for damages due to software errors. This didn’t happen
because “the defense of ‘state-of-the-art’ practice would always prevail”.

We thus need to make verified software become the state-of-the-art practice.
For this we need (a) to lower the cost (Hoare said “Far more effective is the
incentive of reduction in cost” [2]) and (b) to have more success stories, where
insights can be shared. Together, these will not only bring economic incentives
for all software producers to follow the path of verified software, but lead to ‘no
more excuses’ not to follow that path.

Here we share our observations about the social structures and incentives
that have allowed us to bring together a large group of people with diverse
–sometimes even disjoint– technical backgrounds and to make them work effec-
tively towards a goal that must blend relentlessly formal techniques on the one
hand with uncompromising real-world performance on the other. In the last ten
years, we have been designing, developing, maintaining, and evolving the world’s
largest and most verified artefact, ported across multiple hardware platforms,
as well as a collection of tools and frameworks for the verification of real-world
software. In the last five years, our technology has seen an increasing uptake by
companies, governments and the open-source community. This has encouraged
a number of initiatives and projects pushing further this pervasive verified soft-
ware dream. Reflecting on our own experience of what made it possible to push
the boundaries of the state-of-the-art into deployed systems, our main insight
would be (1) having a single group with both researchers and engineers, and
both operating-system (OS) and formal method (FM) experts, all working very
closely together, towards a shared vision, and (2) having this vision being not
only technical, but also social: making sure this diverse range of people work
effectively and efficiently together. We will first give an overview of where our
verified software is deployed and the key steps leading to this uptake, and then
share our observations on the key social factors that allowed these successes.

2 Successes in Deployed Verified Software

Our story of successfully pushing verified software in deployed systems across a
variety of domains contains a few important milestones.

Performance. The first milestone, and starting point, was the research break-
through making formal program verification scale to an entire operating system
kernel, while maintaining high performance. This consisted in the formal proof,
in the Isabelle/HOL theorem prover [7], of the functional correctness of the seL4
microkernel [3,5], followed by the proof of the security properties of integrity [9]
and confidentiality [6] as well as correctness of the binary code [8]. Note that the
focus on performance as an equal objective as the correctness was a key factor
in the later uptake and deployment; and this was made possible only by the
close collaboration between the two disciplines’ experts, as we will describe in
the next section.

Successes in Deployed Verified Software (and Insights on Key Social Factors) 13

Retrofitting. A second key milestone was to move this research outcome
towards a technology transfer in industry by demonstrating the practicality
of building whole secure systems on the seL4 trustworthy foundation. We
worked with companies to retrofit their existing systems into secure architec-
tures, with isolated trusted components, running on seL4 guaranteeing the iso-
lation (as describes in [4]). The key effort that created the most impact was the
High-Assurance Cyber Military Systems (HACMS) program, funded by the US
Defense Advanced Research Projects Agency (DARPA), where we collaborated
with Boeing, Rockwell Collins, Galois, HRL, the University of Minnesota, MIT,
University of Illinois, CMU, Princeton University, and US Army’s TARDEC to
transition the seL4 technology to real-world autonomous vehicles. These included
a Boeing-built optionally piloted helicopter and an autonomous US-Army truck,
both originally vulnerable to cyber-attack, that we demonstrated to be able to
resist these cyber-attacks and others after being re-architected to run on seL4.
This kind of work is mainly engineering focused, with a join effort between the
systems engineers and the proof engineers, keeping the focus on formal guaran-
tees for the security of the overall system. Such projects are also an important
source of input about the real-world requirements that need to be addressed.

Focus on Grand Challenges. This leads to the third key ingredient: keep
tackling the grand challenges not yet addressed. Our engineering work, pushing
our technology on deployed systems, harvests further requirements calling for
still more research advances, such as extending the verification guarantees to
timing protection, or concurrent execution on multicore platforms, or increas-
ing the cost-effectiveness of verifying application code or porting the proofs to
new platforms. These open questions then constitute our research agenda and
roadmap.

Open Source. Finally, the last key contributing factor to the uptake of our
technology was the open-sourcing of seL4, both code and proofs, as well as all
the infrastructure, tools, and platforms to help building whole secure systems.
The first reason why this contributed to the uptake is that a kernel is only
a part of the solution, and transitioning to using it requires a retrofit, a re-
architecting of an existing system, which is not a decision taken lightly. Being
able to explore and ‘play’ with it before ‘buying into it’ has been instrumental to
people choosing to transition. The second reason open sourcing has been critical
is that it builds a community and an ecosystem supporting and extending the
technology, infrastructure, libraries, and platforms, helping with the scalability
of the support for transitioning. The caveat and challenge is to ensure that the
verification guarantees keep being maintained.

These few key milestones have led to an increased uptake of the seL4 kernel
and associated technology in real-world systems across a number of domains:
automotive (e.g. HRL, TARDEC), aviation (e.g. Boeing, Rockwell), space (e.g.
UNSW QB50), military (e.g. Rockwell Soldier Helmet), data distribution (e.g.
RTI Connext DDS Micro), Industry 4.0 (e.g. HENSOLDT Cyber), component

14 J. Andronick

OS (e.g. Genode platform), security (e.g. Penten Altrocrypt). Some of these
projects are a result of DARPA’s call for specific funding to build the seL4
ecosystem, through a number of Small Business Innovation Research (SBIR)
grants.

Much work is still to be done (and is ongoing) to lower the bar to transition
to seL4-based systems, and to ensure the verification guarantees are maintained
and extended, but these successful deployments are contributing to pushing the
dream of verified software becoming the default.

3 Insights on Key Social Factors

A major aspect of what we want to communicate here is the importance of social
factors, within our group1, that we have discovered are key contributors to the
technical aspects of what we have done. Our experience is that the successful
uptake of our technology comes from having a single group hosting both FM and
OS people, and both researchers and engineers, working effectively together, as
a tightly integrated team. We want to share concrete examples of the social
structures that enabled this tight integration for us. Some can be expected and
are not unique to our group; we here simply share which ones seem to have been
key for us.

Achieving the dream of pervasive verified software requires a combination of
academic research and industrial engineering. Today, these mostly live in sepa-
rated worlds. Industrial engineering brings the real-world requirements, requires
usability and performance, but is product-focused and aims at profitability.
Hoare said “The goal of industrial research is (and should always be) to pluck the
‘low-hanging fruit’; that is, to solve the easiest parts of the most prevalent prob-
lems, in the particular circumstances of here and now.” [2]. Academic research,
on the other hand, is innovation-focused, aiming at generic solutions, with a
timeframe allowing grand-challenges to be solved in a novel way. Hoare said
that “the goal of the pure research scientist is exactly the opposite: it is to con-
struct the most general theories, covering the widest possible range of phenomena,
and to seek certainty of knowledge that will endure for future generations.” [2].
When it comes to verified software, academic research is still crucially needed to
increase the scalability and applicability, while industrial engineering is critical
to produce specific instances that work.

There have been many studies on the barriers to the adoption of formal meth-
ods and the ideas for closing the gaps between academic research and industry
practices. These studies paint the world as composed of two separate entities;
the formal methods on one side, and the application domain on the other; or
the research on one side, and the industrial engineering on the other — with a
boundary in between that needs to be crossed, as a ‘baton’ transferred from one
part of the world to the other.

1 the Trustworthy Systems group, in Data61, CSIRO, https://ts.data61.csiro.au.

https://ts.data61.csiro.au

Successes in Deployed Verified Software (and Insights on Key Social Factors) 15

Our view is that success in deployable verified software comes with having
one single world, one single team2, tighly integrated. It is the notion of tight
integration that is crucial. That is what prevents the (undesirable) re-creation,
within the group, of the binary world we are presently forced to inhabit outside
it. If we don’t succeed there, then the same boundaries and gaps will be created
— where work is ‘handed over’ by one set of people to another set of people
for their consideration. Instead, people need to work hand in hand, day by day,
sometimes even hour by hour, sharing their perspective of the issues, solutions,
design decisions, all along the way.

In our group, this is illustrated by the fact that ‘every project involves every
subteam’, meaning that the majority of our projects involve both OS and FM
people and both researchers and engineers. Our engineering practices and pro-
cesses on the OS side and FM side are also tightly integrated; for instance, any
change in the code, from any side, starts with a discussion on the implications
for the ‘other side’; we have a continuous integration process that manages our
implementation code base as well as all our proof code base (now more than a
million lines of Isabelle/HOL), making sure they are always in sync, that changes
to code that is not yet verified can be seamlessly integrated, as well as changes
to verified code that happen to not break any proofs, whereas any changes that
break the proofs are clearly marked as such and follow a process where a team is
allocated to their verification and changes cannot be integrated until the proofs
are re-established.

For this tight integration to work, the frequency of the personal interactions
is crucial. Our group has experienced a few different physical setups, in different
locations, and our observation is that having people in the same location, same
building, if possible same floor is highly desirable: a proof engineer can just
walk up to the OS engineer to check e.g. whether a change in the code to ease
verification would have a performance impact; the impromptu encounters at
the coffee machine create the opportunity to share a viewpoint on e.g. a desired
kernel change; the kind of discussions needed across disciplines work best as face-
to-face discussions, with the support of a white board for design brainstorming,
or for sharing the knowledge between disciplines.

Another very important social aspect is ensuring good communication despite
the difference in backgrounds, or even sometimes languages and terminologies.
For instance, like many other groups, we run weekly talks and quarterly dive-ins
to update the rest of the group on progress in various project or share knowledge
in a specific area. Maybe unlike many other research groups, these talks cross
discipline boundaries and we strive –and in fact need– to keep them at a level
all can understand i.e. the OS-based talks have to be FM-comprehensible, and
vice versa. And everyone must give one of these talks, on a regular schedule.
This way everyone get the opportunity to share their views, to attract interest
in their work, and to grow their skills in explaining their work. This fosters a
culture inside the group of knowledge sharing and awareness of other people’s

2 and if possible, importantly, one single shared coffee machine, surrounded by plenty
of whiteboards.

16 J. Andronick

work, which is essential when having to then deliver together on a given project.
Being able to effectively communicate technical work to people outside of the
field is not easy. To help with this, we run annual ‘bootcamps’ focusing on
training ourselves on communication and presentation skills, and learning how
to best adapt to various kinds of audience. This has an important direct impact
on getting traction externally to increase the uptake of our technology, and
verified software in general. Importantly, it also enables the needed information
sharing and productive collaboration within the group.

Creating a one-team culture goes beyond the communication aspect. It
requires a technical vision that everyone shares, shapes and contributes to. But
it also needs a culture of achieving this vision together as a team, where we
have the urge to see each other succeed, where we help and support each other
in solving hard problems and delivering on projects, and where everyone con-
tributes to creating an environment where everyone can thrive. One way this is
achieved in our group is that a lot of activities such as trainings, social events,
or cultural awareness initiatives are done by people from the group, and tailored
to what our groups needs. For instance, our bootcamp mentioned above includes
sessions on active listening, mental health, life balance, and all sessions are given
by members of the group that have either training or first-hand experience in
the topic, and are delivering tailored information and practice that they know
are relevant to the type of work we do. The impact of this approach is that the
trust that people have in their peers amplifies the impact of the message, the
learning experience or the social interaction. It also extends the scope of the
collaboration between people from purely technical to all social aspects of the
group’s life.

All of the above creates and fosters an environment where you can get a
unique combination of people with different expertise and profiles that can work
well together to achieve their shared mission. Dealing with a truly wonderful mix
of personalities, backgrounds and cultures does create a number of challenges,
but it also creates the required structure to tackle and solve research grand
challenges, while producing systems, tools and frameworks that the world can use
and deploy, and while building a community of users, partners and contributors.
And this is what is needed to achieve the dream of shifting the whole world’s
mentality towards accepting verified software as the norm.

Acknowledgements. The author would like to thank Gerwin Klein and Carroll Mor-
gan for their feedback on drafts of this paper.

References

1. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12, 576–580
(1969)

2. Hoare, C.A.R.: Viewpoint - retrospective: an axiomatic basis for computer program-
ming. CACM 52(10), 30–32 (2009)

3. Klein, G., et al.: seL4: Formal verification of an operating-system kernel. CACM
53(6), 107–115 (2010)

Successes in Deployed Verified Software (and Insights on Key Social Factors) 17

4. Klein, G., Andronick, J., Kuz, I., Murray, T., Heiser, G., Fernandez, M.: Formally
verified software in the real world. CACM 61, 68–77 (2018)

5. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: SOSP, pp. 207–220.
ACM, Big Sky, October 2009

6. Murray, T., et al.: seL4: from general purpose to a proof of information flow enforce-
ment. In: 2013 IEEE Symposium on Security and Privacy, pp. 415–429. IEEE, San
Francisco, May 2013

7. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

8. Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel.
In: PLDI, pp. 471–481. ACM, Seattle, June 2013

9. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.: seL4
enforces integrity. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 325–340. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22863-6 24

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-22863-6_24
https://doi.org/10.1007/978-3-642-22863-6_24

Verification

Provably Correct Floating-Point
Implementation of a Point-in-Polygon

Algorithm

Mariano M. Moscato1(B), Laura Titolo1, Marco A. Feliú1,
and César A. Muñoz2(B)

1 National Institute of Aerospace, Hampton, USA
{mariano.moscato,laura.titolo,marco.feliu}@nianet.org

2 NASA Langley Research Center, Hampton, USA
cesar.a.munoz@nasa.gov

Abstract. The problem of determining whether or not a point lies inside
a given polygon occurs in many applications. In air traffic management
concepts, a correct solution to the point-in-polygon problem is critical to
geofencing systems for Unmanned Aerial Vehicles and in weather avoid-
ance applications. Many mathematical methods can be used to solve
the point-in-polygon problem. Unfortunately, a straightforward floating-
point implementation of these methods can lead to incorrect results due
to round-off errors. In particular, these errors may cause the control
flow of the program to diverge with respect to the ideal real-number
algorithm. This divergence potentially results in an incorrect point-in-
polygon determination even when the point is far from the edges of
the polygon. This paper presents a provably correct implementation of a
point-in-polygon method that is based on the computation of the winding
number. This implementation is mechanically generated from a source-
to-source transformation of the ideal real-number specification of the
algorithm. The correctness of this implementation is formally verified
within the Frama-C analyzer, where the proof obligations are discharged
using the Prototype Verification System (PVS).

1 Introduction

PolyCARP (Algorithms for Computations with Polygons) [25,27] is a NASA
developed open source software library for geo-containment applications based
on polygons.1 One of the main applications of PolyCARP is to provide geofenc-
ing capabilities to unmanned aerial vehicles (UAV), i.e., detecting whether a
UAV is inside or outside a given geographical region, which is modeled using a
2D polygon with a minimum and a maximum altitude. Another application is

1 https://shemesh.larc.nasa.gov/fm/PolyCARP.

Research by the first three authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 21–37, 2019.
https://doi.org/10.1007/978-3-030-30942-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_3&domain=pdf
https://shemesh.larc.nasa.gov/fm/PolyCARP
https://doi.org/10.1007/978-3-030-30942-8_3

22 M. M. Moscato et al.

detecting if an aircraft’s trajectory encounters weather cells, which are modeled
as moving polygons.

PolyCARP implements point-in-polygon methods, i.e., methods for checking
whether or not a point lies inside a polygon, that are based on the winding num-
ber computation. The winding number of a point p with respect to a polygon
is the number of times any point traveling counterclockwise along the perimeter
of the polygon winds around p. Properties of these methods have been formally
verified in the Prototype Verification System (PVS) [28]. A correct implementa-
tion of these methods is essential to safety-critical geo-containment applications
that rely on PolyCARP.

When an algorithm involving real numbers is implemented using floating-
point numbers, round-off errors arising from the difference between real-number
computations and their floating-point counterparts may affect the correctness of
the algorithm. In fact, floating-point implementations of point-in-polygon meth-
ods are very sensitive to round-off errors. For instance, the presence of floating-
point computations in Boolean expressions of conditional statements may cause
the control flow of the floating-point program to diverge from the ideal real-
number program, resulting in the wrong computation of the winding number.
This may happen even when the point is far from the edges of the polygon.

This paper presents a formally verified floating-point C implementation of
the winding number algorithm. This implementation is obtained by applying a
program transformation to the original algorithm. This transformation replaces
numerically unstable conditions with more restrictive ones that preserve the
control flow of the ideal real number specification. The transformed program is
guaranteed to return a warning when real and floating-point flows may diverge.
The program transformation used is an extension of the one defined in [32] and
it has been implemented within PRECiSA1 (Program Round-off Error Certifier
via Static Analysis), a static analyzer of floating-point programs [24,30].

Frama-C [20] is used to formally verify the correctness of the generated C
program. Frama-C is a collaborative platform that hosts several plugins for the
verification and analysis of C code. In particular, in this work, an extension
of the Frama-C/WP (Weakest Precondition calculus) plugin is implemented to
automatically generate verification conditions that can be discharged in PVS.

The rest of this paper is organized as follows. Section 2 presents the defini-
tion of the winding number. An extension of the program transformation defined
in [30] is presented in Sect. 3. In Sect. 4, the transformed floating-point version
of the winding number is introduced. The verification approach used to prove
the correctness of the C floating-point implementation of the transformed pro-
gram is explained in Sect. 5. Related work is discussed in Sect. 6. Finally, Sect. 7
concludes the paper.

1 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.

https://github.com/nasa/PRECiSA

Provably Correct Floating-Point Implementation of a Point-in-Polygon 23

2 The Winding Number Algorithm

The winding number of a point s with respect to a polygon P is defined as the
number of times the perimeter of P travels counterclockwise around s. For simple
polygons, i.e., the ones that do not contain intersecting edges, this function can
be used to determine whether s is inside or outside P . In [25], the winding number
of s with respect to P is computed by applying a geometric translation that sets
s as the origin of coordinates. For each edge e of P , the algorithm counts how
many axes e intersects. This contribution can be positive or negative, depending
on the direction of the edge e. If the sum of all contributions from all edges is 0
then s is outside the perimeter of P , otherwise, it is inside. Figure 1 shows the
edge contributions in the computation of the winding number for two different
polygons.

x

y

+1

−1

−2 +2

+0

(a) The sum of the contributions
is 0 and the point is outside.

x

y

+1

+1
+2

+0

(b) The sum of the contributions
is 4 and the point is inside.

Fig. 1. Winding number edge contributions

Mathematical functions that define the winding number algorithm are pre-
sented in Fig. 2. Given a point v = (vx, vy), the function Quadrant returns
the quadrant in which v is located. Given the endpoints of an edge e, v =
(vx, vy) and v′ = (v′

x, v′
y), and the point under test s = (sx, sy), the function

EdgeContrib(vx, vy, v′
x, v′

y, sx, sy) computes the number of axes e intersects in
the coordinate system centered in s. This function checks in which quadrants v
and v′ are located and counts how many axes are crossed by the edge e. If v
and v′ belong to the same quadrant, the contribution of the edge to the winding
number is 0 since no axis is crossed. If v and v′ lie in adjacent quadrants, the
contribution is 1 (respectively -1) if moving from v to v′ along the edge is in
counterclockwise (respectively clockwise) direction. In the case v and v′ are in
opposite quadrants, the determinant is computed to check the direction of the
edge. If it is counterclockwise, the contribution is 2; otherwise, it is -2. The func-
tion WindingNumber takes as input a point s = (sx, sy) and a polygon P of size
n, which is represented as a couple of arrays 〈Px, Py〉 modeling the coordinates

24 M. M. Moscato et al.

of its vertices (Px(0), Py(0)) . . . (Px(n − 1), Py(n − 1)). The size of a polygon is
defined as the number of its vertices. The winding number of s with respect to
the polygon P is obtained as the sum of the contributions of all the edges in
P . The result of the winding number is 0 if and only if the polygon P does not
wind around the point s, hence s lies outside P .

Quadrant(vx, vy) = if vx ≥ 0 ∧ vy ≥ 0 then 1

elsif vx < 0 ∧ vy ≥ 0 then 2

elsif vx < 0 ∧ vy < 0 then 3

else 4

EdgeContrib(vx, vy, v′
x, v′

y, sx, sy) =

let thisx = vx − sx, thisy = vy − sy,nextx = v′
x − sx,nexty = v′

y − sy,

distx = nextx − thisx, disty = nexty − thisy,

det = distx · thisy − disty · thisx

qthis = Quadrant(thisx, thisy), qnext = Quadrant(nextx,nexty) in

if qthis = qnext then 0

elsif qnext − 1 = mod (qthis , 4) then 1

elsif qthis − 1 = mod (qnext , 4) then −1

elsif det ≤ 0 then 2

else −2

WindingNumber(Px, Py, sx, sy, i) =

if i < size(Px) − 1

then EdgeContrib(Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy)

+WindingNumber(Px, Py, sx, sy, i + 1)

else EdgeContrib(Px(i), Py(i), Px(0), Py(0), sx, sy)

Fig. 2. Winding number algorithm

It has been formally verified in PVS, that the algorithm presented in Fig. 2 is
equivalent to an alternative point-in-polygon algorithm.2 The following property
is therefore assumed.

Property 1. Given a simple polygon P = 〈Px, Py〉 and a point s = (sx, sy), s lies
outside P if and only if WindingNumber(Px, Py, sx, sy, 0) = 0.

A formal proof of Property 1 that does not rely on an alternative algorith-
mic method to check point containment is a hard problem beyond the scope of
this paper. In particular, a proof of this statement involving a non-algorithmic
definition of containment may require the formal development of fundamental
topological concepts such as the Jordan Curve theorem.
2 https://github.com/nasa/PolyCARP.

https://github.com/nasa/PolyCARP

Provably Correct Floating-Point Implementation of a Point-in-Polygon 25

3 Program Transformation to Avoid Unstable Tests

Floating-point numbers are widely used to represent real numbers in computer
programs since they offer a good trade-off between efficiency and precision. A
floating-point number can be formalized as a pair of integers (m, e) ∈ Z

2, where
m is called the significand and e the exponent of the float [7,13]. Henceforth, F
will denote the set of floating-point numbers. A conversion function R : F → R is
defined to refer to the real number represented by a given float, i.e., R((m, e)) =
m · be where b is the base of the representation. According to the IEEE-754
standard [19], each floating-point operation must be computed as if its result is
first calculated correct to infinite precision and with unbounded range and then
rounded to fit a particular floating-point format.

The main drawback of using floating-point numbers is the presence of round-
off errors that originate from the difference between the ideal computation in
real arithmetic and the actual floating-point computation. Let ṽ be a floating-
point number that represents a real number r , the difference |R(ṽ) − r | is called
the round-off error (or rounding error) of ṽ with respect to r . Rounding errors
accumulate during the program execution and may affect the evaluation of both
arithmetic and Boolean expressions. As a consequence, when guards of if-then-
else statements contain floating-point expressions, as in the case of the winding
number, the output of a program is not only directly influenced by rounding
errors, but also by the error of taking the opposite branch with respect to the
real number intended behavior. This problem is known as test instability. A
conditional statement (or test) if φ̃ then S1 else S2 is said to be unstable when
φ̃ evaluates to a different Boolean value than its real-valued counterpart.

In [32], a formally proven3 program transformation is proposed to detect and
correct the effects of unstable tests for a simple language with conditionals and
let-in expressions. The output of the transformation is a floating-point program
that is guaranteed to return either the result of the original floating-point one,
when it can be assured that both the real and its floating-point flows agree,
or a warning, when these flows may diverge. In this paper, the transformation
defined in [32] has been extended to handle non-recursive function calls and
simple for-loops. This extended transformation is then applied to the winding
number algorithm.

Henceforth, the symbols A and ˜A denote the domain of arithmetic expres-
sions over real and floating-point numbers, respectively. It is assumed that there
is a function χr : ˜V → V that associates to each floating-point variable x̃ a vari-
able x ∈ V representing the real value of x̃. The function R

˜A
: ˜A → A converts

an arithmetic expression on floating-point numbers to an arithmetic expression
on real numbers. This function is defined by simply replacing each floating-
point operation with the corresponding one on real numbers and by applying
R and χr to floating-point values and variables, respectively. By abuse of nota-
tion, floating-point expressions are interpreted as their real number evaluation
when occurring inside a real-valued expression. The symbols B and ˜B denote

3 The PVS formalization is available at https://shemesh.larc.nasa.gov/fm/PRECiSA.

https://shemesh.larc.nasa.gov/fm/PRECiSA

26 M. M. Moscato et al.

the domain of Boolean expressions over real and floating-point numbers, respec-
tively. The function R

˜B
: ˜B → B converts a Boolean expression on floating-point

numbers to a Boolean expression on real numbers. Given a variable assignment
σ : V → R, evalB(σ,B) ∈ {true, false} denotes the evaluation of the real Boolean
expression B. Similarly, given ˜B ∈ ˜B and σ̃ : ˜V → F, ˜eval

˜B
(σ̃, ˜B) ∈ {true, false}

denotes the evaluation of the floating-point Boolean expression ˜B. A program
is defined as a set of function declarations of the form f(x̃1, . . . , x̃n) = S , where
S is a program expression that can contain binary and n-ary conditionals, let
expressions, arithmetic expressions, non-recursive function calls, for-loops, and a
warning exceptional statement ω. Given a set Σ of function symbols, the syntax
of program expressions S is given by the following grammar.

S :: =˜A | if ˜B then S else S | if ˜B then S [elsif ˜B then S]mi=1 else S

| let x̃ = ˜A in S | for(i0, in, acc0, λ(i, acc).S) | g(˜A, . . . , ˜A) | ω,
(3.1)

where ˜A ∈ ˜A, ˜B ∈ ˜B, x̃, i, acc ∈ ˜V, g ∈ Σ, m ∈ N
>0, and i0, in, acc0 ∈ N.

The notation [elsif ˜B then S]mi=1 denotes a list of m elsif branches. The for
expression emulates a for loop where i is the control variable that ranges from
i0 to in, acc is the variable where the result is accumulated with initial value
acc0, and S is the body of the loop. For instance, for(1, 10, 0, λ(i, acc).i + acc)
represents the value f(1, 0), where f is the recursive function f(i, acc) ≡ if i >
10 then acc else f(i + 1, acc + i). The set of program expressions is denoted as
S, while the set of programs is denoted as P.

The proposed transformation takes into account round-off errors by replac-
ing the Boolean expressions in the guards of the original program with more
restrictive ones. This is done by means of two abstractions β+, β− : ˜B → ˜B

defined as follows for conjunctions and disjunctions of sign tests, where ẽxpr ∈ ˜A

and ε ∈ ˜V is a variable that represents the rounding error of ẽxpr such that
|ẽxpr − R

˜A
(ẽxpr)| ≤ ε and ε ≥ 0.

β+(ẽxpr ≤ 0) = ẽxpr ≤ −ε β−(ẽxpr ≤ 0) = ẽxpr > ε

β+(ẽxpr ≥ 0) = ẽxpr ≥ ε β−(ẽxpr ≥ 0) = ẽxpr < −ε

β+(ẽxpr < 0) = ẽxpr < −ε β−(ẽxpr < 0) = ẽxpr ≥ ε

β+(ẽxpr > 0) = ẽxpr > ε β−(ẽxpr > 0) = ẽxpr ≤ −ε

β+(φ̃1 ∧ φ̃2) = β+(φ̃1) ∧ β+(φ̃2) β−(φ̃1 ∧ φ̃2) = β−(φ̃1) ∨ β−(φ̃2)

β+(φ̃1 ∨ φ̃2) = β+(φ̃1) ∨ β+(φ̃2) β−(φ̃1 ∨ φ̃2) = β−(φ̃1) ∧ β−(φ̃2)

β+(¬φ̃) = β−(φ̃) β−(¬φ̃) = β+(φ̃)

Generic inequalities of the form a < b are handled by replacing them with their
equivalent sign-test form a − b < 0.

The following lemma states that β+(φ̃) implies both φ̃ and its real counter-
part, while β−(φ̃) implies both the negation of φ̃ and the negation of its real
counterpart. The proof is available as part of the PVS formalization defined in
[32].

Provably Correct Floating-Point Implementation of a Point-in-Polygon 27

Lemma 1. Given φ̃ ∈ ˜B, let fv(φ̃) be the set of free variables in φ̃. For all
σ : {χr (x̃) | x̃ ∈ fv(φ̃)} → R, σ̃ : fv(φ̃) → F, and x̃ ∈ fv(φ̃) such that R(σ̃(x̃)) =
σ(χr (x̃)), β+ and β− satisfy the following properties.

1. ˜eval
˜B
(σ̃, β+(φ̃)) ⇒ ˜eval

˜B
(σ̃, φ̃) ∧ evalB(σ,R

˜B
(φ̃)).

2. ˜eval
˜B
(σ̃, β−(φ̃)) ⇒ ˜eval

˜B
(σ̃,¬φ̃) ∧ evalB(σ,¬R

˜B
(φ̃)).

The transformation function τ : S → S applies β+ and β− to the guards in
the conditionals. For binary conditional statements, τ is defined as follows.

– If φ̃ �= β+(φ̃) or φ̃ �= β−(φ̃):

τ(if φ̃ then S1 else S2) =

if β+(φ̃) then τ(S1) elseif β−(φ̃) then τ(S2) else ω;

– If φ̃ = β+(φ̃) and φ̃ = β−(φ̃):

τ(if φ̃ then S1 else S2) =if φ̃ then τ(S1) else τ(S2).

When the round-off error does not affect the evaluation of the Boolean expres-
sion, i.e., φ̃ = β+(φ̃) and φ̃ = β−(φ̃), the transformation is just applied to the
subprograms S1 and S2. Otherwise, the then branch of the transformed program
is taken when β+(φ̃) is satisfied. From Lemma 1, it follows that both φ̃ and R(φ̃)
hold and, thus, the then branch is taken in both real and floating-point control
flows. Similarly, the else branch of the transformed program is taken when β−(φ̃)
holds. This means that in the original program the else branch is taken in both
real and floating-point control flows. When neither β+(φ̃) nor β−(φ̃) is satisfied,
a warning ω is issued indicating that floating-point and real flows may diverge.
In the case of the for-loop, the transformation is applied to the body of the loop.

τ(for(i0, in, acc0, λ(i, acc).S)) = for(i0, in, acc0, λ(i, acc).τ(S)). (3.2)

Given a program P ∈ P, the transformation τ̄ : P → P is defined as follows.

τ̄(P) =
⋃

{fτ (x̃1, . . . , x̃n, e1, . . . , em) = τ(S) | f(x̃1, . . . , x̃n) = S ∈ P}, (3.3)

where τ is applied to the body of the function and new arguments e1, . . . , em

are added to represent the round-off error of the arithmetic expressions occur-
ring in each test in the body of S. When either β+ or β− is applied to a
test in S, e.g. ẽxpr < 0, a new fresh variable e is introduced representing
the round-off error of the arithmetic expression occurring in the test. This
fresh variable becomes a new argument of the function and a pre-condition is
imposed stating that |ẽxpr − R

˜A
(ẽxpr)| ≤ e. In addition, for every function call

g(A1, . . . , An, e′
1, . . . , e

′
k) occurring in S, the error variables of g, e′

1, . . . , e
′
k, are

added as additional arguments to f .
When a function g is called, it is necessary to check if the returning value

is a warning ω. Let g(A1, . . . , An) be a call to the function g(x1, . . . , xn) = S

28 M. M. Moscato et al.

in the original program with actual parameters A1, . . . , An ∈ ˜A. Additionally,
let gτ (x1, . . . , xn, e1, . . . , em) = τ(S) be the corresponding function declaration
in the transformed program such that for all i = 1 . . . m, ẽxpr i is an arithmetic
expression occurring in a transformed test and |ẽxpr i − R

˜A
(ẽxpr i)| ≤ ei. The

transformation of the function call is defined as follows:

τ(g(A1, . . . , An)) = if A1 = ω then ω

...
elsif An = ω then ω

else gτ (A1, . . . , An, e′
1, . . . , e

′
m),

where for all i = 1 . . . m, e′
i is such that |ẽxpr i[xi/Ai]ni=1−R

˜A
(ẽxpr i[xi/Ai]ni=1)| ≤

e′
i. In this case, the information regarding the error variables is instantiated with

the actual parameters of the function.
The following theorem states the correctness of the program transformation.

The transformed program is guaranteed to return either the result of the original
floating-point program, when it can be assured that both its real and floating-
point flows agree, or a warning ω when these flows may diverge.

Theorem 1 (Program Transformation Correctness). Given P ∈ P, for
all f(x̃1,. . . ,x̃n) = S ∈ P , σ : {x1 . . . xn} → R, and σ̃ : {x̃1 . . . x̃n} → F, such
that for all i ∈ {1, . . . , n}, R(σ̃(x̃i)) = σ(xi):

fτ (x̃1, . . . , x̃n, e1, . . . , em) �= ω ⇐⇒ f(x1, . . . , xn) = fτ (x̃1, . . . , x̃n, e1, . . . , em)

where fτ (x̃1, . . . , x̃n, e1, . . . , em) ∈ τ̄(P).

Theorem 1 follows from Lemma 1 and the definition of the program trans-
formation τ̄ . It has been formally proved in PVS for the particular case of the
winding number transformation. A general PVS proof of this statement for an
arbitrary program is under development.

4 Test-Stable Version of the Winding Number

The use of floating-point numbers to represent real values introduces test insta-
bility in the program defined in Sect. 2. A technique used in PolyCARP to miti-
gate the uncertainty of floating-point computations in the winding number algo-
rithm is to consider a buffer area around the perimeter of the polygon that is
assumed to contain the points that may produce instability. As part of this work,
the PRECiSA static analyzer [24,30] is used to validate if a buffer that protects
against instability exists. PRECiSA accepts as input a floating-point program
and computes a sound over-approximation of the floating-point accumulated
round-off error that may occur in each computational path of the program. In
addition, the corresponding path conditions are also collected for both stable and

Provably Correct Floating-Point Implementation of a Point-in-Polygon 29

sx

sy

−1 0 1 2 3
0

1

2

3

4

v

v′

Fig. 3. Points that cause instability in EdgeContrib and WindingNumber .

unstable cases. When real and floating-point flows diverge, PRECiSA outputs
the Boolean conditions under which the instability occurs.

Given the unstable conditions produced by PRECiSA for the winding number
algorithm, an over-approximation of the region of instability is generated by
using the paving functionality of the Kodiak global optimizer [26]. Concrete
examples for these instability conditions are searched in the instability region by
using the FPRoCK [29] solver, a tool able to check the satisfiability of mixed real
and floating-point Boolean expressions. As an example, consider the edge (v, v′),
where v = (1, 1) and v′ = (3, 2), in the polygon depicted in Fig. 3. The red lines
represent a guaranteed over-approximation of the values for sx and sy that may
cause instability in the function EdgeContrib with respect to the considered
edge. The black aircraft denotes a case in which the contribution of the edge
(v, v′) has a different value in real and floating-point arithmetic. In fact, when
sx = 4 and sy ≈ 1.0000000000000001, the real function EdgeContrib returns
-1, indicating that v and v′ are located in adjacent quadrants. However, its
floating-point counterpart returns 0 meaning that the vertices are located in the
same quadrant. The red aircraft represents the point sx ≈ 2.0000000000000002,
sy = 1.5, for which the main function WindingNumber returns 0, i.e., the point
is outside, when evaluated with real arithmetics, and it returns 4, i.e., the point
is inside, when evaluated in floating-point arithmetic. This figure suggests that
simply considering a buffer around the edge is not enough to guarantee the
correct behavior of the EdgeContrib function since errors in the contribution can
happen also when the point is far from the boundaries. It has been conjectured
that, for this algorithm, when the checked point is far from the edges of the
polygon, the error occurring in one edge is compensated with the error of another
edge of the polygon in the computation of the winding number. To the authors’
knowledge, no formal proof of this statement exists.

The floating-point program depicted in Fig. 4 is obtained by applying the
transformation τ̄ from Sect. 3 to the real-number winding number algorithm
presented in Fig. 2. The function Quadrantτ has two additional arguments, ex

and ey, modeling the round-off errors of vx and vy, respectively. Thus,

30 M. M. Moscato et al.

|vx − χr (vx)| ≤ ex, |vy − χr (vy)| ≤ ey, and ex, ev ≥ 0. (4.1)

The tests are approximated by means of the functions β+ and β− by replacing
the value 0 with the error variables ex and ey.

The function EdgeContribτ contains two calls to Quadrantτ . Therefore, it is
necessary to check if any of these calls return a warning ω. If this is the case,
EdgeContribτ also returns ω since a potential instability has been detected in
the calculation of Quadrantτ . The function EdgeContribτ has five additional
arguments with respect to its real number counterpart EdgeContrib. Besides
edet that represents the error of the expression calculating the determinant, the
error variables appearing in the calls to Quadrantτ are considered: ethisx , ethisy ,
enextx , and enexty . The new parameters are such that:

|thisx − R
˜A
(thisx)| ≤ ethisx , |thisy − R

˜A
(thisy)| ≤ ethisy ,

|nextx − R
˜A
(nextx)| ≤ enextx |nexty − R

˜A
(nexty)| ≤ enexty

|det − R
˜A
(det)| ≤ edet , and ethisx , ethisy , enextx , enexty , edet ≥ 0.

(4.2)

The conditional in the main function WindingNumberτ does not introduce any
new error variable, therefore just the error parameters in the calls to EdgeContrib
are considered. Let n = size(Px) be the size of the polygon P , and let fdet be
the function calculating the determinant, which is defined as follows

fdet(vx, vy, v′
x, v′

y, sx, sy) = ((vx − sx) − (v′
x − sx)) · (v′

y − sy)

−((vy − sy) − (v′
y − sy)) · (v′

x − sx).

(4.3)

The error variables ex, ey, and edet are such that:

ex, ey, edet ≥ 0,

∀i = 0 . . . n − 1 : |(Px(i) − sx) − R
˜A
(Px(i) − sx)| ≤ ex,

|(Py(i) − sy) − R
˜A
(Py(i) − sy)| ≤ ey,

(4.4)

∀i = 0 . . . n − 2 : |fdet(Px(i + 1), Py(i + 1), Px(i), Py(i), sx, sy)
− R

˜A
(fdet(Px(i + 1), Py(i + 1), Px(i), Py(i), sx, sy))| ≤ edet ,

|fdet(Px(0), Py(0), Px(n − 1), Py(n − 1), sx, sy)
− R

˜A
(fdet(Px(0), Py(0), Px(n − 1), Py(n − 1), sx, sy))| ≤ edet .

5 Verification Approach

This section presents the approach used to obtain a formally verified test-stable
C implementation of the winding number algorithm that uses floating-point
numbers. The toolchain is comprised of the PVS interactive prover, the static
analyzer PRECiSA, and the Frama-C analyzer [20]. The input is a real-valued
program P expressed in the PVS specification language. The output is a C imple-
mentation of P that correctly detects and corrects unstable tests. An overview
of the approach is depicted in Fig. 5.

Provably Correct Floating-Point Implementation of a Point-in-Polygon 31

Quadrantτ (vx, vy, ex, ey) = if vx ≥ ex ∧ vy ≥ ey then 1

elsif vx < −ex ∧ vy ≥ ey then 2

elsif vx < −ex ∧ vy < −ey then 3

elsif vx ≥ ex ∧ vy < −ey then 4

else ω

EdgeContribτ (vx, vy, v′
x, v′

y, sx, sy, ethisx , ethisy , enextx , enexty , edet) =

let thisx = vx − sx, thisy = vy − sy,nextx = v′
x − sx,nexty = v′

y − sy,

distx = nextx − thisx, disty = nexty − thisy, det = distx · thisy − disty · thisx,

qthis = Quadrantτ (thisx, thisy, ethisx , ethisy),

qnext = Quadrantτ (nextx,nexty, enextx , enexty) in

if qthis = ω or qnext = ω then ω

elsif qthis = qnext then 0

elsif qnext − 1 = mod (qthis , 4) then 1

elsif qthis − 1 = mod (qnext , 4) then −1

elsif (det ≤ −edet) then 2

elsif (det > edet) then −2

else ω

WindingNumberτ (Px, Py, sx, sy, i, ex, ey, edet) =

if i < n − 1 then

(if EdgeContribτ (Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy, ex, ey, ex, ey, edet) = ω

then ω

else EdgeContribτ (Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy, ex, ey, ex, ey, edet)

+WindingNumberτ (Px, Py, sx, sy, i + 1, ex, ey, ex, ey, edet))

else

(if EdgeContribτ (Px(i), Py(i), Px(0), Py(0), sx, sy, ex, ey, ex, ey, edet) = ω

then ω

else EdgeContribτ (Px(i), Py(i), Px(0), Py(0), sx, sy, ex, ey, ex, ey, edet)

Fig. 4. Pseudo-code on floating-point arithmetic of the transformed winding number
algorithm

Fig. 5. Verification approach.

32 M. M. Moscato et al.

As already mentioned, PRECiSA is a static analyzer that computes an over-
estimation of the round-off error that may occur in a program. In addition,
it automatically generates a PVS proof certificate ensuring the correctness of
the computed bound. In this work, PRECiSA is extended to implement the
transformation defined in Sect. 3 and to generate the corresponding C code.
Given a desired floating-point format (single or double precision), PRECiSA is
used to convert the PVS real-number version of the winding-number algorithm
defined in Sect. 2 into a floating-point program. This is done by replacing all the
real operators with their floating-point counterpart and by approximating the
real variables and constants with their floating-point representation. The integer
operations, variables, and constants are left unchanged since they do not carry
round-off errors. Subsequently, the transformation presented in Sect. 3 is applied.
To facilitate the translation from PVS to C syntax, the function WindingNumber
has been reformulated using the for-iterate scheme introduced in Eq. (3.1) that
emulates an imperative for-loop in a functional setting.

WindingNumber(Px, Py, sx, sy, i) =
for(0, size(Px) − 1, 0, λi, acc. if i < size(Px) − 2

then acc + EdgeContrib(Px(i), Py(i), Px(i + 1), Py(i + 1), sx, sy)
else acc + EdgeContrib(Px(i), Py(i), Px(0), Py(0), sx, sy)).

(5.1)
The result of the transformation is the program shown in Fig. 4 where a for-loop
replaces the recursive call in the main function WindingNumberτ .

The transformed program is then converted in C syntax with ACSL annota-
tions. The ANSI/ISO C Specification Langage (ACSL [1]) is a behavioral spec-
ification language for C programs centered on the notion of function contract.
For each function in the transformed program, a C procedure is automatically
generated. In addition, the functions in the original version of the winding num-
ber algorithm, defined in Sect. 2, are rephrased as ACSL axiomatic logic func-
tions. For each function, ACSL preconditions are added to relate C floating-point
expressions with their corresponding logic real-valued counterpart through the
error variable representing their round-off error. As mentioned in Sect. 4, a fresh
error variable e is introduced for each floating-point arithmetic expression ẽxpr
occurring in the conditional tests. For each new error variable, a precondition
stating that |ẽxpr − R

˜A
(ẽxpr)| ≤ e is added.

The loop invariant of the function WindingNumberτ is specified as an ACSL
annotation before the for-loop as follows

∀i = 0 . . . size(Px). if acc = 0 then 0
else acc = WindingNumberτ (Px, Py, sx, sy, i − 1, ex, ey, edet).

This information is required in order to prove the correctness of each iteration of
the for-loop and has to be provided as an input to PRECiSA together with the
input program. In addition, PRECiSA identifies the for-loop variant size(Px)− i
that is also needed for the verification of the loop. For each function, a post-
condition is added stating that if the result is different from ω, then the result

Provably Correct Floating-Point Implementation of a Point-in-Polygon 33

of the C function is the same as the real-valued logic function that corresponds
to the initial PVS specification.

To verify the correctness of the C code generated by PRECiSA with respect
to the accompanying ACSL contracts, an extension of the Weakest Precondi-
tion (WP) plug-in of Frama-C has been developed. This plug-in implements the
weakest precondition calculus for ACSL annotations of C programs. For each
ACSL annotation, the plug-in generates a set of verification conditions (VCs)
that can be discharged by a suite of external provers. In this work, support for
generating PVS VCs is added to the Frama-C/WP plug-in. This extension links
the generated VCs with the formal certificates generated by PRECiSA regarding
the round-off errors and the original PVS formalization of the winding number.
Frama-C/WP generates a set of PVS declarations from the ACSL logic defi-
nitions. These declarations are proved to be mathematically equivalent to the
original winding number PVS formalization (Fig. 2) in the PVS theorem prover.
In addition, Frama-C/WP computes a set of verification conditions from the pre
and post conditions stating the correctness of the C program with respect to the
ACSL logic definitions. The verification conditions generated for the functions
Quadrantτ and EdgeContribτ are formalized in the following lemmas.

Lemma 2. Let vx, vy, ex, ey ∈ ˜V such that |vx − χr (vx)| ≤ ex and |vy −
χr (vy)|≤ey, if Quadrantτ(vx, vy, ex, ey) �=ω, then Quadrant(vx, vy)=Quadrantτ

(vx, vy, ex, ey).

Lemma 3. Let vx, vy, v′
x, v′

y, sx, sy, ethisx , ethisy , enextx , enexty , edet ∈ ˜V such that
the inequalities in Eq. (4.2) hold.

If EdgeContribτ (vx, vy, v′
x, v′

y, sx, sy, ethisx , ethisy , enextx , enexty , edet) �= ω,
then EdgeContrib(vx, vy, v′

x, v′
y, sx, sy) = EdgeContribτ(vx, vy, v′

x, v′
y, sx, sy,

ethisx , ethisy, enextx , enexty , edet).

The following theorem summarizes the verification conditions generated for
the main function WindingNumberτ . All these verification conditions are proven
with the help of the PVS theorem prover4.

Theorem 2. Let vx, vy, v′
x, v′

y, sx, sy, ex, ey, edet ∈ ˜V and P = 〈Px, Py〉 a poly-
gon of size n such that for all i = 0 . . . n−1 Px(i), Py(i) ∈ ˜V and the inequalities
in Eq. (4.4) hold.

If WindingNumberτ (Px, Py, sx, sy, i, ex, ey, ex, ey, edet) �= ω, then
WindingNumber(Px, Py, sx, sy, i) = WindingNumberτ (Px, Py, sx, sy, i, ex, ey,
edet).

The parameters representing the round-off errors of the arithmetic expres-
sions occurring in the body of each function can be instantiated with concrete
numerical values. Given numerical bounds for the input variables, the numerical
error values are automatically computed by PRECiSA by means of the Kodiak

4 The PVS verification conditions generated by Frama-C and their proofs can be found
at https://shemesh.larc.nasa.gov/fm/PolyCARP.

https://shemesh.larc.nasa.gov/fm/PolyCARP

34 M. M. Moscato et al.

global optimizer [26]. For example, assuming Px(i), sx ∈ [−1000, 1000] for all
i = 0..size(Px), PRECiSA computes the upper bound 3.637978807091714×10−12

for the error variable ex meaning that |(Px(i) − sx) − R
˜A
(Px(i) − sx)| ≤

3.637978807091714 × 10−12. PRECiSA also emits the proof certificates ensuring
that the numerical result computed by Kodiak is a correct over-approximation
of the round-off error occurring in the considered expression.

The PRECiSA certificates prove the correctness of the round-off error bounds
used in the program transformation. They are essential to ensure that the trans-
formed program is correct, i.e., the Boolean abstractions β+ and β− are correctly
over-estimating the conditional tests and, thus, Lemma 1 holds. Additionally,
they are used to prove the verification conditions generated by Frama-C/WP,
for instance, the preconditions on the error defined in Eqs. (4.2) and (4.3).

6 Related Work

Several techniques and tools have been developed to formally verify properties
of C programs related to floating-point numbers. Fluctuat [18] and Astrée [12]
are commercial tools based on abstract interpretation [11], which have been
successfully used to verify and analyze numerical properties for industrial and
safety-critical C code, including aerospace software. Fluctuat is a static ana-
lyzer that computes round-off error bounds for C programs with annotations.
Astrée is a fully-automatic static analyzer that uses sound floating-point abstract
domains [9,23] to uncover the presence of run-time exceptions such as division
by zero and under and over-flows. Astrée has been applied to automatically
check the absence of runtime errors associated with floating-point computations
in aerospace control software [2]. For instance, the fly-by-wire primary software
of commercial airplanes is verified with the help of Astrée [14]. Moreover, Astrée
and Fluctuat have been used in combination to analyze on-board software acting
in the Monitoring and Safing Unit of the ATV space vehicle [8]. In contrast to
the technique presented in this paper, the above-mentioned approaches do not
provide formal proof certificates that can be discharged in an external prover.
This is particularly useful for safety-critical systems since the proof certificates
improve the trustworthiness of the approach. In addition, in contrast with the
tools used in this paper, Fluctuat and Astrée are not open-source.

Caduceus [5,16] is a tool that produces verification conditions from anno-
tated C code with the help of the platform Why [3]. Similarly, in [6], a chain of
tools composed of Frama-C, the Jessie plug-in [22], and Why is used to auto-
matically generate verification conditions, which are checked by several external
provers. These approaches were used to formally verify wave propagation differ-
ential equations [4], a pairwise state-based conflict detection algorithm [17], and
numerical properties of industrial software related to inertial navigation [21].
In [31], a combination of Frama-C and PVS was used to verify a numerically
improved version of the Compact Position Reporting (CPR) algorithm, a key
component of the ADS-B protocol allowing aircraft to share their position. In
this case, Frama-C was used to generate verification conditions discharged using

Provably Correct Floating-Point Implementation of a Point-in-Polygon 35

the SMT solver Alt-Ergo [10] and the prover Gappa [15]. PVS was employed
to prove the equivalence between the original implementation of the CPR algo-
rithm and the improved one. In contrast to [31], the verified C code presented in
this paper is automatically generated from the PVS specification. None of the
approaches mentioned before tackle the problem of detecting unstable tests.

7 Conclusion

In this paper, a formal approach is proposed to generate and to verify a test-
stable version of the winding number algorithm. This version is obtained by
applying an extension of the program transformation defined in [30] that over-
approximates the Boolean expressions occurring in conditional statements. The
over-approximation soundly handles round-off errors that may occur in the
numerical computation of the expression. A warning is issued when real and
floating-point flows may diverge. Otherwise, the transformed program is guar-
anteed to return the same output with respect to the original algorithm. The
static analyzer PRECiSA [24,30] is enhanced with a module implementing this
transformation and with a C/ACSL code generator. Thus, given the PVS pro-
gram specification of the winding number assuming real numbers arithmetics,
PRECiSA automatically generates its test-stable floating-point version in C syn-
tax enriched with ACSL annotations. As a future work, this approach will be
extended to handle generic algorithms involving non-recursive function calls, for
loops, conditionals, and let-in expressions.

The generated C implementation of the winding number is analyzed within
the Frama-C tool suite. In this work, the Frama-C/WP [20] plug-in is extended
to generate verification conditions in PVS syntax. These verification conditions
state that the transformed floating-point version of the winding number is correct
with respect to its real-valued specification, meaning that if the C implementa-
tion answers that a point is inside (or outside) a polygon the same answer would
be obtained in the ideal real number implementation of the original algorithm.
The verification conditions generated by Frama-C are proven correct within the
PVS theorem prover.

The verification of the correctness of the transformed C program relies on
three different tools: the PVS interactive prover, the Frama-C analyzer, and
PRECiSA. All of these tools are based on rigorous mathematical foundations
and have been used in the verification of industrial and safety-critical systems.
The C floating-point transformed program, the PVS verification conditions, and
the round-off errors bounds are automatically generated. However, the verifica-
tion approach proposed in this work requires some level of expertise for proving
the PVS verification conditions generated by Frama-C. In the future, the authors
plan to define proof strategies that automatically discharge these PVS verifica-
tion conditions.

36 M. M. Moscato et al.

References

1. Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language, version 1.12 (2016)
2. Bertrane, J., et al.: Static analysis and verification of aerospace software by abstract

interpretation. Found. Trends Prog. Lang. 2(2–3), 71–190 (2015)
3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.

Int. J. Softw. Tools Technol. Transf. 17(6), 709–727 (2015)
4. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave

equation numerical resolution: a comprehensive mechanized proof of a C program.
J. Autom. Reasoning 50(4), 423–456 (2013)

5. Boldo, S., Filliâtre, J.C.: Formal verification of floating-point programs. In: Pro-
ceedings of ARITH18 2007, pp. 187–194. IEEE Computer Society (2007)

6. Boldo, S., Marché, C.: Formal verification of numerical programs: from C annotated
programs to mechanical proofs. Math. Comput. Sci. 5(4), 377–393 (2011)

7. Boldo, S., Muñoz, C.: A high-level formalization of floating-point numbers in PVS.
Technical Report CR-2006-214298, NASA (2006)

8. Bouissou, O., et al.: Space software validation using abstract interpretation. In:
Proceedings of the International Space System Engineering Conference, Data Sys-
tems in Aerospace, DASIA 2009, pp. 1–7. ESA publications (2009)

9. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-89330-1 2

10. Conchon, S., Contejean, E., Kanig, J., Lescuyer, S.: CC(X): semantic combination
of congruence closure with solvable theories. Electron. Notes Theoret. Comput.
Sci. 198(2), 51–69 (2008)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of tha 4th ACM Symposium on Principles of Programming Languages,
POPL 1977, pp. 238–252. ACM (1977)

12. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0 3

13. Daumas, M., Rideau, L., Théry, L.: A generic library for floating-point numbers and
its application to exact computing. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs
2001. LNCS, vol. 2152, pp. 169–184. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44755-5 13

14. Delmas, D., Souyris, J.: Astrée: from research to industry. In: Nielson, H.R., Filé,
G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74061-2 27

15. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point imple-
mentation of an elementary function using Gappa. IEEE Trans. Comput. 60(2),
242–253 (2011)

16. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 10

17. Goodloe, A.E., Muñoz, C., Kirchner, F., Correnson, L.: Verification of numerical
programs: from real numbers to floating point numbers. In: Brat, G., Rungta, N.,
Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 441–446. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38088-4 31

https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/3-540-44755-5_13
https://doi.org/10.1007/3-540-44755-5_13
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-540-30482-1_10
https://doi.org/10.1007/978-3-642-38088-4_31

Provably Correct Floating-Point Implementation of a Point-in-Polygon 37

18. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006). https://doi.
org/10.1007/11823230 3

19. IEEE: IEEE standard for binary floating-point arithmetic. Technical report, Insti-
tute of Electrical and Electronics Engineers (2008)

20. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

21. Marché, C.: Verification of the functional behavior of a floating-point program: an
industrial case study. Sci. Comput. Prog. 96, 279–296 (2014)

22. Marché, C., Moy, Y.: The Jessie Plugin for Deductive Verification in Frama-C
(2017)

23. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24725-8 2

24. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.A.: Automatic estimation of verified
floating-point round-off errors via static analysis. In: Tonetta, S., Schoitsch, E.,
Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 213–229. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66266-4 14

25. Narkawicz, A., Hagen, G.: Algorithms for collision detection between a point and a
moving polygon, with applications to aircraft weather avoidance. In: Proceedings
of the AIAA Aviation Conference (2016)

26. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS,
vol. 8164, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54108-7 17

27. Narkawicz, A., Muñoz, C., Dutle, A.: The MINERVA software development pro-
cess. In: 6th Workshop on Automated Formal Methods, AFM 2017 (2017)

28. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

29. Salvia, R., Titolo, L., Feliú, M., Moscato, M., Muñoz, C.,Rakamaric, Z.: A mixed
real and floating-point solver. In: 11th Annual NASAFormal Methods Symposium
(NFM 2019) (2019)

30. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. Verification,
Model Checking, and Abstract Interpretation. LNCS, vol. 10747, pp. 516–537.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 24

31. Titolo, L., Moscato, M.M., Muñoz, C.A., Dutle, A., Bobot, F.: A formally verified
floating-point implementation of the compact position reporting algorithm. In:
Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol.
10951, pp. 364–381. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
95582-7 22

32. Titolo, L., Muñoz, C.A., Feliú, M.A., Moscato, M.M.: Eliminating unstable tests
in floating-point programs. In: Mesnard, F., Stuckey, P.J. (eds.) LOPSTR 2018.
LNCS, vol. 11408, pp. 169–183. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13838-7 10

https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/978-3-540-24725-8_2
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-95582-7_22
https://doi.org/10.1007/978-3-319-95582-7_22
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1007/978-3-030-13838-7_10

Formally Verified Roundoff Errors Using
SMT-based Certificates and Subdivisions

Joachim Bard, Heiko Becker(B), and Eva Darulova

MPI-SWS, Saarland Informatics Campus, Saarbrücken, Germany
{jbard,hbecker,eva}@mpi-sws.org

Abstract. When compared to idealized, real-valued arithmetic, finite
precision arithmetic introduces unavoidable errors, for which numerous
tools compute sound upper bounds. To ensure soundness, providing for-
mal guarantees on these complex tools is highly valuable.

In this paper we extend one such formally verified tool, FloVer. First,
we extend FloVer with an SMT-based domain using results from an
external SMT solver as an oracle. Second, we implement interval subdi-
vision on top of the existing analyses. Our evaluation shows that these
extensions allow FloVer to efficiently certify more precise bounds for
nonlinear expressions.

Keywords: Coq · Roundoff error · Finite-precision · SMT ·
Subdivision

1 Introduction

Floating-point or fixed-point arithmetic are commonly used representations of
the reals in today’s computers. They necessarily only provide a discrete approx-
imation of infinite-precision reals, resulting in roundoff errors. These errors are
introduced by arithmetic operations and are individually small, but can accu-
mulate during the course of a computation. For safety-critical systems, it is thus
imperative to soundly bound the overall roundoff error of a program.

A number of automated static analysis tools have been developed in the past
for computing roundoff error bounds [4,6,9,10,13,14]. However, their analyses
and implementations are complex, raising questions of correctness. Most of these
tools thus generate certificates which can be independently and formally verified
by a theorem prover such as Coq [1], PVS [12] or HOL4 [2].

One tool to check certificates is FloVer [3], an open source certificate checker
for roundoff errors computed using a dataflow static analysis. FloVer’s checker
functions are formally verified in Coq and HOL4 and check roundoff error bounds
computed by external tools for floating-point as well as fixed-point arithmetic.
The current version of FloVer uses the interval [11] and affine arithmetic (AA) [8]
abstract domains, which are efficient and accurate for linear expressions, but
which suffer from over-approximations for nonlinear arithmetic programs.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 38–44, 2019.
https://doi.org/10.1007/978-3-030-30942-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_4

Roundoff Errors Using SMT and Subdivisions 39

Theorem

Type Inference

Certificate Subdivision Checker

Real Range Checker

Machine Range Checker

Roundoff Error Checker

:Function

:Errors
:Ranges

:Types

:Queries

:Precondition
IA AA SMT

:Subdivisions

Fig. 1. Overview of FloVer’s infrastructure

In this paper, we describe two new approaches to certify tighter error bounds
and implement them in FloVer’s Coq formalization. First, we implement an
SMT-based range estimation [5] (Sect. 2) which computes tighter enclosures for
expressions using a trusted SMT solver as an oracle. Second, interval subdivi-
sion [4,9] (Sect. 2) further increases analysis precision by splitting input ranges
into disjoint subintervals and by analyzing them separately. These techniques are
employed by unverified state-of-the-art tools [4,9] but were beyond the scope of
formally verified checkers. Our extensions presented in this paper thus close the
gap between the errors computed from state-of-the-art tools and what can be cer-
tified. Our experimental evaluation (Sect. 3) shows that our extensions increase
FloVer’s accuracy on a standard benchmark set of nonlinear expressions, while
maintaining a reasonable certificate checking time. Our implementation is avail-
able online at https://gitlab.mpi-sws.org/AVA/FloVer/tree/SMT Subdiv.

Related Work. PRECiSA [14], FPTaylor [13], and real2float [10] provide cer-
tificate checkers like FloVer, verifying roundoff error bounds encoded by an
untrusted static analysis. Certificates of PRECiSA are written in PVS, FPTay-
lor’s in HOL-Light, and real2float’s and FloVer’s in Coq. Unlike FloVer, their
roundoff error verification is based on global optimization. This approach can
often verify tighter error bounds than a dataflow analysis, but is currently
only applicable to floating-point arithmetic computations and not fixed-point
arithmetic. PRECiSA in addition handles loops by widening, and conditional
branches by path-by-path error analysis, which are orthogonal to the error esti-
mation of straight-line code which we focus on in this paper.

Gappa [6] is a general purpose finite-precision analysis tool inferring roundoff
error bounds, but is not limited to only those. It bounds roundoff errors with a
dataflow analysis like FloVer’s using intervals as the abstract domain. A certifi-
cate in Gappa is encoded as a chain of lemmas proven at checking time, whereas
FloVer encodes certificates as a call to a function proven sound once and forall.
Gappa already supports subdivisions and, as it emits Coq proofs, we believe that
the SMT extension in this paper can also improve its computed error bounds.

https://gitlab.mpi-sws.org/AVA/FloVer/tree/SMT_Subdiv

40 J. Bard et al.

2 Extensions to FloVer

Figure 1 illustrates FloVer’s modular checker structure. Each checker function
is first proven correct individually and the separate proofs are then combined
into an overall soundness theorem which states that if all checker functions are
successful, the roundoff error bound encoded in the certificate is sound. This
design facilitates relatively easy extensions, and allows for efficient certificate
checking; verifying a certificate does not require any formal proofs at certificate
checking time, or formal proof expertise by the user.

FloVer supports arithmetic expressions (+,−, ∗, /), a fused-multiply-add
operation and let-bindings. As other dataflow analysis based tools, FloVer splits
checking of roundoff error bounds into checking of real-valued range bounds
(Real Range Checker in Fig. 1) and checking of error bounds (Roundoff Error
Checker). Roundoff error bounds are checked for mixed-precision programs with
16, 32 and 64 bit floating-points, or arbitrary fixed-point precisions. The type
checker (Type Inference) verifies that all mixed-precision type assignments are
valid. Component Machine Range Checker checks that evaluation results can
be represented in their inferred type, i.e. no overflow occurs.

A certificate checked by FloVer encodes only the minimum necessary infor-
mation: the analyzed expression f , range (ΦR) and roundoff error bounds (ΦE)
inferred by a static analysis tool, the precondition constraining input variables
(P), a type assignment Γ , the queries to the SMT solver (Q) and the inter-
val subdivisions (S). Our extensions are marked in Fig.1 by dashed lines. We
implement SMT-based range estimation as a real-valued range analysis (Real
Range Checker). Interval subdivision is implemented on top of the existing com-
ponents (Subdivision Checker) and reuses FloVer’s existing checker functions
internally.

Extension 1: Tighter Ranges using SMT Oracles. Our first extension to FloVer
introduces an abstract domain for computing tighter range bounds based on
the existing analysis implemented in the static analyzer Daisy [5]. This analysis
tracks ranges as plain intervals and achieves better accuracy by using a nonlinear
decision procedure provided by an SMT solver to track nonlinear correlations,
which cannot be captured by the existing interval and AA-based domains.

Given an expression e, a range bound [elo, ehi] is first computed using interval
arithmetic. Next, the analysis attempts to tighten elo and ehi separately. For the
lower bound, it queries an SMT solver whether e, constrained by the precondi-
tion, can take a value which is smaller than some e′

lo with elo < e′
lo If the query

is unsatisfiable, the tighter bound [e′
lo, ehi] is sound, and tightenting repeats a

predetermined number of times using a binary search. Tightening of the upper
bound is analogous. If the solver times out, the bound is not tightened.

The SMT-based analysis in Daisy makes multiple queries to the SMT solver
for tightening a single range. Of these queries, only the last unsatisfiable one
for each lower and upper bound is relevant for correctness. We thus instrument
Daisy such that these last queries are saved and encoded in a certificate. We do
not otherwise modify Daisy.

Roundoff Errors Using SMT and Subdivisions 41

During certificate checking, we treat the results of SMT queries as oracles.
Verifying the query results themselves would require proof reconstruction which
current SMT solvers do not support due to the complexity of nonlinear arith-
metic. Instead, we trust the SMT solver, but keep the amount of queries that
must be trusted to a minimum by storing only the last queries.

We implemented the SMT component of the Real Range Checker from Fig. 1
in the checker function validSMTBounds (f, P, ΦR, Q) by structural recursion on
the AST of the analyzed expression f. For each subexpression of f, a sound
interval enclosure is computed first using existing FloVer infrastructure. If Q
contains SMT queries which were used to improve the lower or upper bound,
validSMTBounds checks first that the queries were correctly encoded by Daisy
(we check that the expression and precondition encoded in the query match the
currently analyzed expression and the precondition given in the certificate). If
this check succeeds, the function checks that the range bound can be tightened
to the new bound encoded in the query. Finally, FloVer checks that the inferred
range bound is contained in the interval enclosure encoded in the analysis result
ΦR. The soundness proof of validSMTBounds shows that if the checker succeeds,
the range bound encoded in ΦR is valid.

Extension 2: Interval Subdivision. The second analysis we implement in FloVer
is interval subdivision, which splits the input domain into equally-sized sub-
domains. The range and roundoff error analyses are then run on each subdo-
main separately and joined together into a global analysis result. The over-
approximations on each subdomain tend to be smaller, which increases the over-
all tightness of range and error bounds.

Checker function validSubdivs (f, P, ΦR, ΦE, S) implements checking of
interval subdivisions, where S is a list of subdomains, represented as quadruples
(PS, ΦSR, Φ

S
E, Q

S). The checker function checks correctness for each subdomain in S
by calling the existing certificate checker on f, PS, ΦSR, Φ

S
E, and QS. validSubdivs

checks that the global analysis results ΦR and ΦE are upper bounds for the current
subdivision results ΦSR and ΦSE for each subexpression of f . Performing this check
on every element of S proves correctness of the global analysis results ΦR and ΦE.

Finally, validSubdivs checks that the subdomains (PS) cover the overall
input domain (encoded in P), to ensure that Daisy did not forget a subdomain
in the roundoff error computation. The check iterates over the free variables of
f. For each free variable x and subinterval [xlo, xhi] we check that there exist
subdomains where PS maps x to [xlo, xhi] and the union of these subdomains
covers the full global range constraint for all other free variables. This essentially
checks for each free variable that Daisy computed the correct cartesian product.

The soundness theorem for both our extensions is:
Theorem 1. Let f, P, ΦR, ΦE, and S be as before. If for all (PS, ΦSR, Φ

S
E, Q

S) in
S the queries encoded in QS are unsatisfiable, and validSubdivs(f, P, ΦR, ΦE, S)
succeeds, there exists an idealized real-value vR, a finite-precision value vF and a
precision m, such that f evaluates to vR under an idealized real-valued seman-
tics, vF has precision m, and f evaluates to vF under finite-precision semantics.
Furthermore, ΦE(f) is an upper bound to the roundoff error |vR − vF|.

42 J. Bard et al.

3 Experiments

We have evaluated our extension of FloVer to check whether it can verify more
precise error bounds with reasonable certificate checking times. As neither SMT-
based techniques nor interval subdivisions improve precision for linear bench-
marks our evaluation focuses on nonlinear ones. For our experiments we used a
Debian 9 machine with a 3.3 GHz four-core Intel i5-6600 processor and 16 GB of
main memory. Daisy uses Z3 [7] for the SMT-based analysis. When using interval
subdivision we split at most 3 input ranges into 5 subintervals each, resulting in
at most 125 subdomains.

Table 1. Roundoff errors verified by FloVer and FPTaylor

Benchmark Interval Affine SMT Subdiv SMT &
Subdiv

Cmp. FPTaylor

Bspline0 2.41e-16 2.41e-16 2.41e-16 2.41e-16 2.41e-16 1.00 1.39e-16

Bspline1 1.52e-15 1.60e-15 1.35e-15 1.28e-15 1.19e-15 0.79 5.15e-16

Bspline2 1.41e-15 1.45e-15 1.19e-15 1.26e-15 1.16e-15 0.83 5.43e-16

Bspline3 1.30e-16 1.30e-16 1.30e-16 1.30e-16 1.30e-16 1.00 8.33e-17

Doppler 6.53e-13 5.61e-12 6.12e-13 3.03e-13 3.03e-13 0.46 1.22e-13

DopplerFMA 6.41e-13 5.51e-12 6.00e-13 2.99e-13 2.99e-13 0.47 1.21e-13

Floudas26 1.05e-12 1.07e-12 8.13e-13 1.04e-12 ⊥% 0.77 7.74e-13

Floudas33 7.29e-13 7.29e-13 4.93e-13 7.29e-13 ⊥% 0.68 6.20e-13

Floudas34 3.11e-15 3.11e-15 3.11e-15 3.11e-15 ⊥% 1.00 2.22e-15

Floudas46 1.55e-15 1.55e-15 1.55e-15 1.55e-15 ⊥% 1.00 1.55e-15

Floudas47 2.80e-14 2.85e-14 2.30e-14 2.73e-14 ⊥% 0.82 1.67e-14

Floudas1 7.29e-13 7.29e-13 4.93e-13 7.29e-13 ⊥% 0.68 5.76e-13

Himmilbeau 3.42e-12 3.42e-12 1.50e-12 1.50e-12 1.50e-12 0.44 1.00e-12

InvPendulum 5.37e-14 5.37e-14 5.37e-14 5.37e-14 5.37e-14 1.00 3.84e-14

JetEngine ⊥0 ⊥0 1.67e-08 ⊥0 1.87e-10 — 1.72e-11

Kepler0 1.85e-13 1.77e-13 1.77e-13 1.70e-13 1.65e-13 0.93 7.71e-14

Kepler1 8.97e-13 8.21e-13 8.47e-13 7.07e-13 6.63e-13 0.81 3.04e-13

Kepler2 4.13e-12 3.81e-12 3.77e-12 3.75e-12 3.52e-12 0.93 1.60e-12

RigidBody1 5.58e-13 5.58e-13 5.58e-13 5.58e-13 5.58e-13 1.00 2.95e-13

RigidBody2 6.57e-11 6.57e-11 6.57e-11 6.57e-11 6.57e-11 1.00 3.61e-11

Verhulst 8.34e-16 8.34e-16 8.34e-16 7.01e-16 7.01e-16 0.84 3.24e-16

PredatorPrey 3.40e-16 3.47e-16 3.40e-16 3.20e-16 3.20e-16 0.94 1.84e-16

CarbonGas 5.69e-08 5.67e-08 5.49e-08 2.07e-08 2.03e-08 0.36 9.13e-09

Turbine1 1.59e-13 1.59e-13 1.50e-13 6.49e-14 6.32e-14 0.40 1.67e-14

Turbine2 2.21e-13 2.23e-13 2.09e-13 5.89e-14 5.64e-14 0.26 2.00e-14

Turbine3 1.11e-13 1.11e-13 1.04e-13 2.47e-14 2.43e-14 0.22 8.69e-15

Precision Improvements. Table 1 compares the roundoff errors verified by the
existing version of FloVer [3] (columns ‘Interval’ and ‘Affine’) with those ver-
ified by our extensions (columns ‘SMT’ and ‘Subdiv’) and those computed by
FPTaylor, a state-of-the-art optimization-based analyzer. Column ‘SMT & Sub-
div’ shows roundoff errors computed using both interval subdivision and SMT-
based range estimation. All errors are computed for uniform 64-bit floating-point
precision.

Roundoff Errors Using SMT and Subdivisions 43

Table 2. Running times for Daisy and FloVer in seconds

Benchmark Interval Affine SMT Subdiv SMT & Subdiv

Daisy Coq Daisy Coq Daisy Coq Daisy Coq Daisy Coq

Bsplines 3.00 3.51 2.95 3.55 7.77 3.83 3.71 12.57 10.63 12.82

Doppler 6.04 6.70 2.71 7.36 5.22 4.95 6.1 237.25 86.54 237.86

DopplerFMA 2.57 4.20 2.72 6.99 5.46 4.05 5.29 167.01 86.08 172.64

Floudas 3.93 5.58 4.24 5.68 58.1 11.26 13.04 672.86 ⊥% ⊥%

Himmilbeau 2.83 3.21 2.91 3.63 5.96 3.46 3.85 23.77 31.3 25.33

InvPendulum 2.68 3.14 2.71 3.48 4.89 3.46 4.28 50.82 67.65 50.86

JetEngine ⊥0 ⊥0 ⊥0 ⊥0 34.28 47.07 ⊥0 ⊥0 120.99 1158.97

Kepler 3.21 12.53 3.2 13.44 55.99 13.15 12.38 1326.32 1840.17 1427.25

RigidBody 2.68 3.92 2.74 3.57 11.25 4.07 5.79 138.86 275.19 155.98

Science 2.89 6.87 2.89 420.50 7.73 6.88 3.8 25.99 12.86 26.69

Turbine 3.56 12.98 3.79 19.77 12.89 13.25 14.04 1476.35 331.98 1507.11

Column ‘Cmp.’ shows the ratio by which our new analyses improve over the
roundoff error that could be verified by FloVer before (best new analysis/best
previous analysis), values <1.0 mean that a tighter roundoff error bound can be
proven. We highlight the smallest roundoff error among all verifiers in bold.

While FPTaylor usually computes the best roundoff error, the errors verified
by our extension bring FloVer closer to the state-of-the-art. FloVer further sup-
ports fixed-point arithmetic which FPTaylor does not (which is why we perform
the comparison in floating-points). For none of our benchmarks the roundoff
error has become worse and we further achieve significant improvements where
the new roundoff error is up to 4.5 times smaller than the old roundoff error
(Turbine3). Verifying SMT-based results also allowed us to compute and verify
a roundoff error for the JetEngine benchmark, for which interval and affine arith-
metic report a spurious division by zero error (denoted by ⊥0). For the Floudas
benchmarks, Daisy does not compute any roundoff error when using both SMT
and subdivision due to a missing check for empty subdomains (denoted by ⊥%).

Running Times. We give the overall certificate checking times of FloVer for each
benchmark in Table 2. For each of the analyses supported by FloVer, we give the
end-to-end running times for both Daisy and FloVer’s Coq implementation on
the full benchmark file (one file may include multiple functions and thus multiple
calls to the certificate checker). The certificate checking times for our extension
are higher than those of the baseline as expected, but remain reasonable (below
2 hours for the most complex benchmark). FPTaylor’s checking times are in the
same order of magnitude as those for SMT with subdivisions.

Summary. Our evaluation has shown that checking certificates with our exten-
sion of FloVer is feasible and improves its accuracy. Given the implemented
analyses, FloVer now supports the same analyses as the state-of-the-art dataflow-
analysis based tool Daisy. FloVers Coq formalization makes it reusable for other

44 J. Bard et al.

tools like Gappa to increase their precision using SMT-based range estimation
and interval subdivision.

References

1. The Coq Proof Assistant. https://coq.inria.fr
2. The HOL4 Theorem Prover. https://hol-theorem-prover.org/
3. Becker, H., Zyuzin, N., Monat, R., Darulova, E., Myreen, M.O., Fox, A.: A verified

certificate checker for finite-precision error bounds in Coq and HOL4. In: 2018
Formal Methods in Computer Aided Design (FMCAD), pp. 1–10. IEEE (2018)

4. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- framework for analysis and optimization of numerical programs (tool paper).
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 270–287.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 15

5. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Prog. Lang.
Syst. (TOPLAS) 39(2), 8 (2017)

6. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted verification of elementary
functions using Gappa. In: ACM Symposium on Applied Computing (SAC) (2006)

7. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer.
Algorithms 37(1–4), 147–158 (2004)

9. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 17

10. Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff error bounds
using semidefinite programming. ACM Trans. Math. Softw. (TOMS) 43(4), 34
(2017)

11. Moore, R.: Interval Analysis. Prentice-Hall, New Jersey (1966)
12. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:

Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

13. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic taylor expansions. In: Inter-
national Symposium on Formal Methods (FM) (2015)

14. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. Verification,
Model Checking, and Abstract Interpretation. LNCS, vol. 10747, pp. 516–537.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 24

https://coq.inria.fr
https://hol-theorem-prover.org/
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-319-73721-8_24

Mechanically Verifying the Fundamental
Liveness Property of the Chord Protocol

Jean-Paul Bodeveix1, Julien Brunel2, David Chemouil2(B),
and Mamoun Filali1

1 IRIT CNRS UPS, Université de Toulouse, Toulouse, France
{jean-paul.bodeveix,mamoun.filali}@irit.fr

2 ONERA DTIS, Université de Toulouse, Toulouse, France
{julien.brunel,david.chemouil}@onera.fr

Abstract. Chord is a protocol providing a scalable distributed hash
table over an underlying peer-to-peer network. It is very popular due to
its simplicity, performance and claimed correctness. However, the original
version of the Chord maintenance protocol, presented with an informal
proof of correctness, was since then shown to be in fact incorrect. It is
actually tricky to come up with a provably-correct version as the proto-
col combines data structures, asynchronous communication, concurrency,
and fault tolerance. Additionally, the correctness property amounts to
a form of stabilization, a particular kind of liveness property. Previous
work only addressed automated proofs of safety; and pen-and-paper, or
automated but much bounded, proofs of stabilization. In this article, we
report on the first mechanized proof of the liveness property for Chord.
Furthermore, our proof addresses the full parameterized version of the
protocol, weakens previously-devised invariants and operating assump-
tions, and is essentially automated (requiring limited effort when manual
assistance is needed).

Keywords: Chord · Distributed protocol ·
Parameterized verification · Liveness · Stabilization proof

1 Introduction

Chord [10,17,18] is a popular distributed lookup protocol addressing an essen-
tial issue of peer-to-peer applications: efficiently localizing some sought data in
a dynamically-evolving network. To achieve this, the Chord protocol is designed
so as to maintain a ring topology, as much as possible, and to fix possible dis-
ruptions due to nodes joining or leaving the network, or failing. When it was
first introduced, Chord was claimed to be simple, efficient and correct. However,
Zave [20] identified some flaws in the maintenance protocol (the only aspect
we consider in this paper) and proposed some corrections. Since then, Chord
has been used as a test-bed for various formal studies [3,5,15,19], using various
methods and languages, including an outstanding endeavor by Zave herself [20–
23]. However, most work has focused on proofs of safety while the fundamental
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 45–63, 2019.
https://doi.org/10.1007/978-3-030-30942-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_5

46 J.-P. Bodeveix et al.

correctness property of Chord is a stabilization property, a particular kind of
liveness property, saying that if, from a certain instant, there is no subsequent
join, departure or failure, then the network is ensured to recover a ring topology
eventually and to keep it. In her work [23], Zave identified key invariants that are
instrumental to make the proof of liveness doable. She was able to check them
using Alloy [7] but had to resort to good old pen and paper to provide a proof of
liveness (unachievable in Alloy). In [5], some of the authors of the present paper
used Electrum [11], a temporal extension of Alloy, to address the liveness proof
in an automated way but only for networks of small size.

In this paper, we present a proof of correctness (liveness property) of the
Chord maintenance protocol with the following contributions:

– our proof is parametric in the number of nodes in the network and in the
number of redundant data used for robustness (so-called “successor lists”, cf
Sect. 2.1.2);

– we address the problem in a mechanized setting and rely on various abstrac-
tions so that most proof obligations are automatically discharged while most
manual proofs need only limited manual intervention;

– we develop a proof method to address the specific shape of the liveness prop-
erty at stake;

– we show that several invariants and operating assumptions made in the liter-
ature can be logically weakened.

Our work is performed using the Event-B language [1] and the accompany-
ing tool Rodin [2]. We first use superposition refinement (also called horizontal
refinement) to build the protocol incrementally. Then technical refinements are
introduced to make Rodin produce the wanted proof obligations for stabiliza-
tion. Thus, we do not really follow a refinement-based method to derive a correct
protocol. Rather, we rely on Event-B and Rodin to take advantage of the ability
to write specifications in an expressive language that the built-in pivot solver
can translate and forward to SMT solvers, with great success in most cases for
this work. For this reason, this article is written with the aim of presenting the
essential aspects of our approach. Full Event-B models can be found at [4].

In Sect. 2, we present our model of the Chord maintenance protocol and
describe our proof methodology. Then, in Sect. 3, we address properties of a
Chord network, showing in particular how known operating assumptions and
invariants can be weakened. In Sect. 4, we show that the maintenance protocol
ensures the liveness property presented above. Finally we present related work
in Sect. 5 and discuss future work in Sect. 6.

2 The Chord Protocol

This section presents the Chord network topology forming a ring, Chord data
and the protocol itself as a set of guarded symbolic transitions.

Mechanically Verifying the Fundamental Liveness Property 47

2.1 Network Structure

2.1.1 Identifier Space
In a Chord network, every node has an identifier (a hash of its IP address). Pairs
of keys and associated data are stored in nodes. In this article, we conflate the
notions of a node and its identifier, and thus use a set node of node (identifiers).

The node identifier space is structured as a ring-shaped directed graph. Intu-
itively, identifiers are ordered following the usual strict ordering on natural num-
bers (written < in the following), wrapping around at the largest identifier
in order to close the ring. Due to this shape, situating an identifier is advan-
tageously modeled by checking whether it sits between two other identifiers:
given n1, n2 ∈ node, we define the set of identifiers between n1 and n2, written
n1 n2, by1:

n1 n2 �
{
n ∈ node

∣∣∣∣ n1 < n < n2 if n1 < n2

n1 < n or n < n2 otherwise

}

Given a node n ∈ node, we note next(n) the next node according to ,
i.e., st n next(n) = ∅.

2.1.2 Chord Network
A Chord network is thus built over the identifier space. In order for Chord
to provide an efficient lookup procedure, ideally, the network should also form
a ring-shaped digraph at every instant, where every member is in charge of
storing some payload (depending on the node identifier) and points to its nearest
successor among the ring members (see Fig. 1 (left)).

However, as nodes dynamically join and leave the network, this ideal ring
shape cannot always be maintained and appendages to the ring will appear (see
Fig. 1 (middle)). The set of nodes belonging to the Chord network, that is belong-
ing to the Chord ring or to its appendages, is called members. Its elements are
also called live nodes. Non-members are called dead nodes. Formally, a node
may be dead either because it was live and later failed or left the network, or
because it never joined the network.

Thus, the protocol is in fact meant to keep the network in a repairable state
and, in the long run, to fix disruptions.

To enhance robustness to failures, every live node holds a fixed-length suc-
cessor list [17, Sect. 5.2] of K pointers to other nodes2, where K is a parameter
of the protocol. This way, if a node leaves the network, its predecessor will still
have successors in the network: an assumption is made, stating that every node

1 In our Event-B model, we actually use a pure first-order axiomatization, presented
e.g. in [15], which allows SMT solvers to deal with many proofs automatically.

2 Not to be confused with Chord’s finger tables whose purpose is to support efficient
query routing [17, Sect. 4.3].

48 J.-P. Bodeveix et al.

always has at least one live node in its successor list (see Sect. 3.2.1). Addition-
ally, every live node also holds a (possibly-null) pointer to its predecessor node:
this is useful in the execution of maintenance operations.

Thus we end up with the following state variables (prdc is declared as a
partial function as it may be undefined for some members).

members ⊆ node succ : members → listK(node)
prdc : members � node

We also use bestSucc : members → members to indicate the first live
node among the K successors of a member: bestSucc(n) � succ(n)[i] where i
is the least index st succ(n)[i] is alive.

2.2 Chord Operations

2.2.1 Formal Model
We present (end of Sect. 2.2) the Chord operations using a pseudo-code rem-
iniscent of classic formal specification languages. In practice, we relied on the
Event-B notation, essentially because we wanted to use the accompanying tool
Rodin as a pivot solver for a specification which is parametric in the number of
nodes and the length of successor lists. The meaning of our notation (which is
indentation-dependent for brevity) is as follows:

– events have parameters, a guard (introduced by the keyword guard), which
is a conjunction of formulas, and an action body (introduced with do);

– the execution of the action part of an event is atomic and consists in the
simultaneous execution of all its statements (no sequentiality in actions);

– interleaving : at every instant, a single event is fired (proof obligations check
that at least one event can be fired at every instant);

– as in Event-B, we do not make any by-default fairness assumption on the
execution model, but our proof will suppose strong fairness between two sets
of events (see Sect. 2.3);

– instead of using classic function application on nodes (e.g. prdc(n)), we use
the dot notation (n �prdc) to emphasize that the variables we consider can
be seen as node fields (n �f =⊥ states that f is undefined for n);

– contrary to Event-B, we also have a notion of conditional, where every then
or else branch is tagged with a label starting with the @ symbol: this provides
a concise way to describe several Event-B events at once3

3 An event E with guard g and body if c then @1 t else @2 (if c2 then @a
t2 else @b e) will give rise to an Event-B event E1 with guard g and c and
body t, and to Event-B events E2a (respE2b) with guard g and not c and c2
and body t2 (resp. with guard g and not c and not c2 and body e).

Mechanically Verifying the Fundamental Liveness Property 49

Modeling-wise, following [23], an event corresponds to an operation executed by
a single node. It may communicate with only one, other node; and there is a
time-out such that it allows nodes to detect live or dead nodes. These rules aim
at faithfully abstracting the distributed system that Chord is.

2.2.2 Model-Specific State Variables
Apart from the previously-mentioned state variables, our model of the protocol
also features two further state variables Stabilizing and Rectifying:

Stabilizing : members � node Rectifying ⊆ node × node

The former is used to model the fact that, while an operation, called stabilize
in Chord, is running on a live node, some significant state changes may happen
elsewhere. In our model, as in [23], this operation is split into two in order to allow
this “preemption”, and if Stabilizing is defined for a given member m, then
m �Stabilizing yields its memory context (the stored identifier of another
node).

Rectifying is here to account for asynchronous communication. In some
contexts, a node may send a message to another node to tell the latter to perform
a so-called rectification. Intuitively, this binary relation associates a node with
the set of messages it has sent and that have not been handled yet. Notice the
type of Rectifying: we do not consider the order in which messages are sent
or received, nor the duplication of messages from a given node to another one.
Additionally, not restricting the domain of Rectifying to members allows us
to model a message to a node which has failed since the message was sent.

2.2.3 Events
The Chord operations4, shown later, follow the presentation by Chord authors
in [10,17], Zave [23] and some authors [5] of the present article, with a few
variations.

The first two events are join and fail and are under the control of the
environment. The fail event models a failure or a voluntary departure. Notice
that an operating assumption on fail is necessary and presented in Sect. 3.2.1.

In the case of the join event, a new node can join the Chord network by tak-
ing a well-positioned live node m as its predecessor and taking m’s successor list as
its list too. Lines 9 to 10, which concern the Rectifying field, are here to model
a special situation: as explained above, Rectifying represents asynchronous
communication. When a node m sends a Rectifying message to a node n, n
may: (1) receive it (and handle it), (2) fail and therefore miss it, or (3) fail and

4 We write ++ (resp.::) for list concatenation (resp. cons), and x −= s
(resp.x += s) for x := x \ s (resp. x := x ∪ s). Abusing notation, a singleton
set {s} is written s.

50 J.-P. Bodeveix et al.

join again fast enough to still receive it. To account for this distributed aspect,
instead of modeling a channel explicitly, we keep our simple modeling with the
following specificity: when a (previously failed) node joins, some Rectifying
messages addressed to it are chosen non-deterministically and lost (Line 9).

Maintenance operations aim at compensating disruptions due to nodes join-
ing and failing. The first such operation is stabilization. Its purpose is to fix the
first successor of a node. As explained in Sect. 2.2.2, to account for possible state
changes during its execution, the operation is split into two as in [23]. The first
part, stabilizeFromFst, can only happen on a live node if it is not already
doing a stabilization (line 15). The node first checks whether its first successor
is live. If not, the node updates its successor list by shifting it one step to the
left, and padding it at the end with the lowest identifier following its last known
successor (line 19). There may be no node corresponding to this identifier but,
as it is the lowest possible, it prevents skipping possible live nodes and it can
eventually be fixed. Otherwise, the successor list is just updated with fresh data
coming from its first successor (line 22). Finally, the node checks whether its
first successor’s predecessor is better placed than itself. In this case, it decides
to update its first successor: as explained above, stabilization is not over yet
but, to account for possible changes in parallel, we just memorize that it should
continue the operation later with this better successor (line 23). Otherwise, the
first successor is sent a message saying that it should update its predecessor.

The second stabilization part, stabilizeFromFstPrdc, precisely continues
the operation. It can only be fired if the Stabilizing field is non-null, in which
case it holds a well-located, candidate new value for the first successor. Yet, as
changes may have happened, this node is tested for being a member. If it is dead,
there is nothing to do: the operation is over, the current successor is just sent
a message to tell it to update its predecessor. Otherwise, the candidate node is
taken as a new successor and similarly asked to update its predecessor.

Finally, rectification aims at fixing predecessor pointers. The rectify opera-
tion consumes a message sent during the stabilization of a candidate predecessor.
If the current predecessor is dead or if the candidate is nearer than the current
one, then an update of the predecessor pointer is done, otherwise nothing hap-
pens. Finally, the rectifyNull operation can be spontaneously fired. It sets the
predecessor pointer to null if the pointed node is dead.

Mechanically Verifying the Fundamental Liveness Property 51

2.3 Proof Engineering

The proofs of this article have been mechanized thanks to the Rodin framework.
The framework is here used as a proof obligation generator and as an environ-
ment to discharge generated proofs (through user interaction). The framework
contains built-in solvers and is also connected to external SMT solvers. The
basic machinery available within Rodin allows for the automatic generation of
proof obligations for invariants, event convergence, refinements and theorems. An
invariant property is true initially and preserved by each event. Event conver-
gence is established through the introduction of a variant which is an expression
yielding a natural number or a finite set. Each convergent event must decrease
the variant strictly. Event-B also provides anticipated events which must not
increase the variant. We use these features to generate proof obligations for
stabilization.

Since the main property of Chord is stabilization under the hypothesis that
the events join and fail do not occur anymore and strong fairness [8] over the
other events E in a context H, we propose here proof obligations for establishing
the stabilization of a given property Q5:
5 Given an event e, [e](p) is the weakest precondition ensuring that e terminates in a

state satisfying p.

52 J.-P. Bodeveix et al.

1.
∧

e∈E\C H∧V = v ⇒ [e](V 	 v) (generated by Rodin for anticipated events):
anticipated events do not increase the variant;

2.
∧

e∈C H ∧ V = v ⇒ [e](V ≺ v) (generated by Rodin for convergent events):
convergent events make the variant decrease;

3. H ∧ V �= ∅ ⇒ ∨
e∈C enabled(e) (manually added as a theorem to be proved):

some of the convergent events are enabled while the variant is not empty.
4. H ∧ V = ∅ ⇒ Q (manually added as a theorem to be proved): when the

variant is empty, the targetted property is satisfied.

where C ⊆ E is a selected set of convergent events and V is a set expression over
state variables (both provided by the user). The correctness of these proof obli-
gations strongly relies on strong fairness between two classes of events: enabled
convergent events should eventually be fired for the variant to decrease.

A variation of this proof rule may be used when Q is reached before the
variant V becomes empty. Obligation (3) is changed as follows:

3a. H ∧ ¬Q ⇒ ∨
e∈C enabled(e) (manually added as a theorem to be proved):

some of the convergent events are enabled while the targetted property is
not reached.

3b. H ∧ Q ⇒ ∧
e∈E [e](Q) (generated by Rodin if Q is declared invariant): Q is

stable.

3 Chord Correctness

In order to formalize a problem, the choice of an appropriate mathematical
structure is crucial. Indeed, it can ease not only the specification of properties
but also the proof of some of them, in case we can take benefit from meta-
properties of the mathematical structure. In our context, an abstract view of a
Chord network consists of the total function bestSucc over the set members
of live nodes. As it is the case for every total function over a finite set, its graph
is a directed pseudoforest. Thus, the existence of a ring of live nodes that is
formed by the bestSucc relation is directly deduced from the representation
of the network through a total function, without any additional hypotheses.
Similarly, the fact that all the live nodes are located in the ring(s) is equivalent to
bestSucc being surjective over members. For instance, in the networks on the
left-hand side (ideal) and on the right-hand side (loopy) of Fig. 1, all the nodes
are in the ring: bestSucc is surjective. This is not the case for the network in
the center. The nodes that are not part of the ring form the appendages.

A key notion of safe networks identified by [23] distinguishes between the
ideal and the loopy networks. This is the notion of principal node, which relates
the structure of a network (modeled through bestSucc in our case) to the
ordering over the node identifier space (in our context). As we will see in
the next section, a loopy network does not have any principal node.

In Sect. 3.1 we develop on some results about functions over finite sets, which
are not Chord-specific, and in Sect. 3.2 we present the properties of a Chord
network.

Mechanically Verifying the Fundamental Liveness Property 53

Fig. 1. Some Chord networks: in the ideal state (left), in an arbitrary state (center),
loopy (right) (solid edges: bestSucc, dotted edges: prdc)

3.1 Generic Properties

We now present some results about relations and functions over finite sets. These
are not Chord-specific, but still useful to prove Chord correctness.

Theorem 1 (Pigeonhole principle). Given a finite set E, a function f : E →
E is injective if and only if it is surjective.

A fundamental element in the proof of Chord correctness is the concept
of principal nodes, introduced in [23] in the context of a Chord network. We
generalize here the definition of a principal node w.r.t. an arbitrary relation r
over the identifier space node.

Definition 1 (Principal). Given a binary relation r ⊆ node× node over the
set of nodes, the set principals(r) of principal nodes for r is the set of nodes
that are not skipped by any pair in r:

principals(r) � {p ∈ node | ∀〈n,m〉 ∈ r · p �∈ n m}
The following lemma and theorem will be useful to show that, in the context

of a network without appendages, one principal node is enough to ensure that
all nodes are correctly located.

Lemma 1. Given a subset E ⊆ node of nodes and a surjective function f :
E → E, if a node p is principal for f , then its next neighbour according to
in E is also principal for f .

Proof. Suppose that next(p) is not principal for f . Then, it is between some
x and f(x). As p is principal, we have x = p. f being surjective, there exists y
st f(y) = next(p). As p is principal, y = p. Thus f(p) = next(p) = x, which
contradicts the fact that next(p) is between x and f(x).

Theorem 2 (Principal for a injective (or surjective) total function).
Given a subset E ⊆ node of nodes, and a surjective (or injective) total function
f : E → E, if there is some principal node in E for f , then every node in E is
principal for f .

Proof. The proof is straightforward using Lemma 1 and the pigeonhole principle.

54 J.-P. Bodeveix et al.

3.2 Chord Properties

The authors of Chord have provided explicit properties that ensure correct data
delivery [10,17]. They define in particular the ideal state of a network.

Definition 2 (Ideal state). A Chord network is in an ideal state if:

1. the first successor and the predecessor of every live node are alive:
∀n ∈ members · n.succ[1] ∈ members ∧ n.prdc ∈ members

2. the successor relation bestSucc6 forms a single ring of nodes (every live node
is in the ring): ∀n1, n2 ∈ node · n2 ∈ n1.bestSucc+ ∧ n1 ∈ n2.bestSucc+,
where bestSucc+ is the transitive closure of bestSucc

3. bestSucc provides the nearest successor of each node according to the iden-
tifier order: ∀n ∈ members · n n.bestSucc ∩ members = ∅

4. prdc provides the nearest predecessor of each node according to the identifier
order: ∀n ∈ members · n.prdc n ∩ members = ∅

5. the tail of the successor list of each node is equal to the successor list of its
first successor (with the last entry removed):
∀n ∈ members · ∀i ∈ 2..K · n.succ[i] = n.succ[1].succ[i − 1]

In the following, we write ideal for the conjunction of the above five properties
defining the ideal state.

As explained in Sect. 2 informally, the ideal state cannot be continuously
ensured because nodes can dynamically join and leave the network. The goal of
the maintenance protocol is thus to keep the network in a repairable state so
that it will be fixed eventually.

Definition 3 (Correctness). If eventually no node joins or leaves the network
anymore, the network will eventually reach the ideal state and remain in it.

We will prove the convergence of Chord to the ideal state by relying on
inductive invariants (Sect. 3.2.1) and on variants (Sect. 4).

3.2.1 Chord Invariants
In this section, we exhibit an inductive invariant, which is useful to prove the
correctness property. It is inspired by Zave’s work [23] and consists of three
properties. With respect to this pioneering work, the property related to principal
nodes is logically weakened and a technical property, related to our model-specific
variables, is added.

Property 1 (SomeLiveSuccessor). A network satisfies SomeLive
Successor if each live node has a live successor: ∀n ∈ members · ∃i ∈
1..K · n.succ[i] ∈ members.

6 Since all the first successors are alive in the ideal state, bestSucc always points to
the first successor.

Mechanically Verifying the Fundamental Liveness Property 55

SomePrincipal states that there is some principal among the live nodes.
Let us first instantiate the definition of principal, from Sect. 3.1, for a Chord
network.

Definition 4 (Chord principal). A Chord principal is a member that is not
“skipped” in any successor list. More formally, a node p ∈ members is a Chord
principal if, for any node n ∈ members st n.succ = [n1, . . . , nK], p �∈ n n1

and p �∈ ni ni+1 for i ∈ 1..(K − 1).

Proposition 1 (Chord principal). A node is a chord principal iff it is a mem-
ber that is a principal for the relation hops, where :

hops � {〈m,m.succ[1]〉 | m ∈ members}
∪ {〈m.succ[i],m.succ[i+ 1]〉 | m ∈ members and i ∈ 1..(K − 1)}

Considering the relation bestSucc instead of the relation hops, i.e., having
a more abstract view of the successor relation, we have the following proposition:

Proposition 2 (Principal for bestSucc). Given a Chord network, if a node
n is a Chord principal, i.e., a member that is a principal for hops, then it is a
principal node for bestSucc: principals(hops) ⊆ principals(bestSucc).

We can now state the property SomePrincipal.

Property 2 (SomePrincipal). A Chord network satisfies SomePrincipal
if there is some live node which is a Chord principal: principals(hops) ∩
members �= ∅.
Notice this is logically weaker than the property from [23], where the number of
principals was required to be greater than the size of successor lists, as discussed
above.

The following property is related to the model-specific variable
Stabilizing, which records the fact that a node n has to take a node m
as its future successor

Property 3 (StabBetterThanSucc). A Chord network satisfies
StabBetterThanSucc if for every live node n having a pending stabilization,
the candidate for stabilization is better than the current successor of n7:

∀n : members · n ∈ dom(Stabilizing) ⇒ Stabilizing(n) ∈ n n.succ[1]

Theorem 3 (Inductive invariant). The following property is preserved by all
of the operations of the Chord protocol, except fail:

SomeLiveSuccessor ∧ SomePrincipal ∧ StabBetterThanSucc

7 dom denotes the domain of a relation or a function.

56 J.-P. Bodeveix et al.

The proof of this theorem is mechanized with Rodin.

Operating Assumptions. Our proof of correctness for Chord relies on the
critical operating assumptions that no failure “breaks” the invariant8

1. No failure leaves a node without live node in its successor list.
2. No failure leaves the network without any principal node.

The assumption (1), saying that each successor list always includes a live
node, was present in the original Chord article [17]. Indeed, having a list of
successors prevents from the failure of a successor as soon as there are other
nodes left in the successor list. The assumption (2) comes from Chord property
SomePrincipal, which is an adaptation from the invariant property exhib-
ited in [23], where the author explained that when a node joins the network, it
becomes a principal as soon as its K preceding nodes are aware of its presence.
Assuming the existence of a minimal number of principal nodes (K + 1 in [23])
is then reasonable, especially as we assume the existence of only one principal
node in this article.

Notice that we also relaxed the assumptions from [23] about the minimal size
of the network and about the absence of duplication in successor lists.

3.2.2 Always-True Properties
We now define important structural properties and show that they are actually
implied by the inductive invariant.

Property 4 (AtMostOneRing). A Chord network satisfies the property
AtMostOneRing if any two ring members can access each other through
bestSucc+.

∀n1, n2 ∈ members· (n1 ∈ n1.bestSucc+ ∧ n2 ∈ n2.bestSucc+)
⇒ (n1 ∈ n2.bestSucc+ ∧ n2 ∈ n1.bestSucc+)

Theorem 4. Given a Chord network, SomePrincipal implies
AtMostOneRing.

Proof (sketch). Suppose that SomePrincipal is true. Then, there is a Chord
principal, which is also a principal node for bestSucc (from Property 2). Also
suppose that AtMostOneRing is false. There there are two nodes n1 and n2

that are in two unconnected bestSucc-“rings”. Considering the first ring, any
node outside this ring is necessary “skipped” by bestSucc: all the principal
nodes are thus in the first ring. Similarly, we can conclude that all the principal
nodes are in the second ring. Contradiction. ��
Property 5. A Chord network satisfies DistinctFirstSuccs if the succes-
sor lists include no duplicated node up to the first live node:

∀n ∈ node · ∀j � fln · ∀i ∈ 1..j − 1 · n.succ[i] �= n.succ[j]

where fln is the index of the first live node in n.succ.
8 The Chord Property 3 about the Stabilizing function is preserved by failand

thus does not impact operating assumptions.

Mechanically Verifying the Fundamental Liveness Property 57

Theorem 5. SomePrincipal implies DistinctFirstSuccs.

Proof (sketch). Suppose that SomePrincipal is true
and DistinctFirstSuccs is false. Then, there is a node n s.t. in n.succ,
there is a duplicated node n′ before the first live node in n.succ. Since every
node except n′ is in the set n′ n′, there cannot be a Chord principal different
from n′, which contradicts SomePrincipal, because n′ is not a member. ��
Property 6. A Chord network satisfies OrderedFirstSuccs if the successor
lists are ordered according to up to the first live node in the list:

∀n ∈ node · ∀j � fln · ∀i ∈ 1..j − 1 · n.succ[i] ∈ n n.succ[j]

where fln is the index of the first live node in n.succ.

Theorem 6. Given a Chord network, SomePrincipal implies
OrderedFirstSuccs.

Proof (sketch). Suppose that SomePrincipal is true and OrderedFirst
Succs is false. Then, there are n, i, j as in the theorem statement st n.succ[i] �∈
n n.succ[j]. Since these three nodes are distinct (from Theorem 5), we have
n.succ[j] ∈ n n.succ[i]. Then, the properties of imply that every node
except n.succ[i] is included in n n.succ[i] ∪ n.succ[i] n.succ[j]. From
SomePrincipal, there is a live node p which is principal. Since p is a live node,
it is distinct from n.succ[i]. It is then skipped by some pair in n.succ, which
leads to a contradiction. ��

4 Phase-Based Convergence Proof

We now show that in the absence of join and fail events, the system even-
tually reaches the ideal state and remains in it. To do so, we introduce four
intermediate macro-states, which are stable9 under the considered hypothesis
and reached successively:

MS1. Rectifying and prdc in members.
MS2. the first successor is a member: n.succ[1] ∈ members.
MS3. Stabilizing only includes members: ran(Stabilizing) ⊆

members10.
MS4. prdc is the inverse of bestSucc and both Stabilizing and

Rectifying are empty for members:
∀n ∈ members· n.Stabilizing = ∅ ∧ n.Rectifying = ∅∧

n.bestSucc.prdc = n
MS6. the tail of the successor list of each node is equal to the successor list of

its first successor (with the last entry removed):
∀n ∈ members · ∀i ∈ 2..K · n.succ[i] = n.succ[1].succ[i − 1]

9 Once a macro-state is reached, the system cannot leave it.
10 ran denotes the range of a relation or a function.

58 J.-P. Bodeveix et al.

Ideal. We then prove that MS5 implies that the network is ideal.

This phase-based proof allows us to avoid a monolithic convergence proof
which would require finding a complex variant. Each phase (and sub-phase)
relies on a small variant, except the fourth phase (reaching MS4). It relies on
the proof method presented in Sect. 2.3 and thus on fairness hypotheses. The
proof was mechanized in Rodin from our Event-B model, where the guards of
join and fail were set to false11.

4.1 Reaching MS1: Rectifying and prdc in Members

This phase is split into two steps: reaching MS1a from a state satisfying the
inductive invariant, and reaching MS1b from MS1a.

MS1a. ran(Rectifying) ⊆ members
We split the event rectify in two events, one guarded by newPrdc �∈
members and the other by newPrdc ∈ members. The variant is the
set Rectifying \ node × members. The event that is guarded by the
negative membership condition makes the variant decrease (it is tagged
convergent in Event-B) while the other events do not make it increase
(anticipated in Event-B). As long as Rectifying includes non members,
the convergent event is enabled. So, under the fairness hypothesis, MS1a
will be reached eventually.

MS1b. prdc ∈ members � members
This property is shown by introducing the variant prdc−1[node \
members]. The rectifyNull event decreases the variant (and other
events do not increase it). It is enabled as long as the variant is not
empty, which ensures the convergence from MS1a to MS1b.

4.2 Reaching MS2: The First Successor Is a Member

∀n ∈ members · n.succ[1] ∈ members

Notice that this is equivalent to ∀n ∈ members · n.bestSucc = n.succ[1]. In
order to ease the reasoning, given a member node n, we call zombies(n) the
set of non member nodes preceding n.bestSucc in its successor list. So, the
objective of this phase is to reach a state where the zombie sets are empty. It is
split into two steps: reaching MS2a from MS1, and reaching MS2b from MS2a.

MS2a. each node in the stabilizing state has no zombie successors:
∀n ∈ dom(Stabilizing) · zombies(n) = ∅.
The event stabilizeFromFstPrdc is split to introduce the guard
zombies(m) = ∅ and its negation. The event with the negative
guard makes the variant dom (Stabilizing) \ {m | m∈members
∧ zombies(m) = ∅} decrease while others do not increase it.

11 Technically, we have an Event-B model for each phase defined as a refinement of
the Event-B machine modelling the Chord protocol, where the MS of the preceding
phase is stated as an invariant of the current phase.

Mechanically Verifying the Fundamental Liveness Property 59

MS2b. each member has no zombie successors: ∀n ∈ members ·zombies(n) =
∅ This property is ensured thanks to the event stabilizeFromFst@1
which removes one element from a non empty zombie set of a member
node that has no Stabilizing memory context. In MS1a, this condi-
tion is true. For this phase the variant is {〈m, b〉 · m ∈ members ∧ b ∈
zombies(m)}.

4.3 Reaching MS3: Stabilizing only Includes Members

ran(Stabilizing) ⊆ members

We take as variant the set of the pairs (n1, n2) in Stabilizing s.t. n2 is
not a member. The sub-event stabilizeFromFstPrdc@1 makes the variant
Stabilizing ∩ members × (node \ members) decrease. It is enabled while
the variant is not empty.

4.4 Reaching MS4: prdc Is the Inverse of bestSucc and the
Rectifying and Stabilizing Sets of Each Node Are Empty

∀n ∈ members · n.Stabilizing = ∅ ∧ n.Rectifying = ∅ ∧ n.bestSucc.prdc = n

This property is proved by introducing a complex variant which is the combi-
nation of four sets of node pairs. The events of the protocol make the variant
decrease by moving some pairs from one of the sets to another one of lower
weight, or by removing some pair from the lowest set. Other transitions let
the sets unchanged. The following sets are the following in decreasing order of
importance (for the variant)12:

1. {〈x, y〉 | x ∈ members ∧ y ∈ members ∧ y ∈ x bestSucc(x))} \
Stabilizing

2. {〈x, y〉 | x ∈ members ∧ y ∈ members ∧ (y ∈ dom(prdc) ∧ prdc(y) ∈
members ⇒ x ∈ prdc(y) y)} \ Rectifying−1

3. Stabilizing ∩ Rectifying−1

4. Stabilizing
5. Rectifying−1

The following events make the variant decrease: stabilizeFromFst@
{1,2sta}, stabilizeFromFstPrdc@2, rectify. Besides, the event
stabilizeFromFst@2rct must be split to introduce the guard 〈m �suc,m〉 �∈
Rectifying. The sub-event having this guard true makes also the variant
decrease. The other events do not increase it.

12 In Event-B, this structured variant is encoded as a single set using the Cartesian
product and union.

60 J.-P. Bodeveix et al.

4.5 Reaching MS5: The Tail of the Successor List of Each Node Is
Equal to the Successor List of Its First Successor

∀n ∈ members · ∀i ∈ 2..K · n.succ[i] = n.succ[1].succ[i − 1]

In this step, we need to manage the concrete successor list of each member node
while its abstraction with bestSucc and a zombie set was sufficient to verify
the previous phases. Data refinement is used to replace these two variables by
a unique successor list. Verifying its correctness is not automatic as automa-
tion is weaker with lists: numerous user-provided case splitting and quantifier
instantiations are required.

Then, in order to prove the convergence to MS5, an auxiliary variable E is
introduced: it includes the pairs (m, i) such that the successor list of m is correct
up to position i. More precisely, E is introduced with the following invariant
properties:

E ⊆ members × 1..K members × {1} ⊆ E
∀m, i · 〈m, i〉 ∈ E ∧ i > 1 ⇒ m.succ[1].succ[i − 1] ∈ E
∀m, i · 〈m, i〉 ∈ E ∧ i > 1 ⇒ {m} × 1..i ⊆ E
∀m, i · 〈m, i〉 ∈ E ∧ i > 1 ⇒ m.succ[i] = m.succ[1].succ[i − 1]

Thanks to MS4, we can start with members×{1}. Then, thanks to fairness,
the event stabilizeFromFst@2rct which copies the successor list of one
node to its predecessor will eventually saturate E. This property is ensured by
taking (members × 1..K) \ E as variant and by splitting the selected event s.t.
it ensures progress.

4.6 Reaching the Ideal State

By using the results of Sect. 3, we show that the properties of MS5 imply that the
network is in the ideal state. Indeed, in MS4, bestSucc is necessarily injective.
From the invariant, we have that there is at least one principal node. By The-
orem2 and Proposition 2, all nodes are principal for bestSucc, which means
that no node is skipped by bestSucc. Moreover the last property defining the
ideal state exactly matches the definition of MS5. The five properties of an ideal
state are thus fulfilled.

5 Related Work

Chord is a popular protocol but also, since the seminal work of Zave [20], a
popular test-bed for formal verification. However, most work [3,9,15,20–22] has
focused on proving safety, sometimes with manual proofs only, while the cor-
rectness property for Chord maintenance, addressed here, is a liveness property.
Zave [23] carried out a manual proof of liveness and discovered the fundamental

Mechanically Verifying the Fundamental Liveness Property 61

notion of principal. Some of the authors of the present paper analyzed liveness
in an automated way using Electrum [5] but for small networks. To the best of
our knowledge, this work is the first to address the liveness property of Chord
in a parameterized setting and using a much automated, mechanical proof.

Other distributed system protocols have been formally studied using
“high-level” specification languages. For instance, Pastry was analyzed using
TLA+ [13]; similar work used Event-B [16] or ASM [12] to partly verify other
protocols. However, these studies are limited to the verification of safety prop-
erties.

Verdi [19] and IronFleet [6] address the question of provably-correct imple-
mentations of distributed protocols while our approach is markedly at a more
abstract level, in particular to favor proof automation. Our work is also focused
on a stabilization property for which we developed a specific proof method.
Finally, proof automation for liveness of parameterized or even arbitrary infinite-
state distributed systems is the subject of recent work such as Ivy [14] but, as
far as we know, a fair amount of manual intervention is still needed.

6 Conclusion

In this article, we proposed a mechanized correctness proof of the Chord mainte-
nance protocol. We address a particular form of liveness property (stabilization)
over a network of arbitrary size. On the logical side, we weakened the operating
assumption related to principal nodes stated in [23], as well as the one requiring
a minimal number of nodes in the network. However, the practical consequences
of this weakening remain to be assessed quantitatively.

As future work, we intend to develop some automated support to stabiliza-
tion proofs following the method exhibited in Sect. 4. Another line of work is to
refine our model with less abstract types (e.g. FIFO for asynchronous commu-
nication). Both directions could contribute to the design of a framework for (1)
modelling knowledge in distributed systems, and (2) supporting liveness proofs
under fairness assumptions, with an important degree of automation.

Acknowledgements. We warmly thank Pamela Zave for insightful discussions on the
protocol and for her thorough reading of this article.

J. Brunel and D. Chemouil were partly financed by the European Regional Devel-
opment Fund (ERDF) through the Operational Programme for Competitiveness and
Internationalisation (COMPETE2020) and by National Funds through the Portuguese
funding agency, Fundação para a Ciência e a Tecnologia (FCT) within project POCI-01-
0145-FEDER-016826; and within the French Research Agency project FORMEDICIS
(ANR-16-CE25-0007).

62 J.-P. Bodeveix et al.

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2009).
https://doi.org/10.1017/cbo9781139195881

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

3. Bakhshi, R., Gurov, D.: Verification of peer-to-peer algorithms: a case study. Elec-
tron. Notes Theor. Comput. Sci. 181, 35–47 (2007). https://doi.org/10.1016/j.
entcs.2007.01.052

4. Bodeveix, J.P., Brunel, J., Chemouil, D., Filali, M.: A model in Event-B of the
Chord protocol, July 2019. https://doi.org/10.5281/zenodo.3271455

5. Brunel, J., Chemouil, D., Tawa, J.: Analyzing the fundamental liveness property
of the Chord protocol. In: Formal Methods in Computer-Aided Design, Austin,
USA, October 2018. https://doi.org/10.23919/fmcad.2018.8603001. https://hal.
archives-ouvertes.fr/hal-01862755

6. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
ACM –Association for Computing Machinery, October 2015. https://doi.org/10.
1145/2815400.2815428

7. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

8. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

9. Li, X., Misra, J., Plaxton, C.G.: Active and concurrent topology maintenance. In:
Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 320–334. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30186-8_23

10. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: Proceedings of the Twenty-First Annual Symposium on Prin-
ciples of Distributed Computing, pp. 233–242. ACM (2002). https://doi.org/10.
1145/571860.571863

11. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: Foundations
of Software Engineering (2016). https://doi.org/10.1145/2950290.2950318

12. Marinković, B., Glavan, P., Ognjanović, Z.: Proving properties of the Chord
protocol using the ASM formalism. Theor. Comput. Sci. 756, 64 – 93 (2019).
https://doi.org/10.1016/j.tcs.2018.10.025, http://www.sciencedirect.com/science/
article/pii/S0304397518306467

13. Merz, S., Lu, T., Weidenbach, C.: Towards verification of the pastry protocol
using TLA+. In: 31st IFIP International Conference on Formal Techniques for
Networked and Distributed Systems, vol. 6722 (2011). https://doi.org/10.1007/
978-3-642-21461-5_16

14. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reduc-
ing liveness to safety in first-order logic. PACMPL 2(POPL), 26:1–26:33 (2018).
https://doi.org/10.1145/3158114

15. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, 13–17 June 2016, pp. 614–630 (2016). https://doi.org/
10.1145/2908080.2908118

https://doi.org/10.1017/cbo9781139195881
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1016/j.entcs.2007.01.052
https://doi.org/10.1016/j.entcs.2007.01.052
https://doi.org/10.5281/zenodo.3271455
https://doi.org/10.23919/fmcad.2018.8603001
https://hal.archives-ouvertes.fr/hal-01862755
https://hal.archives-ouvertes.fr/hal-01862755
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1007/978-3-540-30186-8_23
https://doi.org/10.1145/571860.571863
https://doi.org/10.1145/571860.571863
https://doi.org/10.1145/2950290.2950318
https://doi.org/10.1016/j.tcs.2018.10.025
http://www.sciencedirect.com/science/article/pii/S0304397518306467
http://www.sciencedirect.com/science/article/pii/S0304397518306467
https://doi.org/10.1007/978-3-642-21461-5_16
https://doi.org/10.1007/978-3-642-21461-5_16
https://doi.org/10.1145/3158114
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118

Mechanically Verifying the Fundamental Liveness Property 63

16. Risson, J., Robinson, K., Moors, T.: Fault tolerant active rings for structured peer-
to-peer overlays. In: 2005 The IEEE Conference on Local Computer Networks, 30th
Anniversary, pp. 18–25. IEEE (2005). https://doi.org/10.1109/lcn.2005.69

17. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Comput. Commun. Rev. 31(4), 149–160 (2001). https://doi.org/10.1145/964723.
383071

18. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for Internet appli-
cations. IEEE/ACM Trans. Netw. (TON) 11(1), 17–32 (2003). https://doi.org/10.
1109/tnet.2002.808407

19. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, 15–17
June 2015, pp. 357–368 (2015). https://doi.org/10.1145/2737924.2737958

20. Zave, P.: Why the Chord ring-maintenance protocol is not correct. Technical report,
AT&T Research (2011)

21. Zave, P.: Using lightweight modeling to understand Chord. ACM SIGCOMM Com-
put. Commun. Rev. 42(2), 49–57 (2012). https://doi.org/10.1145/2185376.2185383

22. Zave, P.: A practical comparison of Alloy and Spin. Formal Aspects Comput. 27(2),
239 (2015). https://doi.org/10.1007/s00165-014-0302-2

23. Zave, P.: Reasoning about identifier spaces: how to make Chord correct. IEEE
Trans. Softw. Eng. 43(12), 1144–1156 (2017). https://doi.org/10.1109/TSE.2017.
2655056

https://doi.org/10.1109/lcn.2005.69
https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/964723.383071
https://doi.org/10.1109/tnet.2002.808407
https://doi.org/10.1109/tnet.2002.808407
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2185376.2185383
https://doi.org/10.1007/s00165-014-0302-2
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056

On the Nature of Symbolic Execution

Frank S. de Boer1,2(B) and Marcello Bonsangue2

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
f.s.de.boer@cwi.nl

2 Leiden Institute Of Advanced Computer Science (LIACS), Leiden, The Netherlands
m.m.bonsangue@liacs.leidenuniv.nl

Abstract. In this paper, we provide a formal definition of symbolic exe-
cution in terms of a symbolic transition system and prove its correctness
with respect to an operational semantics which models the execution
on concrete values. We first introduce such a formal model for a basic
programming language with a statically fixed number of programming
variables. This model is extended to a programming language with recur-
sive procedures which are called by a call-by-value parameter mechanism.
Finally, we show how to extend this latter model of symbolic execution
to arrays and object-oriented languages which feature dynamically allo-
cated variables.

1 Introduction

Symbolic execution [1] plays a crucial role in modern testing techniques, debug-
ging, and automated program analysis. In particular, it is used for generating
test cases [2,3].

Although symbolic execution techniques have improved enormously in the
last few years not much effort has been spent on its formal justification. In
fact, the symbolic execution community has concentrated most of the effort on
effectiveness (improvement in speed-up) and significance (improvement in code
coverage) and payed little attention to correctness so far [3].

Further, there exists a pletora of different techniques for one of the major
problems in symbolic execution, namely the presence of dynamically allocated
program variables, e.g., describing arrays and (object-oriented) pointer struc-
tures (“heaps”). For example, in [15] a heap is modeled as a graph, with nodes
drawn from a set of objects and updated lazily, whereas [5] introduces a con-
straint language for the specification of invariant properties of heap structures.
In [11] the symbolic state is extended with a heap configuration used to maintain
objects which are initialized only when they are first accessed during execution.
In the presence of aliasing, the uncertainty on the possible values of a symbolic
pointer is treated either by forking the symbolic state or refining the generated
path condition into several ones [6]. Powerful symbolic execution tools [7–9]
handling arrays exploit various code pre-processing techniques, though formal
correctness of the theory behind these tools is acknowledged as a potential prob-
lem that might limit the validity of the internal engine, and is validated only
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 64–80, 2019.
https://doi.org/10.1007/978-3-030-30942-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_6

On the Nature of Symbolic Execution 65

experimentally by testing [10]. The KeY theorem prover [18] supports symbolic
execution of Java programs which is defined in terms of the underlying dynamic
logic and which uses an explicit representation of the heap. In all of the above
work no explicit formal account of the underlying model of the symbolic execu-
tion, and its correctness, is presented.

The main contribution of this paper is a formal definition of symbolic exe-
cution in terms of a symbolic transition system and a general definition of its
correctness with respect to an operational semantics which models the actual
execution on concrete values. Our general starting point is that the basic idea of
symbolic execution is to represent the program state, i.e., the assignment of val-
ues to program variables, by a corresponding substitution which assigns to each
program variable an expression denoting its current value. Further, symbolic exe-
cution by its very nature is syntax-directed which implies that the abstraction
level of the symbolic transition system should coincide with that of the pro-
gramming language. This general requirement implies that symbolic execution
operates on substitutions which (only) assign programming expressions to the
variables (and no other expressions which express properties of the run-time).

The only other approach to a formal modeling of symbolic execution, we are
aware of, is the work presented in [4]. A major difference with our approach is
that in [4] symbolic execution is defined in terms of a general logic (called “Reach-
ability Logic”) for the description of transition systems which abstracts from the
specific characteristics of the programming language. A symbolic execution then
consists basically of a sequence of logical specifications of the consecutive tran-
sitions. On the other hand, a model of the logic defines a concrete transition
system. Thus correctness basically follows from the semantics of the logic. In
our approach we both model symbolic execution and the concrete semantics (of
any language) independently as transition systems. However, in both cases the
transitions are directly defined in terms of the program to be executed. This
allows to address the specific characteristics of the programming language (like
dynamically allocated variables) still in a general manner. In [4], however, these
specific characteristics (like arrays) need to be imported in the general framework
by corresponding logical theories which require an additional justification.

Detailed Plan of the Paper. In Sect. 2 we introduce a formal model of symbolic
execution for a basic programming language with a statically fixed number of
programming variables. The concrete transition system for this basic language
is standard (and therefore omitted). A configuration of the symbolic transition
system consists of the program statement to be executed, a substitution, and a
path condition. Correctness then states that for every reachable symbolic config-
uration and state which satisfies the path condition, there exists a corresponding
concrete execution. Conversely, completeness states that for every concrete exe-
cution there exists a corresponding symbolic configuration such that the initial
state of the concrete execution satisfies the path condition and its final state can
be obtained as a composition of the initial state and the generated substitution.

In Sect. 3, we extend the basic theory of symbolic execution to a programming
language with recursive procedures which are called by a call-by-value parameter

66 F. S. de Boer and M. Bonsangue

mechanism. This extension requires a formal treatment of local variables stored
on the stack of procedure calls.

In Sect. 4 we show how to extend symbolic execution in a strictly syntax-
directed manner to an object-oriented language which features dynamically allo-
cated variables. These dynamically allocated variables give rise to an infinite
number of program variables and corresponding substitutions with an infinite
domain. We show how to extend our theory of symbolic execution to such infinite
substitutions. Moreover, we introduce for a correct implementation a finite rep-
resentation of these substitutions, and discuss different strategies for managing
aliasing.

In the final technical Sect. 5 (unbounded) arrays, multithreading, and con-
current objects are discussed as a further illustration of the generality of our
theory of symbolic execution.

Because of space limitations, in this paper we do not introduce all syntactic
details of the programming languages we use, which however should be clear via
their transition system semantics.

2 Basic Symbolic Execution

We assume a set of Var of program variables x, y, u, . . ., and a set Ops of opera-
tions op, We abstract from typing information. The set Expr of programming
expressions e is defined by the following grammar.

e := x | op(e1, . . . , en)

where x ∈ Var and op ∈ Ops. A substitution σ is a function Var → Expr which
assigns to each variable an expression. By eσ we denote the application of the
substitution σ to the expression e, defined inductively by

xσ = σ(x)
op(e1, . . . , en)σ = op(e1σ, . . . , enσ)

A symbolic configuration is a triple 〈S, σ, φ〉 where S denotes the statement
to be executed, σ denotes the current substitution, and Boolean condition φ
denotes the path condition.

Next we describe a transition system for the symbolic execution of a simple
programming language which features assignments, sequential composition, a
choice and iteration statement.

Assignment

– 〈x = e;S, σ, φ〉 → 〈S, σ[x = eσ], φ〉

where σ[x = e](y) = σ(y) if x and y are distinct variables, and σ[x = e](x) = e
otherwise.

On the Nature of Symbolic Execution 67

Choice

– 〈if B {S1}{S2};S, σ, φ〉 → 〈S1;S, σ, φ ∧ Bσ〉
– 〈if B {S1}{S2};S, σ, φ〉 → 〈S2;S, σ, φ ∧ ¬Bσ〉

Iteration

– 〈while B {S};S′, σ, φ〉 → 〈S;while B {S};S′, σ, φ ∧ Bσ〉
– 〈while B {S};S′, σ, φ〉 → 〈S′, σ, φ ∧ ¬Bσ〉

We formalize and prove correctness with respect to a concrete semantics. A
valuation V is a function Var → Val , where Val is a set of values. By V (e) we
denote the value of the expression e with respect to the valuation V , defined
inductively by V (op(e1, . . . , en)) = op(V (e1), . . . , V (en)) where op denotes the
interpretation of the operation op as provided by the implicitly assumed under-
lying model. Composition is as usual: (V ◦ σ)(x) = V (σ(x))1.

Lemma 1 (Substitution). V ◦ σ(e) = V (eσ) .

Proof (Sketch). The proof of the lemma proceeds by induction on e. We have
the following main case:

V ◦ σ(op(e1, . . . , en)) = op(V ◦ σ(e1), . . . , V ◦ σ(en)) (semantics expressions)
= op(V (e1σ), . . . , V ((enσ)) (induction hypothesis)
= V (op(e1σ, . . . , enσ)) (semantics expressions)
= V (op(e1, . . . , en)σ) (substitution application)

The concrete semantics of our basic programming language is defined in
terms of transitions 〈S, V 〉 → 〈S′, V ′〉. The definition of this transition system
is standard and therefore omitted.

Let id be the identity substitution, i.e., id(x) = x, for every variable x. We
have the following main correctness theorem.

Theorem 1 (Correctness). If 〈S, id , true〉 →∗ 〈S′, σ, φ〉 and V (φ) = true then

〈S, V 〉 →∗ 〈S′, V ◦ σ〉

Proof. Induction on the length of 〈S, id , true〉 →∗ 〈S′, σ, φ〉 and a case analysis
of the last execution step. We consider the following cases.

First, we consider the case of an assignment as the last execution step:

〈S, id , true〉 →∗ 〈x = e;S′, σ, φ〉 → 〈S′, σ[x = eσ], φ〉

Induction hypothesis (note that V (φ) = true):

〈S, V 〉 →∗ 〈x = e;S′, V ◦ σ〉
1 In the sequel we omit the parentheses and write V ◦σ(e) for the application valuation

V ◦ σ to the expression e (as defined above).

68 F. S. de Boer and M. Bonsangue

Let V ′ = V ◦ σ. By the concrete semantics we have

〈S, V 〉 →∗ 〈x = e;S′, V ′〉 → 〈S′, V ′[x = V ′(e)]〉

where V ′[x = V ′(e)](x) = V ′(e) and V ′[x = V ′(e)](y) = V ′(y), for any other
variable y. Suffices to show V ◦ (σ[x = eσ]) = V ′[x = V ′(e)]. We treat the main
case:

V ◦ (σ[x = eσ])(x) = V (σ[x = eσ](x)) (def. ◦)
= V (eσ) (def. σ[x = eσ])
= V ◦ σ(e) (substitution lemma)
= V ′(e) (V ′ = V ◦ σ)
= V ′[x = V ′(e)](x) (def. V ′[x = V ′(e)])

Next we consider the case when the Boolean guard of a choice construct
evaluates to true:

〈S, id , true〉 →∗ 〈if B {S1}{S2};S, σ, φ〉 → 〈S1;S, σ, φ ∧ Bσ〉

We have that V (φ ∧ Bσ) = true implies V (φ) = true, so by the induction
hypothesis we obtain the concrete computation

〈S, V 〉 →∗ 〈if B {S1}{S2};S, V ◦ σ〉

Since V ◦ σ(B) = V (Bσ) = true, we derive

〈S, V 〉 →∗ 〈if B {S1}{S2};S, V ◦ σ〉 → 〈S1;S, V ◦ σ〉

All other cases are treated similarly.

Theorem 1 guarantees that all possible inputs satisfying a path condition
lead to a concrete state with variables conform to the substitution of the cor-
responding symbolic configuration. Correctness, however, is about coverage [4],
meaning that satisfiable symbolic execution paths can be simulated by concrete
executions. The converse of correctness is completeness and is about precision [4]:
every concrete execution can be simulated by a symbolic one. To this end we
introduce the following relation between symbolic and the concrete transition
systems: Let 〈S, V 〉 � 〈S, σ, φ〉 denote that V = V0 ◦ σ and V0(φ) = true, for
some valuation V0.

Theorem 2 (Completeness). The relation � between symbolic and concrete
configurations is a simulation relation, i.e., if 〈S, V 〉 � 〈S, σ, φ〉 then 〈S, V 〉 →
〈S′, V ′〉 implies the existence of a corresponding symbolic transition 〈S, σ, φ〉 →
〈S′, σ′, φ′〉 such that 〈S′, V ′〉 � 〈S′, σ′, φ′〉.

The proof of this theorem proceeds by a straightforward case analysis of the
concrete execution steps.

On the Nature of Symbolic Execution 69

3 Recursion

We extend the basic programming language with procedure declarations P (ū) ::
S and procedure calls P (ē), assuming a call by value parameter passing mech-
anism. A program then consists of set of procedure declarations and a main
statement. We assume absence of name clashes between the global variables of
a program and its local variables (e.g., the formal parameters of the procedure
declarations). A symbolic configuration is of the form 〈Σ, σ, φ〉, where

– Σ denotes the stack of closures (τ, S), where τ is a local substitution (assign-
ing expressions to formal parameters),

– σ is the current global substitution (mapping expressions to global variables),
– φ is a Boolean condition denoting the path condition.

In the sequel we indicate by ⊥ the absence of local variables in a closure (⊥, S)
which represents a continuation of the execution of the main statement which
does not contain local variables (for technical convenience we do not consider
the introduction of local variables by block statements). By τ ∪ σ we denote the
union of the substitutions τ and σ (defined in terms of their graphs). This is
well-defined because of the absence of name clashes between local and global
variables of a programs. We have the following symbolic transitions.

Procedure Call. Given the procedure declaration P (ū) :: S′, we have

– 〈(τ, P (ē);S) · Σ, σ, φ〉 → 〈(τ ′, S′) · (τ, S) · Σ, σ, φ〉, where τ ′(ū) = ē(τ ∪ σ).

Procedure Return

– 〈(τ, ε) · Σ, σ, φ〉 → 〈Σ, σ, φ〉, where ε denotes the empty statement.

Choice

– 〈(τ, if B {S1}{S2};S) · Σ, σ, φ〉 → 〈(τ, S1;S,) · Σ, σ, φ ∧ B(τ ∪ σ)〉
– 〈(τ, if B {S1}{S2};S) · Σ, σ, φ〉 → 〈(τ, S2;S) · Σ, σ, φ ∧ ¬B(τ ∪ σ)〉

Iteration

– 〈(τ,while B {S};S′) · Σ, σ, φ〉 → 〈(τ, S;while B {S};S′) · Σ, σ, φ ∧ B(τ ∪ σ)〉
– 〈(τ,while B {S};S′) · Σ, σ, φ〉 → 〈(τ, S′) · Σ, σ, φ ∧ ¬B(τ ∪ σ)〉

Assignment Global Variable Let x be a global variable.

– 〈(τ, x = e;S) · Σ, σ, φ〉 → 〈(τ, S) · Σ, σ[x = eθ], φ〉, where θ = τ ∪ σ.

Assignment Local Variable Let x be a local variable.

– 〈(τ, x = e;S) · Σ, σ, φ〉 → 〈(τ [x = eθ], S) · Σ, σ, φ〉, where θ = τ ∪ σ.

70 F. S. de Boer and M. Bonsangue

Proposition 1. For any computation 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉
where S denotes the main statement, we have that τ(x), for every local vari-
able x in its domain, and σ(x), for every global variable x, does not contain
local variables.

Proof. By induction on the length of the computation, using that eθ, for any
programming expression e, does not contain local variables, where θ = τ ∪σ and
τ(x), for every local variable x, and σ(x), for every global variable x, does not
contain local variables.

Corollary 1. For any computation 〈(⊥ S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 where
S denotes the main statement, the generated path condition φ does not contain
local variables.

We omit the details of the standard concrete semantics which instead of
substitutions is defined in terms of valuations both for the local variables and
the global variables, where V ∪ L(e) denotes the result of the evaluation of the
expression e in the global valuation V and the local valuation L. We have the
following correctness theorem of the symbolic execution of recursive programs.

Theorem 3 (Correctness). If 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 and
V (φ) = true then

〈(⊥, S), V 〉 →∗ 〈(V ◦ τ, S′) · V ◦ Σ,V ◦ σ〉
where V ◦ τ ′(x) = V (τ ′(x)), for any local environment τ ′ and local variable x,
and V ◦ Σ denotes the result of replacing every local environment τ ′ in Σ by
V ◦ τ ′ (and by ⊥, in case of the empty local environment ⊥). Note that by the
above proposition and corollary τ(x) and φ do not contain local variables.

Proof. As above, we proceed by induction on the length of the symbolic com-
putation and a case analysis of the last execution step. Given the procedure
declaration P (ū) :: S′, we consider the case of a procedure call:

〈(⊥, S), id , true〉 →∗ 〈(τ, P (ē);S′′) · Σ, σ, φ〉 → 〈(τ ′, S′) · (τ, ;S′′) · Σ, σ, φ〉
where τ ′(ū) = ē(τ ∪ σ). By the induction hypothesis we obtain the concrete
computation

〈(⊥, S), V 〉 →∗ 〈(V ◦ τ, P (ē);S′′) · V ◦ Σ,V ◦ σ〉
We observe that V ◦ τ ′(ū) = V (ē(τ ∪ σ)) = V ◦ (τ ∪ σ)(ē) = (V ◦ τ ∪ V ◦ σ)(ē).
So we obtain that

〈(V ◦ τ, P (ē);S′′) · V ◦ Σ,V ◦ σ〉 → 〈(V ◦ τ ′, S′) · (V ◦ τ, ;S′′) · V ◦ Σ,V ◦ σ〉
As in the basic case, we have a similar completeness result for recursive

procedures also expressed in terms of a simulation relation between the symbolic
and the concrete transition system.

On the Nature of Symbolic Execution 71

4 Object Orientation

We distinguish between the global variables appearing in the main statement,
the local variables (i.e., the formal parameters of methods, including the keyword
this), and the instance variables (of the classes) of the given program. For mod-
eling symbolically the dynamic creation of new objects, we assume a (countable)
infinite set of global variables. We abstract from the typing information of the
variables. We have the following syntax of programming expressions e in class
definitions

e := x | op(e1, . . . , en)

where x is a local or instance variable2 and op denotes a built-in operation.
The syntax of heap variables H and heap expressions E is defined by the

following grammar:

H := x | H.y
E := H | op(E1, . . . , En) ,

where x is a global variable and op an operation. In the last clause defining heap
variables we implicitly assume that y is an instance variable of the class of the
object represented by H.

A symbolic heap σ is a substitution which assigns to each heap variable a
heap expression. A local environment (of a given method) τ is a substitution
which assigns to each formal parameter a general heap expression. Note that
thus τ(x) does not contain local variables.

We have the following inductive definition of the application of a substitution
θ which consists of the union τ ∪σ of a symbolic heap σ and a local environment
τ to a programming expression e (as above, assuming absence of name clashes
between the formal parameters, on the one hand, and the instance and global
variables, on the other hand).

xθ = τ(x) local variable
xθ = σ(τ(this).x) instance variable
op(E1, . . . , En)θ = op(E1θ, . . . , Enθ)

A heap update σ[x = E], where x is a global variable, is defined by σ[x =
E](x) = E and σ[x = E](H) = σ(H), for any other heap variable H. Next we
define a symbolic heap update σ[H.x = E] by

– σ[H.x = E](H ′.x) = if σ(H ′) = σ(H) then E else σ(H ′.x) fi,
– σ[H.x = E](H ′) = σ(H ′), for any other heap variable H’.

It is important to note that the resulting expression in the first clause is a
conditional heap expression which captures possible aliases. Note further that
the case σ[H.x = E](H.x) simplifies to E.
2 In the main statement only global variables are used.

72 F. S. de Boer and M. Bonsangue

Given a program, i.e., a set of class definitions and a main statement, a
symbolic configuration is defined as above. We have the following symbolic tran-
sitions (the transitions for the assigning local variables, the choice and iteration
constructs are as above).

Assignment Global Variable. As above, absence of local variables in the main
statement is indicated by ⊥.

– 〈(⊥, x = e;S), σ, φ〉 → 〈(⊥, S), σ[x = eσ], φ〉
Note that a closure representing the execution of the main statement is always
at the bottom of the stack.

Assignment Instance Variable

– 〈(τ, x = e;S) · Σ, σ, φ〉 → 〈(τ, S) · Σ, σ[τ(this).x = eθ], φ〉, where θ = τ ∪ σ.

Object Creation. We describe the assignment of a new object to a local variable3.

– 〈(τ, x = new C;S) · Σ, σ, φ〉 → 〈(τ [x = y], S) · Σ, σ′, φ〉
The global variable y (of type C) is fresh and σ′ results from σ by assigning
nil to y.x, x an instance variable of C. Freshness is defined with respect to
the computation (which thus requires recording the set of new global variables
introduced so far, the details of which are straightforward and therefore omitted).

Method Call. Given a method declaration m(ū){S}, we have

– 〈(τ, y = e0.m(ē);S′) · Σ, σ, φ〉 → 〈(τ ′.S) · (τ, y =?;S′) · Σ, σ, φ′〉,
where τ ′(ū) = ē(τ ∪ σ) and τ ′(this) = e0(τ ∪ σ). The question mark in the
assignment y =? serves as a placeholder of the return expression (see below).
Further, φ′ denotes the path condition φ ∧ e0(τ ∪ σ) �= nil .

Method Return

– 〈(τ, return e) · (τ ′, x =?;S) · Σ, σ, φ〉 → 〈(τ ′[x = eθ], S) · Σ, σ, φ〉,
where θ = (τ ∪ σ). For an assignment of the return expression to an instance
variable we have a similar transition.

We have the following basic proposition about the expressions generated by
a symbolic computation.

Proposition 2. For any computation 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉
where S denotes the main statement, we have that τ(x) and σ(x) do not contain
local variables and do not dereference a global variable that does not occur in the
main statement (i.e., a global variable used to denote a newly created object).

Proof. The proof proceeds by a straightforward induction on the length of the
symbolic computation.
3 We model a call x = new C(ē) of a constructor method by the object creation

statement x = new C followed by a method call x.C(ē).

On the Nature of Symbolic Execution 73

Corollary 2. For any computation 〈(⊥ S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 where
S denotes the main statement, the generated path condition φ does not contain
local variables and derefences only global variables appearing in the main state-
ment (in other words, global variables which do not appear in the main statement
are not dereferenced).

In order to define and prove the correctness of the above symbolic transition
system for object-oriented programs, we first introduce the notion of a global
valuation V which assigns to each heap variable a value (of the corresponding
type) and which satisfies the following two conditions:

– V (H) = V (H ′) implies V (H.x) = V (H ′.x), for every heap variables H and
H ′ and instance variable x (belonging to the class of the object).

– V (x) �= V (x′), for any two distinct global variables x and x′ which do not
appear in the main statement (unique name assumption).

A concrete local valuation L assigns to every formal parameter x of the
corresponding method a value L(x) (of the appropriate type).

An update V [x = v] of a global valuation V , where x is a global variable
and v a value of corresponding type, is defined by V [x = v](x) = v and V [x =
v](H) = V (H), for any other heap variable H. On the other hand, an update
V [H.x = v] is defined by

– V [H.x = v](H ′.x) =
{

v if V (H ′) = V (H)
V (H ′.x) otherwise

– V [H.x = v](H ′) = V (H ′), for any other heap variable H ′.

An initial configuration 〈(⊥, S), V 〉 of the concrete semantics of a given program
consists of the main statement S (as above, ⊥ indicates the absence of local
variables) and an initial global valuation V such that for any global variable x
which does not appear in the main statement and heap variable H rooted in a
global variable we have that V (x) �= V (H). Any global variable is a heap variable
rooted in a global variable, and if H is such a heap variable, so is H.x, for any
instance variable x. We thus can use these initially unreachable objects in the
concrete semantics as a repository of fresh object identities (which are selected
non-deterministically, as the fresh global variables in the symbolic semantics).
Since every executing object is reachable (from a global variable) we can define
the concrete semantics of an assignment x = e to an instance variable e as
follows. Given the above update of a global valuation V and a local environment
L (which assigns values to the local variables of the executing method), we can
define the resulting global valuation of the execution of the assignment x = e by
the object L(this) by V [H.x = v], where H is such that V (H) = L(this), and v
is the result of evaluating the expression e in the local environment L and the
valuation V .

We omit the further details of the standard concrete semantics (which thus,
instead of substitutions, is defined in terms of valuations both for the local
variables and the heap variables).

74 F. S. de Boer and M. Bonsangue

We have the following correctness theorem of the symbolic execution of
object-oriented programs.

Theorem 4 (Correctness). Given an object-oriented program with main
statement S we have that if 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 and V (φ) =
true, where V is an initial valuation, then

〈(⊥, S), V 〉 →∗ 〈(V ◦ τ, S′) · V ◦ Σ,V ◦ σ〉
where V ◦ τ and V ◦ Σ are defined as above.

Proof. As above, the proof proceeds by induction on the length of the symbolic
computation and a case analysis of the last execution step. For the case of an
assignment x = e to an instance variable, it suffices to show that

V ◦ (σ[τ(this).x = eθ]) = (V ◦ σ)[τ(this).x = V (eθ)]

where θ = τ ∪ σ. Here we go: First, for any heap variable H not of the form
H ′.x, for some H ′, we have

V ◦ (σ[τ(this).x = eθ])(H) = V (σ[τ(this).x = eθ](H)) (def. ◦)
= V (σ(H)) (def. update σ[τ(this).x = eθ])
= (V ◦ σ)(H) (def. ◦)
= (V ◦ σ)[τ(this).x = V (eθ)](H) (def. update(V ◦ σ)[τ(this).x = V (eθ)]) .

Further,

V ◦ (σ[τ(this).x = eθ])(H.x)
= (def. ◦)
V (σ[τ(this).x = eθ](H.x))
= (def.update σ[τ(this).x = eθ])
V (if σ(H) = σ(τ(this)) then eθ else σ(H .x) fi)
= (semantics of conditional heap expression)
if V (σ(H)) = V (σ(τ(this))) then V (eθ) else V (σ(H.x))
= (def.update (V ◦ σ)[τ(this).x = V (eθ)])
(V ◦ σ)[τ(this).x = V (eθ)](H.x) .

Again, completeness can be established by means of a simulation relation
between the symbolic transition system and the concrete one.

Implementation

An implementation of the above symbolic execution of object-oriented programs
requires a finite representation of the generated substitutions (note that we
have a countable infinite set of heap variables). As an example, we can rep-
resent the generated substitutions by (possibly empty) sequences {H1.x1 =
E1}, . . . , {Hn.xn = E1} of updates of instance variables. Such a sequence ρ
simply represents the substitution ρ̄ which results from the identity substitution
id by applying the updates [H1, x1 = E1], . . . , [Hn.xn = En], as defined above,
consecutively. For such a sequence of updates ρ we define ρ(H) inductively by

On the Nature of Symbolic Execution 75

– id(H) = H,
– ρ{H.x = E}(H ′.x) = if ρ(H ′) = ρ(H) then E else ρ(H ′.x) fi,
– ρ{H.x = E}(H ′) = ρ(H ′), for any other heap variable H ′.

It is easy to prove by induction on the length of the sequence ρ that ρ(H) = ρ̄(H),
for every heap variable. We then can define e(τ∪ρ) in the same manner as e(τ∪σ)
defined above. Thus we can now define the following transition for an assignment
to an instance variable

〈(τ, x = e;S) · Σ, ρ, φ〉 → 〈(τ, S) · Σ, ρ{τ(this).x = eθ}, φ〉

where ρ is a sequence of updates and θ = τ ∪ ρ. In general, we abstract from the
infinite number of heap variables by simply replacing in the symbolic transitions
the substitution σ by the sequence of updates ρ. In particular, we have the
following adaptation of the transition describing object creation

〈(τ, x = new C;S) · Σ, ρ, φ〉 → 〈(τ [x = y], S) · Σ, ρ′, φ〉

where, as above, the global variable y (of type C) is fresh and ρ′ results from ρ
by adding the updates {y.x = nil}, for every an instance variable x of C.

Other implementation issues concern the aliasing of heap variables. There
are various ways to manage (resolve) aliasing. We briefly describe the following
enhancements. First, we can import information from the path condition φ into
the evaluation of ρ(H):

ρ{H.x = E}(H′.x) =

⎧
⎨

⎩

E if φ � ρ(H) = ρ(H′)
ρ(H′.x) if φ � ρ(H) �= ρ(H′)
if ρ(H ′) = ρ(H) then E else ρ(H′.x) if otherwise

Here � denotes logical entailment.
Further, there are various ways of branching the symbolic execution by resolv-

ing aliasing of heap variables. For example, we can resolve aliasing in the symbolic
transition of an assignment x = e as follows:

〈(τ, x = e;S) · Σ, ρ, φ〉 → 〈(τ, S) · Σ, ρ{τ(this).x = E}, φ′〉

where 〈e(τ ∪ρ), φ〉 ⇒∗ 〈E, φ′〉 and ⇒∗ denotes the reflexive, transitive closure of
the rewrite system consisting of the rules which resolve conditional expression,
like

– 〈op(. . . , if B then E1 else E2fi , . . .), φ〉 ⇒ 〈op(. . . , E1, . . .), B ∧ φ〉
– 〈op(. . . , if B then E1 else E2 fi, . . .), φ〉 ⇒ 〈op(. . . , E2, . . .),¬B ∧ φ〉
In a similar manner, we can resolve aliasing which results from the symbolic
evaluation of the Boolean condition of the choice and iteration constructs. For
example, we have the following symbolic transition for the choice construct.

〈(τ, if B {S1}{S2};S) · Σ, ρ, φ〉 → 〈(τ, S1;S,) · Σ, ρ,B′ ∧ φ′〉

where 〈B(τ ∪ ρ), φ〉 ⇒∗ 〈B′, φ′〉.

76 F. S. de Boer and M. Bonsangue

5 Arrays, Multithreading, and Concurrent Objects

To illustrate the generality of our theory of symbolic execution we discuss the
following extensions and applications.

Arrays. Arrays and object structures (i.e., heaps) are similar because both give
rise to a (countable) infinite number of program variables. Instead of an infinite
number of heap variables, arrays give rise to an infinite number of so-called
subscripted variables.

To focus on the main ideas, we restrict this discussion to the extension of the
basic programming language with one-dimensional arrays. We have the following
syntax of expressions e in the basic programming language (abstracting from the
typing information).

e := x | a[e] | op(e1, . . . , en) ,

where x ∈ Var , a is an array variable, and op denotes a built-in operation.
A substitution then assigns to each (subscripted) variable an expression. An

update σ[x = e], where x is a program variable, is defined by σ[x = e](x) = e
and σ[x = e](y) = σ(y), for any other (subscripted) variable y. Next we define a
symbolic update σ[a[e] = e′] by

– σ[a[e] = e′](a[e′′]) = if σ(e) = σ(e ′′) then e ′ else σ(a[e′′]) if ,
– σ[a[e] = e′](y) = σ(y), for any other (subscripted) variable y.

As above, it is important to note that the resulting expression in the first clause
is a conditional expression which captures possible aliases.

Given this definition of a symbolic update we can define in a straightfor-
ward manner a symbolic transition system for the basic programming language
extended with arrays (possibly taking into account symbolically array bounds).
Correctness then is defined with respect to the notion of a global valuation V
which assigns to each (subscripted) variable a value (of the corresponding type)
and which satisfies the following condition:

– V (e) = V (e′) implies V (a[e]) = V (a[e′]).

It is straightforward to extend Theorem 1. In particular, correctness of a symbolic
update of a subscripted variable then can be proved in a similar manner as that
of a heap variable. Further, we can apply the same techniques as introduced for
heap variables to obtain a finite representation of the generated substitutions
and resolve aliasing.

We conclude this discussion on arrays with another approach which consists
of a functional view of arrays (see [13]). In this view array variables themselves
are expressions which denote functions, and a substitution assigns to each array
variable an expression which denotes a function. Notably, an expression (a[e] =
e′) denotes the function which results from updating the function denoted by a.
Applying a substitution σ then amounts simply to subtituting every occurrence
of an array variable a by the expression σ(a). Similarly, object structures can

On the Nature of Symbolic Execution 77

be viewed as a function h which symbolically represents the heap. However, the
abstraction level of such a functional view does not coincide with that of the
programming language (it extends the set of programming expressions).

Multithreading. It is straightforward to extend the symbolic transition system
introduced above with multithreading: A symbolic configuration 〈Threads, σ〉
then consists of a set Threads of stacks of closures and local symbolic transitions
of a single thread are extended to global transitions by the following rule:

〈T, σ, φ〉 → 〈T ′, σ′, φ′〉
〈{T} ∪ Threads, σ, φ〉 → 〈{T ′} ∪ Threads, σ′, φ′〉

where T and T ′ denote stacks of closures. For a call of the run method of a
thread class we need the following separate rule which spawns a new thread.

〈{(τ, e.run;S) · Stack} ∪ Threads, σ, φ〉
→

〈{(τ, S) · Stack , (τ ′, S′)} ∪ Threads, σ, φ〉
where τ ′(this) = e(τ ∪σ) and S′ denotes the body of the run method. The proof
of correctness is a straightforward extension of the correctness of the symbolic
execution of sequential object-oriented programs (as stated by Theorem 4).

Concurrent Objects. We briefly sketch how to extend the symbolic execution of
object-oriented programs to the Abstract Behavioral Specification (ABS) lan-
guage [14] which describes systems of objects that interact via asynchronous
method calls. Such a call spawns a corresponding process associated with the
called object. Return values are communicated via futures [12]. Each object
cooperatively schedules its processes one at a time. The processes of an object
can only access their local variables and the instance variables of the object. As
in Sect. 4, we assume a main statement that only contains global variables.

Symbolically, a system of concurrent objects in ABS can be described by a
configuration 〈P, σ, φ〉, where P is simply a set of closures (τ, S) which represent
the processes, and σ is a substitution, φ is a path condition, both as defined in
Sect. 4. To model the communication of the return values by futures we introduce
for each process a distinguished local variable dest which denotes its own future
(see below).

We have the following symbolic transition for an asynchronous call x =
e0!m(ē) to a method m with body S:

〈{(τ, x = e0!m(ē);S)} ∪ P, σ, φ〉 → 〈{(τ, x = y;S), (τ ′, S′)} ∪ P, σ[y = nil], φ′〉
where the newly generated future is symbolically represented by a fresh global
variable y which is initialized to nil (indicating that the return value has not yet
been computed). Further, τ ′(ū) = ē(τ ∪σ), τ ′(this) = e0(τ ∪σ), and τ ′(dest) = y.
Finally, φ′ denotes the path condition φ ∧ e0(τ ∪ σ) �= nil .

For returning a value we have the transition

〈{(τ, return e)} ∪ P, σ, φ〉 → 〈P, σ[τ(dest) = e(τ ∪ σ)], φ〉

78 F. S. de Boer and M. Bonsangue

Obtaining a returned value from a future by means of a “get” operation on
a future variable is described by the transition

〈{(τ, x = y.get);S)} ∪ P, σ, φ〉 → 〈{(τ [x = σ(y)], S)} ∪ P, σ, φ〉

where φ � σ(y) �= nil (that is, φ entails that σ(y) �= nil). Note that this transition
thus requires that the return value has been computed as recorded by the path
condition.

Scheduling a process that is waiting on a Boolean condition is modeled by

〈{(τ, await e;S)} ∪ P, σ, φ〉 → 〈{(τ, S)} ∪ P, σ, φ ∧ eθ〉

where θ = τ ∪ σ and e is a Boolean condition. On the other hand, scheduling a
process that is waiting on a future is modeled by

〈{(τ, await x?;S)} ∪ P, σ, φ〉 → 〈{(τ, S)} ∪ P, σ, φ〉

where x is a future variable and φ � σ(y) �= nil .
The transitions for the usual statements, e.g., that of assigning an instance

variable of an object, are modeled in a straightforward manner after the corre-
sponding transitions in Sect. 4. Assuming that all method bodies start with the
awaittrue statement, we can globally constrain the scheduling of processes by
the invariant that for each object there exists at most one process with an initial
statement different from an await statement.

The concrete transition system for the ABS language can be defined as in
Sect. 4 in terms of valuations. Here we use the initially unreachable objects in the
concrete semantics additionally as a repository of fresh future identities. Again,
the proof of correctness is a straightforward extension of the correctness of the
symbolic execution of sequential object-oriented programs.

6 Conclusion

Despite the popularity and success of symbolic execution techniques, to the best
of our knowledge, a general theory of symbolic execution is missing which covers
in an uniform manner mainstream programming features like arrays and (object-
oriented) pointer structures, as well as local scoping as it arises in the passing of
parameters in recursive procedure calls. In fact, most existing tools for symbolic
execution lack an explicit formal specification and justification.

In this paper we proposed such a general theory which covers the above
mainstream programming features, and further illustrated the generality of our
approach by its application to both multithreading and concurrent objects. From
a practical point of view, we also illustrated how our theory sheds light on major
implementation issues related to dynamically allocated variables and aliasing.
This point of view we want to further explore by the development of proto-type
implementations of the presented formal models of symbolic execution, compare
performance with other tools, and investigate optimizations.

On the Nature of Symbolic Execution 79

Another interesting research direction is the development of a further exten-
sion of our theory for concolic execution, mixing symbolic and concrete execu-
tions [16], and the symbolic backward execution [17].

Acknowledgements. This work arose out of our Foundation of Testing master course
(LIACS) in 2018, and we thank the master students for their valuable comments. We
thank the anonymous reviewers for their valuable comments.

References

1. King, C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976)

2. Albert, E., Arenas, P., Gómez-Zamalloa, M., Rojas, J.M.: Test case generation
by symbolic execution: basic concepts, a CLP-based instance, and actor-based
concurrency. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer,
I. (eds.) SFM 2014. LNCS, vol. 8483, pp. 263–309. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07317-0 7

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018)

4. Lucanu, D., Rusu, V., Arusoaie, A.: A generic framework for symbolic execution:
a coinductive approach. J. Symbolic Comput. 80(1), 125–163 (2017)

5. Braione, P., Denaro, G., Pezzè, M.: Symbolic execution of programs with heap
inputs. In: Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015), pp. 602–613. ACM (2015)

6. Trt́ık, M., Strejček, J.: Symbolic memory with pointers. In: Cassez, F., Raskin,
J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 380–395. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11936-6 27

7. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS 2006), pp. 322–335. ACM (2006)

8. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI
2008), pp. 209–224, USENIX Association (2008)

9. Elkarablieh, B., Godefroid, P., Levin, M.Y.: Precise pointer reasoning for dynamic
test generation. In: Proceedings of the 18th International Symposium on Software
Testing and Analysis (ISSTA 2009), pp. 129–140. ACM (2009)

10. Perry, D.M., Mattavelli, A., Zhang, X., Cadar, C.: Accelerating array constraints
in symbolic execution. In Proceedings of the 26th International Symposium on
Software Testing and Analysis (ISSTA 2017), pp. 68–78. ACM (2017)

11. Deng, X., Lee, J.: Bogor/Kiasan: a K-bounded symbolic execution for checking
strong heap properties of open systems. In: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2006), pp.
157–166 (2006)

12. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

13. Gries, D.: The Science of Programming. Texts and Monographs in Computer Sci-
ence. Springer (1981)

https://doi.org/10.1007/978-3-319-07317-0_7
https://doi.org/10.1007/978-3-319-07317-0_7
https://doi.org/10.1007/978-3-319-11936-6_27
https://doi.org/10.1007/978-3-540-71316-6_22

80 F. S. de Boer and M. Bonsangue

14. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

15. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: a framework for generating
object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31980-1 24

16. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI 2005), pp. 213–223. ACM (2005)

17. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weak-
est preconditions. In Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2009), pp. 363–374. ACM
(2009)

18. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbric, M.: Deduc-
tive Software Verification - The KeY Book - From Theory to Practice. LNCS, vol.
10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-540-31980-1_24
https://doi.org/10.1007/978-3-319-49812-6

Synthesis Techniques

GR(1)*: GR(1) Specifications Extended
with Existential Guarantees

Gal Amram, Shahar Maoz(B), and Or Pistiner

Tel Aviv University, Tel Aviv, Israel
maoz@cs.tac.ac.il

Abstract. Reactive synthesis is an automated procedure to obtain a
correct-by-construction reactive system from its temporal logic specifi-
cation. GR(1) is an expressive assume-guarantee fragment of LTL that
enables efficient synthesis and has been recently used in different con-
texts and application domains. A common form of providing the system’s
requirements is through use cases, which are existential in nature. How-
ever, GR(1), as a fragment of LTL, is limited to universal properties.

In this paper we introduce GR(1)*, which extends GR(1) with exis-
tential guarantees. We show that GR(1)* is strictly more expressive than
GR(1) as it enables the expression of guarantees that are inexpressible in
LTL. We solve the realizability problem for GR(1)* and present a sym-
bolic strategy construction algorithm for GR(1)* specifications. Impor-
tantly, in comparison to GR(1), GR(1)* remains efficient, and induces
only a minor additional cost in terms of time complexity, proportional
to the extended length of the formula.

1 Introduction

Reactive synthesis is an automated procedure to obtain a correct-by-construction
reactive system from its temporal logic specification [36]. Rather than manually
constructing an implementation and using model checking to verify it against
a specification, synthesis offers an approach where a correct implementation
of the system is automatically obtained for a given specification, if such an
implementation exists.

GR(1) is a fragment of linear temporal logic [35] (LTL), which has an effi-
cient symbolic synthesis algorithm [6,34] and whose expressive power covers
most of the well-known LTL specification patterns of Dwyer et al. [14,28]. GR(1)
specifications include assumptions and guarantees about what needs to hold on
all initial states, on all states (safety), and infinitely often on every run (jus-
tice). GR(1) synthesis has been used and extended in different contexts and for
different application domains, including robotics [23,27], scenario-based speci-
fications [33], aspect languages [32], event-based behavior models [13], hybrid
systems [17], and device drivers [46], to name a few.

A common form of providing system’s requirements is through use cases [1,
19,37]. In contrast to universal behaviors, i.e., which must hold on all possible

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 83–100, 2019.
https://doi.org/10.1007/978-3-030-30942-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_7

84 G. Amram et al.

system runs, use cases describe possible, existential behaviors. Use cases are
commonly used in the early stages of requirements analysis and specification,
as they are natural to define from a user’s perspective and as in these stages,
invariants may be too strong to be specified correctly. Use cases are useful also
in specifying alternative and exceptional behaviors, which, by nature, do not
appear in every run, and in specifying examples of behaviors that should not be
possible. They are further commonly used again in later stages of development,
to prescribe test cases. Despite all the above, to the best of our knowledge, no
previous work has proposed efficient reactive synthesis for specifications that
include not only universal but also existential properties.

In this work we present GR(1)*, which extends GR(1) specifica-
tions and synthesis with existential guarantees over input and out-
put (environment and system) variables. GR(1)* allows engineers to
naturally describe use cases as part of the specification and to effi-
ciently synthesize a correct-by-construction controller that guaranties
to make them possible.

We formally define GR(1)* and show that it is strictly more expressive than
GR(1) (as it can express properties that are in CTL* [16] and outside LTL),
see Sect. 3. We show how to solve GR(1)* games using a symbolic fixed-point
algorithm, and present a corresponding controller construction, see Sects. 4 and
5. All proofs are provided in an appendix of the archive version of the paper.

Importantly, in comparison to GR(1) [6], GR(1)* induces only a minor addi-
tional cost in terms of time complexity, proportional to the extended length of
the formula. Specifically, in [6] GR(1) games are solved in time O(nmN2) (mea-
sured in symbolic steps), where n is the number of justice guarantees, m is the
number of justice assumptions, and N is the size of the state space 2X∪Y . The
time complexity of our solution for GR(1)* games is O((nm+ �r(k′))N2), where
l is the number of existential guarantees and r(k′) is the length of the longest
existential guarantee.

The remainder of the introduction presents a running example and discusses
related work.

1.1 Example: Lift Specification

As a motivating example, we enrich a lift specification, inspired by the example
in [6], with several existential guarantees.

According to the original specification, the lift moves between n floors and
must reach every floor it was called to. The environment controls button presses
on every floor through variables {b1, . . . , bn}. The system controls the lift’s loca-
tion through variables {f1, . . . , fn}. The lift can move at most one floor in a
single step, a button that has been pressed is turned off iff the lift reaches its
floor, and the lift is required to reach every floor it was called to. For a complete
description see [6]. We now describe example existential guarantees.

First, assume that the requirements document describes a typical use case:
the lift is at floor i, button j is pressed, and the lift eventually reaches floor j.
The engineer wants to integrate this use case into the specification in order to

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 85

make sure that the lift will enable it. Thus, in our example, she formalizes the
following guarantees and adds them to the specification:
Ai,j Typical use case - the lift is at floor i, button j is pressed, and the lift

eventually reaches floor j: GE(F (fi ∧ bj ∧ F (fj))).

Second, the engineer is aware that sometimes a synthesized controller may
achieve its goals by preventing certain events from happening, and she wishes
to avoid such vacuous solutions. She thus formalizes and adds the following
guarantees to the specification:
Bi Button i can always be pressed: GE(F (bi)).

Finally, we present an example of using a negative scenario as a ‘test’. Con-
sider new system variables mUp and mDown that model the direction in which
the lift should move. The engineer believes that in the presence of pending calls,
the specified lift never stays in place. To test this hypothesis, she checks that the
specification with the following additional existential guarantee is unrealizable:
C The lift is in idle mode although there is a pending call:

GE(F (
∨n

i=1 bi ∧ ¬mUp ∧ ¬mDown)).

1.2 Related Work

LTL synthesis of reactive systems was studied in [36] and shown to be
2EXPTIME-complete [38]. The GR(1) fragment of LTL, which can be solved
in time quadratic in the size of the state space, is proposed in [6]. As GR(1)*
augments GR(1) with existential requirements, it is in fact a fragment of
CTL* [12,16]. Kupferman and Vardi showed that the synthesis problem for
CTL* formulas is 2EXPTIME-complete [25]. Recently, Bloem et al. suggested a
CTL* synthesis technique [7], and a corresponding synthesis tool. As we show,
GR(1)*, like GR(1), is solved in time quadratic in the size of the state space.

Synthesis techniques that consider existential requirements, use cases, and
scenarios were suggested in the literature. Harel et al. [18,24] studied synthesis of
object systems from universal and existential live sequence charts (LSC). Uchitel
et al. [39,40,44,45] studied synthesis of modal transition systems (MTS) from
universal and existential message sequence charts (MSC). Besides these papers,
discussions about the value of use cases, scenarios, and examples for their use in
the specification and analysis of systems can be found in [2,3,42,47]. All these
motivated us to extend GR(1) with existential guarantees.

In the context of GR(1), Bloem et al. [5] defined levels of cooperation between
the system and the environment. Some of these levels of cooperation require
that the justice assumptions hold in an existential manner. Ehlers et al. [15] and
Majumdar et al. [26] proposed a synthesis technique for a cooperative GR(1)
controller, i.e., a controller that never forces violation of the justice assump-
tions. Thus, while these papers relate to the justice assumptions as existential
guarantees, our technique allows to add any sequence of assertions as existential
guarantees. Note that the problem solved in these papers is not a special case of
our solution, since [15] and [26] require that the justice assumptions may hold
from any reachable state, while we require that the existential guarantees can
be satisfied along plays that satisfy the justice assumptions.

86 G. Amram et al.

2 Preliminaries

2.1 Game Structures and Strategies

Our notations are standard and mostly based on [6]. For a set of Boolean vari-
ables V, a state is an element s ∈ 2V , an assertion is a Boolean formula over V,
and |= is the satisfaction relation between a state and an assertion. true and false
are the assertions satisfied by every state and by no state, resp. As an assertion
naturally corresponds to the set of states by which it is satisfied, we refer to sets
of states as assertions and we may write s |= A instead of s ∈ A. For Z ⊆ V
and s ∈ 2V , s|Z denotes the state s ∩ Z ∈ 2Z . For a set of variables V, V ′ is the
set of variables obtained by replacing each v ∈ V with v′. Likewise, for s ∈ 2V

and an assertion a over V, s′ ∈ 2V′
and a′ are the state and assertion obtained

by replacing each variable v with v′. If V1, . . . ,Vk are pairwise disjoint sets of
variables and si ∈ 2Vi , we write (s1, . . . , sk) as an abbreviation for s1 ∪ · · · ∪ sk.
Thus, (s1, . . . , sk) is a state over V = V1 ∪ · · · ∪ Vk.

A game structure is a tuple, GS = (X ,Y, θe, θs, ρe, ρs), where X ,Y are dis-
joint sets of variables, θe is an assertion over X , θs is a assertion over X ∪ Y, ρe

is an assertion over X ∪ Y ∪ X ′, and ρs is an assertion over X ∪ Y ∪ X ′ ∪ Y ′.
Intuitively, a game structure defines how two players, the environment and the
system, choose inputs and outputs repeatedly. θe and θs set rules for the begin-
ning of the play; the environment chooses an initial input sx |= θe and, in
response, the system chooses an output sy such that (sx, sy) |= θs. Afterwards,
the players take turns choosing inputs and outputs in compliance with the safety
assumptions and guarantees, ρe and ρs, resp. Specifically, from a state s ∈ 2X∪Y ,
the environment can choose an input sx ∈ 2X , such that (s, s′

x) |= ρe, and the
system may respond with an output sy ∈ 2Y if (s, s′

x, s′
y) |= ρs.

A state s is said to be a deadlock for the system if there exists sx ∈ 2X such
that (s, s′

x) |= ρe, but there is no sy ∈ 2Y such that (s, s′
x, s′

y) |= ρs. Analogously,
a deadlock for the environment is a state s for which there is no sx such that
(s, s′

x) |= ρe. A play is a sequence of states s0, s1, s2, . . . , such that (1) for two
consecutive states si, si+1, (si, s

′
i+1) |= ρe ∧ ρs, and (2) either it is infinite or it

ends in a deadlock.
A strategy for the system from S ⊆ 2X∪Y is a partial function fs : (2X∪Y)+×

2X → 2Y such that (1) for s0 ∈ S, (s0) is consistent with fs; (2) if (s0, . . . , sk)
is consistent with fs, sk is not a deadlock for the system, and (sk, s′

x) |= ρe

for sx ∈ 2X , then fs(s0, . . . , sk, sx) is defined, and for sy = fs(s0, . . . , sk, sx),
(sk, s′

x, s′
y) |= ρs, and the sequence (s0, . . . , sk, (sx, sy)) is consistent with fs.

We say that an infinite sequence of states is consistent with fs if any of its
finite prefixes is consistent with fs. A strategy for the environment player is a
partial function fe : (2X∪Y)+ → 2X that satisfies the analogous requirements.
Consistency of a sequence with fe is also defined analogously.

A controller determines a strategy from S ⊆ 2X∪Y for the system using a
finite memory. Formally, a controller C is a partial function with a set of memory
values M . The controller has an initial value m0, and for some tuples (s, sx,m) ∈
2X∪Y ×2X ×M such that (s, s′

x) |= ρe, C(s, sx,m) = (sy, m̂) ∈ 2Y ×M such that

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 87

(s, s′
x, s′

y) |= ρs. A controller C, from S, can also be viewed as a partial function
over (2X∪Y)+ × 2X . C(s0, . . . , sk, sx) = (sy,m) if, from state s0, by receiving
inputs s1|X , . . . , sk|X , sx, the controller replies with s1|Y , . . . , sk|Y , sy, and the
final value of its memory is m. Formally, we require that the following holds:

• For s0 ∈ S, (s0) is consistent with C and for every sx ∈ 2X such that
(s0, s′

x) |= ρe, we require that C(s0, sx,m0) is defined, and if C(s0, sx,m0) =
(sy,m1), we write C(s0, sx) = (sy,m1);

• Assume that (s0, . . . , sk) is consistent with C where s0 ∈ S, and for
sx ∈ 2X , C(s0, . . . , sk, sx) = (sy,mk+1). Then, (s0, . . . , sk, (sx, sy)) is con-
sistent with C, and we require that for every tx ∈ 2X with ((sx, sy), t′x) |=
ρe, C((sx, sy), tx,mk+1) is defined. Moreover, for C((sx, sy), tx,mk+1) =
(ty,mk+2), we write C(s0, . . . , sk, (sx, sy), tx) = (ty,mk+2).

Clearly, a controller C defines a strategy for the system fs
C , by fs

C(s0, . . . ,
sk, sx) = sy iff C(s0, . . . , sk, sx) = (sy,m) for some m ∈ M .

2.2 Linear Temporal Logic and the GR(1) Fragment

Linear temporal logic (LTL) [35] is a language to specify properties over infinite
words. Given a set of variables, V, LTL formulas are generated by the grammar
ϕ = p|¬ϕ|ϕ ∨ ϕ|ϕ ∧ ϕ|Xϕ|Fϕ|Gϕ|ϕUϕ, where p is an assertion over V and
parenthesis may be used to determine the order of operator activations. Given an
infinite sequence of states, π ∈ (2V)ω, πi denotes the suffix of π that starts from
the i-th state in π (counting from zero). The term π |= ϕ is defined inductively
on the structure of ϕ: (1) π |= p if π(0) |= p; (2) π |= Xϕ if π1 |= ϕ; (3) π |= Fϕ
if ∃k(πk |= ϕ); (4) π |= Gϕ if ∀k(πk |= ϕ); (5) π |= ϕUψ if ∃k(πk |= ψ ∧ ∀j <
k(πj |= ϕ)); (6) Boolean operators are treated in a standard way.

Given a game structure GS = (X ,Y, θe, θs, ρe, ρs), an LTL formula ϕ, and a
play π, π wins for the system w.r.t. GS and ϕ if either it ends in a deadlock for the
environment, or it is infinite and π |= ϕ. Otherwise, it wins for the environment
w.r.t. GS and ϕ. A strategy for the system, fs, wins from s ∈ 2X∪Y w.r.t. GS
and ϕ if every play from s, consistent with fs, wins for the system w.r.t. GS
and ϕ. A strategy for the system, fs is a winning strategy w.r.t. GS and ϕ if
for every sx |= θe there exists sy ∈ 2Y such that (sx, sy) |= θs and fs wins from
(sx, sy) w.r.t. GS and ϕ. The winning region of the system includes all states, s,
for which there exists a strategy for the system that wins from s. The winning
region and a winning strategy for the environment are defined analogously.

Among LTL formulas, of special interest to us is the GR(1) fragment [6].
A GR(1) formula is an LTL formula of the form

∧m
j=1 GF (aj) → ∧n

i=1 GF (gi),
where a1, . . . , am, g1, . . . , gn are assertions. The assertions a1, . . . , am are called
justice assumptions, and g1, . . . , gn are called justice guarantees.

2.3 µ-calculus over Game Structures

Modal μ-calculus [22] is a modal logic enriched by least and greatest fixed-
point (l.f.p. and g.f.p.) operators. Since we are interested in games that model

88 G. Amram et al.

reactive systems, we adopt the form of [6], which uses the controllable predecessor
operators and . In addition, to deal with possible behaviors, we add to the
logic of [6] the predecessor operator �.

For a set of variables V, and a set of relational variables Var = {X,Y, . . .},
a μ-calculus (in positive form) formula is constructed by the grammar
φ = p X φ φ φ φ φ φ φ μXφ νXφ , where p is an assertion over V. A
μ-calculus formula defines a subset of 2V . In words, φ defines the set of states
from which the system can enforce reaching next a state in the set that φ defines,

φ defines the set of states from which the environment can enforce reaching
next a state in the set that φ defines, and �φ is the set of states from which the
environment and the system can choose an input and an output to reach a state
in the set that φ defines. μ and ν denote the l.f.p. and g.f.p. operators, resp.

For a game structure GS = (X ,Y, θe, θs, ρe, ρs), a μ-calculus formula φ, and
a valuation E : Var → 2(2

X∪Y), the semantics of φ, �φ�E
GS ⊆ 2X∪Y , is defined by

a structural induction. We refer the reader to [6] for the exact definition, and add
the rule: ��φ�E

GS = {s ∈ 2V : ∃t ∈ 2X∪Y(((s, t|′X , t|′Y) |= ρe ∧ ρs) ∧ t ∈ �φ�E
GS)}.

If all relational variables in φ are bound by fixed-point operators, we omit
the notation E , and just write �φ�GS . We remark that by Knaster-Tarski the-
orem [43], �μXφ�E

GS and �νXφ�E
GS indeed return the l.f.p. and g.f.p. of the

function S �→ �φ�
E[X←S]
GS . This theorem can be applied since the positive form

ensures that the function S �→ �φ�
E[X←S]
GS is monotone, so l.f.p. and g.f.p. exist.

3 GR(1)*: Going Beyond LTL

3.1 GR(1)* Formulas

GR(1)* extends the GR(1) fragment of LTL with existential guarantees of the
form E(F (q1 ∧ F (q2 ∧ F (q3 ∧ · · · F (qr) · · ·)))) that should hold globally, where
q1, . . . , qr are assertions over a set of variables V. As in the case of justice
guarantees, these guarantees should hold if all justice assumptions are satisfied
infinitely often. Therefore, since this formula prescribes a possible behavior, the
synthesized controller should either enable reaching q1, q2, . . . , qr in that order,
or enforce the violation of the assumptions.

Definition 1 (GR(1)*). For k ∈ {1, . . . , �} let Sk = E(F (q(k,1) ∧ F (q(k,2) ∧
F (q(k,3) ∧ · · · F (q(k,r(k))) · · ·)))). A GR(1)* formula over a set of variables V is
a formula of the form

A
(m∧

j=1

GF (aj) → (
n∧

i=1

GF (gi) ∧
�∧

k=1

G(Sk))
)
,

where a1, . . . , am, g1, . . . , gn, q(1,1), . . . , q(�,r(�)) are assertions over V.

Note that our definition includes existential guarantees but no existential
assumptions. Adding such assumptions would only make it easier for the system

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 89

to win by enforcing violation of the assumptions, which is undesirable. Still,
importantly, note that the existential guarantees in GR(1)* may use not only
system variables but also environment variables.

Both syntactically and semantically, GR(1)* is a fragment of CTL*, and it
is neither a subset of LTL nor of CTL, as illustrated in Fig. 1. For instance, the
GR(1)* formula A(GF (a) → (GF (g)∧GE(F (q)))) is expressible neither in LTL
nor in CTL. This can be proved using arguments similar to [16].

Fig. 1. Relationships between GR(1)* and other subsets of CTL*

3.2 GR(1)* Winning Condition

We now define when a strategy is winning w.r.t. a GR(1)* winning condition.
As GR(1)* is a subset of CTL*, we essentially apply the general definition of
winning strategies for reactive systems with CTL* winning conditions [25]. That
is, roughly, we wish to say that a strategy is winning if it induces a computation
tree which satisfies the GR(1)* formula. However, since, in contrast to [25], we
consider game structures that restrict the steps that the players can perform,
we cannot directly apply the definition of [25], and some technical changes are
necessary. Specifically, a strategy may induce a tree that has a branch that is
finite (rather than infinite) and ends in a deadlock. Thus, this tree is not a
computation tree in the sense of [25], and our formal definition takes this fact
into consideration.

Definition 2. Let GS = (X ,Y, θe, θs, ρe, ρs) be a game structure, and let ψ =
A

(∧m
j=1 GF (aj) → (

∧n
i=1 GF (gi) ∧ ∧�

k=1 G(Sk))
)

be a GR(1)* formula over
X ∪ Y where Sk = E(F (q(k,1) ∧ F (q(k,2) ∧ F (q(k,3) ∧ · · · F (q(k,r(k))) · · ·)))). A
strategy for the system fs wins from a state s ∈ 2X∪Y w.r.t. GS and ψ, iff for
every play π from s that is consistent with fs, the following two requirements
hold:

1. If π is finite, then it ends in a deadlock for the environment.
2. If π is infinite and π |= ∧m

j=1 GF (aj), then:
(a) π |= ∧n

i=1 GF (gi).
(b) For every i ≥ 0, and an existential guarantee, Sk, the ith prefix of π,

π(0), . . . , π(i) can be extended to a play π̃, consistent with fs, such that
there are indices i ≤ i1 ≤ i2 ≤ · · · ≤ ir(k) with π̃(ij) |= q(k,j).

Further, fs is a winning startegy if for every sx ∈ 2X with sx |= θe, there
exists sy ∈ 2Y such that (sx, sy) |= θs, and fs wins from (sx, sy).

90 G. Amram et al.

3.3 Inexpressibility of GR(1)* Winning Conditions in LTL

The fact that GR(1)* is a fragment of CTL* that is expressible neither in LTL
nor in CTL (see, Sect. 3.1), does not imply that a GR(1)* winning condition
cannot always be replaced with an LTL winning condition. To conclude this
form of inexpressibility, we show that the arguments of [16] apply in the context
of synthesized reactive systems.

We say that an LTL winning condition ϕ, is equivalent to a GR(1)* winning
condition ψ, if for any game structure GS , and for any strategy for the system
fs, fs is winning w.r.t. GS and the winning condition ϕ, iff it is winning w.r.t.
GS and the winning condition ψ. Unsurprisingly, the example of [16] works in
our context as well, and proves that GR(1)* winning conditions are inexpressible
in LTL.

Proposition 1. GR(1)* winning conditions are inexpressible in LTL.

The proof of Proposition 1 reveals that even a winning condition as simple
as A(G(EF (y)) is inexpressible in LTL. Using similar arguments one can show
that every existential guarantee from our motivating example (Sect. 1.1) is inex-
pressible in LTL.

4 Solving GR(1)* Games

In this section, we present a μ-calculus formula that computes the winning
region of the system player in GR(1)* games. Consider a game structure
GS = (X ,Y, θe, θs, ρe, ρs), together with a GR(1)* formula A(

∧m
j=1 GF (aj) →

(
∧n

i=1 GF (gi) ∧ ∧�
k=1 G(Sk))), where Sk = E(F (q(k,1) ∧ F (q(k,2) ∧ F (q(k,3) ∧

· · · F (q(k,r(k))) · · ·)))). To compute the system’s winning region, we present a μ-
calculus formula that consists of three components: V , f(Z), and {hk(Z) : k =
1, . . . , �}, each of which we define next.

First, note that enforcing a violation of the assumptions, if possible, ensures
winning. The states from which the system can violate the assumptions are those
from which it can win the game whose winning condition is the LTL formula∨m

j=1 FG(¬aj). These states are characterized by the μ-calculus formula:

μY (
m

j=1

νX(Y ∨ (¬aj ∧ X)) ((1)

Thus, the first component we consider is V = μY ((m
j=1 νX Y (aj

X))) GS, the set of states computed by the μ-calculus formula in Eq. 1.
The second component we consider is the formula from [6] for solving GR(1)

games. The justice assumptions and guarantees part of our GR(1)* formula,∧m
j=1 GF (aj) → ∧n

i=1 GF (gi), is solved by the formula in Eq. 2:

νZ(
n

i=1

μY (
m

j=1

νX((gi ∧ Z) ∨ Y ∨ (¬aj ∧ X)))) = νZ(f(Z) (2)

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 91

For the third component, we turn to look at the existential guarantees of
the GR(1)* formula, {Sk : 1 ≤ k ≤ �}. For every such guarantee Sk, and 1 ≤
i ≤ r(k) + 1, we define a μ-calculus formula hk,i(Z), parametrized by a set of
states Z. This formula characterizes the set of all states in Z from which there
is a path in Z that traverses through q(k,i), q(k,i+1), . . . , q(k,r(k)). The formulas
hk,r(k), . . . , hk,1 are defined recursively in reverse order as follows:

• hk,r(k)+1(Z) = Z;
• hk,i(Z) = μY ((q(k,i) ∧ hk,i+1(Z)) ∨ (Z ∧ �Y)).

We are interested in the the outcome of this recursive formula.

hk,1(Z) = hk(Z) (3)

The formula in Eq. 3 has k nested μ-operators. However, for i > j, the quan-
tified variable of hk,j does not appear in hk,i. Therefore, by computing the func-
tions hk,r(k)(Z), . . . , hk,1(Z) in that order, �hk(Z)�GS is computed in O(r(k) ·N)
time.

Finally, combining the three components from Eqs. 1-3, we obtain the formula
in Eq. 4, which computes the winning region of the system in the GR(1)* game.

νZ(V ∨ (f(Z) ∧
�∧

k=1

hk(Z))) (4)

Theorem 1 (Realizabilty). �νZ(V ∨(f(Z)∧∧�
k=1 hk(Z)))�GS is the winning

region of the system player in the GR(1)* game.

In the next section, we show how to construct a winning strategy from the
set �νZ(V ∨ (f(Z) ∧ ∧�

k=1 hk(Z)))�GS . Hence, to conclude the correctness of
Theorem 1, we need to show that the system cannot win from every state in the
complementary set of �νZ(V ∨ (f(Z) ∧ ∧�

k=1 hk(Z)))�GS .

Lemma 1. If s /∈ �νZ(V ∨ (f(Z) ∧ ∧�
k=1 hk(Z)))�GS , then no strategy for the

system wins from s.

By Theorem 1, a naive approach provides a realizability check for GR(1)*
formulas in O(nmN3 + lr(k′)N2) symbolic steps, where r(k′) = max{r(k) : 1 ≤
k ≤ �}. As in the case of GR(1), with the technique proposed in [8], this can
be improved to O((nm + lr(k′))N2) steps. We see that extending GR(1) with
existential guaranties adds only a minor cost to the realizability check.

5 Strategy Construction

In this section, we present a construction for a GR(1)* controller, which wins the
GR(1)* game from the system’s winning region W , computed by the formula
in Eq. 4. The basic idea behind the construction is very simple, and we start by
describing it along with an informal description of a GR(1)* controller construc-
tion. Then, we point out that this construction has a significant disadvantage.
We therefore suggest a way to improve the construction and present a detailed
construction for our improved GR(1)* controller.

92 G. Amram et al.

5.1 Construction Discussion and Overview

The basic idea is to alternate between two phases. Phase I is the well-known
GR(1) strategy from [6]. The GR(1) controller satisfies the justice guarantees
g1, . . . , gn, one by one, provided that it will fail to satisfy gi only in case the justice
assumptions are violated forever. We add to this phase the requirement that if
the controller reaches a state in V , it forces violation of the justice assumptions
for the remainder of the play. After satisfying the justice guarantees, the GR(1)*
controller proceeds to phase II in which it chooses an existential guarantee Sk,
and tries, cooperatively, to reach q(k,1), . . . , q(k,r(k)).

Although correct, the strategy outlined above suffers from a significant draw-
back: it forces the violation of the assumptions whenever possible, although in
some cases the system can win the game while giving the environment an oppor-
tunity to satisfy its assumptions. In the context of GR(1) games, some works
suggested to settle this issue by allowing the satisfaction of the assumptions
in cases where the justice guaranties can be satisfied as well [5,15,26]. In our
context of GR(1)*, this approach should be taken carefully, since it is possible
that such a strategy will not allow the satisfaction of the existential guarantees.
Specifically, by taking this approach, a play can be led into a state from which
there is no path that satisfies some existential guarantee, Sk.

To improve the described GR(1)* controller by avoiding unnecessary coer-
cion of justice assumption violation, we note that the existential guarantees
can be satisfied from the set

⋂�
k=1�hk(W)�GS . Hence, we refer to V ′ = W \

⋂�
k=1�hk(W)�GS as the “unsafe” region, from which we must force violation of

the assumptions. The following Lemma claims that, indeed, the system can force
violation of the assumptions from V ′.

Lemma 2. V ′ ⊆ V .

Therefore, we improve the GR(1)* construction described above as follows:
in phase I we satisfy the justice guarantees one by one, and in phase II we try to
satisfy, cooperatively, an existential guarantee. Whenever the game reaches V ′,
we force violation of the justice assumptions.

5.2 Detailed Construction

We now present the construction in detail. Our GR(1)* controller activates
several “sub-controllers”, which we describe below: CV and C(GR(1),1), . . . ,
C(GR(1),n) are activated in phase I; C1, . . . , Ck are activated in phase II.

CV. CV is a memoryless controller that forces from V the violation of the
assumptions so that it wins from V the game whose winning condition is
∨m

j=1 FG(¬aj). Clearly, m
j=1 FG(aj) (m

j=1 FG(aj)) F (false V).
Hence, we apply the results of [20, Lemma 9] and construct CV using the tech-
nique proposed in [6].

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 93

Algorithm 1. The controller Ck

/* From state s */
input: sx ∈ 2X such that (s, s′

x) |= ρe

1: if s |= q(k,M) ∧ q(k,M+1) ∧ · · · ∧ q(k,r(k)) then return “undefined”
2: end if
3: M ← min{M ≤ t ≤ r(k) : s |= ¬qkt}
4: return Ck,M (s, sx)

/* The construction of Ck,t for t ∈ {1, . . . , r(k)} */

1: X ← {s ∈ �hk(W)�GS : s |= q(k,t)}
2: while X �= �hk(W)�GS do
3: X ′ ← �X ∩ �hk(W)�GS

4: for all s ∈ X ′ \ X and sx ∈ 2X such that (s, s′
x) |= ρe do

5: if there exists sy ∈ 2Y s.t. (sx, sy) ∈ X and (s, (s′
x, s′

y)) |= ρs then
6: choose sy ∈ 2Y s.t. (sx, sy) ∈ X and (s, (s′

x, s′
y)) |= ρs

7: Ck,t(s, sx) ← sy
8: end if
9: end for

10: X ← X ∪ (�X ∩ �hk(W)�GS)
11: end while

C(GR(1),i). For each 1 ≤ i ≤ n, C(GR(1),i) is a memoryless controller that forces

from �f(W)�GS the satisfaction of the formula m
j=1 FG(aj)) F (gi W).

The construction of these controllers is described in [6].

Ck. For 1 ≤ k ≤ �, Ck is an r(k)-memory controller that, from each s ∈
�hk(W)�GS , tries to walk on a path in W that traverses through q(k,1), . . . ,
q(k,r(k)). Possibly, for some states (s, sx) ∈ W ×2X , the controller has no defined
response, and then the controller returns a designated value “undefined”. We
present the construction in Algorithm1. The controller Ck has a memory vari-
able M , which stores values from {1, . . . , r(k)}. M is initialized to 1.

Algorithm 2 presents the GR(1)* controller’s construction. For clarity of
presentation, we present the GR(1)* controller via a simple pseudocode. The
translation of the code into a construction of a symbolic controller using BDD [9]
operations is straightforward.

In Algorithm 2, we use a 4-field array M for the GR(1)* controller’s memory.
M [0] specifies the next justice guarantee the controller strives to fulfil, and thus
stores values from {1, . . . , n}. M [1] specifies the number of the ensuing existen-
tial guarantee we aim to satisfy, and thus stores values from {1, . . . , �}. M [2] is a
field used by the controllers C1, . . . , C�, which require memory of size equal to the
number of states the controller is trying to traverse. Hence, M [2] stores values from
{1, . . . , r(k′)} where r(k′) = max{r(k) : 1 ≤ k ≤ �}. Finally, M [3] indicates which
phase we now aim to. When M [3] = 0, we want to satisfy the justice guarantee
gM [0] (phase I), and when M [3] = 1, we are trying, cooperatively, to satisfy the
existential guarantee SM [1] (phase II). In line 15, ⊕1 means that we write to M [1]
the next value. That is, for k < �, k ⊕ 1 = k + 1, and � ⊕ 1 = 1. If the play reaches
a V ′-state, the GR(1)* controller activates CV for the remainder of the play.

94 G. Amram et al.

Algorithm 2. The GR(1)* controller
/* Initialization */

input: sx |= θe

1: M ← (1, 1, 1, 0)
2: return sy, such that (sx, sy) |= (θs ∧ W)

/* From state s */
input: sx such that (s, s′

x) |= ρe

1: if s |= V ′ then return CV (s, sx dehcaeryalpehT//) V ′

2: end if
3: if M [3] == 0 then // Phase I: Fulfilling a justice guarantee
4: sy ← C(GR(1),M [0])(s, sx)
5: if ((sx, sy) |= gM [0] ∧ W) ∧ (M [0] < n) then M [0] ← M [0] + 1
6: end if
7: if ((sx, sy) |= gM [0] ∧ W) ∧ (M [0] = n) then M [3] ← 1
8: end if
9: return sy
10: end if
11: if M [3] == 1 then // Phase II: Fulfilling an existential guarantee
12: (sy, M [2]) ← CM [1](s, sx, M [2])
13: if sy �= “undefined” then return sy
14: end if
15: (M [0], M [1], M [2], M [3]) ← (1, M [1] ⊕ 1, 1, 0)
16: goto line 1
17: end if

The reader may notice three seemingly problematic issues concerning the
construction that require clarification: (1) once the play reaches V ′, it must never
leave, i.e., never reach 2X∪Y \ V ′; (2) the controllers C(GR(1),1), . . . , C(GR(1),n)

operate from �f(W)�GS , but the initialization in Algorithm 2 returns a state in
W ; (3) phase I ends by reaching a state s = gn W , from which we want
to activate some Ck, which operates from �hk(W)�GS . The correctness proof
we provide in the appendix settles these three issues as follows: (1) we show
that if s ∈ V ′ and (s, s′

x) |= ρe, then (sx, CV (s, sx)) ∈ V ′; (2) we show that
W ⊆ �f(W)�GS ;1 (3) we show that W W and thus, if s = W then either
s ∈ V ′ and CV can be activated, or s ∈ ⋂�

k=1�hk(W)�GS and each Ck can be
activated.

Theorem 2 (Controller construction). The controller C as constructed
according to Algorithm2 implements a winning strategy for the system from W
with memory of size 2 · n · � · r(k′).

As a final remark, we note that in lines 5 and 7, the condition sx, sy) =(
gM [0] W can be replaced with (sx, sy) |= gM [0], for optimization purposes.
We now explain the correctness of this replacement. In the proof of Theorem2,
we show that W W . Moreover, Theorem 2 and Lemma 1 ensure that a play

1 In fact, they are equal, but we do not use this observation in the correctness proof
of the algorithm.

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 95

that is consistent with the GR(1)* controller as constructed in Algorithm 2, never
reaches a deadlock for the system, and never leaves W . Hence, for every state s
that is reachable by the GR(1)* controller, s = W and there is no reason to
test this condition.

6 Implementation and Preliminary Evaluation

We have implemented the realizability check for GR(1)* from Sect. 4 and inte-
grated it in the Spectra language and synthesis environment [30,48], which
already includes a GR(1) synthesizer and implementations of several additional
analyses. Our implementation uses BDDs [9] via the CUDD 3.0 [41] package.

As a preliminary evaluation for the feasibility of GR(1)* in terms of running
times, specifically the cost of adding existential guarantees to a GR(1) specifi-
cation, we performed the following experiment.

6.1 Setup

We took the lift specification from our motivation example with 40 floors, 40
justice guarantees of the form GF (¬bi), effectively meaning that in any infinite
run, all requests will be served infinitely often, and 40 justice assumptions of
the form GF (bi), meaning that in any infinite run, every floor will be requested
infinitely often. We show the specification in an appendix of the archive version
of the paper. This specification is well-separated [29] and realizable. Since the
lift can only be positioned at a single floor at a time, we model its location
in Spectra by an integer typed variable, which is internally implemented as a
�log 40�-bit variable (and not by a 40-bit array as in [6]). Hence, the size of our
example’s state space is 246.

Our goal is to evaluate the cost, in running time, of adding existential guar-
antees to a GR(1) specification. We thus measured realizability checking times
of the baseline specification (without any existential guarantees) and compared
it to realizability checking times of the same specification with number of exis-
tential guarantees ranging from 2 to 40, and length of existential guarantees
(nesting depth of F) ranging from 2 to 40. We generated these existential guar-
antees by sampling a sequence of assertions of the required length, from some
manually written list of assertions. As an example, line 29 in the specification
presents (in Spectra syntax) one of the existential guarantees we sampled: GE
floor = 17 & button[21], floor = 21. In CTL*, this existential guarantee is
written GE(F (floor = 17 ∧ button[21] ∧ F (floor = 21))). The length of this
CTL* formula, i.e., the number of nested F occurrences, is 2.

Overall, we considered 81 different configurations. For each configuration,
we repeated realizability checking 15 times2, and computed the median run-
ning time. We performed the experiments on hardware with Intel Xeon W-2133
processor with 32 GB RAM, running Windows 10.
2 Even though the algorithm is deterministic, we performed multiple runs since JVM

garbage collection and the default automatic variable reordering of CUDD add vari-
ance to running times.

96 G. Amram et al.

Table 1. Running times of 81 configurations with additional existential guarantees
relative to the baseline specification of a lift with 40 floors, whose running time was
39178 ms.

ex. gar Length

2 5 10 15 20 25 30 35 40

2 178% 170% 164% 161% 153% 143% 142% 136% 138%

5 162% 154% 150% 139% 124% 124% 119% 142% 135%

10 175% 152% 156% 130% 141% 114% 124% 127% 134%

15 152% 149% 123% 116% 137% 125% 115% 119% 138%

20 137% 128% 125% 155% 142% 123% 142% 131% 137%

25 143% 135% 121% 123% 120% 134% 135% 114% 132%

30 155% 139% 144% 136% 134% 118% 124% 132% 144%

35 136% 137% 153% 133% 138% 148% 126% 128% 135%

40 138% 144% 145% 144% 111% 127% 139% 136% 128%

6.2 Results

The median running time for the realizability check of the baseline was 39178
milliseconds. Table 1 shows the ratios between the running times for the different
configurations and the baseline result (e.g., the leftmost cell in the table, reading
178%, means that with 2 existential guarantees of length 2, the median of 15 runs
of realizability check took 78% longer than the baseline, i.e., about 70 seconds).

We observe that adding existential guarantees, as expected, has a cost. Yet,
the growth in running time seems to be limited. In all 81 configurations, the
running time was less than twice the running time of the baseline configuration.
We further observe that neither increasing the number of existential guarantees
nor extending their length significantly seems to affect running times.

The results of this preliminary evaluation are encouraging, but they are lim-
ited to a single specification and experiment setup. Further evaluation with addi-
tional specifications is required in order to strengthen the validity of the results.

7 Conclusion

We introduced GR(1)*, which extends GR(1) with existential guarantees.
GR(1)* allows engineers to add example use cases to the specification, so as to
ensure that the synthesized controller will enable them. We proved that GR(1)*
captures CTL* properties that are inexpressible in LTL. We solved the realizabil-
ity problem and presented a symbolic controller construction for GR(1)*. Impor-
tantly, GR(1)* realizability check consumes O((nm + �r(k′))N2)-time where n
is the number of justice guarantees, m is the number of justice assumptions, �
is the number of existential guarantees, and r(k′) is the length of the longest
existential guarantee, i.e., induces only a minor additional cost in terms of time
complexity, proportional to the extended length of the formula.

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 97

We consider the following future directions. First, GR(1) has been extended
with past LTL operators (already in [6]) and patterns [28]. It would be valuable
to carry over these extensions to GR(1)*, specifically supporting the use of past
LTL operators and some of the patterns of [14] inside the existential guarantees.

Second, unrealizability is a well-known challenge for reactive synthesis in
general and for GR(1) specifications in particular. Researchers have suggested to
address GR(1) unrealizability using the concepts of unrealizable core, counter-
strategy, and repair, see, e.g., [4,10,11,21,31]. It is interesting to investigate
these in the context of GR(1)*. Specifically, counter-strategies for GR(1)* may
be more complicated than counter-strategies for GR(1), as they depend not only
on each play alone but also on the controller’s possible behavior, i.e., a play can
be winning for the system w.r.t. one controller, while losing w.r.t. another.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 638049, SYNTECH).

References

1. Alexander, I.F., Maiden, N.: Scenarios, Stories, Use Cases: Through the Systems
Development Life-Cycle. 1st edn. Wiley Publishing (2004)

2. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning from vacuously satisfiable
scenario-based specifications. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS,
vol. 7212, pp. 377–393. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28872-2 26

3. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Using abduction and induction for
operational requirements elaboration. J. Appl. Logic 7(3), 275–288 (2009)

4. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1) tem-
poral logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, 20–23 October 2013, pp. 26–33. IEEE (2013). https://
doi.org/10.1109/FMCAD.2013.6679387

5. Bloem, R., Ehlers, R., Könighofer, R.: Cooperative reactive synthesis. In:
Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 394–410.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 29

6. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

7. Bloem, R., Schewe, S., Khalimov, A.: CTL* synthesis via LTL synthesis. In: Pro-
ceedings Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidelberg, Germany,
22 July 2017, pp. 4–22 (2017). https://doi.org/10.4204/EPTCS.260.4

8. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.R.: An improved algo-
rithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. 178(1–2),
237–255 (1997). https://doi.org/10.1016/S0304-3975(96)00228-9

9. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

10. Cavezza, D.G., Alrajeh, D.: Interpolation-based GR(1) assumptions refinement.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 281–297.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 16

https://doi.org/10.1007/978-3-642-28872-2_26
https://doi.org/10.1007/978-3-642-28872-2_26
https://doi.org/10.1109/FMCAD.2013.6679387
https://doi.org/10.1109/FMCAD.2013.6679387
https://doi.org/10.1007/978-3-319-24953-7_29
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.4204/EPTCS.260.4
https://doi.org/10.1016/S0304-3975(96)00228-9
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-662-54577-5_16

98 G. Amram et al.

11. Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for
realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 52–67. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78163-9 9

12. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

13. D’Ippolito, N., Braberman, V.A., Piterman, N., Uchitel, S.: Synthesizing
nonanomalous event-based controllers for liveness goals. ACM Trans. Softw. Eng.
Methodol. 22(1), 9 (2013). https://doi.org/10.1145/2430536.2430543

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420. ACM (1999)

15. Ehlers, R., Könighofer, R., Bloem, R.: Synthesizing cooperative reactive mission
plans. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IROS 2015, Hamburg, Germany, 28 September - 2 October 2015, pp. 3478–
3485. IEEE (2015). https://doi.org/10.1109/IROS.2015.7353862

16. Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). https://doi.org/
10.1145/4904.4999

17. Filippidis, I., Dathathri, S., Livingston, S.C., Ozay, N., Murray, R.M.: Control
design for hybrid systems with tulip: the temporal logic planning toolbox. In: 2016
IEEE Conference on Control Applications, CCA 2016, Buenos Aires, Argentina,
19–22 September 2016, pp. 1030–1041. IEEE (2016). https://doi.org/10.1109/
CCA.2016.7587949

18. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifi-
cations. Int. J. Found. Comput. Sci. 13(01), 5–51 (2002)

19. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison Wesley Longman Publishing Co. Inc, Redwood City (2004)

20. Kesten, Y., Piterman, N., Pnueli, A.: Bridging the gap between fair simulation
and trace inclusion. Inf. Comput. 200(1), 35–61 (2005). http://www.sciencedirect.
com/science/article/pii/S0890540105000234

21. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a prac-
tical approach using model-based diagnosis and counterstrategies. STTT 15(5–6),
563–583 (2013). https://doi.org/10.1007/s10009-011-0221-y

22. Kozen, D.: Results on the propositional μ-calculus. In: Proceedings of the 9th
Colloquium on Automata, Languages and Programming, pp. 348–359. Springer,
London (1982). http://dl.acm.org/citation.cfm?id=646236.682866

23. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009). https://
doi.org/10.1109/TRO.2009.2030225

24. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal logic for scenario-
based specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 445–460. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31980-1 29

25. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Barringer,
H., Fisher, M., Gabbay, D., Gough, G. (eds.) Advances in Temporal Logic, vol.
16, pp. 109–127. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-015-
9586-5 6

26. Majumdar, R., Piterman, N., Schmuck, A.: Environmentally-friendly GR(1) syn-
thesis. CoRR abs/1902.05629 (2019). http://arxiv.org/abs/1902.05629

https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/978-3-540-78163-9_9
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/2430536.2430543
https://doi.org/10.1109/IROS.2015.7353862
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1109/CCA.2016.7587949
https://doi.org/10.1109/CCA.2016.7587949
http://www.sciencedirect.com/science/article/pii/S0890540105000234
http://www.sciencedirect.com/science/article/pii/S0890540105000234
https://doi.org/10.1007/s10009-011-0221-y
http://dl.acm.org/citation.cfm?id=646236.682866
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1007/978-3-540-31980-1_29
https://doi.org/10.1007/978-3-540-31980-1_29
https://doi.org/10.1007/978-94-015-9586-5_6
https://doi.org/10.1007/978-94-015-9586-5_6
http://arxiv.org/abs/1902.05629

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 99

27. Maniatopoulos, S., Schillinger, P., Pong, V., Conner, D.C., Kress-Gazit, H.: Reac-
tive high-level behavior synthesis for an atlas humanoid robot. In: Kragic, D.,
Bicchi, A., Luca, A.D. (eds.) 2016 IEEE International Conference on Robotics and
Automation, ICRA 2016, Stockholm, Sweden, 16–21 May 2016, pp. 4192–4199.
IEEE (2016). https://doi.org/10.1109/ICRA.2016.7487613

28. Maoz, S., Ringert, J.O.: GR(1) synthesis for LTL specification patterns. In:
ESEC/FSE, pp. 96–106. ACM (2015). https://doi.org/10.1145/2786805.2786824

29. Maoz, S., Ringert, J.O.: On well-separation of GR(1) specifications. In: Zimmer-
mann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016, Seat-
tle, WA, USA, 13–18 November 2016, pp. 362–372. ACM (2016). https://doi.org/
10.1145/2950290.2950300

30. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems.
CoRR abs/1904.06668 (2019). http://arxiv.org/abs/1904.06668

31. Maoz, S., Ringert, J.O., Shalom, R.: Symbolic repairs for GR(1) specifications. In:
Mussbacher, G., Atlee, J.M., Bultan, T. (eds.) Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, 25–31
May 2019, pp. 1016–1026. IEEE/ACM (2019). https://dl.acm.org/citation.cfm?
id=3339632

32. Maoz, S., Sa’ar, Y.: AspectLTL: an aspect language for LTL specifications. In:
AOSD, pp. 19–30. ACM (2011). https://doi.org/10.1145/1960275.1960280

33. Maoz, S., Sa’ar, Y.: Assume-guarantee scenarios: semantics and synthesis. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) Model Driven Engi-
neering Languages and Systems. MODELS 2012 LNCS, vol. 7590, pp. 335–351.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33666-9 22

34. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) Verification, Model Checking, and Abstract Interpre-
tation VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005).
https://doi.org/10.1007/11609773 24

35. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October – 1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

36. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

37. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques,
1st edn. Springer Publishing Company, Incorporated (2010)

38. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Insti-
tute of Science (1992)

39. Sibay, G., Uchitel, S., Braberman, V.: Existential live sequence charts revisited.
In: Proceedings of the 30th international conference on Software engineering, pp.
41–50. ACM (2008)

40. Sibay, G.E., Braberman, V., Uchitel, S., Kramer, J.: Synthesizing modal transition
systems from triggered scenarios. IEEE Trans. Softw. Eng. 39(7), 975–1001 (2013)

41. Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0 (2015). http://
vlsi.colorado.edu/∼fabio/CUDD/cudd.pdf

42. Sutcliffe, A.G., Maiden, N.A., Minocha, S., Manuel, D.: Supporting scenario-based
requirements engineering. IEEE Trans. Softw. Eng. 24(12), 1072–1088 (1998)

43. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955). https://doi.org/10.2140/pjm.1955.5.285

https://doi.org/10.1109/ICRA.2016.7487613
https://doi.org/10.1145/2786805.2786824
https://doi.org/10.1145/2950290.2950300
https://doi.org/10.1145/2950290.2950300
http://arxiv.org/abs/1904.06668
https://dl.acm.org/citation.cfm?id=3339632
https://dl.acm.org/citation.cfm?id=3339632
https://doi.org/10.1145/1960275.1960280
https://doi.org/10.1007/978-3-642-33666-9_22
https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
https://doi.org/10.2140/pjm.1955.5.285

100 G. Amram et al.

44. Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from properties
and scenarios. In: Proceedings of the 29th international conference on Software
Engineering, pp. 34–43. IEEE Computer Society (2007)

45. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)

46. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: Formal
Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–
24 October 2014, pp. 219–226. IEEE (2014). https://doi.org/10.1109/FMCAD.
2014.6987617

47. Zachos, K., Maiden, N., Tosar, A.: Rich-media scenarios for discovering require-
ments. IEEE Softw. 22(5), 89–97 (2005)

48. Spectra Website. http://smlab.cs.tau.ac.il/syntech/spectra/

https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
http://smlab.cs.tau.ac.il/syntech/spectra/

Counterexample-Driven Synthesis
for Probabilistic Program Sketches

Milan Češka1, Christian Hensel2, Sebastian Junges2(B),
and Joost-Pieter Katoen2

1 Brno University of Technology, FIT, IT4I Centre of Excellence,
Brno, Czech Republic

2 RWTH Aachen University, Aachen, Germany
sebastian.junges@cs.rwth-aachen.de

Abstract. Probabilistic programs are key to deal with uncertainty in,
e.g., controller synthesis. They are typically small but intricate. Their
development is complex and error prone requiring quantitative reason-
ing over a myriad of alternative designs. To mitigate this complexity,
we adopt counterexample-guided inductive synthesis (CEGIS) to auto-
matically synthesise finite-state probabilistic programs. Our approach
leverages efficient model checking, modern SMT solving, and counterex-
ample generation at program level. Experiments on practically relevant
case studies show that design spaces with millions of candidate designs
can be fully explored using a few thousand verification queries.

1 Introduction

With the ever tighter integration of computing systems with their environment,
quantifying (and minimising) the probability of encountering an anomaly or
unexpected behaviour becomes crucial. This insight has led to a growing inter-
est in probabilistic programs and models in the software engineering community.
Henzinger [43] for instance argues that “the Boolean partition of software into
correct and incorrect programs falls short of the practical need to assess the
behaviour of software in a more nuanced fashion [. . .].” In [60], Rosenblum advo-
cates taking a more probabilistic approach in software engineering. Concrete
examples include quantitative analysis of software product lines [32,40,59,66,67],
synthesis of probabilities for adaptive software [19,23], and probabilistic model
checking at runtime to support verifying dynamic reconfigurations [20,37].

Synthesis of Probabilistic Programs. Probabilistic programs are a prominent for-
malism to deal with uncertainty. Unfortunately, such programs are rather intri-
cate. Their development is complex and error prone requiring quantitative rea-
soning over many alternative designs. One remedy is the exploitation of proba-
bilistic model checking [6] using a Markov chain as the operational model of a

This work has been supported by the Czech Science Foundation grant No. GA19-
24397S, the IT4Innovations excellence in science project No. LQ1602, the DFG RTG
2236 “UnRAVeL”, and the ERC Advanced Grant 787914 “FRAPPANT”,.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 101–120, 2019.
https://doi.org/10.1007/978-3-030-30942-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_8

102 M. Češka et al.

program. One may then apply model checking on each design, or some suitable
representation thereof [27,32]. Techniques such as parameter synthesis [26,42,58]
and model repair [9,31] have been successful, but they only allow to amend or
infer transition probabilities, whereas the control structure—the topology of the
probabilistic model—is fixed.

Synth Verifier

instance

reject +
CE

sketch properties

unsatisfiable

no instance

synthesised program

accept

Fig. 1. CEGIS for synthesis.

Counter-Example-Guided Inductive Syn-
thesis. This paper aims to overcome
the existing limitation, by adopting
the paradigm of CounterExample-Guided
Inductive Synthesis (CEGIS, cf. Fig. 1) [1,
3,63,64] to finite-state probabilistic mod-
els and programs. The program synthe-
sis challenge is to automatically provide a
probabilistic program satisfying all prop-
erties, or to return that such a program
is non-existing. In the syntax-based set-
ting, we start with a sketch, a program
with holes, and iteratively searches for good—or even optimal—instantiations of
these holes. Rather than checking all instantiations, the design space is pruned
by potentially ruling out many instantiations (dashed area) at once. From every
realisation that was verified and rejected, a counterexample (CE) is derived,
e.g., a program run violating the specification. An SMT (satisfiability modulo
theory)-based synthesiser uses the CE to prune programs that also violate the
specification. These programs are safely removed from the design space. The
synthesis and verification step are repeated until either a satisfying program is
found or the entire design space is pruned implying the non-existence of such a
program.

Problem Statement and Program-Level Approach. This paper tailors and gener-
alises CEGIS to probabilistic models and programs. The input is a sketch—a
probabilistic program with holes, where each hole can be replaced by finitely
many options—, a set of quantitative properties that the program needs to ful-
fil, and a budget. All possible realisations have a certain cost and the synthesis
provides a realisation that fits within the budget. Programs are represented
in the PRISM modelling language [50] and properties are expressed in PCTL
(Probabilistic Computational Tree Logic) extended with rewards, as standard in
probabilistic model checking [34,50]. Program sketches succinctly describe the
design space of the system by providing the program-level structure but leaving
some parts (e.g., command guards or variable assignments) unspecified.

Outcomes. To summarise, this paper presents a novel synthesis framework for
probabilistic programs that adhere to a given set of quantitative requirements
and a given budget. We use families of Markov chains to formalise our problem,
and then formulate a CEGIS-style algorithm on these families. Here, CEs are
subgraphs of the Markov chains. In the second part, we then generalise the
approach to reason on probabilistic programs with holes. While similar in spirit,

Counterexample-Driven Synthesis for Probabilistic Program Sketches 103

we rely on program-level CEs [33,71], and allow for a more flexible sketching
language. To the best of our knowledge, this is the first lifting of CEGIS to
probabilistic programs. The CEGIS approach is sound and complete: either an
admissible program does exist and it is computed, or no such program exists
and the algorithm reports this. We provide a prototype implementation built
on top of the model checker Storm [34] and the SMT-tool Z3 [56]. Experiments
with different examples demonstrate scalability: design spaces with millions of
realisations can be fully explored by a few thousand verification queries and
result in a speedup of orders of magnitude.

Related Work. We build on the significant body of research that employs
formal methods to analyse quality attributes of alternative designs, e.g. [8,10,
16,38,65,72]. Enumerative approaches based on Petri nets [54], stochastic models
[19,61] and timed automata [44,52], and the corresponding tools for simulation
and verification (e.g. Palladio [10], PRISM [50], UPPAAL [44]) have long been
used.

For non-probabilistic systems, CEGIS can find programs for a variety of
challenging problems [62,63]. Meta-sketches and the optimal and quantitative
synthesis problem in a non-probabilistic setting have been proposed [17,25,30].

A prominent representation of sets of alternative designs are modal transi-
tion systems [5,49,53]. In particular, parametric modal transition systems [11]
and synthesis therein [12] allow for similar dependencies that occur in program-
level sketches. Probabilistic extensions are considered in, e.g. [35], but not
in conjunction with synthesis. Recently [36] proposed to exploit relationships
between model and specification, thereby reducing the number of model-checking
instances. In the domain of quantitative reasoning, sketches and likelihood com-
putation are used to find probabilistic programs that best match available
data [57]. The work closest to our approach synthesises probabilistic systems
from specifications and parametric templates [39]. The principal difference to
our approach is the use of counterexamples. The authors leverage evolution-
ary optimisation techniques without pruning. Therefore, completeness is only
achieved by exploring all designs, which is practically infeasible. An extension to
handle parameters affecting transition probabilities (rates) has been integrated
into the evolutionary-driven synthesis [21,23] and is available in RODES [22].
Some papers have considered the analysis of sets of alternative designs within
the quantitative verification of software product lines [40,59,67]. The typical
approach is to analyse all individual designs (product configurations) or build
and analyse a single (so-called all-in-one) Markov decision process describing
all the designs simultaneously. Even with symbolic methods, this hardly scales
to large sets of alternative designs. These techniques have recently been inte-
grated into ProFeat [32] and QFLan [66]. An abstraction-refinement scheme has
recently been explored in [27]. It iteratively analyses an abstraction of a (sub)set
of designs—it is an orthogonal and slightly restricted approach to the inductive
method presented here (detailed differences are discussed later). An incomplete
method in [45] employs abstraction targeting a particular case study. SMT-based
encodings for synthesis in Markov models have been used in, e.g. [24,46]. These

104 M. Češka et al.

encodings are typically monolithic—they do not prune the search space via CEs.
Probabilistic CEs have been recently used to ensure that controllers obtained via
learning from positive examples meet given safety properties [74]. In contrast,
we leverage program-level CEs that can be used to prune the design space.

2 Preliminaries and Problem Statement

We start with basics of probabilistic model checking, for details, see [6,7], and
then formalise families of Markov chains. Finally, we define some synthesis prob-
lems.

Probabilistic Models and Specifications. A probability distribution over a
finite set X is a function μ : X → [0, 1] with

∑
x∈X μ(X) = 1. Let Distr(X)

denote the set of all distributions on X.

Definition 1 (MC). A discrete-time Markov chain (MC) D is a tuple
(S, s0, P) with finite set S of states, initial state s0 ∈ S, and transition prob-
abilities P : S → Distr(S). We write P (s, t) to denote P (s)(t).

For S′ ⊆ S, the set Succ(S′) := {t ∈ S | ∃s ∈ S′. P (s, t) > 0} denotes the suc-
cessor states of S′. A path of an MC D is an (in)finite sequence π = s0s1s2 . . .,
where si ∈ S, and si+1 ∈ Succ(si) for all i ∈ N.

Definition 2 (sub-MC). Let D = (S, s0, P) be an MC with critical states C ⊆
S, s0 ∈ C. The sub-MC of D,C is the MC D ↓C = (C ∪ Succ(C), s0, P ′) with:
P ′(s, t) = P (s, t) for s ∈ C, P ′(s, s) = 1 for s ∈ Succ(C)\C, and P ′(s, t) = 0
otherwise.

Specifications. For simplicity, we focus on reachability properties ϕ = P∼λ(♦G)
for a set G ⊆ S of goal states, threshold λ ∈ [0, 1] ⊆ R, and comparison rela-
tion ∼ ∈ {<,≤,≥, >}. The interpretation of ϕ on MC D is as follows. Let
Prob(D,♦G) denote the probability to reach G from D’s initial state. Then,
D |= ϕ if Prob(D,♦G) ∼ λ. A specification is a set Φ = {ϕi}i∈I of properties,
and D |= Φ if ∀i ∈ I. D |= ϕi. Upper-bounded properties (with ∼ ∈ {<,≤}) are
safety properties, and lower-bounded properties are liveness properties. Exten-
sions to expected rewards are straightforward.

Families of Markov Chains. We recap an explicit representation of a family
of MCs using a parametric transition function, as in [27].

Definition 3 (Family of MCs). A family of MCs is a tuple D = (S, s0,K,P)
with S, s0 as before, a finite set of parameters K where the domain for each
parameter k ∈ K is Tk ⊆ S, and transition probability function P : S →
Distr(K).

The transition probability function of MCs maps states to distributions over
successor states. For families, this function maps states to distributions over
parameters. Instantiating each parameter with a value from its domain yields a
“concrete” MC, called a realisation.

Counterexample-Driven Synthesis for Probabilistic Program Sketches 105

0 1 2 3 4

0.1

0.8
0.1

0.5

0.5

1

1

1

(a) Dr1 with r1(k2) = 2, r1(k3) = 2

0 1 2 3 4

0.1
0.9

0.5

0.5

1

1

1

(b) Dr2 with r2(k2) = 2, r2(k3) = 4

0 1 2 3 4

0.1

0.8
0.1

0.5
1

1

0.5 1

(c) Dr3 with r3(k2) = 3, r3(k3) = 2

0 1 2 3 4

0.1
0.9

0.5

1

0.5

1

1

(d) Dr4 with r4(k2) = 3, r4(k3) = 4

Fig. 2. The four different realisations of family D.

Definition 4 (Realisation). A realisation of a family D = (S, s0,K,P) is a
function r : K → S where ∀k ∈ K : r(k) ∈ Tk. A realisation r yields an MC
Dr := (S, s0,P(r)), where P(r) is the transition probability matrix in which
each k ∈ K in P is replaced by r(k). Let RD denote the set of all realisations
for D.

As a family D has finite parameter domains, the number of family members (i.e.
realisations from RD) of D is finite, but exponential in |K|. While all MCs share
their state space, their reachable states may differ.

Example 1. Consider the family of MCs D = (S, s0,K,P) where S = {0, . . . , 4},
s0 = 0, and K = {k0, . . . , k5} with Tk0 = {0}, Tk1 = {1}, Tk2 = {2, 3}, Tk3 =
{2, 4}, Tk4 = {3} and Tk5 = {4}, and P given by:

P(0) = 0.5: k1 + 0.5: k2 P(1) = 0.1: k0 + 0.8: k3 + 0.1: k5 P(2) = 1: k3

P(3) = 1: k4 P(4) = 1: k5

Figure 2 shows the four MCs of D. Unreachable states are greyed out.

The function c : RD → N assigns realisation costs. Attaching costs to realisations
is a natural way to distinguish preferable realisations. We stress the difference
with rewards in MCs; the latter impose a cost structure on paths in MCs.

Problem Statement Synthesis Problems. Let D be a family, and Φ be a set of
properties, and B ∈ N a budget. Consider the synthesis problems:

1. Feasibility synthesis: Find a realisation r ∈ RD with Dr |= Φ and c(r) ≤ B.
2. Max synthesis: For given G ⊆ S, find r∗ ∈ RD with

r∗ := argmax
r∈RD

{Prob(Dr,♦G) | Dr |= Φ and c(r) ≤ B}.

106 M. Češka et al.

The problem in feasibility synthesis is to determine a realisation satisfying all
ϕ ∈ Φ, or return that no such realisation exists. The problem in max synthesis
is to find a realisation that maximises the reachability probability of reaching
G. It can analogously be defined for minimising such probabilities. As families
are finite, such optimal realisations r∗ always exist (if there exists a feasible
solution). It is beneficial to consider a variant of the max-synthesis problem
in which the realisation r∗ is not required to achieve the maximal reachability
probability, but it suffices to be close to it. This notion of ε -maximal synthesis
for a given 0 < ε ≤ 1 amounts to find a realisation r∗ with Prob(Dr∗ ,♦G) ≥
(1−ε) · max

r∈RD
{Prob(Dr, φ)}.

Problem Statement and Structure. In this paper, we propose novel synthesis algo-
rithms for the probabilistic systems that are based on two concepts, CEGIS [63]
and syntax-guided synthesis [3]. To simplify the presentation, we start with
CEGIS in Sect. 3 and adopt it for MCs and the feasibility problem. In Sect. 4,
we lift and tune CEGIS, in particular towards probabilistic program sketches.

3 CEGIS for Markov Chain Families

We follow the typical separation of concerns as in oracle-guided inductive syn-
thesis [4,39,41]: a synthesiser selects single realisations r that have not been
considered before, and a verifier checks whether the MC Dr satisfies the spec-
ification Φ (cf. Fig. 1 on page 1). If a realisation violates the specification, the
verifier returns a conflict representing the core part of the MC causing the vio-
lation.

3.1 Conflicts and Synthesiser

To formalise conflicts, a partial realisation of a family D is a function r̄ : K →
S ∪ {⊥} such that ∀k ∈ K. r̄(k) ∈ Tk ∪ {⊥}. For any partial realisations r̄1, r̄2,
let r̄1 ⊆ r̄2 iff r̄1(k) ∈ {r̄2(k),⊥} for all k ∈ K.

Definition 5 (Conflict). Let r ∈ RD be a realisation with Dr |= ϕ for ϕ ∈ Φ.
A partial realisation r̄ϕ ⊆ r is a conflict for the property ϕ iff Dr′ |= ϕ for each
realisation r′ ⊇ r̄ϕ. A set of conflicts is called a conflict set.

To explore all realisations, the synthesiser starts with Q := RD and picks some
realisation r ∈ Q.1 Either Dr |= Φ and we immediately return r, or a conflict is
found: then Q is pruned by removing all conflicts that the verifier found. If Q is
empty, we are done: each realisation violates a property ϕ ∈ Φ.

1 We focus on program-level synthesis, and refrain from discussing important imple-
mentation aspects—like how to represent Q—here.

Counterexample-Driven Synthesis for Probabilistic Program Sketches 107

3.2 Verifier

Definition 6. A verifier is sound and complete, if for family D, realisation r,
and specification Φ, the verifier terminates, the returned conflict set is empty iff
Dr |= Φ, and if it is not empty, it contains a conflict r̄ϕ ⊆ r for some ϕ ∈ Φ.

Algorithm 1 outlines a basic verifier. It uses an off-the-shelf probabilistic model-
checking procedure Check(Dr, ϕ) to determine all violated ϕ ∈ Φ. The algo-
rithm then iterates over the violated ϕ and computes critical sets C of Dr that
induce sub-MCs such that Dr ↓ C |= ϕ (line 6). The critical sets for safety
properties can be obtained via standard methods [2], and support for liveness
properties is discussed at the end of the section.

0 1 2
0.5

0.5

(a) Fragment of Dr1

0 1 21 1
0.5

0.5

(b) Sub-MC of Dr1 with C = {0}

Fig. 3. Fragment and corresponding sub-MC that suffices to refute Φ

Algorithm 1. Verifier
1: function Verify(family D, realisation r, specification Φ)
2: Violated ← ∅; Conflict ← ∅; Dr ← GenerateMC(D, r);
3: for all ϕ ∈ Φ do
4: if not Check(Dr, ϕ) then Violated ← Violated ∪ {ϕ}
5: for all ϕ ∈ Violated do
6: Cϕ ← ComputeCriticalSet(Dr, ϕ)
7: Conflict ← Conflict ∪ generateConflict(D, r, Cϕ)

8: return Conflict

Example 2. Reconsider D from Example 1 with Φ := {ϕ := P≤2/5(♦{2})}.
Assume the synthesiser picks realisation r1. The verifier builds Dr1 and deter-
mines Dr1 |= Φ. Observe that the verifier does not need the full realisation Dr1

to refute Φ. In fact, the paths in the fragment of Dr1 in Fig. 3a (ignoring the
outgoing transitions of states 1 and 2) suffice to show that the probability to
reach state 2 exceeds 2/5. Formally, the fragment in Fig. 3b is a sub-MC Dr1 ↓C
with critical states C = {0}. The essential property is [70]:

If a sub-MC of a MCD refutes a safety property ϕ, then Drefutes ϕ too.

Observe that Dr1 ↓ C is part of Dr2 too. Formally, the sub-MC of Dr2 ↓ C is
isomorphic to Dr1 ↓C and therefore also violates Φ. Thus, Dr2 |= Φ.

108 M. Češka et al.

Finally, the verifier translates the obtained critical set C for realisation r to a
conflict Conflict(C, r) ⊆ r and stores it in the conflict set Conflict (line 7). The
procedure generateConflict(D, r, C) identifies the subset of parameters K
that occur in the sub-MCs Dr ↓ C and returns the corresponding partial real-
isation. The proposition below clarifies the relation between critical sets and
conflicts.

Proposition 1. If C is a critical set for Dr and ϕ, with Dr � ϕ then C is also
a critical set for each Dr′ , r′ ⊇ Conflict(C, r), and furthermore Dr′ |= ϕ holds.

Example 3. Recall from Example 2 that Dr2 |= Φ. This can be concluded without
constructing Dr2 . Just considering r2, D and C suffices: First, take all parameters
occurring in P(c) for any c ∈ C. This yields {k1, k2}. The partial realisation
r̄ := {k1 �→ 1, k2 �→ 2} is a conflict. The values for the other parameters do not
affect the shape of the sub-MC induced by C. Realisation r2 ⊇ r̄ only varies
from r1 in the value of k3, but r̄(k3) = ⊥, i.e., k3 is not included in the conflict.
This suffices to conclude Dr2 |= Φ.

Conflicts for Liveness Properties. To support liveness properties such as
ϕ := P>λ(♦G), we first consider a (standard) dual safety property ϕ′ :=
P<1−λ(♦B), where B is the set of all states that do not have a path to G.
Observe that B can be efficiently computed using graph algorithms. We have to
be careful, however.

Example 4. Consider Dr1 , and let ϕ := P>3/5(♦{4}). Dr1 |= ϕ. Then, ϕ′ =
P<2/5(♦{2}), which is refuted with critical set C = {0} as before. Although
Dr2 ↓C is again isomorphic to Dr1 ↓C, we have Dr2 |= ϕ. The problem here is
that state 2 is in B for Dr1 as r1(k3) = 2, but not in B for Dr2 , as r2(k3) = 4.

To prevent the problem above, we ensure that the states in B cannot reach G in
other realisations, by including B in the critical set of ϕ: Let C be the critical
set for the dual safety property ϕ′. We define B ∪ C as critical states for ϕ.
Together, we reach states B with a critical probability mass2, and never leave
B.

Example 5. In Dr1 , we compute critical states {0, 2}, preventing the erroneous
reasoning from the previous example. For Dr4 , we compute C ′ = {0} ∪ {3} as
critical states, and as Dr4 ↓C ′ is isomorphic to Dr3 ↓C ′, we obtain that Dr3 |= ϕ.

4 Syntax-Guided Synthesis for Probabilistic Programs

Probabilistic models are typically specified by means of a program-level mod-
elling language, such as PRISM [50], PIOA [73], JANI [18], or MODEST [15].
We propose a sketching language based on the PRISM modelling language. A
sketch, a syntactic template, defines a high-level structure of the model and rep-
resents a-priori knowledge about the system under development. It effectively
2 A good implementation takes a subset of B′ ⊆ B by considering the Prob(D, ♦B′).

Counterexample-Driven Synthesis for Probabilistic Program Sketches 109

hole X either { XA is 1 cost 3, 2}
hole Y either { YA is 1, 3 }
hole Z either { 1, 2 }
constraint !(XA && YA);
module rex
s : [0.. 3] init 0;
s = 0 -> 0 .5: s’=X + 0.5 : s’=Y;
s = 1 -> s’=s+Z;
s >= 2 -> s’=s;
endmodule

(a) Program sketch SH

module rex
s : [0.. 3] init 0;
s = 0 -> 0 .5 : s’=1 + 0.5 : s’=3;
s = 1 -> s’=3;
s >= 2 -> s’=s;
endmodule

(b) Instance SH({X �→1, Z �→2, Y �→3})

Fig. 4. Running example

restricts the size of the design space and also allows to concisely add constraints
and costs to its members. The proposed language is easily supported by model
checkers and in particular by methods for generating CEs [33,71]. Below, we
describe the language, and adapt CEGIS from state level to program level. In
particular, we employ so-called program-level CEs, rather than CEs on the state
level.

4.1 A Program Sketching Language

Let us briefly recap how the model-based concepts translate to language concepts
in the PRISM guarded-command language. A PRISM program consists of one
or more reactive modules that may interact with each other. Consider a single
module. This is not a restriction, every PRISM program can be flattened into
this form. A module has a set of bounded variables spanning its state space.
Transitions between states are described by guarded commands of the form:

guard → p1 : update1 + + pn : updaten

The guard is a Boolean expression over the module’s variables of the model. If the
guard evaluates to true, the module can evolve into a successor state by updating
its variables. An update is chosen according to the probability distribution given
by expressions p1, . . . , pn. In every state enabling the guard, the evaluation of
p1, . . . , pn must sum up to one. Overlapping guards yield non-determinism and
are disallowed here.

Roughly, a program P thus is a tuple (Var, E) of variables and commands. For
a program P, the underlying MC [[P]] are P’s semantics. We lift specifications:
Program P satisfies a specification Φ, iff [[P]] |= Φ, etc.

A sketch is a program that contains holes. Holes are the program’s open parts
and can be replaced by one of finitely many options. Each option can optionally
be named and associated with a cost. They are declared as:

hole h either{x1 is expr1 cost c1, . . . , xk is exprk cost ck }
where h is the hole identifier, xi is the option name, expri is an expression over
the program variables describing the option, and ci is the cost, given as expres-
sions over natural numbers. A hole h can be used in commands in a similar

110 M. Češka et al.

Algorithm 2. Synthesiser (feasibility synthesis)
1: function Synthesis(program sketch SH , specification Φ, budget B)
2: ψ ← Initialise(SH , B)
3: R ← GetRealisation(ψ)
4: while R �= Unsat do
5: C ← Verify(SH(R), Φ)
6: if C = ∅ then return R

7: ψ ← ψ ∧
(∧

R̄∈C LearnFromConflict(SH , R̄)
)

8: R ← GetRealisation(ψ)

9: return Unsat

way as a constant, and may occur multiple times within multiple commands,
in both guards and updates. The option names can be used to describe con-
straints on realisations. These propositional formulae over option names restrict
realisations, e.g.,

constraint(x1 ∨ x2) =⇒ x3

requires that whenever the options x1 or x2 are taken for some (potentially
different) holes, option x3 is also to be taken.

Definition 7 (Program sketch). A (PRISM program) sketch is a tuple
SH := (PH ,OptionH , Γ, cost) where PH is a program with a set H of holes
with options OptionH , Γ are constraints over OptionH , and cost : OptionH → N

option-costs.

Example 6. We consider a small running example to illustrate the main concepts.
Figure 4a depicts the program sketch SH with holes H = {X,Y,Z}. For X, the
options are OptionX = {1, 2}. The constraint forbids XA and YA both being
one; it ensures a non-trivial random choice in state s=0.

Remark 1. Below, we formalise notions previously used on families. Due to flexi-
bility of sketching (in particular in combination with multiple modules), it is not
straightforward to provide family semantics to sketches, but the concepts are
analogous. In particular: holes and parameters are similar, parameter domains
are options, and family realisations and sketch realisations both yield concrete
instances from a family/sketch. The synthesis problems carry over naturally.

Definition 8 (Realisations of sketches). Let SH := (PH ,OptionH , Γ, cost)
be a sketch, a sketch realisation on holes H is a function R : H → OptionH

with ∀h ∈ H. R(h) ∈ Optionh and that satisfies all constraints in Γ . The sketch
instance SH(R) for realisation R is the program (without holes) PH [H/R] in
which each hole h ∈ H in PH is replaced by R(h). The cost c(R) is the sum of
the cost of the selected options, c(R) :=

∑
h∈H cost(R(h)).

Example 7. We continue Example 6. The program in Fig. 4b reflects SH(R) for
realisation R = {X �→1, Z �→2, Y �→3}, with c(R) = 3 as cost(R(X)) = 3 and all
other options have cost zero. For realisation R′ = {Y,Z �→ 1,X �→ 2}, c(R′) = 0.

Counterexample-Driven Synthesis for Probabilistic Program Sketches 111

The assignment {X,Y,Z �→ 1} violates the constraint and is not a realisation.
In total, SH represents 6 = 23−2 programs and their underlying MCs.

4.2 A Program-Level Synthesiser

Feasibility synthesis. The synthesiser follows the steps in Alglorithm 2. During
the synthesis process, the synthesiser stores and queries the set of realisations
not yet pruned. These remaining realisations are represented by (the satisfy-
ing assignments of) the first-order formula ψ over hole-assignments. Iteratively
extending ψ with conjunctions thus prunes the remaining design space.

We give a brief overview, before detailing the steps. Initialise(SH , B) con-
structs ψ such that it represents all sketch realisations that satisfy the constraints
in the sketch SH within the budget B. GetRealisation(ψ) exploits an SMT-
solver for linear (bounded) integer arithmetic to obtain a realisation R consistent
with ψ, or Unsat if no such realisation exists. As long as new realisations are
found, the verifier analyses them (line 5) and returns a conflict set C. If C = ∅,
then SH(R) satisfies the specification Φ and the search is terminated. Otherwise,
the synthesiser updates ψ based on the conflicts (line 7). R is always pruned.

Initialise(SH , B): Let hole h ∈ H have (ordered) options Optionh =
{o1h, . . . , on

h}. To encode realisation R, we introduce integer-valued meta-variables
KH := {κh | h ∈ H} with the semantics that κh = i whenever hole h has value
oi

h, i.e., R(h) = oi
h. We set ψ := ψopti ∧ ψΓ ∧ ψcost, where ψopti ensures that

each hole is assigned to some option, ψΓ ensures that the sketch’s constraints Γ
are satisfied, and ψcost ensures that the budget is respected. These sub-formulae
are:

ψopti :=
∧

h∈H

1 ≤ κh ≤ |Optionh|, ψΓ :=
∧

γ∈Γ

γ[N i
h/κh = i],

ψcost :=
∑

h∈H

ωh ≤ B ∧
⎛

⎝
∧

h∈H

|Optionh|∧

i=1

κh = i → ωh = cost(oi
h)

⎞

⎠ ,

where γ[N i
h/κh = i] denotes that in every constraint γ ∈ Γ we replace each

option name N i
h for an option oi

h with κh = i, and ωh are fresh variables storing
the cost for the selected option at hole h.

Example 8. For sketch SH in Fig. 4a, we obtain (with slight simplifications)

ψ := 1 ≤ κX ≤ 2 ∧ 1 ≤ κY ≤ 2 ∧ 1 ≤ κZ ≤ 2 ∧ ¬(κX = 1 ∧ κY = 1)∧
ωX + ωY + ωZ ≤ B ∧ κX = 1 → ωX = 3 ∧ κX = 2 → ωX = 0 ∧ ωY = 0 = ωZ .

GetRealisation(ψ): To obtain a realisation R, we check satisfiability of ψ.
The solver either returns Unsat indicating that the synthesiser is finished, or
Sat, together with a satisfying assignment αR : KH → N. The assignment αR

uniquely identifies a realisation R by R(h) := o
αR(κh)
h . The sum over all ωH gives

c(R).

112 M. Češka et al.

Algorithm 3. Synthesiser (max synthesis)
1: function Synthesis(SH , Φ, B, goal predicate G, tolerance ε)
2: λ∗ ← ∞, R∗ ← Unsat, ψ ← Initialise(SH , B)
3: R ← getRealisation(ψ)
4: while R �= Unsat do
5: C, λnew ← OptimiseVerify(SH(R), Φ, G, λ∗, ε)
6: if C = ∅ then λ∗, R∗ ← λnew, R

7: ψ ← ψ ∧
(∧

R̄∈C LearnFromConflict(SH , R̄)
)

8: R ← getRealisation(ψ)

9: return R∗

const int X = 1, Y = 3;
.. .
module rex
s : [0.. 3] init 0;
s=0 -> 0.5 : s’=X + 0.5 : s’=Y;
endmodule

(a) CE for upper bound

.. .
module rex
s : [0.. 3] init 0;
s=0 -> 0 .5:s’=X + 0 .5 :s’=Y;
s=3 -> s’=3
endmodule

(b) CE for lower bound

Fig. 5. CEs for (a) P≤0.4[F s=3] and (b) P>0.6[F s=2].

Verify(SH(r), Φ): invokes any sound and complete verifier, e.g., an adaption
of the verifier from Sect. 3.2 as presented in Sect. 4.3.

LearnFromConflict(SH , R̄): For a conflict3 R̄ ∈ C, we add the formula

¬
(∧

h∈H,R̄(h) �=⊥
κh = αR̄(κh)

)
.

The formula excludes realisations R′ ⊇ R̄. Intuitively, the formula states that the
realisations remaining in the design space (encoded by the updated ψ) cannot
assign the h as in R̄ (for holes where R̄(h) = ⊥).

Example 9. Consider ψ from Example 8. The satisfying assignment (for B ≥
3) is {κX �→ 1, κY , κZ �→ 2, ωX �→ 3, ωY , ωZ �→ 0} represents R, c(R) = 3
from Example 6. Consider Φ = {P≤0.4[♦ s=3]}. The verifier (for now, magically)
constructs a conflict set {R̄} with R̄ = {Y �→ 3}. The synthesiser updates
ψ ← ψ ∧ κY = 2 (recall that κY = 2 encodes Y �→ 3). A satisfying assignment
{κX , κY , κZ �→ 1} for ψ encodes R′ from Example 7. As SH(R′) |= Φ, the verifier
reports no conflict.

Optimal Synthesis. We adapt the synthesiser to support max synthesis, cf.
Alglorithm 3. Recall the problem aims at maximizing the probability of reaching
3 As in Sect. 3.1: A partial realisation for SH is a function R̄ : H → OptionH ∪ {⊥}

s.t. ∀h ∈ H. R̄(h) ∈ Optionh ∪ {⊥}. For partial realisations R̄1, R̄2, let R̄1 ⊆ R̄2 iff
∀h ∈ H. R̄1(h) ∈ {R̄2(h), ⊥}. Let R be a realisation s.t. SH(R) �|= ϕ for ϕ ∈ Φ.
Partial realisation R̄ϕ ⊆ R is a conflict for ϕ iff ∀R′ ⊇ R̄ϕ SH(R′) �|= ϕ.

Counterexample-Driven Synthesis for Probabilistic Program Sketches 113

states described by a predicate G, w.r.t. the tolerance ε ∈ (0, 1). Algorithm 3
stores in λ∗ the maximal probability Prob(SH(R),♦G) among all considered
realisations R, and this R in R∗. In each iteration, an optimising verifier is
invoked (line 5) on realisation R. If SH(R) |= Φ and Prob(SH(R),♦G) > λ∗,
it returns an empty conflict set and λnew := Prob(SH(R),♦G). Otherwise, it
reports a conflict set for Φ ∪ {P≥(1−ε)·λ∗(♦G)}.

4.3 A Program-Level Verifier

We now adapt the state-level verifier from Sect. 3.2 in Alglorithm 1 to use
program-level counterexamples [71] for generating conflicts, [68, Appendix] con-
tains details.

generateMC(SH , R): This procedure first constructs the instance SH(R), i.e.,
a program without holes, from SH and R, as in Fig. 4b: Constraints in the
sketch are removed, as they are handled by the synthesiser. This approach allows
us to use any model checker supporting PRISM programs. The realisation is
passed separately, the sketch is parsed once and then appropriately instantiated.
The instance is then translated into the underlying MC [[SH(R)]] via standard
procedures, with transitions annotated with their generating commands.

ComputeCriticalSet(D,ϕ) computes program-level CEs as analogue of crit-
ical sets. They are defined on commands rather than on states. Let P = (Var, E)
be a program with commands E. Let P|E′ := (Var, E′) denote the restriction of
P to E′ (with variables and initial states as in P). Building P|E′ may introduce
deadlocks in [[P|E′]] (just like a critical set introduces deadlocks). To remedy this,
we use the standard operation fixdl, which takes a program and adds commands
that introduce self-loops for states without enabled guard.

Definition 9. For program P = (Var, E) and specification Φ with P |= Φ,
a program-level CE E′ ⊆ E is a set of commands, such that for all (non-
overlapping) programs P ′ = (Var, E′′) with E′′ ⊇ E′ (i.e, extending P ′),
fixdl(P ′) |= Φ.

Example 10. Reconsider Φ = {P≤0.4[♦ s=3]}. Figure 5a shows a CE for SH(R)
in Fig. 4. The probability to reach s=3 in the underlying MC is 0.5 > 0.4.

For safety properties, program-level CEs coincide with high-level CEs proposed
in [71], their extension to liveness properties follows the ideas on families. The
program-level CEs are computed by an extension of the MaxSat [14] approach
from [33], [68, Appendix] contains details and extensions.

GenerateConflict(SH , R,E) generates conflicts from commands: we map
commands in SH(R)|E to the commands from SH , i.e., we restore the informa-
tion about the critical holes corresponding to the part of the design space that
can be pruned by CE E. Formally, Conflict(E,R)(h) = R(h) for all h ∈ H that
appear in restriction SH |E .

114 M. Češka et al.

Proposition 2. If E is a CE for SH(R), then E is also a CE for each SH(R′),
R′ ⊇ Conflict(E,R).

Example 11. The CEs in Fig. 5a contain commands which depend on the realisa-
tions for holes X and Y. For these fixed values, the program violates the specifi-
cation independent of the value for Z, so Z is not in the conflict {X �→ 1,Y �→ 3}.

5 Experimental Evaluation and Discussion

Implementation. We evaluate the synthesis framework with a prototype4 using
the SMT-solver Z3 [56], and (an extension of) the model checker Storm [34].

Case Studies. We consider the following three case studies:

Dynamic Power Management (DPM). The goal of this adapted DPM prob-
lem [13] is to trade-off power consumption for performance. We sketch a con-
troller that decides based on the current workload, inspired by [39]. The fixed
environment contains no holes. The goal is to synthesise the guards and updates
to satisfy a specification with properties such as ϕ1: the expected number of lost
requests is below λ, and ϕ2: the expected energy consumption is below κ.

Intrusion describes a network (adapted from [51]), in which the controller tries
to infect a target node via intermediate nodes. A failed attack makes a node
temporarily harder to intrude. We sketched a partial strategy aiming to minimise
the expected time to intrusion. Constraints encode domain specific knowledge.

Grid is based on a classical benchmark for solving partially observable MDPs
(POMDPs) [48]. To solve POMDPs, the task is to find an observation-based
strategy, which is undecidable for the properties we consider. Therefore, we
resort to finding a deterministic k-state strategy [55] s.t. in expectation, the
strategy requires less than λ steps to the target. This task is still hard: finding a
memoryless, observation-based strategy is already NP-hard [29,69]. We create a
family describing all k-state strategies (for some fixed k) for the POMDP. Like
in [47] actions are reflected by parameters, while parameter dependencies ensure
that the strategy is observation-based.

Evaluation. We compare w.r.t. an enumerative approach. That baseline linearly
depends on the number of realisations, and the underlying MCs’ size. We focus on
sketches where all realisations are explored, as relevant for optimal synthesis. For
concise presentation we use Unsat variants of feasibility synthesis. Enumerative
methods perform mostly independent of the order of enumerating realisations.
We evaluate results for DPM, and summarise further results. All results are
obtained on a Macbook MF839LL/A, within 3 h and using less than 8 GB RAM.

DPM has 9 holes with 260 K realisations, and MCs have 5 K (reachable) states
on average, ranging from 2 K to 8 K states. The performance of CEGIS signif-
icantly depends on the specification, namely, on the thresholds appearing in the
4 https://github.com/moves-rwth/sketching.

https://github.com/moves-rwth/sketching

Counterexample-Driven Synthesis for Probabilistic Program Sketches 115

0.7·λ∗ 0.77·λ∗ 0.84·λ∗ 0.92·λ∗

threshold λ

0

200

400

600

800

1000
ite
ra
tio

ns

0

2000

4000

6000

8000

10000

tim
e
(s
ec
on
ds
)

B-UP = 1
B-UP = 2
B-UP = 5

(a) Performance for varying λ

Sk1 Sk2 Sk3 Sk4
variants of sketch

0

50

100

150

200

ite
ra
tio

ns

0

200

400

600

800

1000

tim
e
(s
ec
on
ds
)

B-UP=1
B-UP=5

(b) Performance for varying SH

Fig. 6. Performance (runtime and iterations) on DPM (Color figure online)

properties. Fig. 6a shows how the number of iterations (left axis, green circle)
and the runtime in seconds (right axis, blue) change for varying λ for property
ϕ1 (stars and crosses are explained later). We obtain a speedup of 100× over the
baseline for λ = 0.7·λ∗, dropping to 23× for λ = 0.95·λ∗, where λ∗ is the mini-
mal probabilty over all realisations. The strong dependency between performance
and “unsatisfiability” is not surprising. The more unsatisfiable, the smaller the
conflicts (as in [33]). Small conflicts have a double beneficial effect. First, the pro-
totype uses an optimistic verifier searching for minimal conflicts; small conflicts
are found faster than large ones. Second, small conflicts prune more realisations.
A slightly higher number of small conflicts yields a severe decrease in iterations.
Thus the further the threshold from the optimum, the better the performance.

Reconsider Fig. 6a, crosses and stars correspond to a variant in which we have
blown up the state space of the underlying MCs by a factor B-UP. Observe that
performance degrades similarly for the baseline and our algorithm, which means
that the speedup w.r.t. the baseline is not considerably affected by the size of the
underlying MCs. This observation holds for various models and specifications.

Varying the sketch tremendously affects performance, cf. Fig. 6b for the per-
formance on variants of the original sketch with some hole substituted by one of
its options. The framework performs significantly better on sketches with holes
that lie in local regions of the MC. Holes relating to states all-over the MC are
harder to prune. Finally, our prototype generally performs better with speci-
fications that have multiple (conflicting) properties: Some realisations can be
effectively pruned by conflicts w.r.t. property ϕ1, whereas other realisations are
easily pruned by conflicts w.r.t., e.g., property ϕ2.

Intrusion has 26 holes and 6800 K realisations, the underlying MCs have only
500 states on average. We observe an even more significant effect of the prop-
erty thresholds on the performance, as the number of holes is larger (recall the
optimistic verifier). We obtain a speedup of factor 2200, 250 and 5 over the
baseline, for thresholds 0.7·λ∗, 0.8·λ∗ and 0.9·λ∗, respectively. For 0.7·λ∗, many
conflicts contain only 8 holes. Blowing up the model does not affect the obtained
speedups. Differences among variants are again significant, albeit less extreme.

116 M. Češka et al.

Grid is structurally different: only 6 holes in 3 commands and 1800 realisations,
but MCs having 100 K states on average. Observe that reaching the targets on
expectation below some threshold implies that the goal must almost surely be
reached. The MCs’ topology and the few commands make pruning hard: our
algorithm needs more than 400 iterations. Still, we obtain a 3× speedup for
λ = 0.98·λ∗. Pruning mostly follows from reasoning about realisations that do
not reach the target almost surely. Therefore, the speedup is mostly independent
of the relation between λ and λ∗.

Discussion. Optimistic verifiers search for a minimal CE and thus solve an
NP-hard problem [28,71]. In particular, we observed a lot of overhead when
the smallest conflict is large, and any small CE that can be cheaply computed
might be better for the performance (much like the computation of unsatisfiable
cores in SMT solvers). Likewise, reusing information about holes from previous
runs might benefit the performance. Improvements in concise sketching, and
exploiting the additional structure, will also improve performance.

Sketching. Families are simpler objects than sketches, but their explicit usage
of states make them inadequate for modelling. Families can be lifted to a
(restricted) sketching class, as in [27]. However, additional features like conflicts
significantly ease the modelling process. Consider intrusion: Without constraints,
the number of realisations grows to 6·1011. Put differently, the constraint allows
to discard over 99.99% of the realisations up front. Moreover, constraints can
exclude realisations that would yield unsupported programs, e.g, programs with
infinite state spaces. While modelling concise sketches with small underlying
MCs, it may be hard to avoid such invalid realisations without the use of con-
straints.

Comparison with CEGAR. We also compared with our CEGAR-prototype [27],
which leverages an abstraction-refinement loop for the synthesis. We observed
that there are synthesis problems where CEGIS significantly outperforms
CEGAR and vice versa. Details, including an evaluation of the strengths and
weaknesses of CEGIS compared to CEGAR, are reported in [68, Appendix]. In
our future work, we will explore how to effectively combine both approaches to
improve the performance and scalability of the synthesis process.

References

1. Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample
guided inductive synthesis modulo theories. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 270–288. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 15

2. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07317-0 3

https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-319-07317-0_3

Counterexample-Driven Synthesis for Probabilistic Program Sketches 117

3. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series, vol. 40, pp. 1–25. IOS Press
(2015)

4. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018)

5. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bull. EATCS 95, 94–129 (2008)

6. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilis-
tic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

8. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

9. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

10. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

11. Benes, N., Kret́ınský, J., Larsen, K.G., Møller, M.H., Sickert, S., Srba, J.: Refine-
ment checking on parametric modal transition systems. Acta Inf. 52(2–3), 269–297
(2015)

12. Beneš, N., Křet́ınský, J., Guldstrand Larsen, K., Møller, M.H., Srba, J.: Dual-
priced modal transition systems with time durations. In: Bjørner, N., Voronkov,
A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 122–137. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28717-6 12

13. Benini, L., Bogliolo, A., Paleologo, G., Micheli, G.D.: Policy optimization for
dynamic power management. IEEE Trans. CAD Integr. Circ. Syst. 8(3), 299–316
(2000)

14. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

15. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

16. Bondy, A.B.: Foundations of Software and System Performance Engineering. Addi-
son Wesley, Boston (2014)

17. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: POPL, pp. 775–788. ACM (2016)

18. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

19. Calinescu, R., Ghezzi, C., Johnson, K., et al.: Formal verification with confidence
intervals to establish quality of service properties of software systems. IEEE Trans.
Reliab. 65(1), 107–125 (2016)

20. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive soft-
ware needs quantitative verification at runtime. Commun. ACM 55(9), 69–77
(2012)

https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-28717-6_12
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9

118 M. Češka et al.

21. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Designing
robust software systems through parametric Markov chain synthesis. In: ICSA, pp.
131–140. IEEE (2017)

22. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: RODES: a
robust-design synthesis tool for probabilistic systems. In: Bertrand, N., Bortolussi,
L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 304–308. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66335-7 20

23. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018)

24. Cardelli, L., et al.: Syntax-guided optimal synthesis for chemical reaction networks.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 375–395.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 20

25. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantita-
tive synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 20

26. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Inf. 54(6), 589–623
(2017)

27. Češka, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov
chains. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 172–
190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 10

28. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for markov decision processes. ACM Trans. Comput. Log. 12(1), 1:1–
1:49 (2010)

29. Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for
almost-sure reachability with small strategies in POMDPs. In: AAAI, pp. 3225–
3232. AAAI Press (2016)

30. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative
synthesis using smoothed proof search. In: POPL. ACM (2014)

31. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: TASE, pp. 85–92. IEEE (2013)

32. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Aspects Com-
put. 30(1), 45–75 (2018)

33. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 11

34. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

35. Delahaye, B., et al.: Abstract probabilistic automata. Inf. Comput. 232, 66–116
(2013)

36. Dureja, R., Rozier, K.Y.: More scalable LTL model checking via discovering design-
space dependencies (D3). In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 309–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 17

https://doi.org/10.1007/978-3-319-66335-7_20
https://doi.org/10.1007/978-3-319-63390-9_20
https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-642-22110-1_20
https://doi.org/10.1007/978-3-030-17465-1_10
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-89960-2_17
https://doi.org/10.1007/978-3-319-89960-2_17

Counterexample-Driven Synthesis for Probabilistic Program Sketches 119

37. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42(1),
75–99 (2016)

38. Fiondella, L., Puliafito, A. (eds.): Principles of Performance and Reliability Mod-
eling and Evaluation. SSRE. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-30599-8

39. Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of proba-
bilistic models for quality-of-service software engineering. In: ASE, pp. 319–330.
IEEE Computer Society (2015)

40. Ghezzi, C., Sharifloo, A.M.: Model-based verification of quantitative non-functional
properties for software product lines. Inf. Softw. Technol. 55(3), 508–524 (2013)

41. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Programm.
Lang. 4(1–2), 1–119 (2017)

42. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

43. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci.-
Res. Dev. 28(4), 331–344 (2013)

44. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78917-8 3

45. Jansen, N., Humphrey, L.R., Tumova, J., Topcu, U.: Structured synthesis for prob-
abilistic systems. CoRR abs/1807.06106, at NFM 2019 (2018, to appear)

46. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

47. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis.
In: UAI, pp. 519–529. AUAI Press (2018)

48. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

49. Křet́ınský, J.: 30 years of modal transition systems: survey of extensions and anal-
ysis. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare,
R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 36–74.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 3

50. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

51. Kwiatkowska, M.Z., Norman, G., Parker, D., Vigliotti, M.G.: Probabilistic mobile
ambients. Theor. Comput. Sci. 410(12–13), 1272–1303 (2009)

52. Larsen, K.G.: Verification and performance analysis of embedded and cyber-
physical systems using UPPAAL. In: MODELSWARD 2014, pp. IS-11 (2014)

53. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE
Computer Society (1988)

54. Lindemann, C.: Performance modelling with deterministic and stochastic Petri
nets. Perf. Eval. Review 26(2), 3 (1998)

55. Meuleau, N., Kim, K.E., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann
Publishers Inc. (1999)

https://doi.org/10.1007/978-3-319-30599-8
https://doi.org/10.1007/978-3-319-30599-8
https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-319-63121-9_3
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

120 M. Češka et al.

56. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

57. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: PLDI, pp. 208–217. ACM (2015)

58. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

59. Rodrigues, et al.: Modeling and verification for probabilistic properties in software
product lines. In: HASE, pp. 173–180. IEEE (2015)

60. Rosenblum, D.S.: The power of probabilistic thinking. In: ASE, p. 3. ACM (2016)
61. Sharma, V.S., Trivedi, K.S.: Quantifying software performance, reliability and secu-

rity: an architecture-based approach. J. Syst. Softw. 80(4), 493–509 (2007)
62. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures.

In: PLDI, pp. 136–148. ACM (2008)
63. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-

ing for bit-streaming programs. In: PLDI, pp. 281–294. ACM (2005)
64. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial

sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)
65. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathe-

matical Basis of Performance Modeling. Princeton university press (2009)
66. Vandin, A., ter Beek, M.H., Legay, A., Lluch Lafuente, A.: QFLan: a tool for the

quantitative analysis of highly reconfigurable systems. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 329–337. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 19

67. Varshosaz, M., Khosravi, R.: Discrete time Markov chain families: modeling and
verification of probabilistic software product lines. In: SPLC Workshops, pp. 34–41.
ACM (2013)

68. Češka, M., Hensel, C., Junges, S., Katoen, J.P.: Counterexample-driven synthesis
for probabilistic program sketches. CoRR abs/1904.12371 (2019)

69. Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of
stochastic controller optimization in POMDPs. ACM Trans. Comput. Theor. 4(4),
12:1–12:8 (2012). https://doi.org/10.1145/2382559.2382563

70. Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal critical
subsystems for discrete-time Markov models. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 21

71. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P., Becker, B.:
High-Level Counterexamples for Probabilistic Automata. In: Joshi, K., Siegle, M.,
Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 39–54.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1 4

72. Woodside, M., Petriu, D., Merseguer, J., Petriu, D., Alhaj, M.: Transformation
challenges: from software models to performance models. J. Softw. Syst. Model.
13(4), 1529–1552 (2014)

73. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997)

74. Zhou, W., Li, W.: Safety-aware apprenticeship learning. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 662–680. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 38

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-95582-7_19
https://doi.org/10.1145/2382559.2382563
https://doi.org/10.1007/978-3-642-28756-5_21
https://doi.org/10.1007/978-3-642-28756-5_21
https://doi.org/10.1007/978-3-642-40196-1_4
https://doi.org/10.1007/978-3-319-96145-3_38

Synthesis of Railway Signaling Layout
from Local Capacity Specifications

Bjørnar Luteberget1, Christian Johansen2, and Martin Steffen2(B)

1 Railcomplete AS, Oslo, Norway
bjlut@railcomplete.no

2 Department of Informatics, University of Oslo, Oslo, Norway
{cristi,msteffen}@ifi.uio.no

Abstract. We present an optimization-based synthesis method for lay-
ing out railway signaling components on a given track infrastructure
to fulfill capacity specifications. The specifications and the optimization
method are designed to be suitable for the scope of signaling construction
projects and their associated interlocking systems, but can be adapted
to related problems in, e.g., highway, tram, or airport runway designs.
The main synthesis algorithm starts from an initial heuristic over-
approximation of required signaling components and iterates towards
better designs using two main optimization techniques: (1) global simul-
taneous planning of all operational scenarios using incremental SAT-
based optimization to eliminate redundant signaling components, and
(2) a derivative-free numerical optimization method using as cost func-
tion timing results given by a discrete event simulation engine, applied
on all the plans from (1).

Synthesizing all of the signaling layout might not always be appropri-
ate in practice, and partial synthesis from an already valid design is a
more practical alternative. In consequence, we focus also on the useful-
ness of the individual optimization steps: SAT-based planning is used to
suggest removal of redundant signaling components, whereas numerical
optimization of timing results is used to suggest moving signaling com-
ponents around on the layout, or adding new components. Such changes
are suggested to railway engineers using an interactive tool where they
can investigate the consequences of applying the various optimizations.

Keywords: Railway signaling · Capacity · On-the-fly synthesis ·
Incremental SAT · Interactive ·
Derivative-free numerical optimization · Discrete event simulation

1 Introduction

Signaling engineering for railway infrastructure consists of setting up signals,
train detectors, derailers, and related equipment, and then building a control

The first author was partially supported by the project RailCons – Automated Methods
and Tools for Ensuring Consistency of Railway Designs, with number 248714 funded
by the Norwegian Research Council and Railcomplete AS.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 121–137, 2019.
https://doi.org/10.1007/978-3-030-30942-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_9

122 B. Luteberget et al.

system called the interlocking which ensures that all train movements happen
in a safe sequence. Comprehensive regulations and processes have been put in
place to ensure the safety of such systems, and standards and authorities “highly
recommend” using formal methods (of various kinds) for higher safety integrity
levels like SIL4 (cf. [2,6,7,12]).

The precise locations of signaling components on the railway tracks can have
crucial impact on the capacity of the railway, i.e., its ability to handle intended
operational scenarios in a timely manner. Many details of the signaling layout
design can cause operational scenarios to become infeasible or slow, s.a.: signal
and detector placement, correct allocation and freeing of resources, track lengths,
train lengths, etc. Capacity-related decisions in signaling are closely related to
the fields of timetable planning and the implementation of interlocking systems,
and although tool support for verification of interlockings [10,15,16] and opti-
mization of timetables [1,13,19] has been thoroughly investigated and developed
since the beginnings of computer science (for example, the maximum flow prob-
lem was originally formulated to estimate railway network capacity, see [14])
signaling layout design still lacks appropriate modeling and analysis tools.

Consequently, railway construction projects usually rely on informal,
vague, or non-existent capacity specifications, and engineers need to make
adhoc/manual analyses of how the layout and control system can provide the
required capacity. Systematic capacity analysis for railways is typically per-
formed on the scale of national networks, using comprehensive timetables, focus-
ing on delays, congestion, and only after a complete design is finished (cf.
[1,9,19]). Large-scale capacity analysis thus assumes railway signaling layouts
as low-level details which have already been correctly designed. In contrast, we
focus in this paper on specifying and fulfilling capacity measures that make sense
in the setting of construction projects, typically for a single or a few stations or
railway lines.

In earlier work, we have developed methods for both static [22–24] and
dynamic [21] analysis of railway designs and developed tools which run fast
enough to be used for immediate feedback in an interactive design process. We
have also developed a verification system and a capacity specification language
[21] for construction projects, which verifies properties such as running time,
train frequency, overtaking and crossing. Building on this verification work, we
present in this paper an optimization method where signaling components, i.e.,
mainly signals and detectors, but also balises, derailers, and catch points, can
be moved or removed from the design to improve capacity.

We show how our SAT-based planning procedure can be extended to find
redundant signaling equipment, and how a simulator can be extended to move
signaling equipment around using continuous-domain mathematical optimiza-
tion methods and discrete event simulation. With the use of a heuristic initial
design algorithm, the optimization procedures can be applied even if the user
has not yet supplied any working signaling design, and in this way we get a
synthesis algorithm. If a working design is already in place, our method suggests
possible design improvements to the user in an interactive style, so that the

Synthesis of Railway Signaling Layout from Local Capacity Specifications 123

T
im

e

Station

Line Line

Block

section

Entry route Station
track Overlap

Exit route Block
section

Train 1

Block

section

Entry route Station
track Overlap

Exit route Block
section

Train 2

Critical
headway
section

Fig. 1. Blocking time diagram showing two (non-stopping) trains traveling from a line
blocking section into a station and back onto a line blocking section. Dashed lines
indicate train locations and velocity, and gray boxes indicate the lengths and times of
sections exclusively allocated to the trains. Figure adapted from [27].

engineer has the final say in making changes to the design, and can investigate
how the changes influence the infrastructure and operational scenarios. Thus,
our method can consider some signals fixed, i.e., part of the design, while there
rest are amenable to optimization.

These methods are a step towards a railway signaling engineering method-
ology based on explicit specifications, and using analysis and verification tools
every step along the way, which we believe can improve decision-making.

The main contributions of this paper thus are: (1) defining and demonstrating
a novel specification-based design methodology for automating the layout of
railway signaling components, (2) extending existing planning and simulation
methods to make changes in the designs which improve their quality with respect
to given specifications, and (3) showing how incremental optimization and partial
synthesis can be used in specification-based design through an interactive tool.

2 Background

The basic safety principles used in most railways around the world are based
on dividing railway lines into fixed blocking sections, and use signals and train

124 B. Luteberget et al.

Signal spacing ls = 800 m

Effective track length lt = 250 m

Safety distance lo = 150 m

Alternative safety dist.

Fig. 2. A schematic track plan, a key artifact in designing the signalling system in
a route-based interlocking system. The plan is annotated with signalling components
and distances between locations relevant for interlocking safety requirements.

detectors together in an electronic interlocking system which prevents one train
from entering a blocking section before it has been cleared by the previous train.

The block section principle directly impacts the maximum frequency of
trains, and consequently the capacity of the railway, through the interplay
between train parameters (length, acceleration, and braking power), track layout
(how many tracks are available at which stations), and the location of signalling
equipment. The topic of this paper is how to design this infrastructure, specifi-
cally how to choose the number and locations of signals and detectors to optimize
capacity.

There are two main design methods for deciding signal and detector locations,
which have different application areas. The first method is the blocking time
diagram where a single track on a railway line, or a single path through a railway
station, is presented on the horizontal axis, and consecutive trains traveling the
same path are plotted with the blocking time of each section shown as rectangles
stretching out on the vertical time axis (see Fig. 1).

The second design method is to use a schematic track plan showing the
topology of tracks and the locations of signals, detectors, and other signalling
system components. The schematic plan is not geographically accurate (for the
sake of readability) but is annotated with traveling lengths between relevant
locations, such as from one signal to the next signal or detector. This plan is
used in the design of route-based interlocking systems to make assessments of the
effective lengths of station tracks, safety distances from a signal to other tracks
(so-called overlaps), and more (see Fig. 2).

Observe how the blocking time diagram and the schematic plan provide views
in different dimensions: the blocking time diagram provides continuous time and
a single spatial dimension but does not treat different choices of path, while the
schematic track plan shows all paths at once, but does not directly show how a
train would travel in time. The latter concerns schedulability, while the former
concerns timing. For detailed signalling design, the decisions that impact the
interaction between these two analysis domains are a complex task where an
engineer balances a number of diverse concerns.

Synthesis of Railway Signaling Layout from Local Capacity Specifications 125

2.1 Railway Signalling Layout Design

We define the railway signalling layout design problem as follows: given a track
plan, and a set of intended operational scenarios, decide on a set of signalling
components (signals, detectors, etc.) and their locations, such that it is pos-
sible to implement a safe interlocking control system with which the specified
operational scenarios can be dispatched efficiently (see example in Fig. 3).

Layout design

Fig. 3. Railway signalling layout design places a set of signalling components (as on
the right) on a given track layout (as on the left) to ensure that a set of capacity
specifications can be fulfilled by dispatching trains in some way.

The main constraints imposed on a signalling design can be classified into
four main categories:

1. Physical infrastructure: all the trains are guided by the rails and can only
travel where the rails guide them. The space that trains move on is a graph
with linear connections between nodes.

2. Allocation of resources: railway signals are connected to a control system
called the interlocking, which ensures mutual exclusion of trains by reading
from detectors and ensuring that signals can only signal movement authority
when it is safe to do so. This entails that one can only allocate and free
resources in certain groupings (see example in Fig. 4).

3. Limited communication: the most obvious way to improve capacity on an
existing railway line is to install more signals to more finely subdivide the
allocation of space so that trains can be traveling more closely on the line.

Signal A Signal C

Signal B

Fig. 4. Allocation and freeing of resources can only be done within the limits of what
information the control system can send and receive. In the left figure, a train traveling
from Signal A must travel at least until Signal C, and all resources in this path must be
allocated and in a safe state before the train can proceed from A. In the right figure, no
train can proceed from Signal B because parts of the path require the same resources,
meaning elementary routes are conflicting and cannot be used simultaneously.

126 B. Luteberget et al.

Velocity

Known movement authority

Auth.

Fig. 5. Signal information only carries across two signals (so-called distant signals).

However, since the train driver always has to be able to stop the train within
the limits of the currently given length of movement authority, putting signals
too close together will lower the speed that the train can travel with. This
means that there is a limit to how many signals one can install before the
capacity starts to decrease because of this (see Fig. 5).

4. Laws of motion: when a train is given a movement authority, this authority
has a limited length and a limited maximum velocity. The driver must choose
when to accelerate and brake to stay within the given authority.

In the methods for optimization and synthesis proposed below, we assume
that the above constraints are absolute. In practice, engineers have subtle work-
arounds for each of these constraints whenever the situation requires a non-
standard solution. Physical infrastructure (1) can often be modified by taking
a step back in the planning process and re-evaluating the track layout together
with track engineers. Allocation of resources (2) can be overcome by designing
certain movements to be performed as shunting movements, i.e., a second-grade
class of movement authority with lower safety requirements. Limited communi-
cation (3) can also be overcome by increasing the number of different aspects that
the signals can communicate, or by using cab signalling, giving additional com-
munication between the interlocking system and the train driver. The ETCS
Level 2 system currently being implemented in many European countries is
capable of signalling any number of routes simultaneously through digital radio
communication, effectively removing the infrastructure-to-driver communication
restriction. Finally, the laws of motion (4) cannot be overcome in themselves,
but increasing the requirements for vehicles’ acceleration and braking power may
improve a layout design’s expected performance.

3 Method

The following list is a summary of the components in our work-flow for solving
the railway signalling layout design problem automatically and incrementally
(Fig. 6):

Synthesis of Railway Signaling Layout from Local Capacity Specifications 127

Track
plan

Capacity
specs.

Initial
design

Planning
SAT-based

dispatch plan-
ning with min.
no. of signals

Numerical
Powell/Brent nu-
merical method
optimizing signal

and detector
locations

Simulation
Discrete event
simulation as
optimization
cost function

Output
Signalling layout
and simulations
demonstrating

specs. fulfillment

Add new
signals/
detectors

Dispatch
plans

Fig. 6. Synthesis process overview. Track plan and capacity specifications are given as
input, and together with an initial design based on a heuristic algorithm they are given
to the SAT-based planner for simultaneous dispatch planning of all usage scenarios. A
numerical method takes the dispatch plans and adjusts the locations and number of
signals and detectors until no better result from simulation is achieved.

1. Track plan and capacity specification input: Track plans are graph-like
structures with information about track lengths, boundary nodes, switches,
and crossings, and are read from the railML format1. We use our method
from [21] for local capacity specifications in SAT, summarized in Sect. 3.1.

2. Initial design: We propose in Sect. 3.2 a heuristic algorithm to over-
approximate the signaling components required to plan the set of all possible
movements on the given track plan. This forms our initial maximal design.

3. Planning optimization: Ignoring all timing aspects, we calculate the small-
est set of signals and detectors that are able to dispatch all of the scenarios
described in the local capacity specifications. This is done by solving a plan-
ning problem where all scenarios are planned simultaneously. An incremental
SAT solver derives the plans and optimizes the number of signals that are
used. This extends our work from [21], and is detailed in Sect. 3.3.

4. Numerical optimization: A measure for the performance of the design is
calculated by dispatching all of the planned ways to realize the performance
specifications and measuring the difference between the required time and the
simulated time. This measure is used as a goal function for a meta-heuristic
numerical optimization algorithm for moving the signals around, and when
this algorithm converges, each track is tested using Discrete Event Simula-
tion for how much improvement would be obtained by adding signals to it
and repeating the optimization process. See Sect. 3.4 below.

1 See https://railml.org/.

https://railml.org/

128 B. Luteberget et al.

5. Output: After the process is done, the user is left with a design and a set
of dispatch plans and simulated train movements which describe how the
capacity requirements are fulfilled by this design.

The overall work-flow of our method is thought to be automatic, without
manual intervention, unless the user wants to define some signals fixed, which
would then be considered part of the track plan input. For this, our synthesis
must be incremental, and integrated in the engineers’ design tool, offering formal
methods automation without requiring any prior knowledge.

3.1 Local Capacity Specifications

To capture typical performance and capacity requirements in construction
projects, we have defined in [21] an operational scenario S = (V,M,C) as
follows:

1. A set of vehicle types V , each defined by a length l, a maximum velocity
vmax, a maximum acceleration a, and a maximum braking deceleration b.

2. A set of movements M , each defined by a vehicle type and an ordered
sequence of visits. Each visit q is a set of alternative locations {li} and an
optional minimum dwelling time td.

3. A set of timing constraints C, which are two visits qa, qb, and an optional
numerical constraint tc on the minimum time between visit qa and qb. The
two visits can come from different movements. If the time constraint tc is
omitted, the visits are only required to be ordered, so that tqa < tqb .

We give here only a simple example of an overtaking requirement. See [21]
for further examples2. Overtaking as an operational scenario means that two
trains traveling in the same direction can be reordered. For example, we specify
a passenger train traveling from b1 to b2, and a goods train with the same visits.
Timing constraints ensure that the passenger train enters first while the goods
train exits first. (Fig. 9 or Fig. 3 contain tracts where this can be performed.)

movement passengertrain { visit #p_in [b1]; visit #p_out [b2] }
movement goodstrain { visit #g_in [b1]; visit #g_out [b2] }
timing p_in < g_in; timing g_out < p_out

Specifications of this kind can be used to express requirements on running
time, train frequency, overtaking, crossing, and similar scenarios which are rel-
evant in railway construction projects. Since we typically only need to refer to
locations such as model boundaries and loading/unloading locations, these spec-
ifications are not tied to a specific design, and can often be re-used even when
the design of the station changes drastically.

2 See complete format: https://luteberget.github.io/rollingdocs/usage.html.

https://luteberget.github.io/rollingdocs/usage.html

Synthesis of Railway Signaling Layout from Local Capacity Specifications 129

3.2 Initial Design

When starting from an empty set of signalling components, most operational
scenarios are not possible to even dispatch, because the railway interlocking
safety principles require detectors and signals to have control over movements
for safety purposes. Instead of searching for signalling components to add to
the design to allow dispatching to happen, we start the synthesis procedure by
heuristically over-approximating the components required to perform dispatch.
We insert a signal and a detector in front of every trailing switch, and at a set of
specified lengths corresponding to the choices of length of safety zone. We also
insert a detector in front of every facing switch. See Fig. 7. If more than one train
is required on the same track for overtaking or crossing, we can also choose to
insert signals at multiples of the trains’ lengths. When there are several paths
of the specified length leading to a trailing switch, we put signals and detectors
at all the relevant locations. This design aims to allow all possible dispatches
and we rely on the next stage of the synthesis to remove redundant equipment
(Fig. 8).

Guard every branch

Fig. 7. Initial design: put signals in
place before every trailing switch, i.e.
where tracks join together.

Elementary route

Partial 1 Pa
rti

al
2

Partial 3

Fig. 8. The planning abstraction of the
train dispatch allocates a set of partial
routes to each train. Elementary routes
are sets of partial routes which must
always be allocated together.

3.3 SAT-Based Dispatch Planning

The operational scenarios of the local capacity specifications describe train move-
ments only declaratively, so the first step to analyzing concrete states of the
system is to solve a planning problem which gives us a set of dispatch plans, i.e.,
determining sequences of trains and elementary routes which make the trains
end up visiting locations according to the movements specification.

Instead of using a constraint solver system (e.g. SMT solvers) to solve for
route dispatching and train dynamics simultaneously, we have chosen to sep-
arate the abstracted planning problem (i.e. selecting elementary routes to dis-
patch) from the physical constraints of train dynamics. This choice was made
for performance and extensibility reasons (see [21, Sec.III] for details).

We use the encoding from [21, Sec.III(B)] of an instance of the abstracted
planning problem into an instance of the Boolean satisfiability problem (SAT,

130 B. Luteberget et al.

.

.

.

P
la

nn
in

g
st

ep
s

Scenarios

S1,1

S1,2

S2,1

S2,2

Fig. 9. The planning matrix consists of the occupation status of a set of partial routes
for each state required for dispatch planning, and for each scenario in the local capacity
requirements. The top left cells show an example dispatch of a crossing movement where
green areas show track segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which are currently occupied
by a train going from right to left. (Color figure online)

see [4] for an overview of SAT techniques). We consider the problem as a model
checking problem, and use the technique of bounded model checking (BMC) [3]
to unroll the transition relation of the system for a number of steps k, expressing
states and transitions using propositional logic. We thus assert the existence of
a plan, so that when the corresponding SAT instance is satisfiable, it proves the
fulfillment of the performance requirements and gives an example plan for it.
When unsatisfiable, we are ensured that there is no plan within the number of k
steps. Interlocking features such as elementary routes, partial route release, flank
protection, overlaps, overlap timeouts, and swinging overlaps, can be converted
into our representation for solving the abstract planning problem.

To find a subset of the signaling components from the initial design that is
sufficient to successfully plan all the dispatches, we extend the planning approach
described above by adding a set of signal usage Booleans u indicating whether
the signal is needed. The set of occupancy status Booleans oir (for route r in state
i, taking values either Free or a train t) is repeated once for each operational
scenario, resulting in a SAT instance with parallel execution of each scenario on
copies of the same infrastructure (see Fig. 9). We link the signal usage status
u to each copy of the state so that the signal is marked as needed if it is used
independently of other signals:

∀i ∈ State : ∀s ∈ Signal : ∀t ∈ Train : ¬us ⇒
∨{(

oir �= t ∧ oi+1
r = t

) | exit(r) = s
} ⇒

∨ {(
oir �= t ∧ oi+1

r = t
) | entry(r) = s

}
.

Similar approaches are taken for other signaling component types.

Synthesis of Railway Signaling Layout from Local Capacity Specifications 131

Now we find the smallest set of signaling equipment which is sufficient to
allow dispatching all scenarios. We minimize the number of signals by: taking
the sum of u variables as a unary-encoded number (see [5]) and then solving
SAT incrementally with a binary search on the upper bound of the sum.

3.4 Numerical Optimization

When we have a design where dispatching is possible, we have fulfilled the dis-
crete part of the dispatch plan. Timing constraints, however might not yet be
fulfilled, and we might also want to improve on the total execution time of the
various dispatch plans. To improve on the basic design found by the planner,
we solve a numerical optimization problem with a cost function f defined as a
weighted sum of dispatch timing measures:

fb(x) =
∑

s

ws

(
1
ns

∑

d

tb+x(d)

)
,

where x is a vector with components representing the location of each signal and
detector, s indexes operational scenarios from the set of capacity specifications,
ws is weight assigned to the operational scenario, d indexes the set of ns alter-
native dispatch plans derived by the planning algorithm for each operational
scenario, and tb+x(d) is the time measure calculated by executing the dispatch
plan d using the discrete event simulation component (described in Sect. 3.5) on
an infrastructure constructed by adding the signal and detector locations x to
the base track plan infrastructure b.

We define two basic operations for optimizing the timing performance of a
signalling layout:

1. Searching for the optimal signalling component locations x for a fixed set of
components located on a fixed set of tracks in a fixed order using Powell’s
method and Brent’s method of derivative-free numerical optimization.

2. Adding a new signal or detector to any track.

Powell’s Method and Brent’s Method. Since we use simulation to measure
the cost of a design, we do not have an expression for the derivative of the cost
function fb, and this function is not even guaranteed to be continuous. Even
so, it is possible to use numerical methods for local optimization without taking
derivatives. We use Brent’s method for minimization in the single-parameter
case, with the generalization to multivariate functions by Powell’s method.

Powell’s method works as follows: given a domain D ⊂ R
n, an initial point

x0 ∈ D, and a cost function f : D → R, create a set of search vectors V initially
containing each of the unit vectors aligned with each axis of Rn. Iterate through
the search vectors vi ∈ V and do a line search for the parameter α giving the
optimal point of xi+1 = f(xi +αvi). After updating x using each search vector,
remove the search vector which yielded the highest α and add instead the unit
vector in the direction of x − x0. See [8] for details.

132 B. Luteberget et al.

Brent’s method for optimization is used for the line search sub-routine in
Powell’s method. It takes a range of α values for which xi + αvi is inside D,
and does a robust line search which finds a local minimum even for non-smooth
and discontinuous functions. The method keeps a set of the three best points
seen so far and fits a quadratic polynomial with the three best function values
as parameters (called inverse quadratic interpolation). If the predicted optimum
by the quadratic fit falls within an expected range, it used as the new best guess,
otherwise the method falls back to golden-section search. See [8,26] for details.

To simplify the use of the numerical algorithms, we map each signalling
component’s position to an intrinsic coordinate in the interval [0, 1], so that the
vector x keeps within D = [0, 1]n. For a component with position p relative to
the start of its track, if the component is the only component on a track, we
define its intrinsic coordinate as

x =
p − (la + lmin)

(lb − lmin) − (la + lmin)
,

where la = 0, lb is the length of the track, and lmin is the minimum spacing
between components. When there are several components on the same track, we
convert the coordinates by processing the components in order of increasing p,
and adjusting la to correspond to the location of the previous component on the
track. In this way the whole of [0, 1]n represents valid component positions and
we do not have to apply constraints to the search space by other methods.

See Fig. 10 for an example of signalling compoments being moved.

Fig. 10. Partial screen capture from our interactive design tool showing before (left)
and after (right) improving signal and detector locations for a two-track station on an
overtaking scenario. Note that the time axis is horizontal in this example. A signal at
x ≈ 0 m is moved to x ≈ 700 m so that the overtaking train is unblocked at an earlier
time, lowering the overall time taken to perform the operation

Adding New Components. When the above optimization has converged for a
fixed set of components x, we iterate over each track (and each direction), adding
a new component and including its dimensions in x, re-running optimization,
and see which track, if any, most benefits from adding a signal or detector.

Synthesis of Railway Signaling Layout from Local Capacity Specifications 133

3.5 Discrete Event Simulation

The time measure used in the optimization loop (of Sect. 3.4) is calculated by
simulation on a fixed infrastructure, which is a well-established method in railway
capacity research. For this we use the custom simulator which we developed in
[21, Sec.III], not described here, (see [28] for a methodological overview, and
[9,17,18] for discrete events simulation for railway applications). Commercial
railway simulation software can also be used instead of custom solutions.

Fig. 11. Partial screen capture from our interactive design tool showing suggestions
for design improvement to the user, inspired by integrated development environments
used for programming. The individual optimization steps run their calculations as a
background process, showing an information symbol where the algorithm is able to
provide an improvement over the current design. The user can decide to implement it
or to dismiss this change and similar changes from future suggestions.

We also use an automated derivation procedure for interlocking specifica-
tions to adjust the behavior of the control system after making changes in the
infrastructure, similar to the procedure described in [29].

4 Local Optimizations and Interactive Improvement

In practice, synthesis from-scratch may well be ill-suited. The principle reason
for this is the incompleteness of our synthesis method, which implies several
inadequacies including, e.g., failing to recognize key concerns the design should
be based upon, or if its calculation time prohibits practical use. But even if the
specification successfully captures the capacity requirements, and the synthesis
algorithm can come up with designs with good capacity, there are in practice
often other constraints which can make a full from-scratch synthesis ill-suited.
For example, in upgrade construction projects, it might be more useful to search
for and suggest small changes which would be the most effective remedies for
bottlenecks in a station’s capacity. In fact, in such interactive verification and
synthesis situations like ours, incompleteness is not a concern since we know
that the problem is too difficult for automation and we only aim for the formal

134 B. Luteberget et al.

tool to provide help to the human. In that case we are mainly interested in the
correctness of the method, i.e., the help that it provides should be useful help
and not spurious suggestions; whereas incompleteness only means that there are
some solutions that the tool cannot find, thus becoming the responsibility of the
human. So we instead strive for good coverage of the solution space.

Our method and tool3 can be used in several ways, i.e.: we consider each
optimization step as described below as a possible incremental step towards a
better design, which can be performed by a user interactively. Using a computer-
assisted design program for railway (s.a. RailComplete) with semantic informa-
tion about railway objects and rail network topology, the user gets suggestions
for small changes to their design and can investigate how applying these changes
affects the various scenarios (e.g., see Fig. 11).

Local optimization steps suggested to the user are the following:

– Redundant equipment: if removing a single object from the drawing can
still be made to satisfy all local capacity requirements, the program suggests
that the object is redundant. This class of suggestions is based on the SAT-
based component minimization technique described above.

– Local move of equipment: if moving a single object or a set of nearby
objects can improve the overall capacity measure on the station, the program
suggests moving the object (or set of objects). This class of suggestions is
based on the numerical timing optimization technique described above.

– Adding equipment: if adding a single piece of equipment (and perform-
ing local moves of equipment afterwards) can improve timing, the program
suggests this to the user. This class of suggestions is based on the numerical
timing optimization technique described above.

When accepting any of these changes, a user can investigate how the dispatch
plans and the timings change. The tool meanwhile calculates new suggestions
based on the new layout. We have developed a prototype tool which can calculate
and suggest such changes to a user while they are editing their layout, and we
are currently starting testing of this tool in an industrial setting together with
railway engineers to investigate how useful such suggestions are, and how often
they can be used compared to a from-scratch synthesis.

5 Conclusions, Related and Further Work

We have presented a method for partially or fully automating signalling layout
design using SAT-based planning and discrete event simulation. The automation
of verification, optimization, and synthesis relies on specifications tailored to the
relevant scope, and we hope that this is a step on the way to integrating explicit
formal specifications into the layout design process. More details can be found
in the PhD thesis of the first author [20, Chap. 4].

3 Usage details of our tool can be found on the project’s web page: https://www.mn.
uio.no/ifi/english/research/projects/railcons/index.html#Tools.

https://www.mn.uio.no/ifi/english/research/projects/railcons/index.html#Tools
https://www.mn.uio.no/ifi/english/research/projects/railcons/index.html#Tools

Synthesis of Railway Signaling Layout from Local Capacity Specifications 135

Our planning algorithm uses fixed blocks, so it handles conventional lamp sig-
nalling and the European standard ERTMS/ETCS Level 2, while handling Level
3 (which uses moving block) would require changes to the planning algorithm.

The simulation paradigm is imperative, progressing by calculating train tra-
jectories forward in time. This makes the overall synthesis easily extensible with
timing-related details, such as engine and braking power models, resistance mod-
els, operational regulations, automatic train control systems, etc., which do not
impact the applicability of the dispatch plan but impact the timing performance.

For the local incremental operations above we consider useful running times
to be under one second, so the method can be used integrated inside engineers’
design tools, offering instant feedback.

5.1 Related Works

Although the literature is comprehensive on the safety-critical implementation
of railway interlockings and operational analysis of large-scale railway networks,
the signalling layout problem in itself has little coverage. We are only aware of the
following works: Mao et al. [25] presented a genetic algorithm solution to signal
placement, but the method is limited to the one-dimensional railway line, and
does not handle signal placements inside stations/interlockings. Dillmann and
Hähnle [11] describe a heuristic algorithm for upgrading German conventional
signalling systems to an ETCS system, aiming to replicate the behavior and
capacity of the existing system.

5.2 Further Work

Although our method is capable of making good design choices in several indus-
trial standard models, we are aware of several limitations. Firstly, the method is
not complete – we cannot guarantee finding an optimum because of the follow-
ing: (1) the initial design does not guarantee maximum possible schedulability,
(2) although the global simultaneous planning is exact in finding the smallest
subset of the initial plan which can dispatch the operational scenarios, this set
might not be the optimal starting point for timing optimization, and (3) the cost
that we use for numerical optimization can have multiple local optima, especially
when summing the score for competing operational scenarios, in which case the
method described above is not guaranteed to find the global optimum.

However, incomplete methods are often very useful in practice, and for us
it remains to thoroughly test how much gains our formal automation brings to
the engineers. We also need to evaluate empirically the quality of the resulting
signal placement as a crucial factor for industrial adoption.

We have also identified the following concerns for scalability of the method:
(1) the specification language is practical to use for passing tracks, junctions,
and medium-sized terminal stations, but on large-sized terminals and larger-
scale analysis across multiple stations, the language is not easy to use because
it specifies single movements separately, (2) optimizing the number of detectors
in the SAT problem requires quantifying over all paths, which will cause scaling

136 B. Luteberget et al.

problems on larger track plans with many path choices, and (3) the algorithm
for adding new signals to improve performance is naive, and will be expensive
for track plans with a large number of tracks.

However, for such large-scale analysis it is already common to use commercial
tools like OpenTrack4 or LUKS5, whereas our method is meant to be used on
smaller scales as in the design phase, aiming to help the engineer to reduce the
amount of errors the commercial tools would later find.

References

1. Abril, M., Barber, F., Ingolotti, L., Salido, M., Tormos, P., Lova, A.: An assessment
of railway capacity. Transp. Res. Part E: Logistics Transp. Rev. 44(5), 774–806
(2008). https://doi.org/10.1016/j.tre.2007.04.001

2. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 2

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58(11), 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

5. Björk, M.: Successful SAT encoding techniques. J. Sat. Boolean Model. Com-
put. 7(4), 189–201 (2011). https://satassociation.org/jsat/index.php/jsat/article/
view/153/118

6. Borälv, A., St̊almarck, G.: Formal verification in railways. In: Hinchey, M.G.,
Bowen, J.P. (eds.) Industrial-Strength Formal Methods in Practice, pp. 329–350.
Springer (1999), https://doi.org/10.1007/978-1-4471-0523-7 15

7. Boulanger, J.L.: CENELEC 50128 and IEC 62279 Standards. Wiley-ISTE, March
2015

8. Brent, R.P.: Algorithms for Minimization Without Derivatives. Dover Publications,
Mineola (2002)

9. Büker, T., Seybold, B.: Stochastic modelling of delay propagation in large net-
works. J. Rail Transp. Plan. Manag. 2(1–2), 34–50 (2012). https://doi.org/10.
1016/j.jrtpm.2012.10.001

10. Cimatti, A., et al.: Formal verification and validation of ERTMS industrial railway
train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 378–393. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31424-7 29

11. Dillmann, S., Hähnle, R.: Automated planning of ETCS tracks. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 79–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6 5

12. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05032-4 13

13. Hansen, I.A., Pachl, J.: Railway Timetabling and Operations. Eurailpress (2014)

4 “OpenTrack: Simulation of railway networks” 2018. http://www.opentrack.ch/.
5 “LUKS: Analysis of lines and junctions” 2018. http://www.via-con.de/development/

luks.

https://doi.org/10.1016/j.tre.2007.04.001
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://satassociation.org/jsat/index.php/jsat/article/view/153/118
https://satassociation.org/jsat/index.php/jsat/article/view/153/118
https://doi.org/10.1007/978-1-4471-0523-7_15
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1007/978-3-642-31424-7_29
https://doi.org/10.1007/978-3-642-31424-7_29
https://doi.org/10.1007/978-3-030-18744-6_5
https://doi.org/10.1007/978-3-319-05032-4_13
http://www.opentrack.ch/
http://www.via-con.de/development/luks
http://www.via-con.de/development/luks

Synthesis of Railway Signaling Layout from Local Capacity Specifications 137

14. Harris, T., Ross, F.S.: Fundamentals of a method for evaluating rail net capacities.
Technical report, RM-1573, Rand Corporation (1955)

15. Hartonas-Garmhausen, V., Campos, S.V.A., Cimatti, A., Clarke, E.M.,
Giunchiglia, F.: Verification of a safety-critical railway interlocking system with
real-time constraints. Sci. Comput. Program. 36(1), 53–64 (2000). https://doi.
org/10.1016/S0167-6423(99)00016-7

16. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects Comput. 23(2), 191–
219 (2011). https://doi.org/10.1007/s00165-009-0143-6

17. Hürlimann, D.: Objektorientierte Modellierung von Infrastrukturelementen und
Betriebsvorgängen im Eisenbahnwesen. Ph.D. thesis, ETH Zurich (2002). https://
www.research-collection.ethz.ch/handle/20.500.11850/47957

18. Kamburjan, E., Hähnle, R., Schön, S.: Formal modeling and analysis of rail-
way operations with active objects. Sci. Comput. Program. 166, 167–193 (2018).
https://doi.org/10.1016/j.scico.2018.07.001

19. Landex, A.: Methods to estimate railway capacity and passenger delays. Ph.D.
thesis, Technical University of Denmark (DTU) (2008). https://orbit.dtu.dk/en/
publications/id(f5578206-74c3-4c94-ba0d-43f7da82bf95).html

20. Luteberget, B.: Automated Reasoning for Planning Railway Infrastructure. Ph.D.
thesis, Faculty of Mathematics and Natural Sciences, University of Oslo (2019)

21. Luteberget, B., Claessen, K., Johansen, C.: Design-time railway capacity verifi-
cation using SAT modulo discrete event simulation. In: Bjørner, N., Gurfinkel,
A. (eds.) Formal Methods in Computer Aided Design (FMCAD), pp. 1–9. IEEE
(2018). https://doi.org/10.23919/FMCAD.2018.8603003

22. Luteberget, B., Johansen, C.: Efficient verification of railway infrastructure designs
against standard regulations. Formal Methods Syst. Des. 52(1), 1–32 (2018).
https://doi.org/10.1007/s10703-017-0281-z

23. Luteberget, B., Johansen, C., Feyling, C., Steffen, M.: Rule-based incremental ver-
ification tools applied to railway designs and regulations. In: Fitzgerald, J., Heit-
meyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 772–778.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 49

24. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of rail-
way infrastructure designs. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 491–507. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0 31

25. Mao, B., Liu, J., Ding, Y., Liu, H., Ho, T.K.: Signalling layout for fixed-block
railway lines with real-coded genetic algorithms. Hong Kong Inst. Eng. Trans.
13(1), 35–40 (2006). https://eprints.qut.edu.au/38260/

26. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Heidelberg
(2006). https://doi.org/10.1007/978-0-387-40065-5

27. Pachl, J.: Railway Operation and Control. VTD Rail Publishing (2015)
28. Robinson, S.: Simulation: The Practice of Model Development and Use. John Wiley

& Sons Inc., New York (2004)
29. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway

interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) Proceedings of the 10th
Symposium on Formal Methods for Automation and Safety in Railway and Auto-
motive Systems, (FORMS/FORMAT). pp. 200–209. TU Braunschweig (2014)

https://doi.org/10.1016/S0167-6423(99)00016-7
https://doi.org/10.1016/S0167-6423(99)00016-7
https://doi.org/10.1007/s00165-009-0143-6
https://www.research-collection.ethz.ch/handle/20.500.11850/47957
https://www.research-collection.ethz.ch/handle/20.500.11850/47957
https://doi.org/10.1016/j.scico.2018.07.001
https://orbit.dtu.dk/en/publications/id(f5578206-74c3-4c94-ba0d-43f7da82bf95).html
https://orbit.dtu.dk/en/publications/id(f5578206-74c3-4c94-ba0d-43f7da82bf95).html
https://doi.org/10.23919/FMCAD.2018.8603003
https://doi.org/10.1007/s10703-017-0281-z
https://doi.org/10.1007/978-3-319-48989-6_49
https://doi.org/10.1007/978-3-319-33693-0_31
https://doi.org/10.1007/978-3-319-33693-0_31
https://eprints.qut.edu.au/38260/
https://doi.org/10.1007/978-0-387-40065-5

Pegasus: A Framework for Sound
Continuous Invariant Generation

Andrew Sogokon1,2(B) , Stefan Mitsch1(B) , Yong Kiam Tan1(B) ,
Katherine Cordwell1(B) , and André Platzer1,3(B)

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
{asogokon,smitsch,yongkiat,kcordwel,aplatzer}@cs.cmu.edu
2 School of Informatics, University of Edinburgh, Edinburgh, UK

3 Fakultät für Informatik, Technische Universität München, München, Germany

Abstract. Continuous invariants are an important component in
deductive verification of hybrid and continuous systems. Just like discrete
invariants are used to reason about correctness in discrete systems with-
out unrolling their loops forever, continuous invariants are used to rea-
son about differential equations without having to solve them. Automatic
generation of continuous invariants remains one of the biggest practical
challenges to automation of formal proofs of safety in hybrid systems.
There are at present many disparate methods available for generating
continuous invariants; however, this wealth of diverse techniques presents
a number of challenges, with different methods having different strengths
and weaknesses. To address some of these challenges, we develop Pegasus:
an automatic continuous invariant generator which allows for combina-
tions of various methods, and integrate it with the KeYmaera X theorem
prover for hybrid systems. We describe some of the architectural aspects
of this integration, comment on its methods and challenges, and present
an experimental evaluation on a suite of benchmarks.

Keywords: Invariant generation · Continuous invariants ·
Ordinary differential equations · Theorem proving

1 Introduction

Safety verification problems for ordinary differential equations (ODEs) are con-
tinuous analogues to Hoare triples: the objective is to show that an ODE cannot
evolve into a designated set of unsafe states from any of its designated initial

This material is based upon work supported by the National Science Foundation
under Award CNS-1739629 and under Graduate Research Fellowship Grant No. DGE-
1252522, by AFOSR under grant number FA9550-16-1-0288, and by the Alexander
von Humboldt Foundation. The third author was supported by A∗STAR, Singapore.
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of any sponsoring
institution, the U.S. government or any other entity.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 138–157, 2019.
https://doi.org/10.1007/978-3-030-30942-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_10&domain=pdf
http://orcid.org/0000-0002-5849-7991
http://orcid.org/0000-0002-3194-9759
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0002-9336-6006
http://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-030-30942-8_10

Pegasus: A Framework for Sound Continuous Invariant Generation 139

states. The role of continuous invariants is therefore analogous to that of induc-
tive invariants in discrete program verification. The problem of automatically
generating invariants (also known as invariant synthesis) is one of the great-
est practical challenges in deductive verification of both continuous and discrete
systems. In theory, it is even the only challenge for hybrid systems safety [35,39].

The proliferation of published techniques [4,24,29,36,42,44,51,58,60] for
continuous invariant generation – targeting various classes of systems, and hav-
ing different strengths and weaknesses – presents a challenge: ideally, one does
not want to be restricted by the limitations of one particular generation tech-
nique (or a small family of techniques). Instead, it is far more desirable to have
a framework that accommodates existing generation methods, allows for their
combination, and is extensible with new methods as they become available.
In this paper we (partially) meet the above challenge by developing a single
framework which allows us to combine invariant generation methods into novel
invariant generation strategies. In our work, we are guided by the following con-
siderations:

1. Specialized invariant generation methods are effective only when the problem
falls within their domain; their use must therefore be targeted.

2. A combination of invariant generation methods can be more practical than
any of the methods considered in isolation. A flexible mechanism for combin-
ing these methods is thus highly desirable.

3. Reasoning with automatically generated invariants needs to be done in a
sound fashion: any deficiencies in the generation procedure must not compro-
mise the final verification result.

Our interest in automatic invariant generation is motivated by the pressing need
to enhance the level of proof automation in deductive verification tools for hybrid
systems. In this work we target the KeYmaera X theorem prover [15].

Contributions. In this paper we describe the design and implementation of a con-
tinuous invariant generator1 – Pegasus – and its integration into KeYmaera X.
We outline some of the basic principles in this coupling, the techniques used
to generate invariants, and the mechanism used for combining them into more
powerful invariant generation strategies. We evaluate this integration on a set of
verification benchmarks – with very promising results.

Coloured versions of all figures are available online.

1 An etymological note on naming conventions. The KeY [3] prover provided
the foundation for developing KeYmaera [37], an interactive theorem prover for
hybrid systems. The name KeYmaera was a pun on Chimera, a hybrid monster from
Classical Greek mythology. The tactic language of the new KeYmaera X prover [15]
is called Bellerophon [14] after the hero who defeats the Chimera in the myth. In
keeping with an established tradition, the invariant generation framework is called
Pegasus because the aid of this winged horse was crucial to Bellerophon in his feat.

140 A. Sogokon et al.

2 Preliminaries

Ordinary Differential Equations. An n-dimensional autonomous system of first-
order ODEs has the form: x′ = f(x), where x = (x1, . . . , xn) ∈ R

n is a vector of
state variables, x′ = (x′

1, . . . , x
′
n) denotes their time-derivatives, i.e. dxi

dt for each
i = 1, . . . , n, and f(x) = (f1(x), . . . , fn(x)) specify the RHS of the equations that
these time-derivatives must obey along solutions to the ODEs. Geometrically,
such a system of ODEs defines a vector field f : Rn → R

n, associating to each
point x ∈ R

n the vector f(x) = (f1(x), . . . , fn(x)) ∈ R
n. Whenever the state of

the system is required to be confined within some prescribed set of states Q ⊆ R
n,

which is known as the evolution constraint2, we will write x′ = f(x) & Q.
If no evolution constraint is specified, Q is assumed to be R

n. A solution to
the initial value problem for the system of ODEs x′ = f(x) with initial value
x0 ∈ R

n is a differentiable function x(x0, t) : (a, b) → R
n defined for all times

t ∈ (a, b) ⊆ R ∪ {∞,−∞} where a < 0 < b, and such that x(x0, 0) = x0 and
d
dtx(x0, t) = f(x(x0, t)) for all t ∈ (a, b). Given a continuously differentiable
function p : Rn → R, the Lie derivative of p with respect to vector field f equals
the time-derivative of p evaluated along the solutions to the system x′ = f(x);
this Lie derivative is denoted by p′ and formally defined as p′ ≡ ∑n

i=1
∂p
∂xi

fi.

Semi-algebraic Sets. A set S ⊆ R
n is semi-algebraic iff it is characterized by a

finite Boolean combination of polynomial equations and inequalities:

l∨

i=1

⎛

⎝
mi∧

j=1

pij < 0 ∧
Mi∧

j=mi+1

pij = 0

⎞

⎠ (1)

where pij ∈ R[x1, . . . , xn] are polynomials. By quantifier elimination, every first-
order formula of real arithmetic characterizes a semi-algebraic set and can be
put into standard form (1) (see e.g. Mishra [32, §8.6]). With a slight abuse of
notation, this paper uses formulas and the sets they characterize interchangeably.

Continuous Invariants in Verification. Safety specifications for ODEs and hybrid
dynamical systems can be rigorously verified in formal logics, such as differen-
tial dynamic logic (dL) [34,35] as implemented in the KeYmaera X proof assis-
tant [15] and hybrid Hoare logic [28] as implemented in the HHL prover [61]. The
use of appropriate continuous invariants is key to these verification approaches
as they allow the complexities of the continuous dynamics to be handled rigor-
ously even for ODEs without closed-form solutions. For example, the dL formula
Init → [x′ = f(x) & Q] Safe states that the safety property Safe is satisfied
throughout the continuous evolution of the system x′ = f(x) & Q whenever the
system begins its evolution from a state satisfying Init . The main dL reasoning
principle for verifying such a safety property is given by the following sound rule

2 Evolution domain constraints are also called mode invariants in the context of hybrid
automata. We avoid this name to prevent confusion with generated invariants.

Pegasus: A Framework for Sound Continuous Invariant Generation 141

of inference, with three premisses above the bar and the conclusion below:

(Safety)
Init → I I → [x′ = f(x) & Q] I I → Safe

Init → [x′ = f(x) & Q] Safe
.

In this rule, the first and third premiss respectively state that the initial set
Init is contained within the set I, and that I lies entirely inside the safe set of
states Safe. The second premiss states that I is a continuous invariant, i.e. I
is maintained throughout the continuous evolution of the system whenever it
starts inside I, that is, the following dL formula is true in all states:

I → [x′ = f(x) & Q] I . (2)

Thus, the problem of verifying safety properties of ODEs reduces to finding
an invariant I that can be proved to satisfy all three premisses. Semantically, a
continuous invariant can also be defined as follows:

Definition 1 (Continuous invariant). Given a system x′ = f(x) & Q, the
set I ⊆ R

n is a continuous invariant iff the following statement holds:

∀x0 ∈ I ∀ t ≥ 0 :
(
(∀ τ ∈ [0, t] : x(x0, τ) ∈ Q) =⇒ x(x0, t) ∈ I

)
.

For any given set of initial states Init ⊆ R
n, a continuous invariant I such

that Init ⊆ I provides a sound over-approximation of the states reachable by the
system from Init by following the solutions to the ODEs within the domain con-
straint Q. Indeed, the exact set of states reachable by a continuous system from
Init provides the smallest such invariant.3 While the definition above features
the solution x(x0, t), which may not be available explicitly, a crucial advantage
afforded by continuous invariants is the possibility of checking whether a given
set is a continuous invariant without computing the solution, i.e. by working
directly with the ODEs.

3 Sound Invariant Checking and Generation

The problem of checking whether a semi-algebraic set I ⊆ R
n is a continuous

invariant of a polynomial system of ODEs x′ = f(x)&Q was shown to be decid-
able by Liu, Zhan, and Zhao [29]. This decision procedure, henceforth referred
to as LZZ, provides a way of automatically checking continuous invariants (2)
by exploiting facts about higher-order Lie derivatives of multivariate polynomi-
als appearing in the syntactic description of I and the Noetherian property of
the ring R[x] [18,29]; its implementation requires an algorithm for constructing
Gröbner bases [9], as well as a decision procedure for the universal fragment of
real arithmetic [47]. A logical alternative for invariant checking is provided by
the complete dL axiomatization for differential equation invariants [39]. Whereas
using LZZ results in a yes/no answer to an invariance question (2), dLmakes
it possible to construct a formal proof of invariance from a small set of ODE
axioms [39] whenever the property holds (or a refutation when it does not).
3 Unfortunately, reachable sets rarely have a simple description as semi-algebraic sets.

142 A. Sogokon et al.

3.1 Invariant Generation with Template Enumeration

Given a means to perform invariant checking with real arithmetic, an obvi-
ous solution to the invariant generation problem (which has been suggested by
numerous authors [29,36,55]) involves the so-called method of template enumer-
ation, which yields a theoretically complete semi-algorithm (in the sense that
it terminates with a positive answer iff that is possible). All it takes in the-
ory is to exhaustively enumerate parametric templates for all real arithmetic
formulas describing all semi-algebraic sets, and use a quantifier elimination algo-
rithm (such as CAD [8]) to identify whether choices for the template parameters
exist that meet the required arithmetic constraints. While templates make this
British Museum Algorithm-like approach more successful than, e.g. exhaustively
enumerating all proofs [21], the method is nevertheless quite impractical when
used with real quantifier elimination.4 In practice, invariant generation is usually
achieved by using incomplete – but more efficient – generation methods. These
methods are numerous and vary considerably in their strengths and limitations,
creating a wide spectrum of possible trade-offs in performance, the quality, and
the form of invariants that one can generate. Effectively navigating this spectrum
is an important practical challenge that we seek to address.

3.2 Soundness: Proof Assistants and Invariant Generation

There are a number of design decisions that can be exercised in how reasoning
with continuous invariants is performed within a deductive verification frame-
work. A fundamental design decision is how tightly (i) continuous invariance
checking and (ii) continuous invariant generation are to be coupled with the
implementation of a proof assistant. This space of design choices is exemplified
by the HHL prover and KeYmaera X.

The HHL prover [7,61] implements (i) the LZZ decision procedure for invari-
ant checking and (ii) the method of template enumeration for invariant gen-
eration based on real quantifier elimination. From the perspective of the HHL
prover, these are trusted external oracles for checking the validity of statements
about continuous invariance; trusting the output of the HHL prover includes
trusting the implementation of its LZZ procedure and the invariant generator.

In contrast, KeYmaera X [15] pursues an LCF-style approach, seeking to
minimize the soundness-critical code that needs to be trusted in its output.
For continuous invariants, it achieves this by (i) checking invariance within the
axiomatic framework of dL (rather than trusting external checking procedures)
and (ii) accepting conjectured invariants generated from a variety of sources
but separately checking the result. Invariant checking in KeYmaera X is auto-
matic, which is made possible by the use of specialized proof tactics [14]; these
additionally allow it to use a variety of other (incomplete, but computationally
inexpensive) methods for proving continuous invariance [18].
4 Quantifier elimination algorithms used in practice have doubly-exponential time

complexity in the number of variables [43]. Template enumeration introduces a fresh
variable per monomial coefficient, so the approach quickly hits scalability barriers.

Pegasus: A Framework for Sound Continuous Invariant Generation 143

Remark 1. The difference between these two approaches is broadly analogous to
the use of trusted decision procedures in PVS [12] and oracles in HOL [5,63] on
the one hand, and proof reconstruction (e.g. in Isabelle [62]) on the other.

4 Invariant Generation Methods in Pegasus

Pegasus is a continuous invariant generator implemented in the Wolfram Lan-
guage with an interface accessible through both Mathematica and KeYmaera X.5

When KeYmaera X is faced with a continuous safety verification problem that it
is unable to prove directly, it automatically invokes Pegasus to help find an appro-
priate invariant (if possible). As mentioned earlier, KeYmaera X checks all the
invariants it is supplied with – including those provided by Pegasus (see Fig. 1).

KeYmaera X

Tactics
(non-soundness-critical)

dL core
(checks all proof steps)

guide the core

Pegasus

Classifier

Generation Strategy

Qualitative Analysis

First Integrals

Darboux Polynomials

Barrier Certificates

safety problem

+ proof hints
invariant

Fig. 1. Sound invariant generation: invariant generator analyses safety problem to pro-
vide invariants and proof hints to tactics; the invariants are formally verified to be
correct within the soundness-critical dL core

This design ensures that correctness of Pegasus is not integral to the sound-
ness of KeYmaera X. It also presents implementation opportunities for Pegasus:

1. It can freely integrate numerical procedures and heuristic methods while pro-
viding best-effort guarantees of correctness. Final correctness checks for the
generated invariants are left to the purview of KeYmaera X.6

2. It records proof hints corresponding to various methods that were used to
generate continuous invariants. These hints enable KeYmaera X to build more
efficient shortcut proofs of continuous invariance [18].

5 Pegasus (http://pegasus.keymaeraX.org/) is linked to KeYmaera X through the
Mathematica interface of KeYmaera X, which translates between the internal data
structures of the prover core and the Mathematica data structures.

6 Naturally, the output from Pegasus can also be checked using a trusted implemen-
tation of the LZZ decision procedure before anything is returned. When used with
KeYmaera X, though, this additional (soundness-critical) check is unnecessary.

http://pegasus.keymaeraX.org/

144 A. Sogokon et al.

Pegasus currently implements an array of powerful invariant generation
methods, which we describe below, beginning with a large family of related meth-
ods that are based on qualitative analysis, which can be best explained using the
machinery of discrete abstraction of continuous systems. We first briefly recall
the main idea behind this approach.

4.1 Exact Discrete Abstraction

Discrete abstraction has been the subject of numerous works [1,57,59]. Briefly,
the steps are: (i) discretize the continuous state space of a system by defining
predicates that correspond to discrete states, (ii) compute a (local) transition
relation between the discrete states obtained from the previous step, yielding a
discrete transition system which abstracts the behaviour of the original contin-
uous system, and finally (iii) compute reachable sets in the discrete abstraction
to obtain an over-approximation of the reachable sets of the original system.

The discrete abstraction is sound iff the relation computed in step (ii) has
a transition between two discrete states whenever there is a corresponding con-
tinuous trajectory of the original system between the two sets corresponding
to those discrete states. The abstraction is exact iff these are the only transi-
tions computed in step (ii). Soundness of the discrete abstraction guarantees
that any invariant extracted from the discretization corresponds to an invariant
for the original system. Figure 2 illustrates a discretization of a system of ODEs
(Fig. 2a), which results in 9 discrete states in a sound and exact abstraction
(Fig. 2b). The state space is discretized using predicates built from sign condi-
tions on polynomials, p1, p2 ∈ R[x1, x2]. The discrete states of the abstraction
are given by formulas such as S1 ≡ p1 < 0 ∧ p2 = 0, S2 ≡ p1 < 0 ∧ p2 > 0, and
so on.

Fig. 2. Discrete abstraction of a two-dimensional system

The ability to construct sound and exact discrete abstractions [51] has an
important consequence: if an appropriate semi-algebraic continuous invariant I
exists at all, it can always be extracted from a discrete abstraction built from
discretizing the state space using sign conditions on the polynomials describ-
ing I. The problem of (semi-algebraic) invariant generation therefore reduces to

Pegasus: A Framework for Sound Continuous Invariant Generation 145

finding appropriate polynomials whose sign conditions can yield suitable discrete
abstractions and computing reachable states in these abstractions.

Remark 2. Reachable sets (from the initial states) in discrete abstractions are
the smallest invariants with respect to ⊆ (set inclusion) that one can extract.
The smallest invariant is the most informative because it allows one to prove the
most safety properties, but it may not be the most useful invariant in practice.
In particular, one often wants to work with invariants that have low descriptive
complexity and are easy to prove in the formal proof calculus. This leads nat-
urally to consider alternative ways of extracting invariants. Pegasus is able to
extract reachable sets of discrete abstractions, but favours less costly techniques,
such as differential saturation [36], which often succeed in quickly extracting
more conservative invariants.

Finding “good” polynomials that can abstract the system in useful ways
and allow proving properties of interest is generally difficult. While abstraction
using predicates that are extracted from the verification problem itself can be
surprisingly effective, in certain cases useful predicates may not be syntactically
extracted from the problem statement. In order to improve the quality of discrete
abstractions, Pegasus employs a separate classifier, which extracts features from
the verification problem which can then be used to suggest polynomials that are
more tailored to the problem at hand. Certain systems have structure that, to a
human expert, might suggest an “obvious” choice of good predicates. Below we
sketch some basic examples of what is currently possible.

4.2 Targeted Qualitative Analysis

x

x′
f(x)

Fig. 3. Qualitative analysis of one-
dimensional ODEs x′ = f(x)

As a motivating example, consider the class
of one-dimensional ODEs x′ = f(x), where
f ∈ R[x]. A standard way of studying quali-
tative behaviour in these systems is to inspect
the graph of the function f(x) [54]. Figure 3
illustrates such a graph of f(x), along with a
vector field induced by such a system on the
real line. By computing the real roots of the
polynomial in the right-hand side, i.e. the real
roots r1, . . . , rk ∈ R of f(x), we may form a list of polynomials x− r1, . . . , x− rk

that can be used for an algebraic decomposition of R into invariant cells corre-
sponding to real intervals from which an over-approximation of the reachable set
can be constructed. Such an algebraic decomposition can be further refined by
augmenting the list of polynomials with x−bi1, . . . , x−bil, where bi1, . . . , bil ∈ R

are the boundary points of the initial set in the safety specification. From this
augmented list, one can exactly construct the reachable set of the system by
computing the reachable set of the corresponding exact abstraction.

Remark 3. Knowledge of the fact that x′ = f(x) is one-dimensional allows one
to exploit another useful fact: every one-dimensional system is a gradient system,
i.e. its motion is generated by a potential function F (x) which can be computed

146 A. Sogokon et al.

directly by integrating −f(x) with respect to x, i.e. F (x) = − ∫
f(x) dx. For any

k ∈ R, F (x) ≤ k defines a continuous invariant of the system x′ = f(x).

In higher dimensions, the behaviour of linear systems x′ = Ax can be studied
qualitatively by examining the stability of the fixed point at the origin [2]. The
strongest algebraic invariants for such systems can be computed for algebraic
initial conditions [44]. Pegasus implements methods targeted at linear systems
that takes advantage of facts such as these to suggest useful abstractions from
which invariants (not necessarily algebraic) can be extracted. This strategy is
similar in spirit to the abstraction methods proposed in the work of Tiwari [56].

Example 1. The linear systems in Fig. 4 exhibit different qualitative behaviours.
The invariants (shown in blue), demonstrate unreachability of the unsafe states
(shown in red) from the initial states (shown as green discs in Fig. 4).

Fig. 4. Automatically generated invariants for linear systems.

In the leftmost system, all eigenvalues of the system matrix A are purely
imaginary. Pegasus generates annular invariants containing the green discs
because trajectories of such systems are always elliptical. For the middle system,
the (asymptotic) behaviour of its trajectories is determined by the eigenvectors
of its system matrix (eigenvalues are real and of opposite sign [2]). Pegasus uses
these eigenvectors to generate two invariant half-planes, one for each green disc.
Invariant half-planes are also generated for the rightmost system which is asymp-
totically stable (all real parts of eigenvalues are negative [2]). Pegasus further
refines these half-planes with elliptical regions containing the green discs because
elliptical regions are invariants for such systems.

4.3 Qualitative Analysis for Non-linear Systems

General non-linear polynomial systems present a hard class of problems for
invariant generation. A number of useful heuristics can be applied to partition
the continuous state space, in hopes that the resulting abstraction exhibits a
suitable invariant. For example, by factorizing to find polynomials p such that

Pegasus: A Framework for Sound Continuous Invariant Generation 147

p = 0 implies x′
i = 0 for some xi, the flow along the level curve p = 0 vanishes

in the xi direction. This information can be used to cheaply approximate the
transition relation in the discrete abstraction and to efficiently extract invari-
ant candidates. For the non-linear ODE in Fig. 2, the discretization polynomials
p1, p2 are chosen such that x′

2 = 0 and x′
1 = 0 on their respective level curves.

This yields a useful discrete abstraction e.g. S4 is an invariant for the resulting
abstraction (Fig. 2b). Other useful sources of polynomials for qualitative analysis
of non-linear systems are found in e.g. the summands and irreducible factors of
the right-hand sides of the ODEs, the Lie derivatives of the factors, and physi-
cally meaningful quantities such as the divergence of the system’s vector field.

4.4 General-Purpose Methods

Beyond qualitative analysis, Pegasus implements several general-purpose invari-
ant generation techniques which represent restricted, but tractable fragments of
the general method of template enumeration. The search for symbolic param-
eters in these methods is not performed using real quantifier elimination, but
instead takes place in more tractable theories. We recall these techniques briefly.

p < k p = k p > k

Fig. 5. Discrete abstraction with
first integrals p − k (k ∈ R)

First Integrals. The polynomial p ∈ R[x] is a
first integral [19, 2.4.1] of the system x′ = f(x)
iff its Lie derivative p′ with respect to the vec-
tor field f is the zero polynomial. First integrals
are also known as conserved quantities because
they have the important property that for any
k ∈ R, p = k defines an invariant of the system. For a single first integral p, if
one were to use the polynomial p − k to build an abstraction, the abstract state
space would not feature any transitions between its states (illustrated in Fig. 5).
Thus, one has the freedom to choose value(s) k for which the resulting discrete
abstraction suitably partitions the state space. For example, if the initial states
lie entirely within p < k and the unsafe ones within p > k, then p < k is an invari-
ant separating those sets. Pegasus can search for all polynomial first integrals
up to a configurable degree bound by solving a system of linear equations whose
solutions provide the coefficients of the bounded degree polynomial template for
the first integral; the solutions are efficiently found using linear algebra [19,49].

Darboux Polynomials. Darboux polynomials were first introduced in 1878 [11]
to study integrability of polynomial ODEs. Polynomial p ∈ R[x] is a Darboux
polynomial for the system x′ = f(x) iff p′ = αp for some cofactor polynomial
α ∈ R[x]. Like first integrals, discrete abstractions produced with Darboux poly-
nomials result in three states with no transitions between them (as illustrated
in Fig. 5, but with k = 0). Unlike first integrals, only p = 0 is guaranteed to be
an invariant of the system. Darboux polynomials have been used for predicate
abstraction of continuous systems by Zaki et al. [65], who successfully applied

148 A. Sogokon et al.

them to verify electrical circuit designs. Automatic generation of Darboux poly-
nomials is an active area of research, with several algorithms proposed within the
verification community [24,42,49]. Owing to the importance of Darboux poly-
nomials in the Prelle-Singer method [41] for computing elementary closed-form
solutions to ODEs, sophisticated algorithms for Darboux polynomial generation
were developed earlier in the computer algebra community, e.g. two algorithms
were reported by Man [31]. Indeed, we have found these algorithms to be the
most practical and implement them in Pegasus.

Barrier Certificates. The method of barrier certificates is a popular technique
for safety verification of continuous and hybrid systems [40]. Barrier certificates
p define an invariant region p ≤ 0 which separates the initial states (wholly
contained within p ≤ 0) from the unsafe states (wholly contained within p > 0)
when the Lie derivative p′ satisfies certain criteria (e.g. p′ ≤ 0). Generating bar-
rier certificates using the method of template enumeration is possible using both
sum-of-squares (SOS) [40] and linear programming (LP) [64] techniques. A num-
ber of generalizations of the barrier certificate approach have been developed,
which differ in the kinds of conditions that ensure the invariance of p ≤ 0, e.g.
exponential-type [25] and general barrier certificates [10]. A unified understand-
ing of these generalizations [53] based on classical comparison systems [45, Ch
II, §3, Ch. IX] leads to a yet more general notion of vector barrier certificates.
Pegasus is able to search for convex [40], exponential-type [25], and vector bar-
rier certificates [53] using both SOS and LP techniques. However, the resulting
barrier certificates often suffer from numerical inaccuracies arising from the use
of semi-definite solvers and interior point methods [46]. Pegasus currently uses
a simple rounding heuristic on the numerical result and explicitly checks invari-
ance for the resulting (exact) barrier certificate candidates using real quantifier
elimination.

5 Strategies for Invariant Generation

The implementation of all the aforementioned invariant generation methods in
a single framework is a significant undertaking in itself. The overall goal behind
Pegasus, however, is to enable these heterogeneous methods to be effectively
deployed and fruitfully combined into strategies for invariant generation that
are tailored to specific classes of verification problems. Different invariant gen-
eration strategies are invoked in Pegasus, depending on the classification of the
input problem it receives from the problem classifier. In this section, and for
the evaluation, we focus on the most challenging and general class of non-linear
systems in which no further structure is known or assumed beyond the fact that
the right-hand sides of the ODEs are polynomials.

The main invariant generation strategy Pegasus uses for general non-linear
systems is based on a differential saturation procedure [36]. Briefly, the proce-
dure loops through a prescribed sequence of invariant generation methods and
successively attempts to strengthen the domain constraint using invariants found

Pegasus: A Framework for Sound Continuous Invariant Generation 149

by those methods until the desired safety condition is proved.7 Notably, this loop
allows Pegasus to exploit the strengths of different invariant generation methods,
even if it is a priori unclear whether one is better than the other. The precise
sequencing of invariant generation methods is also important in this strategy
to avoid redundancy. In particular, Pegasus currently orders the methods by
computational efficiency, e.g. it first searches for first integrals, followed by Dar-
boux polynomials and barrier certificates. This sequencing allows later (slower)
methods to exploit invariants that are quickly generated by earlier methods.

Example 2. The synergy between individual methods exploited by differential
saturation is illustrated in Fig. 6 using an example from our benchmarks.

Fig. 6. Invariant synthesis using the differential saturation loop in Pegasus.

Initially (leftmost plot), the entire plane (in blue) is under consideration and
Pegasus wants to show the safety property that trajectories from the initial states
(in green) never reach the unsafe states (in red). In the second plot, Pegasus
confines its search to the domain x1 > 0 using the generated Darboux polynomial
x1. In the third plot, using x1 > 0, qualitative analysis finds the invariant x2 > 0
which further confines the evolution domain. Finally (rightmost plot), Pegasus
finds a barrier certificate (of polynomial degree 2) that suffices to show the safety
property within the strengthened domain (which, by construction, is invariant).
The final invariant region cannot be directly obtained from a polynomial barrier
certificate, but incorporates invariants discovered earlier by other means.

6 Evaluation

We tested Pegasus and its interaction with the ODE proving tactics of KeY-
maera X on a benchmark suite of 90 non-linear continuous safety verification
problems drawn from the literature [4,10,17,20,22–24,29,48,52,64,65]. The suite
consists of 53 two-dimensional systems, 11 three-dimensional systems, 12 higher-
dimensional (≥4) systems, and 14 product systems that were formed by randomly
combining pairs of two- and three-dimensional systems. The benchmark was run

7 Pegasus analyses problems according to variable dependencies present in their differ-
ential equations [36]. For x′

1 = x1, x
′
2 = x1 + x2, for example, Pegasus first searches

for invariants involving only x1, before searching for those involving both x1 and x2.

150 A. Sogokon et al.

on commodity hardware: 2.4 GHz Intel Core i7 with 16 GB memory. We com-
pare the differential saturation strategy to the performance of each invariant
generation method in isolation, measuring the duration of generating invariants,
duration of checking the generated invariants, and the total proof duration.

BC (T)
BC (G)
BC (C)
DP (T)
DP (G)
DP (C)
FI (T)
FI (G)
FI (C)

QA (T)
QA (G)
QA (C)
DS (T)
DS (G)
DS (C)

2D 3D 4D 7 8D 9 P4D P5D

Non-linear problems (dimension: 2D-9D, followed by 4D and 5D product systems)

0

10

100

Duration (sec)

Fig. 7. Comparison of invariant generation methods. Each column represents one
benchmark problem and the colour encodes duration (lighter is faster). Empty columns
are unsolved. Legend: the combined Differential Saturation (DS) strategy against Qual-
itative Analysis (QA), First Integrals (FI), Darboux Polynomials (DP), and Barrier
Certificates (BC), on total proof duration (T), generation duration (G), and checking
duration (C).

Benchmark results for each of the problems are in Fig. 7. Several experimental
insights can be drawn from these results: (i) different invariant generation meth-
ods generally solve different subsets of the problems, (ii) invariant generation
generally dominates overall proof duration although invariant checking becomes
more expensive as problem dimension increases, (iii) when multiple methods
solve a problem, qualitative analysis and first integrals are often quickest, fol-
lowed by Darboux polynomials and then barrier certificates, (iv) the differential
saturation strategy effectively combines invariant generation methods; it solves
all but one8 problem that can be solved by individual methods. It additionally
solves 8 problems (of which 5 are product systems) that no individual method
solves by itself. Differential saturation is especially effective on product systems
because each part of the product may be only solvable using a specific method.

To further evaluate the effectiveness of combining methods by differential
saturation, Fig. 8 plots the accumulated duration for solving the fastest n prob-
lems. The main insights here are: (i) differential saturation solves the largest
number of problems per accumulated time, which means that, despite sequen-
tial execution, it often succeeds in trying out the most efficient method first and
fails fast when earlier methods fail to apply, (ii) the performance of generating
versus checking first integrals is inconclusive and depends on the specific example

8 For this high-dimensional (9D) problem, differential saturation runs out of time
trying qualitative analysis methods before attempting to find first integrals.

Pegasus: A Framework for Sound Continuous Invariant Generation 151

(see also Fig. 7), (iii) checking barrier certificates and Darboux polynomials is
much faster than generating them, and (iv) qualitative analysis is less expensive
for generation than other methods.

0 20 40 60
0.1

1

10

100

103

Problems

C
um

ul
at

iv
e

ti
m

e
(s

ec
)

Diff. Sat. Barrier Darboux First Integrals Qualitative

(a) Total duration

0 20 40 60

(b) Generation

0 20 40 60

(c) Checking

Fig. 8. Cumulative logarithmic time (in seconds) taken to solve the fastest n problems
(more problems solved and flatter is better)

7 Related Work

Techniques developed for qualitative simulation have been applied to prove tem-
poral properties of continuous systems in the work of Shults and Kuipers [50],
as well as Loeser, Iwasaki and Fikes [30]. Zhao [66] developed a tool, MAPS, to
automatically identify significant features of dynamical systems, such as stability
regions, equilibria, and limit cycles. Since our ultimate goal is sound invariant
generation, we are less interested in a full qualitative analysis of the state space.
In the verification community, discrete abstraction of hybrid systems was studied
by Alur et al. [1]. The case of systems whose continuous motion is governed by
non-linear ODEs was studied in the work of Tiwari and Khanna [57,59]. Tiwari
further studied reachability of linear systems [56], using information from real
eigenvectors and ideas from qualitative abstraction to generate invariants. Zaki et
al. [65] were the first to apply Darboux polynomials to verification of continuous
systems using discrete abstraction. Numerous works employ barrier certificates
for verification [10,25,40,53,64]. Since we implement many of the above tech-
niques as methods for invariant generation in our framework, our work draws
heavily upon ideas developed previously in the verification and hybrid systems
communities. Previously [51], we introduced a construction of exact abstractions
and applied rudimentary methods from qualitative analysis to compute invari-
ants; in certain ways, our present work also builds on this experience, incorpo-
rating some of the techniques as special methods in a more general framework.
The coupling between KeYmaera X and Pegasus that we pursue in our work is
quite distinct from the use of trusted oracles in the work of Wang et al. [61] (for
the HHL prover) and provides a sound framework for reasoning with continuous
invariants that is significantly less exposed to soundness issues in external tools.

152 A. Sogokon et al.

8 Outlook and Challenges

The improvements in continuous invariant generation have a significant impact
on the overall proof automation capabilities of KeYmaera X and serve to increase
overall system usability and user experience. Improved proof automation will
certainly also be useful in future applications of provably correct runtime moni-
toring frameworks, such as ModelPlex [33], as well as frameworks for generating
verified controller executables, such as VeriPhy [6].

Some interesting directions for extending our work include implementation
of reachable set computation algorithms for all classes of problems where this is
possible. For instance, semi-algebraic reachable sets may be computed for diago-
nalizable classes of linear systems with tame eigenvalues [16,26]. The complexity
of invariants obtained using these methods may not always make them practi-
cal, but they would provide a valuable fallback in cases where simpler invariants
cannot be obtained using our currently implemented methods.

A more pressing challenge lies in expanding the collection of safety verifica-
tion problems for continuous systems. While we have done our best to find com-
pelling examples from the literature, a larger corpus of problems would allow for
a more comprehensive empirical evaluation of invariant generation strategies and
could reveal interesting new insights that can suggest more effective strategies.

Correctness of decision procedures for real arithmetic is another important
challenge. KeYmaera X currently uses Mathematica’s implementation of real
quantifier elimination to close first-order real arithmetic goals, primarily due
to the impressive performance afforded by this implementation (compared to
currently existing alternatives). Removing this reliance by efficiently building
fully formal proofs of real arithmetic formulas within dL (e.g. through exhibiting
appropriate witnesses [27,38]) is an important task for the future.

9 Conclusion

Among verification practitioners, the amount of manual effort required for formal
verification of hybrid systems is one of the chief criticisms leveled against the
use of deductive verification tools. Manually crafting continuous invariants often
requires expertise and ingenuity, just like manually selecting support function
templates for reachability tools [13], and presents the major practical hurdle
in the way of wider industrial adoption of this technology. In this paper, we
describe our development of a system designed to help overcome this hurdle
by automating the discovery of continuous invariants. To our knowledge, this
work represents the first large-scale effort at combining continuous invariant
generation methods into a single invariant generation framework and making it
possible to create more powerful invariant generation strategies. The approach
we pursue is unique in its integration with a theorem prover, which provides
formal guarantees that the generated invariants are indeed correct (in the form
of dLproofs, automatically). The results we observe in our evaluation are highly
encouraging and suggest that invariant discovery can be improved considerably,
opening many exciting avenues for applications and extensions.

Pegasus: A Framework for Sound Continuous Invariant Generation 153

Acknowledgements. The authors would like to thank the anonymous reviewers for
their feedback.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions
of hybrid systems. Proc. IEEE 88(7), 971–984 (2000). https://doi.org/10.1109/
5.871304

2. Arrowsmith, D., Place, C.M.: Dynamical Systems: Differential Equations, Maps,
and Chaotic Behaviour, vol. 5. CRC Press, Boca Raton (1992)

3. Beckert, B., et al.: The KeY system 1.0 (deduction component). In: Pfenning, F.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 379–384. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 26

4. Sassi, M.A.B., Girard, A., Sankaranarayanan, S.: Iterative computation of polyhe-
dral invariants sets for polynomial dynamical systems. In: CDC 2014, pp. 6348–
6353. IEEE (2014). https://doi.org/10.1109/CDC.2014.7040384

5. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14052-5 14

6. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified
controller executables from verified cyber-physical system models. In: Foster, J.S.,
Grossman, D. (eds.) PLDI 2018, pp. 617–630. ACM (2018). https://doi.org/10.
1145/3192366.3192406

7. Chen, M., et al.: MARS: a toolchain for modelling, analysis and verification of
hybrid systems. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably
Correct Systems. NMSSE 2017, pp. 39–58. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-48628-4 3

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

9. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. UTM 2015.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

10. Dai, L., Gan, T., Xia, B., Zhan, N.: Barrier certificates revisited. J. Symb. Comput.
80, 62–86 (2017). https://doi.org/10.1016/j.jsc.2016.07.010

11. Darboux, J.G.: Mémoire sur les équations différentielles algébriques du premier
ordre et du premier degré. Bull. Sci. Math. 2(1), 151–200 (1878)

12. Denman, W., Muñoz, C.: Automated real proving in PVS via MetiTarski. In:
Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 194–
199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 14

13. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

14. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 207–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0 14

15. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

https://doi.org/10.1109/5.871304
https://doi.org/10.1109/5.871304
https://doi.org/10.1007/978-3-540-73595-3_26
https://doi.org/10.1109/CDC.2014.7040384
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1016/j.jsc.2016.07.010
https://doi.org/10.1007/978-3-319-06410-9_14
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36

154 A. Sogokon et al.

16. Gan, T., Chen, M., Li, Y., Xia, B., Zhan, N.: Reachability analysis for solvable
dynamical systems. IEEE Trans. Autom. Control 63(7), 2003–2018 (2018). https://
doi.org/10.1109/TAC.2017.2763785

17. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential rad-
ical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 279–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 19

18. Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking pos-
itive invariance of algebraic and semi-algebraic sets. Comput. Lang. Syst. Struct.
47, 19–43 (2017). https://doi.org/10.1016/j.cl.2015.11.003

19. Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. World Sci-
entific, Hackensack (2001). https://doi.org/10.1142/3846

20. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 18

21. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sité de Paris, Faculté des Sciences (1930)

22. Immler, F., et al.: ARCH-COMP18 category report: continuous and hybrid systems
with nonlinear dynamics. In: Frehse, G., Althoff, M., Bogomolov, S., Johnson, T.T.
(eds.) ARCH 2018. EPiC Series in Computing, vol. 54, pp. 53–70. EasyChair (2018)

23. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-
guided Lyapunov analysis for hybrid dynamical systems. In: Fränzle, M., Lygeros,
J. (eds.) HSCC 2014, pp. 133–142. ACM (2014). https://doi.org/10.1145/2562059.
2562139

24. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verifica-
tion of nonlinear hybrid systems based on invariant clusters. In: Frehse, G., Mitra,
S. (eds.) HSCC 2017, pp. 163–172. ACM (2017). https://doi.org/10.1145/3049797.
3049814

25. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-Condition-based
barrier certificate generation for safety verification of hybrid systems. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 17

26. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for
families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001). https://
doi.org/10.1006/jsco.2001.0472

27. Li, W., Passmore, G.O., Paulson, L.C.: Deciding univariate polynomial problems
using untrusted certificates in Isabelle/HOL. J. Autom. Reasoning 62(1), 69–91
(2019). https://doi.org/10.1007/s10817-017-9424-6

28. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2 1

29. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S.
(eds.) EMSOFT 2011, pp. 97–106. ACM (2011). https://doi.org/10.1145/2038642.
2038659

30. Loeser, T., Iwasaki, Y., Fikes, R.: Safety verification proofs for physical systems.
In: Proceedings of the 12th International Workshop on Qualitative Reasoning, pp.
88–95 (1998)

31. Man, Y.: Computing closed form solutions of first order ODEs using the Prelle-
Singer procedure. J. Symb. Comput. 16(5), 423–443 (1993). https://doi.org/10.
1006/jsco.1993.1057

https://doi.org/10.1109/TAC.2017.2763785
https://doi.org/10.1109/TAC.2017.2763785
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1016/j.cl.2015.11.003
https://doi.org/10.1142/3846
https://doi.org/10.1007/978-3-540-70545-1_18
https://doi.org/10.1145/2562059.2562139
https://doi.org/10.1145/2562059.2562139
https://doi.org/10.1145/3049797.3049814
https://doi.org/10.1145/3049797.3049814
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1006/jsco.2001.0472
https://doi.org/10.1006/jsco.2001.0472
https://doi.org/10.1007/s10817-017-9424-6
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1006/jsco.1993.1057
https://doi.org/10.1006/jsco.1993.1057

Pegasus: A Framework for Sound Continuous Invariant Generation 155

32. Mishra, B.: Algorithmic Algebra. Springer, Cham (1993). https://doi.org/10.1007/
978-1-4612-4344-1

33. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1–2), 33–74 (2016). https://
doi.org/10.1007/s10703-016-0241-z

34. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41(2), 143–189 (2008)

35. Platzer, A.: The complete proof theory of hybrid systems. In: LICS 2012, pp. 541–
550. IEEE (2012). https://doi.org/10.1109/LICS.2012.64

36. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. Formal Methods Syst. Des. 35(1), 98–120 (2009). https://doi.org/10.
1007/s10703-009-0079-8

37. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

38. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02959-2 35

39. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power
of differential ghosts. In: Dawar, A., Grädel, E. (eds.) LICS 2018, pp. 819–828.
ACM (2018). https://doi.org/10.1145/3209108.3209147

40. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

41. Prelle, M.J., Singer, M.F.: Elementary first integrals of differential equations.
Trans. Am. Math. Soc. 279(1), 215–229 (1983)

42. Rebiha, R., Moura, A.V., Matringe, N.: Generating invariants for non-linear hybrid
systems. Theor. Comput. Sci. 594, 180–200 (2015). https://doi.org/10.1016/j.tcs.
2015.06.018

43. Renegar, J.: Recent progress on the complexity of the decision problem for the
reals. In: Goodman, J.E., Pollack, R., Steiger, W. (eds.) Discrete and Compu-
tational Geometry: Papers from the DIMACS Special Year, vol. 6, pp. 287–308.
DIMACS/AMS (1990)

44. Rodŕıguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–
605. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 38

45. Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method.
Applied Mathematical Sciences. Springer, Heidelberg (1977). https://doi.org/10.
1007/978-1-4684-9362-7

46. Roux, P., Voronin, Y., Sankaranarayanan, S.: Validating numerical semidefinite
programming solvers for polynomial invariants. Formal Methods Syst. Des. 53(2),
286–312 (2018). https://doi.org/10.1007/s10703-017-0302-y

47. Roy, M.F.: Basic algorithms in real algebraic geometry and their complexity: from
Sturm’s theorem to the existential theory of reals. De Gruyter Expositions Math.
23, 1–67 (1996)

48. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: Johansson, K.H., Yi, W. (eds.) HSCC 2010, pp. 221–230.
ACM (2010). https://doi.org/10.1145/1755952.1755984

https://doi.org/10.1007/978-1-4612-4344-1
https://doi.org/10.1007/978-1-4612-4344-1
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/s10703-009-0079-8
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1016/j.tcs.2015.06.018
https://doi.org/10.1016/j.tcs.2015.06.018
https://doi.org/10.1007/978-3-540-31954-2_38
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1007/978-1-4684-9362-7
https://doi.org/10.1007/s10703-017-0302-y
https://doi.org/10.1145/1755952.1755984

156 A. Sogokon et al.

49. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. Formal Methods Syst. Des. 32(1), 25–55 (2008). https://doi.org/10.1007/
s10703-007-0046-1

50. Shults, B., Kuipers, B.: Proving properties of continuous systems: qualitative sim-
ulation and temporal logic. Artif. Intell. 92(1–2), 91–129 (1997). https://doi.org/
10.1016/S0004-3702(96)00050-1

51. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gener-
ation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49122-5 13

52. Sogokon, A., Ghorbal, K., Johnson, T.T.: Non-linear continuous systems for safety
verification. In: Frehse, G., Althoff, M. (eds.) ARCH 2016. EPiC Series in Com-
puting, vol. 43, pp. 42–51. EasyChair (2016)

53. Sogokon, A., Ghorbal, K., Tan, Y.K., Platzer, A.: Vector barrier certificates and
comparison systems. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 418–437. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7 25

54. Strogatz, S.H.: Nonlinear Dynamics And Chaos. Studies in Nonlinearity. Westview
Press, Boulder (2001)

55. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.
In: Schost, É., Emiris, I.Z. (eds.) ISSAC 2011, pp. 329–336. ACM (2011). https://
doi.org/10.1145/1993886.1993935

56. Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36580-X 37

57. Tiwari, A.: Abstractions for hybrid systems. Formal Methods Syst. Des. 32(1),
57–83 (2008). https://doi.org/10.1007/s10703-007-0044-3

58. Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 658–661. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78929-1 58

59. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin,
C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45873-5 36

60. Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24743-2 40

61. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 25

62. Weber, T.: Integrating a SAT solver with an LCF-style theorem prover. Electron.
Notes Theor. Comput. Sci. 144(2), 67–78 (2006). https://doi.org/10.1016/j.entcs.
2005.12.007

63. Weber, T.: SMT solvers: new oracles for the HOL theorem prover. STTT 13(5),
419–429 (2011). https://doi.org/10.1007/s10009-011-0188-8

64. Yang, Z., Huang, C., Chen, X., Lin, W., Liu, Z.: A linear programming relaxation
based approach for generating barrier certificates of hybrid systems. In: Fitzgerald,
J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
721–738. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 44

https://doi.org/10.1007/s10703-007-0046-1
https://doi.org/10.1007/s10703-007-0046-1
https://doi.org/10.1016/S0004-3702(96)00050-1
https://doi.org/10.1016/S0004-3702(96)00050-1
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-319-95582-7_25
https://doi.org/10.1007/978-3-319-95582-7_25
https://doi.org/10.1145/1993886.1993935
https://doi.org/10.1145/1993886.1993935
https://doi.org/10.1007/3-540-36580-X_37
https://doi.org/10.1007/s10703-007-0044-3
https://doi.org/10.1007/978-3-540-78929-1_58
https://doi.org/10.1007/978-3-540-78929-1_58
https://doi.org/10.1007/3-540-45873-5_36
https://doi.org/10.1007/978-3-540-24743-2_40
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1016/j.entcs.2005.12.007
https://doi.org/10.1016/j.entcs.2005.12.007
https://doi.org/10.1007/s10009-011-0188-8
https://doi.org/10.1007/978-3-319-48989-6_44

Pegasus: A Framework for Sound Continuous Invariant Generation 157

65. Zaki, M.H., Denman, W., Tahar, S., Bois, G.: Integrating abstraction techniques
for formal verification of analog designs. J. Aeros. Comp. Inf. Com. 6(5), 373–392
(2009). https://doi.org/10.2514/1.44289

66. Zhao, F.: Extracting and representing qualitative behaviors of complex systems
in phase space. Artif. Intell. 69(1–2), 51–92 (1994). https://doi.org/10.1016/0004-
3702(94)90078-7

https://doi.org/10.2514/1.44289
https://doi.org/10.1016/0004-3702(94)90078-7
https://doi.org/10.1016/0004-3702(94)90078-7

Concurrency

A Parametric Rely-Guarantee
Reasoning Framework for Concurrent

Reactive Systems

Yongwang Zhao1,2(B), David Sanán3, Fuyuan Zhang4, and Yang Liu3

1 School of Computer Science and Engineering, Beihang University, Beijing, China
2 Beijing Advanced Innovation Center for Big Data and Brain Computing,

Beihang University, Beijing, China
zhaoyw@buaa.edu.cn

3 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

4 MPI-SWS, Kaiserslautern, Germany

Abstract. Reactive systems are composed of a well defined set of event
handlers by which the system responds to environment stimulus. In con-
current environments, event handlers can interact with the execution of
other handlers such as hardware interruptions in preemptive systems,
or other instances of the reactive system in multicore architectures. The
rely-guarantee technique is a suitable approach for the specification and
verification of reactive systems. However, the languages in existing rely-
guarantee implementations are designed only for “pure programs”, sim-
ulating reactive systems makes the program and rely-guarantee condi-
tions unnecessary complicated. In this paper, we decouple the system
reactions and programs using a rely-guarantee interface, and develop
PiCore, a parametric rely-guarantee framework for concurrent reactive
systems. PiCore has a two-level inference system to reason on events and
programs associated to events. The rely-guarantee interface between the
two levels allows the reusability of existing languages and their rely-
guarantee proof systems for programs. In this work we show how to inte-
grate in PiCore two existing rely-guarantee proof systems. This work has
been fully mechanized in Isabelle/HOL. As a case study, we have applied
PiCore to the concurrent buddy memory allocation of a real-world OS,
providing a verified low-level specification and revealing bugs in the C
code.

1 Introduction

Nowadays high-assurance systems are often designed as concurrent reactive sys-
tems (CRSs) [3]. CRSs react to their computing environment by executing a

This work has been supported in part by the National Natural Science Foundation of
China (NSFC) under the Grant No.61872016, and the National Satellite of Excellence in
Trustworthy Software Systems and the Award No. NRF2014NCR-NCR001-30, funded
by NRF Singapore under National Cyber-security R&D (NCR) programme.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 161–178, 2019.
https://doi.org/10.1007/978-3-030-30942-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_11

162 Y. Zhao et al.

sequence of commands under an input event. Some examples of CRSs are oper-
ating systems (OSs), control systems, and communication systems, which imple-
mentation follow an event-driven paradigm. The rely-guarantee technique [16]
represents a fundamental approach to compositional reasoning of concurrent pro-
grams with shared variables, where programs are represented in imperative lan-
guages with extensions for concurrency. Whilst rely-guarantee provides a general
framework and can certainly be applied for CRSs, the languages in existing mech-
anizations of rely-guarantee (e.g. [18,20,23,24,28]) are imperative and designed
only for pure programs, i.e, programs following a flow of procedure calls from an
entry point. Examples of reactive systems mentioned above are far more complex
than pure programs because they involve many different agents and also heavy
interactions with their environment. Without dedicated statements for such sys-
tem behavior, we often use imperative programs to simulate them, making the
formal specification cumbersome, in particular the rely-guarantee conditions. A
more detailed motivation will be presented in detail in Sect. 2.

In this paper, we propose PiCore, a two-level event-based rely-guarantee
framework for CRSs (Sect. 3). PiCore detaches the specification and the logic
of the reactive aspect of systems from event behaviours. Rather than creating
yet another framework for modelling and reasoning on events behaviour, PiCore
allows to reuse existing rely-guarantee frameworks. The top level introduces the
notion of “events” [2,6] into the rely-guarantee method for system reactions.
This level defines the events composing a system, and how and when they are
triggered. It specifies the language, semantics, and mechanisms to reason on
sequences of events and their execution conditions. The second level focuses on
the specification and reasoning of the behaviour of the events composing the
first level. PiCore parametrizes the second level using a rely-guarantee interface,
allowing to easily reuse existing rely-guarantee frameworks. This design allows
PiCore to be independent of the language used to model the behaviour of events.

We have integrated two existing languages and their rely-guarantee proof sys-
tems into the PiCore framework. As a result we create two instances of PiCore:
πIMP and πCSimpl (Sect. 4). πIMP integrates the HOL-Hoare Parallel library in
Isabelle/HOL that uses a general imperative language [23]. πCSimpl integrates
the CSimpl language in [24]. CSimpl is a generic and realistic imperative lan-
guage by extending Simpl [25] and providing a rely-guarantee proof system in
Isabelle/HOL. Simpl is able to represent a large subset of C99 code and has been
applied to the formal verification of seL4 OS kernel [17] at C code level.

We have developed the PiCore framework and its integration with the two
languages in Isabelle/HOL, the sources are available at https://lvpgroup.github.
io/picore/. As a case study, we have applied PiCore to the formal specification
and mechanized proof of the concurrent buddy memory allocation of a real-world
OS, Zephyr RTOS [1] (Sect. 5). The formal specification represented in πIMP is
fine-grained providing a high level of detail. It closely follows the Zephyr C
code, covering all the data structures and imperative statements present in the
implementation. We use the rely-guarantee proof system in πIMP for the formal
verification of functional correctness and invariant preservation in the model,
revealing three bugs in the C code.

https://lvpgroup.github.io/picore/
https://lvpgroup.github.io/picore/

A Parametric Rely-Guarantee Reasoning Framework for CRSs 163

2 Motivation and Approach Overview

Reactive systems respond to continuous stimulus from their computing environ-
ment [12] by changing their state and, in turn, affecting their environment by
sending back signals to it or initiating other operations. We consider concurrent
reactive systems (CRSs), which may involve many different competitive agents
executing concurrently with shared resources due to multicore setting, task pre-
emption or embedded interrupts, e.g. concurrent OS kernels [7,27] and interrupt
driven control systems, where the execution of handlers is not atomic. More-
over, the configuration and context of the underlying hardware of systems are
not usually encoded in programs, which represent only a portion of the whole
system behaviour. For instance, although interrupt handlers (e.g. kernel services
and scheduling) in OS kernels are programmed in the C language, when and
how interrupts are triggered and which handlers are invoked to react with an
interrupt are out of the handler code.

In the setting of imperative languages, CRSs are usually modelled as the par-
allel composition of reactive systems, each of which is simulated by a while(true)
loop program sharing data with its environment and invoking the relevant han-
dlers in the loop body (e.g. [4]). First, The environment non-deterministically
decides which event handler is triggered and what are the arguments of the han-
dler for this triggering. Second, some critical properties, such as noninterference
of OS kernels [21], concern execution traces of reaction sequences rather than
program states only. Without native support in the language semantics, the while
loop programs have to use auxiliary logical/program variables to simulate the
two non-determinisms together and store the event context of each reactive sys-
tem. This will make the program and the rely-guarantee conditions unnecessary
complicated, in particular for realistic CRSs with many event handlers.

Fig. 1. An example of event

The cause of the above problems is
the lack of a rely-guarantee approach for
system reactions and, as a result, the
mixture of system and program behav-
ior together. In this paper, we take the
level of abstraction and reusability of
the rely-guarantee method a step fur-
ther by decoupling the two levels using
a rely-guarantee interface. The result is
a flexible rely-guarantee framework for
CRSs, which is able to integrate existing
rely-guarantee implementations at pro-
gram level while being unchanged. At the system reaction level, we consider a
reactive system as a set of event handlers called event systems responding to
stimulus from the environment. Fig. 1 illustrates an event, which has an event
name, a list of input parameters, a guard condition to determine the conditions
triggering the event, and an imperative program as its body. In addition to the
input parameters, an event has a additional parameter κ which indicates the
execution context, e.g. the thread invoking the service and the external devices

164 Y. Zhao et al.

triggering the interrupt. The execution of an event system concerns the contin-
uous evaluation of guards of the events with their input arguments. From the
set of events for which their associated guard condition holds in the current
state, one event is non-deterministically selected to be triggered, and its body
executed. After the event finishes, the evaluation of guards starts again look-
ing for the next event to be executed. We call the semantics of event systems
reactive semantics, where the event context shows the event currently being exe-
cuted. A CRS is modeled as the parallel composition of event systems that are
concurrently executed.

As shown in the Zephyr case study in Sect. 5, the formal specification of CRSs
with support for reactions and their composition is much simpler than those
represented by pure programs. Furthermore, PiCore supports verifying total
correctness of events, whose execution is usually assumed to be terminating, as
well as the properties of event systems, whose execution is often non-terminating.

3 PiCore: The Rely-guarantee Framework

This section introduces the event language in PiCore as well as its rely-guarantee
proof system, the soundness of proof rules and invariant verification.

3.1 The Event Language

Fig. 2. Abstract syntax of PiCore

The abstract syntax of PiCore and its
semantics are shown in Figs. 2 and 3
respectively. The syntax for events dis-
tinguishes basic events pending to be
triggered from already triggered events
that are under execution. A basic
event is defined as Event (l, g, P),
where l is the event name, g the guard
condition, and P the body of the
event. When Event (l, g, P) is trig-
gered, its body begins to be executed

(BasicEvt rule in Fig. 3) and it becomes a triggered event �P �. The execution
of �P � just simulates the program P (see TrgdEvt rule in Fig. 3). ⊥ is the
notation to represent the termination of programs. Instead of defining a lan-
guage for programs, PiCore reuses existing languages and their rely-guarantee
proof systems, which will be discussed in Sect. 4. Events are parametrized in
the meta-logic as “λ(plist, κ). Event (l, g, P)”, where plist is the list of input
parameters, and κ is the event system identifier that the event belongs to. These
parameters are not part of the syntax of events to make the guard g and the
event body P , as well as the rely and guarantee relations, more flexible, allowing
to define different instances of the relations for different values of plist and κ.

An event system has two forms that we call event sequence and event set.
Event sequences model a sequential execution of events, and event sets model

A Parametric Rely-Guarantee Reasoning Framework for CRSs 165

Fig. 3. Operational semantics of PiCore

the continuous execution of events from the evaluation of the guards of the
events in the set. When the system is not executing any event, one event whose
guard condition holds in the current state is non-deterministically chosen to
be triggered (EvtSet rule) and its body P executed (EvtSeq1 rule). After P
finishes, the evaluation of the guards starts again looking for the next event to be
executed (EvtSeq2 rule). A CRS is modeled by a parallel composition of event
systems with shared states. It is a function from K to event systems, where K
indicates the identifiers of event systems. This design is more general and could
be applied to track executing events. For instance, we use K to represent the
core identifier in multicore systems.

The semantics of PiCore is defined via transition rules between configura-
tions. We define a configuration C in PiCore as a triple (�, s, x) where � is a
specification, s is a state, and x : K → E is an event context. The event context
indicates which event is currently being executed in an event system κ. Tran-
sition rules in events, event systems, and parallel event systems have the form
Σ � (�1, s1, x1)

δ−→� (�2, s2, x2), where δ = t@κ is a label indicating the type
of transition, the subscript “�” (e, es or pes) indicates the transition objects,
and Σ is used for some static configuration for programs (e.g. an environment
for procedure declarations). Here t indicates a program action c or an occur-
rence of an event E . @κ means that the action occurs in event system κ. The
program transition is denoted as −→p in the TrgdEvt rule. Environment tran-
sition rules have the form Σ � (�, s, x) env−→� (�, s′, x′). Intuitively, a transition
made by the environment may change the state but not the event context nor
the specification. The parallel composition of event systems is fine-grained since
small steps in events are interleaved in the semantics of PiCore. This design
relaxes the atomicity of events in other approaches (e.g., Event-B [2]).

A computation of PiCore is a sequence of transitions. We define the set of
computations of all parallel event systems with static information Σ as Ψ(Σ),
which is a set of lists of configurations inductively defined as follows. The single-
ton list is always a computation (1). Two consecutive configurations are part of
a computation if they are the initial and final configurations of an environment

166 Y. Zhao et al.

(2) or action transition (3). The operator # in e#l represents the insertion of
element e in list l.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)[(PS, s, x)] ∈ Ψ(Σ)

(2)(PS, s1, x1)#cs ∈ Ψ(Σ) =⇒ (PS, s2, x2)#(PS, s1, x1)#cs ∈ Ψ(Σ)

(3)Σ � (PS2, s2, x2)
δ−→pes (PS1, s1, x1) ∧ (PS1, s1, x1)#cs ∈ Ψ(Σ)

=⇒ (PS2, s2, x2)#(PS1, s1, x1)#cs ∈ Ψ(Σ)

Computations for events and event systems are defined in a similar way. We
use Ψ(Σ,PS) to denote the set of computations of a parallel event system PS.
The function Ψ(Σ,PS, s, x) denotes the computations of PS starting up from
an initial state s and event context x.

3.2 Rely-Guarantee Proof System

We consider the verification of two different kinds of properties in the rely-
guarantee proof system for reactive systems: pre and post conditions of events
and invariants in the fine-grained execution of events. We use the former for
the verification of functional correctness of the event, where the pre and post
conditions have to be respectively satisfied only before and after the execution
of the event. The latter is used on the verification of safety properties concerning
the small steps inside events and that must be preserved by any internal step of
the event. For instance, in the case of Zephyr RTOS, a safety property is that
memory blocks do not overlap each other even during internal steps of the alloc
and free services. Other critical properties can also be defined considering the
execution trace of events, e.g. noninterference [19,21,22].

A rely-guarantee specification in PiCore is a quadruple 〈pre,R,G, pst〉, where
pre is the precondition, R is the rely condition, G is the guarantee condition,
and pst is the post condition. The assumption and commitment functions are
denoted by A and C respectively. For each computation 	 ∈ Ψ(Σ, E), we use 	i

to denote the configuration at index i. ��i
, s�i

, and x�i
represent the projection

of each component in the tuple 	i = (�, s, x).

A(Σ, pre, R) ≡ {� | s�0 ∈pre ∧ (∀i < len(�) − 1. (Σ � �i
env−→ �i+1) −→ (s�i , s�i+1)∈R)}

C(Σ, G, pst) ≡ {� | (∀i < len(�) − 1. (Σ � �i
δ−→e �i+1) −→ (s�i , s�i+1) ∈ G)

∧ (�last(�) = �⊥
 −→ s�n ∈ pst)}

We define validity of rely-guarantee specification for events as

Σ |= E sat 〈pre, R, G, pst〉 ≡ ∀s, x. Ψ(Σ, E , s, x) ∩ A(Σ, pre, R) ⊆ C(Σ, G, pst)

Intuitively, validity represents that the set of computations cpts starting at
the configuration (E , s, x), with s ∈ pre and environment transitions in a com-
putation cpt ∈ cpts belonging to the rely relation R, is a subset of the set of
computations where action transitions belong to the guarantee relation G and

A Parametric Rely-Guarantee Reasoning Framework for CRSs 167

Fig. 4. Rely-guarantee proof rules for PiCore

if an event terminates, then the final states belongs to pst. Validity for event
systems and parallel event systems are defined in a similar way.

Next, we present the rely-guarantee proof rules in PiCore and their sound-
ness w.r.t validity. The proof rules are shown in Fig. 4, which give us a relational
proof method for concurrent systems. We first define stable(f, g) ≡ ∀x, y. x ∈
f ∧ (x, y) ∈ g −→ y ∈ f . Thus, stable(pre, rely) means that the precondi-
tion is stable when the rely condition holds. Rules may assume stability of the
precondition with regards to the rely relation stable(pre,R) to ensure that the
precondition holds after environment transitions.

The TrgdEvt inference rule says that a triggered event �P � satisfies the rely-
guarantee specification if the program P satisfies the specification. This rule is
directly derived from the semantics for triggered events in Fig. 3, where triggered
events modifies the state according to how the program modifies the state. A
basic event satisfies its rely-guarantee specification (inference rule BasicEvnt)
if its body satisfies the rely-guarantee strengthening the precondition with the
guard of the event. Since the occurrence of an event does not change the state, it
is necessary that the guarantee relation includes the identity relation to accept
stuttering transitions.

Regarding the proof rules for event systems, sequential composition of events
is modeled by EvtSeq rule, which is similar to that of the sequential command
in imperative languages. In order to prove that an event set satisfies its rely-
guarantee specification, we have to prove eight premises (EvtSet rule in Fig. 4).
It is necessary that each event together with its specification is derivable in
the system (Premise 1). Since the event set behaves as itself after an event
finishes, each event postcondition has to imply each event precondition (Premise

168 Y. Zhao et al.

2), and the precondition for the event set has to imply the preconditions of all
events (Premise 3). An environment transition for the event set corresponds to
a transition from the environment of any event i in the event set (Premise 4).
The guarantee condition Gsi of each event must be in the guarantee condition
of the event set, since an action transition of the event set is performed by one
of its events (Premise 5). The postcondition of each event must be in the overall
postcondition (Premise 6). The last two refer to stability of the precondition and
identity of the guarantee relation.

The parallel rule in Fig. 4 establishes compositionality of the proof system,
where verification of the parallel specification can be reduced to the verifi-
cation of individual event systems and then to the verification of individual
events. It is necessary that each event system PS(κ) satisfies its specification
〈presκ, Rsκ, Gsκ, pstsκ〉 (Premise 1). The precondition for the parallel compo-
sition implies all the event system’s preconditions (Premise 2). An environment
transition Rsκ for the event system κ corresponds to a transition from the overall
environment R (Premise 3). Since an action transition of the concurrent system
is performed by one of its event system, the guarantee condition Gsκ of each
event system must be a subset of the overall guarantee condition G (Premise
4). The overall postcondition must be a logical consequence of all postcondi-
tions of event systems (Premise 5). An action transition of an event system κ
should be defined in the rely condition of another event system κ′, where κ = κ′

(Premise 6).
Finally, the soundness theorem for a specification � relates rely-guarantee

specifications proven on the proof system with its validity.

Theorem 1 (Soundness). Σ � � sat 〈pre,R,G, pst〉 =⇒ Σ |= � sat 〈pre,R,
G, pst〉

3.3 Invariant Verification

In many cases, we would like to show that CRSs preserve certain data invariants.
Since CRSs may not be closed systems, i.e. their environment may change the
system state that is represented by rely conditions of CRSs, the reachable states
of CRSs are dependent on both the initial states and the environment. We define
as follows that a CRS PS with static information Σ, starting up from a set of
initial states init under an environment R, preserves an invariant inv when its
reachable states satisfy the predicate:

∀s0 x0 �. � ∈ Ψ(Σ, PS, s0, x0) ∩ A(Σ, init, R) −→ (∀i < len(�). inv(s�i))

In this definition, 	 denotes an arbitrary computation of PS from a set of
initial states init and under an environment R. It requires that all states in 	
satisfy the invariant inv. {s | P (s)} denotes the set of states s satisfying P .

To show that inv is preserved by a system PS, it suffices to show the invari-
ant verification theorem as follows. This theorem indicates that (1) the system
satisfies its rely-guarantee specification 〈init, R,G, post〉, (2) inv initially holds

A Parametric Rely-Guarantee Reasoning Framework for CRSs 169

in the set of initial states, and (3) each action transition as well as each envi-
ronment transition preserve inv. Later, by the proof system of PiCore, invariant
verification is decomposed to the verification of individual events.

Theorem 2 (Invariant Verification). For formal specification PS and Σ, a
state set init, a rely condition R, and inv, if

– Σ � PS sat 〈init, R,G, post〉.
– init ⊆ {s | inv(s)}.
– stable({s | inv(s)}, R) and stable({s | inv(s)}, G) are satisfied.

then inv is preserved by PS w.r.t. init and R.

4 Integrating Concrete Languages

We present the rely-guarantee interface of PiCore framework in this section as
well as the integration of the IMP and CSimpl languages.

4.1 Rely-Guarantee Interface of PiCore Framework

To implement a flexible integration of languages for programs on event bodies,
PiCore provides a rely-guarantee interface that program languages must respect.
The interface is an abstraction for common rely-guarantee components required
by PiCore (Fig. 5). These components are represented as a set of parameters
and assumptions to guarantee the correctness of the proof system, since the
language, semantics, proof rules and soundness proof of PiCore in Sect. 3 are
developed using this interface.

Following this interface, third-party languages and their rely-guarantee proof
systems are embedded into PiCore as interpretations using an adapter that
implements the interface. Since these languages may have existed for years, they
are not necessary completely consistent with the PiCore interface. Hence, for
each language that we want to integrate in PiCore it is necessary to provide
a rely-guarantee adapter to bridge the differences of rely-guarantee components
between PiCore and the languages. The adapter implements the interface by
delegating functionality of the event language to the integrated language. This
architecture makes it possible to integrate existing languages without modifying
their specification, semantics, and rely-guarantee inference system.

The interface requires specifications and assumptions for four differentiated
elements: language definition (syntax and semantics), rely-guarantee definitions
(computation and rely-guarantee validity), rely-guarantee proof rules, and their
soundness.

As a parametric framework, PiCore does not define the syntax for languages
of programs. It only requires a notation to represent the termination of programs,
which is denoted as ⊥ in PiCore (Parameter 1 in Table 1). PiCore also needs
the transition relations representing the event behaviour (event action) and the
environment (Parameters 2 and 3). To reason about event behaviors, PiCore

170 Y. Zhao et al.

Fig. 5. PiCore framework and its integration with imperative languages

assumes that (1) program ⊥ cannot take a step to another state (Assumption 1
in Table 2), (2) if a program P takes an action transition, the program is changed
in the next configuration (Assumption 2), and (3) environment transitions do
not change the program itself (Assumption 3).

Since the body of events in PiCore is specified using external languages, com-
putations and the reasoning of events are dependent on those languages. PiCore
requires the specification for computation of programs (Parameters 4 and 5) and
assumes that (1) a computation of any program is not empty (Assumption 4),
(2) if 	 is a computation of a language and the program of its first configuration
is P , then 	 is a computation for the program P (Assumption 5), and (3) there
are three constructions for computation of programs (Assumption 6), which is
similar to the definition of events we have presented in Sect. 3.

Finally, the interface requires the components related to the validity of rely-
guarantee specification and the proof rules (Parameters 6–9). The definitions of
the assume/commit functions and validity are similar to those in PiCore (see
Sect. 3), and are relaxed to be not necessarily equivalent. PiCore requires that
the rely-guarantee proof rules in languages are sound (Assumption 10). Other
rely-guarantee components, such as rely and guarantee condition, are defined in
the above parameters at the same time.

Table 1. Parameters of PiCore

No. Name Notation No. Name Notation

(1) Terminating
statement

⊥ (2) Program
transition

Σ � (P, s)−→p(Q, t)

(3) Environment
transition

Σ � (P, s)
env−→p (Q, t) (4) Computations Ψ(Σ)

(5) Computations
of a program

Ψ(Σ, P) (6) Assume A(Σ, pre, R)

(7) Commit C(Σ, G, pst) (8) Validity Σ |= P sat 〈pre, R, G, pst〉
(9) Proof rule Σ � P sat 〈pre, R, G, pst〉

A Parametric Rely-Guarantee Reasoning Framework for CRSs 171

Table 2. Assumptions of parameters

(1) ¬(Σ � (⊥, s)−→p(P, t)) (2) ¬(Σ � (P, s)−→p(P, t))

(3) Σ � (P, s)
env−→p (Q, t) =⇒ P = Q (4) [] /∈ Ψ(Σ)

(5) �0 = (P, s) ∧ � ∈ Ψ(Σ) =⇒ � ∈ Ψ(Σ, P)

(6)

(∃P s. � = [(P, s)]) ∨ (∃P t xs s. � = (P, s)#(P, t)#xs ∧ (P, t)#xs ∈ Ψ(Σ))∨
(∃P s Q t xs. � = (P, s)#(Q, t)#xs ∧ Σ � (P, s)−→p(Q, t) ∧ (Q, t)#xs ∈ Ψ(Σ)))

=⇒ � ∈ Ψ(Σ)

(7) Σ |= P sat 〈pre, R, G, pst〉 =⇒ ∀s. Ψ(Σ, P, s) ∩ A(Σ, pre, R) ⊆ C(Σ, G, pst)

(8)
(∀i < len(�) − 1. (Σ � �i

env−→p �i+1) −→ (s�i , s�i+1) ∈ R) ∧ s�0 ∈ pre

=⇒ � ∈ A(Σ, pre, R)

(9)
� ∈ C(Σ, G, pst) =⇒ (∀i < len(�) − 1. (Σ � �i−→p�i+1) −→ (s�i , s�i+1) ∈ G)

∧ (�last(�) = �⊥
 −→ s�n ∈ pst)

(10) Σ � P sat 〈pre, R, G, pst〉 =⇒ Σ |= P sat 〈pre, R, G, pst〉

4.2 Integrating the IMP and CSimpl languages

To integrate a language and its rely-guarantee framework into PiCore, we first
create an adapter for the language providing the PiCore interface. For each
parameter in the interface, there is a corresponding definition (or function) in
the adapter instantiating the parameter. Moreover, the adapter provides the
necessary set of lemmas and theorems to show that the instances of the interface
specifications satisfy the interface assumptions.

In the mechanized implementation of PiCore in Isabelle/HOL, we use locales
to create the framework, where parameters and assumptions of PiCore are rep-
resented as parameters and assumptions of locales. Locales are the Isabelle’s
approach for dealing with parametric theories. Using locale interpretations, they
may be instantiated by assigning concrete data to parameters, and conclusions
of locales will be propagated to the current theory or the current proof con-
text. Using the notion of locales, we create PiCore instances by interpreting the
PiCore locale using adapters for IMP and CSimpl .

Since the definitions of rely-guarantee components in IMP [23] are consistent
with the PiCore interface, except that there is no static information Σ in IMP ,
the adapter for IMP is straightforward from its rely-guarantee specification, we
omit the details here and the interested reader can refer to the Isabelle/HOL
sources.

More interesting is CSimpl that supports most of the features of real world
programming languages including exceptions, and is substantially more complex
than IMP . Here, we show the adapter for CSimpl . The language and its rely-
guarantee proof system are presented in detail in [24]. The abstract syntax of
CSimpl is defined as in Fig. 6 in terms of states, of type ’s; a set of fault types,
of type ’f; a set of procedure names of type ’p, and a set of simulation events
’e (simulation events are not addressed in this work). Type (’s,’p,’f,’e) config
defines the configuration used in its transition semantics and (’s,’p,’f,’e) body
denoted as Γ defines the procedure declarations as mapping from procedure

172 Y. Zhao et al.

Fig. 6. Syntax and state definition of the CSimpl Language [24]

names to CSimpl programs. (’s,’p,’f,’e) confs defines the type of computations.
To support reasoning about procedure invocations, CSimpl uses the notation
Θ to maintain the rely-guarantee specification for procedures. The validity in
CSimpl requires that each procedure satisfies its specification.

In the adapter, we first use the pair (Γ,Θ) to instantiate the environment
Σ in PiCore. We instantiate the termination statement as the Skip command
in CSimpl . The program transition in CSimpl is Γ �c (P, s) −→ (Q, t), and
it is adapted as (Γ,Θ) �cI (P, s) −→ (Q, t) ≡ Γ �c (P, s) −→ (Q, t). CSimpl
semantics for programs can transit from a Normal state to a different type.
However, it does not allow transitions from a non Normal state to any other
state. Therefore, the environment transition in CSimpl is defined as follows.

{
Γ �c (P, Normal s) −→env (P, t)

(∀t′. t = Normal t′) =⇒ Γ �c (P, t) −→env (P, t)

To adapt the restricted environment transition, we first define the environ-
ment transition in the adapter as (Γ,Θ) �cI (P, s) −→env (P, t), which allows any
state transition and is compatible with that in the interface. Then, we restrict
the rely condition in the definition of proof rules in the adapter to bridge this
difference, which will be discussed later. Based on the transition functions, the
computation function Ψ of the adapter is defined in the same form as in CSimpl .

The rely-guarantee specification in CSimpl is in the form [p,R,G, (q, a)],
where the postcondition (q, a) is a pair of state sets. The set q constrains the
final state if the program terminates as Skip representing a normal state, whilst a
constrains abrupt terminations in an exception with the command Throw. The
assume and commit functions in CSimpl are like PiCore, but considering the
fault states and abrupt termination. The validity function of CSimpl is defined in
the same form as in PiCore. For procedure invocations, CSimpl defines another
validity function using the general one, which also requires that each procedure
satisfies its rely-guarantee specification.

We define the assume, commit and validity functions in the adapter as the
same form as in PiCore. In CSimpl preconditions are over normal states. For type
consistency PiCore does not impose that restriction, but rather it is enforced

A Parametric Rely-Guarantee Reasoning Framework for CRSs 173

by the adapter to bridge the difference, which will be discussed later. PiCore
does restrict the final statement to Skip thus exceptions have to be handled at
program level. This restriction is motivated by the second assumption in the
rule EvtSet for PiCore proof system in Fig. 4, since postconditions of events
must imply their preconditions, and preconditions in CSimpl are sets of normal
states, a final configuration of an event cannot throw an exception.

Finally, based on the definition of the proof rules Γ ,Θ �/F P sat [q, R, G,

q,a] in CSimpl , we define proof rules in the adapter as follows. (1) The validity
in CSimpl only concerns preconditions of Normal states, so we restrict the pre-
condition p to Normal. (2) Programs of an event body cannot throw exceptions
to the event level, so final states when reaching the final statement Skip are
Normal. Thus, we restrict the postcondition q to Normal. (3) Events assume the
normal execution of their program body, and furthermore the program cannot
fall into a Fault state. So we assume the Fault set F to be empty. In addition,
the program P should satisfy its rely-guarantee specification in CSimpl . (4) The
environment transition in CSimpl does not allow transitions from a non Normal
state to a different state, we represent it in the rely condition R. (5) Finally, the
rely-guarantee specification for each procedure in Θ has to be satisfied.

(Γ ,Θ) �I P satp [p, R, G, q] ≡

(1)
︷ ︸︸ ︷

(p ⊆ Normal ‘ UNIV) ∧

(2)
︷ ︸︸ ︷

(q ⊆ Normal ‘ UNIV) ∧
(3)

︷ ︸︸ ︷

(Γ,Θ �
/{} P sat [{s | Normal s ∈ p}, R, G, {s | Normal s ∈ q}, UNIV]) ∧

(4)
︷ ︸︸ ︷

(∀ (s,t)∈R. s /∈ Normal ‘ UNIV −→ s = t) ∧

(5)
︷ ︸︸ ︷

(∀ (c,p,R,G,q,a)∈ Θ. Γ ,{} �
/{} (Call c) sat [p, R, G, q,a])

To interpret the PiCore framework using the adapter, we have to show that
the assumptions in Table 2 are preserved on the adapted definitions. The preser-
vation of assumptions 1–9 are straightforward. To show assumption 10, we prove
that

(Γ ,Θ) �I P satp [p, R, G, q] =⇒ (Γ ,Θ) |=I P satp [p, R, G, q]

5 Concurrent Memory Management of Zephyr RTOS

In this section, we use πIMP , the instantiation of PiCore with IMP , to formally
specify and verify the concurrent memory management of Zephyr RTOS (for
more detail refer to [29]). During the formal verification, we found 3 bugs in
the C code of Zephyr: an incorrect block split, an incorrect return, and non-
termination of a loop in the k mem pool alloc service. The first two bugs are
critical and have been repaired in the latest release of Zephyr.

The buddy memory allocation can split large blocks into smaller ones to fit
as best as possible the requested size. This allows blocks of different sizes to be
allocated and released efficiently while limiting memory fragmentation concerns.
The memory is organized by levels, each “level n” block is a quad-block that
can be split into four smaller “level (n+1)” blocks of equal size. This process is
repeated until blocks reach a minimum level for which splitting is not possible. In
our formal specification, we define the structure of a memory pool as illustrated
in Fig. 7. The top of the figure shows the real memory of the first block at level 0.

174 Y. Zhao et al.

Fig. 7. Structure of memory pools

Thread preemption and fine-grained locking make kernel execution of mem-
ory services concurrent. Zephyr provides two kernel services k mem pool alloc
and k mem pool free, for memory allocation and release respectively. When an
application requests a memory block, Zephyr first computes a value free l that
is the lowest level containing free memory blocks. Due to concurrency, when a
service tries to allocate a free block blk from level free l, blocks at that level
may be allocated or merged into a bigger block by other concurrent threads.
In such a case the service will back out to retry. Allocation supports a timeout
parameter to allow threads waiting for that pool for a period of time when the
call does not succeed. If the allocation fails and the timeout is not K NO WAIT,
the thread is suspended and the context is switched to another thread.

We define a rich set of invariants on the kernel state clarifying the constraints
and consistency of quad trees, free block lists, memory pool configuration, and
waiting threads. From the well-shaped properties of quad trees, we derive a crit-
ical property to prevent memory leaks: memory blocks cover the whole memory
address of the pool, but do not overlap each other. Memory blocks of a memory
pool mp are a partition of the pool where for any memory address addr in the
address space of a memory pool, i.e. addr < n max ∗ max sz, there is one and
only one memory block whose address space contains addr. The predicate is
defined as follows.
addr-in-block mp addr i j ≡
i < length (levels mp) ∧ j < length (bits (levels mp ! i))
∧ (is memblock(bits (levels mp ! i) ! j))
∧ addr ∈ {x | j ∗ (max-sz mp div (4 ˆ i)) � x < Suc j ∗ (max-sz mp div (4 ˆ i))}
mem-part s ≡ ∀ p∈mem-pools s. let mp = mem-pool-info s p in

(∀ addr < n-max mp ∗ max-sz mp. (∃ !(i ,j). addr-in-block mp addr i j))

A Parametric Rely-Guarantee Reasoning Framework for CRSs 175

From the invariants of the well-shaped bitmap, we derive the general property
for the memory partition.

Theorem 3 (Memory Partition). For any kernel state s, If the memory pools
in s are consistent in their configuration, and their bitmaps are well-shaped, the
memory pools satisfy the partition property in s:

inv mempool info s ∧ inv bitmap s ∧ inv bitmap0 s ∧ inv bitmapn s =⇒ mem part s

In the formal specification, we consider a scheduler S and a set of threads
t1, ..., tn. Each user thread ti invokes allocation and release services, thus the
event system for ti is

esysti ≡(
⋃

blk. {mem pool free[blk]@ti}) ∪
(
⋃

(p, sz, tmout). {mem pool alloc[p, sz, tmout]@ti})
which is a set of alloc and free events, where the input parameters for these
events correspond with the arguments of the service implementation in the C
code. Events are parametrized by a thread identifier ti used to control access to
the execution context of the thread invoking it. Together with the threads we
model the event service for the scheduler esyssched consisting of a unique event
sched whose argument is a thread t to be scheduled when it is in the READY
state. The formal specification of the memory management is thus defined as:
Sys-Spec ≡ λ k. case k of (T ti) ⇒ esysti | S ⇒ esyssched. This is much simpler
than the specification obtained from a non-event oriented language.

Using the compositional reasoning of πIMP , correctness of Zephyr memory
management can be specified and verified with the rely-guarantee specification
of each event. The functional correctness of a kernel service is specified by its
pre/post conditions. The preservation of invariants, memory configuration, and
separation of local variables is specified in the guarantee condition of each service.
Although IMP does not have proof rules for loop termination, we use a logical
variable α to parametrize the loop invariants and prove the termination of loop
statements in Zephyr by finding a convergent relation to show that the number
of iterations is finite.

The guarantee condition for both memory services is defined as:

Mem-pool-free-guar t ≡
(1)
︷︸︸︷

Id ∪ (

(2)
︷ ︸︸ ︷

gvars conf stable ∩

{(s,r). (
(3.1)

︷ ︸︸ ︷

cur s �= Some t −→ gvars-nochange s r ∧ lvars-nochange t s r)

∧ (

(3.2)
︷ ︸︸ ︷

cur s = Some t −→ inv s −→ inv r) ∧ (

(4)
︷ ︸︸ ︷

∀ t ′. t ′ �= t −→ lvars-nochange t ′ s r) })

This relation states that a step from alloc or free may not change the state
(1), e.g., selecting a branch on a conditional statement. If it changes the state
then: (2) static configuration of memory pools in the model does not change;
(3.1) if the scheduled thread is not the thread invoking the event then its local
variables do not change; (3.2) if it is, then the relation preserves the memory
invariant; (4) a thread does not change the local variables of other threads.

176 Y. Zhao et al.

Using PiCore and IMP proof rules we verify that the invariant is preserved
by all the events. Additionally, we prove that when starting in a valid memory
configuration given by the invariant, and if the service does not return an error
code, then it returns a valid memory block with size bigger or equal to the
requested capacity.

6 Evaluation and Conclusion

Evaluation. We use Isabelle/HOL as the specification and verification system.
All derivations of our proofs have passed through the Isabelle proof kernel. We
use ≈9,200 lines of specification and proof (LOSP) to develop the PiCore frame-
work. The IMP language and its rely-guarantee proof system consist of ≈2,400
LOSP, and CSimpl ≈15,000 LOSP. The two parts of specification and proof
are completely reused in πIMP and πCSimpl respectively. The adapter of IMP
is ≈650 LOSP including new proof rules and their soundness as well as a con-
crete syntax. The adapter of CSimpl is ≈400 LOSP. Finally, we develop ≈17,600
LOSP for the Zephyr case study, 40 times more than the lines of the C code due
to the in-kernel concurrency, where invariant proofs represent the largest part.

Related Works. The rely-guarantee approach has been mechanized in
Isabelle/HOL (e.g. [13,14,23,24,26]) and Coq (e.g. [18,20]). In [13,14], an
abstract algebra of atomic steps is developed, and rely/guarantee concurrency
is an interpretation of the algebra. To allow a meaningful comparison of rely-
guarantee semantic models, two abstract models for rely-guarantee are developed
and mechanized in [26]. None of both work consider any concrete imperative
languages for rely-guarantee. The works [20,23] mechanize the rely-guarantee
approach for simple imperative languages. Later, a rely-guarantee proof system
is developed in Isabelle/HOL for CSimpl [24], a generic and realistic concurrent
imperative language by extending the sequential language Simpl [25]. These
mechanizations focus on imperative languages for pure programs, of which two
of them [23,24] have been integrated in PiCore.

Refinement of reactive systems [5] and the subsequent Event-B approach
[2] propose a refinement-based formal method for system-level modeling and
analysis. In [15], an Event-B model is created to mimic rely-guarantee style rea-
soning for concurrent programs, but not to provide a rely-guarantee framework
for Event-B. The rely-guarantee reasoning for event-based applications has been
studied in [8–11]. The definition of events is similar to PiCore. They extend a sim-
ple, sequential, imperative language by primitives for announcing and consuming
events, announce(e) and consume(e(x)) where e is an event. Therefore, events
are triggered by imperative programs in another event. This is very different
from the reactive semantics in PiCore where the system is non-deterministically
executed simulating a real reactive system. Moreover, the language to spec-
ify events in these works is a simple imperative language, whilst PiCore has
an open interface for the integration and reusability of different languages and
frameworks.

A Parametric Rely-Guarantee Reasoning Framework for CRSs 177

Conclusion and Future Work. In this paper, we propose an event-based rely-
guarantee framework for concurrent reactive systems. This approach is open to
the specification of event behaviours. It provides an interface to integrate systems
for specification and reasoning at that level that eases formal methods reusability.
We have mechanized the integration of the IMP and CSimpl languages and their
proof systems into PiCore in the Isabelle/HOL theorem prover. We show the
simplicity of events to represent concurrent reactive systems and the usefulness of
PiCore for realistic systems in the verification of the concurrent buddy memory
allocation of Zephyr RTOS. As future work, we plan to extend PiCore to support
more event structures and step-wise refinement.

References

1. The Zephyr Project. https://www.zephyrproject.org/. Accessed December 2018
2. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-

crete models: application to event-B. Fundamenta Informaticae 77(1–2), 1–28
(2007)

3. Aceto, L., Ingólfsdóttir, A., Larsen, K., Srba, J.: Reactive Systems - Modeling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

4. Andronick, J., Lewis, C., Morgan, C.: Controlled Owicki-Gries concurrency: reason-
ing about the preemptible eChronos embedded operating system. In: Proceedings
Workshop on Models for Formal Analysis of Real Systems MARS, pp. 10–24 (2015)

5. Back, R.J., Sere, K.: Superposition Refinement of Reactive Systems. Formal
Aspects Comput. 8(3), 324–346 (1996)

6. Back, R.J., Sere, K.: Stepwise refinement of action systems. Struct. Program. 12,
17–30 (1991)

7. Chen, H., Wu, X., Shao, Z., Lockerman, J., Gu, R.: Toward compositional veri-
fication of interruptible OS kernels and device drivers. In: 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
431–447. ACM (2016)

8. Dingel, J., Garlan, D., Jha, S., Notkin, D.: Towards a formal treatment of implicit
invocation using rely/guarantee reasoning. Formal Aspects Comput. 10(3), 193–
213 (1998)

9. Fenkam, P., Gall, H., Jazayeri, M.: Composing specifications of event based appli-
cations. In: Pezzè, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 67–86. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36578-8 6

10. Fenkam, P., Gall, H., Jazayeri, M.: Constructing deadlock free event-based appli-
cations: a rely/guarantee approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)
FME 2003. LNCS, vol. 2805, pp. 636–657. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45236-2 35

11. Garlan, D., Jha, S., Notkin, D., Dingel, J.: Reasoning about implicit invocation. In:
Proceedings of the 6th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), pp. 209–221. ACM, New York (1998)

12. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems. NATO ASI Series (Series F: Computer
and Systems Sciences), vol. 13, pp. 477–498. Springer, Heidelberg (1985). https://
doi.org/10.1007/978-3-642-82453-1 17

13. Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic foundation. For-
mal Aspects Comput. 28(6), 1057–1078 (2016)

https://www.zephyrproject.org/
https://doi.org/10.1007/3-540-36578-8_6
https://doi.org/10.1007/978-3-540-45236-2_35
https://doi.org/10.1007/978-3-540-45236-2_35
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-82453-1_17

178 Y. Zhao et al.

14. Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An algebra of
synchronous atomic steps. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 352–369. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 22

15. Hoang, T.S., Abrial, J.-R.: Event-B decomposition for parallel programs. In: Frap-
pier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS,
vol. 5977, pp. 319–333. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11811-1 24

16. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

17. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, Big Sky,
Montana, USA, pp. 207–220. ACM Press (2009)

18. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying concur-
rent program transformations. In: 39th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), pp. 455–468. ACM Press
(2012)

19. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for compo-
sitional noninterference. In: 24th Computer Security Foundations Symposium
(CSF), pp. 218–232. IEEE Press (2011)

20. Moreira, N., Pereira, D., de Sousa, S.M.: On the mechanisation of rely-guarantee
in Coq. Universidade do Porto, Technical report (2013)

21. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for
operating system kernels. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS,
vol. 7679, pp. 126–142. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35308-6 12

22. Murray, T., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification
and refinement of concurrent value-dependent noninterference. In: 29th IEEE Com-
puter Security Foundations Symposium (CSF). IEEE Press (2016)

23. Nieto, L.P.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36575-3 24

24. Sanán, D., Zhao, Y., Hou, Z., Zhang, F., Tiu, A., Liu, Y.: CSimpl: a rely-guarantee-
based framework for verifying concurrent programs. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 481–498. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 28

25. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.
Ph.D. thesis, Technical University Munich (2006)

26. van Staden, S.: On rely-guarantee reasoning. In: Hinze, R., Voigtländer, J. (eds.)
MPC 2015. LNCS, vol. 9129, pp. 30–49. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19797-5 2

27. Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verification
framework for preemptive OS kernels. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 59–79. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41540-6 4

28. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149–174 (1997)

29. Zhao, Y., Sanán, D.: Rely-guarantee reasoning about concurrent memory man-
agement in Zephyr RTOS. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11562, pp. 515–533. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25543-5 29

https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-642-11811-1_24
https://doi.org/10.1007/978-3-642-11811-1_24
https://doi.org/10.1007/978-3-642-35308-6_12
https://doi.org/10.1007/978-3-642-35308-6_12
https://doi.org/10.1007/3-540-36575-3_24
https://doi.org/10.1007/3-540-36575-3_24
https://doi.org/10.1007/978-3-662-54577-5_28
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-030-25543-5_29
https://doi.org/10.1007/978-3-030-25543-5_29

Verifying Correctness of Persistent
Concurrent Data Structures

John Derrick1, Simon Doherty1, Brijesh Dongol2(B), Gerhard Schellhorn3,
and Heike Wehrheim4

1 University of Sheffield, Sheffield, UK
2 University of Surrey, Guildford, UK

b.dongol@surrey.ac.uk
3 University of Augsburg, Augsburg, Germany
4 Paderborn University, Paderborn, Germany

Abstract. Non-volatile memory (NVM), aka persistent memory, is a
new paradigm for memory preserving its contents even after power loss.
The expected ubiquity of NVM has stimulated interest in the design of
persistent concurrent data structures, together with associated notions of
correctness. In this paper, we present the first formal proof technique for
durable linearizability, which is a correctness criterion that extends lin-
earizability to handle crashes and recovery in the context of NVM. Our
proofs are based on refinement of IO-automata representations of con-
current data structures. To this end, we develop a generic procedure for
transforming any standard sequential data structure into a durable speci-
fication. Since the durable specification only exhibits durably linearizable
behaviours, it serves as the abstract specification in our refinement proof.
We exemplify our technique on a recently proposed persistent memory
queue that builds on Michael and Scott’s lock-free queue.

1 Introduction

Recent technological advances indicate that future architectures will employ
some form of non-volatile memory (NVM) that retains its contents after a system
crash (e.g., power outage). NVM is intended to be used as an intermediate layer
between traditional volatile memory (VM) and secondary storage and has the
potential to vastly improve system speed and stability. Software that uses NVM
has the potential to be more robust; in case of a crash, a system state before
the crash may be recovered using contents from NVM, as opposed to being
restarted from secondary storage. However, because the same data is stored in
both a volatile and non-volatile manner, and because NVM is updated at a
slower rate than VM, recovery to a consistent state may not always be possi-
ble. This is particularly true for concurrent systems, where coping with NVM
requires introduction of additional synchronisation instructions into a program.

Derrick, Dongol and Doherty are supported by EPSRC grants EP/R032351/1,
EP/R032556/2, EP/R019045/2; Wehrheim by DFG grant WE 2290/12-1.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 179–195, 2019.
https://doi.org/10.1007/978-3-030-30942-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_12

180 J. Derrick et al.

Recently, researchers have developed persistent extensions to existing con-
current objects (e.g., concurrent data structures or transactional memory). This
work has been accompanied by extensions to known notions of consistency, such
as linearizability and opacity that cope with crashes and subsequent recovery.

In this paper, we examine correctness of the recently developed persistent
queue by Friedman et al. [11], against the (also) recently developed notion
of durable linearizability [14]. Friedman et al.’s queue extends the well-known
Michael-Scott queue [20], whereas durable linearizability extends the standard
notion of linearizability [12] so that completed executions are guaranteed to sur-
vive a system crash.

Our verification follows a well-established methodology: (1) we develop an
operational model of durable linearizability that is parameterised by a generic
sequential object (e.g., a queue data structure with enqueue and dequeue oper-
ations), (2) we prove that this operational model is sound, and (3) we establish
a series of refinements between the operational model and the concrete imple-
mentation. The final (and most complex) of these steps, which establishes that
the implementation refines the operational model, is fully mechanised in the KIV
theorem prover [10]. It is important to note that the operational model is generic
and for any particular verification one needs therefore just to establish step (3)
in order to show that a particular algorithm is durable linearizable.

Ours is the first paper to address formal verification of persistent data struc-
tures. We consider the development of our sound operational characterisation
of durable linearizability and the refinement proofs, including mechanisation in
KIV, to be the main contributions of this paper. The mechanisation and the full
version of the paper may be accessed from [17].

We present Friedman et al.’s queue in Sect. 2, durable linearizability in Sect. 3,
an operational characterisation of durable linearizability in Sect. 4, and address
correctness of the queue in Sect. 5.

2 A Persistent Queue

The persistent queue of Friedman et al. [11] is an extension of the Michael-Scott
queue (MSQ) [20] to cope with NVM (see Algorithms 1 and 2). The MSQ uses a
linked list of nodes with global head and tail pointers. The first node is a sentinel
that simplifies handling of empty queues. The MSQ is initialised by allocating
a dummy node with a null next pointer, then setting the global head and tail
pointers to this dummy node.

The enqueue operation creates a new node that is inserted at the end of
the linked list. The insertion is performed using an atomic compare-and-swap
(CAS) instruction that atomically updates the next pointer of the last node
provided this next pointer hasn’t changed since it was read at the beginning of
the enqueue operation. The CAS returns true if it succeeds and false otherwise.
Immediately after a new node is inserted, the tail pointer is lagging one node
behind the true tail of the queue, and hence, must be updated to point to the
last node in a separate step.

Verifying Correctness of Persistent Concurrent Data Structures 181

Algorithm 1. Constructors
1: class Node
2: T val;

3: Node* next;

4: int deqID;

5: Node(T k):

6: val(k), deqID(-1), next(null);

1: class DurableQueue
2: Node* head;

3: Node* tail;

4: T* RVals[MAX];

5: DurableQueue()
6: T* node := new Node(T());

7: flush(node);
8: head := node;

9: flush(&head);
10: tail := node;

11: flush(&tail);
12: RVals[i] := null; //all i

13: flush(&RVals[i]);

The dequeue operation returns empty if the head and tail pointer both point
to the sentinel node and the tail is not lagging. If the queue is not empty,
the dequeue reads from the value of the node immediately after the sentinel
and atomically swings the head pointer to this next node provided it has not
changed. Thereby, the next node becomes the new sentinel node of the queue.

A key feature of MSQ is a helping mechanism where a different thread from
the original enqueue may advance the tail pointer if it is lagging. In the case of
a dequeue, this only occurs if head and tail pointers are equal, but the queue is
not empty.

Friedman et al. [11] adapt MSQ to a system comprising both VM and NVM.
In such systems, computations take place in VM as normal, but data is periodi-
cally flushed to NVM by the system. In addition to system controlled flushes, a
programmer may introduce explicit flush events that transfer data from VM to
NVM. Only data in NVM persists after a crash (e.g., power loss). A persistent
data structure must enable recovery from such an event, as opposed to a full
system restart. In doing this, it must ensure some notion of consistency in the
presence of crashes and a subsequent recovery operation. Following Friedman et
al. [11], the notion of consistency we use is durable linearizability (see Sect. 3).

The persistent queue uses the same underlying data structure as MSQ (see
Algorithm 1), but nodes contain an additional field, deqID (initialised to −1),
which holds the ID of the thread that removed the node from the queue. In
addition to the head and tail pointers, it uses an array of pointers, RVals, with
one index for each thread, containing either null (which is the initial value),
of a pointer to a cell which itself either contains empty (which signifies that
the thread last saw an empty queue), or a value (which is the value that was
last dequeued). Unlike MSQ, the persistent dequeue operation does not return
a value; instead the returned value for tid is stored in the cell pointed to by
RVals[tid].

Persistent Enqueue. The basic structure (see Algorithm 2) is the same as
the enqueue of MSQ. In addition, to ensure that the linked list data structure

182 J. Derrick et al.

Algorithm 2. Enqueue and dequeue methods of Friedman et al. [11]
1: procedure Enq(T val)

2: Node* node := new Node(val);

3: flush(node);
4: while true do
5: Node* last := tail;

6: Node* nxt := last→next;

7: if (last = tail)

8: if (nxt = null)

9: if CAS(&last→next,nxt,node)

10: flush(&last→next);

11: CAS(&tail, last, node);

12: return;

13: else
14: flush(&last→next);

15: CAS(&tail, last, nxt);

1: procedure Deq(int tid)

2: T* newRVal := new T();

3: flush(newRVal);
4: RVals[tid] := newRVal;

5: flush(&RVals[tid]);
6: while true do
7: Node* first := head;

8: Node* last := tail;

9: Node* nxt := first→next;

10: if (first = head)

11: if (first = last)

12: if (nxt = null)

13: *RVals[tid] := empty;

14: flush(RVals[tid]);
15: return;

16: flush(&last→next);

17: CAS(&tail, last, nxt);

18: else
19: T val := nxt→val;

20: if CAS(&nxt→deqID,-1,tid)

21: flush(&nxt→deqID);

22: *RVals[tid] := val;

23: flush(RVals[tid]);
24: CAS(&head, first, nxt);

25: return;
26: else
27: T* addr:=RVals[nxt→deqID];

28: if (head = first)

29: flush(&nxt→deqID);

30: *addr := val;

31: flush(addr);
32: CAS(&head,first,nxt);

is recoverable after a crash, nodes and next pointers have to be persisted after
being modified in VM.

This is achieved by using three flush operations in lines 3, 10 and 14. The first
ensures that the node is persisted before it is inserted into the queue; the second
and third ensure that the next pointer of a lagging tail pointer is persisted before
the tail is advanced. Note that updates to tail do not need to be explicitly flushed
because it can be recomputed during recovery by traversing the persistent list.

Persistent Dequeue. The basic structure of the dequeue operation also resem-
bles the dequeue of MSQ. In addition it uses variables RVals and deqID to guar-
antee durable linearizability. RVals is an array of pointers to cells that are used
to store the value returned by each dequeue. A dequeue creates a new cell at

Verifying Correctness of Persistent Concurrent Data Structures 183

Line 2, then flushes it at Line 3. The pointer to this cell is stored in RVals at
Line 4, and this pointer is made persistent at Line 5.

The deqID field is used to logically mark nodes that are dequeued, which
occurs at the successful CAS at Line 20. This logical dequeue is made persistent
by flushing the deqID at Line 21. After a node has been logically dequeued,
the dequeued value is stored in the cell pointed to by RVals[tid] (see Line 22)
where tid is the thread ID of the dequeuing thread. This dequeued value is made
persistent at Line 23. A dequeue by thread tid stores empty in RVals[tid] if
the queue is empty in Line 13, and this value is made persistent at Line 14.

The persistent dequeue operation employs an additional helping mechanism
to ensure that these new fields are made persistent in the correct order. In par-
ticular, a node that has been logically dequeued in VM must be made persistent
before another dequeue is allowed to succeed. Therefore, if a thread recognises
that deqID is not −1 at Line 20, it helps the other thread by flushing the deqID
field, writing the dequeued value into the cell pointed to by RVals[nxt→tid],
flushing this cell, and finally advancing the head pointer. Note that the helping
thread may be delayed between the read at Line 27 and the write at Line 30,
and the original thread tid may begin a new dequeue operation in this interval.
In this case, since tid allocates a fresh cell at Line 2, the helping thread’s write
at Line 30 will harmlessly modify a previous cell.

After a crash, and prior to resuming normal operation, persistent data struc-
tures must perform a recovery operation that restores the state of the data
structure in VM from NVM. The recovery procedure proposed by Friedman
et al. is multithreaded (and complex), so we elide its details here. Instead, we
provide a simpler single-threaded recovery operation (see Sect. 5.1).

3 Durable Linearizability

We now define durable linearizability [14], a central correctness condition for
persistent concurrent data structures. Like linearizability, durable linearizability
is defined over histories recording the invocation and response events of opera-
tions executed on the concurrent data structure. Unlike linearizability, durably
linearizable histories include crash events.

Formally, we let Σ be the set of operations. For a queue, Σ = {Enq, Deq}. A
history is a sequence of events, each of which is either (a) an invocation of an
operation op by a thread t ∈ T with values v, written inv t(op,v), (b) responses
of op in thread t with value v, written rest(op, v), or (c) a system-wide crash c.

Given a history h, we let ops(h) denote h restricted to non-crash events, and
h|t denote h restricted to (non-crash) events of thread t ∈ T . The crash events
partition a history into h = h0c1h1c2...hn−1cnhn, such that n is the number of
crash events in h, ci is the ith crash event and ops(hi) = hi (i.e., hi contains no
crash events). We call the subhistory hi the i-th era of h. For a history h and
events e1, e2, we write e1 <h e2 whenever h = h0e1h1e2h2.

A history h is said to be sequential iff every invocation event (except if it is
the last event in h) is immediately followed by its corresponding response event;

184 J. Derrick et al.

it is well formed if and only if (a) h|t is sequential for every thread t and (b) each
thread id appears in at most one era. Any invocation that is not followed by its
response event is called a pending invocation. We consider well-formed histories
only. A history h defines a happens-before ordering on the events occuring in h
by letting e1 ≺h e2 iff e1 <h e2 and e1 is a response and e2 an invocation event.
Linearizability (and durable linearizability) requires a notion of a legal history,
which we define using a sequential object. Every history of a sequential object
is both sequential and legal.

Definition 1 (Sequential Object). A sequential object over a base type Val
is a 5-tuple (Σ,S, s0, in, ρ) where

– Σ is an alphabet of operations, S is a set of states and s0 the initial state,
– in : Σ → N is an input function telling us the number of inputs an operation

op ∈ Σ takes, and
– ρ : S × Σ × Val∗ → S × (Val ∪ {empty,⊥}) is a partial transition function.

We assume outputs of operations to consist of a single value which possibly is the
symbol empty or no value denoted by ⊥. In the following we let v = v1v2 . . . vn
denote a string of n elements and write #v to denote its length n. We write
inv t(op,v) for an invocation of the operation op with n = #v inputs by thread
t and let Inv be the set of all such invocations. Similarly, we let Res be the set
of all responses.

The legal histories of a sequential object S = (Σ,S, s0, in, ρ) are defined as
follows. We write s −invt(op,v)rest(op,v)−−−−−−−−−−−−−→ s′ for ρ(s, op,v) = (s′, v) and t ∈ T . For
a sequence w of invocations and responses, we write s −w→ s′ iff either w = 〈〉 and
s = s′, or w = u◦w′ and there exists an s′′ such that s −u→ s′′ and s′′ −w′−→ s′. The
set of legal histories of S is given by legalS = {w ∈ (Inv∪Res)∗ | ∃s ∈ S. s0 −w→ s}.

Example 2. A sequential queue, Q, storing elements of type V is defined by
Σ = {Enq, Deq}, in(Enq) = 1, in(Deq) = 0, q0 = 〈〉, and

ρ = {(
(q, Enq, v), (q · v,⊥)

) | v ∈ V ∧ q ∈ V ∗} ∪
{(

(v · q, Deq, ε), (q, v)
) | v ∈ V ∧ q ∈ V ∗} ∪ {((〈〉, Deq, ε), (〈〉, empty))}

where ε is the empty string, 〈〉 is the empty sequence and · is used for sequence
concatenation. For Q, the history h below is sequential and legal

h = 〈inv1(Enq, a), res1(Enq,⊥), inv2(Deq, ε), res2(Deq, a)〉

whereas the history h · 〈inv3(Deq, ε), res3(Deq, b)〉 is sequential but not legal.

For the definition of durable linearizability some more notation is needed.
We write h ≡ h′ if h|t = h′

|t for all threads t. We let compl(h) (the completion)
be the set of histories that can be obtained from h by appending (some) missing
responses at the end, and use trunc(h) to remove pending invocations from a
history h (or a set of histories). Following Herlihy and Wing [12], h is linearizable

Verifying Correctness of Persistent Concurrent Data Structures 185

if there is some h′ ∈ trunc(compl(h)) and some legal sequential history hS such
that (i) h′ ≡ hS and (ii) ∀e1, e2 ∈ h′ : e1 ≺h′ e2 ⇒ e1 ≺hS

e2.
For durable linearizability, this definition is now simply lifted to histories

with crashes.

Definition 3 (Durable Linearizability [14]). A history h is durably lineariz-
able if it is well formed and ops(h) is linearizable.

Informally, durable linearizability guarantees that even after a crash the state
of the concurrent object remains consistent with the abstract specification. This
means that the effect of any operations that completed before a crash are pre-
served after the crash. The effect of operations that did not complete before a
crash may or may not be preserved. For example, the concurrent history

hc = 〈inv1(Enq, a), inv3(Deq, ε), res1(Enq,⊥), c, inv2(Deq, ε), res2(Deq, a)〉

is durably linearizable since ops(hc) = 〈inv1(Enq, a), inv3(Deq, ε), res1(Enq,⊥),
inv2(Deq, ε), res2(Deq, a)〉 is linearizable with respect to the history h in Exam-
ple 2. On the other hand the history

〈inv1(Enq, a), inv3(Enq, b), res1(Enq,⊥), c, inv2(Deq, ε), res2(Deq, empty)〉

is not durably linearizable since the effect of the completed operation Enq(a) is
not preserved after the crash.

Our methodology for proving durable linearizability does not use Definition 3
directly; instead it uses the following characterisation, which defines the set of
all durably linearizable histories for a sequential object.

We let Lin(S) be the set of histories linearizable wrt. the legal histories of
sequential object S and define

DurLin(S) = {h ∈ (Inv ∪ Res ∪ {c})∗ | ops(h) ∈ Lin(S)}

For a given concurrent durable data structure implementing a sequential object
S, proving its correctness thus amounts to showing that all histories of the imple-
mentation are in DurLin(S). To this end, for a given S, we develop an opera-
tional model DurAut(S) whose behaviours generate DurLin(S). We then use
a standard refinement approach to show that the implementation model is a
refinement of DurAut(S). This is enough to guarantee that the original imple-
mentation is durably linearizable.

4 An Operational Model for Durable Linearizability

The operational model for durable linearizability is formalised in terms of an
Input/Output automaton (IOA) [18]. This framework is often used for proving
linearizability via refinement [9].

186 J. Derrick et al.

Fig. 1. Durable automaton A = DurAut(S) for S = (Σ, S, s0, in, ρ)

Definition 4. An IOA is a labeled transition system A with

– a set of states states(A),
– a set of start states start(A) ⊆ states(A),
– a set of actions acts(A), and
– a transition relation trans(A) ⊆ states(A)×acts(A)× states(A) (so that the

actions label the transitions).

The set acts(A) is partitioned into internal actions, internal(A) and external
actions, external(A).1 The internal actions represent events of the system that
are not visible to the environment, whereas the external actions represent the
automaton’s interactions with its environment.

An execution of an IOA A is a sequence σ = s0a1s1a2s2a3 . . . of alternating
states and actions such that s0 ∈ start(A) and for each i, (si, ai+1, si+1) ∈
trans(A). A reachable state of A is a state appearing in an execution of A. An
invariant of A is any superset of the reachable states of A (equivalently, any
predicate satisfied by all reachable states of A). A trace of A is any sequence
of (external) actions obtained by projecting onto the external actions of any
execution of A. The set of traces of A, traces(A), represents A’s externally visible
behaviour. If every trace of an automaton C is also a trace of an automaton A,
then we say that C implements or refines A.

For an arbitrary sequential object S, we next construct a durable automaton
DurAut(S) (see Fig. 1) whose traces are histories in DurLin(S) only. This
automaton can serve as a specification automaton in a refinement proof. The
state of this automaton incorporates the state s of the sequential object S, plus
for every thread t ∈ T :
1 In the standard IOA setting, external actions are further subdivided into input and

output actions; this distinction is not needed for this current work.

Verifying Correctness of Persistent Concurrent Data Structures 187

– a program counter fixing whether the thread is still idle, is ready to be started,
is crashed (i.e., has been active during a crash), or is currently executing an
operation,

– possible input values of the thread’s operations and a possible output value.

The transition relation of the automaton is – as usual – given in the form
of pre- and postconditions of actions. For every operation op in the sequential
object, the automaton has actions inv(op), do(op) and res(op), where do(op)
corresponds to execution of the abstract operation op, potentially changing the
state of the sequential object. We use inv t(op,v) and rest(op, v) for inv(op)t(v)
and res(op)t(v), respectively. Any step of the implementation that refines do(op)
is a step that persists the corresponding operation op (i.e., a persistence point,
see Sect. 5). Persistence points in durable linearizability are analogous to lin-
earization points in linearizability [9]. Note that a thread may only invoke an
operation if it is ready. We furthermore have a dedicated crash action that may
be executed at any time that sets all active threads to crashed . To ensure that
crashed threads are confined to a single era, we use a separate action run that
enables idle threads to become ready. While inv(op), res(op) and crash are
external actions, run and do(op) are internal.

The theorem below ensures that traces of the durable automaton are the
durably linearizable histories of S.

Theorem 5. If S is a sequential object, then traces(DurAut(S)) ⊆ DurLin(S).

Proof. Let σ = cs0a1cs1 . . . ancsn be an execution of DurAut(S) and let csi.s,
csi.out etc. be the components of state csi. Let tr be the trace of σ. We construct
the history h by making the following changes to tr (in this order).

Completion For every ai being a do action dot(op) in σ without matching
rest(op), we add rest(op, v) such that v = csi.out(t) to the end of tr.

Truncation We remove all invt(op,v) without matching response.

Next, we need to construct a legal sequential history hS such that ops(h) ≡ hS .
Let i1, . . . , ik be the indices of σ such that aij is a do action dot(op). Then
ρ(csij−1 .s, op,v) = (csij .s, csij .out(t)) by definition of the durable automaton.
We set

wij = invt(op,v) rest(op, csij .out(t)) .

We let hS = wi1 . . . wik and hS ∈ legal(S).
Now assume e1 ≺h e2. By definition, e1 = rest(op, v) and e2 = invt′(op′,v)

for some t, t′ ∈ T . Then e1 has not been added to the trace tr by completion
since responses are added to the end. By construction of the durable automaton
threads execute inv, do and res operations in this ordering only. Hence the exe-
cution σ contains an action dot(op) prior to e1 and an action dot′(op′) following
e2. Hence e1 ≺hS

e2. �

In fact, we believe that the two sets in Theorem 5 are equal. However, we do
not need this property for our proof methodology.

188 J. Derrick et al.

Fig. 2. Possible state of persistent queue; volatile data represented using shading and
volatile pointers represented using dashed arrows

5 Correctness of the Persistent Queue

In this section we present a formal verification of the persistent queue. In
Section 5.1, we describe a model of the queue. In Sect. 5.2 we describe the appli-
cation of the refinement-based verification to this example, where we establish
the relationship between an intermediate automaton and the durable automaton.
Section 5.3 describes the persistence points in the concrete implementation that
are used in the proof, and Sect. 5.4 describes the main invariants and abstraction
relations.

5.1 Modelling the Persistent Queue

To verify durable linearizability we need to model the persistent queue. The
persistent queue contains two versions of each variable: one in VM and one in
NVM. We model this in the automaton by two mappings ps, vs : Loc → X,
where Loc is a set of locations and X is a generic set that contains enqueued
values, references, thread ids, etc. Mappings ps and vs represent the persistent
and volatile states, respectively. A flush of location k updates the value of ps(k)
to vs(k), while recovery moves data from ps(k) to vs(k). All other operations
take place in vs(k).

In order to help illustrate the structure of the queue, Fig. 2 depicts a possible
state of the persistent queue. Each node contains three values: a data value, a
thread id (possibly −1, which is the initial value), and a next pointer. Variables
phead and vhead are the persistent and volatile head pointers, respectively, and
vtail is the volatile tail pointer. In the KIV model phead = ps(head), vhead =
vs(head), etc. The values depicted by shading and the dashed arrows in the
figure are volatile; in Fig. 2, these are the deqID of node d and the next pointer
of node f , as well as the volatile head and tail pointers. Here enqueues for nodes
labelled a to f have all taken place and persisted, whereas node labelled g has
been partly enqueued but not yet persisted. Nodes labelled a to c have been
dequeued and persisted, but the node labelled d has been marked for dequeue,
but not persisted. Here, the phead is lagging behind vhead; in an execution,
phead may be lagging by an arbitrary amount as the flush of vhead is controlled
by the system as opposed to an explicit flush statement in the program code.

The persistent contents of the queue (which we refer to as the queue reference
list) corresponds to the abstract queue 〈d, e, f〉. In addition, our proof makes use

Verifying Correctness of Persistent Concurrent Data Structures 189

Fig. 3. The intermediate automaton IDQ

of the so called old reference list, which are elements that had been persistently
enqueued, but have also been persistently dequeued.

5.2 Refinement-Based Verification

As outlined in Sect. 3, we verify durable linearizability by proving refinement
between the implementation model and DurAut(Q) using the IO automata
formalism introduced in Sect. 4. Refinement can be proven via forward or back-
ward simulations [19]; such simulations allow a step-by-step comparison between
the operations using an abstraction relation. In our proof, we establish a back-
ward simulation between the intermediate automaton and DurAut(Q) as well
as a forward simulation between the implementation of the persistent queue and
the intermediate automaton. The proof uses an intermediate automaton that
resolves non-determinism at the abstract level as used in existing proofs of MSQ
[8,9]. Since refinement guarantees trace inclusion, this is sufficient to show that
the persistent queue is durably linearizable.

The intermediate automaton IDQ , presented in Fig. 3, is similar to the
durable automaton for the queue datatype, DurAut(Q) (see Fig. 1 instanti-
ated for the queue from Example 2). As with DurAut(Q), it has variables pc,
val and out, which play the same role, and variable q instantiates the state s.

190 J. Derrick et al.

Furthermore, all its actions except for checkEmp are also actions of DurAut(Q),
and have essentially the same effect. For IDQ we get the following property2.

Theorem 6. traces(IDQ) ⊆ traces(DurAut(Q)) .

The additional features of IDQ exist to model a behaviour where a dequeue
thread first observes that the queue is empty, and later decides to return empty,
at a point when the queue may no longer be empty. The observation is modelled
by a checkEmpt action, which records in the obsEmpt variable the fact that the
queue was empty during the execution of t’s dequeue operation. In this automa-
ton, it is possible for a thread t to execute a dot(Deq) transition and set the
output value to empty whenever obsEmp(t) has been set to true. We note that
the queue may not actually be empty when this transition takes place, but this
does not affect soundness of the proof method since obsEmp(t) being set to true
indicates that the queue has been empty at some point during the operation’s
execution. Further details of this technique, in the context of linearizability, may
be found in [4,8,9].

5.3 Identification of Persistence Points

To match executions of the concrete implementation with the abstract level, we
must identify the persistence points of the implementation, which are atomic
events whose execution causes the effect of the corresponding operations to take
effect at the abstract level. These are analogous to standard linearizability, where
proofs proceed via identification of linearization points [9]. In durable lineariz-
ability, persistence points are typically statements (flush events) that cause the
operation under consideration to become durable. Thus these statements must
be simulated by the abstract do operation. Note that persistent points must
occur after an operation has taken effect in NVM, but before the operation
returns.

In MSQ, the enqueue operation linearizes upon successful execution of the
CAS at line 9. However, in the persistent queue, this line is not the persistence
point of the operation, rather it is the first operation that flushes the effect of
this CAS, i.e., the first flush of the next pointer to the enqueued element. This
may occur in line 10 of the same thread, line 14 executed by another thread, or
due to a system-controlled flush. Despite there being several possible choices for
the persistence point, it is possible to prove forward simulation with respect to
the do(Enq) operation of the intermediate automaton IDQ .

The verification of the empty dequeue follows a similar pattern to the veri-
fication of the empty dequeue of MSQ. The persistence point is conditional on
the future execution of the operation, thus we refer to the persistence point as a
potential persistence point (this is similar to the concept of potential linearization
points [4,8,9]). The empty dequeue potentially takes effect at line 9 if the value

2 For the proof, see the full paper at [17].

Verifying Correctness of Persistent Concurrent Data Structures 191

loaded for nxt is null, but this decision is not resolved until later in the opera-
tion (line 12). Using the intermediate automaton (Fig. 3), it allows the proof to
proceed via forward simulation, like earlier proofs of linearizability [8,9].

A non-empty dequeue linearizes in VM when the node that is dequeued is
marked for deletion by updating its deqID field at line 20. Like the enqueue, the
persistence point of the dequeue is the first flush of this deqID field. This may
occur either at line 21 of the same thread, line 29 of another thread, or a system
flush. Again, we show that each of these steps simulates the do(Deq) operation
of the intermediate automaton.

5.4 Key Invariants and Abstraction Relation

There are several key properties that the persistent queue must maintain in order
to ensure correctness. These are formalised as invariants in our proof. Here we
describe them in plain English:

1. We keep track of two sublists: old reference list, which are elements that
have been dequeued, and queue reference list, which are elements that form
the current queue. Formalising the structure of these lists and ensuring global
correctness of the invariant is one of the most difficult parts of the proof. This
is particularly true for steps that correspond to persistence points (see below)
since the volatile pointers can be “lagging” immediately after persistence.

2. All nodes of the queue must be reachable in NVM (i.e., ps) from phead. This
means that the nodes including the next pointers must be made persistent
prior to inserting a new node.

3. All nodes in the old reference list must have a deqID field different from −1
in ps, indicating that they have been dequeued.

4. All nodes in the queue reference list must have a deqID field value −1 in ps.
5. Only the first node in queue reference list may have a deqID field value

different from −1 in vs.
6. Pointers phead and ptail may be lagging behind vhead and vtail, respectively.

However, vhead may not overtake vtail.

We now describe the state of the queue after execution of some key steps of the
algorithm.

Dequeue Persistence Point. A node is considered to be dequeued if its logical
deletion is flushed, i.e., the deqID marked by a thread id is flushed. For the queue
depicted in Fig. 2, the queue immediately after the volatile deqID of node d is
flushed is as follows.

a 1 b 3 c 7 d 2 e -1 f -1 g -1

phead vhead vtail

old reference list queue reference list

192 J. Derrick et al.

The abstract queue corresponding to this queue is 〈e, f〉. Note that in the queue
above, vhead pointer is now lagging and must be updated to point to the new
sentinel node d.

Enqueue Persistence Point. A node is considered to be enqueued if it can be
reached from phead in NVM, and its deqID field in persistent memory is −1.
Consider again the queue in Fig. 2. The queue immediately after the next pointer
of f becomes persistent is as follows.

a 1 b 3 c 7 d 2 e -1 f -1 g -1

phead vhead vtail

old reference list queue reference list

Note that this transformation must be performed before moving vtail, otherwise
the nodes after g could be lost upon system crash. In the queue above vtail is
lagging, and hence, must be updated before a new node can be enqueued. As
soon as the next pointer of f becomes persistent, the node g is considered to be
part of the queue, i.e., the abstract queue corresponding to the queue above is
〈d, e, f, g〉.
Crash and Recovery. Finally, consider the queue in Fig. 2 after a crash and recov-
ery:

a 1 b 3 c 7 d -1 e -1 f -1

phead vhead vtail

old reference list queue reference list

The volatile deqID value for node d is restored from persistent memory, but the
node g is lost.

Abstraction Relation and Mechanisation in KIV. These invariants enable us to
prove a refinement between the implementation and IDQ in Fig. 3. The main
part of the abstraction relation states that the abstract queue corresponds to
values in the queue reference list. For an enqueue, the first flush that persists the
next pointer (i.e., the effect of line 9) must match dot(op) with op = Enq. For a
non-empty dequeue, the first flush that persists deqID must match dot(op) with
op = Deq in Fig. 3. An empty dequeue must match checkEmpt when it loads
nxt at line 9 and dot(Deq) if the test at line 12 succeeds.

This refinement has been interactively, mechanically proven in the KIV the-
orem prover [10] (see [17] for the KIV proof and the encodings), which has been
used extensively in the verification of concurrent data structures (e.g., [4,24]).
The proof of the invariant in KIV is simplified via the use of a rely condition [15]
that captures interference from a thread’s environment in an abstract manner.
Roughly speaking, a rely condition is a relation over the states of an automaton
that must preserve the invariant of each transaction, and that must abstract the

Verifying Correctness of Persistent Concurrent Data Structures 193

transitions of each transaction. Similar techniques have been used in previous
proofs of concurrent algorithms [6].

6 Conclusion

There are numerous approaches to proving (standard) linearizability of concur-
rent data structures (e.g., [1,24,27]; see [9] for an overview), including special-
isations to cope with weak memory models (e.g., [2,5,7,22,25,26]). The recent
development of NVM has been accompanied by persistent versions of well-known
concurrent constructs, including concurrent objects [3,11], synchronisation prim-
itives [13,21] and transactional memory [16]. This paper has focussed on a per-
sistent queue [11], against the recently developed notion of durable linearizabil-
ity [14].

Development of objects implemented for NVM presents a similar challenge
to weak memory, in the sense that there are multiples levels of memory to con-
sider. Moreover, caches and registers are volatile, while cache flush instructions
allow reordering with store instructions in accordance with the memory model
of the system (e.g., [23]). Correctness in the presence of crashes and recovery
can be affected by the order in which elements are persisted, which necessitates
the use of programmer-controlled flush operations, increasing complexity. Unfor-
tunately, proofs of correctness (e.g., of durable linearizability) are either given
informally or are entirely lacking. This gives little confidence in the correctness
of the underlying persistent objects.

Verification of persistent memory algorithms is inherently more complex than
in the standard setting. Since an operation only takes effect after a flush event,
helping is inevitably required to bring the data structure into a consistent state
and for an operation to take effect. For proofs by refinement, these additional
helping steps have to be considered in the simulation proof. This ultimately com-
plicates the invariant since the helping is performed by another thread (including
a system thread). Moreover, since the state of the data structure can be “lag-
ging” immediately after helping is performed, precisely formalising the under-
lying helping mechanism further complicates the invariant. Future work will
consider how best to manage this additional proof complexity.

Acknowledgements. We thank Lindsay Groves for comments that have helped
improve this paper.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated speci-
fication and verification technique for highly concurrent data structures. In: Piter-
man, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 324–338. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 23

2. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: Giacobazzi, R., Cousot, R. (eds.) Symposium on Principles of Programming
Languages, POPL, pp. 235–248. ACM (2013). https://doi.org/10.1145/2429069.
2429099

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/2429069.2429099

194 J. Derrick et al.

3. Cohen, N., Aksun, D.T., Larus, J.R.: Object-oriented recovery for non-volatile
memory. PACMPL 2(OOPSLA), 153:1–153:22 (2018)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with poten-
tial linearisation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, pp. 323–337. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21437-0 25

5. Derrick, J., Smith, G., Groves, L., Dongol, B.: A proof method for linearizability on
TSO architectures. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably
Correct Systems. NMSSE, pp. 61–91. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48628-4 4

6. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opac-
ity of a pessimistic STM. In: OPODIS, LIPIcs, vol. 70, pp. 35:1–35:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

7. Doherty, S., Dongol, B., Wehrheim, H., Derrick, J.: Making linearizability compo-
sitional for partially ordered executions. In: Furia, C.A., Winter, K. (eds.) IFM
2018. LNCS, vol. 11023, pp. 110–129. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98938-9 7

8. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30232-2 7

9. Dongol, B., Derrick, J.: Verifying linearisability: a comparative survey. ACM Com-
put. Surv. 48(2), 19:1–19:43 (2015). https://doi.org/10.1145/2796550

10. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV–overview
and verifythis competition. Softw. Tools Technol. Transf. (STTT) 17(6), 677–694
(2015)

11. Friedman, M., Herlihy, M., Marathe, V.J., Petrank, E.: A persistent lock-free queue
for non-volatile memory. In: Krall, A., Gross, T.R. (eds.) ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP, pp. 28–40.
ACM (2018). https://doi.org/10.1145/3178487.3178490

12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

13. Huang, Y., Pavlovic, M., Marathe, V.J., Seltzer, M., Harris, T., Byan, S.: Closing
the performance gap between volatile and persistent key-value stores using cross-
referencing logs. In: USENIX Annual Technical Conference, pp. 967–979. USENIX
Association (2018)

14. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory
objects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 313–327. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53426-7 23

15. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983). https://doi.org/
10.1145/69575.69577

16. Joshi, A., Nagarajan, V., Cintra, M., Viglas, S.: DHTM: durable hardware trans-
actional memory. In: ISCA, pp. 452–465. IEEE Computer Society (2018)

17. KIV proofs for the durable linearizable queue (2019). http://www.informatik.uni-
augsburg.de/swt/projects/Durable-Queue.html

18. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC, pp. 137–151. ACM, New York (1987). https://doi.org/10.1145/
41840.41852

https://doi.org/10.1007/978-3-642-21437-0_25
https://doi.org/10.1007/978-3-642-21437-0_25
https://doi.org/10.1007/978-3-319-48628-4_4
https://doi.org/10.1007/978-3-319-48628-4_4
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1145/2796550
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
http://www.informatik.uni-augsburg.de/swt/projects/Durable-Queue.html
http://www.informatik.uni-augsburg.de/swt/projects/Durable-Queue.html
https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/41840.41852

Verifying Correctness of Persistent Concurrent Data Structures 195

19. Lynch, N., Vaandrager, F.W.: Forward and backward simulations part I: untimed
systems. Inf. Comput. Inf. Control - IANDC 121, 214–233 (1995). https://doi.org/
10.1006/inco.1995.1134

20. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Proceedings of 15th ACM Symposium on
Principles of Distributed Computing, pp. 267–275 (1996)

21. Pavlovic, M., Kogan, A., Marathe, V.J., Harris, T.: Brief announcement: persistent
multi-word compare-and-swap, In: PODC, pp. 37–39. ACM (2018)

22. Raad, A., Doko, M., Rozic, L., Lahav, O., Vafeiadis, V.: On library correctness
under weak memory consistency: specifying and verifying concurrent libraries
under declarative consistency models. PACMPL 3(POPL), 68:1–68:31 (2019).
https://dl.acm.org/citation.cfm?id=3290381

23. Raad, A., Vafeiadis, V.: Persistence semantics for weak memory: integrating epoch
persistency with the TSO memory model. PACMPL 2(OOPSLA), 137:1–137:27
(2018)

24. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4),
31:1–31:37 (2014). https://doi.org/10.1145/2629496

25. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
311–326. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 21

26. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 3–24.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 1

27. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1006/inco.1995.1134
https://dl.acm.org/citation.cfm?id=3290381
https://doi.org/10.1145/2629496
https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1007/978-3-319-46750-4_1
https://doi.org/10.1007/978-3-642-14295-6_40

Compositional Verification of Concurrent
Systems by Combining Bisimulations

Frédéric Lang1(B), Radu Mateescu1, and Franco Mazzanti2

1 Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LIG,

38000 Grenoble, France
Frederic.Lang@inria.fr
2 ISTI-CNR, Pisa, Italy

Abstract. One approach to verify a property expressed as a modal μ-
calculus formula on a system with several concurrent processes is to
build the underlying state space compositionally (i.e., by minimizing
and recomposing the state spaces of individual processes, keeping visi-
ble only the relevant actions occurring in the formula), and check the
formula on the resulting state space. It was shown previously that,
when checking the formulas of the Ldsbr

μ fragment of μ-calculus (con-
sisting of weak modalities only), individual processes can be minimized
modulo divergence-preserving branching (divbranching) bisimulation. In
this paper, we refine this approach to handle formulas containing both
strong and weak modalities, so as to enable a combined use of strong or
divbranching bisimulation minimization on concurrent processes depend-
ing whether they contain or not the actions occurring in the strong
modalities of the formula. We extend Ldsbr

μ with strong modalities and
show that the combined minimization approach preserves the truth value
of formulas of the extended fragment. We implemented this approach on
top of the CADP verification toolbox and demonstrated how it improves
the capabilities of compositional verification on realistic examples of con-
current systems.

1 Introduction

We consider the problem of verifying a temporal logic property on a concurrent
system P1 || ... || Pn consisting of n processes composed in parallel. We work in
the action-based setting, the property being specified as a formula ϕ of the modal
μ-calculus (Lμ) [18] and the processes Pi being described in a language with
process algebraic flavour. A well-known problem is the state-space explosion that
happens when the system state space exceeds the available computer memory.

Compositional verification is a set of techniques and tools that have proven
efficient to palliate state-space explosion in many situations [11]. These tech-
niques may be either independent of the property, i.e., focus only on the con-
struction of the system state space, such as compositional state space construc-
tion [14,19,22,29,31–33]. Alternatively, they may depend on the property, e.g.,
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 196–213, 2019.
https://doi.org/10.1007/978-3-030-30942-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_13

Compositional Verification of Concurrent Systems 197

verification of the property on the full system is decomposed in the verifica-
tion of properties on (expectedly smaller) sub-systems, such as in compositional
reachability analysis [4,36], assume-guarantee reasoning [28], or partial model
checking [1].

Nevertheless, the frontier between property-independent and property-
dependent techniques is loose. In compositional state space construction, to be
able to reduce the system size, a set of actions is selected and a suitable equiva-
lence relation (e.g., strong bisimulation, branching bisimulation, or divergence-
preserving branching bisimulation—divbranching for short) is chosen, restricting
the set of properties preserved after hiding the selected actions and reducing the
system w.r.t. the selected relation. Therefore, there is still a dependency between
the state space construction and the set of properties that can be verified. Given
a formula ϕ of Lμ to be verified on the system, Mateescu and Wijs [24] have
pushed this idea and shown how to extract a maximal hiding set of actions and an
equivalence relation (either strong or divbranching bisimulation) automatically
from ϕ, thus inviting the compositional state space construction technique to the
table of property-dependent reductions. To select the equivalence relation from
the formula, they have identified an Lμ fragment named Ldsbr

μ , which is adequate
with divbranching bisimulation [24]. This fragment consists of Lμ restricted to
weak modalities, which match actions preceded by arbitrary sequences of hid-
den actions, as opposed to traditional strong modalities 〈α〉ϕ0 and [α]ϕ0, which
match only a single action satisfying α. If ϕ belongs to Ldsbr

μ , then the system
can be reduced for divbranching bisimulation; otherwise, it can be reduced for
strong bisimulation, the weakest equivalence relation preserving full Lμ.

In this paper, we revisit and refine this approach to accommodate Lμ for-
mulas containing both strong and weak modalities. To do so, we define a logic
named Lstrong

μ (As), which extends Ldsbr
μ with strong modalities matching only

the actions belonging to a given set As of strong actions. The set As induces a
partition of the processes P1 || ... || Pn into those containing at least one strong
action, and those that do not. We show that a formula ϕ of Lstrong

μ (As) is still
preserved if the processes containing strong actions are reduced modulo strong
bisimulation and the other ones modulo divbranching bisimulation. We also pro-
vide guidelines for extracting the set As from particular Lμ formulas encoding the
operators of widely-used temporal logics, such as CTL [5], ACTL [26], PDL [9],
and PDL-Δ [30]. This combined use of bisimulations to reduce different parts of
the same system makes possible a fine-tuning of the compositional state space
construction by going smoothly from strong bisimulation (when all modalities
are strong) to divbranching bisimulation (when As is empty, as in the previ-
ous approach based on Ldsbr

μ). We implemented this approach on top of the
CADP verification toolbox [12], and demonstrated how it improves the capa-
bilities of compositional verification on two realistic case studies, namely the
TFTP plane-ground communication protocol specified in [13] and the parallel
CTL benchmark of the RERS’2018 challenge.

The paper is organized as follows. Section 2 recalls some definitions. Section 3
defines Lstrong

μ (As) and proves the main result of its adequacy with the combined

198 F. Lang et al.

use of strong and divbranching bisimulations. Section 4 presents the experimental
results obtained on the two case studies. Finally, Sect. 5 contains concluding
remarks and directions of future work. Formal proofs and code of case studies
are available at https://doi.org/10.5281/zenodo.2634148.

2 Background

2.1 LTS Compositions and Reductions

We consider systems whose behavioural semantics can be represented using an
LTS (Labelled Transition System).

Definition 1 (LTS). Let A denote an infinite set of actions, including the
invisible action τ , which denotes internal behaviour. All other actions are called
visible. An LTS is a tuple (Σ,A,−→, pinit), where Σ is a set of states, A ⊆ A
is a set of actions, −→ ⊆ Σ × A × Σ is the (labelled) transition relation, and

pinit ∈ Σ is the initial state. We write p
a−→ p′ if (p, a, p′) ∈ −→ and p

τ∗
−→ p′

if there is a (possibly empty) sequence of τ -transitions from p to p′, i.e., states
p0, . . . , pn (n ≥ 0) such that p = p0, p′ = pn, and pi

τ−→ pi+1 for i = 0, . . . , n−1.

LTS can be composed in parallel and their actions can be abstracted away
using the parallel composition and hiding operators defined below. Prior to hid-
ing, an action mapping operator is also introduced for the generality of the
approach.

Definition 2 (Parallel composition of LTS). Let P = (ΣP , AP ,−→P ,
pinit), Q = (ΣQ, AQ,−→Q, qinit), and Async ⊆ A \ {τ}. The parallel compo-
sition of P and Q with synchronization on Async, “P |[Async]| Q”, is defined
as (ΣP × ΣQ, AP ∪ AQ,−→, (pinit , qinit)), where (p, q) a−→ (p′, q′) if and only if
either (1) p

a−→ p′, q′ = q, and a /∈ Async, or (2) p′ = p, q
a−→ q′, and a /∈ Async,

or (3) p
a−→ p′, q

a−→ q′, and a ∈ Async.

Definition 3 (Action mapping). Let P = (ΣP , AP ,−→P , pinit) and a total
function ρ : AP → 2A. We write ρ(AP) for the image of ρ, defined by⋃

a∈AP
ρ(a). We write ρ(P) for the action mapping ρ applied to P , defined as the

LTS (ΣP , ρ(AP),−→′
P , pinit) where −→′

P = {(p, a′, p′) | p
a−→P p′ ∧ a′ ∈ ρ(a)}.

An action mapping ρ is admissible if τ ∈ AP =⇒ ρ(τ) = {τ}.
Action mapping enables a single action a to be mapped onto the empty set

of actions, onto a single action a′, or onto more than one actions a′
0, . . . , a

′
n+1

(n ≥ 0). In the first case, every transition labelled by a is removed. In the second
case, a is renamed into a′. In the third case, every transition labelled by a is
replaced by n + 2 transitions with same source and target states, labelled by
a′
0, . . . , a

′
n+1. Action hiding is a special case of admissible action mapping.

Definition 4 (Action hiding). Let P = (ΣP , AP ,−→P , pinit) and A ⊆ A \
{τ}. We write “hide A in P” for the LTS ρ(P), where ρ is the admissible action
mapping defined by (∀a ∈ AP ∩ A) ρ(a) = {τ} and (∀a ∈ AP \ A) ρ(a) = {a}.

https://doi.org/10.5281/zenodo.2634148

Compositional Verification of Concurrent Systems 199

Parallel composition and admissible action mapping subsume all abstrac-
tion and composition operators encodable as networks of LTS [7,11,20], such
as the parallel composition, hiding, renaming, and cut (or restriction) operators
of CCS [25], CSP [2], mCRL [15], LOTOS [16], E-LOTOS [17], and LNT [3],
as well as synchronization vectors1. In the sequel, we write P1 || . . . ||Pn for
any expression composing P1, . . . , Pn using these operators. Given any partition
of P1, . . . , Pn into arbitrary subsets P1 and P2, it is always possible to rewrite
P1 || . . . || Pn in the form (||Pi∈P1Pi) || (||Pj∈P2Pj), even for non-associative par-
allel composition operators (e.g., |[. . .]|), using appropriate action mappings2.

LTS can be compared and reduced with respect to well-known bisimulation
relations. In this paper, we consider strong bisimulation [27] and divbranching
bisimulation, which itself derives from branching bisimulation [34,35].

Definition 5 (Bisimulations). A strong bisimulation is a symmetric relation
R ⊆ Σ × Σ such that if (p1, p2) ∈ R then: for all p1

a−→ p′
1, there exists p′

2

such that p2
a−→ p′

2 and (p′
1, p

′
2) ∈ R. A branching bisimulation is a symmetric

relation R ⊆ Σ × Σ such that if (p1, p2) ∈ R then: for all p1
a−→ p′

1, either

a = τ and (p′
1, p2) ∈ R, or there exists a sequence p2

τ∗
−→ p′

2
a−→ p′′

2 such that
(p1, p′

2) ∈ R and (p′
1, p

′′
2) ∈ R. A divergence-preserving branching bisimulation

(divbranching bisimulation for short) is a branching bisimulation R such that if
(p01, p

0
2) ∈ R and there is an infinite sequence p01

τ−→ p11
τ−→ p21

τ−→ . . . with
(pi

1, p
0
2) ∈ R for all i ≥ 0, then there is an infinite sequence p02

τ−→ p12
τ−→ p22

τ−→
. . . such that (pi

1, p
j
2) ∈ R for all i, j ≥ 0. Two states p1 and p2 are strongly

(resp. branching, divbranching) bisimilar, written p1 ∼ p2 (resp. p1 ∼br p2,
p1 ∼dsbr p2), if there exists a strong (resp. branching, divbranching) bisimulation
R such that (p1, p2) ∈ R. Two LTS P1 and P2 are strongly (resp. branching,
divbranching) bisimilar, written P1 ∼ P2 (resp. P1 ∼br P2, P1 ∼dsbr P2), if their
initial states are strongly (resp. branching, divbranching) bisimilar.

Strong, branching, and divbranching bisimulations are congruences for par-
allel composition and admissible action mapping. This allows reductions to be
applied at any intermediate step during the state space construction, thus poten-
tially reducing the overall cost of reduction. However, since processes may con-
strain each other by synchronization, composing LTS two by two following the
algebraic structure of the composition expression and applying reduction after
each composition can be orders of magnitude less efficient than other strategies
in terms of the largest intermediate LTS. Finding an optimal strategy is difficult.
One generally relies on heuristics to select a subset of LTS to compose at each
step of the compositional reduction. In this paper, we will use the smart reduction
heuristic [6,11], which is implemented within the SVL [10] tool of CADP [12].

1 For instance, the composition of P and Q where action a of P synchronizes with
either b or c of Q, can be written as ρ(P) |[b, c]| Q, where ρ maps a onto {b, c}.

2 For instance, P1 |[a]| (P2 |[]| P3) is equivalent to ρ0((ρ1(P1) |[a1]| ρ2(P2)) |[a2]| ρ3(P3))
—observe the different associativity— where ρ1 maps a onto {a1, a2}, ρ2 renames a
into a1, ρ3 renames a into a2, and ρ0 renames a1 and a2 into a.

200 F. Lang et al.

This heuristic tries to find an efficient composition order by analysing the syn-
chronization and hiding structure of the composition expression.

2.2 Temporal Logics

Definition 6 (Modal µ-calculus [18]). The modal μ-calculus (Lμ) is built
from action formulas α and state formulas ϕ, whose syntax and semantics w.r.t.
an LTS P = (Σ,A,−→, pinit) are defined as follows:

α :: = a [[a]]A = {a}
| false [[false]]A = ∅
| α1 ∨ α2 [[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A
| ¬α0 [[¬α0]]A = A \ [[α0]]A

ϕ :: = false [[false]]P δ = ∅
| ϕ1 ∨ ϕ2 [[ϕ1 ∨ ϕ2]]P δ = [[ϕ1]]P δ ∪ [[ϕ2]]P δ
| ¬ϕ0 [[¬ϕ0]]P δ = Σ \ [[ϕ0]]P δ

| 〈α〉ϕ0 [[〈α〉ϕ0]]P δ = {s ∈ Σ | ∃s
a−→ s′.a ∈ [[α]]A ∧ s′ ∈ [[ϕ0]]P δ}

| X [[X]]P δ = δ(X)
| μX.ϕ0 [[μX.ϕ0]]P δ =

⋃
k≥0 Φ0

k
P,δ(∅)

where X ∈ X are propositional variables denoting sets of states, δ : X → 2Σ is a
context mapping propositional variables to sets of states, [] is the empty context,
δ[U/X] is the context identical to δ except for variable X, which is mapped to
state set U , the functional Φ0P,δ : 2Σ → 2Σ associated to the formula μX.ϕ0 is
defined as Φ0P,δ(U) = [[ϕ0]]P δ[U/X], and Φk means k-fold application. We write
P |= ϕ (read P satisfies ϕ) for p0 ∈ [[ϕ]]P [].

Action formulas α are built from actions and boolean operators. State formulas
ϕ are built from boolean operators, the possibility modality 〈α〉ϕ0 denoting the
states with an outgoing transition labeled by an action satisfying α and leading
to a state satisfying ϕ0, and the minimal fixed point operator μX.ϕ0 denoting
the least solution of the equation X = ϕ0 interpreted over 2Σ .

The usual derived operators are defined as follows: boolean connectors true =
¬false and ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2); necessity modality [α]ϕ0 = ¬〈α〉 ¬ϕ0; and
maximal fixed point operator νX.ϕ0 = ¬μX.¬ϕ0[¬X/X], where ϕ0[¬X/X] is
the syntactic substitution of X by ¬X in ϕ0. Syntactically, 〈〉 and [] have the
highest precedence, followed by ∧, then ∨, and finally μ and ν. To have a well-
defined semantics, state formulas are syntactically monotonic [18], i.e., in every
subformula μX.ϕ0, all occurrences of X in ϕ0 fall in the scope of an even number
of negations. Thus, negations can be eliminated by downward propagation.

Although Lμ subsumes most action-based logics, its operators are rather low-
level and lead to complex formulas. In practice, temporal logics or extensions of
Lμ with higher-level operators are used, avoiding (or at least reducing) the use of
fixed point operators and modalities. We review informally some of these logics
(whose operators can be translated to Lμ), which will be useful in the sequel.

Compositional Verification of Concurrent Systems 201

Propositional Dynamic Logic with Looping. The logic PDL-Δ [30] introduces the
modalities 〈β〉ϕ0 and 〈β〉@, where β is a regular formula defined as follows:

β :: = ϕ? | α | β1 · β2 | β1|β2 | β∗
0

Regular formulas β denote sets of transition sequences in an LTS: the testing
operator ϕ? denotes all zero-step sequences consisting of states satisfying ϕ; α
denotes all one-step sequences consisting of a transition labeled by an action sat-
isfying α; the concatenation β1 ·β2, choice β1|β2, and transitive-reflexive closure
β∗
0 operators have their usual semantics transposed to transition sequences.

The regular diamond modality 〈β〉ϕ0 denotes the states with an outgoing
transition sequence satisfying β and leading to a state satisfying ϕ0. The infinite
looping operator 〈β〉@ denotes the states having an outgoing transition sequence
consisting of an infinite concatenation of subsequences satisfying β.

Action Computation Tree Logic. The logic ACTL\X (ACTL without next oper-
ator) [26] introduces four temporal operators, whose semantics can be found in
terms of Lμ formulas in [8,24], where α1, α2 are interpreted over visible actions:

E(ϕ1 α1Uϕ2),E(ϕ1 α1Uα2 ϕ2),A(ϕ1 α1Uϕ2),A(ϕ1 α1Uα2 ϕ2)

A transition sequence satisfies the path formula ϕ1 α1Uα2 ϕ2 if it contains a
visible transition whose action satisfies α2 and whose target state satisfies ϕ2,
whereas at any moment before this transition, ϕ1 holds and all visible actions
satisfy α1. A sequence satisfies ϕ1 α1Uϕ2 if it contains a state satisfying ϕ2 and at
any moment before, ϕ1 holds and all visible actions satisfy α1. A state satisfies
E(ϕ1 α1Uα2 ϕ2) (resp. E(ϕ1 α1Uϕ2)) if it has an outgoing sequence satisfying
ϕ1 α1Uα2 ϕ2 (resp. ϕ1 α1Uϕ2). It satisfies A(ϕ1 α1Uα2 ϕ2) (resp. A(ϕ1 α1Uϕ2)) if
all its outgoing sequences satisfy the corresponding path formula. The following
abbreviations are often used:

EFα(ϕ0) = E(true trueUα ϕ0) AGα(ϕ0) = ¬EF¬α(true) ∧ ¬E(true trueU¬ϕ0)

A state satisfies EFα(ϕ0) if it has an outgoing sequence leading to a transition
whose action satisfies α and target state satisfies ϕ0. A state satisfies AGα(ϕ0)
if none of its outgoing sequences leads to a transition labeled by an action not
satisfying α or to a state not satisfying ϕ0.

Computation Tree Logic. The logic CTL [5] contains the following operators:

E(ϕ1 Uϕ2),A(ϕ1 Uϕ2),E(ϕ1 Wϕ2),A(ϕ1 Wϕ2),EF(ϕ0),AG(ϕ0),AF(ϕ0),EG(ϕ0)

A state satisfies E(ϕ1 Uϕ2) (resp. A(ϕ1 Uϕ2)) if some of (resp. all) its outgoing
sequences lead to states satisfying ϕ2 after passing only through states satisfying
ϕ1. It satisfies E(ϕ1 Wϕ2) (resp. A(ϕ1 Wϕ2)) if some of (resp. all) its outgoing
sequences either contain only states satisfying ϕ1, or lead to states satisfying ϕ2

after passing only through states satisfying ϕ1. A state satisfies EF(ϕ0) (resp.
AF(ϕ0)) if some of (resp. all) its outgoing sequences lead to states satisfying
ϕ0. A state satisfies EG(ϕ0) (resp. AG(ϕ0)) if some of (resp. all) its outgoing
sequences contain only states satisfying ϕ0.

202 F. Lang et al.

2.3 Compositional Property-Dependent LTS Reductions

Given a formula ϕ ∈ Lμ and a composition of processes P1 || . . . ||Pn, [24] shows
two results that allow an LTS equivalent to P1 || . . . ||Pn to be reduced compo-
sitionally, while preserving the truth value of ϕ. The first result is a procedure,
called maximal hiding, which extracts systematically from ϕ a set of actions H(ϕ)
that are not discriminated by any action formula occurring in ϕ. It is shown that
P1 || . . . || Pn |= ϕ if and only if hide H(ϕ) in (P1 || . . . || Pn) |= ϕ. The sec-
ond result is the identification of a fragment of Lμ, called Ldsbr

μ , which is strictly
more expressive than μACTL\X3 and adequate with divbranching bisimulation.
This fragment is defined as follows.

Definition 7 (Modal µ-calculus fragment Ldsbr
µ [24]). By convention, we

use the symbols ατ and αa to denote action formulas such that τ ∈ [[ατ]]A and
τ /∈ [[αa]]A. The fragment Ldsbr

μ of Lμ is defined as the set of formulas that are
semantically equivalent to some formula of the following language:

ϕ :: = false | ϕ1 ∨ ϕ2 | ¬ϕ0 | X | μX.ϕ0

| 〈(ϕ1?.ατ)∗〉ϕ2 | 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2 | 〈ϕ1?.ατ 〉@

The ultra-weak modality 〈(ϕ1?.ατ)∗〉ϕ2, weak modality 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2,
and weak infinite looping modality 〈ϕ1?.ατ 〉@ are shorthand notations for the
respective Lμ formulas μX.ϕ2 ∨ (ϕ1 ∧ 〈ατ 〉X), μX.ϕ1 ∧ (〈αa〉ϕ2 ∨ 〈ατ 〉X), and
νX.ϕ1 ∧ 〈ατ 〉X. Derived operators are also defined as follows:

[(ϕ1?.ατ)∗]ϕ2 = ¬〈(ϕ1?.ατ)∗〉 ¬ϕ2

[ϕ1?.ατ] � = ¬〈ϕ1?.ατ 〉@
[(ϕ1?.ατ)∗.ϕ1?.αa]ϕ2 = ¬〈(ϕ1?.ατ)∗.ϕ1?.αa〉 ¬ϕ2

Depending on the Lμ fragment ϕ belongs to, it is thus possible to determine
whether the system can or cannot be reduced for divbranching bisimulation.

3 Combining Bisimulations Compositionally

The above approach is a mono-bisimulation approach: either the formula is in
Ldsbr

μ and then the system is entirely reduced for divbranching bisimulation, or it
is not and then the system is entirely reduced for strong bisimulation. We show
in this section that, even if the formula is not in Ldsbr

μ , it may still be possible to
reduce some processes among the parallel processes P1, . . . , Pn for divbranching
instead of strong bisimulation. This approach relies on the fact that, in general,
an arbitrary temporal logic formula ϕ may be rewritten in a form that contains
both weak modalities, as those present in Ldsbr

μ , and non-weak modalities of Lμ

(called strong modalities in this context).

3 μACTL\X denotes ACTL\X plus fixed points. The authors of [24] claim that Ldsbr
μ is

as expressive as μACTL\X, but they omit that the 〈ϕ1?.ατ 〉 @ weak infinite looping
modality cannot be expressed in μACTL\X.

Compositional Verification of Concurrent Systems 203

To do so, we characterize a family of fragments of Lμ, each of which is written
Lstrong

μ (As), where As is the set of actions that can be matched by strong modal-
ities. We then prove that if ϕ belongs to Lstrong

μ (As) and some process Pi does
not contain any action from the set As, then Pi can be reduced for divbranching
bisimulation. Throughout this section, we assume that the concurrent system
P1 || . . . || Pn is fixed, and we write A for the set of actions occurring in the
system.

3.1 The Lstrong
µ (As) Fragments of Lµ

Definition 8 (Lstrong
μ (As)). Let As ⊆ A be a fixed set of actions, called strong

actions, and let αs denote any action formula such that [[αs]]A ⊆ As, called
a strong action formula. The fragment Lstrong

μ (As) of Lμ is defined as the set
of formulas that are semantically equivalent to some formula of the following
language:

ϕ :: = false | ϕ1 ∨ ϕ2 | ¬ϕ0 | 〈αs〉ϕ0 | X | μX.ϕ0

| 〈(ϕ1?.ατ)∗〉ϕ2 | 〈(ϕ1?.ατ)∗.ϕ1?.αa〉ϕ2 | 〈ϕ1?.ατ 〉@

We call 〈αs〉ϕ0 a strong modality. Lstrong
μ (As) is the fragment of Lμ consisting

of formulas expressible in a form where strong modalities match only actions in
As. Its formal relationship with Ldsbr

μ and Lμ is given in Theorem 1.

Theorem 1. The following three propositions hold trivially: Lstrong
μ (∅) = Ldsbr

μ ,
Lstrong

μ (A) = Lμ, and if As ⊂ A′
s then Lstrong

μ (As) ⊂ Lstrong
μ (A′

s).

Given ϕ ∈ Lμ, there exists a (not necessarily unique, see Theorem 3 page
10) minimal set As such that ϕ ∈ Lstrong

μ (As). Obviously, Lstrong
μ (As) is not

adequate with divbranching bisimulation when As is not empty, as illustrated
by the following example.

Example 1. Consider the LTS P , P ′, Q, and Q′ depicted in Fig. 1. P ′ (resp. Q′)
denotes the minimal LTS equivalent to P (resp. Q) for divbranching bisimula-
tion. The formula ϕ = [(true?.true)∗.true?.a1] [a2] false of Lstrong

μ ({a2}) (which

Fig. 1. LTS used in Examples 1 and 2

204 F. Lang et al.

is equivalent to the PDL formula [true∗.a1.a2] false) expresses that the system
does not contain two successive transitions labelled by a1 and a2 respectively. ϕ
does not belong to Ldsbr

μ . Indeed, P |[a1]| Q satisfies ϕ because a1 is necessarily
followed by a τ transition, but P ′ |[a1]| Q′ (which is isomorphic to Q′) does not.

3.2 Applying Divbranching Bisimulation to Selected Components

The following theorem states the main result of this paper, namely that every
component process containing no strong action can be replaced by any div-
branching equivalent process, without affecting the truth value of the formula4.

Theorem 2. Let P = (ΣP , AP ,→P , pinit), Q = (ΣQ, AQ,−→Q, qinit), Q′ =
(ΣQ′ , AQ′ ,−→Q′ , q′

init), Async ⊆ A, and ϕ ∈ Lstrong
μ (As). If AQ ∩ As = ∅ and

Q ∼dsbr Q′, then P |[Async]|Q |= ϕ if and only if P |[Async]|Q′ |= ϕ.

Proof. The proof looks like the one in [24], showing that divbranching bisimu-
lation preserves the properties of Ldsbr

μ , but reasoning concerns product states
and additionally handles the case of strong modalities. ��

Note that τ may belong to As. If so, every Pi containing τ cannot be reduced
for divbranching bisimulation. On the contrary, processes that do not contain
strong actions do not contain τ . Reducing them for divbranching bisimulation
is thus allowed, but coincides with strong bisimulation reduction. In the end,
all τ -transitions of the system are preserved, as expected for the truth value of
formulas containing strong modalities matching τ to be preserved.

Example 2. In Example 1, P does not contain a2, the only strong action of the
system. Thus, ϕ can be checked on P ′ |[a1]| Q (which is isomorphic to Q and has
only 3 states) instead of P |[a1]| Q (6 states), while preserving its truth value.

Theorem 2 is consistent with Andersen’s partial model checking [1] and the
mono-bisimulation approach [24]. Given P ||Q such that the strong actions of
ϕ occur only in P , one can observe that the quotient ϕ//P (defined in [1,21])
belongs to Ldsbr

μ , because quotienting removes all strong modalities, leaving only
weak modalities in the quotiented formula. It follows that Q, on which ϕ//P has
to be checked, can be reduced for divbranching bisimulation. This observation
could serve as an alternative proof of Theorem 2.

3.3 Identifying Strong Actions in Derived Operators

In the general case, identifying a minimal set of strong actions is not easy, if even
feasible. One cannot reasonably assume that formulas are written in the obscure
Lstrong

μ (As) syntax (see Example 1) and that the remaining strong modalities
cannot be turned to weak ones. Instead, users shall continue to use “syntactic
sugar” extensions of Lμ, with operators of e.g., CTL, ACTL, PDL, or PDL-Δ. In
Lemma 1, we provide patterns that can be used to prove that a formula written
using one of those operators belongs to a particular instance of Lstrong

μ (As).
4 Theorem 2 generalizes easily to more general compositions P || Q (with admissible

action mappings) if Q does not contain any action that maps onto a strong action.

Compositional Verification of Concurrent Systems 205

Lemma 1. Let ϕ0, ϕ1, ϕ2 ∈ Lstrong
μ (As), τ ∈ [[ατ]]A, τ /∈ [[αa]]A, [[αs]]A ⊆

As, and α0, α1, α2 be any action formulas. The following formulas belong to
Lstrong

μ (As) (the list may be not exhaustive):

1. Modal µ-calculus:
〈αs〉ϕ0 [αs]ϕ0 ¬ϕ0 ϕ1 ∨ ϕ2 ϕ1 ∧ ϕ2 ϕ1 ⇒ ϕ2

2. Propositional Dynamic Logic:
〈α∗

τ 〉ϕ0 [α∗
τ]ϕ0 〈α∗

τ · αa〉ϕ0 [α∗
τ · αa]ϕ0 〈ατ 〉@ [ατ] �

3. Action Computation Tree Logic:
A(ϕ1 α1Uϕ2) A(ϕ1 α1Uα2 ϕ2) AGα0(ϕ0)
E(ϕ1 α1Uϕ2) E(ϕ1 α1Uα2 ϕ2) EFα0(ϕ0)

4. Computation Tree Logic:
A(ϕ1 Uϕ2) A(ϕ1 Wϕ2) AG(ϕ0) AF(ϕ0)
E(ϕ1 Uϕ2) E(ϕ1 Wϕ2) EF(ϕ0) EG(ϕ0)
A([αa]ϕ1 Uϕ2) A([αa]ϕ1 Wϕ2) AG([αa]ϕ0) EF(〈αa〉ϕ0)
AG(ϕ1 ∨ [αa]ϕ2) EF(ϕ1 ∧ 〈αa〉ϕ2)

Example 3. Let a1, a2, and a3 be visible actions and recall that A denotes the
set of all actions of the system. Lemma 1 allows the following to be shown (this
is left as an exercise):

〈true∗.a1.(¬a2)∗.a3〉 true ∈ Lstrong
μ (∅) [true] false ∈ Lstrong

μ (A)
A(〈a1〉 true ¬a2Ua3 true) ∈ Lstrong

μ ({a1}) AG([a1] false) ∈ Lstrong
μ (∅)

E(true trueUτ true) ∈ Lstrong
μ (A) 〈a∗

1.a2〉 true ∈ Lstrong
μ ({a1, a2})

E(true trueU 〈τ〉 true) ∈ Lstrong
μ ({τ}) [a1.a2] false ∈ Lstrong

μ ({a1, a2})
EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong

μ ({a1}) EF(〈a1〉 〈a2〉 true) ∈ Lstrong
μ ({a2})

EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong
μ ({a2}) EF(〈¬a1〉 true) ∈ Lstrong

μ (A \ {a1})

Theorem 3. There is not a unique minimal set As such that ϕ ∈ Lstrong
μ (As).

Proof. EF(〈a1〉 true ∧ 〈a2〉 true) ∈ Lstrong
μ ({a1}) ∩ Lstrong

μ ({a2}), because it is
semantically equivalent to both formulas EF(〈(〈a1〉 true?.true)∗.〈a1〉 true?.a2〉
true) and EF(〈(〈a2〉 true?.true)∗.〈a2〉 true?.a1〉 true). Yet, it is not in Lstrong

μ (∅)
as it has not the same truth value on the divbranching equivalent LTS P and
P ′ below:

P = p0

a1

��
a2 ��

τ
��

p1 P ′ = q0
a1 ��

τ

��
q1 q2

a2��

τ

��

Thus, {a1} and {a2} are non-unique minimal sets of strong actions. ��

4 Applications

We consider two examples to illustrate our new verification approach combining
strong and divbranching bisimulation and show how it can reduce both time
and memory usage when associated to the smart reduction heuristic. In both

206 F. Lang et al.

examples, the aim is to perform a set of verification tasks, each consisting in
checking a formula ϕ on a system of parallel processes P1 || . . . || Pn. Since our
approach can only improve the verification of formulas containing both strong
and weak modalities, we consider only the pairs of formulas and systems such
that the formula is part of Lstrong

μ (As) for some minimal As that is not empty
and that is strictly included in the set of visible actions of the system5. For each
verification task, we compare the largest LTS size, the verification time, and the
memory peak obtained using the following two approaches:

Mono-bisimulation approach: ϕ is verified on hide H(ϕ) in (P1 || . . . || Pn)
(where H(ϕ) is the maximal hiding set mentioned in Sect. 2.3) reduced com-
positionally for strong bisimulation (since ϕ is not in Ldsbr

μ) using the smart
reduction heuristic.

Refined approach combining bisimulations: The set {P1, . . . , Pn} is parti-
tioned in two groups Ps and Pw such that Pi ∈ Ps if it contains actions
in As and Pi ∈ Pw otherwise, so that P1 || . . . || Pn can be rewritten
in the equivalent form (||Pi∈Ps

Pi) || (||Pj∈Pw
Pj). The set AI of actions on

which at least one process of Ps and one process of Pw synchronize (inter-
group synchronization) is then identified. Using the smart reduction heuris-
tic, hide H(ϕ) \ AI in ||Pi∈Ps

Pi (corresponding to the processes contain-
ing strong actions) is reduced compositionally for strong bisimulation, lead-
ing to a first LTS Ps, and hide H(ϕ) \ AI in ||Pj∈Pw

Pj (corresponding to
the processes containing no strong action) is reduced compositionally for
divbranching bisimulation, leading to a second LTS Pw. Finally, ϕ is veri-
fied on hide H(ϕ) ∩ AI in (Ps |[AI]| Pw) reduced for strong bisimulation.

All experiments were done on a 3GHz/12GB RAM/8-core Intel Xeon computer
running Linux, using the specification languages and 32-bit versions of tools
provided in the CADP toolbox [12] version 2019-a “Pisa”.

4.1 Trivial File Transfer Protocol

The TFTP (Trivial File Transfer Protocol) case-study6 addresses the verification
of an avionic communication protocol between a plane and the ground [13].
It comprises two instances (A and B) of a process named TFTP, connected
through a FIFO buffer. Since the state space is very large in the general case, the
authors defined five scenarios named A, B, C, D, and E, depending on whether
each instance may write and/or read a file. The system corresponding to each
scenario is a parallel composition of eight processes. The requirements consist
of 29 properties parameterized by the identity of a TFTP instance, defined in
MCL [23] (an implementation of the alternation-free modal μ-calculus including
PDL-Δ modalities and macro definitions enabling the construction of libraries of
5 Otherwise, our approach coincides with the mono-bisimulation approach of [24]. In

all the examples addressed in this section, there is always a unique minimal set As,
whose identification is made easy using Lemma 1.

6 Specification available at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo 05.

ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_05

Compositional Verification of Concurrent Systems 207

Table 1. TFTP properties (strong action formulas are highlighted)

Nr. Property

08 [true∗ · a1 · a2] false

09 [true∗ · a1 · a2 · ((a3 · (¬a4)
∗ · a5)|(a6 · (¬a7)

∗ · a8))] false

14 [true∗ · a1 · a2 · (¬a3)
∗ · a4 · a5] false

16 [(¬a1)
∗ · a2 · (¬a3)

∗ · a4] 〈((¬a5)
∗ · a6 · a7) · ((¬a5)

∗ · a6 · a7)〉 true
17 Same shape as property Nr. 16

operators), 24 of which belong to Ldsbr
μ . The remaining five, namely properties

08, 09, 14, 16, and 17, contain both weak and strong modalities. The shape of
these properties is described in Table 1, where we do not provide the details of the
action formulas, but instead denote them by letters a1, a2, . . ., where τ /∈ [[ai]]A
for all i. Strong action formulas are highlighted and one shows easily that the
other are weak using Lemma 1-2.

We consider 31 among a potential of 50 verification tasks (five properties, five
scenarios, and two instances) as some properties are not relevant to every TFTP
instance and scenario (e.g., in a scenario where one TFTP instance only receives
messages, checking a property concerning a message emission is irrelevant). All 31
verification tasks return true and the strong actions occur in only three (although
not the same three) out of the eight parallel processes.

Fig. 2. Experimental results of the TFTP case-study

Figure 2 shows that the refined approach always reduces LTS size (for both
intermediate and final LTS), memory and time following similar curves, up to a
factor 7 (the vertical axis is on a logarithmic scale). Time does not include LTS
generation of the component processes from their LNT specification, which takes

208 F. Lang et al.

Table 2. RERS 2018 properties (strong action formulas are highlighted)

Nr. Property Result

101#21 AG([A21] [A23] [A4] [true] false) false

101#22 AG([A3]AF(〈A2〉 true)) false

101#23 AG(〈A20〉 true ⇒ 〈A20〉A([A23] falseW 〈A8〉 true)) true

102#21 EF(AG([A5] false)) true

102#22 EG([A35] E([A23] false U 〈A35〉 true)) false

102#23 AG([A22]A([A8] false U 〈A22〉 true)) false

103#21 AG([A11]A([A2] falseW 〈A6〉 true) ⇒ [A11]A([A5] falseW 〈A6〉 true)) true

103#22
EG([A14] false ∧ (〈A18〉 true ⇒ [A18] EG([A21] false ∧ EF(〈A19〉 true))))
= EG([A14] false ∧ [A18] EG([A21] false ∧ EF(〈A19〉 true))) true

103#23
AG(〈A34〉 true ⇒ [A34]A([A68] falseW 〈A59〉 true))
= AG([A34]A([A68] falseW 〈A59〉 true)) false

only a few seconds and is common to both approaches. In these experiments,
time is dominated by the last step of generation and minimization, whereas
memory usage is dominated by minimization.

4.2 Parallel Benchmark of the RERS 2018 Challenge

The RERS (Rigorous Examination of Reactive Systems)7 challenge is an interna-
tional competition on a benchmark of verification tasks. Since 2018 (8th edition),
the challenge features a set of parallel problems where systems are synchroniz-
ing LTS and properties are expressed using CTL and modalities. This section
illustrates the benefits of our approach on these problems.

The benchmark comprises three specifications of concurrent systems, num-
bered 101, 102, and 103, each accompanied by three properties to be checked,
numbered p#21, p#22, and p#23, where p is the system number. Thus, nine
verification tasks have to be solved. The properties are presented in Table 2,
where the strong action formulas are highlighted. One easily shows that all other
action formulas are weak using Lemmas 1-1 and 1-4. However, for 103#22 and
103#23, the identity (〈α〉 true ⇒ [α]ϕ) = ([α] false ∨ [α]ϕ) = [α]ϕ (because
[α] false =⇒ [α]ϕ for all ϕ) was applied to obtain the simplified formulas
occurring after the = sign in the table. For 102#23, this simplification allowed
us to prove that A34 is not a strong action, unlike what appears at first sight.

Table 3 gives, for each of the nine verification tasks, the number #act of
actions in the system, the number #hide of actions in the maximal hiding set,
the number #sact of strong actions, the number #proc of parallel processes,
the number #sproc of processes in the strong group, the number #sync of
inter-group actions, and the best reduction relation among strong bisimulation,
divbranching bisimulation, or a combination of both. We observe that:

– The set of weak actions of 101#21 is empty due to the presence of the “true”
strong action formula, whereas the set of strong actions of 102#21 is empty,

7 http://rers-challenge.org.

http://rers-challenge.org

Compositional Verification of Concurrent Systems 209

Table 3. Some numbers about the RERS 2018 parallel benchmark

Task #act #hide #sact #proc #sproc #sync Relation

101#21 24 21 24 9 9 - Strong

101#22 24 22 1 9 4 11 Combination

101#23 24 21 2 9 3 9 Combination

102#21 28 27 0 20 0 - Divbranching

102#22 28 26 2 20 10 14 Combination

102#23 28 26 1 20 4 12 Combination

103#21 70 66 2 34 8 12 Combination

103#22 70 66 3 34 6 18 Combination

103#23 70 67 1 34 7 10 Combination

i.e., the property belongs to Ldsbr
μ . In both cases, our approach coincides

with the mono-bisimulation approach. The verification of 101#21 (reduced for
strong bisimulation) takes 75 s, with a memory peak of 11 MB and a largest
LTS of 83, 964 states and 374, 809 transitions. The verification of 102#21
(reduced for divbranching bisimulation) takes 261 s, with a memory peak of
22 MB and a largest LTS of 243 states and 975 transitions.

– 101#22, 101#23, 102#22, 102#23, 103#21, 103#22, and 103#23 contain
both weak and strong actions. They are used to evaluate our approach.

Table 4 compares the performance of verifying the latter seven verification tasks
using the approaches described above. LTS sizes are given in kilostates, memory
in megabytes, and time in seconds. Tasks using more than 3 GB of memory
were aborted. We see that our approach reduces both time and memory usage
and allows all problems of the challenge to be solved, whereas using strong
bisimulation alone fails in five out of those seven tasks.

Table 4. Experimental results of the RERS 2018 parallel benchmark

Task Strong bisimulation Combined bisimulations

Kstates Verif. Kstates Verif.

Largest Final MB Sec. Largest Final MB Sec.

101#22 84 77 10 77 1.4 1.4 10 72

101#23 84 77 11 80 0.5 0.5 8 73

102#22 - - - - 611 585 57 295

102#23 - - - - 17 9.8 22 260

103#21 - - - - 734 313 101 604

103#22 - - - - 14,143 14,141 1575 2533

103#23 - - - - 122 122 35 566

210 F. Lang et al.

The negligible reductions in time and memory usage observed for tasks
101#22 and 101#23 are due to the fact that time and memory usage are domi-
nated by the algorithm in charge of selecting a sub-set of processes to be com-
posed and reduced (implemented in smart reduction). The complexity of this
algorithm does not depend on the state space size, but on the number of actions
and parallel processes, which is almost the same using both approaches. When
considering larger examples, memory usage gets dominated by minimisation.
In particular, for tasks 102#22, 102#23, 103#21, and 103#23 (and likely also
103#22), memory usage is reduced by several orders of magnitude.

Note that some of these tasks can be verified more efficiently using non-
compositional approaches, such as on-the-fly model checking, in cases where
proofs or counter-examples can be detected much before having explored the
full state space. The main drawback of maximal hiding is that the generated
counter-examples are given only in terms of the actions visible in the formula,
which abstracts out a lot of intermediate transitions. However, this is the price
to pay for being able to verify most of the tasks, such as 103#21, for which
on-the-fly verification aborts due to memory exhaustion.

5 Conclusion and Future Work

In this paper, we proposed a compositional verification approach that extends the
state of the art [24] and consists of three steps: First, so-called strong actions are
identified, corresponding to those actions of the system that the formula cannot
match using weak modalities in the sense of the Lμ fragment Ldsbr

μ adequate
with divbranching bisimulation. These actions are used to partition the parallel
processes into those containing strong actions and the others. Second, maximal
hiding and compositional reduction are used to minimize the composition of
processes not containing strong actions for divbranching bisimulation, and the
other processes for strong bisimulation. Finally, the property is verified on the
reduced system.

The originality of this approach is to combine strong and divbranching bisim-
ulation, as opposed to the mono-bisimulation approach of [24]. We proved it cor-
rect by characterizing a family of fragments of the logic Lμ, called Lstrong

μ (As),
parameterized by the set As of strong actions. We also showed under which
conditions action-based branching-time temporal logic formulas containing well-
known operators from the logics CTL, ACTL, PDL, and PDL-Δ are part of
Lstrong

μ (As) when As is fixed. In the future, it might be worth investigating
whether more operators can be considered, e.g., from the linear-time logic LTL.

This approach may significantly improve the verification performance for
systems containing both processes with and without strong actions, as illustrated
by two case-studies. In particular, it allowed the whole parallel CTL benchmark
of the RERS 2018 challenge to be solved on a standard computer.

Identifying (close to minimal) sets of strong actions for arbitrary formulas
manually is a cumbersome task, prone to errors. We shall investigate ways to
compute such sets automatically. As illustrated by verification task 103#23 of

Compositional Verification of Concurrent Systems 211

RERS 2018, the problem is not purely syntactic: considering non-trivial semantic
equivalences may prove useful to eliminate actions that appear strong at first
sight. Yet, we trust that the presented approach has potential to be implemented
in automated software tools, such as those available in the CADP toolbox.

References

1. Andersen, H.R.: Partial model checking. In: Proceedings of the 10th Annual IEEE
Symposium on Logic in Computer Science LICS, San Diego, California, USA, pp.
398–407. IEEE Computer Society Press, June 1995

2. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of communicating sequen-
tial processes. J. ACM 31(3), 560–599 (1984)

3. Champelovier, D., et al.: Reference manual of the LNT to LOTOS translator (Ver-
sion 6.7), INRIA, Grenoble, France, July 2017

4. Cheung, S.C., Kramer, J.: Enhancing compositional reachability analysis with con-
text constraints. In: Proceedings of the 1st ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering, Los Angeles, CA, USA, pp.
115–125. ACM Press, December 1993

5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

6. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19811-3 9

7. de Putter, S., Wijs, A., Lang, F.: Compositional Model Checking is Lively –
Extended Version 2018. Submitted to Science of Computer Programming (2018)

8. Fantechi, A., Gnesi, S., Ristori, G.: From ACTL to μ-calculus (extended abstract).
In: Proceedings of the Workshop on Theory and Practice in Verification. ERCIM
(1992)

9. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

10. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) FORTE 2001. IFIP, vol. 69, pp.
377–392. Springer, Boston, MA (2002). https://doi.org/10.1007/0-306-47003-9 24

11. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. (STTT) 15(2), 89–107 (2013)

13. Garavel, H., Thivolle, D.: Verification of GALS systems by combining synchronous
languages and process calculi. In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol.
5578, pp. 241–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02652-2 20

14. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Clarke,
E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0023732

15. Groote, J.F., Ponse, A.: The Syntax and Semantics of μCRL. CS-R 9076. Centrum
voor Wiskunde en Informatica, Amsterdam (1990)

https://doi.org/10.1007/978-3-642-19811-3_9
https://doi.org/10.1007/978-3-642-19811-3_9
https://doi.org/10.1007/0-306-47003-9_24
https://doi.org/10.1007/978-3-642-02652-2_20
https://doi.org/10.1007/978-3-642-02652-2_20
https://doi.org/10.1007/BFb0023732

212 F. Lang et al.

16. ISO/IEC. LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization - Information Processing Systems - Open Sys-
tems Interconnection, Geneva, September 1989

17. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization - Information Tech-
nology, Geneva, September 2001

18. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

19. Krimm, J.-P., Mounier, L.: Compositional state space generation from Lotos
programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035392

20. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J. (eds.)
IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). https://doi.
org/10.1007/11589976 6

21. Lang, F., Mateescu, R.: Partial model checking using networks of labelled transition
systems and boolean equation systems. Log. Methods Comput. Sci. 9(4), 1–32
(2013)

22. Malhotra, J., Smolka, S.A., Giacalone, A., Shapiro, R.: A tool for hierarchical
design and simulation of concurrent systems. In: Proceedings of the BCS-FACS
Workshop on Specification and Verification of Concurrent Systems, Stirling, Scot-
land, UK, pp. 140–152. British Computer Society, July 1988

23. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0 12

24. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-
sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

25. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

26. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

27. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

28. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. Log. Models Concurr. Syst. 13, 123–144 (1984)

29. Sabnani, K.K., Lapone, A.M., Ümit Uyar, M.: An algorithmic procedure for check-
ing safety properties of protocols. IEEE Trans. Commun. 37(9), 940–948 (1989)

30. Streett, R.: Propositional dynamic logic of looping and converse. Inf. Control 54,
121–141 (1982)

31. Tai, K.-C., Koppol, P.V.: An incremental approach to reachability analysis of dis-
tributed programs. In: Proceedings of the 7th International Workshop on Software
Specification and Design, Los Angeles, CA, USA, pp. 141–150, Piscataway, NJ,
December 1993. IEEE Press (1993)

32. Tai, K.-C., Koppol, P.V.: Hierarchy-based incremental reachability analysis of com-
munication protocols. In: Proceedings of the IEEE International Conference on
Network Protocols, San Francisco, CA, USA, pp. 318–325. IEEE Press, Piscat-
away, NJ, October 1993 (1993)

https://doi.org/10.1007/BFb0035392
https://doi.org/10.1007/11589976_6
https://doi.org/10.1007/11589976_6
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309

Compositional Verification of Concurrent Systems 213

33. Valmari, A.: Compositional state space generation. In: Rozenberg, G. (ed.)
ICATPN 1991. LNCS, vol. 674, pp. 427–457. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56689-9 54

34. van Glabbeek, R.J., Weijland, W.P.: Branching-time and abstraction in bisim-
ulation semantics (extended abstract). CS R8911, Centrum voor Wiskunde en
Informatica, Amsterdam 1989. Also in Proceedings IFIP 11th World Computer
Congress, San Francisco (1989)

35. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

36. Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra.
In: Proceedings of the ACM SIGSOFT Symposium on Testing, Analysis, and Ver-
ification (SIGSOFT 1991), Victoria, British Columbia, Canada, pp. 49–59. ACM
Press, October 1991 (1991)

https://doi.org/10.1007/3-540-56689-9_54
https://doi.org/10.1007/3-540-56689-9_54

Model Checking Circus

Towards a Model-Checker for Circus

Artur Oliveira Gomes1(B) and Andrew Butterfield2

1 Universidade Federal de Mato Grosso do Sul, Corumbá, Brazil
artur.gomes@ufms.br

2 School of Computer Science and Statistics,
Trinity College Dublin, Dublin 2, Ireland

butrfeld@tcd.ie

Abstract. Among several approaches aiming at the correctness of sys-
tems, model-checking is one technique to formally assess system mod-
els regarding their desired/undesired behavioural properties. We aim at
model-checking the Circus notation that combines Z, CSP, and Morgan’s
refinement calculus, based on the Unifying Theories of Programming.
In this paper, we experiment with approaches for capturing Circus pro-
cesses in CSP, and for each approach, we evaluate the impact of our
decisions on the state-space explored as well as the time spent for such
a checking using FDR. We also experimented with the consequences of
model-checking CSP models that capture both state invariants and pre-
conditions of Circus models.

1 Introduction

The use of formal methods provides a way to rigorously specify, develop,
and verify complex systems. Among several approaches aiming at the correct-
ness of systems, model-checking formally assesses given systems regarding their
desired/undesired behavioural properties, through exhaustive checking of a finite
model of that system.

Woodcock and Cavalcanti defined Circus [38], which is a formal language
that combines structural aspects of a system using the Z language [40] and the
behavioural aspects using CSP [36], along with the refinement calculus [23] and
Dijkstra’s guarded commands [10]. Its semantics is based on the Unifying The-
ories of Programming (UTP) [18]. In addition, a refinement calculus for Circus
was developed by Oliveira [27], currently considered the de-facto reference for
Circus, using tool support with ProofPower-Z [28]. More recently, Foster et al.
introduced Isabelle/UTP, supporting Circus [11]. Moreover, Circus has a refine-
ment calculator, CRefine [8], and an animator for Circus, Joker [26]. However, for
model-checking, Circus is usually translated by hand to machine-readable CSP
(CSPM) [35] and then FDR [14] is used. We applied that method in our response
to the Haemodialysis case study for ABZ’16 [16]. Model checking through FDR
allows the user to perform a wide range of analysis, such as checks for refinement,
deadlock, livelock, determinism, and termination.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 217–234, 2019.
https://doi.org/10.1007/978-3-030-30942-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_14

218 A. O. Gomes and A. Butterfield

Some related work on techniques for model-checking Circus was presented by
Freitas [12] where a refinement model checker based on automata theory [19]
and the operational semantics of Circus [39] was formalised in Z/Eves [34]. He
also prototyped a model checker in Java. Moreover, Nogueira et al. [24] also
presented a prototype of a model checker based on the operational semantics of
Circus within the Microsoft FORMULA [21] framework. However, they could not
provide a formal proof of the soundness of their approach, since FORMULA does
not have an available formal semantics. Yet another approach for model-checking
Circus was defined by Ye and Woodcock [41], who defined a link from Circus to
CSP‖B with model-checking using ProB [31]. Finally Beg [4] prototyped and
investigated an automatic translation that supports a subset of Circus constructs.

Since CSPM does not have a notion of variables for state as in Z, Circus
or even the B-Method, we have to somehow capture them in order to obtain a
CSPM model as similar as possible to the original Circus one. Therefore, one
could either use a memory model [25,30] in order to manage the values of the
state variables, or else, to adopt the idea of state-variable parametrised pro-
cesses [4].

Following the results presented in ABZ’16 [16], which involved manual trans-
lation, we decided to develop Circus2CSP 1, an automatic translator from Circus
into CSPM , aiming at model-checking with FDR. Our tool was then built based
on the strategy presented in Sect. 5.3 of Deliverable 24.1 [29], from the COM-
PASS project [37], that defines a rigorous but manual translation strategy aiming
at obtaining CSPM specifications from Circus.

This paper reports design decisions regarding different approaches for model
checking and experimental results obtained for Circus specifications. Such exper-
iments were enough to identify an effective general form for any CSPM model
derived from Circus, where FDR could perform refinement checks with reduced
time and memory consumption compared to existing approaches from the liter-
ature.

2 Circus Background

A Circus specification is in some sense an extension of Z [40] in that it takes the
paragraphs of Z and adds new paragraph forms that can define Circus channels,
processes and actions. Channels correspond to CSP events:

channel c : T

Circus actions can be considered as CSP processes extended with the ability to
read and write shared variables, usually defined using a Z schema:

LocV ars =̂ [v1 : T1, . . . , vn : Tn]

1 See https://bitbucket.org/circusmodelcheck/circus2csp.

https://bitbucket.org/circusmodelcheck/circus2csp

Towards a Model-Checker for Circus 219

A Circus process is an encapsulation of process-local shared variables and Circus
actions that access those local variables, along with a ‘main’ action.

process ProcName =̂ begin

state PState == LocV ars

PBody =̂ 〈action defn.〉
PInit =̂ 〈action defn.〉
PMain =̂ PInit;PBody

• PMain

end

Circus processes can only communicate with the external environment via chan-
nels, while Circus actions can also communicate via the local variables of their
containing process. Processes can be modified and combined with each other,
using the following CSP operators: sequential composition (;), non-deterministic
choice (�), external choice (�), alphabetised parallel ([[. . .]]), interleaving (|||),
iterated versions of the above (e.g., �e∈E • . . .), and hiding (\).

Circus actions can be built with the CSP operators detailed above, as
well as the following CSP constructs: termination (Skip), deadlock (Stop),
abort(Chaos), event prefix (→), guarded action (&), and recursion (μ). In addi-
tion a Circus action can be defined by a Z schema, or Dijkstra-style guarded com-
mands, including variable assignment (:=). Note that actions cannot be defined
as standalone entities at the top level of a Circus specification.

Parallel composition of Circus actions differs from that in CSP, in that we
need to also specify which variables each side is allowed to modify. Parallel
action composition, written as A1 [[ns1 | cs |ns2]]A2 states that action Ai may
only modify variables listed in nsi, where ns1 and ns2 are disjoint, and both
actions must synchronise on events listed in cs. The semantics is that each side
runs on its own copy of the shared variables, and the final state is obtained by
merging the (disjoint) changes when both sides have terminated.

Circus also allows the use of local declarations in a variety of both process and
action contexts. For actions, we can declare local variables, using var x : T • A
which introduces variable v of type T which is only in scope within A. Variations
of these can be used to define parameterised actions, of which the most relevant
here is one that supports read-write parameters.

Finally, there is a refinement calculus for Circus, which is a fusion of those
for both Z and CSP (failures-divergences)[27].

3 Translating Circus to CSPM using Circus2CSP

Our first attempt to model check the Circus haemodialysis (HD) specifica-
tion [16], was to manually translate it into CSPM , and adjust its state-space
until the desired checks could be successfully completed. This manual trans-
lation was error-prone, and this motivated the development of a mechanised

220 A. O. Gomes and A. Butterfield

translator. Our plan was to provide a high degree of automation to minimise
error-prone human interventions, in such a way that we have a basis for arguing
for its correctness.

We started the development based on the Circus-to-CSPM translation strat-
egy developed for the EU COMPASS project and described in deliverable
D24.1 [29, Section 5]. It specifies the translation in two parts: a function Ω that
maps a Circus specification to an equivalent Circus specification using only the
CSP subset of the Circus language; and a function Υ that translates CSP-as-
Circus into machine-readable CSPM (Fig. 1).

Fig. 1. Mapping Circus into CSPM (derived from [29, Fig. 7, p77])

Function Ω has two phases: ΩP and ΩA. Function ΩP extracts mutable
state from the input state-rich (CircusSR) process PSR and gathers it in a new
Memory action, while replacing direct references to state in PSR with appropri-
ate “get” and “set” messages that communicate with that Memory, to obtain
a state-poor (CircusSP) process P ′

SP . Function ΩA then translates P ′
SP into

its CSP equivalent P ′′
SP , by replacing Circus-specific actions by CSP-as-Circus

(CircusCSP) equivalents. All of the transformations done by ΩP and ΩA are
valid Circus refinement steps, each of which are in fact equivalences, defined in
D24.1 [29, §5.3 and App. A].

3.1 The Memory Model

The need for a memory model arises from the fact that CSP does not natu-
rally capture the notion of mutable state. One solution for that is to produce
a state-poor process that communicates with a Memory model [25] that stores
the values of state components and local variables from the original state-rich
processes. Initially, our memory model was very similar to that in D24.1, with
some differences in naming conventions. In our approach, we defined a notation
for renaming the variables allowing the user to easily identify which are (global)
state components, or local variables. Variables are renamed by adding a prefix
sv or lv indicating respectively a state or local variable.

As part of the translation strategy, the CSPM environment is redefined in
terms of the type system. Based on the work of Mota et al. [25], D24.1 defined a
union type UNIV ERSE containing any type defined in the specification. When
translated into CSPM , use is made of the subtype facility of that language to

Towards a Model-Checker for Circus 221

manage the universe construction. Moreover, the names of every state component
and local variable are defined as elements of a type NAME.

NAME :: = sv v1|sv v2| . . . |sv vn|lv l1| . . . |lv lk

The approach makes use of a set of bindings, BINDING, which maps all the
names, NAME, into the UNIV ERSE type. In [29], a function δ is defined as
a mapping between each variable in NAME and its type, where each type (Ti

is a subtype of UNIV ERSE), and is used to define Memory.

BINDING == NAME → UNIV ERSE

δ == {sv v1 �→ T1, sv v2 �→ T2, . . . , sv vn �→ T3, . . . , lv lk �→ Tm}
As a result of applying the Ω functions, the state of a Circus process is replaced by
a Memory action parameterised by a read/write binding (vres b), which man-
ages the mutable state, offering mget and mset channels carrying name/value
pairs (n.v).

Memory =̂ vres b : BINDING •
(�n : dom b • mget.n!b(n) → Memory(b))
� (�n : dom b • mset.n?nv : (nv ∈ δ(n)) → Memory(b ⊕ {n �→ nv}))
� terminate → Skip

Note, that while syntactically a Circus action, Memory uses only the CSP subset
of Circus Such a Memory process runs in parallel with the main action of the
translated Circus process, communicating through the channels mget and mset.
Moreover, the process execution ends when the terminate signal is triggered. The
above three channels compose the MEMI channel set: channelset MEMI ==
{|mget,mset, terminate|}.

The final specification puts the original process after Ω-translation in parallel
with the memory model, synchronising on the MEMI channels, which are them-
selves hidden at the top-level, with the binding as a top-level parameter. Note
that the semantics of this at the top-level involves a non-deterministic choice2

of the values in the initial binding b. This results in the following CSP form:

�b : BINDING •
(

(ΩA(P); terminate → Skip)
‖MEMI

Memory(b)

)

\MEMI

Deliverable D24.1 contains manual proofs of the correctness of the transla-
tion [29, Appendix K].

4 Upgrading the Memory Model

With the initial version of the tool, we took examples from D24.1 (e.g. the ring-
buffer example [29, Appendix D.2, p163]) and automatically translated them and
2 A non-deterministic choice of values means that the bindings are picked randomly

among the possible combinations of bindings.

222 A. O. Gomes and A. Butterfield

then succesfully performed FDR checks. However, when we turned our attention
to the somewhat larger HD model, we immediately uncovered some limitations
of the basic translation, which were overcome by changing the memory model.

4.1 Limitation 1: Z Types vs. CSPM Types

The use of the UNIV ERSE type, the CSPM subtype feature, and a func-
tion written in CSPM to map a name to its specific type, worked fine if all the
types in UNIV ERSE were a sub-type of one supertype. In the D24.1 exam-
ples, all types were sub-types of the natural numbers. However, in the HD model
we were developing, we had a mixture of natural sub-types, and enumerations.
The type system in CSPM does not consider enumeration types to be isomor-
phic to subtypes of any sufficiently large number type. We could have gener-
ated those isomorphisms, but these would have complicated the back-annotation
problem, whenever a counter-example was found using FDR. Instead, we par-
titioned UNIV ERSE and BINDING into the distinct supertypes present in
the Circus model.

Memory =̂ vres bT1 : BINDINGT1 , . . . , bTk
: BINDINGTk

•

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(�n1 : dom b1 • mget.n1!b1(n1) → Memory(b1, . . . , bk))

�
(

�n1 : dom b1 • mset.n1?nv : (nv ∈ δ(n1))
→ Memory(b1 ⊕ {n1 �→ nv}, . . . , bk)

)

� . . . �(�nk : dom bk • mget.nk!bk(nk) → Memory(b1, . . . , bk))

�
(

�nk : dom bk • mset.nk?nv : (nv ∈ δ(nk))
→ Memory(b1, . . . , bk ⊕ {nk �→ nv})

)

� terminate → Skip

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We then changed the top-level view to have a non-deterministic choice over all
the distinct bindings.

�bT1 : BINDINGT1 , . . . , bTk
: BINDINGTk

•
(

(ΩA(P); terminate → Skip)
‖MEMI

Memory(bT1 , . . . , bTk
)

)

\MEMI

4.2 Limitation 2: FDR Time/Space Explosion

We quickly discovered that using this translation, we could only check Circus
models with a small number of state variables, usually less than ten, with even
the hand-translation of the HD model done for the original case-study being
more effective. We proceeded to experiment with transformations to the memory
model, justified by the Circus refinement laws.

Variables Have Non-deterministic Start Values. We first changed the
top-level non-deterministic choice over the various bindings by replacing it with
parameters.

Towards a Model-Checker for Circus 223

var bT1 : BINDINGT1 , . . . , bTk
: BINDINGTk

•
(

(ΩA(P); terminate → Skip)
‖MEMI

Memory(bT1 , . . . , bTk
)

)

\MEMI

This is an equivalence, as (var x : T • A(x)) = (�x : T • A(x)). However,
FDR treats the latter as being parameterised by x and requires it to be given an
initial value. This means that we can only check a very strong proper refinement,
rather than the full equivalence. However, we argue that in the safety-critical
domain in general, it is always mandatory to initialise all variables. If Init is an
action that initialises each variable precisely once with a constant value, with no
intervening participation in events, then, regardless of the assignment ordering
or any arbitrary initial value of any variable, the outcome is always the same:
s′ = S0, where S0 is the assignment of those constants to the coprresponding
variables. If we insist on proper initialisation, then equivalence is restored. Given
that the main usage of model-checking takes place in safety critical domains, we
consider this a reasonable trade-off, particularly because it resulted in FDR
performance improvements. However, our experiments revealed that a process
translated this way, with more than ten state variables, still could not be checked
with FDR in a reasonable time.

Distributed Memory Model. The final step, was to do more partitioning,
moving to a situation were every variable gets its own memory process. The
supertype bindings were retained at the top-level, but each variable’s memory
process was parameterised by the relevant binding with its domain restricted to
just the name of that variable. So, for example, if variable ni has a type whose
supertype is T , then we first define a binding bT for that supertype, and use
it to parameterise a memory action for all variables of that supertype, which is
itself the parallel composition of a memory process for each such variable, all
synchronising on terminate, but interleaving all the mget and mset events:

MemoryT (bT) =̂
[[{|terminate|}]]n : dom bT • MemoryTV ar(n, {n} � bT)

Here N � μ restricts the domain of map μ to set N . We then define a parame-
terised process that represents a single variable:

MemoryTV ar(n, b) =̂
mget.n.b(n) → MemoryTV ar(n, b)

� mset.n?nv : δ(n) → MemoryTV ar(n, b ⊕ n �→ nv)
� terminate → Skip

The entire memory is constructed by putting the memories for each supertype
in parallel, in the same way as for the individual variable processes.

Memory(bT1 , . . . , bTk
) =̂

MemoryT1(bT1)[[{|terminate|}]] . . . [[{|terminate|}]]MemoryTk(bTk
)

224 A. O. Gomes and A. Butterfield

This last transformation produced a marked improvement in the time and mem-
ory consumption of FDR when checking models.

In the next section we describe and discuss our experiments on the HD
machine mode comparing some of approaches above. Moreover, we also com-
pare the results obtained using other tools as a way of assessing our results.

5 Experimental Results

In this section we present the tests we performed using our tool, Circus2CSP,
exploring ways of overcoming any limitations from FDR, as well as comparing
our approach with others from the literature. Firstly, we explore the interference
of invariants and preconditions in CSPM . Then, we compare Circus2CSP with
the model from [16]. We also the effects of using some compression techniques
available in FDR. Finally, we compare different approaches for modeling the
Ring Buffer case study.

One of the requirements when model-checking a system is to produce a model
whose range of values is enough for covering any condition imposed by an oper-
ation. However, when including the state invariant, we are also restricting the
range of values permitted to be used within the system. From the example of
the chronometer [27], we know that both min and sec was declared as natural
numbers. However, while thinking of a chronometer in the real world, we know
that neither a second, nor a minute goes beyond 59 units, without flipping the
next unit counter. Therefore, it is safe to restrict the range of min and sec to
0 .. 60, where 60 is an unexpected value in the system.

We experimented with the impact of explicitly including invariant and pre-
condition checks using the example of the Chronometer [27], with a new process
Chrono. When using the translation rules presented in [29], we noticed that it
is hard for FDR to check the model: it was translated using the conversion from
normalised schemas to specification statements and from there, to the appropri-
ate rules that introduce a condition that checks if pre is satisfied. If satisfied,
it behaves as a non-deterministic choice of values from the state variables that
satisfies both invariant and precondition, followed by updating these values in
the memory model. Otherwise, if pre is not satisfied, it behaves like Chaos.

Our example of the chronometer has only two state variables and the results
obtained using FDR are enough to show how the invariant checks throughout
the specification increase the time spent during the assertion check in FDR. We
deliberately modified the original model with the inclusion of the state invariant
restricting both min and sec to values below 60, in order to experiment with
the translated model in FDR.

Towards a Model-Checker for Circus 225

We illustrate our experiment in Table 1 while exploring the inclusion of state
invariants and precondition verification in the chronometer model, and used the
following derived models3:

D241 Model manually translated using the approach from [29] without
invariants and preconditions, using a non-deterministic choice of
any set of bindings.

D241Inv Model manually translated using the approach from [29] including
the invariants as a restriction to the bindings set.

D241Pre Model manually translated using the approach from [29] which
includes precondition checks before the operations, but no invari-
ants in the main action.

D241InvPre Combination of D241Inv and D241Pre.
CTOC Model translated using our improved translation rules, the result

from our tool Circus2CSP, as discussed in Sect. 4 (no invariant
checks).

CTOCPre Extension of CTOC model where pre-condition checks, as done
for D241Pre, are entered manually.

From the models above, our tool is able to automatically generate CTOC,
CTOCPre was obtained by manually modifying CTOC, while the others were
generated by hand. We performed checks for deadlock freedom4 using the trans-
lated models in the six variants above, combined with a different range of values
for natural numbers, ranging from . . . 3 to 0 . . . 60. For example, in a specifica-
tion where the values for natural numbers are restricted to the range 0 .. 10, the
process state was defined as [min, sec : 0 .. 10 |min < 10 ∧ sec < 10].

We noticed a first difference between models D241 and D241Inv, on one
hand, and CTOC and CTOCPre on the other. The number of states visited
for checks with the models D241 and D241Inv was over 10-fold larger than for
CTOC and CTOCPre. However, the influence of a precondition check within
an operation makes a significant reduction in the state exploration, but with
the price of spending more time computing preconditions, as seen in Table 1,
between CTOC and CTOCPre. Moreover, we also observed that the checks

3 The files used in this experiment can be found in the tool repository at https://bit.
ly/2ONnk2T.

4 The tests were performed using Intel Core i7 2.8 GHz CPU with 16GB of RAM.

https://bit.ly/2ONnk2T
https://bit.ly/2ONnk2T

226 A. O. Gomes and A. Butterfield

Table 1. Interference of invariants and preconditions in CSPM—Deadlock freedom
checks (in seconds unless indicated otherwise)

CTOC CTOCPre D241 D241Inv D241InvPre D241Pre

Values

range

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

Exec

time

States

visited

0..3 0.116 68 0.134 21 0.206 1085 0.177 610 0.173 190 0.187 337

0..6 0.242 260 0.373 42 0.416 12734 0.35 9355 0.393 1513 0.428 2059

0..9 0.559 578 1.4 63 1.158 57791 1.138 46810 1.826 5104 1.955 6301

0..12 1.246 1022 4.197 84 2.714 172706 2.57 147157 5.22 12097 5.45 14197

0..15 2.533 1592 9.867 105 5.846 407537 5.452 358186 11.988 23626 12.6 26881

0..60 3m27s 25262 22m29s 1024 2h48 99M 1h40 91M 52m28s 3.7M 1h05 3.8M

for invariants has a weaker effect on states visited, when comparing the results
between D241InvPre and D241Pre. We also noticed that all variants of D241
were executed in a much larger time frame than the approaches using the trans-
lation from our tool, Circus2CSP. However, the models generated by our tool do
not include either invariants or preconditions.

Finally, as a way of experimenting with the real world example of the
chronometer, we examined the models with numbers ranging from 0 up to 60,
as presented in the last row of Table 1. We see a significant difference among
the results from the approaches evaluated, where the model using CTOC was
evaluated (3 min) by FDR, which is 97% less time than the time spent to check
the model using D241Inv (over 1h40) and 94% less than D241Pre (1h05). In
general, the CSPM models (CTOC) translated using our tool were evaluated
by FDR using a much smaller state space and were checked in less time than all
the other models we tried. Such a result shows how different models of the same
system can be affected by the checks of invariants and preconditions, as well as
how optimising the memory model can result in much smaller state exploration
when using FDR. Finally, we observed no correlation between time and state
visited, in spite of the use (or not) of compression by default in FDR.

5.1 Haemodialysis (HD) Machine Experiments

The manual translation (herein byHand) of the Circus [16] HD model resulted in
a CSPM specification with twice as many lines as the Circus model. Using the
CTOC translation results in CSPM with approximately 75% fewer lines than the
corresponding Circus file.

Our reference Circus model was that of the HD machine running in parallel
with a model of one of the case study requirements (R-1 [2, Section 4.2, p11]).
The requirement model is effectively a monitor that observes the machine model,
checking that it is satisfied, and deadlocking if it observes a violation. We then
check the proposition that the HD model is correct w.r.t R-1 by showing that
the combination is deadlock free. In addition to comparing various translation
schemes, we also explored the effect of changing the size of our “natural number”
type: NatV alue == 0 .. N , in order to estimate the number of states visited in
FDR.

Towards a Model-Checker for Circus 227

We explored the byHand and CTOC translation schemes with four ranges of
NatV alue size, with N up to a maximum of 90, as shown in Table 2. The only
case where we could compare the two approaches was our first case, with N = 2:
it resulted in 9,409 states visited using byHand, in contrast with 811 states vis-
ited using CTOC, demonstrating a reduction of 91% in terms of states explored.
Moreover, the execution time with the model generated using CTOC was equally
reduced by 91% compared to the model using byHand. The “Plys” column indi-
cates how deep the breadth-first search algorithm used by FDR went while check-
ing. This is larger for the byHand model, and is independent of the value of N .
Interestingly, after waiting more than 2 h, we were unable to obtain results from
the model generated with byHand when we increased the N to 3. However, the
model generated with CTOC, when tested using n = 90, was executed in 35 s,
which is still quicker than byHand with N = 2. We also note that amount of
memory used was constant, at 240 MB approx.

Table 2. Time for asserting deadlock freedom of the HD Machine in FDR4

Approach NatValue
range

Result States visited Transitions
visited

Plys visited Exec. time

CTOC 0..1 Passed 811 1,800 39 0.375 s

0..2 Passed 1,761 3,786 39 0.407 s

0..10 Passed 21,169 44,586 39 0.937 s

0..90 Passed 1,369,809 1,369,809 39 35.097 s

byHand 0..1 Passed 9,409 301,617 47 40.826 s

0..2 Incomplete ? ? ? >2 h

We could not get results here for the D241 scheme as its translation of the
HD model resulted in type errors being reported by FDR.

In addition to experiments that varied N above, we also explored how the
number of variables, rather than the size of their datatypes, influenced the check-
ing time. Using a hypothetical example having 12 state variables, checks using
D241 were performed in 35 min, compared to 76 ms using CTOC. We observed
segmentation faults using D241 with a more than 12 variables. However, checks
using CTOC in an example with 42 state variables and NatV alue = 0 .. 30, were
performed in 870 ms. What is clear is that with the CTOC translation scheme,
namely one memory-process per state-variable, we can now handle Circus models
of considerable complexity.

5.2 Ring-Buffer Experiments

Another interesting example was to take the Circus specification of the bounded
reactive ring buffer, RB, from D24.1 [29, Appendix D.2, p. 163], based on the
model presented in [7]. We compared the CTOC translation of this using Cir-
cus2CSP (RBCTOC), with the by-hand translation in D24.1 [29, Appendix D.4,

228 A. O. Gomes and A. Butterfield

Table 3. RingBuffer checks: deadlock and livelock freedom, and determinism.

Test Model Result States visited Transitions Plys Exec. time

Deadlock free RBbyH Passed 8,297,025 16,805,249 44 26.657 s

RBCTOC Passed 1,628 3,109 38 0.145 s

Livelock free RBbyH Passed 8,297,025 16,805,249 44 25.476 s

RBCTOC Passed 1,628 3,109 38 0.151 s

Deterministic RBbyH Passed 9,869,889 19,852,673 69 54.863 s

RBCTOC Passed 2,012 3,853 63 0.159 s

Table 4. Refinement checks between models of the Ring Buffer example

Refinement check Result States visited Transitions visited Plys visited Exec. time

1 RBbyH �FD RBCTOC Passed 1,628 3,109 38 58.019 s

2 RBCTOC �FD RBbyH Passed 8,297,025 16,805,249 44 42.543 s

p166] (RBCTOC). We firstly perform the usual tests like deadlock freedom and
termination checks for theRBCTOC and for the RBCTOC specifications, as illus-
trated in Table 3.

We can see a clear difference between the states visited between the three
approaches, notably those between RBbyH and RBCTOC where the number of
states and transitions visited was reduced considerably, as well as the amount
of time spent by FDR4 to check the assertions.

We also experimented to check the failures-divergences refinement (P �FD

Q) between the three approaches, each pair in both directions. Since we know
that the specification RBCTOC is a translation from the same Circus model of
the handmade translation of RBbyH , we expect that RBbyH and RBCTOC are
equivalent to each other, RBbyH �FD RBCTOC and RBCTOC �FD RBbyH ,
which is true, as seen below in row 1 and 3.

Interestingly, if we compare the states and transitions visited, as well as the
execution time from Tables 3 with 4, given a refinement A �FD B, the states
and transitions visited are almost the same as when checking B for deadlock
freedom.

During our experiments, we also compared our Circus2CSP model with the
Ring Buffer model RBKW , based on [40, Chapter 22], produced using the app-
roach of Ye and Woodcock [41] for translating Circus into CSP||B, for model
checking using ProB [22]. Such an approach is similar [29, p. 116] but makes use
of Z schemas as Circus actions that are currently not available in our translation
scheme. In our experiments, we observed that the model RBKW is refined by
both RBCTOC and RBbyH , but the refinement in the reverse direction does not
hold, i.e., RBKW is not a refinement of neither RBCTOC nor RBbyH , as it is a
more abstract model since its data aspects of specification are defined in B.

Unfortunately, the structure defined for our translation strategy is not fully
supported by ProB, which was used to test RBKW [42]. ProB is another model-

Towards a Model-Checker for Circus 229

checker, which like FDR, also allows the user to animate specifications. It was
originally developed for the B language, but it has been extended and now it
supports other formal languages such as CSP, Z, Event-B [1], as well as combined
languages such as CSP||B. We observed that the use of subtype, in our models,
is not fully supported by the ProB tool, causing some commands like “model-
check” to result in errors. However, we were able to animate our translated
specification using ProB, and to execute the same assertion check, as in FDR:
we obtained similar results to those when running FDR.

On the other side, the tests performed with the CSPM specification of RBKW

using FDR failed the checks for deadlock freedom and determinism. The results
obtained from ProB can be related to what we obtained in FDR in terms of
the behavior of the system: the counterexample given can be used to animate
the CSP||B model in ProB, causing the same effect: deadlock. However, we have
no way to fully compare both approaches since CSP||B takes into account the
system state in ProB, whereas we only have the CSPM side of the model, which
captures the behavior of the system, but does not captures the system state. The
most obvious explanation for the deadlock in RBKW is that the state (modeled
in B) influences control-flow that results in deadlock situations being avoided.

5.3 Compression Experiments

An important aspect when using FDR is the availability of compression tech-
niques [33] in order to reduce the number of states, reducing the time spent
for refinement checking. A compression transforms a labelled-transition system
(LTS) into a corresponding one, which is expected to be smaller and more effi-
cient whilst using it for checks in FDR. Currently, FDR applies compressions
in parallel compositions by default, which is the main structure we use in our
memory model. We explored a few other compression tecniques, such as sbisim,
which determines the maximal strong bisimulation [5], and wbisim, which com-
putes the maximal weak bisimulation. Depending on the compression used, the
number of states visited, were indeed reduced, as illustrated in Table 5.

Table 5. Experimenting CSPM compression techniques with the HD Machine

sbisim+diamond No compression sbisim wbisim

Values

range

States

visited

Exec time

(seconds)

States

visited

Exec time

(seconds)

States

visited

Exec time

(seconds)

States

visited

Exec time

(seconds)

0..10 77 0.499 21,169 0.458 302 0.479 87 0.56

0..120 77 25.096 2,416,749 18.805 302 21.793 87 35.839

0..240 77 114.845 9,556,509 84.803 302 100.112 87 175.846

0..360 77 327.815 21,419,469 235.236 302 269.414 Killed 286.079

0..480 77 668.437 38,005,629 467.602 302 523.825 Killed 525.889

Although the states/transitions/plys visited were considerably reduced using
the compression techniques mentioned above, there was little impact on overall

230 A. O. Gomes and A. Butterfield

execution time, and the number of states visited are independent of the size of
NatV alue, while the number of transitions grows slowly. However, the results
obtained here are related to the model of the HD machine, and it is difficult to
identify which compression technique will be most effective in a general case,
and indeed, further experiments are required.

6 Future Work

Our plans for future work include exploring other industrial-scale case stud-
ies [3,15,17], as a way of identifying the kind of Circus constructs that would be
suitable to have available in our translation tool. We have a particular interest
in specifying a translation strategy for Z schemas used as Circus actions within a
process. The best approach would be to use Z Refinement Calculus [6]. For now,
our tool deals only with those schemas that in fact can be translated into assign-
ments. We intend to explore the operators for Z schemas and the refinement
laws that can be applied accordingly.

In addition, we also plan to establish a link between Circus2CSP and
Isabelle/UTP [11], so that we can use their mechanised UTP semantics for Cir-
cus to verify the correctness of our Haskell implementation. Moreover, our tool
also has a Circus refinement “calculator” embedded in it, which implements the
laws listed in Appendix A of the Deliverable 24.1 [29, p.147], which can easily be
extended to the other refinement laws proved by Oliveira [27] in the near future.

We can eliminate the use of CSPM subtyping in CTOC (the process-per-
variable model), and simplify “get” and “set” prefixes of the forms mget.n.v
and mset.n.v to get n.v and set n.v respectively, where we now have dedicated
channels per variable. However, the relationship of this new form to CTOC is no
longer a simple equivalence as there are now different events in the two models.

Finally, in terms of improvement of our tool, compared to other
approaches [9], it would also be interesting to review the parser of Z and Circus
from Circus2CSP in order to rewrite it to be in conformance with the Interna-
tional Standards Organization (ISO) standards, ISO/IEC 13568:2002 [20], which
describes the syntax, type system and semantics of Z formal notation. Moreover,
we would like to include the libcspm library5 into Circus2CSP in order to be able
to parse the relevant code included in our definition of the assertion LATEX envi-
ronment. Such an attempt would help a Circus2CSP user wishing to review any
fault in the CSPM specification translated from Circus.

Finally, we can envisage work in the future that might extend the benefits
gained here to the wider model-checking community. One possibility is extending
the translator to target model-checkers other than FDR. This would require us
to have either a rigourosly defined embedding, of the subset of CSP that we
produce, into the modelling language of the proposed checker, or have a way
of linking the semantics of the target modelling language to Circus and/or CSP
to verify the correctness of direct output in that language. The second aspect

5 https://github.com/tomgr/libcspm.

https://github.com/tomgr/libcspm

Towards a Model-Checker for Circus 231

concerns the possibility that our approach can be adapted to work within another
model-checking eco-system entirely. ne key advantage in having a state-rich form
is the ability to easily describe state changes that only modify small parts of the
state (compare P = w := y−x;Q with P (u, v, w, x, y, z) = Q(u, v, y−x, x, y, z)).
We note that the CADP system, which is based on LOTOS (state-poor), has
already moved in this direction, with tools now working with LTN (LOTOS
New Technology, state-rich), using a LTN to LOTOS translator [13]. Do other
modelling notations have state-rich forms that are hard to check, but have good
checkers for state-poor forms?

7 Conclusions

In this paper we evaluated possible approaches for translating Circus into CSPM ,
for model checking using FDR. Our main concern was how the state of a Circus
process could be captured in CSPM in such a way that FDR could handle a large
amount of state variables and an even larger range of values. We then produced
several models of CSPM specifications translated from Circus and also explored
the consequences of including both state invariants and preconditions of Circus
actions in the CSPM models. Such a research resulted in the development of
Circus2CSP, a tool for model checking Circus, through the automatic translation
from Circus to CSPM , and therefore, being able to use FDR for refinement
checks. Circus2CSP development was developed in 24 months, and has a total of
over 26 thousand lines of Haskell code.

We observed that a distributed memory model, rather than a centralised
one, as proposed by Mota et al. [24] is beneficial for larger states. Moreover,
the time spent as well as the state exploration from FDR’s refinement checks is
larger when capturing preconditions and state invariants. Another observation
from our experiments is that we were able to reduce the state exploration even
more by refining our model to one where the bindings were explicitly defined
by Circus2CSP, rather than considering a non-deterministic choice over such
bindings, as per the original manual translation. This is justified by assuming
that every state variable should be initialised prior to its use in the process. The
outcome is that we now have a mechanised translator from Circus to CSPM that
produces tractable models, and allows the use of FDR on larger case studies
than has been possible up to now.

We should clarify that our approach to produce parametrised processes is
not an attempt to use the bindings data-independently [32, p. 453]. That is
solving a different problem, namely finding a finite size of a type that is suitable
to demonstrate the correctness for any finite or even infinite size of such type.
Moreover, to date, our approach is unable to generate counterexamples or any
kind of back annotation to the Circus models, and thus is in our plans for future
work.

We used the HD machine and the ring buffer case studies as examples in
order to test the capabilities of our tool whilst model checking the automati-
cally translated models in FDR. Our aim was to contribute to reducing FDR’s

232 A. O. Gomes and A. Butterfield

workload in order to model check larger systems. We learned that a practical
implementation/mechanisation of a theory may reveal difficulties that could not
otherwise be discovered without extensive use of a tool prototype, especially
when applying it to larger case studies.

Acknowledgments. This work was funded by CNPq (Brazilian National Council
for Scientific and Technological Development) within the Science without Borders pro-
gramme, Grant No. 201857/2014-6, and partially funded by Science Foundation Ireland
grant 13/RC/2094.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

3. Beg, A., Butterfield, A.: Linking a state-rich process algebra to a state-free algebra
to verify software/hardware implementation. In: Proceedings of the 8th Interna-
tional Conference on Frontiers of Information Technology - FIT 2010, pp. 1–5
(2010). http://portal.acm.org/citation.cfm?doid=1943628.1943675

4. Beg, A., Butterfield, A.: Development of a prototype translator from Circus to
CSPm. In: Proceedings of ICOSST 2015–2015 International Conference on Open
Source Systems and Technologies, pp. 16–23, December 2016

5. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal weak and
other bisimulations. Form. Asp. Comput. 28(3), 381–407 (2016). https://doi.org/
10.1007/s00165-016-0366-2

6. Cavalcanti, A., Woodcock, J.C.P.: ZRC - a refinement calculus for Z. Form. Asp.
Comput. 10(3), 267–289 (1998). http://link.springer.com/10.1007/s001650050016,
https://doi.org/10.1007/s001650050016

7. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A refinement strategy for
Circus. Form. Asp. Comput. 15, 146–181 (2003). https://doi.org/10.1007/s00165-
003-0006-5

8. Conserva Filho, M., Oliveira, M.V.M.: Implementing tactics of refinement in CRe-
fine. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS,
vol. 7504, pp. 342–351. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33826-7 24

9. CZT Partners: Community Z tools, October 2006. czt.sourceforge.net/
10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM 18(8), 453–457 (1975). http://portal.acm.org/citation.
cfm?doid=360933.360975%5Cn

11. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14806-9 2

12. Freitas, L.: Model checking Circus. Ph.D. thesis, Department of Computer Science,
The University of York, UK (2005)

13. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

https://doi.org/10.1007/978-3-319-33600-8_29
http://portal.acm.org/citation.cfm?doid=1943628.1943675
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/s00165-016-0366-2
http://link.springer.com/10.1007/s001650050016
https://doi.org/10.1007/s001650050016
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/s00165-003-0006-5
https://doi.org/10.1007/978-3-642-33826-7_24
https://doi.org/10.1007/978-3-642-33826-7_24
http://czt.sourceforge.net/
http://portal.acm.org/citation.cfm?doid=360933.360975%5Cn
http://portal.acm.org/citation.cfm?doid=360933.360975%5Cn
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/978-3-319-68270-9_1

Towards a Model-Checker for Circus 233

14. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 – a
modern model checker for CSP. Tools Algorithms Constr. Anal. Syst. 8413, 187–
201 (2014). http://www.cs.ox.ac.uk/projects/fdr/manual/

15. Gomes, A.O.: Formal Specification of the ARINC 653 Architecture Using Circus
(2012). http://etheses.whiterose.ac.uk/id/eprint/2683

16. Gomes, A.O., Butterfield, A.: Modelling the haemodialysis machine with Circus.
In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 409–424. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33600-8 34

17. Gomes, A.O., Oliveira, M.V.M.: Formal specification of a cardiac pacing system.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 44

18. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper Saddle
River (1998)

19. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation - International Edition, 2nd edn. Addison-Wesley,
Boston (2003)

20. ISO/IEC: ISO/IEC 13568:2002 Information Technology - Z formal specification
notation - Syntax, type system and semantics. Technical report (2002). http://
standards.iso.org/ittf/PubliclyAvailableStandards/c021573 ISO IEC 13568 2002
(E).zip

21. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 48

22. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

23. Morgan, C.: Programming from Specifications. Prentice Hall International Series
in Computer Science, vol. 16, 2nd edn. Prentice Hall, Upper Saddle River (1994).
https://dl.acm.org/citation.cfm?id=184737

24. Mota, A., Farias, A., Didier, A., Woodcock, J.: Rapid prototyping of a semanti-
cally well founded Circus model checker. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 235–249. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 17

25. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Form. Asp. Comput. 26(3), 441–490 (2014)

26. Oliveira, D., Oliveira, M.V.M.: Joker: an animation framework for formal specica-
tions. In: SBMF 2011 - Short Papers, pp. 43–48. ICMC/USP, September 2011

27. Oliveira, M.V.M.: formal derivation of state-rich reactive programs using Circus.
Ph.D. thesis, University of York, UK (2005). http://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.428459

28. Oliveira, M.V.M., Cavalcanti, A., Woodcock, J.C.P.: Unifying theories in
ProofPower-Z. Form. Asp. Comput. 25, 133–158 (2013). https://doi.org/10.1007/
s00165-007-0044-5

29. Oliveira, M.V.M., Sampaio, A., Antonino, P., Ramos, R., Cavalcanti, A., Wood-
cock, J.C.P.: Compositional analysis and design of CML models. Technical report
D24.1, COMPASS Deliverable (2013). http://www.compass-research.eu/Project/
Deliverables/D241.pdf

http://www.cs.ox.ac.uk/projects/fdr/manual/
http://etheses.whiterose.ac.uk/id/eprint/2683
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-642-05089-3_44
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
https://doi.org/10.1007/978-3-642-24485-8_48
https://doi.org/10.1007/978-3-540-45236-2_46
https://dl.acm.org/citation.cfm?id=184737
https://doi.org/10.1007/978-3-319-10431-7_17
https://doi.org/10.1007/978-3-319-10431-7_17
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://doi.org/10.1007/s00165-007-0044-5
https://doi.org/10.1007/s00165-007-0044-5
http://www.compass-research.eu/Project/Deliverables/D241.pdf
http://www.compass-research.eu/Project/Deliverables/D241.pdf

234 A. O. Gomes and A. Butterfield

30. Oliveira, M.V.M., Sampaio, A.C.A., Conserva Filho, M.S.: Model-checking Circus
state-rich specifications. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 39–54. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10181-1 3

31. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator and
model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-
5 25

32. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River (1973)

33. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 7

34. Saaltink, M., Meisels, I., Saaltink, M.: The Z/EVES reference manual (for ver-
sion 1.5). Reference manual, ORA Canada, pp. 72–85 (1997). http://dl.acm.org/
citation.cfm?id=647282.722913

35. Scattergood, B.: The semantics and implementation of machine-readable CSP, pp.
1–179 (1998). http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299037

36. Schneider, S.: Concurrent and Real-Time Systems. Wiley, Chichester (2000)
37. Woodcock, J.C.P., Bryans, J., Canham, S., Foster, S.: The COMPASS modelling

language: timed semantics in UTP, pp. 1–32 (2014)
38. Woodcock, J.C.P., Cavalcanti, A.: The semantics of Circus. In: ZB 2002: formal

specification and development in Z and B. In: 2nd International Conference of B
and Z Users Grenoble (2002)

39. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model checking
Circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582,
pp. 237–252. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841 17

40. Woodcock, J.C.P., Davies, J.: Using Z, Specification, Refinement, and Proof. Pren-
tice Hall International Series in Computer Science. Prentice-Hall Inc., Upper Saddle
River (1996)

41. Ye, K.: Model checking of state-rich formalisms. Ph.D. thesis, University of York
(2016)

42. Ye, K., Woodcock, J.C.P.: Model checking of state-rich formalism Circus by linking
to CSP——B. Int. J. Softw. Tools Technol. Transf. 19(1), 73–96 (2017). https://
doi.org/10.1007/s10009-015-0402-1

https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/3-540-60630-0_7
http://dl.acm.org/citation.cfm?id=647282.722913
http://dl.acm.org/citation.cfm?id=647282.722913
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299037
https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/s10009-015-0402-1
https://doi.org/10.1007/s10009-015-0402-1

Circus2CSP: A Tool for Model-Checking
Circus Using FDR

Artur Oliveira Gomes1(B) and Andrew Butterfield2

1 Universidade Federal de Mato Grosso do Sul, Corumbá, Brazil
artur.gomes@ufms.br

2 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
butrfeld@tcd.ie

Abstract. In this paper, we introduce Circus2CSP, a tool that auto-
matically translates Circus into CSPM , with an implementation based
on a published manual translation scheme. This scheme includes new and
modified translation rules that emerged as a result of experimentation.
We addressed issues with FDR state-space explosion, by optimising our
models using the Circus Refinement Laws. We briefly describe the usage
of Circus2CSP along with a discussion of some experiments comparing
our tool with the literature.

1 Introduction

Among the range of verification techniques, model checking is used for exploring
all the possible states a reactive system can reach. The focus of model-checking
is on the system’s behaviour rather than how the model would manage its data.
Therefore, a system whose behaviour strongly relies on its data may become
difficult to check, since the data may range over infinite domains.

There has been an effort from the community in order to design a systematic
approach for model-checking Circus, which due to its combination of formalisms,
is quite a challenge. Circus [33] is a formal language that combines structural
aspects of a system using the Z language [35] and the behavioural aspects using
CSP [31], along with the refinement calculus [22] and Dijkstra’s guarded com-
mands [7]. Its semantics is based on the Unifying Theories of Programming
(UTP) [15]. As an initial attempt to model-check Circus, we participated in the
ABZ’16 haemodialysis case study [12], producing a Circus specification, manually
translating it into CSPM , which we then checked with FDR [9]. Moreover, when
translating Circus into CSP, we adapted the Circus model to map the structural
Z parts into appropriate CSP.

Unlike in Circus processes, an explicit notion of state variables is not present
in CSP processes. Therefore, in order to translate Circus state, we would either
translate it into a memory process [17,23,29], allowing other processes to read
and write the values by synchronising on memory ‘get’ and ‘put’ events, or to
transform the state variables into process parameters, as used by Beg [4]. For
instance, we captured the state-based features of Circus in CSP using a memory
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 235–242, 2019.
https://doi.org/10.1007/978-3-030-30942-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_15

236 A. O. Gomes and A. Butterfield

process synchronising on channels for reading and updating the values of the
state variables. Such an approach was also used while model checking [10] the
ARINC 653 [2] architecture.

In this paper, we present Circus2CSP1 [13], a tool capable of model-checking
specifications designed in Circus using FDR. It was developed by extending
JAZA [32], a Z animator written in Haskell, in order to cover the Circus abstract
syntax. The rest of the paper is organized as follows: In Sect. 2, we discuss the
main goal of this work. A brief description of some experiments using Circus2CSP
is presented in Sect. 3. The paper is concluded in Sect. 4.

2 Circus2CSP: Requirements and Goals

Our translation is based on that developed by Oliveira in the Compass
project [26,27], which is based on repeated application of carefully selected Cir-
cus refinement laws, all of which happen to be equivalences. Such a translation
uses set of rules for refining state-rich Circus into stateless processes that can be
mapped into CSPM .

Our focus while model-checking Circus is to produce a model in CSPM

where FDR can evaluate using as little computing resources as possible. As
such, we provide a refined model from the strategy presented by Oliveira et al.
[26], where our tool is capable of producing CSPM models from larger specifica-
tions and making it possible for model-checking them using FDR. We highlight
that because FDR is a refinement checker, it is not possible to perform temporal
logic checks, which is further discussed by Lowe [20].

The entire toolset is developed as an extension of JAZA, which parses Z
specifications written in LATEX, the same input used by the Community Z Tools.
Our goal was to produce a framework using the infrastructure available from
JAZA, where the parser for Z was extended and now supports Circus, and from
there, we include new modules like the translation tool and the refinement calcu-
lator for Circus. Moreover, our tool is linked to FDR, and may also be integrated
with other tools in the future. Our contribution here is mainly related to the
fulfilment of a tool for automatically model-checking Circus.

The reason we adopted the translation presented by Oliveira et al., is that,
even though it is a manual translation, with no tool support involved, each trans-
lation step is justified by the Circus refinement laws, which have been formally
proved to be correct. Currently, their approach covers a subset of Circus. How-
ever, our investigation [14] through experiments with the implementation of such
rules demonstrated that such an initial and theoretical approach was restricted
to a subset of the possible Circus specifications: those dealing with only one
same type for all variables within the state of those processes. Thus, we had to
implement not only a tool for the translation but also to refine that translation
strategy in order to support a more realistic set of specifications: those using
mixed types among their state variables.

1 https://bitbucket.org/circusmodelcheck/circus2csp.

https://bitbucket.org/circusmodelcheck/circus2csp

Circus2CSP: A Tool for Model-Checking Circus Using FDR 237

We also experimented with the efficiency of FDR concerning the scale of the
specifications. For such, we used the haemodialysis case study [3,12], a com-
plex system which behaves according to the values of dozens of state variables.
Thus, we refined the memory model in order to optimise the task of reading and
updating the state variables from the Circus processes.

The outcome is that we now have a mechanised translator from Circus to
CSPM that produces tractable models, and allows the use of FDR on larger
case studies than have been possible up to now. The new developed approach,
as described in this paper, is sound since we were able to prove, by hand as well
as using FDR as a refinement checker, that the memory model from Oliveira et
al. is refined by the model discussed here [11, p. 77].

Our tool has an automatic refinement calculator for Circus2CSP, which han-
dles a selected set of Circus refinement laws used according to [26, Appendix A,
p. 147]. Moreover, we experimented with a strategy for refining Z schemas into
“schema-free” Circus actions using Z Refinement Calculus [6].

Deliverables. In summary, our research towards model checking Circus resulted
in the following contributions:

– A tool for automatically translating a subset of Circus into CSPM :
Implementation of a tool based on the work of Oliveira et al. [26] where one
is able to translate Circus models written in LATEX into CSPM , and then, be
able to perform model-checking and refinement checks using FDR.

– An automatic Circus refinement calculator: As part of the translation
strategy, the Circus refinement laws are applied to the processes and actions.
In order to automate the translation as much as possible, we provide an
automatic Circus refinement calculator.

– A transformation of some Z schemas into appropriate Circus con-
structs for translating into CSPM : The translation approach presented
by Oliveira does not handle Z schemas directly, but only after normalisation.
However, such a translation was not yet formally proved to be correct. We
explored ways of translating Z schemas into Circus actions, specifically, those
schemas where the translation results in a set of assignments.

– An improved Circus model that supports multiple types within a
specification: The generated CSPM model from Oliveira et al. using multi-
ple types is not supported by FDR, since it contains some auxiliary functions
that are seen by FDR as polymorphic functions, which are not supported by
such a tool. We, however, introduce a new data structure that treats each
type with its own set of auxiliary functions.

– A refinement of the memory model from Oliveira et al. [26]: We
provide a refined memory model with distributed memory cells updating and
retrieving the values of the state variables, allowing FDR to handle a large
number of state variables in a process, optimizing FDR’s effort to check such
models.

238 A. O. Gomes and A. Butterfield

– New rules for mapping Circus to CSPM : We extended the mapping func-
tions for expressions and predicates from Z, as well as mapping functions for
those actions specifically related to the Memory model.

– A mechanism that integrates Circus2CSP with FDR: We connected our
tool to the “terminal-mode” interface of FDR, in order to be able to run
checks straight from our tool. Unfortunately, we have no direct access to
the code of FDR, and thus, we have to manually parse the results from the
execution of FDR’s “refine” command.

– An automatic assertion generator for checking with FDR: Our tool
is able to generate assertion checks for refinement, deadlock, livelock and
determinism checks for the loaded specification.

Tool Restrictions. Our tool expects Circus specifications as input, written in
LATEX, very similar to the way Z paragraphs are written in LATEX, which is a
de facto standard for writing Circus specifications. We assume that the Circus
document is already type checked by existing tools [21].

Our tool supports most of the Circus syntax, avoiding those constructs not
handled in [26, p. 78] such as: no writting to input variables; external choice
only among prefixed actions (those guaranteed to participate in an event before
doing anything else, such as assignment); and no miraculous specifications.

Furthermore, some features are not yet supported such as: dealing with state
invariants or preconditions in the Z schemas; non-determinism of data is not
supported; and the consequences of nested parallelism and hiding with non-
disjoint name sets have not been handled yet. These are a consequence of this
being an automated translation, rather than the manual one prescribed in [26].
Finally, the translation of Z schemas used as Circus actions is restricted to those
resulting in assignments.

3 Experiments with Circus2CSP

During our research we performed tests using our tool, Circus2CSP, exploring
ways of overcoming any limitations from FDR, as well as comparing our approach
with others from the literature.

Firstly, we explore the interference of invariants and preconditions in CSPM ,
using the chronometer model from Oliveira [25, pp. 34–41], comparing the model
from Circus2CSP with the translation from Oliveira [26]. We identified that using
Circus2CSP, the time spent by FDR to check for deadlock freedom, for example,
with a model with the natural numbers ranging from zero to sixty (0..60), was
of around 3 min. However, using Oliveira’s approach it took nearly three hours.
In general, the CSPM models translated using our tool were evaluated by FDR
using a much smaller state space and were checked in up to 95% less time than
all the other models we tried derived from Oliveira’s. However, we observed no
correlation between time and state visited.

Then, we compare the translation of the HD model using Circus2CSP with
the model from [12]. We observed a reduction of over 91% of the state explored,

Circus2CSP: A Tool for Model-Checking Circus Using FDR 239

as well as the execution time. Moreover, the manual translation didn’t allow us
to run FDR with a larger range of values for natural numbers, usually ranging
from 0 up to 2. However, with Circus2CSP, we were able to go beyond the range
0 up to 90 in less than a minute. Such a result demonstrated that our approach is
capable of handling large-scale case studies like the haemodialysis machine [12]
and the ring buffer [26,37].

We also evaluated the effects of using some compression techniques available
in FDR using the HD model as an example. Although the states/transitions/plys
visited were considerably reduced using the compression techniques such as
sbisim, which determines the maximal strong bisimulation [5], and wbisim,
which computes the maximal weak bisimulation, there was little impact on over-
all execution time, and the number of states visited are independent of the range
of natural numbers used, while the number of transitions grows slowly. However,
it is difficult to identify which compression technique will be most effective in a
general case, and indeed, further experiments are required.

Finally, we compare different approaches for modeling the Ring Buffer case
study [26,37], using FDR, in order to test the capabilities of our tool while
model-checking the translated models, in contrast to the limitations of ProB [19].
Unfortunately, the structure defined for our translation strategy is not fully sup-
ported by ProB, which was used to test the model generated with the translation
strategy from Ye [37]. ProB is another model-checker, which was originally devel-
oped for the B language, and was extended to support CSP, Z, Event-B [1], as
well as combined languages such as CSP||B. We observed that some of the con-
structs used in our CSPM model, such as subtype, are not yet supported by
ProB. Nevertheless, we were able to use ProB’s animator and to execute the
same assertion check, as in FDR, obtaining similar results.

However, the tests performed with the CSPM specification of Ye using FDR
failed to checks for deadlock freedom and determinism. The results obtained from
ProB can be related to what we obtained in FDR in terms of the behavior of the
system: the counterexample given from FDR can be used to animate the CSP||B
model in ProB, causing the same effect: deadlock. Although, our experiment was
limited since CSP||B takes into account the system state in ProB. In such model,
the CSPM file generated from Ye captures only the behavior of the system, but
does not captures the system state. We reckon that the deadlock was caused
because the state (modeled in B) can interfere in the system behavior in order
to avoid deadlocks.

4 Conclusions

In this paper, we briefly introduced Circus2CSP, a tool capable of model-checking
Circus specifications using FDR, through a translation strategy from Circus
into CSPM . It comprises a series of translation rules, combined with Circus
refinement laws. One can perform refinement checks using FDR directly from
Circus2CSP’s command-line. The tool can be downloaded freely from https://
bitbucket.org/circusmodelcheck/.

https://bitbucket.org/circusmodelcheck/
https://bitbucket.org/circusmodelcheck/

240 A. O. Gomes and A. Butterfield

We improved Oliveira’s [26] translation strategy in a few ways: handling a
wider mix of datatypes; translating Z schemas easily “compiled” to assignments;
coping better with potentially large state spaces; and close integration with FDR.
Some of the equivalence laws used in the translation have side-conditions that
lead to proof obligations. Our tool does not discharge these, leaving them to the
user to handle by other means.

The modifications for the memory model developed for our tool are similar
to what was presented by Mota et al. [24], where interleaving between processes,
one for each state variable, was proposed. In fact, the memory model used in [26]
was based on the one by Mota et al., and was expanded with the inclusion of a
terminate signal, and, rather than one process for each variable, it would offer
all possible mget and mset for all state variables at the same time.

A key principle in critical software development methods is that all global
variables should be intialised pretty much immediately [2]. In a Circus context,
if all the assignments are done are before any observable event occurs, then
its behaviour is that of a (simultaneous) assignment s′ = sinit, where s is the
(aggregated) global state. This allows us to introduce an additional translation
step that replaces a non-deterministic choice over all possible starting values
of s by one arbitrary choice of starting value for s. This is normally a proper
refinement, but with initialisation as above, results in being an equivalence. This
trick dramatically improved the performance of FDR.

Some related work on techniques for model-checking Circus was presented by
Freitas [8] where a refinement model checker based on automata theory [16] and
the operational semantics of Circus [34] was formalised in Z/Eves [30]. However,
Freita’s Circus model checker is restricted to a subset of Circus actions and does
not support the notion of Circus processes. Moreover, Nogueira et al. [23] also
presented a prototype of a model checker for Circus within the Microsoft FOR-
MULA [18] framework. However, they could not provide a formal proof of the
soundness of their approach, since FORMULA does not have an available for-
mal semantics. Model-checking Circus was investigated by Ye and Woodcock [36],
who defined a link from Circus to CSP‖B with model-checking using ProB [28].
However, ProB is a limited tool not supporting multiprocessors nor multithread-
ing. Finally, Beg [4] prototyped an automatic translation that supports a subset
of Circus constructs, supporting only Skip, prefixing action, sequential compo-
sition, assignments, if statements, and guards with simple predicates.

For future work, we have plans for specifying a translation strategy for Z
schemas used as Circus actions within a process. The best approach would be to
use Z Refinement Calculus [6]. For now, our tool deals only with those schemas
that in fact can be translated into assignments. We intend to explore the oper-
ators for Z schemas and the refinement laws that can be applied accordingly.

Acknowledgements. This work was funded by CNPq (Brazilian National Council
for Scientific and Technological Development) within the Science without Borders pro-
gramme, Grant No. 201857/2014-6, and partially funded by Science Foundation Ireland
grant 13/RC/2094.

Circus2CSP: A Tool for Model-Checking Circus Using FDR 241

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Aeronautical Radio, I.A.: ARINC 653: Avionics Application Standard Software
Interface, November 2006

3. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

4. Beg, A., Butterfield, A.: Development of a prototype translator from Circus to
CSPm. In: 2015 International Conference on Open Source Systems and Technolo-
gies, Proceedings, ICOSST 2015, pp. 16–23, December 2016

5. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal weak and
other bisimulations. Formal Aspects Comput. 28(3), 381–407 (2016). https://doi.
org/10.1007/s00165-016-0366-2

6. Cavalcanti, A., Woodcock, J.C.P.: ZRC - a refinement calculus for Z. Formal
Aspects Comput. 10(3), 267–289 (1998). https://doi.org/10.1007/s001650050016

7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). http://portal.acm.org/citation.cfm
doid=360933.360975%5Cn

8. Freitas, L.: Model checking circus. Ph.D. thesis, Department of Computer Science,
The University of York, UK (2005)

9. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 - a
modern model checker for CSP. Tools Algorithms Constr. Anal. Syst. 8413, 187–
201 (2014). https://www.cs.ox.ac.uk/projects/fdr/manual/

10. Gomes, A.O.: Formal Specification of the ARINC 653 Architecture Using Circus
(2012). https://etheses.whiterose.ac.uk/id/eprint/2683

11. Gomes, A.O.: Model-checking circus with FDR using Circus2CSP. Ph.D. thesis,
Trinity College Dublin (2019). https://www.tara.tcd.ie/handle/2262/86009

12. Gomes, A.O., Butterfield, A.: Modelling the haemodialysis machine with circus.
In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 409–424. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33600-8 34

13. Gomes, A.O., Butterfield, A.: Circus2CSP - a translator from circus to CSPm
(2018). https://bitbucket.org/circusmodelcheck/circus2csp

14. Gomes, A.O., Butterfield, A.: Towards a model-checker for circus. In: 3rd World
Congress on Formal Methods. Springer, Berlin (2019)

15. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper Saddle
River (1998)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation - International Edition, 2nd edn. Addison-Wesley,
Boston (2003)

17. Hopkins, D., Roscoe, A.W.: SVA, a tool for analysing shared-variable programs.
Electronic Notes in Theoretical Computer Science, pp. 1–5 (2007). https://www.
cs.ox.ac.uk/people/bill.roscoe/publications/119.pdf

18. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 48

19. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

https://doi.org/10.1007/978-3-319-33600-8_29
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/s001650050016
https://dl.acm.org/citation.cfm?doid=360933.360975%7B%25%7D5Cn
https://dl.acm.org/citation.cfm?doid=360933.360975%7B%25%7D5Cn
https://www.cs.ox.ac.uk/projects/fdr/manual/
https://etheses.whiterose.ac.uk/id/eprint/2683
https://www.tara.tcd.ie/handle/2262/86009
https://doi.org/10.1007/978-3-319-33600-8_34
https://doi.org/10.1007/978-3-319-33600-8_34
https://bitbucket.org/circusmodelcheck/circus2csp
https://www.cs.ox.ac.uk/people/bill.roscoe/publications/119.pdf
https://www.cs.ox.ac.uk/people/bill.roscoe/publications/119.pdf
https://doi.org/10.1007/978-3-642-24485-8_48

242 A. O. Gomes and A. Butterfield

20. Lowe, G.: Specification of communicating processes: temporal logic versus
refusals-based refinement. Formal Aspects Comput. 20(3), 277–294 (2008).
https://link.springer.com/content/pdf/10.1007%2Fs00165-007-0065-0.pdf

21. Malik, P., Utting, M.: CZT: a framework for Z tools. In: Treharne, H., King, S.,
Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 65–84. Springer,
Heidelberg (2005). https://doi.org/10.1007/11415787 5. http://czt.sourceforge.net

22. Morgan, C.: Programming from Specifications. Prentice Hall International Series
in Computer Science, 2nd edn. vol. 16. Prentice Hall (1994). https://dl.acm.org/
citation.cfm?id=184737

23. Mota, A., Farias, A., Didier, A., Woodcock, J.: Rapid prototyping of a semantically
well founded circus model checker. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 235–249. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10431-7 17

24. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects Comput. 26(3), 441–490 (2014)

25. Oliveira, M.V.M.: Formal derivation of state-rich reactive programs using circus.
Ph.D. thesis, University of York, UK (2005). https://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.428459

26. Oliveira, M.V.M., Sampaio, A., Antonino, P., Ramos, R., Cavalcanti, A., Wood-
cock, J.C.P.: Compositional analysis and design of CML models. Technical report
D24.1, COMPASS Deliverable (2013). https://www.compass-research.eu/Project/
Deliverables/D241.pdf

27. Oliveira, M.V.M., Sampaio, A.C.A., Conserva Filho, M.S.: Model-checking circus
state-rich specifications. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 39–54. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10181-1 3

28. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator and
model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-
5 25

29. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River (1973)

30. Saaltink, M., Meisels, I., Saaltink, M.: The Z/EVES Reference Manual (for Ver-
sion 1.5). Reference Manual, ORA Canada, pp. 72–85 (1997). https://dl.acm.org/
citation.cfm?id=647282.722913

31. Schneider, S.: Concurrent and Real-Time Systems. Wiley, Chichester (2000)
32. Utting, M.: Jaza User Manual and Tutorial, June 2005
33. Woodcock, J., Cavalcanti, A.: The semantics of circus. In: Bert, D., Bowen,

J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1 10

34. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model checking
circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582,
pp. 237–252. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841 17

35. Woodcock, J.C.P., Davies, J.: Using Z, Specification, Refinement, and Proof. Pren-
tice Hall International Series in Computer Science. Prentice Hall Inc., Upper Saddle
River (1996)

36. Ye, K.: Model checking of state-rich formalisms. Ph.D. thesis, University of York
(2016)

37. Ye, K., Woodcock, J.C.P.: Model checking of state-rich formalism circus by linking
to CSP—B. Int. J. Softw. Tools Technol. Transf. 19(1), 73–96 (2017). https://doi.
org/10.1007/s10009-015-0402-1

https://link.springer.com/content/pdf/10.1007%2Fs00165-007-0065-0.pdf
https://doi.org/10.1007/11415787_5
http://czt.sourceforge.net
https://dl.acm.org/citation.cfm?id=184737
https://dl.acm.org/citation.cfm?id=184737
https://doi.org/10.1007/978-3-319-10431-7_17
https://doi.org/10.1007/978-3-319-10431-7_17
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428459
https://www.compass-research.eu/Project/Deliverables/D241.pdf
https://www.compass-research.eu/Project/Deliverables/D241.pdf
https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-319-10181-1_3
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/978-3-540-73210-5_25
https://dl.acm.org/citation.cfm?id=647282.722913
https://dl.acm.org/citation.cfm?id=647282.722913
https://doi.org/10.1007/3-540-45648-1_10
https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/s10009-015-0402-1
https://doi.org/10.1007/s10009-015-0402-1

Model Checking

How Hard Is Finding Shortest
Counter-Example Lassos in Model

Checking?

Rüdiger Ehlers(B)

Clausthal University of Technology, Clausthal-Zellerfeld, Germany
ruediger.ehlers@tu-clausthal.de

Abstract. Modern model checkers help system engineers to pinpoint
the reason for the faulty behavior of a system by providing counter-
example traces. For finite-state systems and ω-regular specifications, they
come in the form of lassos. Lassos that are unnecessarily long should be
avoided, as they make finding the cause for an error in a trace harder.

We give the first thorough characterization of the computational com-
plexity of finding the shortest and approximately shortest counter-exam-
ple lassos in model checking for the full class of ω-regular specifications.
We show how to build (potentially exponentially larger) tight automata
for arbitrary ω-regular specifications, which can be used to reduce find-
ing shortest counter-example lassos for some finite-state system to find-
ing a shortest accepting lasso in a (product) Büchi automaton. We then
show that even approximating the size of the shortest counter-example
lasso is an NP-hard problem for any polynomial approximation function,
which demonstrates the hardness of obtaining short counter-examples in
practical model checking. Minimizing only the length of the lasso cycle is
however possible in polynomial time for a fixed but arbitrary upper limit
on the size of strongly connected components in specification automata.

1 Introduction

With model checking, we can exhaustively test if a reactive system (or a model
of it) satisfies a given specification. A key feature of most model checking tools
is that they provide a counter-example whenever this is not the case. Counter-
examples are helpful for the system engineer to understand the reason for non-
satisfaction and to find out whether the model is erroneous and hence needs to
be fixed, or whether the design itself has an error, which necessitates refining
the design. For safety properties, such a counter-example can be a finite trace,
where the violation of the property becomes apparent with the last state of the
trace. For a specification outside of the set of safety properties such as a liveness
property, a finite trace cannot show the absence of a specification violation in

This work was supported by the German Science Foundation (DFG) under Grant
No. 322591867. It was inspired by discussions at Dagstuhl seminar 19081.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 245–261, 2019.
https://doi.org/10.1007/978-3-030-30942-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_16

246 R. Ehlers

the model. In this case, an infinite trace is needed, and if and only if a finite-
state system does not satisfy an ω-regular specification, there is a lasso-shaped
counter-example that can be presented to the engineer. Such lassos consist of
a handle that shows how the system initially evolves, followed by a cycle that
shows repetitive behavior that the system can follow indefinitely long. The trace
consisting of following the handle once and cycle infinitely often is then the
counter-example.

To fulfill the promise of helping the system engineer with revising the model
of the design, a counter-example needs to be understandable. While a full formal-
ization of this requirement is difficult, it is commonly agreed on that counter-
examples should be short, as deriving the core reason for the violation of overly
long counter-examples is cumbersome. The length of counter-example lassos can
be defined both over the lengths of the handle and the cycle, but the most com-
mon definition is the sum of these. Finding a shortest counter-example lasso
in a Büchi automaton that models the intersection between the complement of
the specification and the traces that the system permits is computationally easy
as polynomial-time algorithms are known for this task [11,18]. The intersection
Büchi automaton in this context is built from a finite-state machine descrip-
tion of the system and a Büchi automaton representation of the specification.
This means that the syntactic structure of the latter influences the length of the
counter-example lassos in the product, and hence finding a shortest lasso in it
does not mean that the lasso’s projection on the system FSM yields a shortest
lasso in the FSM alone. Hence, following this approach can lead to unnecessarily
long counter-examples.

When the specification of the system is given as a linear temporal logic (LTL)
property, this problem can however be avoided [17]. The translation from LTL
to a Büchi automaton can be made tight, i.e., such that it ensures that lassos
in the finite-state machine system description along which a specification is vio-
lated give rise to lassos in the product automaton of the same size. In this way,
shortest counter-example lassos are present in the product automaton. The con-
struction is however bound to LTL and algorithms that post-process specifica-
tion Büchi automata to reduce their size or improve their amenability for model
checking [19] can break tightness. Since such post-processing procedures have
been shown to be important for good model checking performance, computing
shortest counter-example lassos for LTL specifications remains practically more
difficult than computing any counter-example.Even more important, novel spec-
ification logics such as linear dynamic logic (LDL, [4]) and property specification
logic (PSL, [7]) have recently been proposed to achieve full ω-regular expressiv-
ity and to support the industrial adoption of model checking techniques. The
results from Schuppan and Biere [17] do not carry over to these logics, hence
leaving a gap for the question of how difficult the problem of obtaining shortest
counter-example lassos for these logics and ω-regular specifications in general is.

In this paper, we revisit the computational hardness of the problem of com-
puting shortest counter-example lassos for arbitrary ω-regular specifications. We
start by showing that by applying two constructions by Calbrix et al. [2] and

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 247

Farzah et al. [9] in succession, we can translate an arbitrary Büchi automaton
into an equivalent tight automaton. The construction leads to an exponential
blow-up while already for the safety case, the lower bound identified by Kupfer-
man and Vardi [14] is also exponential. While a tight Büchi automaton can be
used to find a shortest counter-example lasso, the automaton blow-up leads to
the question if there is a more efficient way to compute shortest counter-example
lassos with specification automata that are not tight. To study this question, we
define the problem of finding a short component lasso in a Büchi automaton that
is the product of a specification automaton and a finite-state machine. While it
is relatively easy to show that the problem is NP-complete, we mainly examine
the approximation hardness of the problem, as approximately shortest counter-
example lassos may also suffice in practical applications. Unfortunately, it turns
out that the problem is also NP-hard to approximate within any polynomial
approximation function. On the positive side, we give a polynomial-time con-
struction for minimizing the lassos cycle length for specification Büchi automata
with small strongly connected components (of a fixed maximal size), which are
common when model checking against liveness properties.

The hardness results that we present provide an a-posteriori justification for
heuristic approaches to finding short counter-example lassos in model checking.

1.1 Related Work

Minimizing the size of counter-example traces or lassos is a classical problem
in the model checking literature. Standard depth-first search Büchi automaton
language emptiness checking algorithms commonly implemented in explicit-state
model checkers such as spin [12] are not guaranteed to yield shortest counter-
examples. A simple improvement is to minimize the lasso cycle length in the
product automaton between the system and the specification automaton, which
can be done in time polynomial in the sizes of the automata. Gastin et al. [10]
give an approach to find shortest counter-examples in explicit-state model check-
ing without increasing memory usage substantially. Edelkamp et al. [5] give an
approach for doing so in explicit-state model checking when using external mem-
ory for storing states. In symbolic model checking using binary decision diagrams
(BDDs), lasso cycle length minimization comes as a side effect of the typically
implemented algorithms. Clarke et al. [3] showed that adding fairness require-
ments to the lasso to be found (such as in the acceptance condition of gener-
alized Büchi automata) makes the problem of finding shortest accepting lassos
NP-hard, even in the product automata used in model checking.

All approaches mentioned so far can however still compute unnecessarily long
counter-examples as they search for short counter-example lassos in the product
automaton. As an alternative, Schuppan and Biere [17] showed how to compute
tight specification automata for linear time temporal logic (LTL). Such specifi-
cation automata ensure that shortest counter-example lassos in the finite-state
machine modeling the system to be tested induce shortest lassos in the product
automaton, enabling the application of an approach to obtain short accepting

248 R. Ehlers

lassos in Büchi automata [10,11,18] to compute shortest counter-example las-
sos. Post-processing such specification automata by simulation-based automaton
minimization [8], as usually done in practical model checking, can break this
property, though, requiring the specification automata to remain unaltered after
their construction.

For the safety fragment of the ω-regular specifications, Kupferman and Vardi
gave a construction to build tight automata [14]. Starting with a non-determi-
nistic Büchi automaton, their construction leads to an exponential blowup in
the specification automaton size, which they show to be unavoidable.

For general ω-regular properties and for every system to be checked, the
liveness-to-reachability reduction from [16] can be applied to obtain a Büchi
automaton that is, in a sense, tight enough not to miss the shortest counter-
example in the product. The necessary blow-up depends on the diameter of the
system to be checked (or alternatively some refinement of this concept), and
hence the approach cannot be used to compute one Büchi automaton that can
be used for finding shortest counter-examples for all finite-state systems. We
improve upon this result in this paper by giving a construction to obtain not
only “tight-enough” Büchi automata, but completely tight automata, for which
the diameter of the system to be checked does not need to be known.

An alternative type of counter-example has been defined by Kupferman and
Sheinvald [13], where the goal is to find the shortest lasso-shaped input/output
word that the system can read and emit during a counter-example lasso. They
call such lasso-shaped words witnesses (for the violation of a specification by a
system). While these can be much more compact than counter-example lassos
(for instance when the output of the system is always the same along a non-trivial
counter-example lasso), even approximating the size of the shortest such counter-
example word within any polynomial approximation function is NP-hard [6] for
specifications in all commonly used automata types. Hence, abstracting from the
concrete system states adds complexity to the problem, which is a motivation
to revisit the simpler counter-example lassos in this work.

2 Preliminaries

Words and Graphs: Given an alphabet Σ, we denote the set of finite words over
Σ as Σ∗, and the set of infinite words as Σω. A word in Σω is called ultimately
periodic if it is of the form uvω for some u, v ∈ Σ∗, where the ω operator denotes
infinite repetition of the operand. The empty word is denoted by ε. A graph is a
two-tuple (V,E) consisting of a set of vertices V and an edge relation E ⊆ V ×V .

Automata over Finite Words: An automaton over finite words is a tuple A =
(Q,Σ, δA, Q0, F) with the finite set of states Q, the finite alphabet Σ, the tran-
sition relation δA ⊆ Q × Σ × Q, the set of initial states Q0 ⊆ Q, and the set of
accepting states F ⊆ Q. We say that A is deterministic if for every q ∈ Q and
x ∈ Σ, there is only at most one q′ ∈ Q with (q, x, q′) ∈ δF , and furthermore
Q0 contains exactly one element. A run for a finite word w = w0 . . . wn−1 ∈ Σ∗

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 249

is a sequence π = π0 . . . πn with π0 ∈ Q0 and for all 1 ≤ i ≤ n, we have
πi ∈ δA(πi−1, xi−1). We say that A accepts a finite word w ∈ Σ∗ if there exists
an accepting run π = π0 . . . πn for w, i.e., for which πn ∈ F . The set of words
accepted by A is also called its language and denoted by L(A). The size of an
automaton, written as |A| is defined to be the sum of the number of states and
the number of transitions.

Büchi Automata: A (non-deterministic) Büchi automaton is a tuple A = (Q,Σ,
δA, Q0, F) with the same structure as an automaton over finite words, the same
definitions of determinism and the size of an automaton, and the same definition
of runs, except that they can be infinitely long, as Büchi automata represent
languages over Σω. We say that A = (Q,Σ, δA, Q0, F) accepts a word w ∈ Σω

if and only if there exists an accepting run π = π0π1 . . . of A for w. A run is
accepting if for infinitely many i ∈ IN, we have πi ∈ F . The set of accepted
words again forms the language L(A) of A. We define the reachability relation
RA ⊆ Q×Q of A as the transitive closure of {(q, q′) ∈ Q2 | ∃x ∈ Σ, (q, x, q′) ∈ δ}.
We say that a set of states Q′ ⊆ Q forms a strongly connected component (SCC)
of A if for every q, q′ ∈ Q′, we have that (q, q′) ∈ RA. We say that A encodes
a safety language if every word that is not in the language has a prefix all of
whose extensions are also not in the language.

Regular and ω-regular Expressions: Such expressions are a way to represent lan-
guages over finite and infinite words. Starting from elements in Σ, they are
composed using the concatenation (·), union (∪), intersection (∩), and finite
repetition (∗) operators. The “·” operator is often omitted when clear from the
context. In case of ω-regular expressions, the additional ω operator denotes infi-
nite repetition. No sub-expression can be concatenated to the right of such an
operator application. The set of properties over infinite words representable by
ω-regular expressions is called the ω -regular languages. It is known that these
are exactly the properties representable by non-deterministic Büchi automata.

Finite-State Machines: A finite-state machine (FSM) is a tuple F = (S,Σ,
δF , s0, L) with the finite set of states S, the alphabet Σ, the transition relation
δF ⊆ S × S, the initial state s0, and the labeling function L. A trace of F is
an (infinite) sequence ρ = ρ0ρ1 . . . ∈ Sω such that ρ0 = s0 and for every i ∈ IN,
we have (ρi, ρi+1) ∈ δF . The trace induces a word w = w0w1 . . . ∈ Σω with
wi = L(ρi) for all i ∈ IN.

Model Checking: Given an FSM F and an error specification in the form a Büchi
automaton A over the same alphabet, the model checking problem is to test if
F has a trace that induces a word in the language of A. Whenever this is the
case, we are interested in a counter-example of F that proves that it has a run
whose word is in the language of A. Such a counter-example has the form of a
lasso, i.e., is of the shape ((c1, . . . , cm), (c′

1, . . . , c
′
n)), where c1, . . . , cm is the lasso

handle and c′
1, . . . , c

′
n is the lasso cycle. They fulfill the following conditions:

– All elements c1, . . . , cm, c′
1, . . . , c

′
n are in S (the lasso elements are states).

– For all 1 < i ≤ m, we have (ci−1, ci) ∈ δ, and for all 1 < i ≤ n, we have
(c′

i−1, c
′
i) ∈ δ (the lasso parts describe state transitions).

250 R. Ehlers

– We have cm = c′
1 (lasso handle and lasso cycle are connected) and (c′

n, c′
1) ∈

δF (the lasso cycle is closed).

The lasso ((c1, . . . , cm), (c′
1, . . . , c

′
n)) represents the trace c1, . . . , cm−1(c′

1, . . . ,
c′
n)ω, i.e., on which the lasso cycle is repeated an infinite number of times.

We say that this lasso is a counter-example for A if the word induced by the
trace is in the language of A. The constants m and n are also called the handle
length and cycle length of a lasso. The combined length of a lasso is defined to be
m + n − 1, where the subtraction by one comes from counting the state shared
by the handle and the cycle only once.

We say that a lasso in F is a counter-example to some state q in A if there
exists a counter-example lasso for F and A, where state q is assumed to be the
sole initial state in A. We say that a lasso cycle is a counter-example lasso cycle if
it can be completed to a counter-example lasso with a single-state handle (which
is then part of the cycle itself).

Product Büchi Automaton for Model Checking: A finite-state machine F = (S,Σ,
δF , s0, L) has a trace (a counter-example) that induces a word in the language
represented by an (error) specification in the form of a Büchi automaton A =
(Q,Σ, δA, Q0, F) if and only if there exists a counter-example lasso for the FSM.
Testing if such a lasso exists can be done by testing the product Büchi automaton
of F and A for language emptiness. Formally, we define this product automaton
as P = (QP , Σ, δP , QP,0, FP) with QP = Q×S, QP,0 = Q0 ×{s0}, FP = F ×S,
and the transition relation is defined as

δP = {((q, s), x, (q′, s′)) ∈ QP × Σ × QP | (s, s′) ∈ δF , q′ ∈ δ(q, L(s))}.

A lasso in P is defined in the same way as in a finite-state machine. A lasso
in P is accepting if its cycle contains at least one state from FP . Since a Büchi
automaton has a non-empty language exactly if and only if such a lasso can be
found, P can be used to model check F against A.

Tight Automata: While a product Büchi automaton P between an FSM F and a
Büchi automaton can be used to check if a counter-example for F and A exists,
the combined length of the shortest accepting lasso in P may be higher than the
length of the shortest counter-example lasso for A in F . Intuitively, the reason
for this difference is that P incorporates the structure of A, whereas the defini-
tion of a counter-example lasso in F does not. However, the structure of A may
be suitable to avoid this issue. We say that A is tight if for every counter-example
lasso for every FSM F , there is an accepting lasso in P of the same length. Since
P is the product of A and F , it is easy to obtain a counter-example lasso from
an accepting lasso in P such that both are of the same length. This allows using
P to find shortest counter-example lassos, and since it is known that finding
shortest accepting lassos in P is solvable in polynomial time [11,18], so is the
former problem.

Satisfiability Problem: The satisfiability problem is to check if a Boolean formula
in conjunctive normal form over some set of Boolean variables {v1, . . . , vn} has

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 251

a satisfying assignment. The conjuncts of the formula are called its clauses, and
the number of clauses is also denoted by |ψ|. The satisfiability problem often
serves as the canonical NP-complete problem. We write c ∈ ψ for some clause c
if c is a clause in ψ.

3 Tightening Büchi Automata

With a tight specification automata, computing shortest counter-examples is
(computationally) easy. We will show in this section that by utilizing two previ-
ous constructions from Calbrix et al. [2] and Farzah et al. [9], we can translate
an arbitrary Büchi automaton into an equivalent tight automaton. The first
construction is captured by the following theorem:

Theorem 1 ([2], Section 5). Given a non-deterministic Büchi automaton
A over an alphabet Σ with n states, we can build a deterministic finite-state
automaton A′ over the alphabet Σ ∪ {$} of size exponential in n that accepts
exactly the words u$w with u,w ∈ Σ∗ for which uvω is accepted by A. Building
A′ does not take more time than polynomial in the combined input and output
sizes.

Two Büchi automata accept the same language if they accept the same ulti-
mately periodic words [2]. Since these are captured by the automaton A′, that
automaton encodes the essence of an ω-regular language. Since A′ is a determin-
istic automaton over finite words (DFA), it can also be minimized in polynomial
time.

The automaton A′ can now be translated back to an automaton A′′ with the
same language as A with only polynomial blow-up. A construction for this step
has been given by Farzah et al. [9], whose properties needed in this section we
distill into the following proposition:

Proposition 1 ([9]). Let A′ = (Q′, Σ ∪ {$}, δ′, Q′
0, F

′) be a DFA that accepts
exactly the words u$v with u, v ∈ Σ∗ for which uvω is a word in some ω-regular
language L. We can compute, in polynomial time, a set of pairs P of regular
languages such that

L =
⋃

(A,B)∈P

ABω. (1)

Furthermore, (1) P is of cardinality quadratic in |Q′|, (2) for every (A,B) ∈ P ,
the languages A and B are representable by DFAs with at most |Q′| + 1 states,
and (3) for every word u$v in the language of A′, there exists some (A,B) ∈ P
with u ∈ L(A) and v ∈ L(B).

This characterization enables the efficient construction of a non-deterministic
Büchi automaton for an ω-regular language from a DFA accepting its ultimately
periodic words. While the core idea of the following construction was already
suggested in a footnote in [9], we changed it substantially to make the resulting
automaton tight.

252 R. Ehlers

Lemma 1. Let A′ = (Q′, Σ ∪ {$}, δ′, Q′
0, F

′) be a DFA that accepts exactly
the words u$v with u, v ∈ Σ∗ for which uvω is a word in some ω-regular
language L. Let P = {P1, . . . , Pn} be the set of pairs of regular languages
described in Proposition 1. Let furthermore AA

i = (QA
i , Σ, δA

i , QA
0,i, F

A
i) and

AB
i = (QB

i , Σ, δB
i , QB

0,i, F
B
i) be the DFAs for the elements Pi = (Ai, Bi) for

1 ≤ i ≤ n, where w.l.o.g, all states in the these automata have distinct names.
We can build a non-deterministic Büchi automaton Â = (Q̂,Σ, δ̂, Q̂0, F̂) captur-
ing L with the following components:

Q̂ =
⋃

1≤i≤n

QA
i ∪ (QB

i × B)

Q̂0 =

⎛

⎝
⋃

1≤i≤n

QA
0,i

⎞

⎠ ∪
⋃

1≤i≤n,QA
0,i∩FA

i �=∅
QB

0,i × B

δ̂ =
⋃

1≤i≤n

δA
i ∪ {((q, b), x, (q′, b′) | (q, x, q′) ∈ δB

i , b′ = (q′ ∈ FB
i)}

∪
⋃

1≤i≤n

{(q, x, (q′, b)) | q ∈ QA
i , x ∈ Σ,∃q′′ ∈ FA

i , (q, x, q′′) ∈ δA
i ,

q′ ∈ QB
0,i, b ∈ B}

∪
⋃

1≤i≤n

{((q, b), x, (q′, true)) | q ∈ QB
i , x ∈ Σ,∃q′′ ∈ FB

i , (q, x, q′′) ∈ δB
i ,

q′ ∈ QB
0,i, b ∈ B}

F̂ =
⋃

1≤i≤n

QB
0,i × {true}

The construction in the lemma essentially defines a Büchi automaton imple-
menting Eq. 1, with the modification that states in the automata AB

i have been
duplicated by attaching a Boolean flag. Due to the changes (which are necessary
to derive Corollary 1 later), a proof of correctness is in order:

Proof. Since a Büchi automaton Â captures an ω-regular language L if the
language of Â has exactly the same ultimately periodic words as the ones in L,
we can restrict our attention to those.

First proof direction: Let uvω be an ultimately periodic word in L. Then,
by Theorem 1, we have that u$v ∈ L(A′). By Proposition 1, we have that u ∈ Ai

and v ∈ L(Bi) for some (Ai, Bi) ∈ P . We can now construct an accepting
lasso for uvω in Â. Since u = u1 . . . uk ∈ L(Ai), there exits a accepting run
πA = π0 . . . πk for u in Ai.

By the construction of Â, there exists a prefix run π0 . . . πk−1 for the same
word in Â. Furthermore, if k > 0, then there exist a transition (πk−1, uk, (q,
true)) for some q ∈ QB

0,i. If u is the empty word, then (q, true) is an initial
state. Hence, in both cases every state in QB

0,i × {true} is reached by some run
in Â after reading u.

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 253

Since v ∈ L(Bi), there exists a run π′
0 . . . π′

r with π′
0 ∈ QB

0,i and π′
r ∈ FB

i for
v = v1 . . . vr. By the construction of Â, the (prefix) run π′

0 . . . π′
r−1 exists in Â

as well, except that every state element is labeled by whether the last visited
state is accepting, where the label for π′

0 can also be true. From the last such
state (π′

r−1, b) for some b ∈ B, the construction of Â furthermore ensures that
((π′

r−1, b), vr, (π′
0, true)) ∈ δ̂. This closes a cycle in Â. Since the cycle can be

repeated indefinitely long when reading vω and it contains at least one accepting
state, namely (π′

0, true), we constructed an accepting infinite run in Â for uvω,
proving its acceptance.

Second proof direction: Let w1w2 . . . = uvω be a word accepted by Â.
Since Â has a finite number of states, there exists an accepting run of the shape
π = π0 . . . πk−1(πk . . . πr−1)ω for it such that at least one state in F̂ occurs in
πk . . . πr−1. Without loss of generality, we can also assume that πk ∈ F̂ , as the
prefix of the lasso can always be extended slightly to rotate the cycle.

Due to the construction of Â, the complete run π takes place in a part of
Â generated by one element (Ai, Bi) in P (as there are no transitions between
these parts). Let s be the index in π at which π reaches the states in QB

i ×B for
the first time. We have that w1 . . . ws is a word in the language of Ai by the fact
that such a switch is only possible in Â after reading a word in L(Ai). By the fact
that πk is an accepting state and the construction of Â, we have that ws+1 . . . wk

is a word in L(Bi) (if non-empty), as πs . . . πk simulates the QB
i component of a

run from an initial state in Bi to an accepting state, except that πk is replaced
by a state in (QB

0,i, true). As such states can only be reached when reaching an
accepting state for ws+1 . . . wk in Bi, it follows that ws+1 . . . wk ∈ L(Bi).

For the same reason and since π is an accepting lasso, we have that the word
wk+1 . . . wr is accepted by Bi as well. Since π is a lasso for the word w, this
actually means that wr+j·(r−k)+1 . . . wr+(j+1)·(r−k) is the same word for every
j ∈ IN. This observation allows us to overall decompose w as follows:

w = w0w1 . . . ws︸ ︷︷ ︸
∈L(Ai)

ws+1 . . . wk︸ ︷︷ ︸
∈L(Bi) if not ε

wk+1 . . . wr︸ ︷︷ ︸
∈L(Bi)

wr+1 . . . w2r−k︸ ︷︷ ︸
∈L(Bi)

. . .

This proves that w ∈ L by Proposition 1. 	

Corollary 1. Let Â be a Büchi automaton built from some DFA A′ = (Q′, Σ ∪
{$}, δ′, Q′

0, F
′) that accepts exactly the words u$v with u, v ∈ Σ∗ for which uvω

is a word in some ω-regular language L using the construction from Lemma 1.
We have that Â is a tight automaton.

Proof. The first direction of the proof of the preceding lemma proves the exis-
tence of an accepting lasso of length |u| + |v| − 1 in Â for every word uvω

in L. 	

By applying the constructions from Theorem 1 and Lemma 1 in succession,

we can thus obtain a tight Büchi automaton from an arbitrary Büchi automaton.
Since the construction from Lemma 1 has only a polynomial blow-up in the

254 R. Ehlers

automaton size, we obtain an overall size exponential in the size of the original
Büchi automaton. Since Kupferman and Vardi [14] gave an exponential lower
bound for the safety case, this construction is complexity-theoretically optimal
on a large scale. On a finer scale, our approach yields automata of size 2O(n2),
while the lower bound by Kupferman and Vardi’s for the safety case is only
O(2n), leaving a small gap to be filled in future work.

4 Component Lassos – Negative Result

While we have seen above that in general, tight Büchi automata need to be
exponentially larger than (the smallest) equivalent arbitrary Büchi automata,
this does not automatically mean that finding shortest counter-example lassos
for arbitrary specification Büchi automata is not possible in polynomial time.

In previous work [6], we showed that the smallest value of |u| + |v| for some
ultimately periodic word uvω in the language of a Büchi automata is NP-hard
to approximate within any polynomial approximation function p. Under the
assumption that NP �= P, this means that no polynomial-time algorithm exists
that given a non-deterministic Büchi automaton always outputs a value between
|u|+ |v| and p(|u|+ |v|) for some ultimately periodic word uvω in the language of
the automaton with minimal |u| + |v|. The result does not apply to the problem
of finding shortest counter-example lassos as it adds the requirement that some
state is reached twice after |u| + |v| steps. Even if that problem is still NP-
complete, its approximation hardness could be lower, which would be useful for
the practical application of model checking.We show that, unfortunately, this
is not the case. The following proof transfers the main ideas from [6] to the
component lasso setting.

Proposition 2. Approximating the length of the shortest lasso of a finite-state
machine F that is accepted by a non-deterministic Büchi automaton A within
any polynomial approximation function p is NP-hard.

Proof. We reduce the NP-hard satisfiability problem to the (approximation)
problem at hand. Let p be a polynomial function and ψ be a satisfiability problem
in conjunctive normal form over the set of variables V = {v1, . . . , vn}, where we
assume that every solution has v1 = false. The satisfiability is still NP-hard
under this restriction, as it is easy to extend a SAT instance by one variable and
to add a clause that requires the additional variable to have a false value.

We build a Büchi automaton over the language Σ = {false, true} that imple-
ments the following language:

L =
⊙

c∈ψ

(⋃

x1,...,xn∈Bn,(v1=x1,...,vn=xn)|=c

(x1 . . . xn)

︸ ︷︷ ︸
encc

)p(n)+1

· Σω

In this equation, the
⊙

operator refers to taking the concatenation of the ele-
ments in its scope. Here, the operator ranges over all clauses in the SAT instance

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 255

f

t

*

*

t

f

*

*

*

f

t

*

t

f

*

*

* *

Fig. 1. Example automaton part for n = 8 and a clause c1∨¬c3∨c5∨¬c6, where f is an
abbreviation for false, t is an abbreviation for true, and ∗ captures both characters.

ψ, where the order does not matter for the scope of this proof. Note that while
the union operator in the equation ranges over a set of size exponential in n, a
Büchi automaton part for one element encc is of size at most 2n, as we demon-
strate in Fig. 1. We furthermore consider a finite-state machine F with 2n − 1
states of the shape given in Fig. 2. To prove the approximation hardness result,
we show that:

1. the Büchi automaton for L can be built in time polynomial in the number of
clauses in ψ, n, and p(n) and is of size polynomial in ψ, n, and p(n);

2. if ψ has a solution, then there exists a counter-example lasso in F of size n;
3. if there exists a counter-example lasso of size at most p(n), then we can obtain

a solution to ψ from the lasso.

(1) Note that L can be represented by concatenating |ψ|·(p(n)+1) many automa-
ton parts with 2n states each (as shown in Fig. 1). The final Σω component
needs a single accepting state. Overall, the number of states of the resulting
automaton is (p(n) + 1) · 2n · |ψ| + 1.

(2) Let x1, . . . , xn be a solution to ψ (where x1 = false by the assump-
tion above). The word (x1, . . . , xn)ω induces a counter-example lasso start-
ing in the initial state of the FSM, proceeding to the states labeled by
x2, . . . , xn, and looping back to the initial state afterwards. Since we have
x1, . . . , xn |= ψ, we know that x1, . . . , xn is a word in encc for every c ∈ ψ.
Hence, (x1, . . . , xn)ω is accepted by

⊙
c∈ψ(encc)m for any m ∈ IN and by

the subsequent Σω component of L.
(3) Let w = uvω be a counter-example lasso of size at most p(n). Note that |v|

needs to be a multiple of n for the lasso to be correct. We rewrite w slightly
to u′v′ω by unrolling the lasso until the length of u′ is also a multiple of n
(with |v′| = |v|). Let x1 . . . xn be the first n characters of v′. Since u′ and v′

are of sizes that are multiples of n, for every c, we have that v′ needs to be
accepted by encc. This is because as every encc is repeated p(n) + 1 times,
v′ is not long enough to have x1 . . . xn miss all p(n) + 1 repetitions. Due to
the construction of encc, we have that x1 . . . xn is a model of the clause c.
Since this line of reasoning holds for all clauses c, we know that x1, . . . , xn

is a model of the whole formula ψ. 	

Note that the automaton built in Proposition 2 is actually determinis-

tic, hence showing the hardness of the problem even for deterministic Büchi
automata.

256 R. Ehlers

5 Component Lassos – Positive Result

Now that we know that finding shortest counter-example lassos for general ω-
regular properties is computationally difficult (even for any reasonable approx-
imation version of the problem), the question arises whether there are at least
some easy classes of properties and/or finite-state machines. While we have seen
in the previous section that the determinism of a specification automaton does
not change the computational complexity, other properties of the specification
automaton can be used to derive a more detailed characterization of the com-
plexity of finding shortest counter-example lassos.

f f

t

. . .

. . .

f

t

f

t

n columns of states

Fig. 2. Finite-state machine shape for the proof of Proposition 2, where f is an abbre-
viation for false and t is an abbreviation for true.

An interesting structural property of specification automata is the maximal
size of the strongly connected components (SCCs) in the automata. For instance,
if all SCCs of a specification automaton have a size of at most 1, we call such
an automaton very-weak or one-weak. Intuitively, this means that all loops in
the automaton are self-loops. This subset of the set of non-deterministic Büchi
automata has been identified to characterize the set of properties of reactive sys-
tems whose complements are representable by both LTL and computation tree
logic with only universal path quantifiers (ACTL), where in the LTL case the
formula is checked along all executions of the system [15]. Very-weak automata
have been used to derive heuristically shorter counter-example lassos [1] with
the model checker spin. We extend this previous positive result on a more fun-
damental level by giving a polynomial-time algorithm to find guaranteed short-
est counter-example lasso cycles for specification automata with a fixed upper
bound on the size of the SCCs. We hence no longer require the SCCs to have
a size of at most 1 and give an algorithm that is guaranteed to find shortest
counter-examples.

The main idea of the following construction is that if an SCC is small enough,
we can keep track of multiple runs of the specification automaton from all SCC
states in parallel while traversing a lasso cycle in the FSM. When the lasso cycle
in the FSM is closed, we then check if transitions of the specification automaton
can be stitched together to form an accepting cycle for the lasso cycle of the FSM.
Doing so requires time exponential in the number states in an SCC. Switches
between SCCs do not have to be taken into consideration here due to the fact

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 257

that we are only interested in minimizing the length of lasso cycles. We start by
defining a graph that is suitable for searching for shortest component lassos.

Definition 1. Let A = (Q,Σ, δA, Q0, F) be a Büchi automaton and F = (S,Σ,
δF , s0, L) be a finite-state machine. Let S1, . . . ,Sm be the state sets of the (max-
imal) strongly connected components of A that contain at least one accepting
state each.

For each 1 ≤ k ≤ m, we define the lasso-searching graph of Sk and F as
a tuple (V,E0 ∪ E1) with the set of vertices V, the normal edges E0, and the
closing edges E1. These are defined as:

V = S × Sk × {Sk → (Sk × B ∪ ⊥)}
E0 = {((s, q̄, f), (s′, q̄, f ′) ∈ V × V | ∃x ∈ Σ : (s, x, s′) ∈ δF

∧ ∀q ∈ Sk : f ′(q) = ⊥ ∨ ∃q′, q′′ ∈ Sk, b ∈ B : f(q) = (q′, b)
∧ (q′, x, q′′) ∈ δA ∧ f ′(q) = (q′′, b ∨ (q′′ ∈ F))}

E1 = {(s, q̄, f), (s, q̄, f) ∈ V × V : ∃q1, . . . , ql ∈ Sk : q1 = q̄,

∀2 ≤ i ≤ l, f(qi−1)|Q = qi, f(qn)|Q = q1,

∃1 ≤ j ≤ l, f(qj)|B = true}
Note that the SCC decomposition of an automaton can be computed in time

linear in its number of states and transitions [20]. Hence, S1, . . . ,Sm can be easily
obtained and for every strongly connected component Sk, the graph (V,E0∪E1)
can be built in time polynomial in the sizes of A and F and exponential in |Sk|.
The first component of a state (s, q̄, f) tracks the state in the FSM, and the
second one denotes an anchor state of the specification automaton, which never
changes along graph edges. The third component keeps track of from which SCC
state which other state can be reached for the labels along the cycle part in F
traversed so far.

Lemma 2. If and only if some state (s, q̄, f) is reachable from itself in n+1 ∈ IN
steps using first only edges from E0 and then closing the cycle with an edge in
E1, there exists an accepting lasso cycle from FSM state s for the specification
automaton A of length n, using q̄ as the first state of the lasso cycle.

Proof. ⇐: Let s1 . . . sn be some counter-example lasso cycle for some state q ∈ A
with the labels x1, . . . , xn along the cycle. In this case, there exists an accepting
cycle q1q2 . . . ∈ Qω of the specification automaton for the same (suffix) trace
of the system. Without loss of generality, we can assume that this cycle is ulti-
mately periodic and that when the same state occurs for the second time at a
position that is a multiple of n, the cycle is closed. Let us consider the pairs
(qnk+1, qn(k+1)). By the assumption, all such pairs have distinct left elements,
and let their number be l ∈ IN. Let qj

1, . . . , q
j
n+1 be the states of the cycle in

A (for 1 ≤ j ≤ l) between the state pairs, where for all 1 ≤ j ≤ l, we have
qj
1 = qj

n+1.
We show that there is a loop in (V,E0 ∪ E1) from state v = (s1, q1, f) with

f(qj
1) = (qj

1, b) for some b ∈ IN for all states qj
1 for 1 ≤ j ≤ l, and f(q′) = ⊥

258 R. Ehlers

for all other states q′. We can obtain this loop by successively transitioning, for
each step 1 ≤ i ≤ n + 1, to state vi = (sj , q, fi) for fi(q

j
i) = (qj

i , b) for some
b ∈ IN for all states qj

i for 1 ≤ j ≤ l, and fi(q′) = ⊥ for all other states q′ ∈
Sk. By the assumption that qj

1, . . . , q
j
n+1 is a valid transition sequence in A for

x1, . . . , xn, the construction of (V,E0 ∪ E1) includes these edges. Furthermore,
by the assumption that the lasso is accepted by A, along one of these l sequences,
an accepting state is visited. By the construction of E0, this means that one of
the Boolean values encoded by fn has a true value. Since the parts qj

1, . . . , q
j
n

(for 1 ≤ j ≤ l) can be stitched together to form an accepting cycle, the definition
of E1 ensures that a suitable closing edge exists.

⇒: Let v1, . . . , vn+1 be a path in (V,E0 ∪ E1) ending with an edge in E1.
We know from the construction of the graph that (1) the FSM loops under
the label sequence x1, . . . , xn−1 used for deriving the cycle, and (2) for every
q ∈ Sk and vi = (si, q̄, fi) (for 1 ≤ i ≤ n + 1) with fi(q) �= ⊥, we have that
there exists a transition sequence between f1(q)|Q and fn(q)|Q for x1, . . . , xn.
Furthermore, fn(q)|B is true if and only if along the way, an accepting state
is visited. This allows us to construct an accepting lasso cycle for x1, . . . , xn−1

by taking f1(q̄)|Q, f2(q̄)|Q, . . . , fn(q̄)|Q, f1(fn(q̄)|Q)|Q, f2(fn(q̄)|Q)|Q, . . . , fn(fn(
q̄)|Q)|Q, . . . until the cycle is closed after a multiple of n states. Since the closing
edge from E1 can only be taken if the lasso cycle is closed and one Boolean flag
has a true value, this part of the proof follows. 	

Since finding shortest paths in a graph is computationally easy by performing a
breadth-first search, and adapting breadth-first search to use E1 as final transi-
tions (back to the initial state) during the search is also simple, we can iterate
over all states in (V,E0 ∪ E1) and search for shortest loops back the same state
in time polynomial in |E0 ∪E1|. This allows us to derive the following corollary:

Corollary 2. For every fixed c ∈ IN, we can label every state in S × Q by the
shortest lasso cycle length of a counter-example lasso in time polynomial in the
sizes of A and F if all SCCs of A have sizes of at most c.

Proof. For every SCC Sk, we build the graph defined above, label every state
by the shortest lasso, and then take minf∈Q→Q×B∪⊥(s, q̄, f) as the length of the
shortest counter-example lasso cycle from (s, q̄). 	

As a final step of our construction, we need to compute which lasso cycles are
actually reachable from (q0, s0) for some q0 ∈ Q0. By performing a depth-first
search in the classical product automaton, we can identify those states (q, s)
that are reachable and then select one with a shortest cycle. The actual counter-
example lasso can be obtained by taking the path in the product automaton
up to the selected state (q, s) as the lasso handle, and taking the FSM state
component of a cycle in the graph (V,E0 ∪ E1) that witnesses the length of
the shortest counter-example lasso cycle as lasso cycle. Taking all parts of the
construction together, we obtain:

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 259

Fo
r
F
SM

cy
cl
es

of
od

d
le
ng

th

For
F
SM

cycles
of

even
length

q0 q2 q3 q4 q5 q6 q7

*

*

*
a

*

a*

*
*

*

*

a

*

Fig. 3. A tight automaton for the alphabet Σ = {a, b} and the specification that at
infinitely many even positions, the letter in a word is a.

Corollary 3. Given a FSM F and a specification Büchi automaton A in which
every strongly connected component has at most c ∈ IN states, we can compute
a counter-example lasso for F and A that minimizes the cycle length in time
polynomial in |F| · |A| and exponential in c.

Note that the overall construction can be computationally streamlined. For
instance, a search for a shortest lasso cycle can also keep the anchor state q̄
implicit, reducing the size of the graph. For the simplicity of presenting the
main idea of our approach, we did not apply such improvements here.

Note that the approach cannot be generalized to minimize the combined
length of a counter-example lasso. The automata built from satisfiability problem
instances in the hardness proof of Sect. 4 only have a single strongly connected
component each, and these components only have a single state each. Hence,
finding counter-example lassos with a minimal combined length is hard even the
in the case of very-weak Büchi automata.

6 Conclusion

In this paper, we revisited the problem of obtaining shortest counter-example
lassos for ω-regular specifications. Interestingly, it was open before this paper
whether finding (approximately) shortest counter-example lassos is NP-hard or
not for specifications given as non-deterministic Büchi automata. Our main
result is negative: even approximating the (combined) length of the shortest
counter-example lasso is NP-hard within any reasonable approximation func-
tion, let alone approximation factor. This is unfortunate, as approximate shortest
counter-example lassos could be interesting for the model checking practitioner.

On the positive side, we showed how by using two existing automaton transla-
tions, we can make an arbitrary non-deterministic Büchi automaton tight, which
enables the use of approaches for finding shortest accepting lassos in product
automata to also find shortest counter-example lassos. Furthermore, we looked
at the parameterized complexity of finding shortest counter-example lasso cycles
and showed that for specification automata with small strongly connected com-
ponents (SCCs), finding counter-example lassos with shortest cycles is possible in
polynomial time for arbitrary (but fixed) SCC size limits. This result is interest-
ing for the case of tracking down starvation bugs in models – in such situations,

260 R. Ehlers

the focus is often on how the system can stall without making progress rather
than how the system to be checked can reach such a situation. If the correspond-
ing liveness property has a Büchi automaton with small SCCs, our construction
is applicable.

While making Büchi automata tight leads to an exponential blow-up in their
sizes, the problem could be mitigated by minimizing the resulting specification
automaton before using it in a model checker. This problem cannot be tackled
with previous simulation-based minimization approaches as we have to take care
that loops with an accepting state are only removed if there are other loops of
the same length that together accept the lasso cycles captured by the removed
loop. We visualize this observation in Fig. 3, which shows a tight automaton that
is only tight because it has different SCCs for lasso cycles with even and odd
lengths. Suitable minimization algorithms for tight automata that retain such
redundancies in the specification automata still have to be developed, and we
leave this challenge to future work.

References

1. Adabala, K., Ehlers, R.: A fragment of linear temporal logic for universal very weak
automata. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
335–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 20

2. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-
languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58027-1 27

3. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: 32nd Conference
on Design Automation (DAC), pp. 427–432. ACM Press (1995)

4. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: 23rd International Joint Conference on Artificial Intelligence
(IJCAI), pp. 854–860. IJCAI/AAAI (2013)

5. Edelkamp, S., Sulewski, D., Barnat, J., Brim, L., Simecek, P.: Flash memory effi-
cient LTL model checking. Sci. Comput. Program. 76(2), 136–157 (2011)

6. Ehlers, R.: Short witnesses and accepting lassos in ω-Automata. In: Dediu, A.-H.,
Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 261–272.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2 22

7. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated
Circuits and Systems. Springer, Heidelberg (2006)

8. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–
1175 (2005)

9. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 2

10. Gastin, P., Moro, P., Zeitoun, M.: Minimization of counterexamples in SPIN. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 92–108. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6 7

https://doi.org/10.1007/978-3-030-01090-4_20
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/978-3-642-13089-2_22
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1007/978-3-540-24732-6_7

How Hard Is Finding Shortest Counter-Example Lassos in Model Checking? 261

11. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

12. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

13. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonempti-
ness of automata on infinite words. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 492–508. Springer, Heidelberg (2006). https://doi.org/
10.1007/11817949 33

14. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 17

15. Maidl, M.: The common fragment of CTL and LTL. In: 41st Annual Symposium
on Foundations of Computer Science (FOCS), pp. 643–652 (2000)

16. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reach-
ability analysis. STTT 5(2–3), 185–204 (2004)

17. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking of
LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 493–509. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31980-1 32

18. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 12

19. Sebastiani, R., Tonetta, S.: “more deterministic” vs. “smaller” Büchi automata for
efficient LTL model checking. In: 12th IFIP WG 10.5 Advanced Research Working
Conference (CHARME), Correct Hardware Design and Verification Methods, pp.
126–140 (2003)

20. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/11817949_33
https://doi.org/10.1007/11817949_33
https://doi.org/10.1007/3-540-48683-6_17
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_12

From LTL to Unambiguous Büchi
Automata via Disambiguation

of Alternating Automata

Simon Jantsch , David Müller(B) , Christel Baier , and Joachim Klein

Technische Universität Dresden, Dresden, Germany
david.mueller2@tu-dresden.de

Abstract. This paper proposes a new algorithm for the generation of
unambiguous Büchi automata (UBA) from LTL formulas. Unlike existing
tableau-based LTL-to-UBA translations, our algorithm deals with very
weak alternating automata (VWAA) as an intermediate representation.
It relies on a new notion of unambiguity for VWAA and a disambigua-
tion procedure for VWAA. We introduce optimizations on the VWAA
level and new LTL simplifications targeted at generating small UBA. We
report on an implementation of the construction in our tool Duggi and
discuss experimental results that compare the automata sizes and com-
putation times of Duggi with the tableau-based LTL-to-UBA translation
of the SPOT tool set. Our experiments also cover the analysis of Markov
chains under LTL specifications, which is an important application of
UBA.

1 Introduction

Translations from linear temporal logic (LTL) to non-deterministic Büchi
automata (NBA) have been studied intensively as they are a core ingredient
in the classical algorithmic approach to LTL model checking (see, e.g. [4,9,37]).
In the worst case, such translations produce automata that are exponentially
larger than the input formula. However, a lot of effort has been put into opti-
mizing the general case, which has turned LTL-to-NBA translations feasible in
practice. Two classes of algorithms have emerged as being especially well suited:
tableau-based decomposition of the LTL formula into an automaton (see, e.g.
[11,18]), as represented by the SPOT family of tools [15], and translations via
very weak alternating automata (VWAA) [17], where LTL3BA [3] is the leading
tool currently.

A property that has been studied in many areas of automata theory is
unambiguity [10]. It allows non-deterministic branching but requires that each

The authors are supported by the DFG through the Collaborative Research Centers
CRC 912 (HAEC), the DFG grant 389792660 as part of TRR 248, the DFG-project
BA-1679/12-1, the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as
part of Germany’s Excellence Strategy), and the Research Training Group QuantLA
(GRK 1763).

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 262–279, 2019.
https://doi.org/10.1007/978-3-030-30942-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_17&domain=pdf
http://orcid.org/0000-0003-1692-2408
http://orcid.org/0000-0002-5384-9644
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0003-4681-6964
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-30942-8_17

From LTL to Unambiguous Büchi Automata 263

input word has at most one accepting run. Prominent cases in which unam-
biguity can be utilized include the universality check for automata (“Is every
word accepted?”) on finite words, which is PSPACE-complete for arbitrary non-
deterministic finite automata (NFA), but in P for unambiguous finite automata
(UFA) [34]. Another example is model checking of Markov chains, which is in
P if the specification is given as an unambiguous Büchi automaton (UBA) [5],
and PSPACE-hard for arbitrary NBA [35]. Thus, using UBA leads to a single-
exponential algorithm for LTL model checking of Markov chains, whereas using
deterministic automata always involves a double-exponential lower bound in
time complexity.

Every ω-regular language is expressible by UBA [1], but NBA may be expo-
nentially more succinct than UBA [24] and UBA may be exponentially more
succinct than any deterministic automaton [7]. Universality and language inclu-
sion are in P for subclasses of UBA [7,22], but the complexity is open for general
UBA.

Although producing UBA was not the goal of the early translation from LTL
to NBA by Vardi and Wolper [37], their construction is asymptotically optimal
and produces separated automata, a subclass of UBA where the languages of
the states are pairwise disjoint. Separated automata can express all ω-regular
languages [8], but UBA may be exponentially more succinct [7]. LTL-to-NBA
translations have been studied intensively [13,16–18], but the generation of UBA
from LTL formulas has not received much attention so far. We are only aware of
three approaches targeted explicitly at generating UBA or subclasses. The first
approach by Couvreur et al. [12] adapts the algorithm of [37], but still gener-
ates separated automata. LTL-to-UBA translations that attempt to exploit the
advantages of UBA over separated automata have been presented by Benedikt
et al. [6] and Duret-Lutz [14]. These adapt tableau-based LTL-to-NBA algo-
rithms ([18] in the case of [6] and [11] in the case of [14]) and rely on transfor-
mations of the form ϕ ∨ ψ � ϕ ∨ (¬ϕ ∧ ψ) to enforce that splitting disjunctive
formulas generates states with disjoint languages, thus ensuring unambiguity.

To the best of our knowledge, the only available tool that supports the trans-
lation of LTL formulas to UBA is ltl2tgba, which is part of the SPOT tool set
and implements the LTL-to-UBA algorithm of [14].

You can find an extended version of this paper at [23] with further details
and proofs.

Contribution. We describe a novel LTL-to-UBA construction. It relies on an
intermediate representation of LTL formulas using VWAA and adapts the known
translation from VWAA to NBA by Gastin and Oddoux [17]. We introduce a
notion of unambiguity for VWAA, show that the subsequent translation steps
preserve it and that checking whether a VWAA is unambiguous is PSPACE-
complete (Sect. 3). To the best of our knowledge, unambiguity for alternating
automata has not been considered before.

We present a disambiguation procedure for VWAA that relies on intermedi-
ate unambiguity checks to identify ambiguous states and local disambiguation
transformations for the VWAA (Sect. 4). It has the property that an already

264 S. Jantsch et al.

VWAA A t-GBA GA trim(GA ⊗ GA)

UBA U

∃ ambiguous
state s?

LTL ϕ
as in [17]

product
construction

“yes”
disambiguate s

“no”
degeneralize(GA)

Fig. 1. The LTL-to-UBA step. A sequence of unambiguity checks and disambiguation
transformations are applied and ultimately a UBA is returned. We use trim(GA ⊗ GA)
to check whether unambiguity is achieved or more iterations are necessary.

LTL
ϕ

LTL Simplification

SPOT Duggi

LTL-to-UBA
SPOT Duggi

Formula
Rewriting
+ tableau

Automata
Transformations

Post processing (SPOT)

WDBA minimization,
bisimulation

UBA
U

Fig. 2. Overview of the general LTL-to-UBA generation algorithm. The LTL simpli-
fication step, the actual LTL-to-UBA translation step, and the automaton post pro-
cessing step can be combined freely. We propose novel rewriting rules for LTL and a
LTL-to-UBA translation, both implemented in our tool Duggi.

unambiguous VWAA is not changed. Figure 1 gives an overview of our LTL-
to-UBA algorithm. Apart from the main construction, we introduce novel LTL
rewrite rules and a heuristic, both of which are aimed at producing small UBA
and may also benefit existing tools (see Fig. 2). The heuristic is targeted at
states with a certain structure, defined using the concepts of purely-universal
and alternating formulas (Sect. 5). Finally, we report on an implementation of
our construction in our tool Duggi and compare it to the existing LTL-to-UBA
translator ltl2tgba. We also compare Duggi with ltl2tgba in the context of
Markov chain analysis under LTL specifications (Sect. 6).

2 Preliminaries

This section introduces our notation and standard definitions. The set of infinite
words over a finite alphabet Σ is denoted by Σω and we write w[i] to denote
the i-th position of an infinite word w ∈ Σω, and w[i..] to denote the suffix
w[i]w[i+1] We write B+(X) to denote the set of positive Boolean formulas
over a finite set of variables X. A minimal model of a formula f ∈ B+(X) is a
set M ⊆ X such that M |= f , but no M ′ ⊂ M satisfies M ′ |= f . LTL is defined
using U (“Until”)and © (“Next”). Additionally we use syntactical derivations
♦ (“Finally”), � (“Globally”), and R (“Release”) (see [4,19] for details).

Alternating Automata on Infinite Words. An alternating ω-automaton A
is a tuple (Q,Σ,Δ, ι, Φ) where Q is a non-empty, finite set of states, Σ is a finite

From LTL to Unambiguous Büchi Automata 265

alphabet, Δ : Q × Σ → B+(Q) is the transition function, ι ∈ B+(Q) is the
initial condition and Φ is the acceptance condition. Additionally, we define the
function δ : Q×Σ → 22

Q

which assigns to a pair (q, a) ∈ Q×Σ the set of minimal
models of Δ(q, a) and the set I ⊆ 2Q as the set of minimal models of ι. We denote
by A(ι′) the automaton (Q,Σ, δ, ι′, Φ) and we write A(Q0) for A(

∧
q∈Q0

q), if
Q0 ⊆ Q. We call the number of the reachable states of an automaton A its size.

A run of A for w ∈ Σω is a directed acyclic graph (dag) (V,E) [28], where

1. V ⊆ Q × N, and E ⊆
⋃

0≤l(Q × {l}) × (Q × {l+1}),
2. {q : (q, 0) ∈ V } ∈ I,
3. for all (q, l) ∈ V : {q′ : ((q, l), (q′, l+1)) ∈ E} ∈ δ(q, w[l]),
4. for all (q, l) ∈ V \ (Q × {0}) there is a q′ such that ((q′, l−1), (q, l)) ∈ E.

We define V (i) = {s : (s, i) ∈ V }, called the i-th layer of V . A run is called
accepting if every infinite path in it meets the acceptance condition.

A word is accepted by A if there exists an accepting run for it. We denote the set
of accepted words of A by L(A). We distinguish between Büchi, generalized Büchi
and co-Büchi acceptance conditions. A Büchi condition is denoted by Inf(Qf) for a
set Qf ⊆ Q. An infinite path π = q0 q1 . . . meets Inf(Qf) if Qf ∩inf(π)
= ∅, where
inf(π) denotes the set of infinitely occurring states in π. A co-Büchi condition is
denoted by Fin(Qf) and π meets Fin(Qf) if Qf ∩ inf(π) = ∅. An infinite path π
meets a generalized Büchi condition

∧
i∈F Inf(Qi) if it meets Inf(Qi) for all i ∈ F .

A transition-based acceptance condition uses sets of transitions T ⊆ Q × Σ × Q
instead of sets of states to define acceptance of paths.

We call a subset C ⊆ Q a configuration and say that C is reachable if it is
a layer of some run. A configuration C is reachable from a state q, also written
as q −→∗C, if C is a reachable configuration of A(q). Analogously, C ′ ⊆ Q is
reachable from C ⊆ Q, or C −→∗C ′, if C ′ is a reachable configuration of A(C).
A configuration C is reachable via u if there is a run (V,E) for a word uw, with
u ∈ Σ∗, w ∈ Σω, such that C = V (|u|). We extend this notion to reachability
from states and configurations via finite words in the expected way and write
q

u−→∗C ′ and C
u−→∗C ′. We define L(C) = L(A(C)).

The underlying graph of A has vertices Q and edges {(q, q′) : ∃a ∈ Σ.∃S ∈
δ(q, a). q′ ∈ S}. We say that A is very weak if every strongly connected com-
ponent of its underlying graph consists of a single state and A has a co-Büchi
acceptance. If |C0| = 1 for every C0 ∈ I, and |Cδ| = 1 for every Cδ ∈ δ(q, a) with
(q, a) ∈ Q × Σ, we call A non-deterministic. As a non-deterministic automaton
has only singleton successor sets, its runs are infinite sequences of states. Finally,
an automaton A is trimmed if L(q)
= ∅ holds for every state q in A, and we
write trim(A) for the automaton that we get by removing all states with empty
language in A. For the non-alternating automata types that we consider, trim(A)
can be computed in linear time using standard graph algorithms.

From LTL to NBA. We use the standard translation from LTL to VWAA
where the states of the VWAA correspond to subformulas of ϕ and the transi-
tion relation follows the Boolean structure of the state and the LTL expansion
laws [31,36]. It has been used as a first step in an LTL-to-NBA translation

266 S. Jantsch et al.

in [17], whose construction we follow. Additionally, we use the optimizations
proposed in [3]. We also maintain the following invariant, as proposed in [17]:
for all (q, a) ∈ Q × Σ and successor sets S1, S2 ∈ δ(q, a), such that S1
= S2, it
holds that S1
⊆ S2.

A VWAA A can be transformed into a transition-based generalized Büchi
automaton (t-GBA) by a powerset-like construction, where the non-deterministic
choices of A are captured by non-deterministic choices of the t-GBA, and the
universal choices are captured by the powerset.

Definition 1. Let A = (Q,Σ,Δ, ι,Fin(Qf)) be a VWAA. The t-GBA GA is the
tuple (2Q, Σ, δ′, I,

∧
f∈Qf

Inf(Tf)), where

– δ′(C, a) =
⊗

q∈C δ(q, a), where T1 ⊗ T2 = {C1 ∪ C2 : C1 ∈ T1, C2 ∈ T2}
– Tf = {(C, a,C ′) : f
∈ C ′ or there exists Y ∈ δ(f, a) and f
∈ Y ⊆ C ′}

Theorem 2 (Theorem 2 of [17]). Let A be a VWAA and GA be as in Defini-
tion 1. Then, L(A) = L(GA).

The size of GA may be exponential in |Q| and the number of Büchi conditions
of GA is |Qf |. Often a Büchi automaton with a (non-generalized) Büchi accep-
tance is desired. For this step we follow the construction of [17], which translates
GA into an NBA NGA of at most |Qf | · 2|Q| reachable states.

3 Unambiguous VWAA

In this section we introduce a notion of unambiguity for VWAA and show
that unambiguous VWAA are translated to UBA by the translation pre-
sented in Sect. 2. We define unambiguity in terms of configurations of the
VWAA, which are strongly related to the states of the resulting NBA. Let
A = (Q,Σ,Δ, ι,Fin(Qf)) be a fixed VWAA for the rest of this section.

Definition 3. A is unambiguous if it has no distinct configurations C1, C2 that
are reachable via the same word u ∈ Σ∗ and such that L(C1) ∩ L(C2)
= ∅.

The standard definition of unambiguity is that an automaton is unambiguous
if it has at most one accepting run for any word. In our setting runs are dag’s
and we do allow multiple accepting runs for a word, as long as they agree on
the configurations that they reach for each prefix. In this sense it is a weaker
notion. However, the notions coincide on non-deterministic automata as the edge
relation of the run is then induced by the sequence of visited states.

Theorem 4. Let NGA be the NBA for A, obtained by the translation from
Sect. 2. If A is unambiguous, then NGA is unambiguous.

We show that every step in the translation from VWAA to NBA preserves unam-
biguity. First, we establish the following correspondance:

Lemma 5. If A is unambiguous, then for every accepting run r = Q0Q1 . . . of
GA for w ∈ Σω there exists an accepting run ρ = (V,E) of A for w such that
Qi = V (i) for all i ≥ 0.

From LTL to Unambiguous Büchi Automata 267

Table 1. The adapted expansion laws for U and R are the result of applying the
disjunction rule to the classic expansion laws.

Expansion law Adapted expansion law

ϕ U ψ Γ ≡ ψ ∨ (ϕ ∧ ©Γ) Γ ≡ ψ ∨ (ϕ ∧ ¬ψ ∧ ©Γ)

ϕ R ψ Γ ≡ ψ ∧ (ϕ ∨ ©Γ) Γ ≡ ψ ∧ (ϕ ∨ (¬ϕ ∧ ©Γ))

Intuitively, the lemma states that if A is unambiguous, then every accepting
run r of GA can be matched by an accepting run ρ of A such that the states of r
are the layers of ρ. The proof is not immediate and requires A to be unambiguous.

A direct consequence of Lemma 5 is that if A is unambiguous, then so is
GA. The degeneralization construction in [17] makes |Qf | + 1 copies of GA. As
the next copy is uniquely determined by the current state and word label, it
preserves unambiguity. In combination with Lemma 7 we obtain Theorem 4.

We now show that deciding whether a VWAA is unambiguous is PSPACE-
complete. The idea for proving hardness is to reduce LTL satisfiability, which is
known to be PSPACE-hard, to VWAA emptiness (this follows directly by the
LTL → VWAA translation) and VWAA emptiness to VWAA unambiguity. The
second step uses the following trick: a VWAA A accepts the empty language if
and only if the disjoint union of A with itself is unambiguous.

To check wether VWAA is unambiguous we first show that for every accepting
run of A, we find a matching accepting run of GA, which follows directly from
the definition of GA:

Lemma 6. For every accepting run ρ = (V,E) of A for w ∈ Σω there exists an
accepting run r = Q0Q1 . . . of GA for w, such that Qi = V (i) for all i ≥ 0.

Lemmas 5 and 6 give us the following:

Lemma 7. A is unambiguous if and only if GA is unambiguous.

However, checking whether GA is unambiguous can be done in space polyno-
mial in the size of A, and we conclude:

Theorem 8. Deciding whether a VWAA is unambiguous is PSPACE-complete.

4 Disambiguating VWAA

Our disambiguation procedure is inspired by the idea of “separating” the lan-
guage of successors for every non-deterministic branching. A disjunction ϕ∨ψ is
transformed into ϕ∨(¬ϕ∧ψ) by this principle. The rules for U and R are derived
by applying the disjunction rule to the expansion law of the corresponding oper-
ator (see Table 1). These rules are applied by ltl2tgba in its tableau-based
algorithm to guarantee that the resulting automaton is unambiguous, and have
also been proposed in [6].

268 S. Jantsch et al.

In our approach we define corresponding transformations for non-
deterministic branching in the VWAA. Furthermore, we propose to do this in an
“on-demand” manner: instead of applying these transformation rules to every
non-deterministic split, we identify ambiguous states during the translation and
only apply the transformations to them. This guarantees that we return the
automaton produced by the core translation, without disambiguation, in case it
is already unambiguous.

The main steps of our disambiguation procedure are the following:

1. A preprocessing step that computes a complement state s̃ for every state s.
2. A procedure that identifies ambiguous states.
3. Local transformations that remove the ambiguity.

If no ambiguity is found in step 2, the VWAA is unambiguous. The high-
level overview is also depicted in Fig. 1. In what follows we fix a VWAA
A = (Q,Σ,Δ, ι,Fin(Qf)) and assume that it has a single initial state.

Complement States. The transformations we apply for disambiguation rely on
the following precondition: for every state s of A there should be another state s̃
such that L(s̃) = L(s). We compute these complement states in a preprocessing
step and add them to A. Complementing alternating automata can be done
without any blow up by dualizing both the acceptance condition and transition
structure, as shown by Muller and Schupp [32]. As dualizing the acceptance
condition and complementing the set of final states yields an equivalent VWAA,
we can keep the co-Büchi acceptance when complementing.

The complement automaton has the same underlying graph and is therefore
also very weak. Furthermore, no state s is reachable from its own complement
state s̃, which is an invariant that we maintain and which ensures that very
weakness is preserved in the construction.

Source Configurations and Source States. To characterize ambiguous situ-
ations we define source configurations and source states. A source configuration
of A is a reachable configuration C such that there exist two different configura-
tions C1, C2 that are reachable from C via some a ∈ Σ and L(C1) ∩ L(C2)
= ∅.
By definition, A is not unambiguous if a source configuration exists.

Let C be a source configuration of A and let C1, C2 be the successor con-
figurations as described above. A source state of C is a state s ∈ C with two
transitions S1, S2 ∈ δ(s, a) such that Si ⊆ Ci, for i ∈ {1, 2}, S1
= S2 and
(S1 ∪ S2) \ (C1 ∩ C2)
= ∅. The last condition ensures that either S1 or S2 con-
tains a state that is not common to C1 and C2. By Definition 1, Ci =

⋃
q∈C Sq

with Sq ∈ δ(a, q) for all q ∈ C, and thus C must contain a source state.

AmbiguityCheck and Finding Source States. For the analysis of source con-
figurations and source states we use the standard product construction G1 ⊗ G2,
which returns a t-GBA such that L(G1⊗G2) = L(G1)∩L(G2) for two given t-GBA
G1 and G2. Specifically, we consider the self product GA ⊗ GA of GA. It helps to
identify ambiguity: GA is not unambiguous if and only if there exists a reachable
state (C1, C2) in trim(GA ⊗ GA) with C1
= C2.

From LTL to Unambiguous Büchi Automata 269

s

s1 s2

a a �→
s

s1 s2 s̃1

a
a

Fig. 3. Disambiguation scheme for a source state s with successors s1 and s2 in the
VWAA. Transitions with successor set of size ≥ 1 are conjoined by a •.

The pair of configurations (C1, C2) is a witness to ambiguity of A. We look
for a symbol a ∈ Σ and a configuration C such that (C,C) a−→ (C ′

1, C
′
2) →∗

(C1, C2) is a path in trim(GA ⊗ GA) and C ′
1
= C ′

2. Such a configuration must
exist as we have assumed that A has a single initial state qi, which implies that
trim(GA ⊗ GA) has a single initial state ({qi}, {qi}). C is a source configuration
and therefore must contain a source state which we can find by inspecting all
pairs of transitions of states in C.

Disambiguating a Source State. The general scheme for disambiguating
source states is depicted in Fig. 3. Assume that we have identified a source state
s with successor sets S1 and S2 as explained above. The LTL-to-VWAA con-
struction guarantees S1
⊆ S2 and S2
⊆ S1.We need to distinguish the looping
successor sets (i.e. those Si that contain s) from the non-looping.Technically, we
consider two cases: either S1 or S2 do not contain s or both sets contain s. In
the first case we assume, w.l.o.g., that s /∈ S1. The successor set S2 is split into
the |S1| new successor sets {(S2 ∪ {s̃1}) : s1 ∈ S1}. The new sets of states are
added to δ(s, a) and the successor set S2 is removed. If both S1 and S2 contain
s, we proceed as in the first case but do not add the successor set S2 ∪ {s̃} to
δ(s, a).

This transformation does not guarantee that s is not a source state anymore.
However, it removes the ambiguity that stems from the non-deterministic choice
of transitions S1, S2 ∈ δ(a, s). If s is still a source state it will be identified again
for another pair of transitions. After a finite number of iterations all successor
sets of s for any symbol in Σ will accept pairwise disjoint languages, in which
case s cannot be a source state anymore. The transformation preserves very
weakness as it only adds transitions from s to complement states of successors
of s and by assumption there is no path between a state and its complement
state.

Iterative Algorithm. Putting things together, our algorithm works as follows:
it searches for source configurations of A (using GA), applies the local disam-
biguation transformations to A as described and recurses (see Fig. 1). As rebuild-
ing the t-GBA may become costly, in our implementation we identify which part
of the t-GBA has to be recomputed due to the changes in A, and rebuild only
this part. If no source configuration is found, we know that both A and GA are
unambiguous and we can apply degeneralization to obtain a UBA.

270 S. Jantsch et al.

♦�a �a
a

a
true

(a) VWAA for ♦�a.

♦�a �a

♦¬a

¬a

a

¬a
a

a

a

(b) Standard disambigua-
tion.

♦�a

ϕ �a

true true

¬a

atrue

(c) Modified transformation.
Here ϕ = ♦(¬a ∧ ©�a).

Fig. 4. Three VWAA for ♦�a. The automaton in (b) is the result of standard dis-
ambiguation and (c) is the result of the modified transformation applied to (a). The
automaton in (c) is non-deterministic and has two looping states, whereas (b) is not
non-deterministic and has three looping states.

Complexity of the Procedure. The VWAA-to-t-GBA translation that we
adapt produces a t-GBA GA of size at most 2n for a VWAA A of size n. In
our disambiguation procedure we enlarge A by adding complement states for
every state in the original automaton, yielding a VWAA of size 2n. Thus, a first
size estimate of GA in our construction is 4n. However, no state in trim(GA) can
contain both s and s̃ for any state s of A. The reason is that the language of a
state in GA is the intersection of the languages of the VWAA-states it contains,
and L(s) ∩ L(s̃) = ∅. Thus, trim(GA) has at most 3n states.

The amount of ambiguous situations that we identify is bounded by the
number of non-deterministic splits in the VWAA, which may be exponential in
the length of the input LTL formula. In every iteration we check ambiguity of
the new VWAA, which can be done in exponential time. Thus, our procedure
computes a UBA in time exponential in the length of the formula.

5 Heuristics for Purely-Universal Formulas

In this section we introduce alternative disambiguation transformations for spe-
cial source states representing formulas ϕUν, where ν is purely-universal. The
class of purely-universal formulas is a syntactically defined subclass of LTL-
formulas with suffix-closed languages. These transformations reduce the size of
the resulting UBA and often produce automata of a simpler structure. The idea
is to decide whether ν holds whenever moving to a state representing ϕUν and,
if not, finding the last position where it does not hold.

Example 9. Consider the formula ♦�a. A VWAA for it is shown in Fig. 4a. It is
ambiguous, as a word satisfying �a may loop in the initial state for an arbitrary
amount of steps before moving to the next state.

In the standard disambiguation transformation the state ♦¬a is added to
the self loop of the initial state (Fig. 4b). The automaton in Fig. 4c, on the other

From LTL to Unambiguous Büchi Automata 271

hand, makes the following case distinction: either a word satisfies �a, in which
case we move to that state directly, or there is a suffix that satisfies ¬a and
©�a. The state ϕ is used to find the last occurrence of ¬a, which is unique.

To generalize this idea and identify the situations where it is applicable we
use the syntactically defined subclasses of purely-universal (ν), purely-eventual
(μ) and alternating (ξ) formulas ([3,16]). In the following definition ϕ ranges
over arbitrary LTL formulas:

ν ::= �ϕ | ν ∨ ν | ν ∧ ν | ©ν | νUν | ϕRν | ♦ν

μ ::= ♦ϕ | μ ∨ μ | μ ∧ μ | ©μ | ϕUμ | μRμ | �μ

ξ ::= �μ | ♦ν | ξ ∨ ξ | ξ ∧ ξ | ©ξ | ϕUξ | ϕRξ | ♦ξ | �ξ

Formulas that fall into these classes define suffix closed (ν), prefix closed (μ) and
prefix invariant (ξ) languages respectively:

Lemma 10 ([3,16]). For all u ∈ Σ∗ and w ∈ Σω:

– If ν is purely-universal, then uw |= ν =⇒ w |= ν.
– If μ is purely-eventual, then w |= μ =⇒ uw |= μ.
– If ξ is alternating, then w |= ξ ⇐⇒ uw |= ξ.

Let ν be purely-universal. We want to find a formula g(ν), called the goal of
ν, that is simpler than ν and satisfies g(ν)∧©ν ≡ ν. If ν does not hold initially
for some word w we can identify the last suffix w[i..] where it does not hold,
given that such an i exists, by checking if w[i..] satisfies ¬g(ν) ∧ ©ν.

It is not clear how to define g(ν) for purely-universal formulas of the form
ν1 ∨ ν2 or ν1Uν2. We therefore introduce the concept of disjunction-free purely-
universal formulas in which all occurrences of ∨ and U appear in the scope of
some �. As ϕRν ≡ ν if ν is purely-universal, we assume that all occurences of
R are also in the scope of some � for purely-universal formulas.

Lemma 11. Every purely-universal formula ν can be rewritten into a formula
ν1 ∨ . . . ∨ νn, where νi is disjunction-free for all 1 ≤ i ≤ n.

Disjunction-free purely-universal formulas have a natural notion of “goal”.

Definition 12. Let ν be a disjunction-free and purely-universal formula. We
define g(ν) inductively as follows:

g(�ϕ) = ϕ g(©ν) = ©g(ν)
g(ν1 ∧ ν2) = g(ν1) ∧ g(ν2) g(♦ν) = true

The reason for defining g(♦ν) as true is that ♦ν is an alternating formula and
checking its validity can thus be temporarily suspended. Indeed, the definition
satisfies the equivalence that we aimed for:

Lemma 13. Let ν be a disjunction-free and purely-universal formula. Then
g(ν) ∧ ©ν ≡ ν.

272 S. Jantsch et al.

In Example 9 ¬g(ν)∧©ν corresponds to ¬a∧©�a, which is realized by the
transition from state ϕ to state �a in Fig. 4c.

Lemma 14 shows the general transformation scheme (applied left to right).
It introduces non-determinism, but we show that it is not a cause of ambiguity
as the languages of the two disjuncts are disjoint. An important difference to the
known rule for U is that the left-hand side of the U-formula stays unchanged.
This is favorable as it is the left-hand side that may introduce loops in the
automaton.

Lemma 14. Let ν be a disjunction-free and purely-universal formula. Then

1. ϕU(ν ∨ ψ) ≡ ν ∨ γ and 2. L(ν) ∩ L(γ) = ∅

where γ = ϕU ((ϕ ∧ ¬g(ν) ∧ ©ν) ∨ (ψ ∧ ¬ν)).

LTL formulas may become larger when applying this transformation. How-
ever, they are comparable to the LTL formulas produced by the standard disam-
biguation transformations in terms of the number of subformulas. If all occur-
rences of © in ν are in the scope of some �, then no subformulas are added.
Otherwise, g(ν) and ©ν may introduce new ©-subformulas.

6 Implementation and Experiments

The tool Duggi is an LTL-to-UBA translator based on the construction intro-
duced in the foregoing sections.1 It reads LTL formulas in a prefix syntax and
produces (unambiguous) automata in the HOA format [2]. In the implementa-
tion we deviate from or extend the procedure described above in the following
ways:

– We make use of the knowledge given by the VWAA-complement states in the
translation steps to t-GBA GA and the product GA ⊗ GA. It allows an easy
emptiness check: if s and s̃ are present in some GA or GA ⊗ GA state, then it
accepts the empty language and does not have to be further expanded.

– We have included the following optimization of the LTL-to-VWAA proce-
dure: when translating a formula �μ, where μ is purely-eventual, we instead
translate � © μ. This results in an equivalent state with fewer transitions. It
is close to the idea of suspension as introduced in [3], but is not covered by
it.

– Additionally, Duggi features an LTL rewriting procedure that uses many of
the LTL simplification rules in the literature [3,16,30,33]. We have included
the following rules that are not used by SPOT:

I (�♦ϕ) ∧ (♦�ψ) �→ �♦(ϕ ∧ �ψ) II (♦�ϕ) ∨ (�♦ψ) �→ ♦�(ϕ ∨ ♦ψ)

These rewrite rules are more likely to produce formulas of the form ♦�ϕ, to
which the heuristic of Sect. 5 can be applied. They stem from [30], where the
reversed rules have been used to achieve a normal form.

1 Duggi and the PRISM implementation, together with all experimental data, are avail-
able at https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/.

https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/

From LTL to Unambiguous Büchi Automata 273

Fig. 5. Non-WDBA-recognizable fragment of ltlstore (948 formulas). Every point
stands for a formula where the according automaton size for Duggi is the abcissa, the
automaton size of ltl2tgba the ordinate. Points above the line stand for formulas
where Duggi performed better.

LTL Benchmarks from the Literature. We now compare the UBA sizes
for LTL formulas of the benchmark set ltlstore [25]. It collects formulas from
various case studies and tool evaluation papers in different contexts. We include
the negations of all formulas and filter out duplicates, leaving 1419 formulas.

Languages that are recognizable by weak deterministic Büchi automata
(WDBA) can be efficiently minimized [27] and ltl2tgba applies this algorithm
as follows: it computes the minimal deterministic Büchi automaton and the UBA
and returns the one with fewer states. Our formula set contains 472 formulas that
are WDBA-recognizable and for which we could compute the minimal WDBA
within the bounds of 30 min and 10 GB of memory using ltl2tgba. Of these 472
formulas we found 11 for which the UBA generated by either Duggi or ltl2tgba
was smaller than the minimal WDBA, and only two where the difference was
bigger than 3 states. On the other hand, the minimal WDBA were smaller than
the UBA produced by ltl2tgba (Duggi) for 164 (203) formulas. This supports
the approach by ltl2tgba to apply WDBA minimization when possible and in
what follows we focus on the fragment of the ltlstore that does not fall into
this class. In [14] it was noted that WDBA minimization often leads to smaller
automata than the LTL-to-NBA translation of ltl2tgba.

We consider the following configurations: Duggi is the standard configuration,
Duggi\(R,H) is Duggi without the new rewrite rules I and II (R) and/or without
the heuristic introduced in Sect. 5 (H). For SPOT, ltl2tgba is the standard con-
figuration that produces UBA without WDBA-minimization, which is switched
on in ltl2tgbaWDBA. We use simulation-based postprocessing as provided by
SPOT in all Duggi-configurations (they are enabled by default in ltl2tgba). We
use SPOT with version 2.7.2. All computations, including the PMC experiments,
were performed on a computer with two Intel E5-2680 8 cores at 2.70 GHz run-
ning Linux, with a time bound of 30 min and a memory bound of 10 GB.

274 S. Jantsch et al.

Table 2. Cumulative results on the ltlstore benchmark set.

Non-WDBA-recognizable WDBA-recognizable

States ∅ States Time in s Timeouts States ∅ States Time in s Timeouts

Duggi 16,169 20.702 38,932 167 6,866 16.308 5,958 51

Duggi\R 15,450 20.196 37,803 183 6,857 16.287 5,978 51

Duggi\RH 14,415 19.323 39,772 202 6,882 16.346 5,758 51

ltl2tgba 19,547 24.618 6,089 154 9,250 20.240 3,965 15

ltl2tgbaWDBA 19,411 24.539 7,309 157 7,632 16.700 3,814 15

Fig. 6. UBA sizes for two sets of parametrized formulas.

Scatter plots comparing the number of states of UBA produced by ltl2tgba
and Duggi are shown in Fig. 5. Table 2 gives cumulative results of different con-
figurations on these formulas. All configurations of Duggi use more time than
ltl2tgba, but produce smaller automata on average. One reason why Duggi uses
more time is the on-demand nature of algorithm, which rebuilds the intermediate
t-GBA several times while disambiguating. The average number of disambigua-
tion iterations per formula of Duggi on the entire ltlstore was 9.5.

LTL Rewrites and the Purely-Universal Heuristic. A formula that ben-
efits from using the rewrite rules I and II is Φn =

∧
i≤n ♦�p2i ∨ �♦p2i+1,

which describes a strong fairness condition. Here ltl2tgba applies the rule
♦ϕ ∨ �♦ψ �→ ♦(ϕ ∨ �♦ψ) which yields

∧
i≤n ♦(�p2i ∨ �♦p2i+1). Applying rule

II yields the formula Ψn = ♦�(
∧

i≤n p2i ∨ ♦p2i+1). Figure 6a shows that Duggi
produces smaller automata for Φn. Figure 6b shows the corresponding results
for the parametrized formula θn = (

∧
i≤n �♦pi) → �(req → ♦res) which is a

request/response pattern under fairness conditions.
A property that profits from the “on-demand” disambiguation is: “b occurs

k steps before a”. We express it with the formula ϕsteps
k = ¬a U

(
b ∧ ¬a ∧

©¬a ∧ . . . ∧ ©k−1¬a ∧ ©ka
)
. Both Duggi and ltl2tgba produce the minimal

UBA, but ltl2tgba produces an exponential-sized automaton in an interme-
diate step, because it does not realize that the original structure is already
unambiguous.This leads to high run times for large k (see Fig. 7a).

From LTL to Unambiguous Büchi Automata 275

Fig. 7. Time consumption for translating and model checking ϕsteps
k (which includes

building the automaton).

Fig. 8. Model checking times for the cluster protocol with ϕk and ψk.

Use Case: Probabilistic Model Checking. Now we look at an important
application of UBA, the analysis of Markov chains. We compare run times of an
implementation of [5] for Markov chain model checking with UBA, using PRISM
(version 4.4) and either Duggi or ltl2tgba as automata generation backends. We
take two models of the PRISM benchmark suite [26], the bounded retransmission
protocol, and the cluster working protocol [21].

The bounded retransmission protocol (BRP) is a message transmission pro-
tocol, where a sender sends a message and receives an acknowledgment if the
transmission was successful. We set the parameter N (the number of the message
parts) to 16, and MAX (the number of maximal retries) to 128. We reuse ϕsteps

k ,
which now means: “k steps before an acknowledgment there was a retransmit”,
where we replace a by ack received and b by retransmit. As expected, the
faster automaton generation leads to lower model checking times when using
Duggi (Fig. 7b). The reason for the spikes in Fig. 7b is that the probability of
the property is zero in the BRP model for odd k. This makes the model check-

276 S. Jantsch et al.

ing (which uses the numeric procedure of [5]) easier. For bigger k the automaton
generation uses a bigger share of the time, making this effect less pronounced.

As second model we analyse the cluster working model with the LTL prop-
erties presented in [20]. It consists of a workstation cluster with two sub-clusters
that are connected by a backbone and have n = 16 participants each. Let fcti

denote the number of functional working stations in sub-cluster i. We define
ϕ�♦ = �♦(fct1 = n), which expresses that the first cluster stays functional
on the long run and ϕ♦� =

∨
i∈{0,...,k} ♦�(fct2 = n − i), which expresses the

property that from some point, the second cluster contains at least n − k func-
tional working stations. We check the two formula patterns ϕk = ϕ�♦ ∧ ϕ♦�
and ψk = ϕ�♦ ∨ ϕ♦�. We leave out a third property described in [20], which is
WDBA-recognizable (see the full version [23] for further details).

The results for ϕk are depicted in Fig. 8a. Both tools have a time-out at
k = 4, although, for smaller k, the time consumption of Duggi was bigger than
ltl2tgba. Comparing the automata size, Duggi produces smaller automata for
both k = 2 and k = 3, e.g., 32 (Duggi) vs. 137 (ltl2tgba) states for k = 3. The
results for ψk can be seen in Fig. 8b. Duggi performed better than ltl2tgba,
as Duggi reached the time-out at k = 6 (vs. k = 4 for ltl2tgba). However, if
no time-out was reached, ltl2tgba consumed less time. Nevertheless, for k � 3,
model checking time of both tools was below 7 s. Still, Duggi produced smaller
automata, e.g., 25 (Duggi) vs. 59 (ltl2tgba) states for k = 3.

7 Conclusion

In this paper we have presented a novel LTL-to-UBA translation. In contrast
to other LTL-to-UBA translations [6,12,14] we use alternating automata as
an intermediate representation. To adapt the VWAA-to-NBA construction of
[17] for the unambiguity setting, we introduced a notion of unambiguity for
VWAA and a corresponding disambiguation procedure. This may be of inde-
pendent interest when considering unambiguity for different types of alternat-
ing automata. We devise heuristics that exploit structural properties of purely-
universal and alternating formulas for disambiguation. Furthermore, we identify
LTL rewriting rules that benefit the construction of UBA.

Experimental analysis on a big LTL benchmark set shows that our tool Duggi
produces smaller automata on average than the existing tools. In particular,
formulas containing nested ♦ and � benefit from our heuristics and rewrite
rules. Such formulas occur often, for example when modelling fairness proper-
ties. Experiments on Markov chain model checking indicate that the positive
properties of our approach carry over to this domain.

Our approach opens up many possibilities for optimization, for example by
processing multiple source states at once, or in a certain order. This would
let us decrease the number of disambiguation steps, and thus the run time. It
would be interesting to investigate intermediate strategies in our framework that
allow for a trade-off between automata sizes and computation times. Another
promising direction is to identify more patterns on LTL or VWAA that allow

From LTL to Unambiguous Büchi Automata 277

special disambiguation transformations. As many interesting properties stem
from the safety-/cosafety-class, a combination of our approach with the ideas of
the UFA generation described in [29] seems to be beneficial. The application of
simulation-based automata reductions to UBA is also an open question. Whereas
bisimulation preserves unambiguity, it is unclear whether there exist simulation
relations targeted specifically at shrinking unambiguous automata.

References

1. Arnold, A.: Deterministic and non ambiguous rational ω-languages. In: Nivat, M.,
Perrin, D. (eds.) LITP 1984. LNCS, vol. 192, pp. 18–27. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-15641-0 20

2. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 31

3. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5 8

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov
chains and unambiguous Büchi automata. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 23–42. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4 2

6. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
32–46. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 3

7. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly unam-
biguous Büchi automata. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.)
LATA 2010. LNCS, vol. 6031, pp. 118–129. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13089-2 10

8. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci.
297(1–3), 37–81 (2003)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

10. Colcombet, T.: Unambiguity in automata theory. In: Shallit, J., Okhotin, A. (eds.)
DCFS 2015. LNCS, vol. 9118, pp. 3–18. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19225-3 1

11. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2 16

12. Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL
model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR
2003. LNCS (LNAI), vol. 2850, pp. 361–375. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-39813-4 26

13. Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02444-8 31

https://doi.org/10.1007/3-540-15641-0_20
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-319-41528-4_2
https://doi.org/10.1007/978-3-319-41528-4_2
https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1007/978-3-642-13089-2_10
https://doi.org/10.1007/978-3-642-13089-2_10
https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/978-3-540-39813-4_26
https://doi.org/10.1007/978-3-540-39813-4_26
https://doi.org/10.1007/978-3-319-02444-8_31

278 S. Jantsch et al.

14. Duret-Lutz, A.: Contributions to LTL and ω-automata for model checking. Habil-
itation thesis, Université Pierre et Marie Curie (Paris 6), February 2017

15. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

16. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 13

17. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 6

18. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) Protocol
Specification, Testing and Verification XV, PSTV 1995. IFIP Advances in Informa-
tion and Communication Technology, vol. 38, pp. 3–18. Springer, Boston (1996).
https://doi.org/10.1007/978-0-387-34892-6 1

19. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

20. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: 26th International Conference on Concur-
rency Theory (CONCUR 2015), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 42, pp. 354–367. SchlossDagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl (2015)

21. Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the use of model checking tech-
niques for dependability evaluation. In: 19th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), pp. 228–237. IEEE Computer Society (2000)

22. Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous
ω-automata. Inf. Process. Lett. 112(14–15), 578–582 (2012)

23. Jantsch, S., Müller, D., Baier, C., Klein, J.: From LTL to unambiguous Büchi
automata via disambiguation of alternating automata. Technical report, Technis-
che Universität Dresden (2019). https://arxiv.org/abs/1907.02887/

24. Karmarkar, H., Joglekar, M., Chakraborty, S.: Improved upper and lower bounds
for Büchi disambiguation. In: Proceedings of the 11th International Symposium on
Automated Technology for Verification and Analysis (ATVA), pp. 40–54 (2013)

25. Kret́ınský, J., Meggendorfer, T., Sickert, S.: LTL store: repository of LTL formulae
from literature and case studies. CoRR abs/1807.03296 (2018). http://arxiv.org/
abs/1807.03296

26. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
Proceedings of the 9th International Conference on Quantitative Evaluation of
SysTems (QEST), pp. 203–204. IEEE Computer Society (2012)

27. Löding, C.: Efficient minimization of deterministic weak ω-automata. Inf. Process.
Lett. 79(3), 105–109 (2001)

28. Loding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS
2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44929-9 36

29. Mohri, M.: On the disambiguation of finite automata and functional transducers.
Int. J. Found. Comput. Sci. 24(6), 847–862 (2013)

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://arxiv.org/abs/1907.02887/
http://arxiv.org/abs/1807.03296
http://arxiv.org/abs/1807.03296
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44929-9_36

From LTL to Unambiguous Büchi Automata 279

30. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Proceed-
ings of the 8th International Symposium on Games, Automata, Logics and Formal
Verification (GandALF). Electronic Proceedings in Theoretical Computer Science,
vol. 256, pp. 180–194. Open Publishing Association (2017)

31. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponen-
tial time. In: Proceedings of the Third Annual Symposium on Logic in Computer
Science (LICS), pp. 422–427 (1988)

32. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theor. Comput.
Sci. 54, 267–276 (1987)

33. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000). https://doi.org/10.1007/10722167 21

34. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problem for unam-
biguous regular expressions, grammars, and automata. SIAM J. Comput. 14, 598–
611 (1985)

35. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of the 26th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 327–338. IEEE Computer Society (1985)

36. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 116

37. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the 1st Symposium on Logic
in Computer Science (LICS), pp. 332–344. IEEE Computer Society Press (1986)

https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/3-540-57887-0_116

Generic Partition Refinement
and Weighted Tree Automata

Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann(B)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{hans-peter.deifel,stefan.milius,lutz.schroeder,thorsten.wissmann}@fau.de

Abstract. Partition refinement is a method for minimizing automata
and transition systems of various types. Recently, we have developed
a partition refinement algorithm that is generic in the transition type
of the given system and matches the run time of the best known algo-
rithms for many concrete types of systems, e.g. deterministic automata
as well as ordinary, weighted, and probabilistic (labelled) transition sys-
tems. Genericity is achieved by modelling transition types as functors
on sets, and systems as coalgebras. In the present work, we refine the
run time analysis of our algorithm to cover additional instances, notably
weighted automata and, more generally, weighted tree automata. For
weights in a cancellative monoid we match, and for non-cancellative
monoids such as (the additive monoid of) the tropical semiring even
substantially improve, the asymptotic run time of the best known algo-
rithms. We have implemented our algorithm in a generic tool that is
easily instantiated to concrete system types by implementing a simple
refinement interface. Moreover, the algorithm and the tool are modular,
and partition refiners for new types of systems are obtained easily by
composing pre-implemented basic functors. Experiments show that even
for complex system types, the tool is able to handle systems with millions
of transitions.

1 Introduction

Minimization is a basic verification task on state-based systems, concerned with
reducing the number of system states as far as possible while preserving the
system behaviour. It is used for equivalence checking of systems and as a pre-
processing step in further system analysis tasks, such as model checking.

In general, minimization proceeds in two steps: (1) remove unreachable states,
and (2) identify behaviourally equivalent states. Here, we are concerned with the
second step, which depends on which notion of equivalence is imposed on states;
we work with notions of bisimilarity and generalizations thereof. Classically,
bisimilarity for labelled transition systems obeys the principle “states x and
y are bisimilar if for every transition x → x′, there exists a transition y →

Work by S. Milius, L. Schröder, and T. Wißmann forms part of the DFG project COAX
(MI 717/5-2 and SCHR 1118/12-2).

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 280–297, 2019.
https://doi.org/10.1007/978-3-030-30942-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_18

Generic Partition Refinement and Weighted Tree Automata 281

y′ with x′ and y′ bisimilar”. It is thus given via a fixpoint definition, to be
understood as a greatest fixpoint, and can therefore be iteratively approximated
from above. This is the principle behind partition refinement algorithms: Initially
all states are tentatively considered equivalent, and then this initial partition is
iteratively refined according to observations made on the states until a fixpoint is
reached. Unsurprisingly, such procedures run in polynomial time. Its comparative
tractability (in contrast, e.g. trace equivalence and language equivalence of non-
deterministic systems are PSPACE complete [24]) makes miminization under
bisimilarity interesting even in cases where the main equivalence of interest is
linear-time, such as word automata.

Kanellakis and Smolka [24] in fact provide a minimization algorithm with run
time O(m · n) for ordinary transition systems with n states and m transitions.
However, even faster partition refinement algorithms running in O((m+n)·log n)
have been developed for various types of systems over the past 50 years. For
example, Hopcroft’s algorithm minimizes deterministic automata for a fixed
input alphabet A in O(n · log n) [22]; it was later generalized to variable input
alphabets, with run time O(n · |A| · log n) [17,26]. The Paige-Tarjan algorithm
minimizes transition systems in time O((m + n) · log n) [27], and generalizations
to labelled transition systems have the same time complexity [13,23,33]. Mini-
mization of weighted systems is typically called lumping in the literature, and
Valmari and Franchescini [35] have developed a simple O((m+n)·log n) lumping
algorithm for systems with rational weights.

In earlier work [14,37] we have developed an efficient generic partition refine-
ment algorithm that can be easily instantiated to a wide range of system types,
most of the time either matching or improving the previous best run time. The
genericity of the algorithm is based on modelling state-based systems as coalge-
bras following the paradigm of universal coalgebra [30], in which the branching
structure of systems is encapsulated in the choice of a functor, the type func-
tor. This allows us to cover not only classical relational systems and various
forms of weighted systems, but also to combine existing system types in vari-
ous ways, e.g. nondeterministic and probabilistic branching. Our algorithm uses
a functor-specific refinement interface that supports a graph-based representa-
tion of coalgebras. It allows for a generic complexity analysis, and indeed the
generic algorithm has the same asymptotic complexity as the above-mentioned
specific algorithms; for Segala systems [32] (systems that combine probabilistic
and non-deterministic branching, also known as Markov decision processes), it
even improves on the best known run time and matches the run time of a recent
algorithm [19] discovered independently and almost at the same time.

The new contributions of the present paper are twofold. On the theoreti-
cal side, we show how to instantiate our generic algorithm to weighted systems
with weights in a monoid (generalizing the group-weighted case considered pre-
viously [14,37]). We then refine the complexity analysis of the algorithm, making
the complexity of the implementation of the type functor a parameter p(n,m),
where n and m are the numbers of nodes and edges, respectively, in the graph
representation of the input coalgebra. In the new setup, the previous analysis

282 H.-P. Deifel et al.

becomes the special case where p(n,m) = 1. Under the same structural assump-
tions on the type functor and the refinement interface as previously, our algo-
rithm runs in time O(m · log n · p(n,m)). Instantiated to the case of weighted
systems over non-cancellative monoids (with p(n,m) = log(n)), such as the
additive monoid (N,max, 0) of the tropical semiring, the run time of the generic
algorithm is O(m · log2 m), thus markedly improving the run time O(m · n) of
previous algorithms for weighted automata [9] and, more generally, (bottom-up)
weighted tree automata [20] for this case. In addition, for cancellative monoids,
we again essentially match the complexity of the previous algorithms [9,20].

Our second main contribution is a generic and modular implementation of
our algorithm, the Coalgebraic Partition Refiner (CoPaR). Instantiating CoPaR
to coalgebras for a given functor requires only to implement the refinement inter-
face. We provide such implementations for a number of basic type functors, e.g.
for non-deterministic, weighted, or probabilistic branching, as well as (ranked)
input and output alphabets or output weights. In addition, CoPaR is modu-
lar : For any type functor obtained by composing basic type functors for which a
refinement interface is available, CoPaR automatically derives an implementation
of the refinement interface. We explain in detail how this modularity is realized
in our implementation and, extending Valmari and Franchescini’s ideas [35], we
explain how the necessary data structures need to be implemented so as to real-
ize the low theoretical complexity. We thus provide a working efficient partition
refiner for all the above mentioned system types. In particular, our tool is, to the
best of our knowledge, the only available implementation of partition refinement
for many composite system types, notably for weighted (tree) automata over
non-cancellative monoids. The tool including source code and evaluation data is
available at https://git8.cs.fau.de/software/copar.

2 Theoretical Foundations

Our algorithmic framework [14,37] is based on modelling state-based systems
abstractly as coalgebras for a (set) functor that encapsulates the transition type,
following the paradigm of universal coalgebra [30]. We proceed to recall standard
notation for sets and maps, as well as basic notions and examples in coalgebra.
We fix a singleton set 1 = {∗}; for every set X we have a unique map ! : X → 1.
We denote composition of maps by (−) · (−), in applicative order. Given maps
f : X → A, g : X → B we define 〈f, g〉 : X → A × B by 〈f, g〉(x) = (f(x), g(x)).
We model the transition type of state based systems using functors. Informally, a
functor F assigns to a set X a set FX of structured collections over X, and an F -
coalgebra is a map c assigning to each state x in a system a structured collection
c(x) ∈ FX of successors. The most basic example is that of transition systems,
where F is powerset, so a coalgebra assigns to each state a set of successors.
Formal definitions are as follows.

Definition 2.1. A functor F : Set → Set assigns to each set X a set FX, and to
each map f : X → Y a map Ff : FX → FY , preserving identities and composi-
tion (F idX = idFX , F (g ·f) = Fg ·Ff). An F -coalgebra (C, c) consists of a set C

https://git8.cs.fau.de/software/copar

Generic Partition Refinement and Weighted Tree Automata 283

of states and a transition structure c : C → FC. A morphism h : (C, c) → (D, d)
of F -coalgebras is a map h : C → D that preserves the transition structure,
i.e. Fh·c = d·h. Two states x, y ∈ C of a coalgebra c : C → FC are behaviourally
equivalent (x ∼ y) if there exists a coalgebra morphism h with h(x) = h(y).

Example 2.2. (1) The finite powerset functor Pω maps a set X to the set
PωX of all finite subsets of X, and a map f : X → Y to the map
Pωf = f [−] : PωX → PωY taking direct images. Pω-coalgebras are finitely
branching (unlabelled) transition systems. and two states are behaviourally
equivalent iff they are bisimilar.

(2) For a fixed finite set A, the functor given by FX = 2×XA, where 2 = {0, 1},
sends a set X to the set of pairs of boolean values and functions A → X. An
F -coalgebra (C, c) is a deterministic automaton (without an initial state).
For each state x ∈ C, the first component of c(x) determines whether x is
a final state, and the second component is the successor function A → X
mapping each input letter a ∈ A to the successor state of x under input
letter a. States x, y ∈ C are behaviourally equivalent iff they accept the
same language in the usual sense.

(3) For a commutative monoid (M,+, 0), the monoid-valued functor M (−) sends
each set X to the set of maps f : X → M that are finitely supported,
i.e. f(x) = 0 for almost all x ∈ X. An F -coalgebra c : C → M (C) is, equiva-
lently, a finitely branching M -weighted transition system: For a state x ∈ C,
c(x) maps each state y ∈ C to the weight c(x)(y) of the transition from x to y.
For a map f : X → Y , M (f) : M (X) → M (Y) sends a finitely supported map
v : X → M to the map y �→ ∑

x∈X,f(x)=y v(x), corresponding to the stan-
dard image measure construction. As the notion of behavioural equivalence
of states in M (−)-coalgebras, we obtain weighted bisimilarity (cf. [9,25]),
given coinductively by postulating that states x, y ∈ C are behaviourally
equivalent (x ∼ y) iff

∑
z′∼z c(x)(z′) =

∑
z′∼z c(y)(z′) for all z ∈ C.

For the Boolean monoid (2 = {0, 1},∨, 0), the monoid-valued functor 2(−) is
(naturally isomorphic to) the finite powerset functor Pω. For the monoid of
real numbers (R,+, 0), the monoid-valued functor R(−) has R-weighted sys-
tems as coalgebras, e.g. Markov chains. In fact, finite Markov chains are
precisely finite coalgebras of the finite distribution functor, i.e. the sub-
functor Dω of R

(−)
≥0 (and hence of R(−)) given by Dω(X) = {μ ∈ R

(X)
≥0 |∑

x∈X μ(x) = 1}. For the monoid (N,+, 0) of natural numbers, the monoid-
valued functor is the bag functor Bω, which maps a set X to the set of finite
multisets over X.

3 Generic Partition Refinement

We recall some key aspects of our generic partition refinement algorithm [14,
37], which minimizes a given coalgebra, i.e. computes its quotient modulo

284 H.-P. Deifel et al.

behavioural equivalence; we center the presentation around the implementation
and use of our tool.

The algorithm [37, Algorithm 4.5] is parametrized over a type functor F ,
represented by implementing a fixed refinement interface, which in particular
allows for a representation of F -coalgebras in terms of nodes and edges (by
no means implying a restriction to relational systems!). Our previous analysis
has established that the algorithm minimizes F -coalgebras with n nodes and m
edges in time O(m · log n), assuming m ≥ n and that the operations of the
refinement interface run in linear time. In the present paper, we generalize the
analysis, establishing a run time in O(m · log n · p(n,m)), where p(n,m) is a
factor in the time complexity of the operations implementing the refinement
interface, and depends on the functor at hand. In many instances, p(n,m) = 1,
reproducing the previous analysis. In some cases, p(n,m) is not constant, and
our new analysis still applies in these cases, either matching or improving the
best known run time in most instances, most notably weighted systems over
non-cancellative monoids.

We proceed to discuss the design of the implementation, including input
formats of our tool CoPaR for composite functors built from pre-implemented
basic blocks and for systems to be minimized (Sect. 3.1). The refinement interface
and its implementation are described in Sect. 3.2.

3.1 Generic System Specification

CoPaR accepts as input a file that represents a finite F -coalgebra c : C → FC,
and consists of two parts. The first part is a single line specifying the functor F .
Each of the remaining lines describes one state x ∈ C and its one-step behaviour
c(x). Examples of input files are shown in Fig. 1.

Functor Specification. Functors are specified as composites of basic building
blocks; that is, the functor given in the first line of an input file is an expression
determined by the grammar

T :: = X | F (T, . . . , T) (F : Setk → Set) ∈ F , (1)

where the character X is a terminal symbol and F is a set of predefined sym-
bols called basic functors, representing a number of pre-implemented functors

Fig. 1. Examples of input files with encoded coalgebras

Generic Partition Refinement and Weighted Tree Automata 285

of type F : Setk → Set. Only basic functors need to be implemented explicitly
(Sect. 3.2); for composite functors, the tool derives instances of the algorithm
automatically (Sect. 3.3). Basic functors currently implemented include (finite)
powerset Pω, the bag functor Bω, monoid-valued functors M (−), and polyno-
mial functors for finite many-sorted signatures Σ, based on the description of
the respective refinement interfaces given in our previous work [14,37] and, in the
case of M (−) for unrestricted commutative monoids M (rather than only groups)
the newly developed interface described in Sect. 5. Since behavioural equivalence
is preserved and reflected under converting G-coalgebras into F -coalgebras for
a subfunctor G of F [37, Proposition 2.13], we also cover subfunctors, such as
the finite distribution functor Dω as a subfunctor of R(−). With the polynomial
constructs + and × written in infix notation as usual, the currently supported
grammar is effectively

T :: = X | Pω T | Bω T | Dω T | M (T) | Σ

Σ :: = C | T + T | T × T | TA C :: = N | A A :: = {s1, . . . , sn} (2)

where the sk are strings subject to the usual conventions for C-style identi-
fiers, exponents FA are written F^A, and M is one of the monoids (Z,+, 0),
(R,+, 0), (C,+, 0), (Pω(64),∪, ∅) (i.e. the monoid of 64-bit words with bitwise
or), and (N,max, 0) (the additive monoid of the tropical semiring). Note that C
effectively ranges over at most countable sets, and A over finite sets. A term T
determines a functor F : Set → Set in the evident way, with X interpreted as the
argument, i.e. F (X) = T . It should be noted that the implementation treats com-
posites of polynomial (sub-)terms as a single functor in order to minimize over-
head incurred by excessive decomposition, e.g. X �→ {0, 1}+Pω(R(X))+X×X is
composed from the basic functors Pω, R(−) and the 3-sorted polynomial functor
Σ(X,Y,Z) = {0, 1} + X + Y × Z.

Coalgebra Specification. The remaining lines of an input file define a finite
F -coalgebra c : C → FC. Each line of the form x: t defines a state x ∈ C, where
x is a C-style identifier, and t represents the element t = c(x) ∈ FC. The syntax
for t depends on the specified functor F , and follows the structure of the term T
defining F ; we write t ∈ T for a term t describing an element of FC:

– t ∈ X iff t is one of the named states specified in the file.
– t ∈ T1 × · · · × Tn is given by t :: = (t1, . . . , tn) where ti ∈ Ti, i = 1, . . . , n.
– t ∈ T1 + · · · + Tn is given by t :: = inj i ti where i = 1, . . . , n and ti ∈ Ti.
– t ∈ PωT and t ∈ BωT are given by t :: = {t1, . . . , tn} with t1, . . . , tn ∈ T .
– t ∈ M (T) is given by t :: = {t1: m1, . . . ,tn: mn} with m1, . . . ,mn ∈ M and

t1, . . . , tn ∈ T , denoting μ ∈ M (TC) with μ(ti) = mi and μ(t) = 0 otherwise.

For example, for the functor F given by the term T = Pω({a, b} × R(X)), the
one-line declaration x: {(a,{x: 2.4}), (a,{}), (b,{x: -8})} defines an F -
coalgebra with a single state x, having two a-successors and one b-successor,
where successors are elements of R(X). One a-successor is constantly zero, and
the other assigns weight 2.4 to x; the b-successor assigns weight −8 to x. Two
more examples are shown in Fig. 1.

286 H.-P. Deifel et al.

Parsing Input Files. After reading the functor term T , the tool builds a parser
for the functor-specific input format and parses an input coalgebra specified
in the above syntax into an intermediate format described in Sect. 3.2. In the
case of a composite functor, the parsed coalgebra then undergoes a substantial
amount of preprocessing that also affects how transitions are counted; we defer
the discussion of this point to Sect. 3.3, and assume for the time being that
F : Set → Set is a basic functor with only one argument.

3.2 Refinement Interfaces

New functors are added to the framework by implementing a refinement interface
(Definition 3.2). The interface relates to an abstract encoding of the functor and
its coalgebras in terms of nodes and edges:

Definition 3.1. An encoding of a functor F consists of a set A of labels and a
family of maps � : FX → Bω(A × X), one for every set X. The encoding of an
F -coalgebra c : C → FC is given by the map 〈F !, �〉 · c : C → F1 × Bω(A × C)
and we say that the coalgebra has n = |C| states and m =

∑
x∈C |�(c(x))| edges.

An encoding does by no means imply a reduction from F -coalgebras to Bω(A ×
(−))-coalgebras, i.e. the notions of behavioural equivalence for Bω(A × (−))
and F , respectively, can be radically different. The encoding just fixes a rep-
resentation format, and � is not assumed to be natural (in fact, it fails to be
natural in all encodings we have implemented except the one for polynomial
functors). Encodings typically match how one intuitively draws coalgebras of
various types as certain labelled graphs. For instance for Markov chains (see
Fig. 1), i.e. coalgebras for the distribution functor Dω, the set of labels is the set
of probabilities A = [0, 1], and � : DωX → Bω([0, 1] × X) assigns to each finite
probability distribution μ : X → [0, 1] the bag {(μ(x), x) | x ∈ X,μ(x) = 0}.

The implementation of a basic functor contains two ingredients: (1) a parser
that transforms the syntactic specification of an input coalgebra (Sect. 3.1) into
the encoded coalgebra, and (2) the implementation of the refinement interface.

Fig. 2. Splitting a block

To understand the motivation behind the definition
of a refinement interface, suppose that the generic par-
tition refinement has already computed some block of
states B ⊆ C in its partition and that states in S ⊆ B
have different behaviour than those in B \ S. From
this information, the algorithm has to infer whether
states x, y ∈ C that are in the same block and have
successors in B exhibit different behaviour and thus
have to be separated. For example, in the classical
Paige-Tarjan algorithm [27], i.e. for F = Pω, x and
y can stay in the same block provided that (a) x has
a successor in S iff y has one and (b) x has a successor in B \ S iff y has
one. Equivalently, Pω〈χS , χB\S〉(c(x)) = Pω〈χS , χB\S〉(c(y)), where χS : C → 2
is the usual characteristic function of the subset S ⊆ C. In the example

Generic Partition Refinement and Weighted Tree Automata 287

of Markov chains, i.e. F = Dω, x, y ∈ C can stay in the same block if∑
x′∈S c(x)(x′) =

∑
y′∈S c(y)(y′) and

∑
x′∈B\S c(x)(x′) =

∑
y′∈B\S c(y)(y′),

i.e. if Dω〈χS , χB\S〉(c(x)) = Dω〈χS , χB\S〉(c(y)). Note that the element (1, 1)
is not in the image of 〈χS , χB\S〉 : C → 2 × 2. Since, moreover, S ⊆ B, we can
equivalently consider the map

χB
S : C → 3, χB

S (x ∈ S) = 2, χB
S (x ∈ B \ S) = 1, χB

S (x ∈ C \ B) = 0. (3)

That is, two states x, y ∈ C can stay in the same block in the refinement step
provided that FχB

S (c(x)) = FχB
S (c(y)). Thus, it is the task of a refinement

interface to compute FχB
S · c efficiently and incrementally.

Definition 3.2. Given an encoding (A, �) of the set functor F , a refinement
interface for F consists of a set W of weights and functions

init : F1 × BωA → W and update : BωA × W → W × F3 × W

satisfying the following coherence condition: There exists a family of weight maps
w : PX → (FX → W) such that for all t ∈ FX and all sets S ⊆ B ⊆ X,

w(X)(t) = init
(
F !(t),Bωπ1(�(t))

)

(w(S)(t), FχB
S (t), w(B\S)(t)) = update

({a | (a, x) ∈ �(t), x ∈ S}, w(B)(t)
)
.

Note that the comprehension in the first argument of update is to be read as
a multiset comprehension. In contrast to init and update, the function w is not
called by the algorithm and thus does not form part of the refinement interface.
However, its existence ensures the correctness of our algorithm. Intuitively, X is
the set of states of the input coalgebra (C, c), and for every x ∈ C, w(B)(c(x)) ∈
W is the overall weight of edges from x to the block B ⊆ C in the coalgebra
(C, c). The axioms in Definition 3.2 assert that init receives in its first argument
the information which states of C are (non-)terminating, in its second argument
the bag of labels of all outgoing edges of a state x ∈ C in the graph representation
of (C, c), and it returns the total weight of those edges. The operation update
receives a pair consisting of the bag of labels of all edges from some state x ∈ C
into the set S ⊆ C and the weight of all edges from x to B ⊆ C, and from only
this information (in particular update does not know x, S, and B explicitly) it
computes the triple consisting of the weight w(S)(c(x)) of edges from x to S,
the result of FχB

S · c(x) and the weight w(B \ S)(c(x)) of edges from x to B \ S
(e.g. in the Paige-Tarjan algorithm, the number of edges from x to S, the value
for the three way split, and the number of edges from x to B\S, cf. Fig. 2). Those
two computed weights are needed for the next refinement step, and FχB

S · c(x)
is used by the algorithm to decide whether or not two states x, y ∈ C that are
contained in the same block and have some successors in B remain in the same
block for the next iteration.

For a given functor F , it is usually easy to derive the operations init and
update once an appropriate choice of the set W of weights and weight maps w
is made, so we describe only the latter in the following; see [14,37] for full
definitions.

288 H.-P. Deifel et al.

Fig. 3. Visualization of FX = Dω(Σ(PωX, BωX)) for Σ(Z1, Z2) = N × Z1 × Z1

Example 3.3. (1) For F = R(−) we can take W = R2, and w(B)(t) records the
accumulated weight of X \B and B: w(B)(t) =

(∑
x∈X\B t(x),

∑
x∈B t(x)

)
,

i.e. w(B) = FχB : FX → F2.
(2) More generally, let F be one of the functors G(−),Bω, Σ where G is a group

and Σ a signature with bounded arity, represented as a polynomial functor.
Then we can take W = F2 (e.g. W = R2 for F = R(−) as above) and
w(B) = FχB : FX → F2.

(3) For F = Pω, we need W = 2×N, and w(B)(t) = (|t\B| ≥ 1, |t∩B|) records
whether there is an edge to X \ B and counts the numbers of edges into B.

In order to ensure that iteratively splitting blocks using FχB
S in each

iteration correctly computes the minimization of the given coalgebra,
we require that the type functor F is zippable, i.e. the evident maps
〈F (X+!), F (! + Y)〉 : F (X + Y) −→ F (X +1)×F (1+Y) are injective [37, Def-
inition 5.1]. All functors mentioned in Example 2.2 are zippable, and zippable
functors are closed under products, coproducts, and subfunctors [37, Lemma 5.4]
but not under functor composition; e.g. PωPω fails to be zippable [37, Exam-
ple 5.9].

The main correctness result [37] states that for a zippable functor equipped
with a refinement interface, our algorithm correctly minimizes the given coalge-
bra. The low time complexity of our algorithm hinges on the time complexity
of the implementations of init and update. We have shown previously [37, The-
orem 6.22] that if both init and update run in linear time in the input list (of
type BωA) alone (independently of n,m), then our generic partition refinement
algorithm runs in time O((m + n) · log n) on coalgebras with n states and m
edges. In order to cover instances where the run time of init and update depends
also on n,m, we now generalize this to the following new result:

Theorem 3.4. Let F be a zippable functor equipped with a refinement interface.
Suppose further that p(n,m) is a function such that in every run of the partition
refinement algorithm on F -coalgebras with n states and m edges,

(1) all calls to init and update on � ∈ BωA run in time O(|�| · p(n,m));
(2) all comparisons of values of type W run in time O(p(n,m)).

Then the algorithm runs in overall time O((m + n) · log n · p(n,m)).

Obviously, for p(n,m) ∈ O(1), we obtain the previous complexity. Indeed, for the
functors G(−), Pω, Bω, where G is an abelian group, we can take p(n,m) = 1;
this follows from our previous work [37, Examples 6.4 and 6.6]. For a ranked

Generic Partition Refinement and Weighted Tree Automata 289

alphabet Σ, i.e. a signature with arities of operations bounded by, say, r, we can
take p(m,n) = r ∈ O(1) if Σ (or just r) is fixed. We will discuss in Sect. 5 how
Theorem 3.4 instantiates to weighted systems, i.e. to monoid-valued functors
M (−) for unrestricted commutative monoids M .

3.3 Combining Refinement Interfaces

In addition to supporting genericity via direct implementation of the refinement
interface for basic functors, our tool is modular in the sense that it automatically
derives a refinement interface for functors built from the basic ones according
to the grammar (1). In other words, for such a functor the user does not need
to write a single line of new code. Moreover, when the user implements a refine-
ment interface for a new basic functor, this automatically extends the effective
grammar.

For example, our tool can minimize systems of type FX = Dω(N × PωX ×
BωX). To achieve this, a given F -coalgebra is transformed into one for the func-
tor F ′X = DωX + (N × X × X) + PωX + BωX. This functor is obtained as
the sum of all basic functors involved in F , i.e. of all the nodes in the visual-
ization of the functor term F (Fig. 3). Then the components of the refinement
interfaces of the four involved functors Dω, Σ, Pω, and Bω are combined by
disjoint union +. The transformation of a coalgebra c : C → FC into a F ′-
coalgebra introduces a set of intermediate states for each edge in the visualization
of the term F in Fig. 3. E.g. Y contains an intermediate state for every Dω-edge,
i.e. Y = {(x, y) | μ(x)(y) = 0}. Successors of such intermediate states in Y lie
in N × Z1 × Z2, and successors of intermediate states in Z1 and Z2 lie in PωX
and BωX, respectively. Overall, we obtain an F ′-coalgebra on X + Y + Z1 + Z2,
whose minimization yields the minimization of the original F -coalgebra. The
correctness of this construction is established in full generality in [37, Section 7].

CoPaR moreover implements a further optimization of this procedure that
leads to fewer intermediate states in the case of polynomial functors Σ: Instead
of putting the refinement interface of Σ side by side with those of its arguments,
CoPaR includes a systematic procedure to combine the refinement interfaces of
the arguments of Σ into a single refinement interface. For instance, starting from
FX = Dω(N× PωX × BωX) as above, a given F -coalgebra is thus transformed
into a coalgebra for the functor F ′′X = DωX + N × PωX × BωX, effectively
inducing intermediate states in Y as above but avoiding Z1 and Z2.

3.4 Implementation Details

Our implementation is geared towards realizing both the level of genericity and
the efficiency afforded by the abstract algorithm. Regarding genericity, each basic
functor is defined (in its own source file) as a single Haskell data type that
implements two type classes: a class that directly corresponds to the refinement
interface given in Definition 3.2 with its methods init and update, and a parser
that defines the coalgebra syntax for the functor. This means that new basic
functors can be implemented without modifying any of the existing code, except

290 H.-P. Deifel et al.

for registering the new type in a list of existing functors (refinement interfaces
are in src/Copar/Functors).

A key data structure for the efficient implementation of the generic algorithm
are refinable partitions, which store the current partition of the set C of states of
the input coalgebra during the execution of the algorithm. This data structure
has to provide constant time operations for finding the size of a block, marking a
state and counting the marked states in a block. Splitting a block in marked and
unmarked states must only take linear time in the number of marked states of
this block. In CoPaR, we use such a data structure described (for use in Markov
chain lumping) by Valmari and Franceschinis [35].

Our abstract algorithm maintains two partitions P,Q of C, where P is one
transition step finer than Q; i.e. P is the partition of C induced by the map
Fq · c : C � FQ, where q : C � Q is the canonical quotient map assigning to
every state the block which contains it. The key to the low time complexity is
to choose in each iteration a subblock, i.e. a block S in P whose surrounding
compound block, i.e. the block B in Q such that S ⊆ B, satisfies 2 · |S| ≤ |B|,
and then refine Q (and P) as explained in Sect. 3.2 (see Fig. 2). This idea goes
back to Hopcroft [22], and is also used in all other partition refinement algo-
rithms mentioned in the introduction. Our implementation maintains a queue of
subblocks S satisfying the above property, and the termination condition P = Q
of the main loop then translates to this queue being empty.

One optimization that is new in CoPaR in relation to [35,37] is that weights
for blocks of exactly one state are not computed, as those cannot be split any
further. This has drastic performance benefits for inputs where the algorithm
produces many single-element blocks early on, e.g. for nearly minimal systems
or fine grained initial partitions, see [11] for details and measurements.

4 Instances

Many systems are coalgebras for functors composed according to the gram-
mar (2). In Table 1, we list various system types that can be handled by our
algorithm, taken from [14,37] except for weighted tree automata, which are new
in the present paper. In all cases, m is the number of edges and n is the number
of states of the input coalgebra, and we compare the run time of our generic
algorithm with that of specifically designed algorithms from the literature. In
most instances we match the complexity of the best known algorithm. In the one
case where our generic algorithm is asymptotically slower (LTS with unbounded
alphabet), this is due to assuming a potentially very large number of alphabet
letters – as soon as the number of alphabet letters is assumed to be polynomially
bounded in the number n of states, the number m of transitions is also polyno-
mially bounded in n, so log m ∈ O(log n). This argument also explains why ‘<’
and ‘=’, respectively, hold in the last two rows of Table 1, as we assume Σ to be
(fixed and) finite; the case where Σ is infinite and unranked is more complicated.
Details on the instantiation to weighted tree automata are discussed in Sect. 5.
We comment briefly on some further instances and initial partitions:

https://git8.cs.fau.de/software/copar/tree/master/src/Copar/Functors

Generic Partition Refinement and Weighted Tree Automata 291

Further System Types can be handled by our algorithm and tool by combin-
ing functors in various ways. For instance, general Segala systems are coalgebras
for the functor PωDω(A × (−)), and are minimized by our algorithm in time
O((m + n) · log n), improving on the best previous algorithm [2]; other type
functors for various species of probabilistic systems are listed in [3], including
the ones for reactive systems, generative systems, stratified systems, alternating
systems, bundle systems, and Pnueli-Zuck systems.

Initial Partitions: Note that in the classical Paige-Tarjan algorithm [27], the
input includes an initial partition. Initial partitions as input parameters are
covered via the genericity of our algorithm: Initial partitions on F -coalgebras
are accomodated by moving to the functor F ′X = N × FX, where the first
component of a coalgebra assigns to each state the number of its block in the
initial partition. Under the optimized treatment of the polynomial functor N ×
(−) (Sect. 3.3), this transformation does not enlarge the state space and also
leaves the complexity parameter p(n,m) unchanged [37]; that is, the asymptotic
run time of the algorithm remains unchanged under adding initial partitions.

5 Weighted Tree Automata

We proceed to take a closer look at weighted tree automata as a worked example.
In our previous work, we have treated the case where the weight monoid is a
group; in the present paper, we extend this treatment to unrestricted monoids.
As indicated previously, it is this example that mainly motivates the refinement
of the run time analysis discussed in Sect. 3.2, and we will see that in the case
of non-cancellative monoids, the generic algorithm improves on the run time of
the best known specific algorithms in the literature.

Weighted tree automata simultaneously generalize tree automata and
weighted (word) automata. A partition refinement construction for weighted
automata (w.r.t. weighted bisimilarity) was first considered by Buchholz [9, The-
orem 3.7]. Högberg et al. first provided an efficient partition refinement algorithm
for tree automata [21], and subsequently for weighted tree automata [20]. Gen-
erally, tree automata differ from word automata in replacing the input alphabet,
which may be seen as sets of unary operations, with an algebraic signature Σ:

Definition 5.1. Let (M,+, 0) be a commutative monoid. A (bottom-up)
weighted tree automaton (WTA) (over M) consists of a finite set X of states, a
finite signature Σ, an output map f : X → M , and for each k ≥ 0, a transition
map μk : Σk → MXk×X , where Σk denotes the set of k-ary input symbols in Σ;
the maximum arity of symbols in Σ is called the rank.

A weighted tree automaton is thus equivalently a finite coalgebra for the functor
M × M (Σ) (where M (Σ)(X) = M (ΣX)) where Σ : Set → Set is a polynomial
functor. Indeed, we can regard the output map as a transition map for a con-
stant symbol, so it suffices to consider just the functor M (Σ) (and in fact the

292 H.-P. Deifel et al.

Table 1. Asymptotic complexity of the generic algorithm (2017/2019) compared to
specific algorithms, for systems with n states and m transitions, respectively mPω

nondeterministic and mDω probabilistic transitions for Segala systems. For simplicity,
we assume that m ≥ n and, like [20,22], that A, Σ are finite.

System Functor Run-time Specific algorithm (Year)

DFA 2 × (−)A n · log n = n · log n 1971 [22]

Transition
systems

Pω m · log n = m · log n 1987 [27]

Labelled TS Pω(N × −) m · log m = m · log m 2004 [15]

> m · log n 2009 [33]

Markov chains R(−) m · log n = m · log n 2010 [35]

Segala systems Pω(A × −) · D mDω · log mPω < m · log n 2000 [2]

= mDω · log mPω 2018 [19]

Colour
refinement

Bω m · log n = m · log n 2017 [5]

Weighted tree
automata

M × M (Σ(−)) m · log2 m < m · n 2007 [20]

M × M (Σ(−))

(M cancellative)

m · log m = m · log n 2007 [20]

output map is ignored in the notion of backward bisimulation used by Högberg
et al. [20]). For weighted systems, forward and backward notions of bisimulation
are considered in the literature [9,20]; we do not repeat the definitions here but
focus on backward bisimulation, as it corresponds to behavioural equivalence:

Proposition 5.2. Backward bisimulation of weighted tree automata coincides
with behavioural equivalence of M (Σ)-coalgebras.

Since M (Σ) is a composite of M (−) and a polynomial functor Σ, the modularity
of our approach implies that it suffices to provide a refinement interface for M (−).
For the case where M is a group, a refinement interface with p(n,m) = 1 has been
given in our previous work. For the general case, we distinguish, like Högberg
et al. [20], between cancellative and non-cancellative monoids, because we obtain
a better complexity result for the former.

5.1 Cancellative Monoids

Recall that a commutative monoid (M,+, 0) is cancellative if a+b = a+c implies
b = c. It is well-known that every cancellative commutative monoid M embeds
into an abelian group G via the Grothendieck construction. Hence, we can con-
vert M (−)-coalgebras into G(−)-coalgebras and use the refinement interface for
G(−) from our previous work, obtaining

Theorem 5.3. On weighted tree automata with n states, k transitions and rank
r over a cancellative monoid, our algorithm runs in time O((rk+n)·log(k+n)·r).

Generic Partition Refinement and Weighted Tree Automata 293

Note that rk may be replaced with the number m of edges of the corresponding
coalgebra. Thus, for a fixed signature and m ≥ n, we obtain the bound in Table 1.

5.2 Non-cancellative Monoids

The refinement interface for G(−) for a group G (in which the cancellative monoid
M in Sect. 5.1 is embedded) crucially makes use of inverses for the fast computa-
tion of the weights returned by update. For a non-cancellative monoid (M,+, 0),
we instead need to maintain bags of monoid elements and consider subtraction
of bags. For the encoding of M (−), we take labels A = M �=0 = M \ {0}, and
�(f) = { (f(x), x) | x ∈ X, f(x) = 0 } for f ∈ M (−). The refinement interface for
M (−) has weights W = M × B(M �=0) and

w(B)(f) =
(∑

x∈X\B f(x), (m �→ ∣
∣{x ∈ B | f(x) = m}∣∣)) ∈ M × B(M �=0);

that is, w(B)(f) returns the total weight of X\B under f and the bag of non-zero
elements of M occurring in f . The interface functions init : M (1)×BωM �=0 → W ,
update : BωM �=0 × W → W × M (3) × W are

init(f, �) = (0, �)
update(�, (r, c)) = ((r + Σ(c − �), �), (r,Σ(c − �), Σ(�)), (r + Σ(�), c − �)),

where for a, b ∈ BY , the bag a− b is defined by (a− b)(y) = max(0, a(y)− b(y));
Σ : BM → M is the canonical summation map defined by Σ(b) =

∑
m∈M b(m) ·

m; and we denote elements of M (3) as triples over M .
We implement the bags B(M �=0) used in W = M×B(M �=0) as balanced search

trees with keys M �=0 and values N, following Adams [1]. In addition, we store in
every node the value Σ(b), where b is the bag encoded by the subtree rooted at
that node. Hence, for every bag b, the value Σ(b) is immediately available at the
root node of the search tree encoding b. It is not difficult to see that maintaining
those values in the nodes only adds a constant overhead into the operations of
our data structure for bags and that the size of the search trees is bounded by
min(|M |,m). Thus, we obtain:

Proposition 5.4. The above function update(�, (r, c)) can be computed in O(|�|·
log min(|M |,m)), where m is the number of all edges of the input coalgebra.

Corollary 5.5. On a weighted tree automaton with n states, k transitions, and
rank r over an (unrestricted) monoid M , our algorithm runs in time O(

(rk +
n) · log(k + n) · (log k + r)

)
, respectively O((rk + n) · log(k + n) · r) if M is finite.

More precisely, the analysis using Theorem 3.4 shows that rk can be replaced
with the number m of edges of the input coalgebra. Assuming m ≥ n we thus
obtain the bound given in Table 1. In addition to guaranteeing a good theoretical
complexity, our tool immediately yields an efficient implementation. For the
case of non-cancellative monoids, this is, to the best of our knowledge, the only
available implementation of partition refinement for weighted tree automata.

294 H.-P. Deifel et al.

Table 2. Processing times (in seconds) tp for parsing and ta for partition refinement
on maximal weighted tree automata with n states and 50 ·n random transitions fitting
into 16 GB of memory. File sizes range from 117 MB to 141 MB, and numbers m of
edges from 11 million to 17 million.

ΣX= 4×X 4×X2 4×X3 4×X4 4×X5

M n tp ta n tp ta n tp ta n tp ta n tp ta

2 132177 53 188 98670 46 243 85016 47 187 59596 41 146 49375 38 114

N 113957 61 141 92434 55 175 69623 49 152 57319 47 140 48962 45 112

264 114888 58 100 95287 54 138 70660 49 107 62665 48 92 49926 44 72

5.3 Evaluation and Benchmarking

We report on a number of benchmarks that illustrate the practical scalability
of our algorithm instantiated for weighted tree automata. Previous studies on
the practical performance of partition refinement on large labelled transition
systems [33,34] show that memory rather than run time seems to be the limit-
ing factor. Since labelled transition systems are a special case of weighted tree
automata, we expect to see similar phenomena. Hence, we evaluate the maximal
automata sizes that can be processed on a typical current computer setup: We
randomly generate weighted tree automata for various signatures and monoids,
looking for the maximal size of WTAs that can be handled with 16 GB of
RAM, and we measure the respective run times of our tool, compiled with GHC
version 8.4.4 on a Linux system and executed on an Intel R© CoreTM i5-6500
processor with 3.20 GHz clock rate. We fix |Σ| = 4 and evaluate all combina-
tions of rank r and weight monoid M for r ranging over {1, . . . , 5} and M over
2 = (2,∨, 0), N = (N,max, 0) (the additive monoid of the tropical semiring),
and 264 = (2,∨, 0)64 ∼= (Pω(64),∪, ∅). We write n for the number of states, k for
the number of transitions, and m for the number of edges in the graphical pre-
sentation; in fact, we generate only transitions of the respective maximal rank r,
so m = k(r+1). Table 2 lists the maximal values of n that fit into the mentioned
16 GB of RAM when k = 50 ·n, and associated run times. For M = (2,∨, 0), the
optimized refinement interface for Pω needs less memory, allowing for higher val-
ues of n, an effect that decreases with increasing rank r. We restrict to generating
at most 50 different elements of M in each automaton, to avoid situations where
all states are immediately distinguished in the first refinement step. In addition,
the parameters are chosen so that with high likelihood, the final partition distin-
guishes all states, so the examples illustrate the worst case. The first refinement
step produces in the order of |Σ| · min(50, |M |)r subblocks (cf. Sect. 3.4), imply-
ing earlier termination for high values of |M | and r and explaining the slightly
longer run time for M = (2,∨, 0) on small r. We note in summary that WTAs
with well over 10 million edges are processed in less than five minutes, and in fact
the run time of minimization is of the same order of magnitude as that of input
parsing. Additional evaluations on DFAs, Segala Systems, and benchmarks for
the Prism model checker [28], as well as a comparison with existing specific tools

Generic Partition Refinement and Weighted Tree Automata 295

by Valmari [35] and from the mCRL2 toolset [10] are in the full version of this
paper [12].

6 Conclusion and Future Work

We have instantiated a generic efficient partition refinement algorithm that we
introduced in recent work [14,37] to weighted (tree) automata, and we have
refined the generic complexity analysis of the algorithm to cover this case. More-
over, we have described an implementation of the generic algorithm in the form
of the tool CoPaR, which supports the modular combination of basic system
types without requiring any additional implementation effort, and allows for
easy incorporation of new basic system types by implementing a generic refine-
ment interface.

In future work, we will further broaden the range of system types that our
algorithm and tool can accomodate, and provide support for base categories
beyond sets, e.g. nominal sets, which underlie nominal automata [8,31].

Concerning genericity there is an orthogonal approach by Ranzato and Tap-
paro [29] that is generic over notions of process equivalence but fixes the system
type to standard labelled transition systems; see also [18]. Similarly, Blom and
Orzan [6,7] present signature refinement, which covers, e.g. strong and branch-
ing bisimulation as well as Markov chain lumping, but requires adapting the
algorithm for each instance. These algorithms have also been improved using
symbolic techniques (e.g. [36]). Moreover, many of the mentioned approaches
and others [4,6,7,16,36] focus on parallelization. We will explore in future work
whether symbolic and distributed methods can be lifted to coalgebraic generality.
A further important aim is genericity also along the axis of process equivalences.

References

1. Adams, S.: Efficient sets - a balancing act. J. Funct. Program. 3(4), 553–561 (1993)
2. Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding bisimilarity and similar-

ity for probabilistic processes. J. Comput. Syst. Sci. 60, 187–231 (2000)
3. Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types.

In: Coagebraic Methods in Computer Science, CMCS 2003, ENTCS, vol. 82, pp.
57–75. Elsevier (2003)

4. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: BISIMULATOR: a mod-
ular tool for on-the-fly equivalence checking. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 581–585. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31980-1 42

5. Berkholz, C., Bonsma, P.S., Grohe, M.: Tight lower and upper bounds for the
complexity of canonical colour refinement. Theory Comput. Syst. 60(4), 581–614
(2017)

6. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.
In: Parallel and Distributed Model Checking, PDMC 2003, ENTCS, vol. 89, pp.
99–113. Elsevier (2003)

https://doi.org/10.1007/978-3-540-31980-1_42
https://doi.org/10.1007/978-3-540-31980-1_42

296 H.-P. Deifel et al.

7. Blom, S., Orzan, S.: A distributed algorihm for strong bisimulation reduction of
state spaces. J. Softw. Tools Technol. Transf. 7(1), 74–86 (2005)

8. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Meth-
ods Comput. Sci. 10(3) (2014)

9. Buchholz, P.: Bisimulation relations for weighted automata. Theor. Comput. Sci.
393, 109–123 (2008)

10. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

11. Deifel, H.-P.: Implementation and evaluation of efficient partition refinement
algorithms. Master’s thesis, Friedrich-Alexander Universität Erlangen-Nürnberg
(2019). https://hpdeifel.de/master-thesis-deifel.pdf

12. Deifel, H.-P., Milius, S., Schröder, L., Wißmann, T.: Generic partition refinement
and weighted tree automata (2019). https://arxiv.org/abs/1811.08850

13. Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

14. Dorsch, U., Milius, S., Schröder, L., Wißmann, T.: Efficient coalgebraic parti-
tion refinement. In: Concurrency Theory, CONCUR 2017, LIPIcs, pp. 32:1–32:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

15. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-
lation equivalence. Theor. Comput. Sci. 311(1–3), 221–256 (2004)

16. Garavel, H., Hermanns, H.: On combining functional verification and performance
evaluation using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 410–429. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45614-7 23

17. Gries, D.: Describing an algorithm by Hopcroft. Acta Informatica 2, 97–109 (1973)
18. Groote, J., Jansen, D., Keiren, J., Wijs, A.: An O(m log n) algorithm for comput-

ing stuttering equivalence and branching bisimulation. ACM Trans. Comput. Log.
18(2), 13:1–13:34 (2017)

19. Groote, J., Verduzco, J., de Vink, E.: An efficient algorithm to determine proba-
bilistic bisimulation. Algorithms 11(9), 131 (2018)

20. Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree
automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol.
4588, pp. 229–241. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73208-2 23

21. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization
of tree automata. Theor. Comput. Sci. 410, 3539–3552 (2009)

22. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

23. Huynh, D., Tian, L.: On some equivalence relations for probabilistic processes.
Fund. Inf. 17, 211–234 (1992)

24. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

25. Klin, B., Sassone, V.: Structural operational semantics for stochastic and weighted
transition systems. Inf. Comput. 227, 58–83 (2013)

26. Knuutila, T.: Re-describing an algorithm by Hopcroft. Theor. Comput. Sci. 250,
333–363 (2001)

27. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

28. PRISM: Benchmarks FMS and WLAN. http://www.prismmodelchecker.org/
casestudies/fms.php, wlan.php. Accessed 16 Nov 2018

https://doi.org/10.1007/978-3-030-17465-1_2
https://hpdeifel.de/master-thesis-deifel.pdf
https://arxiv.org/abs/1811.08850
https://doi.org/10.1007/3-540-45614-7_23
https://doi.org/10.1007/3-540-45614-7_23
https://doi.org/10.1007/978-3-540-73208-2_23
https://doi.org/10.1007/978-3-540-73208-2_23
http://www.prismmodelchecker.org/casestudies/fms.php
http://www.prismmodelchecker.org/casestudies/fms.php
http://www.prismmodelchecker.org/casestudies/wlan.php

Generic Partition Refinement and Weighted Tree Automata 297

29. Ranzato, F., Tapparo, F.: Generalizing the Paige-Tarjan algorithm by abstract
interpretation. Inf. Comput. 206, 620–651 (2008)

30. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249,
3–80 (2000)

31. Schröder, L., Kozen, D., Milius, S., Wißmann, T.: Nominal automata with
name binding. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol.
10203, pp. 124–142. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54458-7 8

32. Segala, R.: Modelling and verification of randomized distributed real-time systems.
Ph.D. thesis, MIT (1995)

33. Valmari, A.: Bisimilarity minimization in o(m logn) time. In: Franceschinis, G.,
Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 123–142. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02424-5 9

34. Valmari, A.: Simple bisimilarity minimization in O(m logn) time. Fund. Inform.
105(3), 319–339 (2010)

35. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 4

36. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimization. J.
Softw. Tools Technol. Transf. 20(2), 157–177 (2018)

37. Wißmann, T., Dorsch, U., Milius, S., Schröder, L.: Efficient and modular coalge-
braic partition refinement (2019). https://arxiv.org/abs/1806.05654

https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1007/978-3-642-02424-5_9
https://doi.org/10.1007/978-3-642-12002-2_4
https://arxiv.org/abs/1806.05654

Equilibria-Based Probabilistic
Model Checking for Concurrent

Stochastic Games

Marta Kwiatkowska1 , Gethin Norman2(B) , David Parker3 ,
and Gabriel Santos1

1 Department of Computing Science, University of Oxford, Oxford, UK
2 School of Computing Science, University of Glasgow, Glasgow, UK

gethin.norman@glasgow.ac.uk
3 School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Probabilistic model checking for stochastic games enables
formal verification of systems that comprise competing or collaborating
entities operating in a stochastic environment. Despite good progress
in the area, existing approaches focus on zero-sum goals and cannot
reason about scenarios where entities are endowed with different objec-
tives. In this paper, we propose probabilistic model checking techniques
for concurrent stochastic games based on Nash equilibria. We extend
the temporal logic rPATL (probabilistic alternating-time temporal logic
with rewards) to allow reasoning about players with distinct quantita-
tive goals, which capture either the probability of an event occurring or
a reward measure. We present algorithms to synthesise strategies that
are subgame perfect social welfare optimal Nash equilibria, i.e., where
there is no incentive for any players to unilaterally change their strategy
in any state of the game, whilst the combined probabilities or rewards
are maximised. We implement our techniques in the PRISM-games tool
and apply them to several case studies, including network protocols and
robot navigation, showing the benefits compared to existing approaches.

1 Introduction

Probabilistic model checking is a technique for formally verifying systems that
exhibit uncertainty or feature randomisation. Quantitative system requirements,
which express, e.g., safety, reliability or performance, are formally specified in
temporal logic. These are then automatically checked against a probabilistic
model, such as a Markov chain, capturing the possible behaviour of the sys-
tem being verified. Closely related is strategy synthesis, which uses probabilistic
models with nondeterminism, for example Markov decision processes (MDPs), to
automatically generate policies or controllers which guarantee that pre-specified
system requirements are satisfied. Thanks to mature tool support [20,27], the
methods have been successfully applied to many domains, from autonomous
vehicles, to computer security, to task scheduling.

Stochastic games are a modelling formalism that incorporates probabil-
ity, nondeterminism and multiple players, who can compete or collaborate to
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 298–315, 2019.
https://doi.org/10.1007/978-3-030-30942-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_19&domain=pdf
http://orcid.org/0000-0001-9022-7599
http://orcid.org/0000-0001-9326-4344
http://orcid.org/0000-0003-4137-8862
http://orcid.org/0000-0002-6570-9737
https://doi.org/10.1007/978-3-030-30942-8_19

Equilibria-Based Probabilistic Model Checking for CSGs 299

achieve their goals. A variety of verification algorithms for these models have
been devised, e.g., [2,3,13,14,45]. More recently, probabilistic model check-
ing and strategy synthesis techniques for stochastic games have been pro-
posed [6,17,25,28] and implemented in the PRISM-games tool [31]. This has
allowed modelling and verification of stochastic games to be used for a vari-
ety of non-trivial applications, in which competitive or collaborative behaviour
between entities is a crucial ingredient, including computer security and energy
management.

Initial work in this direction focused on turn-based stochastic games (TSGs),
where each state is controlled by a single player [17], and proposed the logic
rPATL, an extension of the well known logic ATL [4]. The logic can specify that
a coalition of players is able to achieve a quantitative objective regarding the
probability of an event’s occurrence or the expectation of a reward measure,
regardless of the strategies of the other players. Recently [28], this was extended
to concurrent stochastic games (CSGs), in which players make decisions simul-
taneously. This allows more realistic modelling of interactive agents operating
concurrently. In another direction, multi-objective model checking of TSGs [6,18]
enabled reasoning about coalitions aiming to satisfy a Boolean combination of
objectives, regardless of the remaining players’ behaviour.

A limitation of these approaches is that they focus on zero-sum properties,
in which a coalition aims to satisfy some requirement or to optimise some objec-
tive, while the remaining players have the directly opposing goal. In this paper,
we consider CSGs in which two coalitions of players have distinct quantitative
objectives. For this, we use the notion of subgame perfect Nash equilibria [37],
i.e., scenarios in which it is not beneficial for any player to unilaterally change
their strategy in any state. Furthermore, amongst these, we consider social wel-
fare optimal equilibria, which maximise the sum of the objectives of the players.

We propose an extension to rPATL which allows reasoning about subgame
perfect social welfare optimal Nash equilibria between two coalitions of play-
ers, with respect to probabilistic or reward objectives, expressed using a variety
of temporal operators. We then give a model checking algorithm for the logic
against CSGs which employs a combination of backwards induction (for finite-
horizon operators) and value iteration (for infinite-horizon operators). A key
ingredient of the computation is finding social welfare optimal Nash equilib-
ria for bimatrix games, which we perform using labelled polytopes [32] and a
reduction to SMT. We implement our techniques as an extension of the PRISM-
games [31] model checker and develop a selection of case studies, including robot
navigation, communication protocols and power control, to evaluate its perfor-
mance and applicability. We show that we are able to synthesise strategies that
outperform those derived using existing techniques.

Related Work. Game-theoretic models are used in many contexts within verifi-
cation, as summarised above. In addition, the existence of and the complexity of
finding Nash equilibria for stochastic games are studied in [16,45], but without
practical algorithms. In [40], a learning-based algorithm for finding Nash equilib-
ria for discounted properties of CSGs is presented and evaluated. Similarly, [33]
studies Nash equilibria for discounted properties and introduces iterative algo-

300 M. Kwiatkowska et al.

rithms for strategy synthesis. A theoretical framework for price-taking equilibria
of CSGs is given in [5], where players try to minimise their costs which include
a price common to all players and dependent on the decisions of all players. A
notion of strong Nash equilibria for a restricted class of CSGs is formalised in [21]
and an approximation algorithm for checking the existence of such equilibria for
discounted properties is introduced and evaluated. We also mention [9], which
studies the existence of stochastic equilibria with imprecise deviations for CSGs
and proposes a PSPACE algorithm to compute such equilibria.

For non-stochastic games, model checking tools such as PRALINE [10],
EAGLE [44] and EVE [24] support Nash equilibria, as does MCMAS-SLK [11]
via strategy logic. General purpose tools such as Gambit [34] can compute a
variety of equilibria but, again, not for stochastic games.

2 Preliminaries

We first provide some background material on game theory and stochastic games.
We let Dist(X) denote the set of probability distributions over set X.

Definition 1 (Normal form game). A (finite, n-person) normal form game
(NFG) is a tuple N = (N,A, u) where: N = {1, . . . , n} is a finite set of players;
A = A1× · · · ×An and Ai is a finite set of actions available to player i ∈ N ;
u=(u1, . . . , un) and ui : A → R is a utility function for player i ∈ N .

For an NFG N, the players choose actions at the same time, where the choice for
player i ∈ N is over the action set Ai. When each player i choose ai, the utility
received by player j equals uj(a1, . . . , an). A (mixed) strategy σi for player i is
a distribution over its action set. A strategy profile σ = (σ1, . . . , σn) is a tuple of
strategies for each player and the expected utility of player i under σ is:

ui(σ) def=
∑

(a1,...,an)∈A ui(a1, . . . , an) ·
(∏n

j=1 σj(aj)
)

.

For profile σ = (σ1, . . . , σn) and player i strategy σ′
i, we define the sequence σ−i =

(σ1, . . . , σi−1, σi+1, . . . , σn) and profile σ−i[σ′
i] = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

For player i and strategy sequence σ−i, a best response for player i to σ−i is a
strategy σ�

i for player i such that ui(σ−i[σ�
i]) � ui(σ−i[σi]) for all strategies σi

of player i. We now introduce the concept of Nash equilibria and a particular
variant called social welfare optimal, which are equilibria that maximise the total
utility, i.e. maximise the sum of players’ individual utilities.

Definition 2 (Nash equilibrium). For NFG N, a strategy profile σ� is a
Nash equilibrium (NE) if σ�

i is a best response to σ�
−i for all i ∈ N . Further-

more σ� is a social welfare optimal NE (SWNE) if u1(σ�)+ · · · +un(σ�) �
u1(σ)+ · · · + un(σ) for all Nash equilibria σ of N.

A two-player NFG is constant-sum if there exists c ∈ R such that
u1(α)+ u2(α) = c for all α ∈ A and zero-sum if c= 0. For general two-player
NFGs, we have a bimatrix game which can be represented by two distinct matri-
ces Z1,Z2 ∈ R

l×m where A1 = {a1, . . . , al}, A2 = {b1, . . . , bm}, z1ij = u1(ai, bj)
and z2ij = u2(ai, bj).

Equilibria-Based Probabilistic Model Checking for CSGs 301

Example 1. We consider a stag hunt game [38] where, if players decide to
cooperate, this can yield a large payoff, but, if the others do not, then the
cooperating player gets nothing while the remaining players get a small payoff.
A scenario with 3 players, where two form a coalition, yields a bimatrix game:

Z1 =
(

b0 b1 b2

a0 2 2 2
a1 0 4 6

)

Z2 =
(

b0 b1 b2

a0 4 2 0
a1 4 6 9

)

where a0 and a1 represent player 1 not cooperating and cooperating respectively
and bi that i players in the coalition cooperate. There are three Nash equilibria:

– player 1 and the coalition select a0 and b0, respectively with utilities (2, 4);
– player 1 selects a0 and a1 with probabilities 5/9 and 4/9 and the coalition

selects b0 and b2 with probabilities 2/3 and 1/3 with utilities (2, 4);
– player 1 and the coalition select a1 and b2 respectively with utilities (6, 9).

For instance, in the first case, neither player 1 nor the coalition thinks the other
will cooperate: the best they can do is act alone. The third is the only SWNE.

Concurrent Stochastic Games. In this paper, we use CSGs, in which players
repeatedly make simultaneous (probabilistic) choices that update the game state.

Definition 3 (Concurrent stochastic game). A concurrent stochastic multi-
player game (CSG) is a tuple G = (N,S, S̄, A,Δ, δ,AP ,L) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and S̄ ⊆ S is a set of initial states;
– A = (A1 ∪{⊥})× · · · ×(An ∪{⊥}) where Ai is a finite set of actions available

to player i ∈ N and ⊥ is an idle action disjoint from the set ∪n
i=1Ai;

– Δ : S → 2∪n
i=1Ai is an action assignment function;

– δ : S×A → Dist(S) is a probabilistic transition function;
– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

A CSG G starts in an initial state s̄ ∈ S̄ and, when in state s, each player i ∈ N
selects an action from its available actions Ai(s) given by Δ(s) ∩ Ai if this set is
non-empty and {⊥} otherwise. Supposing player i selects action ai, the state of
the game is updated according to the distribution δ(s, (a1, . . . , an)). We augment
CSGs with reward structures of the form r = (rA, rS) where rA : S×A → R�0 is
an action reward function and rS : S → R�0 is a state reward function.

Definition 4 (End component). An end component of a CSG G is a pair
(S′, δ′) comprising a subset S′ ⊆ S of states and a partial probabilistic transition
function δ′ : S′×A → Dist(S) satisfying the following conditions:

– (S′, δ′) defines a sub-CSG of G, i.e., for all s′ ∈ S′ and α ∈ A, if δ′(s′, α) is
defined, then δ′(s′, α)= δ(s′, α) and δ′(s′, α)(s) = 0 for all s ∈ S\S′;

– the underlying graph of (S′, δ′) is strongly connected.

It is non-terminal if δ(s, α)(s′)> 0 for some s ∈ S′, α ∈ A and s′ ∈ S\S′.

302 M. Kwiatkowska et al.

Fig. 1. CSG model of a medium access control problem.

A path of G represents a resolution of both the players’ and probabilistic
choices and is given by a sequence π = s0

α0−→ s1
α1−→ · · · such that si ∈ S,

αi = (ai
1, . . . , a

i
n) ∈ A, ai

j ∈ Aj(si) for j ∈ N and δ(si, αi)(si+1) > 0 for all
i � 0. For a path π, the (i+ 1)th state is denoted π(i), the (i+ 1)th action
π[i], and if π is finite, the final state by last(π). The sets of finite and infinite
paths (starting in state s) are given by FPathsG and IPathsG (FPathsG,s and
IPathsG,s).

CSG Strategies and Equilibria. A strategy for player i in a CSG G resolves
the player’s choices. More precisely, it is a function σi : FPathsG → Dist(Ai ∪
{⊥}) such that if σi(π)(ai)> 0, then ai ∈ Ai(last(π)). We denote by Σi

G the set
of strategies of player i.

As for NFGs, a strategy profile for G is a tuple σ = (σ1, . . . , σn) of strategies for
all players and, for a player i strategy σ′

i, we define the sequence σ−i and profile
σ−i[σ′

i] in the same way. For strategy profile σ and state s, we let IPathsσ
G,s denote

the infinite paths from s under the choices of σ. We can define a probability
measure Probσ

G,s over the infinite paths IPathsσ
G,s [26] and, for random variable

X : IPathsG → R�0, the expected value E
σ
G,s(X) of X in s with respect to σ.

An objective (or utility function) for player i of G is a random variable
Xi : IPathsG → R�0. This can encode, e.g., the probability or expected cumu-
lative reward for reaching a target. NE for CSGs can be defined as for NFGs.
Since our model checking algorithm is based on backwards induction [35,42], we
restrict attention to sub-game perfect NE [37], which are NE in every state of
the CSG. In addition, for infinite-horizon objectives, the existence of NE is an
open problem [8] so, for such objectives, we use ε-NE, which exist for any ε> 0.

Definition 5 (Subgame perfect ε-NE). For CSG G and ε> 0, a strategy
profile σ� is a subgame perfect ε-Nash equilibrium for objectives 〈Xi〉i∈N if and
only if E

σ�

G,s(Xi) � supσi∈Σi
E

σ�
−i[σi]

G,s (Xi) − ε for all i ∈ N and s ∈ S.

Social welfare optimal variants of these equilibria (SWNEs and ε-SWNEs)
are defined for CSGs as for NFGs above (see Definition 2).

Example 2. In [10] a deterministic concurrent game is used to model medium
access control. Two users with limited energy share a wireless channel and choose
to transmit (t) or wait (w) and, if both transmit, the transmissions fail due to
interference. We extend this to a CSG by assuming that transmissions succeed
with probability q2 if both transmit. Figure 1 presents a CSG where each user has

Equilibria-Based Probabilistic Model Checking for CSGs 303

energy for one transmission (the first value of tuples labelling states represents
if a user has energy and the second if it has successfully transmitted).

If the objectives are to maximise the probability of a successful transmission,
there are two SWNEs when one user waits for the other to transmit and then
transmits. This means both successfully transmit. If the objectives are to max-
imise the probability of being one of the first to transmit, then there is only one
SWNE corresponding to both immediately trying to transmit.

3 Extending rPATL with Nash Formulae

We now extend the logic rPATL, previously proposed for zero-sum properties of
both TSGs [28] and CSGs [28], to allow the analysis of equilibria-based proper-
ties. Since we are limited to considering ε-SWNE for infinite-horizon properties,
we assume some ε has been fixed in advance when considering such properties.

Definition 6 (Extended rPATL syntax). The syntax of our extended ver-
sion of rPATL is given by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q[ψ] | 〈〈C〉〉Rr
∼x[ρ] | 〈〈C:C ′〉〉max∼x(θ)

θ := P[ψ] + P[ψ] | Rr[ρ] + Rr[ρ]
ψ := Xφ | φ U�k φ | φ U φ

ρ := I=k | C�k | F φ

where a is an atomic proposition, C and C ′ are coalitions of players such that
C ′ = N\C, ∼ ∈ {<,�,�, >}, q ∈ [0, 1], x ∈ R, r is a reward structure and
k ∈ N.

The logic rPATL is a branching-time temporal logic that combines the probabilis-
tic operator P of PCTL [23], PRISM’s reward operator R [27], and the coalition
operator 〈〈C〉〉 of ATL [4]. The formula 〈〈C〉〉P�q[ψ] states that the coalition C
has strategies which, when followed, regardless of the strategies of N\C, guaran-
tee that the probability of satisfying path formula ψ is at least q. Such properties
are inherently zero-sum in nature as one coalition tries to maximise an objective
(here the probability of ψ) and the other to minimise it.

We extend rPATL with the ability to reason about equilibria through Nash
formulae of the form 〈〈C:C ′〉〉max∼x(θ). In addition to the usual state (φ), path
(ψ) and reward (ρ) formulae, we distinguish non-zero sum formulae (θ), which
comprise a sum of probability or reward objectives. The formula 〈〈C:C ′〉〉max∼x(θ)
is satisfied if there exists a subgame perfect SWNE strategy profile between
coalitions C and C ′(=N\C) under which the sum of the two objectives in θ is
∼x. As is common for probabilistic temporal logics, we allow numerical queries
of the form 〈〈C:C ′〉〉max=?[θ] which return the sum of SWNE values.

For probabilistic objectives (θ = P[ψ1] + P[ψ2]), each ψi can be a “next” (X),
“bounded until” (U�k) or “until” (U) operator, with the usual equivalences such
as F φ ≡ true U φ. For reward objectives (θ = Rr1 [ρ1] + Rr2 [ρ2]), each ρi refers
to the expected reward with respect to reward structure ri: the instantaneous
reward after k steps (I=k); the reward accumulated over k steps (C�k); or the
reward accumulated until a state satisfying φ is reached (F φ).

304 M. Kwiatkowska et al.

Example 3. Recall the medium access control CSG of Example 2. Formula
〈〈p1:p2〉〉max�2(P[F send1] + P[F send2]) means players p1 and p2 send their pack-
ets with probability 1, while 〈〈p1:p2〉〉max=?(P[¬send2Usend1] + P[¬send1Usend2])
asks what is the sum of subgame perfect SWNE values when the objectives are
to maximise the probability of being one of the first to successfully transmit.

Before we give the semantics, we define coalition games which, given a CSG and
coalition (set of players), reduce the CSG to a two-player CSG. Without loss of
generality we assume the coalition of players is of the form C = {1, . . . , n′}.

Definition 7 (Coalition game). For CSG G= (N,S, s̄, A,Δ, δ,AP ,L) and
coalition C = {1, . . . , n′} ⊆ N , the coalition game GC=({1, 2}, S, s̄, AC ,Δ, δC ,
AP ,L) is a two-player game where: AC = AC

1 ×AC
2 , AC

1 = (A1 ∪ {⊥})× · · · ×
(An′ ∪ {⊥}), AC

2 = (An′+1 ∪ {⊥})× · · · ×(An ∪ {⊥}) and for any s ∈ S, aC
1 =

(a1, . . . , an′) ∈ AC
1 and aC

2 = (an′+1, . . . , an) ∈ AC
2 we have δC(s, (aC

1 , aC
2)) =

δ(s, (a1, . . . , an)).
Furthermore, for a reward structure r of G, by abuse of notation we use r for

the corresponding reward structure of GC which is constructed similarly.

Definition 8 (Extended rPATL semantics). The satisfaction relation |=
of our rPATL extension is defined inductively on the structure of the formula.
The propositional logic fragment (true, a, ¬, ∧) is defined in the usual way. For
temporal operators and a state s ∈ S in CSG G, we have:

s |= 〈〈C〉〉P∼q[ψ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Probσ1,σ2
GC ,s

{
π ∈ IPathsσ1,σ2

GC ,s
| π |=ψ

} ∼ q

s |= 〈〈C〉〉Rr
∼x[ρ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2.Eσ1,σ2

GC ,s
[rew(r, ρ)] ∼ x

s |= 〈〈C:C ′〉〉max∼x(θ) ⇔ ∃σ�
1 ∈ Σ1, σ�

2 ∈ Σ2.
(
E

σ�
1 ,σ�

2
GC ,s

(Xθ
1) + E

σ�
1 ,σ�

2
GC ,s

(Xθ
2)

)
∼ x

and (σ�
1 , σ

�
2) is a subgame perfect SWNE1 for the objectives (Xθ

1 ,Xθ
2) in GC

where, for 1� i� 2 and π ∈ IPathsσ1,σ2
GC ,s

:

X
P[ψ1] + P[ψ2]
i (π) = 1 if π |=ψi and 0 otherwise

X
Rr1 [ρ1] + Rr2 [ρ2]
i (π) = rew(ri, ρ

i)(π)
π |= Xφ ⇔ π(1) |= φ

π |= φ1 U�k φ2 ⇔ ∃i � k.(π(i) |= φ2 ∧ ∀j < i.π(j) |= φ1)
π |=φ1 U φ2 ⇔ ∃i ∈ N.(π(i) |= φ2 ∧ ∀j < i.π(j) |= φ1)

rew(r, I=k)(π) = rS(π(k))

rew(r, C�k)(π) =
∑k−1

i=0

(
rA(π(i), π[i]) + rS(π(i))

)

rew(r, F φ)(π) =
{ ∞ if ∀j ∈ N.π(j) �|= φ

∑kφ

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

and kφ = min{k − 1 | π(k) |= φ}.
1 In the case of infinite-horizon properties, this is a subgame perfect ε-SWNE.

Equilibria-Based Probabilistic Model Checking for CSGs 305

4 Model Checking CSGs Against Nash Formulae

Since rPATL is a branching-time logic, the basic model checking algorithm works
by recursively computing the set Sat(φ) of states satisfying formula φ over the
structure of φ. So, to extend the existing rPATL model checking algorithm
for CSGs [28] to the logic from Sect. 3, we need only consider Nash formulae
〈〈C:C ′〉〉max∼x(θ). This requires computation of subgame perfect SWNE values
of the objectives (Xθ

1 ,Xθ
2) and a comparison of their sum to the threshold x.

We first explain how we compute SWNE values in bimatrix games, then
subgame perfect SWNE values for finite-horizon objectives and lastly approx-
imate subgame perfect ε-SWNE values for infinite-horizon objectives. We also
discuss how to synthesise SWNE profiles. Our algorithm requires the following
assumption on CSGs, which can be checked using standard graph-based meth-
ods. Without this assumption the presented value iteration algorithms are not
guaranteed to converge (for further details, see [29]).

Assumption 1. For any infinite-horizon probabilistic properties, there are no
non-terminal end components. For infinite-horizon reward properties, the targets
are reached with probability 1 under all strategy profiles.

Computing SWNE Values of Bimatrix Games. Finding Nash equilibria
in bimatrix games is in the class of linear complementarity problems (LCPs).
More precisely, a profile (σ1, σ2) is a Nash equilibrium of the bimatrix game
Z1,Z2 ∈ R

l×m where A1 = {a1, . . . , al}, A2 = {b1, . . . , bm} if and only if there
exists u, v ∈ R such that, for the column vectors x ∈ R

lv and y ∈ R
m where

xi = σ1(ai) and yj =σ2(bj) for 1� i� l and 1� j � m, we have:

xT (1u − Z1y) = 0, yT (1v − ZT
2 x) = 0, 1u − Z1y � 0, 1v − ZT

2 x � 0

and 0 and 1 are vectors or matrices with all components 0 and 1, respectively.
The Lemke-Howson algorithm [32] can be applied for finding Nash equilibria

and is based on the method of labelled polytopes [36]. Other well-known methods
include those based on support enumeration [39] and regret minimisation [41].

SWNE via Labelled Polytopes. Given a bimatrix game Z1,Z2 ∈ R
l×m, we

denote the sets of deterministic strategies of players 1 and 2 by I = {1, . . . , l} and
M = {1, . . . , m} and define J = {l + 1, . . . , l +m} by mapping j ∈ M to l + j ∈ J .
A label is then defined as element of I ∪ J . The sets of strategies for players 1
and 2 can be represented by:

X = {x ∈ R
l | 1x = 1 ∧ x � 0} and Y = {y ∈ R

m | 1y = 1 ∧ y � 0}.

The strategy set Y is then divided into regions Y (i) and Y (j) (polytopes) for
i ∈ I and j ∈ J such that Y (i) contains strategies for which the deterministic
strategy i of player 1 is a best response and Y (j) contain strategies which choose
action j with probability zero:

Y (i) = {y ∈ Y | ∀k ∈ I. Z1(i, :)y � Z1(k, :)y} and Y (j) = {y = Y | yj−l = 0}

306 M. Kwiatkowska et al.

where Z1(i, :) is the ith row vector of Z1. A vector y is then said to have
label k if y ∈ Y (k), for k ∈ I ∪ J . The strategy set X is divided analogously
into regions X(j) and X(i) for j ∈ J and i ∈ I and a vector x has label k if
x ∈ X(k), for k ∈ I ∪J . A pair of vectors (x, y) ∈ X ×Y is completely labelled if
the union of the labels of x and y equals I ∪ J . The Nash equilibria of the game
equal the vector pairs that are completely labelled [32,43].

Once all completely labelled vector pairs have been computed, one can cal-
culate the corresponding set of values through matrix-vector multiplication. The
pairs that maximise the sum of values correspond to SWNE strategies. In case
of multiple SWNEs, we choose the values that are maximal for the first player,
unless both players can get equal payoff, in which case we choose these.

Computing Values of Nash Formulae. For a formula 〈〈C:C ′〉〉max∼x(θ), if
the objectives of the non-zero sum formula θ are both finite-horizon, we can use
backwards induction [35,42] to compute (precise) subgame perfect SWNE values.
Below, we give the cases for bounded probabilistic reachability and bounded
cumulative reward objectives; the remaining cases can be found in [29]. If both
of the objectives are infinite-horizon, we use value iteration [15] to approximate
subgame perfect SWNE values. Since there is not necessarily a unique pair of
such values, the convergence criterion is applied to the sum of the two values
computed, which is unique. Below, we give details for probabilistic and expected
reachability objectives; the remaining cases can be found in [29]. Finally, for
cases where there is a combination of finite- and infinite-horizon objectives, we
convert to having both infinite-horizon by modifying the game and formula in a
standard manner for probabilistic model checking; see [29] for the construction.
The two key aspects of the value iteration algorithm are using SWNE to ensure
uniqueness and solving an MDP when the target of one player has been reached.

We use the notation VGC (s, θ) for SWNE values of the objectives (Xθ
1 ,Xθ

2) in
state s of GC . We also use Pmax

G,s (ψ) and Rmax
G,s (r, ρ) for the maximum probability of

satisfying ψ and maximum expected reward for the random variable rew(r, ρ),
respectively, in state s when all players collaborate. These can be computed
through standard MDP model checking [1,7].

Bounded Probabilistic Reachability. If θ = P[F�k1 φ1] + P[F�k2 φ2], then
we compute values of the objectives for the formulae θn+n1,n+n2 = P[F�n+n1 φ1]
+P[F�n+n2 φ2] for 0� n�k recursively, where k = min{k1, k2}, n1 = k1 − k and
n2 = k2 − k. For state s, if n= 0:

VGC (s, θn1,n2) =

⎧
⎨

⎩

(ηφ1(s), ηφ2(s)) if n1 =n2 = 0
(ηφ1(s), Pmax

G,s (F�n2 φ2)) else if n1 = 0
(Pmax

G,s (F�n1 φ1), ηφ2(s)) otherwise

and if n> 0:

VGC (s, θn+n1,n+n2) =

⎧
⎪⎪⎨

⎪⎪⎩

(1, 1) if s ∈ Sat(φ1) ∩ Sat(φ2)
(1, Pmax

G,s (F�n+n2 φ2)) else if s ∈ Sat(φ1)
(Pmax

G,s (F�n+n1 φ1), 1) else if s ∈ Sat(φ2)
val(Z1,Z2) otherwise

Equilibria-Based Probabilistic Model Checking for CSGs 307

where ηφi(s) equals 1 if s ∈ Sat(φi) and 0 otherwise for 1� i� 2, and val(Z1,Z2)
equals SWNE values of the bimatrix game (Z1,Z2) ∈ R

l×m:

zl
i,j =

∑
s′∈S δ(s, (ai, bj))(s′) · vs′,l

(n−1)+nl

1� l � 2 and (vs′,1
(n−1)+n1

, vs′,2
(n−1)+n2

) = VGC (s′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Bounded Cumulative Rewards. If θ = Rr1 [C�k1] + Rr2 [C�k2], then we com-
pute values of the objectives for the formulae θn+n1,n+n2 = Rr1 [C�n+n1] +
Rr2 [C�n+n2] for 0� n� k recursively, where k = min{k1, k2}, n1 = k1 − k and
n2 = k2 − k. For state s, if n= 0:

VGC (s, θn1,n2) =

⎧
⎨

⎩

(0, 0) if n1 =n2 = 0
(0, Rmax

G,s (r2, C�n2)) else if n1 = 0
(Rmax

G,s (r1, C�n1), 0) otherwise

and if n> 0, then VGC (s, θn+n1,n+n2) equals SWNE values of the bimatrix game
(Z1,Z2) ∈ R

l×m:

zl
i,j = rl

S(s) + rl
A(s, (ai, bj)) +

∑
s′∈S δ(s, (ai, bj))(s′) · vs′,l

(n−1)+nl

1� l � 2 and (vs′,1
(n−1)+n1

, vs′,2
(n−1)+n2

) = VGC (s′, θ(n−1)+n1,(n−1)+n2) for all s′ ∈ S.

Probabilistic Reachability. If θ = P[F φ1] + P[F φ2], values can be computed
through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where:

VGC (s, θ, n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1, 1) if s ∈ Sat(φ1) ∩ Sat(φ2)
(1, Pmax

G,s (F φ2)) else if s ∈ Sat(φ1)
(Pmax

G,s (F φ1), 1) else if s ∈ Sat(φ2)
(0, 0) else if n= 0

val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ R
l×m:

zl
i,j =

∑
s′∈S δ(s, (ai, bj))(s′) · vs′,l

n−1

1� l � 2 and (vs′,1
n−1, v

s′,2
n−1) = VGC (s′, θ, n− 1) for all s′ ∈ S.

Expected Reachability. If θ = Rr1 [F φ1] + Rr2 [F φ2], values can be computed
through value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where:

VGC (s, θ, n) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0) if s ∈ Sat(φ1) ∩ Sat(φ2) or n = 0
(0, Rmax

G,s (r2, F φ2)) else if s ∈ Sat(φ1)
(Rmax

G,s (r1, F φ1), 0) else if s ∈ Sat(φ2)
val(Z1,Z2) otherwise

where val(Z1,Z2) equals SWNE values of the bimatrix game (Z1,Z2) ∈ R
l×m:

zl
i,j = rl

S(s) + rl
A(s, (ai, bj)) +

∑
s′∈S δ(s, (ai, bj))(s′) · vs′,l

n−1

1� l � 2 and (vs′,1
n−1, v

s′,2
n−1) = VGC (s′, θ, n− 1) for all s′ ∈ S.

308 M. Kwiatkowska et al.

Strategy Synthesis. In addition to property verification, it is usually benefi-
cial to perform strategy synthesis, that is, construct a witness of the satisfaction
of a property. In the case of a formula 〈〈C:C ′〉〉max∼x(θ), we can return a sub-
game perfect SWNE for the objectives (Xθ

1 ,Xθ
2). This is achieved using the

approach above, both keeping track of a SWNE for the bimatrix game solved
in each state and, when computing optimal values for MDPs, also performing
strategy synthesis [30] (a strategy of the MDP is equivalent to a strategy profile
of the CSG). We can then combine these generated profiles to yield a subgame
perfect SWNE. The synthesised strategies require randomisation and memory.
Memory is needed since choices change after a path formulae becomes true or a
target reached and is required for finite-horizon properties. For infinite-horizon
properties, the use of value iteration means only approximate ε-NE profiles are
synthesised. However, for the case studies in Sect. 6, we find that all synthesised
profiles are NE.

Correctness and Complexity. The proof of correctness is given in the
extended version of the paper [29] and shows that the values computed dur-
ing value iteration correspond to subgame perfect SWNE values of finite game
trees, and the values of these game trees converge uniformly and are bounded
from below and above by the finite approximations of GC and actual values
of GC , respectively. A limitation of our approach, as for standard value itera-
tion [22,25], is that convergence of the values does not give guarantees on the
precision. Complexity is linear in the size of the formula, while finding NE for
reachability objectives is EXPTIME [12]. Value iteration requires solving an
LCP problem of size |A| for each state at every iteration, with the number of
iterations depending on the convergence criterion. Section 6 reports on efficiency
in practice.

5 Implementation and Tool Support

We have extended PRISM-games [31] with support for modelling and verification
of CSGs against equilibria-based properties, building upon the CSG extension
of [28]. The tool and files for the case studies of Sect. 6 are available from [46].

Modelling. CSGs are specified using an extension of the PRISM modelling
language, in which behaviour is defined using probabilistic guarded commands
of the form [a] g → u, where a is an action label, g is a guard (a predicate over
states) and u is a probabilistic state update. If it is enabled (i.e., g is true), an
a-labelled transition can probabilistically update the model’s state.

This language is adapted to CSGs in [28] by assigning modules to players
and, in any state, letting each player choose between enabled commands of the
corresponding modules (if no command is enabled, the player idles). One require-
ment of [28] was that the updates of all player were independent of each other;
we extend the language to remove this requirement, by allowing commands to be
labelled with lists of actions [a1, . . . , an], and thus represent behaviour dependent
on other players’ choices. Rewards are extended similarly so that an individual
player’s rewards can depend on the choices taken by multiple players.

Equilibria-Based Probabilistic Model Checking for CSGs 309

Table 1. Statistics for a representative set of CSG verification instances.

Case study & property Param. CSG statistics Constr. Verif. time (s)
[parameters] values Players States Choices Trans. time(s) MDP CSG

Aloha
P[F sent1]+P[F sent2,3]

[bmax ,D]

2,8 3 17,057 19,713 42,654 0.6 0.6 21.4
3,8 3 89,114 97,326 264,172 2.2 2.1 32.8
4,8 3 449,766 474,898 1,655,479 10.9 10.6 49.9
5,8 3 2,308,349 2,385,537 10,362,711 97.7 90.0 121.7

Robot coordination
P[F�kgoal1]+P[F�kgoal2]

[l,k]

10,10 3 9,802 66,514 543,524 1.4 2.0 27.2
15,15 3 50,177 375,549 3,175,539 5.0 19.8 131.8
20,20 3 159,202 1,249,434 10,738,004 15.4 136.3 928.7
25,25 3 389,377 3,142,669 27,267,419 48.3 548.8 4,837.0

Medium access control
Rr1 [C�k]+Rr2 [C�k]

[emax ,k]

10,20 2 441 1,600 2,759 0.1 - 17.2
20,40 2 1,681 6,400 11,119 0.2 - 127.5
40,80 2 6,561 25,600 44,639 0.7 - 991.7

80,160 2 25,921 102,400 178,879 1.3 - 6,937.0

Power control
Rr1 [F e1=0]+Rr2 [F e2=0]

[emax ,k]

4,20 2 2,346 6,802 13,574 0.2 0.2 3.0
4,40 2 10,746 30,700 60,854 0.4 1.0 12.7
8,20 2 4,010 14,545 31,654 0.3 0.4 5.2
8,40 2 32,812 119,694 260,924 1.2 3.9 64.8

Implementation. We have implemented model construction of CSGs for the
language described above, and the model checking and strategy synthesis algo-
rithms of Sect. 4, extending the PRISM-games implementation of rPATL verifi-
cation [28]. We build on PRISM’s Java-based ‘explicit’ engine which uses sparse
matrices, and add an SMT-based implementation for solving bimatrix games
using Z3 [19]. The set of all Nash equilibria for a bimatrix game are found by
progressively querying the SMT solver for new profiles until the model becomes
unsatisfiable. Structuring the problem using labelled polytopes, which can be
expressed through conjunctions, disjunctions and linear inequalities, avoids non-
linear arithmetic. As an optimisation, we also search for and filter out dominated
strategies as a precomputation step to reduce the calls to the solver.

6 Case Studies and Experimental Results

We now present case studies and results to demonstrate the applicability of our
approach and implementation, as well as the benefits of using equilibria.

Efficiency and Scalability. Before describing the case studies, we first discuss
the performance of the implementation. In Table 1, we show experiments run on
a 2.10 GHz Intel Xeon using 16 GB RAM. The table includes model statistics
(players, states and transitions) and the time to construct the CSG and verify
it; the latter is split between CSG verification (including solving the bimatrix
games) and the instances of MDP verification. Our tool can analyse models with
over 2 million states and 20 million transitions; all are solved in under 2 h and
most are considerably quicker. However, for models where players have choices
in almost all states, only models with up to tens of thousands of states can be
verified within 2 h. The majority of the time is spent solving bimatrix games, and
therefore it is the number of choices of each coalition, rather than the number
of players, that affects performance.

310 M. Kwiatkowska et al.

Fig. 2. Robot coordination: 〈〈p1:p2〉〉max=?(P[F�k goal1] + P[F�k goal2]) (q = 0.1)

Investigating the Benefits of Equilibria Properties. In each case study,
we compare our results with the corresponding zero-sum properties [28]. E.g., for
〈〈C:C ′〉〉max=?(P[F φ1] + P[F φ2]), we compute the value and an optimal strategy
σC for coalition C of the formula 〈〈C〉〉Pmax=?[F φ1], and then find the value of
an optimal strategy for the coalition C ′ for Pmin=?[F φ2] and Pmax=?[F φ2] in
the MDP induced by CSG when C follows σC . The aim is to showcase the
advantages of cooperation as, in many real-world applications, agents’ goals are
not strictly opposed. As will be seen, all the presented results demonstrate that
by using equilibrium properties at least one of the players gains and in almost
all cases neither player loses (in the one case study where this is not the case the
gains far outweigh the losses). The individual SWNE values for players need not
be unique and, for all case studies (except Aloha in which the players goals are
not symmetric), the values can be swapped to give alternative SWNE values.

Robot Coordination. Our first case study models a scenario in which two
robots move concurrently over a grid of size l×l. The robots start in diagonally
opposite corners and try to reach the corner from which the other starts. A robot
can move either diagonally, horizontally or vertically towards its goal and when
it moves there is a probability (q) that it instead moves in an adjacent direction.
E.g., if a robot moves north east, then with probability q/2 it will move north or
east. If the robots enter the same cell, they crash and are unable to move again.

We suppose the robots try to maximise the probability of reaching their
individual goals eventually and within a given number of steps (k). If there is no
bound and l � 4, the SWNE strategies allow each robot to reach its goal with
probability 1 (as time is not an issue, they can collaborate to avoid crashing). For
the bounded case, in Fig. 2 we have plotted both the sum of the probabilities for
a grid of size 10 (left) and the probabilities of the individual players for different
grid sizes (right) as k varies. When there is only one route to each goal within
the bound (along the diagonal), i.e. when k = l − 1, the SWNE strategies of
both robots take this route. In odd grids, there is a high chance of crashing, but
also a chance one will deviate and the other reaches their goal. Initially, as the
bound k increases, for odd grids the SWNE values for the players are not equal
(see Fig. 2 right). Here, it is better overall for one to follow the diagonal and the

Equilibria-Based Probabilistic Model Checking for CSGs 311

Fig. 3. Aloha: 〈〈p1:{p2, p3}〉〉max=?(P[F (sent1 ∧ t � D)] + P[F (sent2 ∧ sent3 ∧ t � D)])

Fig. 4. Medium access control (emax = 5, smax = 5, q1 = 0.9 and q2 = 0.75)

other to take a longer route, as if both took the diagonal route, the chance of
crashing increases, decreasing the chance of reaching their goals.

Aloha. This case study concerns three users trying to send packets using the
slotted ALOHA protocol. In a time slot, if a single user tries to send a packet,
there is a probability (q) that the packet is sent; as more users try and send,
then the probability of success decreases. If sending a packet fails, the number
of slots a user waits before resending is set according to an exponential backoff
scheme. More precisely, each user maintains a backoff counter which it increases
each time there is a failure (up to bmax) and, if the counter equals k, randomly
chooses the slots to wait from {0, 1, . . . , 2k−1}.

We suppose three users try to maximise the probability of sending packets
before a deadline D, with users 2 and 3 forming a coalition. Figure 3 presents
total values as D varies (left) and individual values as q varies (right). Through
synthesis, we find the collaboration is dependent on D and q. Given more time
there is more chance for the users to collaborate sending in different slots, while if
q is large it is unlikely users need to repeatedly send, so again can send in different
slots. As the coalition has more messages to send, their probabilities are lower.
However, even for two users, the probabilities are different, since, although it is
advantageous to collaborate and only one user tries first, if transmission fails,
then both users try to send as this is the best option for their individual goals.

312 M. Kwiatkowska et al.

Fig. 5. Power Control: 〈〈p1:p2〉〉max=?(R
r1 [F e1 = 0] + Rr2 [F e2 = 0])

Medium Access Control. Our third case study extends the CSG model from
Example 2 by assuming the probability of a successful transmission when a single
user tries to transmit equals q1 and the energy of each user is bounded by emax .

We consider two Nash properties for this model, both bounded by the number
of time slots (k). The goal for each user in the first property is to maximise their
expected number of successful transmissions and the second to maximise the
probability of successfully transmitting a certain number (smax) of messages.
Figure 4 presents results for these properties as the bound k varies. For both
properties, the SWNE strategies yield equal values for the players. Synthesis-
ing strategies we see that for small values of k there is not sufficient time to
collaborate (both users always try and transmit); however, as k increases there
is time for the users to collaborate and try to transmit in different slots, and
hence improve their values. Since the users have limited energy, Fig. 4 shows that
eventually adding steps does not increase the reward or probability.

Power Control. Our final case study is based on a model of power control in
cellular networks from [10]. In the model, phones emit signals over a cellular
network and the signals can be strengthened by increasing the power level up to
a bound (powmax). A stronger signal can improve transmission quality, but uses
more energy and lowers the quality of other transmissions due to interference.
We extend this model by adding a failure probability (qfail) when a power level
is increased and assume each phone has a limited battery capacity (emax). Based
on [10], we associate a reward structure with each phone representing transmis-
sion quality dependent both on its power level and that of other phones due to
interference.

We consider two players, each trying to maximise their reward before their
battery is empty. Figure 5 presents, for pmax = 5 and emax = 5, the sum of the
SWNE values (left) and the values of the individual players (right) as the battery
capacity varies. The values of the players are different because if one increases
their power level this increases the overall reward (their reward increases, while
the other’s decreases by a lesser amount due to interference), whereas if both
increase the overall reward decreases (both rewards decrease due to interference).

Equilibria-Based Probabilistic Model Checking for CSGs 313

7 Conclusions

We have presented a logic, algorithms and tool for model checking and strategy
synthesis of concurrent stochastic games using Nash equilibria-based properties.
In comparison to existing methods, which support only zero-sum properties, we
demonstrate, on a range of case studies, that our approach produces strategies
that are collectively more beneficial for all players in the game. Future work
will investigate other techniques for Nash equilibria synthesis, non-coalitional
multi-player games and mechanism design.

Acknowledgements. This work is partially supported by the EPSRC Programme
Grant on Mobile Autonomy and the PRINCESS project, under the DARPA BRASS
programme. We would like to thank the reviewers of an earlier version of this paper
for finding a flaw in the correctness proof.

References

1. de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 7

2. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. Theor.
Comput. Sci. 386(3), 188–217 (2007)

3. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J.
Comput. Syst. Sci. 68(2), 374–397 (2004)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

5. Arslan, G., Yüksel, S.: Distributionally consistent price taking equilibria in stochas-
tic dynamic games. In: Proceedings of CDC 2017, pp. 4594–4599. IEEE (2017)

6. Basset, N., Kwiatkowska, M., Wiltsche, C.: Compositional strategy synthesis for
stochastic games with multiple objectives. Inf. Comput. 261(3), 536–587 (2018)

7. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

8. Bouyer, P., Markey, N., Stan, D.: Mixed Nash equilibria in concurrent games. In:
Proceedings of FSTTCS 2014, LIPICS, vol. 29, pp. 351–363. Leibniz-Zentrum für
Informatik (2014)

9. Bouyer, P., Markey, N., Stan, D.: Stochastic equilibria under imprecise deviations
in terminal-reward concurrent games. In: Proceedings of GandALF 2016, EPTCS,
vol. 226, pp. 61–75. Open Publishing Association (2016)

10. Brenguier, R.: PRALINE: a tool for computing nash equilibria in concurrent games.
In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 890–895.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 63

11. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 34

12. Chatterjee, K.: Nash equilibrium for upward-closed objectives. In: Ésik, Z. (ed.)
CSL 2006. LNCS, vol. 4207, pp. 271–286. Springer, Heidelberg (2006). https://doi.
org/10.1007/11874683 18

https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-642-39799-8_63
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/11874683_18
https://doi.org/10.1007/11874683_18

314 M. Kwiatkowska et al.

13. Chatterjee, K.: Stochastic ω-regular games. Ph.D. thesis, University of California
at Berkeley (2007)

14. Chatterjee, K., de Alfaro, L., Henzinger, T.: Strategy improvement for concurrent
reachability and turn-based stochastic safety games. J. Comput. Syst. Sci. 79(5),
640–657 (2013)

15. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69850-0 7

16. Chatterjee, K., Majumdar, R., Jurdziński, M.: On Nash equilibria in stochastic
games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
26–40. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0 6

17. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92
(2013)

18. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

21. Fernando, D., Dong, N., Jegourel, C., Dong, J.S.: Verification of strong Nash-
equilibrium for probabilistic BAR systems. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 106–123. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5 7

22. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

23. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

24. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: EVE: a tool for temporal
equilibrium analysis. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol.
11138, pp. 551–557. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01090-4 35

25. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 36

26. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer, New
York (1976). https://doi.org/10.1007/978-1-4684-9455-6

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

28. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automated verification
of concurrent stochastic games. In: McIver, A., Horvath, A. (eds.) QEST 2018.
LNCS, vol. 11024, pp. 223–239. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99154-2 14

https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-30124-0_6
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-02450-5_7
https://doi.org/10.1007/978-3-030-02450-5_7
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-99154-2_14
https://doi.org/10.1007/978-3-319-99154-2_14

Equilibria-Based Probabilistic Model Checking for CSGs 315

29. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based probabilis-
tic model checking for concurrent stochastic games (2018). http://arxiv.org/abs/
1811.07145

30. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-
8 2

31. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Softw.
Tools Technol. Transf. 20(2), 195–210 (2018)

32. Lemke, C., Howson Jr., J.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl.
Math. 12(2), 413–423 (1964)

33. Lozovanu, D., Pickl, S.: Determining Nash equilibria for stochastic positional games
with discounted payoffs. In: Rothe, J. (ed.) ADT 2017. LNCS (LNAI), vol. 10576,
pp. 339–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67504-
6 24

34. McKelvey, R., McLennan, A., Turocy, T.: Gambit: software tools for game theory,
version 16.0.1 (2016). gambit-project.org

35. von Neumann, J., Morgenstern, O., Kuhn, H., Rubinstein, A.: Theory of Games
and Economic Behavior. Princeton University Press, Princeton (1944)

36. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

37. Osborne, M., Rubinstein, A.: An Introduction to Game Theory. Oxford University
Press, Oxford (2004)

38. Pacheco, J., Santos, F., Souza, M., Skyrms, B.: Evolutionary dynamics of collective
action. In: Chalub, F., Rodrigues, J. (eds.) The Mathematics of Darwin’s Legacy,
pp. 119–138. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0122-5 7

39. Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a Nash
equilibrium. In: Proceedings of AAAI 2004, pp. 664–669. AAAI Press (2004)

40. Prasad, H., Prashanth, L., Bhatnagar, S.: Two-timescale algorithms for learning
Nash equilibria in general-sum stochastic games. In: Proceedings of AAMAS 2015,
pp. 1371–1379. IFAAMAS (2015)

41. Sandholm, T., Gilpin, A., Conitzer, V.: Mixed-integer programming methods for
finding Nash equilibria. In: Proceedings of AAAI 2005, pp. 495–501. AAAI Press
(2005)

42. Schwalbe, U., Walker, P.: Zermelo and the early history of game theory. Games
Econ. Behav. 34(1), 123–137 (2001)

43. Shapley, L.: A note on the Lemke-Howson algorithm. In: Balinski, M.L. (ed.) Piv-
oting and Extension. Mathematical Programming Studies, vol. 1, pp. 175–189.
Springer, Heidelberg (1974). In Honor of A.W. Tucker

44. Toumi, A., Gutierrez, J., Wooldridge, M.: A tool for the automated verification
of nash equilibria in concurrent games. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 583–594. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 34

45. Ummels, M.: Stochastic multiplayer games: theory and algorithms. Ph.D. thesis,
RWTH Aachen University (2010)

46. Supporting material. prismmodelchecker.org/files/fm19nash/

http://arxiv.org/abs/1811.07145
http://arxiv.org/abs/1811.07145
https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-3-319-67504-6_24
https://doi.org/10.1007/978-3-319-67504-6_24
http://gambit-project.org/
https://doi.org/10.1007/978-3-0348-0122-5_7
https://doi.org/10.1007/978-3-319-25150-9_34
https://doi.org/10.1007/978-3-319-25150-9_34
http://prismmodelchecker.org/files/fm19nash/

Analysis Techniques

Abstract Execution

Dominic Steinhöfel(B) and Reiner Hähnle

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{steinhoefel,haehnle}@cs.tu-darmstadt.de

Abstract. We propose a new static software analysis principle called
Abstract Execution, generalizing Symbolic Execution: While the latter
analyzes all possible execution paths of a specific program, Abstract Exe-
cution analyzes a partially unspecified program by permitting abstract
symbols representing unknown contexts. For each abstract symbol, we
faithfully represent each possible concrete execution resulting from its
substitution with concrete code. There is a wide range of applications
of Abstract Execution, especially for verifying relational properties of
schematic programs. We implemented Abstract Execution in a deduc-
tive verification framework and proved correctness of eight well-known
statement-level refactoring rules, including two with loops. For each
refactoring we characterize the preconditions that make it semantics-
preserving. Most preconditions are not mentioned in the literature.

1 Introduction

Reasoning about abstract programs, i.e. programs containing an abstract context
represented by placeholder symbols, is required whenever one aims to rigorously
analyze program transformation techniques. Notably in compiler validation, to
argue that a specific compilation or optimization step preserves the meaning of
any input program is a standard task. An established approach to this prob-
lem formalizes the abstract syntax and the semantics of the target programming
language as a set of inductive definitions, then proves properties of abstract pro-
grams via structural induction over the program syntax [7]. Early work relied on
pen-and-paper proofs [22,24]. Recently, interactive theorem provers are used to
mechanize correctness proofs, e.g., in CompCert [21] and CakeML [31]. The main
drawback is the very high effort required to mechanize a programming language
and to perform interactive proofs. In this paper we take a different approach to
reason about abstract programs that is automatic and based on symbolic exe-
cution. To make it work, we need to answer two questions: (i) Can one specify
abstract program contexts sufficiently without giving full inductive definitions?
(ii) If yes, which specification constructs are needed for abstract contexts?

We propose a new static software analysis principle called Abstract Execution
(AE) that allows to automatically reason about abstract sequential programs
with side effects. An essential component of AE is a specification language for

This work was funded by the Hessian LOEWE initiative within the Software-Factory
4.0 project.
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 319–336, 2019.
https://doi.org/10.1007/978-3-030-30942-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_20&domain=pdf
http://orcid.org/0000-0003-4439-7129
http://orcid.org/0000-0001-8000-7613
https://doi.org/10.1007/978-3-030-30942-8_20

320 D. Steinhöfel and R. Hähnle

abstract program contexts. This permits, in contrast to prior work [13,14,18,
29], to specify irregular termination behavior (exceptions, etc.) and fine-grained
assumptions on abstract programs. Here we target sequential Java programs,
but the principles of AE are equally applicable to other sequential languages.

Abstract Execution generalizes Symbolic Execution (SE) [5,8,17]. Symbolic
Execution means to execute programs with symbolic expressions as input val-
ues. When SE is embedded into a program logic [1], these symbolic values are
represented by first-order Skolem constants. Skolem symbols can also be viewed
as abstract symbols whose concrete domain value is not specified. In this sense,
SE is already abstract and it amounts to execution of abstract programs that
permit variables and fields to be initialized with unknown values. For example,
symbolic execution of a program “i++;” amounts to execution of the abstract
program “i0++;”, where i0 is a fresh Skolem symbol of type int.

AE in addition permits not only abstract values, but whole programs to
appear as undefined expressions. In the program “if (i > 0) p0 else p1”, for
example, the placeholders pi can be substituted with arbitrary concrete pro-
grams, as long as the result is well-formed. From a semantic point of view, the
difference between abstract values and abstract programs is that (i) an abstract
program may change the value of arbitrary variables and fields, and (ii) its
execution may terminate abruptly, i.e., by returning, throwing an exception, or
continuing or breaking out of a loop. In other words, an abstract program can be
seen as an unknown partial function between execution states, i.e. its big-step
semantics [[p]]. In logic, such a function can be represented by a second-order
Skolem symbol. Therefore, AE amounts to a limited form of second-order rea-
soning: let p be an abstract program and ϕ a first-order formula. Then �ae [p]ϕ
holds iff the weakest precondition of p w.r.t. ϕ is first-order derivable. For exam-
ple:

�ae [int i; boolean b = b0; if (b) p0 else i = 0;](b0
.= FALSE → i .= 0)

To check the relation �ae automatically, we must provide a technical solution
to the following question: how can one implement weakest precondition reasoning
over abstract programs such that the result is a first-order formula? These are
the main building blocks of our solution to realize limited second-order inference
over programs in terms of first-order deduction: (1) second-order Skolemization
to represent the effects of placeholders like p0 on local variables and the heap,
(2) explicit modeling of all possible ways of irregular termination in separate SE
branches, (3) over-approximation of returned values and thrown exceptions by
first-order Skolemization, and (4) a specification language to describe the possi-
ble effect of second-order Skolem symbols as well as to define conditions when
irregular termination of concrete instances for abstract programs can happen.

Applications of Abstract Execution. AE is applicable to many problems involv-
ing reasoning about abstract programs. It can be instantiated to (at least) the
following tasks: (1) Execution of abstract method calls [6], a special case of AE;
(2) automatic soundness proofs of program transformation and of (3) rule-based
compilation [29]; (4) sound, automatic (“lazy”) symbolic execution over pro-

Abstract Execution 321

grams with loops and calls, (5) incremental program development and synthesis
[28]; (6) a modular version of proof carrying code [26], where the contract of called
methods needs not to be known to the certificate provider. It is impossible to dis-
cuss all these in this paper. Therefore, we focus on program transformation—task
(2). We study refactoring rules as described in Fowler’s well-known books [11,12].
We model refactoring techniques as abstract programs, formalize assumptions
under which a refactoring is sound, and prove behavioral equivalence of the orig-
inal and refactored version for all concrete programs satisfying the abstract con-
text.

The paper is structured as follows. In Sect. 2 we describe how to construct
abstract Java programs. Section 3 expounds our logic for AE. Section 4 contains
our case study about proving correctness of refactoring techniques. Section 5
discusses related work, Sect. 6 concludes and gives an outlook to the future. An
appendix with more material is available at key-project.org/papers/ae/.

2 Specifying Abstract Programs

An abstract Java program is a program containing at least one Abstract Place-
holder Statement (APS) symbol. The syntax to declare an APS is:

The symbol P is an identifier for an abstract statement. Semantically, every
APS with the same identifier occurring in a program or proof represents the
same program. The above APS may be substituted with any concrete Java
program accessing and assigning arbitrary fields and local variables, except that
it is not allowed to declare local variables visible outside. Additionally, a concrete
program may (1) throw any type of exception, (2) return from the method it
executes, (3) break to any surrounding block label, (4) continue to and break
from a surrounding loop, (5) continue to the label of a surrounding loop.

The possible behaviors of an APS are constrained by an abstract specifica-
tion. The syntax of the specification language extends block contracts [1,19] of
the Java Modelling Language (JML). JML [20] is a specification language for
Java used to describe the behavior of Java classes and methods. JML speci-
fications are embedded into Java code via comment lines starting with an “@”
sign. An APS is the declaration of an abstract placeholder symbol together with
all specification clauses that constrain it. We explain the involved concepts by
specifying a variant of Fowler’s Consolidate Duplicate Conditional Fragments
refactoring [11] step-by-step. The result, a fully specified program after refactor-
ing is shown in Listing 3 (on p. 5). Table 1 summarizes all specification constructs
that may be used in an APS.

Figure 1 shows an unconstrained formalization of the refactoring. The
abstract code uses an idiom to formalize abstract expressions: it introduces
a variable representing the abstract expression (in this case, the boolean b)
and precedes it with the APS Init that assigns to b an unknown value. The
idiom works as expected if Init is constrained so it assigns a value exactly

https://www.key-project.org/papers/abstract-execution/

322 D. Steinhöfel and R. Hähnle

Table 1. Specification constructs for APSs

Fig. 1. Unconstrained formalization of the “Consolidate Duplicate Conditional Frag-
ments” Refactoring, “Pullout Prefix” variant [11]

to b and not to any other variable. JML uses the clause to spec-
ify which locations can be assigned a value, but does not enforce the assign-
ment. Hence, we extend JML with the keyword. The specification
“ ;” enforces that the specified abstract code assigns
a value exactly to b.

Observe that the refactoring is unsound, whenever the APS P influences the
value of b. If, for instance, P sets b to , the branch of the state-
ment in the refactored program is never reached. A drastic solution is to specify
“ ;” for P which excludes any assignment. This, how-
ever, restricts the refactoring rule too severely to be useful. Assume the depicted
program fragments occur in the scope of a method with a variable result that is
returned at the end. Then we might constrain P with “ ;”
which forbids assignments to b (because it allows assignments exactly to result),

Abstract Execution 323

Listing 3. Fully specified abstract program for the refactored version

//@ axiom mutex{throwsExc(P),
//@ throwsExc(Init), returns(P)};

//@ declares locals(P);
//@ assignable locals(P), result;
//@ accessible locals(P), result, args;
//@ return_behavior requires returns(P);
//@ exceptional_behavior requires throwsExc(P);
abstract_statement P;

//@ assignable hasTo(b);
//@ accessible args;
//@ return_behavior requires false;
//@ exceptional_behavior requires throwsExc(Init);
abstract_statement Init;

if (b) {
//@ declares locals(Q1);
//@ assignable \everything;
//@ accessible \everything;
abstract_statement Q1;

} else {
//@ declares locals(Q2);
//@ assignable \everything;
//@ accessible \everything;
abstract_statement Q2;

}

but renders P still useful. But this is not restrictive enough: The abstract pro-
gram Init that initializes b may still access arbitrary locations and assign them
to b. Thus, P can indirectly influence the control flow by assigning a value to
the variable result which could then affect Init’s choice for b. To address this
issue we proceed as follows:

We add to all APSs in Fig. 1 (except Init) a “ ” annotation. It
declares abstract “Skolem” location sets that can be instantiated with arbitrary
concrete local variable declarations visible from outside. For example, to P we add
the annotation “ ;”. To specify that a method contain-
ing APSs receives an unknown set “args” of parameters, we annotate it with
“ ;”. Abstract location sets in declarations can be declared
final by surrounding them with “ ”. This prevents them from occurring
in clauses. Continuing the example, we add to P the annotation
“ ;” , to Init “ ;”.

Proving correctness of the refactoring still fails, however, for two reasons. The
first is: we have not excluded that Init contains a statement. Since Init’s
only task is to initialize b, this should never happen. We add the annotation
“ ;” to Init, specifying that a
requires the specified condition—here falsity—which excludes returning.

The second reason why the refactoring is not yet correct is that Init might
raise an exception. This is entirely possible and a real problem: If we per-
mit P to return or throw an exception, but Init may also throw an excep-
tion, then the refactored and the original program have different behavior. We
have two options: (i) We deny Init to throw an exception by adding the annota-
tion “ ;” or, more generally, (ii) we
enforce that if Init throws an exception, then P can neither throw an exception
nor can it return. The latter is achieved with the help of the abstract functions

, , and of Boolean type. They qual-

324 D. Steinhöfel and R. Hähnle

ify the clauses that restrict exceptional and returning behavior of Init
and P. A global declares them to be mutually exclusive.

Listing 3 shows the specified refactored program. Similar annotations apply
to the original version. For Q1 and Q2, we permit assigning/accessing all loca-
tions (“ ”). This is default, so these declarations can be left out. The
annotation “ ;” would have to be added to the sur-
rounding method declaration. With the specification in Listing 3 we can prove
equivalence of the original and refactored program for any concrete instance
matching the abstract program structurally and satisfying its I/O and control
flow constraints. Having proved equivalence, the refactoring can be applied in
either direction. This is relevant: many of Fowler’s refactorings are bi-directional.
We continue with formalizing AE over constrained APSs in a program logic.

3 Abstract Execution Logic

Our implementation of AE is realized on top of the symbolic execution framework
of the deductive verification system KeY [1]. It is based on Java Dynamic Logic
(JavaDL), a program logic for the Java language.

3.1 Principles of JavaDL

JavaDL extends sorted First-Order Logic (FOL). Java programs appear inside
logical formulas as modalities, of which there are two types: The box modality
[p]ϕ expresses that if program p terminates, then the postcondition ϕ holds in
any final state (partial correctness). The diamond modality 〈p〉ϕ additionally
requires p to terminate (total correctness). To prove the validity of formulas, i.e.
[p]ϕ or 〈p〉ϕ holds in any initial state, JavaDL has a sequent calculus comprising
FOL and theory-specific rules, as well as rules realizing SE of Java programs.
A Hoare triple {ψ} p {ϕ} is equivalent to the JavaDL formula ψ → [p]ϕ.

The SE rules of the JavaDL calculus reduce a Java statement to first-order
assumptions and a separate syntactic category called symbolic updates repre-
senting symbolic state transitions. The atomic building blocks of updates are the
empty update Skip, representing the identity state transition, and the elemen-
tary update x := t for the state transition where variable x is assigned the value
of term t. Two updates U1, U2 can be combined into a parallel update U1 || U2:
the state changes of U1 and U2 are executed simultaneously; in case both assign
to the same variable, the assignment in U2 “wins”. Only in the absence of such
“conflicts”, parallel composition is commutative. Updates are applied to terms
t and formulas ϕ: {U}t and {U}ϕ represent the value of term t and truth value
of formula ϕ after the state change effected by U , respectively. Parallel update
composition {U1 || U2}ϕ is different from sequential composition {U1}{U2}ϕ. In
the sequential case, right-hand sides of U2 are interpreted in the state resulting
from U1. In the parallel case, they are interpreted in the same pre-state. The
formula {U1}{U2}ϕ is equivalent to {U1 || {U1}U2}ϕ.

Abstract Execution 325

Fig. 2. SE rule for variable assignment

Figure 2 depicts an SE rule using an update to represent the effect of an
assignment of an expression without side effects to variable x. As usual, sequent
calculus rules are read “bottom-up”, i.e. the rule symbolically executes the
assignment by turning it into a symbolic update. SE rules operate on the first
active (i.e. executable) statement of a program, here the assignment. The remain-
ing program is contained in π ω, where the prefix π consists of opening braces,
labels, try-blocks, etc., and the postfix ω of closing braces, blocks, and remaining
statements. The program π ω is a well-formed Java program. Sequent calculus
rules have zero or more premises (sequents on top of the rule); zero premises
characterize a rule that closes a proof case, more than one premise causes a
proof to split. An example of the latter is the rule for an -statement (see
web appendix). The conclusion (bottom part) of a rule consists of exactly one
sequent. A rule is sound if the correctness of the conclusion follows from the
correctness of all premises. A sequent Γ � Δ is correct if the conjunction of the
formulas in the set Γ implies the disjunction of those in Δ. Details are in [1].

We need a recently introduced concept of JavaDL for reasoning about loops:
loop scopes [30]. A loop scope �xp x� is a scope for a loop body p. It results from
SE of a loop . The boolean flag x encodes completion information
about the loop: it is set to TRUE if the loop is exited (either normally or by
irregular termination) and to FALSE if it continues with another iteration. Using
the value of x, a postcondition can distinguish both cases.

3.2 Formalization of Abstract Execution

We first give a definition of the domain of locations used in ,
and specifications of APSs. The symbol “allLocs” is

introduced for the “ ” specifier in and spec-
ifications.

Definition 1. The set LocsConcr of concrete locations consists of program
variables x and, for an object o and field identifier f, field locations (o, f).
The set LocsSk of Skolem location sets consists of uninterpreted functions
locSk representing arbitrary sets of concrete locations LocsConcr . We define
Locs = LocsConcr ∪ LocsSk ∪ {allLocs}, where the symbol allLocs represents
all concrete locations LocsConcr . The set of assignable locations is defined as
LocsAssgn = Locs ∪ {loc! | loc ∈ Locs \ {allLocs}} which also includes “have-to”
locations loc!.

In Sect. 2, we introduced the specification elements of APSs. These are for-
malized in the subsequent definition of the logic representation of an APS.

326 D. Steinhöfel and R. Hähnle

Definition 2. Let id be an identifier symbol, decls ⊆ LocsSk, assignables ⊆
LocsAssgn and accessibles ⊆ Locs. An Abstract Placeholder Statement is a tuple

(id, decls, assignables, accessibles, specs)

where “specs” represents behavioral specifications and is a tuple of the form:

(returnsSpec, excSpec, continuesSpec,

breaksSpec, continuesSpecLbl , breakSpecLbl)

The elements returnsSpec, excSpec, continuesSpec, breaksSpec are optional: they
are the empty set or a singleton of a formula specifying when an APS returns,
throws an exception, continues, and breaks, respectively. Elements breakSpecLbl,
continuesSpecLbl are partial functions from labels to formulas, specifying when
an APS continues a labeled loop or breaks from a labeled block or loop.

We write “APS P” short for “the APS with identifier symbol P”. Abstract
Execution reasons about the behavior of all possible concrete programs with
which APSs “legally” may be instantiated, formally:

Definition 3. Let pa be an abstract program with occurrences of APS symbols
P1, . . . Pn. We call the substitution with concrete programs P0i for each Pi a legal
instantiation iff (1) the result from substituting all occurrences of Pi by P0i in pa
is a compilable Java program, and (2) all P0i satisfy all constraints of the APSs
declaring the Pi.

Example 1. We substitute P in Listing 3 with “ ;”. This is legal
if z is undeclared in the visible scope. The substitution instantiates the location
set “ ” with {z}, affecting further instantiations referring to it. The
substitution of “ ;” for P is illegal: First, it assigns a variable which is not
contained in its assignable set; second, if z is not contained in the instantiation
of args, it accesses an undeclared variable z; third, the program is not compilable
if y and z are undeclared. Let param be in the instantiation of args. Substituting
P with “ ;” and Init with ;” is illegal since
both could throw an exception, contradicting the axiom.

SE of an APS must over-approximate the behavior of all legal instantiations.
To model this in the logic, we use second-order Skolemization. Given an APS
(P, decls, assignables, accessibles, specs), we create what we call a Skolem update
“UP(assignables :≈ accessibles)” with Skolem path condition “CP(accessibles)”
fresh for P. The term “fresh for” means that the symbols UP, CP are created
freshly (as usual for Skolemization) when P first occurs in a proof context, but
are re-used each time when P re-occurs. This ensures that each occurrence of
an APS symbol represents the same program. We define the meaning of Skolem
update and Skolem path condition by extending the notion of legal instantiation.
In the definition we assume all Skolem location sets in LocsSk to be instantiated
with concrete locations.

Abstract Execution 327

Fig. 3. Simple AE rule without abrupt termination

Definition 4. Let an APS P with assignables ⊆ LocsAssgn\LocsSk, accessibles ⊆
Locs\LocsSk be given. An abstract update UP(assignables :≈ accessibles) may
be instantiated with any concrete update x1 := t1 || . . . || xn := tn for which the
following conditions hold: (1) either allLocs ∈ accessibles or the ti depend at most
on locations in accessibles; (2) either allLocs ∈ assignables or for each xi one of
xi ∈ assignables or x!i ∈ assignables; (3) for all x! ∈ assignables, there is an i
such that x = xi. An abstract path condition CP(accessibles) may be instantiated
with any closed formula ϕ depending at most on locations in accessibles.

Definition 5. Abstract JavaDL extends JavaDL syntax as follows: (1) updates
can be Skolem updates; (2) Skolem path conditions are also formulas; (3) pro-
grams can be abstract. Abstract sequents and sequent rules are defined as before,
but range over abstract JavaDL formulas.

A JavaDL sequent calculus rule is sound if the validity of the conclusion fol-
lows from the validity of all premises [1]. We can leave this definition unchanged
provided that we define validity of abstract sequents suitably:

Definition 6. A sequent S0 is a legal instantiation of an abstract sequent S if
S0 results from substituting all Skolem updates, Skolem path conditions and APS
symbols in S with legal instantiations. An abstract sequent is valid iff all its legal
instantiations are valid in JavaDL.

One of the simplest possible AE rules (first mentioned in [29]) is shown in
Fig. 3. It is only applicable for an APS whose specification and legal instantia-
tions exclude irregular termination.

Theorem 1. The Abstract Execution rule simpleAERule (Fig. 3) is sound.

Proof. Let P0 be any legal instantiation of P. Since P0 cannot terminate irregu-
larly, symbolic execution transforms the sequent Γ � {U}[π P0 ω]ϕ, Δ to one of
the shape Γ � {U}{U0}(C0 → [π ω]ϕ), Δ.1 Assume the premise of simpleAERule
is valid (otherwise, the rule is trivially sound). The instantiations U0 of UP and
C0 of CP are legal (the allLocs location allows reading and writing arbitrary
locations). So, by assumption, Γ � {U}{U0}(C0 → [π ω]ϕ), Δ is valid and, by
soundness of SE, also the conclusion. Since P0 was chosen arbitrarily, the abstract
sequent in the conclusion of simpleAERule is valid.
�

1 If the statement causes a split, like an statement, we still can combine the arising
sequents to a single one by state merging [27].

328 D. Steinhöfel and R. Hähnle

Fig. 4. AE rule for an APS within a loop scope.

The simpleAERule rule is unsatisfactory: it is too restrictive on irregular ter-
mination. It is also too abstract, because the abstract update and path condition
in the premise may write and read any location. The abstract update can erase
all variables and the whole heap, which prevents proving interesting properties.
More useful rules can be obtained for specific contexts in which an APS occurs
in the conclusion. Depending on the context, legal instantiations can lead to
different ways of irregular termination.

Figure 4 shows a rule for AE within a loop scope and a non-void method, but
outside the scope of loop labels. In contrast to simpleAERule, nonVoidLoopAERule
uses the assignables/accessibles specifications of the APS syntax. Irregular ter-
mination is modeled by statements inside the loop scope in the premise. The
conditionals depend on variables initialized with fresh constants in the update
after the abstract update. E.g., returns is initialized with a constant returns0.

Without a specific context, SE will split at each statement and follow both
branches, e.g., one where P returns and one where it does not. Using the behavior
specification, this can be fine-tuned: For example, in the path condition in the
premise, there is an optional (marked with ?) conjunct “(returns .= TRUE ↔
returnsSpec)?”. This lets one control the value of the guard returns with the
formula returnsSpec. The behavior specifications stem from the specifications of
the abstract symbol P in the conclusion as detailed in Sect. 2. The function mutex
is interpreted such that at most one of its arguments is true at any time: here

Abstract Execution 329

this specifies that there is not more than one reason for a program to terminate
irregularly. 2 A proof of the following Theorem 2 is provided in the web appendix.

Theorem 2. The Abstract Execution rule nonVoidLoopAERule (Fig. 4) is sound.

Design Principles for AE Rules. The principles underlying the above rules apply
to other sequential languages than Java as well. To create a new AE rule, we
proceed as follows. Given a context in which an APS declaration is the active
statement (a loop, method, labeled block, etc.), we model possible side effects of
that APS with separate, conditioned SE branches in the premise. For soundness
it is crucial not to miss any irregular termination cases. We point out that instead
of performing exhaustive structural induction, we merely distinguish different
paths of program completion. For paths depending on values (as for a or
exception), Skolem constants are introduced. The conditioned premises depend
on flags that establish a link to the APS’s specification; abstract updates and
path conditions are added as in nonVoidLoopAERule. AE rules are not specific
to the target application of this paper (correctness of refactoring rules), but can
be used in any of the areas mentioned in the introduction.

3.3 Abstract Update Simplification

The JavaDL calculus comes with many simplification rules for concrete updates:
{U1}{U2}ϕ simplifies to {U1 || {U1}U2}ϕ, updates applied to formulas without
program variables are removed, etc. In addition, spurious updates, such as those
assigning variables not occurring in their scope, are removed. To reason about
abstract programs, we need corresponding rules for abstract updates.

We designed a set of simplification rules for abstract updates (see Table 2):
(1) Remove spurious updates: From the assignables part of an abstract update,
delete those not occurring in the scope or that are overwritten before being read;
(2) two rules handle the interplay between concrete and abstract updates; (3)
two rules handle concatenation of abstract updates: When we cannot further
simplify a formula {U1}{U2}ϕ, we connect the abstract updates by a concatena-
tion operator, resulting in {U1 ◦ U2}ϕ. This is not needed for concrete updates
which are directly simplified as shown above. Within a concatenation, abstract
updates can be commuted if their assignable/accessible specifications do not
interfere.

4 Proving the Correctness of Refactoring Techniques

We studied five refactoring techniques from Fowler’s classic book [11] and three
from the second edition [12]. We choose refactorings operating at the statement

2 It is possible that, for instance, during returning an exception is thrown: this simply
means that exception is the reason for termination.

330 D. Steinhöfel and R. Hähnle

Table 2. Simplification rules for abstract updates

level, because they are directly expressible in JavaDL and—for the time being—
exclude techniques that reorganize class hierarchies, rename constructs, or move
methods. For each of the eight techniques we formalized the starting point and
the result of the refactoring as a suitably specified abstract program (see Sect. 2),
and then proved their equivalence with the AE calculus discussed in Sect. 3. Thus,
we obtain soundness of, for example, Extract Method at the same time as of its
inverse, Inline Method. All proofs are fully mechanized in KeY [1].

Methodology. For each refactoring, we create a Java class with two
public methods: contains an abstract program representing the input
to the refactoring, the refactored result. We start with minimal annota-
tions in the occurring APSs including directives and standard return
and assignable specifications for the abstract expressions idiom. The following
JavaDL formula performs AE of an abstract program p on a object o
and records the result (“Flag” in the postcondition is explained later):

(1)

Equivalence of the original and the refactored program is established by proving
the formula “AE(before, TRUE) ↔ AE(after, TRUE)”. This is loaded into
KeY and an automatic proof is started. In all but one refactoring technique (first

Abstract Execution 331

Fig. 5. The Remove Control Flag Refactoring Technique

in Table 3), the proof cannot be finished and open goals remain. The reason is—
quite simply—that Fowler’s refactoring techniques are not sound in general [10].
As he points out, they rely on robust test suites and a “try-compile-and-test”
loop trusted to unveil potential faults introduced by a refactoring.

In our setting we have the opportunity to restrict the programs that can be
soundly refactored via suitable annotations of the APSs used to describe refactor-
ing source and target. Fowler in most cases does not mention these restrictions.
Fortunately, inspection of uncloseable proof goals provides clear hints on the
nature of the required annotations.

A typical example is when all open proof goals expect an APS P to throw
an exception (assumption exc �= null occurs in each unprovable goal). This is
addressed by adding a constraint on P that forbids to throw exceptions. Another
common situation concerns too liberal specifications.
These lead to open goals that contain a sequent of the form {U}ϕ � {U ′}ϕ that
becomes valid when the abstract updates U and U ′ are identical. Any differences
give hints on possible annotations that permit to close the proof.

Once a proof is complete, the formalization of a refactoring should be checked
for validity, i.e. whether the intention of the refactoring technique has been faith-
fully captured. Specifications should not be more restrictive than necessary and
permit substituting non-trivial programs for APSs. For example, it is easy, but
useless, to find a proof with “ ;” specifications. For each
behavioral restriction, there should be a convincing justification. We discovered
non-trivial and justifiable restrictions for almost all the investigated refactoring
techniques (summarized in Table 3). Source code samples are in the appendix.

Complexity of Checking Legal Substitutions. A closed equivalence proof about
abstract programs asserts that those programs behave equivalently for all legal
substitutions of concrete programs for APS symbols (Definition 3). Consequently,
for each concrete program one must check that all the constraints specified in
APSs are satisfied. These include syntactic restrictions (e.g., when inlining a
method, there are no recursive calls in the body) as well as behavioral ones.
The latter are not necessarily automatically checkable or even decidable. For
example, to decide whether a program throws an exception, is equivalent to
reachability. Even so, a formalized and proven refactoring technique makes its

332 D. Steinhöfel and R. Hähnle

Table 3. Studied refactoring techniques and discovered behavioral constraints.

Abstract Execution 333

requirements explicit that before were mentioned only informally (if at all). Not
in general, but in practice quite often, constraints can be proven in KeY.

Multiple Specifications. It can make sense to create multiple formalizations of
the same refactoring technique. The restrictions that ensure soundness can differ
depending on (1) the program context (inside/outside a loop or labeled block),
and (2) the termination mode (normal, exceptional, break, etc.). The “consoli-
date duplicate conditional fragments” technique in Table 3 exemplifies this.

Programs with Loops. We studied two refactoring techniques involving loops:
Remove Control Flag [11] and Split Loop [12]. To handle loops we make use of
the Flag in formula (1) to separate runs leaving the loop from those leading to
further executions of the loop body. The value of Flag is controlled by the loop
scope parameter (the invariant rule in Fig. 7 in the appendix contains details).

The Remove Control Flag refactoring in Fig. 5 is interesting, because the
number of runs of the loop before and after the refactoring differs by one (the
guard needs to be executed one extra time before). This complicates the proof
since we obtain Post(_result, FALSE) for one case and Post(_result, TRUE)
for the other. We solve this by harmonizing the iteration structure via an
unrolling technique [16] and an intermediate refactoring. Alternatively, one can
code the unrolling inside a modified loop invariant rule (Fig. 9 in the appendix).

The Split Loop refactoring splits a loop with two independent parts into two
successive loops. We had to supply several annotations to the APSs. For instance,
the first part of the loop body must not break or continue (since otherwise, the
second part is skipped, which is not the case after the refactoring), while the
second part must not return, throw an exception, or break, since then we would
have to relate runs continuing loop iteration with others exiting the loop.

Performance. All proofs are performed automatically in KeY without user inter-
action. For the refactorings with loops, currently small proof scripts (≈ 40 lines)
are needed for loop coupling. The proofs have 2,900–40,000 nodes (median:
7,100) and take 6–300 s (median: 29 s) to complete. All problem files with
detailed statistics, together with a KeY version implementing AE, are available
at key-project.org/papers/ae/.

5 Related Work

The idea of Abstract Execution was first mentioned in our earlier work [29],
where it is used to formalize the correctness of compilation rules of a Java-to-
LLVM IR compiler. There, APSs could not be annotated and irregular termina-
tion was excluded; also, every APS can assign and access any location. In the
present paper we lift these restrictions, provide an implementation and a case
study. Abstract execution of APSs can be seen as a generalization of abstract
operation contracts [6,15] to abstract block contracts. In the former, contracts are
abstract, but programs concrete; we generalize this to abstract programs. This

https://www.key-project.org/papers/abstract-execution/

334 D. Steinhöfel and R. Hähnle

amounts to encoding limited second-order inference (no induction, no higher-
order quantification) over programs into first-order (dynamic) logic.

The principal use cases for AE reside in the area of relational verification [4],
which includes, but is not limited to: general-purpose relational proofs about pro-
grams [2,16], correctness proofs for refactorings [13], regression verification [14],
proven-correct compilation [21,31] and compiler optimizations [18,23], program
synthesis [28], information flow properties (e.g., by self-composition [3,9]).

There are several approaches to prove relational properties of concrete pro-
grams (e.g., LLRÊVE [16]). Barthe et al. [2] propose the construction of product
programs from two variable-disjoint programs as a general-purpose technique
for verifying relational program properties. After execution of the product pro-
gram, the result is checked for correctness, i.e. equality. This works even for
structurally different programs. Instead, we execute both programs in isolation
in an equivalence proof. This has the drawback of requiring a certain structural
similarity of the programs and explicit loop coupling, but it is more resilient in
the presence of irregular or non-termination. Product programs and AE are not
mutually exclusive: One can create a product of abstract programs.

Garrido and Meseguer [13] prove correctness of three Java refactoring tech-
niques based on an executable Maude semantics of Java. They focus on refactor-
ings not targeted by us (e.g., Pull Up Field). It is unclear whether this approach
works for statement-based refactorings including loops. Alive [23] permits prov-
ing automatically the correctness of “peephole optimizations” for LLVM. While
this approach reasons about classes of programs, it is parametric only in reg-
ister names and imposes other serious restrictions (e.g., no loops). Eilertsen et
al. [10] generate semantic correctness assertions that ensure preservation of pro-
gram semantics after refactoring. They work on concrete programs and perform
run-time, not static checking.

Godlin and Strichman [14] perform “Regression Verification” by transform-
ing loops into recursive functions and replacing recursive calls with uninter-
preted function symbols. The latter are similar to APSs, however, side effects
or irregular termination cannot be modeled, because functions are pure. Mech-
taev et al. [25] propose a mechanism for proving existential second-order prop-
erties based on symbolic functions. Their goal is to find existential witnesses
for those functions by synthesis from a user-specified grammar. In contrast, we
aim at universal properties, and APSs represent statements (with side effects),
not functions. The PEC system [18] for proving the correctness of compiler opti-
mizations uses meta variables ranging over expressions, variables and statements.
The latter are “single-entry-single-exit”, whereas APSs can have multiple exit
points, including irregular termination. In addition, we permit annotations that
constrain possible behavior. The property to be proven in [18] is a certain bi-
simulation relation which is somewhat inflexible and requires lockstep execution.

6 Conclusion and Future Work

We proposed Abstract Execution of programs that contain APS symbols, a new
software analysis principle extending symbolic execution. AE permits to auto-

Abstract Execution 335

matically reason about partially unspecified programs. APSs allow irregular ter-
mination and include specification of assignable and accessible locations as well
as of termination behavior. This generalizes other approaches going into similar
directions. We implemented our method and applied it to eight Java refactoring
techniques, of which two require reasoning about loops. Our formalization of the
refactoring techniques makes implicit requirements explicit. It helps to better
understand and safely apply refactorings. We plan to investigate how to support
structurally different programs (e.g., comparing iterative and recursive versions
of the same algorithm), concurrent programs, and we intend to look at other
application areas. To prove the correctness of compiler optimizations automati-
cally using AE is a natural follow-up to our work on refactoring techniques.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M.
(eds.): Deductive Software Verification-The KeY Book: From Theory to Practice.
LNCS, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-49812-6

2. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_17

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, CSFW-17, Pacific
Grove, CA, USA, pp. 100–114. IEEE Computer Society (2004)

4. Beckert, B., Ulbrich, M.: Trends in relational program verification. In: Principled
Software Development - Essays Dedicated to Arnd Poetzsch-Heffter on the Occa-
sion of his 60th Birthday, pp. 41–58 (2018)

5. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT–a formal system for testing and
debugging programs by symbolic execution. ACM SIGPLAN Not. 10(6), 234–245
(1975)

6. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 120–134. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_9

7. Burstall, R.M.: Proving properties of programs by structural induction. Comput.
J. 12(1), 41–48 (1969)

8. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974, pp. 308–312. Elsevier/North-Holland (1974)

9. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3_20

10. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Proceedings of 7th
International Symposium on Leveraging Applications of Formal Methods, ISoLA,
pp. 517–531 (2016)

11. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley (1999)

12. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Signature Series, 2nd edn. Addison-Wesley Professional (2018)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-662-45231-8_9
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20

336 D. Steinhöfel and R. Hähnle

13. Garrido, A., Meseguer, J.: Formal specification and verification of Java refactorings.
In: Proceedings of 6th IEEE International Workshop on Source Code Analysis and
Manipulation, SCAM 2006, pp. 165–174. IEEE Computer Society (2006)

14. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of sim-
ilar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013)

15. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract
method calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
300–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-
2_21

16. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
ir - combining static verification and dynamic analysis. J. Autom. Reas. 60(3),
337–363 (2018)

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

18. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. Proc. PLDI 2009, 327–337 (2009)

19. Lanzinger, F.: A divide-and-conquer strategy with block and loop contracts for
deductive program verification. Bachelor thesis, Institute of Theoretical Informat-
ics, Karlsruhe Institute of Technology, April 2018

20. Leavens, G.T., et al.: JML reference manual, draft revision 2344, May 2013. http://
www.eecs.ucf.edu/leavens/JML//OldReleases/jmlrefman.pdf

21. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

22. London, R.L.: Correctness of a compiler for a LISP subset. In: Proceedings of ACM
Conference on Proving Assertions About Programs, pp. 121–127. ACM (1972)

23. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with alive. Commun. ACM 61(2), 84–91 (2018)

24. McCarthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions.
Math. Aspects Comput. Sci. 1, 33–41 (1967)

25. Mechtaev, S., Griggio, A., Cimatti, A., Roychoudhury, A.: Symbolic execution
with existential second-order constraints. In: Proceedings of 2018 Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 389–399 (2018)

26. Necula, G.C.: Proof-carrying code. In: Proceedings of 24th ACM Symposium on
Principles of Programming Languages, Paris, France, pp. 106–119. ACM Press,
January 1997

27. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 57–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3_5

28. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: Proceedings of 37th POPL, pp. 313–326 (2010)

29. Steinhöfel, D., Hähnle, R.: Modular, correct compilation with automatic soundness
proofs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 424–
447. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4_25

30. Steinhöfel, D., Wasser, N.: A new invariant rule for the analysis of loops with non-
standard control flows. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 279–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66845-1_18

31. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: Proceedings of 21st International Con-
ference on Functional Programming, pp. 60–73. ACM (2016)

https://doi.org/10.1007/978-3-642-38574-2_21
https://doi.org/10.1007/978-3-642-38574-2_21
http://www.eecs.ucf.edu/ leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/ leavens/JML//OldReleases/jmlrefman.pdf
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-030-03418-4_25
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/978-3-319-66845-1_18

Static Analysis for Detecting High-Level
Races in RTOS Kernels

Abhishek Singh2, Rekha Pai1(B), Deepak D’Souza1, and Meenakshi D’Souza2

1 Indian Institute of Science, Bangalore, India
{rekhapai,deepakd}@iisc.ac.in

2 International Institute of Information Technology, Bangalore, Bangalore, India
abhishek.singh1@iiitb.org, meenakshi@iiitb.ac.in

Abstract. We propose a static analysis based approach for detect-
ing high-level races in RTOS kernels popularly used in safety-critical
embedded software. High-Level races are indicators of atomicity viola-
tions and can lead to erroneous software behaviour with serious conse-
quences. Hitherto techniques for detecting high-level races have relied on
model-checking approaches, which are inefficient and apriori unsound. In
contrast we propose a technique based on static analysis that is both effi-
cient and sound. The technique is based on the notion of disjoint blocks
recently introduced in Chopra et al. [5]. We evaluate our technique on
three popular RTOS kernels and show that it is effective in detecting
races, many of them harmful, with a high rate of precision.

Keywords: Static analysis · RTOS kernel ·
Interrupt-driven programs · High-level data races

1 Introduction

In a multi-threaded program, a high-level race occurs when two user-specified
pieces of code (or “critical accesses”), which are meant to access a common set
of variables or data-structures mutually exclusively, end up “overlapping” or
being interleaved with one another in an execution. High-Level races are often
the cause of atomicity violations and unexpected erroneous behaviour of the
software.

Our focus in this paper is on high-level races that occur in the kernel API
functions of Real-Time Operating Systems (RTOSs), which are often used in
embedded software. The kernel APIs of an RTOS are typically invoked by mul-
tiple task threads or Interrupt Service Routines (ISRs) of an application, in
an interleaved fashion on a single processor core. Detecting high-level races in
the kernel APIs of an RTOS is at once important and challenging. Important
because these kernels are often used in safety-critical embedded applications in
aerospace, automotive, and medical domains. High-Level races here may lead to
serious undesirable consequences. Also, a single race in the kernel (as against
an application) could potentially impact many applications that use it. Finally,
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 337–353, 2019.
https://doi.org/10.1007/978-3-030-30942-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_21

338 A. Singh et al.

the problem is challenging because these kernels invariably make use of non-
standard synchronization mechanisms like disabling/enabling interrupts, sus-
pending the scheduler, and often rely on the relative scheduling priorities of
specialized threads like callbacks and software interrupts (SWIs).

Previous techniques for finding high-level races in embedded kernels have
typically relied on model-checking based approaches, where it is easier to model
the ad-hoc synchronization and context-switching semantics. Here one constructs
a model for a “most general” application A that non-deterministically exercises
all the kernel API functions, and uses the model-checker to exhaustively search
for high-level races. While this is a precise approach with a very low rate of false
positives, it has some inherent drawbacks. Firstly, the most general application
A must fix a priori the number of threads of each type (task, ISR, etc). This
choice, unless backed by an intricate, RTOS-specific, meta-argument proving
sufficiency of this choice, as in [14], may lead to unsoundness of the analysis
in the following sense: it could be that A uses 2 task threads, while a certain
high-level race needs 3 or more task threads to orchestrate it. The model-checker
would thus unsoundly declare that such a race does not occur. Secondly, even for
a fixed number of threads, the state-space may prove to be prohibitively large
for the model-checker to complete its search [14].

In this paper we propose a sound and efficient technique based on static
analysis of code, to solve this problem. Our technique is based on the notion of
disjoint-blocks proposed recently in [5]. Much like two pieces of code in a classical
multi-threaded program that occur between the acquire and release of a common
lock, two patterns of code form a pair of disjoint-blocks if they are guaranteed
never to “overlap” in any execution of the program. Our high-level race detection
algorithm essentially does a disjoint-block analysis of the kernel API functions,
and then checks for each pair of conflicting critical accesses whether they are
“covered” by some pair of disjoint-blocks.

We have implemented and evaluated our approach on three important con-
temporary RTOS kernels. The first is an ARINC 653 based proprietary RTOS of
an Indian aeronautics major, which is used to manage navigation systems of its
aircraft. This RTOS, which we call “P-RTOS” for confidentiality reasons, is char-
acterized by its use of callback routines, which are threads of priority in between
tasks and ISRs. The other two are among the most popular open-source RTOSs
– TI-RTOS [13] from Texas Instruments, and FreeRTOS [4] from Real-Time
Engineers. TI-RTOS is distinguished by its use of software interrupts (SWIs).
Our analysis finds several harmful high-level races in each of these RTOSs in a
running time of a few seconds, and with a low rate of false positives. We have
been in touch with the developers of these RTOSs and many of these are issues
they would like to fix.

2 Overview

We begin with an overview of our contributions with an illustrative example
from the P-RTOS kernel. A P-RTOS application can create a bunch of task,

HLDR in Interrupt-Driven Kernels 339

callback, and ISR threads, which execute in an interleaved manner, subject to
some restrictions. Firstly, callbacks need to be “activated” before they can exe-
cute. Threads may pre-empt each other, subject to the following rules: (a) a
task cannot be preempted by another task if LockPreemption is in force, (b)
callbacks cannot execute when LockPreemption is in force, and (c) ISRs and
callbacks cannot be preempted – once begun, they run to completion.

Figure 1 shows a part of the P-RTOS kernel code. The kernel API function
ProcessResume is invoked with a pointer to the Process Control Block (PCB)
of a task, and the routine first makes sure the given task is in the delayed queue
(WAITING state). It then goes on to move the task from the delayed queue to
the ready queue. This latter part is done in the scope of a LockPreemption
command. The Tick ISR is an ISR thread that services the timer interrupt.
Its main job is to increment the tick count, and then activate the TimeDelay
callback. The TimeDelay callback essentially scans through the delayed queue,
moving tasks whose time-to-awake has past, to the ready queue.

As a developer, we may mark the lines 3–9 in ProcessResume as a critical
access A. This piece of code accesses kernel structures like the delayed and
ready queue, and clearly must be done “exclusively” from other critical accesses
to one of these structures, failing which the data structures may end up in an
inconsistent or erroneous state. Similarly the lines 2–16 in TimeDelay may be
considered as a critical accesss B to the delayed and ready queues, as well as the
tick count variable.

We say a high-level race involving the critical accesses A and B occurs, if there
is an execution of some application program which exercises these kernel routines
in such a way that the critical accesses end up interleaving (or overlapping) in
the execution.

Consider now a P-RTOS application with two tasks P and Q. Let us say the
current tick count (recorded in the kernel variable Tick Count) has value 100,
and task Q is in the delayed queue with a time-to-awake of 101. Task P which
is currently running, invokes the ProcessResume kernel routine with task Q as
the argument. The check in line 3 passes since Q is in the delayed queue and its
state is WAITING. However, just before it can lock preemption in line 5, a timer
interrupt arrives and the Tick ISR runs, incrementing the tick count to 101 and
activating the TimeDelay callback. Since preemption has not yet been locked,
the TimeDelay routine runs and moves task Q from the delayed to the ready
queue. When execution switches back to task P , it tries to remove Q from the
delayed list in line 7. Since it is trying to remove a task not present in the list,
this causes an exception.

This scenario exhibits a high-level race involving the critical accesses A and
B (notice that the code segments A and B overlap in time in this scenario).
Moreover, this race is a harmful one, since we reach a system state (namely with
the exception condition) which cannot be reached in any execution in which the
two critical accesses are done serially (i.e. without overlap).

We now describe our technique to report high-level races. The two colored
blocks comprising lines 6–9 in ProcessResume and lines 1–16 in TimeDelay,

340 A. Singh et al.

constitute a pair of disjoint-blocks, since by the execution semantics they can
never overlap in an execution. This is because the first block is in the scope of a
lock preemption and hence cannot be interrupted by a callback thread. Similarly,
the second block – being part of a callback thread – cannot be interrupted by
any thread. Our race detection algorithm essentially checks whether the critical
accesses A and B are “covered” by pairs of disjoint blocks (see Sect. 5 for details).
In this case they are not, and we declare A and B to be potentially high-level
racy.

We note that a better programming discipline would have put the lock pre-
emption just before line 3 instead of line 5. In this case the critical accesses would
have been covered by disjoint-blocks, and our algorithm would have reported the
pair to be safe.

Fig. 1. An example adapted from the P-RTOS kernel exhibiting a high level race.

3 Interrupt-Driven Programs with Callbacks

We describe a multi-threaded programming language that is meant to capture
the semantics of a P-RTOS application with calls to the kernel routines inlined.
We abstract away from priorities among tasks as they play no role in our anal-
ysis of the P-RTOS kernel routines. We refer to programs in this language as
Interrupt-Driven Programs with Callbacks (or IDC programs for short).

IDC programs have a fixed finite number of threads and a fixed number
of global variables. Each thread is of one of three types: task threads that are
like standard threads, ISR threads that represent interrupt service routines, and
callback threads are activated by ISR threads. There is a main thread, which is
a task thread and is the only task thread enabled initially. The main thread can

HLDR in Interrupt-Driven Kernels 341

initialize variables and then invoke the start command to enable the scheduler
and begin execution.

Task threads can be preempted by other task threads (whenever interrupts
are not disabled and the scheduler is not suspended) or by ISR threads (whenever
interrupts are not disabled) or by callback threads (whenever interrupts are
not disabled and the scheduler is not suspended). Callback threads are initially
disabled, and can be enabled by an activate command from an ISR. Activated
callbacks can execute whenever interrupts are not disabled, and the scheduler is
not suspended. ISR and callback threads cannot be preempted, and must run
to completion. A callback thread gets disabled after its execution and can be
enabled again by an activate command from an ISR.

The threads access a set of shared global variables some of which are
used as “synchronization flags”, using a standard set of commands like assign-
ment statements of the form x := e, conditional statements (if-then-else),
loop statements (while), etc. The threads can also use commands like
lockpreem, unlockpreem (to suspend and resume the scheduler, respectively)
and disableint, enableint (to disable and enable interrupts, respectively).
Table 1 shows the set of basic statements cmdV,T over a set of variables V and
a set of threads T .

Table 1. Basic IDC program statements cmdV,T over variables V and threads T

Command Description

skip Do nothing

x := e Assign the value of expression e to variable x ∈ V

assume(b) Enabled only if expression b evaluates to true, acts like skip

start Enable task and ISR threads for execution

activate(t) Enable callback thread t for execution

disableint Disable interrupts and context switches

enableint Enable interrupts and context switches

lockpreem Suspend the scheduler (callbacks and task threads cannot preempt
the current thread)

unlockpreem Resume the scheduler

Formally we represent an IDC program P as a tuple P = (V, T) where V is a
finite set of integer variables and T is a finite set of named threads. Each thread
t ∈ T has a type which is one of task or ISR or callback, and an associated control
flow graph of the form Gt = (Lt, st, inst t) where Lt is a finite set of locations of
thread t, st ∈ Lt is the start location of thread t, inst t ⊆ Lt × cmdV,T × Lt is
a finite set of instructions of thread t. For an instruction ι = 〈l, c, l′〉 ∈ inst t, we
refer to l and l′ as the source and target location of ι respectively and tid(ι) to
mean the thread t. For a function f : A → B, we define f [a �→ b] as a function
g : A → B where g(a′) = f(a′) if a′ �= a and g(a) = b. For a Boolean or an

342 A. Singh et al.

arithmetic expression e over the set of variables V , and a valuation φ : V → Z,
we define [[e]]φ to be the value obtained by evaluating e under the valuation φ.

Figure 2 shows an example IDC program with a main thread, a task thread
called cons, an ISR thread called service-packet, and a callback thread prod.
The ISR thread runs whenever an interrupt corresponding to a packet arrives.
It activates the prod callback, which transfers the packets into items. The cons
thread consumes the items, making sure to lock preemption while it does so.

We define the operational semantics of an IDC program using a labeled
transition system (LTS). Let P = (V, T) be a program. We define an LTS
TP = (Q,Σ, s,⇒) corresponding to P where,

– Q is a set of states of the form (pc, enab, rt , it , id , pl , φ) where pc ∈ T → L is
the program counter giving the current location of each thread, φ ∈ V → Z is
a valuation for the variables, enab ⊆ T is the set of enabled threads, rt ∈ T is
the currently running thread, it ∈ T is the task thread which is interrupted
when the scheduler is suspended; and id and pl are Boolean values telling us
whether interrupts are disabled (id = true) or not (id = false) and whether
the scheduler is suspended (pl = true) or not (pl = false).

– The set of labels Σ is the set of instructions instP of P.
– The initial state s is (λt.st, {main},main,main, true, true, λx.0). In the ini-

tial state, all the threads are at their entry locations, only the main thread
is enabled and running, the interrupted task is set to main (this is a dummy
value as it is used only when the scheduler is suspended), interrupts are dis-
abled, the scheduler is suspended and the initial environment sets all variables
to 0.

– For an instruction ι = 〈l, c, l′〉 in instP , with tid(ι) = t, we define
(pc, enab, rt, it, id , pl , φ) ⇒ι (pc′, enab′, rt′, it′, id ′, pl ′, φ′) iff the following
conditions are satisfied:

• t ∈ enab;
• if rt is an ISR or callback thread then t = rt;
• if rt is a task thread, the conditions on t are defined in Table 2 for different

values of id and pl ;
• Based on the command c, the following conditions must be satisfied:

∗ If c is the skip command then φ′ = φ, id ′ = id and pl ′ = pl .
∗ If c is the start command then t = main and φ′ = φ.
∗ If c is a command of the form assume(b) then [[b]]φ = true, φ′ = φ,

id ′ = id and pl ′ = pl .
∗ If c is an assignment statement of the form x := e then φ′ = φ[x �→

[[e]]φ], id ′ = id and pl ′ = pl .
∗ If c is a activate(u) command then t must be an ISR thread, u must

be a callback thread, φ′ = φ, id ′ = id , and pl ′ = pl .
∗ If c is a disableint command then φ′ = φ, id ′ = true and pl ′ = pl .
∗ If c is a enableint command then φ′ = φ, id ′ = false and pl ′ = pl .
∗ If c is a lockpreem command then φ′ = φ, id ′ = id , and pl ′ = true.
∗ If c is a unlockpreem command then φ′ = φ, id ′ = id , and pl ′ = false.

HLDR in Interrupt-Driven Kernels 343

∗ The program counter pc and the set of enabled threads enab are
updated as follows. If c is activate(u), enab′ = enab ∪ {u}, pc′ =
pc. If c is the last statement of t, a callback, enab′ = enab \ {t},
pc′ = pc[t �→ st]. If c is the last statement of t, an ISR, enab′ = enab,
pc′ = pc[t �→ st]. In all other cases, enab′ = enab, pc′ = pc[t �→ l′].

• In addition, the transitions set the new running thread rt′ and interrupted
task it′ as follows. If t is an ISR thread, pl is true, and ι is the first
instruction of t then it′ = rt, rt′ = t. If t is an ISR or callback thread
and ι is the last instruction of t then it′ = it, rt′ = it. In all other cases,
rt′ = t and it′ = it. For simplicity we assume that no instruction is both
the first and last instruction of a thread.

Table 2. Conditions on thread t for state transition

id pl Constraints on t

False False No restriction on t

False True t = rt, t = ISR

True False t = rt

True True t = rt

An execution σ of P is a finite sequence of transitions σ = τ0, τ1, . . . , τn,
(n ≥ 0), such that there exists a sequence of states q0, q1, . . . , qn+1 from Q, with
q0 = s and τi = (qi, ιi, qi+1) ∈⇒ for each 0 ≤ i ≤ n. We say that a state q ∈ Q
is reachable in program P if there is an execution of P leading to state q.

4 High-Level Races

In this section we describe the notion of a high-level race in the context of IDC
programs. A critical access in a program P is a finite non-empty path π in the
CFG of P . We say a critical access π is a write to a variable v, if it contains a
statement that writes to v. Similarly, we say π is read access of v if it contains
a statement that reads v. Critical accesses are a subjective, user-given input,
that represent portions of code that the user expects to run “atomically” or
“exclusively” with regard to other critical accesses to the same variables.

For example, in the program of Fig. 2, we may mark lines 4–9 of the cons
thread as a critical access A which both reads and writes the items variable.
Similarly, lines 1–4 of the prod thread may be considered a critical access B that
reads and writes items and packets. We follow the convention that whenever
the path segment defining the critical access contains a loop, then we treat the
path as representing the (infinite) family of paths that enter the loop zero times,
once, twice, etc.

Finally, we say two critical accesses are conflicting if they access a common
variable and at least one of them writes to the variable.

344 A. Singh et al.

Fig. 2. An example program and the CFG representation of one of its threads.

We say that two conflicting critical access π and ρ in a program P are involved
in a high-level race (or are simply racy) if there is an execution of P in which
they overlap in time; that is, one critical access begins somewhere in between
the beginning and ending of the other. Going back to the example of Fig. 2a, the
critical accesses A and B are conflicting (they both write items), but they are
not racy since they can never overlap in any execution of the program. However
if the lockpreem and unlockpreem statements in the cons task were removed,
the two accesses could now overlap, and they would be racy.

We classify a race involving critical accesses A and B as harmful if there
is an execution in which they overlap and the execution reaches a state which
cannot be reached by executing the two critical accesses one after the other in a
serial manner. Some papers (see [9]) also refer to this condition as an atomicity
violation.

5 High-Level Race Detection Using Disjoint Blocks

We now propose a static analysis based algorithm to soundly detect high-level
races in IDC programs. The algorithm is based on the notion of disjoint-blocks
introduced in [5], which we describe next.

Disjoint-Blocks. We recall from [5] that disjoint-blocks are statically identifiable
pairs of path segments in the CFGs of different threads, which are guaranteed by
the execution semantics of the class of programs never to overlap in an execution

HLDR in Interrupt-Driven Kernels 345

of the program. We have worked out a set of disjoint-blocks for the class of IDC
programs, which we list in Fig. 3.

As an example, let us look at the pair in part (g) of Fig. 3. The first block in
the pair (marked S) represents the portion of code between a lockpreem and an
unlockpreem, while the second block (labelled C) represents the entire code of
a callback thread. These two blocks are clearly disjoint, in that in any execution
of an IDC program containing two such blocks, these blocks of code will never
overlap in time. Going back to our running example of Fig. 2a, the lines 4–9 of
cons would correspond to an S block, while lines 1–4 of prod would correspond
to a C block, thereby forming a pair of disjoint-blocks according to pattern (g).

Fig. 3. Disjoint blocks in P-RTOS

Race Detection Algorithm. Algorithm 1 shows the outline of our race-detection
algorithm. We begin by explaining some of the terms used in the algorithm. By
a disjoint-block analysis we mean the following. Recall from Fig. 3 that there are
six different patterns of blocks, labelled D, I, C, S, M , and T . We first do a
data-flow analysis on each thread of the given IDC program P , to compute for
each statement s, the set of blocks it must be a part of. We say a statement s
is must-part-of a block F , if along every initial path in the thread’s CFG that
reaches s, s is always contained in an F -block. Finally, we say a pair of blocks
(F,G) covers a pair of critical accesses (A,B), if every statement in A is must-
part-of block F and every statement in B is must-part-of block G; or vice-versa.

346 A. Singh et al.

Algorithm 1. Detecting High-Level Races
1: procedure Detect High-Level Races
Require: IDC Program P and a set CA of critical accesses in P .
Ensure: Set H of potential high-level races
2: H := ∅;
3: Perform a disjoint-block analysis on each thread in P ;
4: for each conflicting pair (A,B) of critical accesses in CA do
5: if ∃ a pair of disjoint-blocks (F,G) s.t. (F,G) covers (A,B) then
6: Declare (A,B) to be non-racy;
7: else
8: Declare (A,B) to be potentially racy;
9: H := H ∪ {(A,B)};

return H

For example, in the program of Fig. 2a, the critical accesses A and B are covered
by an (S,C) disjoint-block.

It is fairly immediate to see that if two critical accesses A and B are covered
by a pair of disjoint blocks (F,G), then A and B can never be involved in a
high-level race. Algorithm 1 is thus sound in that if it declares that two critical
accesses cannot race then they indeed cannot.

6 Analyzing the P-RTOS Kernel

Let us return to the problem of finding high-level races in the kernel APIs of
P-RTOS. Suppose that the developer has marked out a set of critical accesses
in the API functions. We are interested in knowing whether there is a high-level
race involving the marked critical accesses, in the sense that there is some P-
RTOS application which invokes the kernel APIs, and some execution of this
application in which two conflicting critical accesses overlap.

task: callback:

main:

ISR:

Tick_ISR

We can solve this problem using the
framework for IDC programs developed so
far, as follows. For any natural number n,
we can create a most general (P-RTOS)
application (MGA) Pn, which is an IDC
program with the following structure. It
has a main thread that initializes the ker-
nel variables, and then starts the sched-
uler; n task threads, each of which non-
deterministically invokes one of the task
API functions, in an overall loop; a call-
back thread which non-deterministically
calls one of the callback API functions;
and an ISR thread that simply invokes the
Tick ISR routine (once again in a loop). P-RTOS has 45 API functions that
can be called from task threads, and 23 API functions that may be called from

HLDR in Interrupt-Driven Kernels 347

callbacks. P-RTOS does not use ISRs in general (except for the Tick ISR) and
instead relies on periodic tasks to poll IO buffers. The figure alongside depicts
the MGA P1. It is reasonably clear that if some P-RTOS application with n
task threads has an execution exhibiting a high-level race involving two critical
accesses, then a similar race can be orchestrated by the MGA Pn.

We need one more step to get rid of the dependence on the number of task
threads n. We essentially analyze the MGA P1, with a small change to Algo-
rithm1. Instead of looking for pairs of critical accesses in different threads in
Line 4, we also allow to form pairs within the task thread. This gives us a sound
algorithm for detecting high-level races in the P-RTOS kernel.

7 TI-RTOS and FreeRTOS

In this section we briefly describe the other RTOSs we handle.
TI-RTOS allows applications to create three sets of threads: tasks, software

interrupts (swi), and hardware interrupts (hwi). Task threads are the normal
threads, swi threads are triggered programmatically (by any thread), and hwi
threads are ISRs, triggered by hardware. The main thread is a task thread
in which the TI-RTOS application starts running. The main thread initialises
global variables and invokes start command to enable the task and swi sched-
ulers and also the interrupts. Only task and hwi threads are enabled initially for
execution. The task thread can be preempted by other task threads (whenever
the task scheduler is not disabled), or by swi threads (whenever the swi scheduler
is not disabled), or by hwi threads (whenever the interrupts are not disabled).
Swi threads can be preempted by other swi threads (whenever swi scheduler
is not disabled) or by hwi threads (whenever interrupts are not disabled). Hwi
threads can be preempted by other hwi threads. Swi and hwi threads run to
completion. Every thread starts and ends with a distinct skip command.

In addition to the basic commands introduced in Sect. 3, TI-RTOS threads
use commands like taskdisable and taskenable to disable and enable task
schedulers, respectively. The swidisable and swienable commands are used
to disable and enable swi schedulers and the threads can use hwidisable and
hwienable commands to disable and enable interrupts. These are the commands
used by the threads to enforce mutual exclusion. More details of the program
model and disjoint-blocks are available in https://bitbucket.org/rekhapai/hlr-
tool/downloads/.

The FreeRTOS kernel allows task threads and ISR threads, and has a des-
ignated set of kernel API functions that can be invoked by each type of thread.
For more details of the modelling of FreeRTOS we refer the reader to the recent
paper [5], which contains details of the program model and the disjoint-block
patterns identified.

8 Experimental Evaluation

We now describe our experimental evaluation of the race detection algorithm for
our three RTOS kernel case studies. We used the current version of P-RTOS,

https://bitbucket.org/rekhapai/hlr-tool/downloads/
https://bitbucket.org/rekhapai/hlr-tool/downloads/

348 A. Singh et al.

TI-RTOS version 2.21.01.08, and FreeRTOS version 10.0.0 for our analysis. We
considered all the significant APIs from each of these libraries for our analysis.
The number of APIs analyzed in each of the RTOSs is given in Table 3.

We first prepared the kernel API functions for analysis by moving some of the
code from functions that are actually initialization code (for example the first
time a task or queue is created, many kernel variables are initialized), to the
initialization part of the main thread. In the initialization phase the scheduler
is not yet started and hence the accesses to these variables do not result in race.
Also all helper function calls made inside the top-level functions were inlined.

We now describe how we marked out critical accesses. For this one needs an
understanding of main kernel data structures and how they are modified by the
kernel API functions. The key kernel data structures for each of the kernels are
depicted in Fig. 4. All the three kernels have structures like a ready queue (for
processes ready to execute), delay queue (for the processes that are delayed),
task lists with their pointers, timer variables, etc. P-RTOS being ARINC653-
compliant also has several partitions, but we focus on the code within a partition.
For TI-RTOS, in addition to task state depicted in the figure, there are similar
components for software interrupts and for hardware interrupts. These variables
and structures constitute the “variables of interest” for us.

Fig. 4. Kernel structures of three RTOSs

A block of code, in an API, accessing any variable of interest that we believe
should be executed atomically, is marked to be a critical access. For each crit-
ical access we also need to annotate the variables it accesses and the type of
access (read/write). While this information can be automatically inferred in
most cases, sometimes this is difficult to infer automatically. For a critical write
access to variable x, the function call begin(“w:”, x);1 is added at the beginning
of the access and end (“w:”, x);(see footnote 1) at its end. For example, the
vTaskResume API in FreeRTOS removes a task from xSuspendedTaskList and

1 This is a variable length argument function we have defined.

HLDR in Interrupt-Driven Kernels 349

inserts into pxReadyTasksLists. This is accomplished using a sequence of code,
which we have marked as a critical access of these lists. At the start of this
critical access we add begin(“w:w:”, xSuspendedTaskList, pxReadyTasksLists).
The string “w:w:” is to be interpreted as write access to xSuspendedTaskList
and pxReadyTasksLists. The end of the critical access is identified by a call to
end(“w:w:”, xSuspendedTaskList, pxReadyTasksLists). (A read access is denoted
by the string “r:”.) The critical accesses are marked manually. It took around
130 and 100 person-hours, to understand the FreeRTOS and TI-RTOS kernels,
respectively. Identifying critical accesses took around 10 person-hours each for
these kernels. Details regarding the number of critical accesses marked are given
in Table 3.

Next, we describe the implementation of our disjoint-block analysis. For each
block in the set of disjoint-blocks, we associate a lock, which is acquired at the
beginning of the block and released at the end of it. For instance, we insert
an acquire(S) statement after a lockpreem, and a release(S) statement just
before a unlockpreem. We now use the classical lockset analysis [17] to compute
the set of locks that are must-held at each statement. At program entry it is
assumed that no locks are held. When a call to acquire(l) is encountered, the
analysis adds the lock l at the out point of the call. When a call to release(l)
is encountered the lockset at the out point of the call is the lockset computed
at the in point with the lock l removed. For any other statement, the lockset
from the in point of the statement is copied to its out point. The join operation
is the simple intersection of the input locksets. The disjoint-block analysis was
implemented in the CIL framework [15].

Once the disjoint-block analysis is done, we can do our high-level race anal-
ysis. For every pair of conflicting critical accesses, we check whether the two
accesses are covered by a pair of disjoint-blocks, as described in Sect. 5, and if
not we flag it as a potential race.

The evaluation was conducted on an Intel Core i7 machine with 32 GB RAM
running Ubuntu 16.04. We implement Algorithm1 using the CIL framework [15]
and other scripts that we have written.

Table 3 provides details about the number of potential races. Each of these
were manually classified by us as being false positives (not racy in the actual
unabstracted system), and among the true positives, harmful or benign. We give
some representative examples from P-RTOS for each of these classifications.
We begin with an example of a false positive. The tool reports a race between
the API functions ProcessCreate and TimeDelay which both access the eState
structure of a task. However, it turns out that ProcessCreate can only be called
by the main thread during initialization (during which the TimeDelay callback
is not active), and hence they are not racy in the actual system. In FreeRTOS
code, we had abstracted data-structures (like pxDelayedTaskList) by a variable.
Hence, even if the accesses were to disjoint parts of the structures, our analysis
reports them as racy. This resulted in many false positives in FreeRTOS.

An example of a true positive but benign race in P-RTOS is the critical access
in the SetEvent function. Event objects are used as a signalling mechanism

350 A. Singh et al.

between tasks. A task calls the SetEvent function to signal to other tasks that
some data is ready for consumption. The function checks if the flag field of the
event object is unset, and if so goes on to lock preemption, sets the flag, resets
the task queue associated with the event, and unlocks preemption. The whole of
this function (including the check on flag) is marked as a critical access. There
is clearly a race between these accesses in SetEvent. However, it does not lead
to any atomicity violation as the effect of interleaving these critical accesses is
the same as doing them serially. Finally, as an example of a harmful race, we
have the critical accesses in the BufferSend function and the Tick ISR. When a
periodic task invokes BufferSend to send a message to a full queue, the function
checks whether the next activation time of the task is beyond the tick count, and
only then puts the task in the delayed queue. Now this check is done without
disabling interrupts, and the Tick ISR may run soon after and increment the
tickcount. Consider the case when the current tick count is 99 and the next
activation time of the task is 100. The tick ISR now increments the time to 100.
When control switches back to SendBuffer it goes ahead and puts the task in
the delayed queue. As a result, when the scheduler tries to run the periodic task
next, it finds it in the delayed queue instead of the ready queue. This is a state
that cannot be reached by any serial execution of these two critical accesses.

Table 3. Result summary

#APIs

Analyzed

LoC #Critical

Accesses (CA)

#Confl.

CA Pairs

#Potential

Races

Time

(s)

#False

Pos

#Harm.

Races

PRTOS 45 9.6K 945 6117 187 4.90 19 3

TI-RTOS 45 5.0K 83 1005 61 1.56 6 3

FreeRTOS 49 3.7K 181 3154 63 1.46 25 18

We have been in touch with the developers of these kernels regarding the
harmful races. All 3 issues in P-RTOS have been fixed. In TI-RTOS some of
the harmful races involve accesses made in the task delete function. The kernel
developers expect the programmer not to call other task APIs when a task is
deleted. In Freertos, some issues were fixed independent of our work. The other
races mostly involve a queue registery which they consider unnecessary to fix.

The entire implementation code and the modified source code of TI-
RTOS and FreeRTOS is available at https://bitbucket.org/rekhapai/hlr-tool/
src/master/.

9 Related Work

Classical Lockset Based Analysis. Artho et al. [3] coined the term “high-level
datarace” and gave an informal definition of it in terms of accessing a set of
shared variables atomically. They define a notion of a thread’s view of the set of
shared variables, and flag potential races whenever two threads have inconsistent
views. They provide a lock-set based algorithm for detecting view inconsistencies

https://bitbucket.org/rekhapai/hlr-tool/src/master/
https://bitbucket.org/rekhapai/hlr-tool/src/master/

HLDR in Interrupt-Driven Kernels 351

dynamically along an execution. von Praun and Gross [22] and Pessanha et al.
[6] extend the view-based approach of [3] to carry out a static analysis to detect
high-level races. Lockset-based static analysis for data races in classical concur-
rent programs [1,8,20,23] could in principle be extended to handle high-level
races. However none of the above techniques apply to interrupt-driven programs
due to the ad hoc nature of the synchronization mechanisms and non-standard
switching semantics.

Static Analysis for Interrupt-Driven Programs. Regehr and Cooprider [16]
describe a source-to-source translation of an interrupt-driven program to a stan-
dard multi-threaded program, and analyze the translated program for data races.
However their translation is inadequate for our setting. We refer the reader to [5]
for the inherent problems with such an approach. Schwarz et al. [18,19] provide a
precise data-flow analysis for checking races in interrupt-driven applications that
handles flag-based synchronization and interrupt-driven scheduling. While the
technique is capable of detecting all races, it is applicable only to a given applica-
tion rather than a kernel library. Sung and others [21] consider interrupt-driven
applications in the form of ISRs with different priorities, and perform interval-
based static analysis for checking assertions. They do not handle libraries. Wang
et al. [24] analyze interrupt-driven applications for races using a combination
of symbolic and dynamic analysis. This is a bug-detection approach and can-
not guarantee to detect all possible races. Finally, Chopra et al. [5] propose the
notion of disjoint-blocks to detect data races and carry out data-flow analysis for
Free-RTOS-like interrupt-driven kernels. Our work extends the use of disjoint-
blocks to handle high-level races, and also identifies disjoint-block patterns for
new classes of interrupt-driven programs with callbacks and software interrupts.

Model-Checking Based Approaches. Several researchers have used model-
checking tools like Slam, Blast, and Spin to precisely model various kinds of
control-flow and synchronization mechanisms and detect errors exhaustively
[2,7,10–12,25]. All these approaches are for specific application programs rather
than libraries. Finally, the closely related work [14] uses a model-checking app-
roach to find all high-level races in v6.1.1 of the FreeRTOS kernel. They use a
meta-argument tailored for this software to bound the number of threads needed
to orchestrate a race. They handle only 25 API functions and have a total run-
ning time of close to 2 h. In comparison, our approach needs no kernel-specific
argument and runs in a few seconds.

10 Conclusion

In this paper we have given the first comprehensive static analysis based app-
roach for detecting high-level races in RTOS kernels. The approach is sound,
efficient, and has a low rate of false positives. We believe that the approach is
widely applicable to the space of interrupt-driven kernels, where there appear to
be many specialized and proprietory kernels in use.

352 A. Singh et al.

In future work, we would like to investigate extending this approach to kernels
that use multiple cores (like TI-RTOS) and multiple partitions (in the sense of
a separation kernel) like P-RTOS.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: static race detection
for Java. ACM Trans. Program. Lang. Syst. (TOPLAS) 28(2), 207–255 (2006)

2. Alur, R., McMillan, K.L., Peled, D.A.: Model-checking of correctness conditions
for concurrent objects. Inf. Comput. 160(1–2), 167–188 (2000)

3. Artho, C., Havelund, K., Biere, A.: High-level data races. J. Softw. Test. Verif.
Reliab. 13, 207–227 (2003)

4. Barry, R.: The FreeRTOS kernel, v10.0.0 (2017). https://freertos.org
5. Chopra, N., Pai, R., D’Souza, D.: Data races and static analysis for interrupt-

driven kernels. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 697–723.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 25

6. Dias, R.J., Pessanha, V., Lourenço, J.M.: Precise detection of atomicity violations.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 8–23.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3 8

7. Elmas, T., Qadeer, S., Tasiran, S.: Precise race detection and efficient model check-
ing using locksets. Technical Report MSR-TR-2005-118. Microsoft Research (2005)

8. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and
deadlocks. SIGOPS Oper. Syst. Rev. 37(5), 237–252 (2003)

9. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In Proceedings
ACM SIGPLAN Programming Language Design and Implementation (PLDI), pp.
338–349 (2003)

10. Havelund, K., Lowry, M.R., Penix, J.: Formal analysis of a space-craft controller
using SPIN. IEEE Trans. Softw. Eng. 27(8), 749–765 (2001)

11. Havelund, K., Skakkebæk, J.U.: Applying model checking in Java verification. In:
Dams, D., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp.
216–231. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48234-2 17

12. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
Proceedings of ACM SIGPLAN Programming Language Design and Implementa-
tion (PLDI), pp. 1–13 (2004)

13. Texas Instruments: TI-RTOS: A Real-Time Operating System for Microcontrollers.
http://www.ti.com/tool/ti-rtos, 2017

14. Mukherjee, S., Kumar, A., D’Souza, D.: Detecting all high-level dataraces in an
RTOS kernel. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol.
10145, pp. 405–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52234-0 22

15. Necula, G.: CIL - infrastructure for C Program Analysis and Transformation (v.
1.3.7) (2002). http://people.eecs.berkeley.edu/∼necula/cil/

16. Regehr, J., Cooprider, N.: Interrupt verification via thread verification. Electr.
Notes Theor. Comput. Sci. 174(9), 139–150 (2007)

17. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

https://freertos.org
https://doi.org/10.1007/978-3-030-17184-1_25
https://doi.org/10.1007/978-3-642-39611-3_8
https://doi.org/10.1007/3-540-48234-2_17
http://www.ti.com/tool/ti-rtos
https://doi.org/10.1007/978-3-319-52234-0_22
https://doi.org/10.1007/978-3-319-52234-0_22
http://people.eecs.berkeley.edu/~necula/cil/

HLDR in Interrupt-Driven Kernels 353

18. Schwarz, M.D., Seidl, H., Vojdani, V., Apinis, K.: Precise analysis of value-
dependent synchronization in priority scheduled programs. In: McMillan, K.L.,
Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 21–38. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54013-4 2

19. Schwarz, M.D., Seidl, H., Vojdani, V., Lammich, P., Müller-Olm, M.: Static anal-
ysis of interrupt-driven programs synchronized via the priority ceiling protocol. In
Proceedings of ACM SIGPLAN-SIGACT Principles of Programming Languages
(POPL), pp. 93–104 (2011)

20. Sterling, N.: WARLOCK - a static data race analysis tool. In: Proceedings of
Usenix Winter Technical Conference, pp. 97–106 (1993)

21. Sung, C., Kusano, M., Wang, C.: Modular verification of interrupt-driven software.
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pp. 206–216 (2017)

22. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-
oriented programs. J. Object Technol. 3(6), 103–122 (2004)

23. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of lines
of code. In: Proceedings of ESEC/SIGSOFT Foundations of Software Engineering
(FSE), pp. 205–214 (2007)

24. Wang, Y., Wang, L., Yu, T., Zhao, J., Li, X.: Automatic detection and validation
of race conditions in interrupt-driven embedded software. In: Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2017, pp. 113–124. ACM (2017)

25. Zeng, R., Sun, Z., Liu, S., He, X.: McPatom: a predictive analysis tool for atomicity
violation using model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 191–207. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31759-0 14

https://doi.org/10.1007/978-3-642-54013-4_2
https://doi.org/10.1007/978-3-642-31759-0_14
https://doi.org/10.1007/978-3-642-31759-0_14

Parallel Composition and Modular
Verification of Computer Controlled

Systems in Differential Dynamic Logic

Simon Lunel1,2, Stefan Mitsch3, Benoit Boyer1, and Jean-Pierre Talpin2(B)

1 Mitsubishi Electric R&D Centre Europe,
1 allée de Beaulieu, CS 10806, 35708 Rennes CEDEX 7, France

b.boyer@fr.merce.mee.com
2 Inria, Centre de recherche Rennes - Bretagne - Atlantique,

Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
jean-pierre.talpin@inria.fr

3 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
smitsch@cs.cmu.edu

Abstract. Computer-Controlled Systems (CCS) are a subclass of
hybrid systems where the periodic relation of control components to
time is paramount. Since they additionally are at the heart of many
safety-critical devices, it is of primary importance to correctly model such
systems and to ensure they function correctly according to safety require-
ments. Differential dynamic logic dL is a powerful logic to model hybrid
systems and to prove their correctness. We contribute a component-based
modeling and reasoning framework to dL that separates models into com-
ponents with timing guarantees, such as reactivity of controllers and con-
trollability of continuous dynamics. Components operate in parallel, with
coarse-grained interleaving, periodic execution and communication. We
present techniques to automate system safety proofs from isolated, mod-
ular, and possibly mechanized proofs of component properties parame-
terized with timing characteristics.

1 Introduction

A computer-controlled system (CCS) is a hybrid system with discrete hardware-
software components that control a specific physical phenomenon, e.g. the water
level of a tank in a water-recycling plant. CCSs are widely used in industry
to monitor time-critical and safety-critical processes. While CCS defines a large
class of hybrid systems, systems mixing physical phenomena and natural discrete
interactions (e.g. a bouncing-ball) are neither CCSs nor the focus of this work,
although most could easily be given verification models in dL. Tools to model,
verify, and design CCSs need to capture mixed discrete and continuous dynamics,

This material is based upon work supported by the United States Air Force and DARPA
under Contract No. FA8750-18-C-0092.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 354–370, 2019.
https://doi.org/10.1007/978-3-030-30942-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_22

Parallel Composition and Modular Verification of CCS 355

as well as mixed logical, discretized real-time and continuous time in, resp.,
computer programs, electronics, and physics models.

CCSs are difficult to model since they subsume the problem of designing
a software controller and its real-timed hardware. Our aim is to develop a
component-based approach to engineer such systems in a modular manner while
accounting for time domain boundaries across components. In component-based
design, a system is constructed from smaller elements that are modeled and
individually verified, then assembled and checked for consistency to form larger
components and subsystems. The CCS components typically execute in parallel,
and concurrency must be accounted for in the envisioned verification framework.

In this paper, we contribute a component-based verification technique that
aims at the definition of a bottom-up and modular verification methodology
through a correct-by-construction system design methodology, in which compo-
nent contracts formalize the domain, timing, and invariants of components. The
proof of a system model is built by assembling the contracts of its components
through formally defined composition mechanisms. Contracts-based approaches
have been successfully implemented for several paradigms such as programming
languages [16] or automata [2], because contracts are very efficient to make proofs
easier scalable. Following the component-based design widely used for CCS, con-
tracts provide a natural way to get modularity and abstraction in proofs.

To meet the time-criticality requirements of CCSs, we start from earlier com-
positionality results in dL [7] to elaborate a timed model of parallel composi-
tion as the foundation of our modeling and verification framework. In Sect. 3, we
detail modeling and verification in our framework on a simple system where only
one reactive controller monitors a plant. In Sect. 4, we generalize it to systems
where multiple controllers monitor multiple parallel plants; we show how to com-
pose: multiple reactive controllers into a component called Multi-Choice Reactive
Controllers (MRCtrl, see Sect. 4.1); multiple controllable plants together (see
Sect. 4.2); MRCtrl with controllable plants to form Multi Computer-Controlled
Systems (MCCS, see Sect. 4.3); and finally how MCCS compose (see Sect. 4.4).

2 Differential Dynamic Logic

This section briefly recalls differential dynamic logic (dL [13]) and its proof
system, which is implemented in the theorem prover KeYmaera X [3].

In dL, hybrid programs are used as a programming language for expressing
the combined discrete and continuous dynamics of hybrid systems (the programs
operate over mathematical reals). The syntax and semantics of hybrid programs
is summarized in Table 1. The set of reachable states from state ν by hybrid
program α is noted ρν(α), and vxwν denotes the value of x at state ν. Hybrid
programs include discrete assignment x :“ θ and tests ?φ, as well as combinators
for non-deterministic choice (α Y β), sequential composition (α;β), and non-
deterministic repetition (α∗). The notation {x′ “ θ & H} denotes an ordinary
differential equation (ODE) system (derivatives with respect to time) of the

356 S. Lunel et al.

Table 1. Syntax and semantics of hybrid programs

form x′
1 “ θ1, . . . , x′

n “ θn within evolution domain H. For example, the ODE
{t′ “ 1 & t � 0} describes that variable t evolves with constant slope 1,
where t � 0 discards any negative values. Formulas of dL formalize properties,
Definition 1.

Definition 1 (dL formulas). The formulas φ, ψ of dL relevant in this paper
consist of the following operators:

φ, ψ ::“ φ ^ ψ | φ ∨ ψ | φ → ψ | �φ | θ1 ∼ θ2| @x φ | Dx φ | [α]φ

Connectives φ ^ ψ, φ ∨ ψ, φ → ψ,�φ, @x φ, and Dx φ are according to classical
first-order logic. Formula θ1 ∼ θ2 are any comparison operator ∼ P{�, ă, “, �“,
ą,�} and θi are real-valued terms in operators {`, ´, ¨, /}. The modal operator
[α]φ is true iff φ holds in all states reachable by program α.

The notion of free and bound variables is defined in the static semantics
of dL [13] and useful to characterize the interaction of a program α with its
context. It is computed from the syntactic structure of programs: the bound
variables BV(α) can be updated by assignments (e.g. x :“ 10) or ODEs (e.g.
x′ “ 3) in α, whereas free variables FV(α) are those that the program depends
on. For example, in program α ” (v :“ a Y v :“ 2); {x′ “ v & x � 5} the free
variables are FV(α) “ {a, x} (the variable v is not free, because it is bound on
all paths of α and so the result of α does not depend on the initial value of v;
even though also modified, variable x is free because the result of α depends on
the initial value of x) and the bound variables are BV(α) “ {v, x} (variable a is
not bound because it is not modified anywhere in the program). We use V(α)
to denote BV(α) Y FV(α).

In [7], a component model Ci “ (disci Y conti)
∗ is evaluated as the non-

deterministic interleaving of its discrete specifications disci and ODE conti “
{x′

i “ θi & Hi}. For i P {1, 2}, the parallel composition of C1 and C2 builds
a component of the same structure, i.e. the dicrete parts disc1 and disc2 are

Parallel Composition and Modular Verification of CCS 357

non-deterministically interleaved within the evolution of the ODE obtained from
the mathematical composition of cont1 and cont2. In dL, it is defined by

C1 b C2 “ (disc1 Y disc2 Y {x′
1 “ θ1, x

′
2 “ θ2 & H1 ^ H2})∗ (1)

The logic dL further enjoys a proof calculus [12–14] based on uniform sub-
stitution from axioms. Its base axioms are those of a classical first-order sequent
calculus, augmented with syntactical deconstruction of hybrid programs α for
goals of the form [α]φ and for iteration and ODEs [15].

3 Computer-Controlled Systems

We present a component-based approach to model and verify Computer Con-
trolled Systems (CCS) based on the parallel composition pattern proposed in [7].
We construct the proof of a CCS from the isolated sub-proofs of its components
by syntactically decomposing the CCS using the axioms of dL, so that the theo-
rems presented here can be implemented as tactics in the theorem prover KeY-
maera X. This enables automation to reduce the proof complexity of analyzing
a CCS to that of modularly analyzing its components.

In this section, we introduce the necessary concepts to adapt the framework
of [7] to systematically model CCSs modularly. We achieve modularity by limit-
ing the ways in which the free and bound variables of different components may
overlap, and by taking into account the timing constraints of CCSs. The idea is
to analyze the controllability of the plant, i.e. the period of time it can evolve
safely without intervention of a controller, and the reactivity of the controller, i.e.
the execution period of the controller. These concepts satisfy the associativity
property of parallel composition and the ability to retain contracts from [7].

3.1 Modeling CCS

A CCS is classically composed of a controller and a plant. The controller mea-
sures the state of the plant through sensing and regulates the behavior of the
plant through actuation. For example, the controller in the water tank regulates
the water level by opening or closing a faucet. The key trait of a CCS is the
periodic execution of the controller to regulate the plant. We associate periodic
values δ and Δ with the controller and the plant, respectively: Control reactivity
δ models the period in which control is guaranteed to happen. Plant controlla-
bility Δ models how long a plant can evolve safely without control intervention.

Time. To make timed reasoning available to any component, we use the ODE
Time(t) .“ {t′ “ 1 & t � 0}. The hence defined global variable t represents
time passing with constant slope 1, initialized to 0.

358 S. Lunel et al.

Controller. The functional behavior of a controller is provided as a discrete
program ctrl and the associated reactivity δ. The controller acts at least every δ
units of time, see Definition 2.

Definition 2 (Reactive Controller). A reactive controller RCtrl(ctrl, δ)
with reactivity boundary δ and fresh timestamp τ has the program shape

RCtrl(ctrl, δ) .“ (?t � τ ` δ; ctrl; τ :“ t)

Execution periodicity is ensured by a fresh variable τ time stamping (τ :“ t)
the last execution of ctrl. The prefixing guard ?t � τ `δ forces ctrl to be executed
within δ time since its last execution τ . This pattern models control frequency,
since all runs not satisfying a test are aborted, see Sect. 2.

Example 1 (Water-level Controller). We consider the water level controller in a
water plant1. When the level reaches a maximum (resp. minimum) threshold, we
close the inlet faucet fin (resp. we open the inlet faucet). The resulting controller
has the program shape RCtrl(wlctrl, δwlctrl) i.e. (?t � τ ` δwlctrl; wlctrl; τ :“ t),
where δwlctrl “ 0.05 s ensures a control frequency of at least 20 Hz. The controller:

wlctrl .“ wlm :“ wl;
(
(?wlm � 6.5;fin :“ 0) Y (?wlm � 3.5;fin :“ 1)

)

measures the water level using wlm :“ wl and then sets fin depending on whether
the water level exceeds the minimum threshold 3.5 or the maximum threshold
6.5. This controller makes implicit assumptions on the maximum inflow and
outflow of the water tank through the relation between its reactivity δwlctrl and
the thresholds on wlm.

Plant. The functional behavior of the plant is provided as an ODE system
{x′ “ θ & H} with t �P V(x′ “ θ) and the controllability bound Δ. Controlla-
bility is implemented by adding the formula t � Δ to the evolution domain, see
Definition 3.

Definition 3 (Controllable Plant). A controllable plant CPlant({x′ “ θ &
H},Δ) with controllability bound Δ is a differential equation system of the shape
CPlant({x′ “ θ & H},Δ) .“ {x′ “ θ & H ^ t � Δ}, combined with time
defined by Time(t).

Example 2 (Water-level). The evolution of the water level wl in the tank is
determined by the difference between the inlet flow fin and the outlet flow fout .
The water level is always non-negative (H .“ wl � 0), and so the controllable
water level is the ODE with controllability Δwl “ 0.2 s:

{wl′ “ fin ´ fout , t′ “ 1 & t � 0 ^ wl � 0 ^ t � Δwl}
We compose the plant with the controller to a full system with repeated

interaction between the plant and the controller.
1 Adapted from http://symbolaris.com/info/KeYmaera-guide.html#watertank.

http://symbolaris.com/info/KeYmaera-guide.html#watertank

Parallel Composition and Modular Verification of CCS 359

Full System. The full system is obtained by applying parallel composition as
defined in (1) to the plant and the controller, but with one important change:
the formula t � Δ is replaced by the formula t � τ ` δ to ensure that the plant
suspends when the controller is expected to run, see Definition 4.

Definition 4 (Computer-Controlled System). A computer-controlled sys-
tem CCS is a parallel composition of a reactive controller RCtrl(ctrl, δ) and a
controllable plant CPlant({x′ “ θ & H},Δ) with δ � Δ and the resulting
hybrid program shape, assuming Time(t) and, initially, τ “ t:

CCS
.“ ({x′ “ θ & H ^ t � τ ` δ︸ ︷︷ ︸

δ�Δ

} Y RCtrl(ctrl, δ)
)∗

Execution between the controller and the plant switches based on the variable
τ . At the beginning of each loop iteration, we have t � τ . The difference t ´ τ
grows according to the evolution of time until the point t ´ τ “ δ. At the latest,
then, the controller must act before the plant can continue. Safety requires δ � Δ,
i.e. the reactivity of the controller is at most the controllability of the plant.
Otherwise, there may be runs of the whole system where the controller executes
too late for the plant to stay safe.

Example 3 (Water-tank). We compose the water level with its controller to
obtain the water tank system with the following behavior:

({wl′ “ fin ´ fout , t′ “ 1 & t � 0 ^ wl � 0 ^ t � τ ` δwlctrl}
Y (?t � τ ` δwlctrl;wlctrl; τ :“ t)

)∗

The composition is possible because the reactivity of the controller (δwlctrl “
0.05s) does not exceed the controllability of the plant (Δwl “ 0.2 s).

3.2 Modular Verification of a CCS

Based on the modular modeling capabilities offered by the concepts of Sect. 3.1
and through [7, Thm. 2], we provide techniques to verify the safety of a complete
system from safety proofs of its components (which can be reactive controllers,
controllable plants, or subsystems built from those following the computer-
controlled systems composition). The proofs of our theorems are syntactic using
the axioms of dL (as opposed to the semantic proofs in [7]) and are, thus, imple-
mentable as tactics in the theorem prover KeYmaera X [3].

Environment. A description of the global system environment E characterizing
constants (either as exact values or through their relevant characteristics) is
necessary. We require that FV(E) X BV(α) “ ∅ for all system components α
to ensure that the environment variables are constants: these constants are not
controlled, but can be read by all components. (e.g., gravity constant g).

Example 4 (Water tank environment). In the water tank example, the environ-
ment Ewt

.“ fout “ 0.75 ^ δwlctrl “ 0.05 ^ Δwl “ 0.2 is the outlet flow fout of
0.75, plant controllability Δwl of 0.2 s, and controller reactivity δwlctrl of 0.05 s.

360 S. Lunel et al.

Contracts. A designer specifies the assumptions Actrl and guarantees Gctrl of
the controller as well as the assumption Aplant and guarantees Gplant of the
plant. In order to be compositional, the guarantees of the controller must not
refer to outputs of the plant and inversely (FV(Gctrl) X BV(plant) “ ∅ and
FV(Gplant) X BV(ctrl) “ ∅). A component α satisfies its contract (Aα, Gα) in
environment E under starting conditions Initα if formula (E ^ Aα ^ Initα) →
[α∗]Gα is valid (e.g., proved using the dL proof calculus). Unlike the environment
E , the initial conditions Initα and assumptions Aα of a component α can mention
assumptions about the state of other components.

Example 5 (Water tank contracts). The water-level controller assumes that the
actual water level in the tank ranges over the interval [3, 7] (as guaranteed by
the tank), and itself guarantees to drain the tank when the measured water
level approaches the upper threshold 6.5, and fill the tank when below the lower
threshold 3.5. The tank contract assumes that the tank is instructed correctly
to drain or fill, and then guarantees to keep the water level in the limits [3, 7].
⎧
⎪⎪⎨

⎪⎪⎩

Awlctrl : Gwl
Gwlctrl : wlm � 3.5 → fin “ 1

6.5 � wlm → fin “ 0
(3.5 � wlm � 6.5) → (fin “ 0 _ fin “ 1)

{
Awl : Gwlctrl
Gwl : 3 � wl � 7

These contracts assume that the measured water level is correct, i.e. it cor-
responds to the true water level in the tank, so Initctrl ” wl “ wlm and also
Initplant ” wl “ wlm. As we compose the controller and plant components to a
full system, where the plant evolves for some time between controller runs (and
thus measurements), we will need to find a condition that describes the relation-
ship between the true water level evolution and the measured water level.

Full System. The contract (Actrl ^ Aplant, Gctrl ^ Gplant) for the full system is
the conjunction of the assumptions and of the guarantees.

Composition Invariant. In the full system, the controller and the plant will
run in a quasi-parallel fashion, so time passes between controller runs and thus
in turn between measurements of the true plant values. With a composition
invariant Jcmp we describe the relationship between the true values of the plant
and the measured values in the controller. The formula Jcmp is a composition
invariant for two components α and β if the formulas Jcmp → [α]Jcmp and
Jcmp → [β]Jcmp are valid (components maintain the composition invariant), and
Initα ^ Initβ → Jcmp is valid (composition invariant is initially satisfied).

Each component is responsible for satisfying its own guarantees and can
assume that others will satisfy its assumptions. We also require that other com-
ponents do not interfere with a component’s guarantees. This notion of non-
interference ensures that contracts focus on the behavior of their own component
(but nothing else), as intuitively expected.

Parallel Composition and Modular Verification of CCS 361

Definition 5 (Non-interfering Controller and Plant). A controller ctrl
and plant {x′ “ θ &H} are non-interfering if they do not influence the guaran-
tees of the respective other component, so FV(Gctrl) X BV({x′ “ θ &H}) “ ∅

and FV(Gplant) X BV(ctrl) “ ∅, and if they do not share the same outputs, so
BV(ctrl) X BV({x′ “ θ &H}) “ ∅.

For composition it is important that contracts are compatible, meaning that
they mutually satisfy their assumptions from their respective guarantees.

Definition 6 (Compatible Contracts). Contracts (Aα, Gα) and (Aβ , Gβ) of
components α and β with composition invariant Jcmp are compatible if the for-
mulas Aα → [β](Gβ ^ Jcmp → Aα) and Aβ → [α](Gα ^ Jcmp → Aβ) are valid.

Theorem 1 (Composition of Controller and Plant). Let RCtrl(ctrl, δ)
be a reactive controller satisfying its contract (Actrl, Gctrl) and CPlant({x′ “
θ & H},Δ) be a controllable plant satisfying its contract (Aplant, Gplant). Fur-
ther let the components RCtrl(ctrl, δ) and CPlant({x′ “ θ & H},Δ) be non-
interfering, the contracts (Actrl, Gctrl) and (Aplant, Gplant) be compatible, and
Jcmp be a composition invariant. Then, the parallel composition CCS is safe,
i.e., (E ^ Actrl ^ Initctrl ^ Aplant ^ Initplant) → [CCS](Gctrl ^ Gplant) is valid.

Proof. Adapts [7, Thm. 2] to a syntactic dL proof with loop invariant Actrl ^
Gctrl ^ Aplant ^ Gplant ^ Jcmp with differential refinement to replace δ with Δ,
see long version [8] for details. ��
Example 6 (Water-tank contract). The controller and the water-level are non-
interfering, their contracts compatible, and the controller is fast enough to keep
the plant safe (δwlctrl � Δwl). We apply Theorem1 with the composition invari-
ant Jcmp

.“ wl “ (fin ´ fout)(t´τ)`wlm to obtain that the composition is safe,
i.e. formula E^Initwl^Initwlctrl^Awl^Awlctrl → [Water-tank](Gwl^Gwlctrl)
is valid. The composition invariant says how the true value wl deviates from the
last measured value wlm according to the flow fin ´ fout as time t ´ τ passes.

Outlook. We adapted parallel composition of [7] to model and prove computer-
controlled systems composed of two components, a reactive controller and a con-
trollable plant. Next, we extend this concept to arbitrarily nested combinations
of controllers and plants with a systematic integration of timed constraints.

4 Parallel Composition

We want to extend the integration of temporal considerations for every com-
ponent in a timed framework. The previous section shows the importance of
temporal considerations in CCS. Industrial systems combine CCS in parallel
and it is necessary to have a framework to handle temporal properties.

In order to reason about parallel execution of control software sharing compu-
tation resources, models of different costs (controllability, performance, latency,
etc) become important. For example, when two programs execute quasi-parallel

362 S. Lunel et al.

on a single CPU core, their computation resources are shared and execution
may mutually preempt. As a result, the worst-case execution times of the pro-
grams sum up to the total worst-case execution time of the composed system.
This requires designing plants with sufficiently longer controllability periods, and
controllers that react further in advance.

Based on the parallel composition pattern in [7] and the concepts of reactive
controller and controllable plant introduced above, here we present parallel com-
positions of component hierarchies, including composition of multiple reactive
controllers, multiple controllable plants, and mixed compositions. We retain the
algebraic properties of [7], commutativity and associativity, and present theorems
guaranteeing that the conjunction of contracts is preserved through composition.

Controllable plants are already hierarchically compositional per Definition 3.
The particular structure to enclose control programs with temporal guards
in reactive controllers, however, makes it necessary to extend the definition
of reactive controller (Definition 2) to a multi-choice reactive controller that
combines choices of each of its constituting atomic reactive controllers non-
deterministically. We associate a fresh variable τi with each atomic reactive con-
troller ctrli. It is used to specify the time stamp of the controller in an execution
cycle.

Definition 7 (Multi-choice Reactive Controller). A multi-choice reactive
controller MRCtrl

(⋃
1�i�n ctrli, δ

)
with n control choices and overall reactiv-

ity bound δ has the program shape

MRCtrl

⎛

⎝
⋃

1�i�n

ctrli, δ

⎞

⎠ .“
⎛

⎝
⋃

1�i�n

RCtrl(ctrli, δ)

⎞

⎠ .

The parallel composition follows cases for purely discrete components, purely
continuous components or a mix of both, which we detail in the subsections
below. We illustrate each case with an example with two connected water-tanks,
one where the inlet flow of one is the outlet flow of the other, with respective
reactive controllers to ensure that they remain within a pre-defined range. The
first controller actuates on the inlet flow of the first tank, whereas the second
actuates on the outlet valve of the second tank.

4.1 Parallel Composition of Multi-choice Reactive Controllers

We refine the parallel composition operator for multi-choice reactive controllers
to consider the controllability and reactivity bounds Δ and δ of its components.
By definition, the controllability bound of composed components α and β is
always min(Δα,Δβ) of their individual bounds Δα, Δβ . The reactivity bound
depends on the physical architecture that composes α and β. It is overapproxi-
mated by a max+ cost function C : R

2 → R such that C(δα, δβ) “ max(δα, δβ)
if α and β have controllers running independently (e.g. two ECUs or PLCs),
or else δα ` δβ , if both controllers execute on one resource. Notice that such a
definition is associative and commutative with respect to composition.

Parallel Composition and Modular Verification of CCS 363

Modeling. We first define the parallel composition of discrete components, which
are multi-choice reactive controllers MRCtrl(

⋃
1�i�n ctrli, δ). To the definition

in [7], we add the cost model C to combine individual bounds δ as that of the com-
posed system. The parallel composition is the non-deterministic choice between
all control choices in multi-choice reactive controllers MRCtrl(

⋃
1�i�nα

αi, δα)
and MRCtrl(

⋃
1�j�nβ

βj , δβ), but with the individual δα and δβ replaced by
the cost model C(δα, δβ). Interleaving of controller executions occurs through
embedding the non-deterministic choice in the loop of a full system, see Theo-
rem 2.

Definition 8 (Parallel Composition of Multi-choice Controllers). Let
α and β be multi-choice reactive controllers of shapes MRCtrl(

⋃
1�i�nα

αi, δα)
and MRCtrl(

⋃
1�j�nβ

βj , δβ). Their parallel composition α b β has shape:

MRCtrl

⎛

⎝
⋃

1�i�nα

αi Y
⋃

1�j�nβ

βj , C(δα, δβ)

⎞

⎠ .

Example 7 (Composition of two water-level controllers). We compose two reac-
tive water-level controllers wlctrl1 (reactivity δwlctrl1 “ 0.05 s) and wlctrl2 (reac-
tivity δwlctrl2 “ 0.02 s) on one CPU. The multi-choice reactive controller result-
ing from cost model C(δwlctrl1 , δwlctrl2) “ δwlctrl1 ` δwlctrl2 is:

MRCtrl (wlctrl1 Y wlctrl2, δwlctrl1 ` δwlctrl2)
“ RCtrl(wlctrl1, δwlctrl1 ` δwlctrl2) Y RCtrl(wlctrl2, δwlctrl1 ` δwlctrl2)
“ (?t � τ1 ` δwlctrl1 ` δwlctrl2 ; wlctrl1; τ1 :“ t)

Y (?t � τ2 ` δwlctrl1 ` δwlctrl2 ; wlctrl2; τ2 :“ t)

where wlctrl1 follows Example 1 and
wlctrl2

.“ wlm2 :“ wl;
(
(?wlm2 � 9.7; fout2 :“ 1) Y (?wlm2 � 2.3; fout2 :“ 0).

Algebraic Properties. We retain commutativity and associativity of the parallel
composition operator defined in [7]. Commutativity implies that we are able
to decompose a system and associativity ensures that we can build it step-by-
step. The proof, detailed in the long version [8], relies on the commutativity and
associativity of both non-deterministic choice and cost model C.

Modular Verification. We adapt [7, Thm. 2] by adding the condition that the
individual reactivity bound δα of a controller α must neither occur in its func-
tional behavior

⋃
1�i�nα

αi nor in its guarantees. Failing to do so may prevent
to re-use a component proof.

Definition 9 (Non-interfering Controllers). Two controllers α and β are
non-interfering if they do not modify the same variables, i.e. the outputs are
separated (BV(α) X BV(β) “ ∅), and if they do not influence the guarantees of
the other component (FV(Gα) X BV(α) “ ∅ and FV(Gβ) X BV(β) “ ∅).

364 S. Lunel et al.

Theorem 2 (Composition of Multi-choice Reactive Controllers). Let
α and β be non-interfering multi-choice reactive controllers with program shape
MRCtrl(

⋃
1�i�nα

αi, δα) and MRCtrl(
⋃

1�j�nβ
βj , δβ) satisfying their compat-

ible contracts (Aα, Gα) and (Aβ , Gβ) and let Jcmp be a composition invariant.
Then the parallel composition α b β is safe, i.e., (E^Aα^Initα^Aβ ^Initβ) →
[(α b β)∗](Gα ^ Gβ) is valid.

Proof. Similar to Theorem 1 using the additional condition that δα (resp. δβ)
does not appear in the functional behavior

⋃
1�i�nα

αi (resp.
⋃

1�j�nβ
βj) of

the controller, nor in its guarantee Gα (resp. Gβ). See long version [8]. ��
Non-interference of controllers and compatibility of contracts are standard

requirements when modeling a system compositionally and safely.

Example 8 (Safe composition of two water-level controllers). The contract of
the first reactive controller wlctrl1 is the same as in Example 5 with necessary
changes. The contract for the second controller is:

⎧
⎪⎪⎨

⎪⎪⎩

Awlctrl2 : �
Gwlctrl2 : wlm2 � 2.3 → fout2 “ 0

9.7 � wlm2 → fout2 “ 1
(2.3 � wlm2 � 9.7) → (fout2 “ 0 _ fout2 “ 1)

The controller actuates the outlet valve of the system (fout2). It is open if
the real water-level of the second tank is too close to the maximum threshold
(10 here) to drain the tank and closed in order to fill the tank if too close to the
minimum threshold (2). The two controllers are non-interfering, the contracts
are compatible and they both satisfy their contracts (verified using the proof
calculus of dL). Hence, Theorem 2 guarantees that the parallel composition is
safe, i.e. that the contract (Awlctrl1 ^ Awlctrl2 , Gwlctrl1 ^ Gwlctrl2) is valid.

4.2 Parallel Composition of Controllable Plants

When composing two continuous components in parallel, the controllability of
the resulting system is the minimum of their individual controllability bounds
(which is obvious from the semantics of ODEs listed in Table 1: safety proofs
hold for any non-negative duration, so also for smaller durations).

Modeling. Non-interference of controllable plants ensures that their combined
continuous dynamics stays true to the isolated dynamics, and that they do not
interfere with the guarantees of the respective other component.

Definition 10 (Non-interfering Plants). Two controllable plants α and β
with CPlant({x′ “ θ & H},Δα) and CPlant({y′ “ η & Q},Δβ) and contracts
(Aα, Gα) and (Aβ , Gβ) are non-interfering if BV({x′ “ θ & H}) X FV(η) “ ∅

and BV({y′ “ η & Q})XFV(θ) “ ∅, and if BV({x′ “ θ & H})XFV(Gβ) “ ∅

and BV({y′ “ η & Q}) X FV(Gα) “ ∅.

Parallel Composition and Modular Verification of CCS 365

Note that non-interference implies BV({x′ “ θ & H})XBV({y′ “ η & Q}) “ ∅.

Definition 11 (Parallel Composition of Controllable Plants). Let α and
β be non-interfering controllable plants CPlant({x′ “ θ & H},Δα) and
CPlant({y′ “ η & Q},Δβ). The parallel composition α b β is an ODE
system of the shape CPlant({x′ “ θ, y′ “ η & H ^ Q},min(Δα,Δβ)) .

Example 9 (Composition of two water-level). Here, we compose the water level
dynamics of two tanks ({wl′1 “ fin ´ fout1, t′ “ 1 & wl1 � 0 ^ t � Δwl1} and
{wl′2 “ fout1 ´ fout2, t′ “ 1 & wl2 � 0 ^ Δwl2}) to obtain a controllable plant
modeling the evolution of both water levels simultaneously. Their respective
controllability bounds are Δwl1 “ 0.2 s and Δwl2 “ 0.15 s. The controllable plant
resulting from the parallel composition expands to {wl′1 “ fin ´ fout1, wl′2 “
fout1 ´ fout2, t′ “ 1 & wl1 � 0 ^ wl2 � 0 ^ t � min(Δwl1 ,Δwl2)}.
Algebraic Properties. Commutativity and associativity of the parallel composi-
tion pattern defined in [7] are preserved. The proof, detailed in the long ver-
sion [8], follows from commutativity and associativity of “,” in ODEs and of
operator min.

Modular Verification. The conjunction of contracts is retained for parallel com-
position of continuous components, similar to parallel composition of controllers.

Theorem 3 (Composition of Controllable Plants). Let α and β be two
non-interfering controllable plants CPlant({x′ “ θ & H},Δα), CPlant({y′ “
η & Q},Δβ) satisfying their respective compatible contracts (Aα, Gα), (Aβ , Gβ),
and let Jcmp be a composition invariant. Then the parallel composition α b β
is safe, i.e., (E ^ Aα ^ Initα ^ Aβ ^ Initβ) → [(α b β)∗](Gα ^ Gβ) is valid.

Proof. Similar to Theorem1 after separating the non-interfering plants using the
inverse direction of the differential ghost axiom [13], see long version [8]. ��
Example 10 (Safe composition of two water-level). The contract for the first
water level is the same as in Example 5 with necessary changes. We guarantee
that the water level of the second tank is within 2 and 10, provided that there
is a controller which reacts appropriately. Its contract is:

{
Awl2 : Gwlctrl2
Gwl2 : 2 � wl2 � 10

We apply Theorem 3 to guarantee that the controllable plant modeling the
evolution of water levels in distinct connected tanks is safe, i.e. it satisfies the
contract (Awl1 ^ Awl2 , Gwl1 ^ Gwl2).

4.3 Parallel Composition of Multi-choice Reactive Controllers and
Controllable Plants

We present the composition of a multi-choice reactive controller with a control-
lable plant that may result from the composition of several atomic controllable
plants. We lift the definition of CCS (Sect. 3) to a general integration of con-
trollability and reactivity.

366 S. Lunel et al.

Modeling. We define a multi computer-controlled system MCCS as the parallel
composition of a multi-choice reactive controller with a controllable plant.

Definition 12 (Multi Computer-Controlled System). A multi computer-
controlled system is a parallel composition of a multi-choice reactive controller
MRCtrl(

⋃
1�i�n ctrli, δ) and a controllable plant CPlant({y′ “ θ & H},Δ).

The parallel composition MCCS has the hybrid program shape:
(
{y′ “ θ, t′ “ 1 & H ^

∧

1�i�n

t � τi ` δ

︸ ︷︷ ︸
δ�Δ

} Y MRCtrl
(⋃

1�i�n ctrli, δ
))∗

The formula
∧

1�i�n t � τi ` δ is the conjunction of the reactivity bounds of
all the n sub-controllers ctrli.

Modular Verification. Corollary 1 lifts Theorem 1 (for a single controller and a
single plant) to multi computer-controlled systems of possibly many controllers
with a controllable plant representing multiple simultaneous evolutions.

Corollary 1 (Composition of Multi-Choice Reactive Controller and
Controllable Plant). Let MRCtrl(

⋃
1�i�n ctrli, δ) be a multi-choice reactive

controller non-interfering with the controllable plant CPlant({x′ “ θ & H},Δ)
satisfying their compatible contracts (Actrl, Gctrl) and (Aplant, Gplant). Further
let Jcmp be a composition invariant. Then, MCCS is safe, i.e., (E ^ Actrl ^
Initctrl ^ Aplant ^ Initplant) → [MCCS](Gctrl ^ Gplant) is valid.

Proof. Similar to the proof of Theorem1, but with multi-choice reactive con-
troller instead of a single reactive controller. ��

4.4 Parallel Composition of Multi Computer-Controlled Systems

When composing multi computer-controlled systems, the combined reactivity of
all controllers must not exceed the combined (minimum) controllability bounds
of the plants. Otherwise, safety cannot be guaranteed, as elaborated next.

Modeling. The parallel composition of two multi computer-controlled systems is
similar to the composition of a multi-choice reactive controller with a controllable
plant to obtain a multi computer-controlled system MCCS, but with extra care
for the combined reactivity bounds obtained from the physical cost model C.

Definition 13 (Parallel Composition of Multi Computer-Controlled
Systems). Let α and β be two multi computer-controlled systems with shapes
α

.“ ({x′ “ θ, t′ “ 1 & H ^ ∧
1�i�n t � τi ` δα} Y MRCtrl(

⋃
1�i�n αi, δα)

)∗,
β

.“ ({y′ “ η, t′ “ 1 & Q ^ ∧
1�j�m t � τj ` δβ} Y MRCtrl(

⋃
1�j�m βj , δβ)

)∗.

Parallel Composition and Modular Verification of CCS 367

The parallel composition α b β has the hybrid program shape:
⎛

⎜
⎜
⎜
⎜
⎜
⎝

MRCtrl
(⋃

1�i�n αi, C(δα, δβ)
) Y MRCtrl

(⋃
1�j�m βj , C(δα, δβ)

)

Y{x′ “ θ, y′ “ η, t′ “ 1 & H ^ Q

^
∧

1�i�n

t � τi ` C(δα, δβ) ^
∧

1�j�m

t � τj ` C(δα, δβ)

︸ ︷︷ ︸
C(δα,δβ)�min(Δα,Δβ)

}

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∗

Algebraic Properties. We retain the commutativity and associativity properties
(under the condition that the provided max+ cost function C is commutative
and associative), essential for a modular component-based approach.

Proposition 1 (Commutativity and Associativity). Let α, β and γ be
multi computer-controlled systems. Then:

α b β “ β b α (Commutativity)
(α b β) b γ “ α b (β b γ) (Associativity)

Proof. Follows from Definition 13, see long version [8] for details. ��

Modular Verification. We retain also the respective contracts through the par-
allel composition. We assume that the individual reactivity bound δα of the
controller does not occur in its functional behavior, nor in its guarantees.

Theorem 4 (Composition of Multi Computer-Controlled Systems).
Let α and β be non-interfering multi computer-controlled systems (with program
shape MCCSα and MCCSβ per Definition 12) satisfying their respective com-
patible contracts (Aα, Gα) and (Aβ , Gβ), and let Jcmp be a composition invariant.
Then the parallel composition α b β is safe, i.e., (E^Aα^Initα^Aβ ^Initβ) →
[α b β](Gα ^ Gβ) is valid.

Proof. We use the commutativity and associativity of operator b to group the
multi-choice reactive controllers into a single discrete fragment and the control-
lable plants into a single continuous fragment. We prove contracts are retained
for the discrete fragment by Theorem 2 and for the continuous fragment by The-
orem 3. Finally, contracts are retained for the composition of discrete fragment
to the continuous fragment using Corollary 1, see long version [8]. ��

Outlook. In this section, we presented how to extend our previous component-
based approach to take into account the timing constraints inherent in the design
of a Computer-Controlled System. We have proved that we retain the commu-
tativity and associativity, essential to scale up to realistic systems. Finally, we
state and prove theorems to retain contracts through the parallel composition.
Theses results give us confidence in the ability of our approach to be adapted to
new challenges that will arise when applied to realistic industrial systems.

368 S. Lunel et al.

5 Related Work

Recent component-based verification techniques [10,11] proposed a composition
operator in dL based on the modeling pattern (ctrl; plant)∗ to split verification
of systems into more manageable pieces. It focuses on separating self-contained
components (a controller monitoring its own plant) instead of separating discrete
and continuous fragments. This paper extends previous work [7] with capabilities
to handle timing relations of CCS upon composition (using max+ cost functions)
and syntactic proofs to facilitate implementation of the proposed techniques as
tactics in the theorem prover KeYmaera X.

Hybrid automata [1] are a popular formalism to model hybrid systems, but
composition of automata results in an exponential product automaton which is
intractable to analyze in practice. I/O hybrid automata [9] is an extension of
hybrid automata with explicit inputs and outputs. Assume-guarantee reason-
ing [4] on such automata tackles composability to prevent state-space explosion.
Yet, use is in practice restricted to linear hybrid automata. Differential Dynamic
Logic handles systems with ODEs (and not just linear ODEs), thus our approach
is more expressive.

Hybrid Communicating Sequential Processes (HCSP) [5] is a hybrid exten-
sion of the CSP framework. It features a native parallel composition operator
and communicating primitives in addition to standard constructs for hybrid sys-
tems (sequences, loops, ODEs) and a proof calculus has been proposed in [6].
In contrast, our parallel composition operator is not native and relies on usual
constructs of dL. The benefit is that we do not have to extend dL and check
the soundness of such extension, but it requires additional effort to mechanize it
into the theorem prover KeYmaera X. Also, our approach provides engineering
support for timing aspects and modular verification principles.

6 Conclusion

We presented a component-based verification technique for modularly designing
and verifying computer-controlled systems with special focus on timing con-
straints (reactivity and controllability) and modular verification. Our concepts
enable systematic modeling of CCS in a modular way while maintaining alge-
braic properties of composition patterns and preserving contract proofs through
composition. We additionally support reasoning on non-functional properties
(reactivity, controllability) through multiple compositions of reactive controllers
and plants. This paves the way to ultimately model complex cyber-physical sys-
tems (several controllers running in parallel according to a generic max+ cost
function that monitor different plants) from only simple, atomic components.
Verification of safety properties for the global system reduces to component
safety proofs with only mild assumptions on the reactivity of controllers (does
not exceed the controllability of plants) and compatibility between contracts.

As future work, we intend to allow more aggressive compositions to lift
restrictions of the techniques presented here: allow some interference in the par-
allel composition of controllable plants and reactive controllers with additional

Parallel Composition and Modular Verification of CCS 369

compatibility proofs (lift non-interference restriction of Corollary 1); allow time
and reactivity in the predictions and guarantees of controllers with refactor-
ing techniques to strengthen control choices upon composition (lift restriction of
Theorem 4 that does not grant controllers to exploit their reactivity bounds δ for
control decisions); and support fine-grained communication going beyond shared
variables with communication channels as in Hybrid Communicating Sequential
Processes. For proof automation, we intend to implement the theorems of this
paper as tactics in the KeYmaera X theorem prover.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

2. Benveniste, A., et al.: Contracts for system design. Technical report (2012)
3. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an

axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

4. Henzinger, T.A., Minea, M., Prabhu, V.: Assume-guarantee reasoning for hierar-
chical hybrid systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.)
HSCC 2001. LNCS, vol. 2034, pp. 275–290. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45351-2 24

5. Jifeng, H.: From CSP to hybrid systems. In: A Classical Mind, pp. 171–189. Pren-
tice Hall International (UK) Ltd. (1994)

6. Liu, J., et al.: A calculus for hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS,
vol. 6461, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17164-2 1

7. Lunel, S., Boyer, B., Talpin, J.-P.: Compositional proofs in differential dynamic
logic. In: Legay, A., Schneider, K. (eds.) ACSD (2017)

8. Lunel, S., Mitsch, S., Boyer, B., Talpin, J.-P.: Parallel composition and modular
verification of computer controlled systems in differential dynamic logic. CoRR,
abs/1907.02881, July 2019

9. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput.
185(1), 105–157 (2003)

10. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A
component-based approach to hybrid systems safety verification. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 441–456. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 28

11. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Tactical
contract composition for hybrid system component verification. STTT 20(6), 615–
643 (2018). Special issue for selected papers from FASE 2017

12. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550.
IEEE (2012)

13. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas. 59(2), 219–265 (2017)

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/3-540-45351-2_24
https://doi.org/10.1007/3-540-45351-2_24
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-319-33693-0_28

370 S. Lunel et al.

14. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

15. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power
of differential ghosts. In: Dawar, A., Grädel, E. (eds.) LICS, pp. 819–828. ACM,
New York (2018)

16. Signoles, J., Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Yakobowski, B.:
Frama-C: a software analysis perspective. Form. Asp. Comput. 27, 573–609 (2012)

https://doi.org/10.1007/978-3-319-63588-0

An Axiomatic Approach to Liveness
for Differential Equations

Yong Kiam Tan(B) and André Platzer(B)

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
{yongkiat,aplatzer}@cs.cmu.edu

Abstract. This paper presents an approach for deductive liveness ver-
ification for ordinary differential equations (ODEs) with differential
dynamic logic. Numerous subtleties complicate the generalization of well-
known discrete liveness verification techniques, such as loop variants, to
the continuous setting. For example, ODE solutions may blow up in
finite time or their progress towards the goal may converge to zero. Our
approach handles these subtleties by successively refining ODE liveness
properties using ODE invariance properties which have a well-understood
deductive proof theory. This approach is widely applicable: we survey
several liveness arguments in the literature and derive them all as special
instances of our axiomatic refinement approach. We also correct several
soundness errors in the surveyed arguments, which further highlights the
subtlety of ODE liveness reasoning and the utility of our deductive app-
roach. The library of common refinement steps identified through our
approach enables both the sound development and justification of new
ODE liveness proof rules from our axioms.

Keywords: Differential equations · Liveness ·
Differential dynamic logic

1 Introduction

Hybrid systems are mathematical models describing discrete and continuous
dynamics, and interactions thereof [6]. This flexibility makes them natural mod-
els of cyber-physical systems (CPSs) which feature interactions between discrete
computational control and continuous real world physics [2,19]. Formal verifica-
tion of hybrid systems is of significant practical interest because the CPSs they
model frequently operate in safety-critical settings. Verifying properties of the
continuous dynamics is a key aspect of any such endeavor.

This paper focuses on deductive liveness verification for continuous dynamics
described by ordinary differential equations (ODEs). We work with differential
dynamic logic (dL) [16,17,19], a logic for deductive verification of hybrid systems,
which compositionally lifts our results to the hybrid systems setting. Methods
for proving liveness in the discrete setting are well-known: loop variants show
that discrete loops eventually reach a desired goal, while temporal logic is used to
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 371–388, 2019.
https://doi.org/10.1007/978-3-030-30942-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_23&domain=pdf
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-030-30942-8_23

372 Y. K. Tan and A. Platzer

Table 1. Surveyed ODE liveness arguments with our corrections highlighted in blue.
The referenced corollaries are our corresponding (corrected) derived proof rules.

Source Without domain constraints With domain constraints

[15] OK (Corollary 5) if open/closed, initially false (Corollary 13)

[22,23] [23, Remark 3.6] is incorrect if conditions checked globally (Corollary 19)

[24] if compact (Corollary 12) if compact (Corollary 15)

[25] OK (Corollary 9) OK (Corollary 16)

[27] if globally Lipschitz (Corollary 7) if globally Lipschitz (Corollary 14)

specify and study liveness properties in concurrent and infinitary settings [12,13].
In the continuous setting, liveness for an ODE means that its solutions even-
tually enter a desired goal region in finite time without leaving the domain of
allowed (or safe) states.1 Deduction of such ODE liveness properties is hampered
by several difficulties: (i) solutions of ODEs may converge towards a goal with-
out ever reaching it, (ii) solutions of (non-linear) ODEs may blow up in finite
time leaving insufficient time for the desired goal to be reached, and (iii) the
goal may be reachable but only by leaving the domain constraint. In contrast,
invariance properties for ODEs are better understood [9,11] and have a complete
dL axiomatization [20]. Motivated by the aforementioned difficulties, we present
dL axioms enabling step-by-step refinement of ODE liveness properties with a
sequence of ODE invariance properties. This brings the full deductive power of
dL’s ODE invariance proof rules to bear on liveness proofs. Our approach is a
general framework for understanding ODE liveness arguments. We use it to sur-
vey several arguments from the literature and derive them all as (corrected) dL
proof rules, see Table 1. This logical presentation has two key benefits:

– The proof rules are derived from sound axioms of dL, guaranteeing their
correctness. Many of the surveyed arguments contain subtle soundness errors,
see Table 1. These errors do not diminish the surveyed work. Rather, they
emphasize the need for an axiomatic, uniform way of presenting and analyzing
ODE liveness arguments rather than ad hoc approaches.

– The approach identifies common refinement steps that form a basis for the
surveyed liveness arguments. This library of building blocks enables sound
development and justification of new ODE liveness proof rules, e.g., by gen-
eralizing individual refinement steps or by exploring different combinations of
those steps. Corollaries 8, 10, and 18 are examples of new ODE liveness proof
rules that can be derived and justified using our uniform approach.

All proofs are in the companion report [28], together with counterexamples
for the soundness errors listed in Table 1. Colored versions of all figures are
available online.
1 This property has also been called, e.g., eventuality [23,25] and reachability [27]. To

minimize ambiguity, this paper refers to the property as liveness, with a precise for-
mal definition in Sect. 2. Other advanced notions of liveness for ODEs are discussed
in Sect. 6, although their formal deduction is left for future work.

An Axiomatic Approach to Liveness for Differential Equations 373

2 Background

This section reviews the syntax and semantics of dL, focusing on its contin-
uous fragment which has a complete axiomatization for ODE invariants [20].
Full presentations of dL, including its discrete fragment, are available else-
where [17,19].

2.1 Syntax

Fig. 1. Visualization of αl

(above) and αn (below).
Solutions of αl globally spi-
ral towards the origin. In con-
trast, solutions of αn spi-
ral inwards within the inner
red disk (dashed boundary),
but spiral outwards other-
wise. For both ODEs, solu-
tions starting on the black
unit circle eventually enter
their respective shaded green
goal regions.

The grammar of dL terms is as follows, where v ∈ V

is a variable and c ∈ Q is a rational constant. These
terms are polynomials over the set of variables V:

p, q ::= v | c | p + q | p · q

The grammar of dL formulas is as follows, where
∼ ∈ {=, �=,≥, >,≤, <} is a comparison operator
and α is a hybrid program:

φ, ψ ::=

First-order formulas of real arithmeticP,Q
︷ ︸︸ ︷

p ∼ q | φ ∧ ψ | φ ∨ ψ | ¬φ | ∀v φ | ∃v φ

| [α]φ | 〈α〉φ

The notation p � q (resp. �) is used when
the comparison operator can be either ≥ or >
(resp. ≤ or <). Other standard logical connec-
tives, e.g., →,↔, are definable as in classical logic.
Formulas not containing the modalities [·], 〈·〉 are
formulas of first-order real arithmetic and are
written as P,Q. The box ([α]φ) and diamond
(〈α〉φ) modality formulas express dynamic proper-
ties of the hybrid program α. We focus on con-
tinuous programs, where α is given by a sys-
tem of ODEs x′ = f(x) &Q. Here, x′ = f(x)
is an n-dimensional system of differential equa-
tions, x′

1 = f1(x), . . . , x′
n = fn(x), over variables

x = (x1, . . . , xn), where the LHS x′
i is the time

derivative of xi and the RHS fi(x) is a polynomial
over variables x. The domain constraint Q speci-
fies the set of states in which the ODE is allowed
to evolve continuously. When there is no domain
constraint, i.e., Q is the formula true, the ODE is
written as x′ = f(x).

Two running example ODEs are visualized in Fig. 1 with directional arrows
corresponding to their RHS evaluated at points on the plane. The first ODE,

374 Y. K. Tan and A. Platzer

αl ≡ u′ = −v − u, v′ = u − v, is linear because its RHS depends linearly on u, v.
The second ODE, αn ≡ u′ = −v−u(14 −u2 −v2), v′ = u−v(14 −u2 −v2), is non-
linear. The non-linearity of αn results in more complex behavior for its solutions,
e.g., the difference in spiraling behavior shown in Fig. 1. In fact, solutions of αn

blow up in finite time iff they start outside the disk characterized by u2+v2 ≤ 1
4 .

Finite time blow up is impossible for linear ODEs like αl [5,29].
When terms (or formulas) appear in contexts involving ODEs x′ = f(x), it

is sometimes necessary to restrict the set of free variables they are allowed to
mention. These restrictions are always stated explicitly and are also indicated as
arguments2 to terms (or formulas), e.g., p() means the term p does not mention
any of x1, . . . , xn free, while P (x) means the formula P may mention all of them.

2.2 Semantics

States ω : V → R assign real values to each variable in V; the set of all states is
written S. The semantics of polynomial term p in state ω ∈ S is the real value
ω[[p]] of the corresponding polynomial function evaluated at ω. The semantics of
formula φ is the set of states [[φ]] ⊆ S in which that formula is true. The semantics
of first-order logical connectives are defined as usual, e.g., [[φ ∧ ψ]] = [[φ]] ∩ [[ψ]].

For ODEs, the semantics of the modal operators is defined directly as fol-
lows.3 Let ω ∈ S and ϕ : [0, T) → S (for some 0 < T ≤ ∞), be the unique,
right-maximal solution [5,29] to the ODE x′ = f(x) with initial value ϕ(0) = ω:

ω ∈ [[[x′ = f(x) &Q]φ]] iff for all 0 ≤ τ < T where ϕ(ζ)∈ [[Q]] for all 0 ≤ ζ ≤ τ :
ϕ(τ) ∈ [[φ]]

ω ∈ [[〈x′ = f(x) &Q〉φ]] iff there exists 0 ≤ τ < T such that:
ϕ(τ) ∈ [[φ]] and ϕ(ζ) ∈ [[Q]] for all 0 ≤ ζ ≤ τ

Informally, [x′ = f(x) &Q]φ is true in initial state ω if all states reached by
following the ODE from ω while remaining in the domain constraint Q satisfy
postcondition φ. Dually, the liveness property 〈x′ = f(x) &Q〉φ is true in initial
state ω if some state which satisfies the postcondition φ is eventually reached in
finite time by following the ODE from ω while staying in domain constraint Q.
For the running example, Fig. 1 suggests that formulas4 〈αl〉

(
1
4 ≤ ‖(u, v)‖∞ ≤ 1

2

)

and 〈αn〉u2+v2 ≥ 2 are true for initial states ω on the unit circle. These liveness
properties are rigorously proved in Examples 6 and 11 respectively.

Variables y ∈ V \ {x} not occurring on the LHS of ODE x′ = f(x) remain
constant along solutions ϕ : [0, T) → S of the ODE, with ϕ(τ)(y) = ϕ(0)(y) for
all τ ∈ [0, T). Since only the values of x = (x1, . . . , xn) change along the solution
ϕ it may also be viewed geometrically as a trajectory in R

n, dependent on the

2 This understanding of variable dependencies is made precise using function and
predicate symbols in dL’s uniform substitution calculus [17].

3 The semantics of dL formulas is defined compositionally elsewhere [17,19].
4 Here, ‖(u, v)‖∞ denotes the L∞ norm. The inequality ‖(u, v)‖∞ ≤ 1

2
is expressible

in first-order real arithmetic as u2 ≤ 1
4

∧ v2 ≤ 1
4

(similarly for 1
4

≤ ‖(u, v)‖∞).

An Axiomatic Approach to Liveness for Differential Equations 375

initial values of the constant parameters y. Similarly, the value of terms and
formulas depends only on the values of their free variables [17]. Thus, terms (or
formulas) whose free variables are all parameters for x′ = f(x) also have constant
(truth) values along solutions of the ODE. For formulas φ that only mention
free variables x, [[φ]] can also be viewed geometrically as a subset of Rn. Such
a formula is said to characterize a (topologically) open (resp. closed, bounded,
compact) set with respect to variables x iff the set [[φ]] ⊆ R

n is topologically
open (resp. closed, bounded, compact) with respect to the Euclidean topology.
These topological conditions are used as side conditions for some of the axioms
and proof rules in this paper. In the report [28], a more general definition of
these side conditions is given for formulas φ that mention parameters y. These
side conditions are decidable [3] when φ is a formula of first-order real arithmetic
and there are simple syntactic criteria for checking if they hold [28].

Formula φ is valid iff [[φ]] = S, i.e., φ is true in all states. In particular, if the
formula I → [x′ = f(x) &Q]I is valid, the formula I is an invariant of the ODE
x′ = f(x) &Q. Unfolding the semantics, this means that from any initial state
ω satisfying I, all states reached by the solution of the ODE x′ = f(x) from ω
while staying in the domain constraint Q satisfy I.

2.3 Proof Calculus

All derivations are presented in a classical sequent calculus with usual rules for
manipulating logical connectives and sequents. The semantics of sequent Γ � φ
is equivalent to the formula (

∧

ψ∈Γ ψ) → φ and a sequent is valid iff its corre-
sponding formula is valid. Completed branches in a sequent proof are marked
with ∗. First-order real arithmetic is decidable [3] so we assume such a decision
procedure and label proof steps with R when they follow from real arithmetic.
An axiom (schema) is sound iff all instances of the axiom are valid. Proof rules
are sound iff validity of all premises (above the rule bar) entails validity of the
conclusion (below the rule bar). Axioms and proof rules are derivable if they
can be deduced from sound dL axioms and proof rules. Soundness of the base dL
axiomatization ensures that derived axioms and proof rules are sound [17,19,20].

The dL proof calculus (briefly recalled below) is complete for ODE invari-
ants [20], i.e., any true ODE invariant expressible in first-order real arithmetic
can be proved in the calculus. The proof rule dI� (below) uses the Lie deriva-
tive of polynomial p with respect to the ODE x′ = f(x), which is defined as
Lf(x)(p) def=

∑

xi∈x
∂p
∂xi

fi(x). Higher Lie derivatives
.
p
(i) are defined inductively:

.
p
(0) def= p,

.
p
(i+1) def= Lf(x)(

.
p
(i)),

.
p

def=
.
p
(1). Syntactically, Lie derivatives

.
p
(i) are

polynomials in the term language. They are provably definable in dL using dif-
ferentials [17]. Semantically, the value of Lie derivative

.
p is equal to the time

derivative of the value of p along solution ϕ of the ODE x′ = f(x).

Lemma 1 (Axioms and proof rules of dL [17,19,20]). The following are
sound axioms and proof rules of dL.
〈·〉 〈α〉P ↔ ¬[α]¬P K [α](R → P) → ([α]R → [α]P)

376 Y. K. Tan and A. Platzer

dI�
Q � .

p ≥ .
q

Γ, p � q � [x′ = f(x) &Q]p � q
(where � is either ≥ or >)

dC
Γ � [x′ = f(x) &Q]C Γ � [x′ = f(x) &Q ∧ C]P

Γ � [x′ = f(x) &Q]P

dW
Q � P

Γ � [x′ = f(x) &Q]P

M[′]
Q,R � P Γ � [x′ = f(x) &Q]R

Γ � [x′ = f(x) &Q]P

dGt
Γ, t = 0 � 〈x′ = f(x), t′ = 1 &Q〉P

Γ � 〈x′ = f(x) &Q〉P
M〈′〉 Q,R � P Γ � 〈x′ = f(x) &Q〉R

Γ � 〈x′ = f(x) &Q〉P
Axiom 〈·〉 expresses the duality between the box and diamond modalities. It

is used to switch between the two in proofs and to dualize axioms between the
box and diamond modalities. Axiom K is the modus ponens principle for the
box modality. Differential invariants dI� says that if the Lie derivatives obey the
inequality

.
p ≥ .

q, then p � q is an invariant of the ODE. Differential cuts dC
says that if we can separately prove that formula C is always satisfied along the
solution, then C may be assumed in the domain constraint when proving the
same for formula P . In the box modality, solutions are restricted to stay in the
domain constraint Q; differential weakening dW says that postcondition P is
always satisfied along solutions if it is already implied by the domain constraint.
Liveness arguments are often based on analyzing the duration that solutions
of the ODE are followed. Rule dGt is a special instance of the more general
differential ghosts rule [17,19,20] which allows new auxiliary variables to be
introduced for the purposes of proof. It augments the ODE x′ = f(x) with
an additional differential equation, t′ = 1, so that the (fresh) variable t, with
initial value t = 0, tracks the progress of time. Using dW,K,〈·〉, the final two
monotonicity proof rules M[′],M〈′〉 for differential equations are derivable. They
strengthen the postcondition from P to R, assuming domain constraint Q, for
the box and diamond modalities respectively.

Throughout this paper, we present proof rules, e.g., dW, that discard all
assumptions Γ on initial states when moving from conclusion to the premises.
Intuitively, this is necessary for soundness because the premises of these rules
internalize reasoning that happens along solutions of the ODE x′ = f(x) &Q
rather than in the initial state. On the other hand, the truth value of constant
assumptions P () do not change along solutions, so they can be soundly kept
across rule applications [19]. These additional constant contexts are useful when
working with assumptions on symbolic parameters e.g., v() > 0 to represent a
(constant) positive velocity.

3 Liveness via Box Refinements

Suppose we already know an initial liveness property 〈x′ = f(x) &Q0〉P0 for the
ODE x′ = f(x). How could this be used to prove a desired liveness property
〈x′ = f(x) &Q〉P for that ODE? Logically, this amounts to proving:

〈x′ = f(x) &Q0〉P0 → 〈x′ = f(x) &Q〉P (1)

An Axiomatic Approach to Liveness for Differential Equations 377

Proving implication (1) refines the initial liveness property to the desired one.
Our approach is built on refinement axioms that conclude such implications from
box modality formulas. The following are two basic derived refinement axioms:

Lemma 2 (Diamond refinement axioms). The following 〈·〉 refinement
axioms are derivable in dL.
DR〈·〉 [x′ = f(x) &R]Q → (〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P)

K〈&〉 [x′ = f(x) &Q ∧ ¬P]¬G → (〈x′ = f(x) &Q〉G → 〈x′ = f(x) &Q〉P)

In axiom K〈&〉, formula [x′ = f(x) &Q ∧ ¬P]¬G says the solution cannot get
to G before getting to P as G never happens while ¬P holds. In axiom DR〈·〉,
formula [x′ = f(x) &R]Q says that the ODE solution never leaves Q while stay-
ing in R, so the solution getting to P within R implies that it also gets to
P within Q. These axioms prove implication (1) in just one refinement step.
Logical implication is transitive though, so we can also chain a longer sequence
of such steps to prove implication (1). This is shown in (2), with neighboring
implications informally chained together for illustration:

〈x′ = f(x) &Q0〉P0

DR〈·〉 with [x′=f(x)&Q1]Q0
︷︸︸︷→ 〈x′ = f(x) &Q1〉P0

K〈&〉 with [x′=f(x)&Q1∧¬P1]¬P0
︷︸︸︷→ 〈x′ = f(x) &Q1〉P1

→ · · · → 〈x′ = f(x) &Q〉P (2)

The chain of refinements (2) proves the desired implication (1), but to for-
mally conclude the liveness property 〈x′ = f(x) &Q〉P , we still need to prove
the hypothesis 〈x′ = f(x) &Q0〉P0 on the left of the implication. The following
axioms provide a means of formally establishing such an initial liveness property:

Lemma 3 (Existence axioms). The following existence axioms are sound. In
both axioms, p() is constant for the ODE x′ = f(x), t′ = 1. In axiom GEx, the
ODE x′ = f(x) is globally Lipschitz continuous. In axiom BEx, the formula B(x)
characterizes a bounded set over variables x.
GEx 〈x′ = f(x), t′ = 1〉t > p()

BEx 〈x′ = f(x), t′ = 1〉(¬B(x) ∨ t > p())

Axioms GEx,BEx are stated for ODEs with an explicit time variable t, where
x′ = f(x) does not mention t. Within proofs, these axioms can be accessed after
using rule dGt to add a fresh time variable t. Solutions of globally Lipschitz ODEs
exist for all time so axiom GEx says that along such solutions, the value of time
variable t eventually exceeds that of the constant term p().5 This global Lipschitz
continuity condition is satisfied e.g., by αl, and more generally by linear ODEs
of the form x′ = Ax, where A is a matrix of (constant) parameters [5]. Global
Lipschitz continuity is a strong requirement that does not hold even for simple
5 It is important for soundness that p() is constant for the ODE, e.g., instances of

axiom GEx with postcondition t > 2t are clearly not valid.

378 Y. K. Tan and A. Platzer

non-linear ODEs like αn, which only have short-lived solutions (see Fig. 1). This
phenomenon, where the right-maximal ODE solution ϕ is only defined on a finite
time interval [0, T) with T < ∞, is known as finite time blow up of solutions [5].
Axiom BEx removes the global Lipschitz continuity requirement but weakens
the postcondition to say that solutions must either exist for sufficient duration
or blow up and leave the bounded set characterized by formula B(x).

Refinement with axiom DR〈·〉 requires proving the formula [x′ = f(x) &R]Q.
Näıvely, we might expect that adding ¬P to the domain constraint should also
work, i.e., the solution only needs to be in Q while it has not yet gotten to P :

DR〈·〉� [x′ = f(x) &R ∧ ¬P]Q → (〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P)

This conjectured axiom is unsound (indicated by �) as the solution could
sneak out of Q when it crosses from ¬P into P . In continuous settings, the
language of topology makes precise what this means. The following topological
refinement axioms soundly restrict what happens at the crossover point:

Lemma 4 (Topological refinement axioms). The following topological 〈·〉
refinement axioms are sound. In axiom COR, P,Q either both characterize topo-
logically open or both characterize topologically closed sets over variables x.

COR ¬P ∧ [x′ = f(x) &R ∧ ¬P]Q → (〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P)

SAR [x′ = f(x) &R ∧ ¬(P ∧ Q)]Q → (〈x′ = f(x) &R〉P → 〈x′ = f(x) &Q〉P)

Axiom COR is the more informative topological refinement axiom. Like the
(unsound) axiom candidate DR〈·〉�, it allows formula ¬P to be assumed in the
domain constraint when proving the box refinement. For soundness though,
axiom COR has additional topological side conditions on formulas P,Q so it
can only be used when these conditions are met. Axiom SAR applies more gen-
erally but only assumes the less informative formula ¬(P ∧ Q) in the domain
constraint for the box modality formula in the refinement. Its proof crucially
relies on Q being a formula of real arithmetic so that the set it characterizes has
tame topological behavior [3], see the proof in the report [28] for more details.6

4 Liveness Without Domain Constraints

This section presents proof rules for liveness properties of ODEs x′ = f(x) with-
out domain constraints, i.e., where Q is the formula true. Errors and omissions
in the surveyed techniques are highlighted in blue.

6 By topological considerations similar to COR, axiom SAR is also sound if it requires
that the formula P (or resp. Q) characterizes a topologically closed (resp. open) set
over the ODE variables x. These additional cases are also proved in the report [28]
without relying on the fact that Q is a formula of real arithmetic.

An Axiomatic Approach to Liveness for Differential Equations 379

4.1 Differential Variants

A fundamental technique for verifying liveness of discrete loops is the identifica-
tion of a loop variant, i.e., a quantity that decreases monotonically across each
loop iteration. Differential variants [15] are their continuous analog:

Corollary 5 (Atomic differential variants [15]). The following proof rules
(where � is either ≥ or >) are derivable in dL. Terms ε(), p0() are constant for
ODE x′ = f(x), t′ = 1. In rule dV�, x′ = f(x) is globally Lipschitz continuous.

dV∗
�

¬(p � 0) � .
p ≥ ε()

Γ, p=p0(), t=0, 〈x′ = f(x), t′ = 1〉(p0()+ε()t>0
) � 〈x′ = f(x), t′ = 1〉p � 0

dV�
¬(p � 0) � .

p ≥ ε()
Γ, ε() > 0 � 〈x′ = f(x)〉p � 0

Proof Sketch ([28]). Rule dV∗
� derives by using axiom K〈&〉 with the choice of

formula G ≡ p0()+ ε()t > 0:

K〈&〉
Γ, p=p0(), t=0 � [x′ = f(x), t′ = 1&¬(p � 0)]p0()+ε()t ≤ 0

Γ, p=p0(), t=0, 〈x′ = f(x), t′ = 1〉 p0()+ε()t>0
) � 〈x′ = f(x), t′ = 1〉p�0

Monotonicity M[′] strengthens the postcondition to p ≥ p0() + ε()t with the
domain constraint ¬(p � 0). A subsequent use of dI� completes the derivation:

¬(p � 0) � .
p ≥ ε()

dI�Γ, p = p0(), t = 0 � [x′ = f(x), t′ = 1&¬(p � 0)]p ≥ p0() + ε()t
M[′]Γ, p = p0(), t = 0 � [x′ = f(x), t′ = 1&¬(p � 0)]p0() + ε()t ≤ 0

Rule dV� is derived in the report [28] as a corollary of rule dV∗
�. It uses the

global existence axiom GEx and rule dGt to introduce the time variable. ��
The premises of both rules require a constant (positive) lower bound on

the Lie derivative
.
p which ensures that the value of p strictly increases along

solutions to the ODE, eventually becoming non-negative. Soundness of both
rules therefore crucially requires that ODE solutions exist for sufficiently long
for p to become non-negative. This is usually left as a soundness-critical side
condition in liveness proof rules [15,25], but such a side condition is antithetical
to approaches for minimizing the soundness-critical core in implementations [17]
because it requires checking the (semantic) condition that solutions exist for
sufficient duration. The conclusion of rule dV∗

� formalizes this side condition as
an assumption while rule dV� uses global Lipschitz continuity of the ODEs to
show it. All subsequent proof rules can also be presented with sufficient duration
assumptions like dV∗

� but these are omitted for brevity.

Example 6. Rule dV� enables a liveness proof for the linear ODE αl as suggested
by Fig. 1. The proof is shown on the left below and visualized on the right. The
first monotonicity step M〈′〉 strengthens the postcondition to the inner blue

380 Y. K. Tan and A. Platzer

circle u2 + v2 = 1
4 which is contained within the green goal region. Next, since

solutions satisfy u2 + v2 = 1 initially (black circle), the K〈&〉 step expresses
an intermediate value property: to show that the continuous solution eventually
reaches u2+v2 = 1

4 , it suffices to show that it eventually reaches u2+v2 ≤ 1
4 (see

Corollary 7). The postcondition is rearranged before dV� is used with ε() = 1
2 .

Its premise proves with R because the Lie derivative of 1
4 − (u2+v2) with respect

to αl is 2(u2+v2), which is bounded below by 1
2 with assumption 1

4−(u2+v2) < 0.

∗
R 1

4 < u2 + v2 � 2(u2 + v2) ≥ 1
2

1
4 − (u2 + v2) < 0 � 2(u2 + v2) ≥ 1

2
dV� u2 + v2 = 1 � 〈αl〉 14 − (u2 + v2) ≥ 0

u2 + v2 = 1 � 〈αl〉u2 + v2 ≤ 1
4

K〈&〉 u2 + v2 = 1 � 〈αl〉u2 + v2 = 1
4

M〈′〉 u2 + v2 = 1 � 〈αl〉 1
4 ≤ ‖(u, v)‖∞ ≤ 1

2

)

The Lie derivative calculation shows that the value of u2 + v2 decreases
along solutions of αl, as visualized by the shrinking (dashed) circles. However, the
rate of shrinking converges to zero as solutions approach the origin, so solutions
never reach the origin in finite time! This is why dV∗

�,dV� need a constant
positive lower bound on the Lie derivative

.
p ≥ ε() instead of merely requiring

.
p > 0.

It is instructive to examine the chain of refinements (2) underlying the proof.
The first dV� step refines the initial liveness property from GEx, i.e., that solu-
tions exist globally (so, for at least 3

4 / 1
2 = 3

2 time), to the property u2 +v2 ≤ 1
4 .

Subsequent refinement steps can be read off from the proof steps above:

〈αl, t
′ = 1〉t >

3

2

dV�→ 〈αl〉u2 + v2 ≤ 1

4

K〈&〉
→ 〈αl〉u2 + v2 =

1

4

M〈′〉→ 〈αl〉
(1
4

≤ ‖(u, v)‖∞≤1

2

)

The latter two steps illustrate the idea behind the next two surveyed proof
rules. In the original presentation [27], the ODE x′ = f(x) is only assumed to
be locally Lipschitz continuous, which is insufficient for global existence of solu-
tions, making the original rules unsound. See the report [28] for counterexamples.

Corollary 7 (Equational differential variants [27]). The following proof
rules are derivable in dL. Term ε() is constant for ODE x′ = f(x) and the
ODE is globally Lipschitz continuous for both rules.

dV=
p < 0 � .

p ≥ ε()
Γ, ε() > 0, p ≤ 0 � 〈x′ = f(x)〉p = 0

dVM
=

p = 0 � P p < 0 � .
p ≥ ε()

Γ, ε() > 0, p ≤ 0 � 〈x′ = f(x)〉P

The view of dV� as a refinement of GEx immediately yields generalizations
to higher Lie derivatives. For example, it suffices that any higher Lie derivative
.
p
(k) is bounded below by a positive constant rather than just the first:

An Axiomatic Approach to Liveness for Differential Equations 381

Corollary 8 (Atomic higher differential variants). The following proof
rule (where � is either ≥ or >) is derivable in dL. Term ε() is constant for
ODE x′ = f(x) and the ODE is globally Lipschitz continuous.

dVk
�

¬(p � 0) � .
p
(k) ≥ ε()

Γ, ε() > 0 � 〈x′ = f(x)〉p � 0

Proof Sketch ([28]). Since
.
p
(k) is strictly positive, the (lower) Lie derivatives of

p all eventually become positive. This derives using a sequence of dC,dI� steps.
��

4.2 Staging Sets

The idea behind staging sets [25] is to use an intermediary staging set formula
S that can only be left by entering the goal region P . This staging property
is expressed by the box modality formula [x′ = f(x) &¬P]S and is formally
justified as a refinement using axiom K〈&〉 with G ≡ ¬S.

Corollary 9 (Staging sets [25]). The following proof rule is derivable in dL.
Term ε() is constant for ODE x′ = f(x), which is globally Lipschitz continuous.

SP
Γ � [x′ = f(x) &¬P]S S � p ≤ 0 ∧ .

p ≥ ε()
Γ, ε() > 0 � 〈x′ = f(x)〉P

In rule SP, the staging set formula S provides a choice of intermediary
between the differential variant p and the desired postcondition P . Proof rules
can be significantly simplified by choosing S with desirable topological prop-
erties. All proof rules derived so far either have an explicit sufficient duration
assumption (like dV∗

�) or use axiom GEx by assuming that ODEs are glob-
ally Lipschitz. To make use of axiom BEx, an alternative is to choose staging
set formulas S(x) that characterize a bounded (or even compact) set over the
variables x.

Corollary 10 (Bounded/compact staging sets). The following proof rules
are derivable in dL. Term ε() is constant for x′ = f(x). In rule SPb, formula
S characterizes a bounded set over variables x. In rule SPc, it characterizes a
compact, i.e., closed and bounded, set over those variables.

SPb

Γ � [x′ = f(x)&¬P]S S � .
p ≥ ε()

Γ, ε() > 0 � 〈x′ = f(x)〉P SPc

Γ � [x′ = f(x)&¬P]S S � .
p > 0

Γ � 〈x′ = f(x)〉P

Proof Sketch ([28]). Rule SPb derives using BEx and differential variant p to
establish a time bound. Rule SPc is an arithmetical corollary of SPb, using the
fact that continuous functions on a compact domain attain their extrema. ��

382 Y. K. Tan and A. Platzer

Example 11. Liveness for the non-linear ODE αn (as suggested by Fig. 1) is
proved using rule SPc by choosing the staging set formula S ≡ 1 ≤ u2 + v2 ≤ 2
(blue annulus) and the differential variant p = u2 + v2. The Lie derivative

.
p

with respect to αn is 2(u2 + v2)(u2 + v2 − 1
4), which is bounded below by 3

2
in S. Thus, the right premise of SPc closes trivially. The left premise (abbrevi-
ated 1©) requires proving that S is an invariant within the domain constraint
¬(u2 + v2 ≥ 2). Intuitively, this is true because the blue annulus can only be left
by entering u2 + v2 ≥ 2. Its (elided) invariance proof is easy [20].

1©
∗

RS � .
p > 0

SPcu2 + v2 = 1 � 〈αn〉u2 + v2 ≥ 2

∗
S � [αn &¬(u2 + v2 ≥ 2)]S

cut,R 1© : u2 + v2 = 1 � [αn &¬(u2 + v2 ≥ 2)]S

There are two subtleties to highlight in this proof. First, S characterizes a
compact, hence bounded, set (as required by rule SPc). Solutions of αn can blow
up in finite time which necessitates the use of BEx for proving its liveness prop-
erties. Second, S is cleverly chosen to exclude the red disk (dashed boundary)
characterized by u2 + v2 ≤ 1

4 . As mentioned earlier, solutions of αn behave dif-
ferently in this region, e.g., the Lie derivative

.
p is non-positive in this disk. The

chain of refinements (2) behind this proof can be seen from the derivation of
rules SPb,SPc in the report [28]. It starts from the initial liveness property BEx
(with time bound 1 / 3

2 = 2
3) and uses two K〈&〉 refinement steps, first showing

that the staging set is left (〈αn〉¬S), then showing the desired liveness property:

〈αn, t′ = 1〉(¬S ∨ t >
2
3
)
K〈&〉
→ 〈αn〉¬S

K〈&〉
→ 〈αn〉u2 + v2 ≥ 2

The use of axiom BEx is subtle and is sometimes overlooked in surveyed
liveness arguments. For example, [23, Remark 3.6] incorrectly claims that their
liveness argument works without assuming that the relevant sets are bounded.
The following proof rule derives from SPc and adapts ideas from [24, Theorem
2.4, Corollary 2.5], but formula K in the original presentation is only assumed
to characterize a closed rather than compact set; the proofs (correctly) assume
that the set is bounded but this assumption is not made explicit [24].

Corollary 12 (Set Lyapunov functions [24]). The following proof rule is
derivable in dL. Formula K characterizes a compact set over variables x, while
formula P characterizes an open set over those variables.

SLyap
p ≥ 0 � K ¬P,K � .

p > 0
Γ, p � 0 � 〈x′ = f(x)〉P

An Axiomatic Approach to Liveness for Differential Equations 383

5 Liveness with Domain Constraints

This section presents proof rules for liveness properties x′ = f(x) &Q with
domain constraint Q. Axiom DR〈·〉 provides direct generalizations of the proof
rules from Sect. 4 with the following derivation choosing R ≡ true:

Γ � [x′ = f(x)]Q Γ � 〈x′ = f(x)〉P
DR〈·〉 Γ � 〈x′ = f(x)&Q〉P

This extends all chains of refinements (2) from Sect. 4 with an additional step:

· · · → 〈x′ = f(x)〉P
DR〈·〉
→ 〈x′ = f(x) &Q〉P

Liveness arguments become much more intricate when attempting to gener-
alize beyond DR〈·〉, e.g., recall the unsound conjecture DR〈·〉�. Indeed, unlike
the technical glitches of Sect. 4, our survey uncovers subtle soundness-critical
errors here. With our deductive approach, these intricacies are isolated to the
topological axioms (Lemma 4) which have been proved sound once and for all. As
before, errors and omissions in the surveyed techniques are highlighted in blue.

5.1 Topological Proof Rules

The first proof rule generalizes differential variants to handle domain constraints:

Corollary 13 (Atomic differential variants with domains [15]). The fol-
lowing proof rule (where � is either ≥ or >) is derivable in dL. Term ε() is
constant for the ODE x′ = f(x) and the ODE is globally Lipschitz continuous.
Formula Q characterizes a closed (resp. open) set when � is ≥ (resp. >).

dV�&
Γ � [x′ = f(x) &¬(p � 0)]Q ¬(p � 0), Q � .

p ≥ ε()
Γ, ε() > 0,¬(p � 0) � 〈x′ = f(x) &Q〉p � 0

Proof Sketch ([28]). The derivation uses axiom COR choosing R ≡ true, noting
that p ≥ 0 (resp. p > 0) characterizes a topologically closed (resp. open) set so
the appropriate topological requirements of COR are satisfied:

Γ � [x′ = f(x)&¬(p � 0)]Q

¬(p � 0), Q � .
p ≥ ε()

. . .
Γ, ε() > 0 � 〈x′ = f(x)〉p � 0

COR Γ, ε() > 0,¬(p � 0) � 〈x′ = f(x)&Q〉p � 0

The right premise follows similarly to dV� although it uses an intervening dC
step to add Q to the antecedents. ��

384 Y. K. Tan and A. Platzer

The original presentation of rule dV∗
� [15] omits the highlighted assumption

¬(p � 0). This premise is needed for the COR step and the rule is unsound
without it. In addition, it uses a form of syntactic weak negation [15], which
is also unsound for open postconditions, as pointed out earlier [25]. See the
report [28] for counterexamples. Our presentation of dV�& recovers soundness
by adding topological restrictions on the domain constraint Q.

The next two corollaries similarly make use of COR to derive the proof
rule dVM

= & [27] and the adapted rule SLyap& [24]. They respectively general-
ize dVM

= and SLyap from Sect. 4 to handle domain constraints. The technical
glitches in their original presentations [24,27], which were identified in Sect. 4,
remain highlighted here:

Corollary 14 (Equational differential variants with domains [27]). The
following proof rules are derivable in dL. Term ε() is constant for the ODE
x′ = f(x) and the ODE is globally Lipschitz continuous in both rules. Formula
Q characterizes a closed set over variables x.

dV=&
Γ � [x′ = f(x) & p < 0]Q p < 0, Q � .

p ≥ ε()
Γ, ε() > 0, p ≤ 0, Q � 〈x′ = f(x) &Q〉p = 0

dVM
= &

Q, p = 0 � P Γ � [x′ = f(x) & p < 0]Q p < 0, Q � .
p ≥ ε()

Γ, ε() > 0, p ≤ 0, Q � 〈x′ = f(x) &Q〉P

Corollary 15 (Set Lyapunov functions with domains [24]). The follow-
ing proof rule is derivable in dL. Formula K characterizes a compact set over
variables x, while formula P characterizes an open set over those variables.

SLyap&
p ≥ 0 � K ¬P,K � .

p > 0
Γ, p > 0 � 〈x′ = f(x) & p > 0〉P

The staging sets with domain constraints proof rule SP& [25] uses axiom SAR:

Corollary 16 (Staging sets with domains [25]). The following proof rule is
derivable in dL. Term ε() is constant for ODE x′ = f(x) and the ODE is globally
Lipschitz continuous.

SP&
Γ � [x′ = f(x) &¬(P ∧ Q)]S S � Q ∧ p ≤ 0 ∧ .

p ≥ ε()
Γ, ε() > 0 � 〈x′ = f(x) &Q〉P

The rules derived in Corollaries 13–16 demonstrate the flexibility of our refine-
ment approach for deriving surveyed liveness arguments as proof rules. Our app-
roach is not limited to these surveyed arguments because refinement steps can
be freely mixed-and-matched for specific liveness questions.

Example 17. The liveness property u2 + v2 = 1 → 〈αn〉u2 + v2 ≥ 2 was proved
in Example 11 using the staging set formula S ≡ 1 ≤ u2 + v2 ≤ 2. Since S
and u2 + v2 ≥ 2 both characterize closed sets, axiom COR extends the chain of
refinements (2) from Example 11 to show a stronger liveness property for αn:

〈αn, t′ = 1〉(¬S ∨ t >
2

3
)
K〈&〉
→ 〈αn〉¬S

K〈&〉
→ 〈αn〉u2 + v2 ≥ 2

COR

→ 〈αn & S〉u2 + v2 ≥ 2

An Axiomatic Approach to Liveness for Differential Equations 385

Formula ˜S ≡ 1 ≤ u2+v2 < 2 also proves Example 11 but does not character-
ize a closed set. Thankfully, the careful topological restriction of COR prevents
us from unsoundly concluding the property u2 + v2 = 1 → 〈αn & ˜S〉u2 + v2 ≥ 2.
This latter property is unsatisfiable because ˜S does not overlap with u2+v2 ≥ 2.

The refinement approach also enables discovery of new, general liveness proof
rules by combining refinement steps in alternative ways. As an example, the
following chimeric proof rule combines ideas from Corollaries 8, 10, and 16:

Corollary 18 (Combination proof rule). The following proof rule is deriv-
able in dL. Formula S characterizes a compact set over variables x.

SPk
c&

Γ � [x′ = f(x) &¬(P ∧ Q)]S S � Q ∧ .
p
(k)

> 0
Γ � 〈x′ = f(x) &Q〉P

Our logical approach derives even complicated proof rules like SPk
c& from

a small set of sound logical axioms, which ensures their correctness. The proof
rule Ec& below derives from SPk

c& (for k = 1) and is an adapted version of
the liveness argument from [23, Theorem 3.5]. In the original presentation, addi-
tional restrictions are imposed on the sets characterized by Γ, P,Q, and different
conditions are given compared to the left premise of Ec& (highlighted below).
These original conditions are overly permissive as they are checked on a smaller
set than necessary for soundness. See the report [28] for counterexamples.

Corollary 19 (Compact eventuality [23]). The following proof rule is deriv-
able in dL. Formula Q ∧ ¬P characterizes a compact set over variables x.

Ec&
Γ � [x′ = f(x) &¬(P ∧ Q)]Q Q,¬P � .

p > 0

Γ � 〈x′ = f(x) &Q〉P

6 Related Work

Liveness Proof Rules. The liveness arguments surveyed in this paper were orig-
inally presented in various notations, ranging from proof rules [15,25,27] to
other mathematical notation [22–25]. All of them were justified directly through
semantical (or mathematical) means. We unify (and correct) all of these argu-
ments and present them as dL proof rules which are syntactically derived with
our refinement-based approach from dL axioms.

Other Liveness Properties. The liveness property studied in this paper is the con-
tinuous analog of eventually [12] or eventuality [23,25] from temporal logics. In
discrete settings, temporal logic specifications give rise to a zoo of liveness prop-
erties [12]. In continuous settings, weak eventuality (requiring almost all initial
states to reach the goal region) and eventuality-safety have been studied [22,23].
In (continuous) adversarial settings, differential game variants [18] enable proofs
of (Angelic) winning strategies for differential games. In dynamical systems and
controls, the study of asymptotic stability requires both stability (an invariance

386 Y. K. Tan and A. Platzer

property) with asymptotic attraction towards a fixed point or periodic orbit (an
eventuality-like property) [5,24]. For hybrid systems, various authors have pro-
posed generalizations of classical asymptotic stability, such as persistence [26],
stability [21], and inevitability [7]. Controlled versions of these properties are also
of interest, e.g., (controlled) reachability and attractivity [1,27]. Eventuality(-like)
properties are fundamental to all of these advanced liveness properties. The for-
mal understanding of eventuality in this paper is therefore a key step towards
enabling formal analysis of more advanced liveness properties.

Automated Liveness Proofs. Automated reachability analysis tools [4,8] can also
be used for liveness verification. For an ODE and initial set X0, computing an
over-approximation O of the reachable set Xt ⊆ O at time t shows that all states
in X0 reach O at time t [26] (if solutions do not blow up). Similarly, an under-
approximation U ⊆ Xt shows that some state in X0 eventually reaches U [10] (if
U is non-empty). Neither approach handles domain constraints directly [10,26]
and, unlike deductive approaches, the use of reachability tools limits them to con-
crete time bounds t and bounded initial sets X0. Deductive liveness approaches
can also be automated. Lyapunov functions guaranteeing (asymptotic) stability
can be found by sum-of-squares (SOS) optimization [14]. Liveness arguments
can be similarly combined with SOS optimization to find suitable differential
variants [22,23]. Other approaches are possible, e.g., a constraint solving-based
approach can be used for finding so-called set Lyapunov functions [24]. Crucially,
automated approaches must be based on sound liveness arguments. The correct
justification of these arguments is precisely what our approach enables.

7 Conclusion

This paper presents a refinement-based approach for proving liveness for ODEs.
Exploration of new ODE liveness proof rules is enabled by piecing together
refinement steps identified through our approach. Given its wide applicability
and correctness guarantees, our approach is a suitable framework for justifying
ODE liveness arguments, even for readers less interested in the logical aspects.

Acknowledgments. We thank Katherine Cordwell, Frank Pfenning, Andrew
Sogokon, and the anonymous reviewers for their feedback on this paper. This material
is based upon work supported by the Alexander von Humboldt Foundation and the
AFOSR under grant number FA9550-16-1-0288. The first author was also supported
by A*STAR, Singapore.

References

1. Abate, A., D’Innocenzo, A., Benedetto, M.D.D., Sastry, S.: Understanding dead-
lock and livelock behaviors in hybrid control systems. Nonlinear Anal. Hybrid Syst.
3(2), 150–162 (2009). https://doi.org/10.1016/j.nahs.2008.12.005

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)

https://doi.org/10.1016/j.nahs.2008.12.005

An Axiomatic Approach to Liveness for Differential Equations 387

3. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Heidelberg
(1998). https://doi.org/10.1007/978-3-662-03718-8

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

5. Chicone, C.: Ordinary Differential Equations with Applications, 2nd edn. Springer,
New York (2006). https://doi.org/10.1007/0-387-35794-7

6. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems.
In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 1047–1110. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 30

7. Duggirala, P.S., Mitra, S.: Lyapunov abstractions for inevitability of hybrid sys-
tems. In: Dang, T., Mitchell, I.M. (eds.) HSCC, pp. 115–124. ACM, New York
(2012). https://doi.org/10.1145/2185632.2185652

8. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 30

9. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical
invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS. LNCS, vol. 8413, pp.
279–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8 19

10. Goubault, E., Putot, S.: Forward inner-approximated reachability of non-linear
continuous systems. In: Frehse, G., Mitra, S. (eds.) HSCC, pp. 1–10. ACM, New
York (2017). https://doi.org/10.1145/3049797.3049811

11. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister,
S. (eds.) EMSOFT, pp. 97–106. ACM, New York (2011). https://doi.org/10.1145/
2038642.2038659

12. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
0931-7

13. Owicki, S.S., Lamport, L.: Proving liveness properties of concurrent programs.
ACM Trans. Program. Lang. Syst. 4(3), 455–495 (1982). https://doi.org/10.1145/
357172.357178

14. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions
using the sum of squares decomposition. In: CDC, vol. 3, pp. 3482–3487. IEEE
(2002). https://doi.org/10.1109/CDC.2002.1184414

15. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010). https://doi.org/10.1093/logcom/exn070

16. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012).
https://doi.org/10.1109/LICS.2012.13

17. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas. 59(2), 219–265 (2017). https://doi.org/10.1007/s10817-016-9385-
1

18. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log. 18(3), 19:1–
19:44 (2017). https://doi.org/10.1145/3091123

19. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/0-387-35794-7
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1145/2185632.2185652
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1145/3049797.3049811
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1145/357172.357178
https://doi.org/10.1145/357172.357178
https://doi.org/10.1109/CDC.2002.1184414
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1145/3091123
https://doi.org/10.1007/978-3-319-63588-0

388 Y. K. Tan and A. Platzer

20. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power
of differential ghosts. In: Dawar, A., Grädel, E. (eds.) LICS, pp. 819–828. ACM,
New York (2018). https://doi.org/10.1145/3209108.3209147

21. Podelski, A., Wagner, S.: Model checking of hybrid systems: from reachability
towards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol. 3927,
pp. 507–521. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637 38

22. Prajna, S., Rantzer, A.: Primal-dual tests for safety and reachability. In: Morari,
M., Thiele, L. (eds.) HSCC. LNCS, vol. 3414, pp. 542–556. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31954-2 35

23. Prajna, S., Rantzer, A.: Convex programs for temporal verification of nonlinear
dynamical systems. SIAM J. Control Optim. 46(3), 999–1021 (2007). https://doi.
org/10.1137/050645178

24. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of Lyapunov-like functions. SIAM J. Control Optim.
48(7), 4377–4394 (2010). https://doi.org/10.1137/090749955

25. Sogokon, A., Jackson, P.B.: Direct formal verification of liveness properties in con-
tinuous and hybrid dynamical systems. In: Bjørner, N., de Boer, F.S. (eds.) FM.
LNCS, vol. 9109, pp. 514–531. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19249-9 32

26. Sogokon, A., Jackson, P.B., Johnson, T.T.: Verifying safety and persistence in
hybrid systems using flowpipes and continuous invariants. J. Autom. Reas. (2018,
to appear). https://doi.org/10.1007/s10817-018-9497-x

27. Taly, A., Tiwari, A.: Switching logic synthesis for reachability. In: Carloni, L.P.,
Tripakis, S. (eds.) EMSOFT, pp. 19–28. ACM, New York (2010). https://doi.org/
10.1145/1879021.1879025

28. Tan, Y.K., Platzer, A.: An axiomatic approach to liveness for differential equations.
CoRR abs/1904.07984 (2019)

29. Walter, W.: Ordinary Differential Equations. Springer, New York (1998). https://
doi.org/10.1007/978-1-4612-0601-9

https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1007/11730637_38
https://doi.org/10.1007/978-3-540-31954-2_35
https://doi.org/10.1137/050645178
https://doi.org/10.1137/050645178
https://doi.org/10.1137/090749955
https://doi.org/10.1007/978-3-319-19249-9_32
https://doi.org/10.1007/978-3-319-19249-9_32
https://doi.org/10.1007/s10817-018-9497-x
https://doi.org/10.1145/1879021.1879025
https://doi.org/10.1145/1879021.1879025
https://doi.org/10.1007/978-1-4612-0601-9
https://doi.org/10.1007/978-1-4612-0601-9

Local Consistency Check in Synchronous
Dataflow Models

Dina Irofti(B) and Paul Dubrulle

CEA, LIST, 91191 Gif-sur-Yvette Cedex, France
{dina.irofti,paul.dubrulle}@cea.fr

Abstract. Dataflow graphs are typically used to model signal process-
ing applications. Consistency is a necessary condition for the existence
of a dataflow graph schedule using bounded memory. Existing methods
to check this property are based on a static analysis. At every modifica-
tion on the dataflow graph, the consistency property has to be checked
again and on the entire graph, after its construction. In this paper, we
argue that for each modification, the consistency can be checked only
on the modified graph elements, and during its construction. We pro-
pose an alternative method, that can be applied either on the entire
graph, or locally, at each modification of a dataflow graph. For both
cases, we analyse our algorithm’s advantages, and compare its perfor-
mance to an existing algorithm. For the experimental setup, we generate
random graphs with worst-case instances and realistic instances. Our
theoretical analysis shows that the proposed algorithm can reduce the
number of operations required for the consistency verification, even on
entire graphs. The experimental results show that our algorithm outper-
forms the state-of-the-art algorithm on the considered benchmark.

1 Introduction

In the last few decades, dataflow graphs have been used to describe the behaviour
of signal processing applications, as they provide execution semantics adequate
to analyse their performance. The most common criteria for the performance
analysis are directly related to buffer sizing, throughput or latency optimization.
A first step in solving these optimization problems is verifying a couple of prop-
erties, such as the existence of an upper bound for the buffer sizes (the consis-
tency property) and the absence of deadlocks (also called the liveness property).
For Synchronous dataflow (SDF) model [11], whether a dataflow graph satisfies
these properties is decidable, in general. These properties are usually decidable
for most models extending the SDF model, e.g. Cyclo-static dataflow (CSDF) [5],
Parameterized dataflow (PSDF) [3], Scenario-aware dataflow (SADF) [15]. We
note that SDF and CSDF are considered static dataflow models, as opposed
to PSDF and SADF, which include some limited dynamic behaviour. However,
similar techniques are used for all these models to decide upon the consistency
property. In this paper, we focus on the consistency property for SDF graphs.
The methods used for the consistency check are based on a static analysis and
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 389–405, 2019.
https://doi.org/10.1007/978-3-030-30942-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_24&domain=pdf
http://orcid.org/0000-0002-9254-7980
http://orcid.org/0000-0002-1158-6348
https://doi.org/10.1007/978-3-030-30942-8_24

390 D. Irofti and P. Dubrulle

require the construction of the entire graph describing the application. This
requirement may be restrictive in some cases. For instance, some performance
optimization techniques need to generate random dataflow graphs. In this con-
text, the cost of state-of-the-art techniques is prohibitive, as the consistency is
checked many times and on the entire graph during the generation process. In
this paper, we propose an incremental approach that can be applied during the
graph construction. Thus, the construction of an inconsistent graph is stopped as
soon as an inconsistent element has been identified. Another example is the con-
struction of modular applications. Suppose we would like to extend an existing
consistent dataflow application describing an autonomous car radar. We would
like to obtain a collision avoidance system by connecting the radar to another
consistent dataflow graph describing a camera extension. In this case, we say
that we add a camera module to the radar system. With the existing meth-
ods, the extended dataflow application has to be rechecked on the entire graph,
despite the fact that the initial radar application and the camera module were
already verified in advance. The alternative method we propose is able to locally
check the consistency in the graph: it only checks the new changes when the
dataflow graph suffers some modifications, such as adding a module, and can
thus reduce the number of operations required for the consistency check. The
efficiency gain obtained by our method is particularly important for complex
applications represented by large graphs with very dynamic topology.

2 Synchronous Dataflow Models

Generally, a dataflow program consists in a number of tasks, called actors, con-
nected by a number of communication channels. A dataflow graph describes a
dataflow program structure: the actors are represented by vertices, and the com-
munication channels by edges. Every actor in the dataflow graph has a set of
ports. A port represents a communication channel endpoint. Actors generally
have a cyclic behaviour, called firing : they read data from their input ports,
execute their tasks, and put data on their output ports. A firing can take place
only when the actor has enough information on its input ports. The quantity of
data sent on the output or received from the input ports is specified by a number
of tokens. The production (consumption) rates represent how many tokens an
actor can send (receive) when it fires. In a synchronous dataflow, all actors have
constant consumption and production rates, and these rates are known when
defining the graph. The nodes in the dataflow graph can be mapped on different
computational units, so that the tasks can be executed following a certain order.
This procedure is called scheduling. We note that the scheduling can be done
statically (at compile time), or dynamically (at run-time). An SDF program can
be scheduled statically because we know that every given actor in the graph
produces and consumes the same amount of data every time it fires. Moreover,
a periodic schedule can be constructed for an SDF program, given that all con-
sumption and production rates are fixed. In a valid periodic schedule, each actor
fires a certain number of times before the graph returns to its initial state, with

Local Consistency Check in Synchronous Dataflow Models 391

the same number of tokens as initially on the channels. A valid repetition vector
has to be found when scheduling an SDF program. The repetition vector is a
positive, integer vector of size equal to the number of actors in the dataflow
graph. Every element in the vector corresponds to an actor and specifies the
number of times the actor fires in a periodic schedule. More than one repetition
vector can be found for a given SDF graph. The minimal repetition vector has
the minimum norm and corresponds to a minimal periodic schedule.

Fig. 1. Consistency and liveness properties illustrated on SDF graphs with two actors.

To find a valid periodic scheduling of a dataflow program, two properties are
essential: the consistency property and the absence of deadlocks; the repetition
vector is important for both of them. A graph where the tokens do not accu-
mulate on the channels over several execution periods satisfies the consistency
property. It has been proven in [12] that the existence of a non-zero repetition
vector is a necessary condition for an SDF graph to be consistent, i.e. to have a
valid periodic schedule. For example, the graph in Fig. 1(a) is consistent, because
no token accumulates on the channels: actor A produces a token, which is con-
sumed by actor B; then actor B fires and produces one token, and this token
is consumed by actor A, and so on. The repetition vector corresponding to the
graph depicted in Fig. 1(a) is (1 1), which means that each actor, A and B, fire
once before the graph returns to its initial state. However, the graph in Fig. 1(a)
is not free of deadlocks: there is no initial token on the channels, which means
that neither actor A, nor actor B can start firing. The deadlock absence and
the consistency properties are independent. For example, the graph depicted in
Fig. 1(b) has no deadlock, but it is not consistent: the channel (B→ A) con-
tains one initial token; actor A consumes the initial token, and produces another
token, which is consumed by actor B; then, actor B produces two tokens per

392 D. Irofti and P. Dubrulle

firing, so that actor A will have enough tokens on its inputs to continue to fire,
but the tokens will continue to accumulate at its inputs, as actor A cannot con-
sume them as fast as actor B produces. No repetition vector can be found for
this graph, which means that it is not consistent. A graph that satisfies both
the consistency property and has no deadlock is depicted in Fig. 1(c): actor A
consumes the two initial tokens on its input, and produces one token on its out-
put; then, actor B consumes one token and produces two tokens on its output,
which means that the graph returns in its initial state. The repetition vector
corresponding to the graph depicted in Fig. 1(c) is (1 1). The existence of such
a (non-zero) vector means that the graph is consistent. Then, one way to check
the deadlock absence, as proposed in [12], is to fire each node the number of
times specified by the repetition vector. If the SDF program has no deadlock
during this test, then the SDF graph is deadlock free. We note that the deadlock
absence is sometimes referred to as the liveness property in the literature [2,8].

Existing Framework for Consistency Property in SDF Graphs
The consistency property is important because if a repetition vector cannot
be found for a given graph, then any schedule for this graph will end up
either in deadlock, or in unbounded buffer sizes (as in the example depicted
in Fig. 1(b)). The formalism typically used in the literature for the consis-
tency check is based on the computation of the topology matrix. This formal-
ism was first proposed by Lee and Messerschmitt [10–12] for SDF graphs, and
was further adapted to other models derived from SDF model, e.g. CSDF [2,5],
Boolean dataflows [6], PSDF [3], Variable rate dataflows [17], Variable phased
dataflows [18], SADF [15]. The topology matrix is usually denoted by Γ . Every
actor in the dataflow graph has a column assigned in the topology matrix, and
every channel is assigned to a row. Thus, the (i, j)th entry of Γ matrix is the
production or consumption rate of node j on channel i. By convention, the
consumption rates take negative values in the topology matrix. The topology
matrices corresponding to the graphs depicted in Fig. 1(a–c) are represented in
Fig. 1(d–f). Finding a non-zero repetition vector, usually denoted by q, by solving
the matrix equation

Γq =
−→
0 , (1)

where
−→
0 is a vector full of zeros, is a necessary and sufficient condition for the

buffer sizes to remain bounded. This result is proven in [12]. We notice that the
minimal repetition vector solving Eq. (1) is qT = (1 1) for the graphs depicted
in Fig. 1(a) and (c), and that there is no vector q solving equation (1), except
q =

−→
0 , for the graph depicted in Fig. 1(b). The examples illustrated in Fig. 1 are

didactic. The reader can refer, for example, to [4] for a more realistic example of
a dataflow graph with 16 actors describing a modem application, for which the
repetition vector is computed in a similar way.

3 A New Approach for Consistency Check

In this section, we argue that when a dataflow graph is subject to modifications,
the consistency can be checked only on the modified graph elements. Even for

Local Consistency Check in Synchronous Dataflow Models 393

Algorithm 1. Consistency check for SDF graphs. Connect the ith element of x′

vector to the jth element of x′′ vector.

Require: x′ and x′′ repetition vectors
corresponding to two graphs; i the
index of the ith element of vector x′; j
the index of the jth element of vector
x′′; ri the production rate correspond-
ing to x′

i; rj the consumption rate cor-
responding to x′′

j .
Ensure: x the repetition vector corre-

sponding to the new graph; the incon-
sistent connexions are marked

1: if rix
′
i = rjx

′′
j then

2: c flag ← true � the new
connection is consistent

3: if x′ and x′′ are two distinct vectors
then � connect two actors from two
different graphs

4: if c flag is true then
5: x ← [x′ x′′]
6: STOP
7: else

8: m ← lcm(ri, rj)
9: d ← gcd(x′

i, x
′′
j)

10: ci ← m
d

x′′
j

ri

11: cj ← m
d

x′
i

rj

12: d ← gcd(ci, cj)
13: ci ← ci

d

14: cj ← cj
d

15: x ← [cix
′ cjx

′′]
16: STOP
17: else � connect two actors of the same

graph
18: if c flag is true then
19: x ← x′

20: STOP
21: else
22: Mark this connection as not

consistent
23: Optional: Send error message
24: STOP

graphs that are not subject to modifications, the consistency check can be made
at their construction. We consider by convention that when an actor is created,
a repetition vector is associated to it; this associated repetition vector has only
one component, equal to one. The approach we propose for locally checking the
consistency property is based on Algorithm 1, and can be used either at the
graph construction, or when the graph suffers a modification. We note that the
proposed algorithm also provides the minimal repetition vector corresponding
to the resulting SDF graph. In the following, we give the proof of correctness for
Algorithm 1, as well as three illustrating examples important for some steps of
the algorithm. Algorithm 1 proof makes use of the following proposition and its
corollary.

Proposition 1. If a graph G is consistent and has a valid repetition vector x,
then kx is also a valid repetition vector ∀k ∈ N.

The proof is based on the fact that a valid repetition vector x satisfies Γx =
−→
0 .

Corollary 1. Consider a consistent graph with n actors and a valid repetition
vector x = [x1 x2 . . . xn]. Suppose that, due to an additional design constraint,
the ith component of vector x has to be changed. We denote x∗

i the new value of
the ith component of vector x. Then, in order to keep the graph consistent, all
other x vector components xj, j = 1 . . . n, j �= i, have to be multiplied by x∗

i

xi
.

394 D. Irofti and P. Dubrulle

Proof of Correctness for Algorithm1. We consider the general case where
we connect two actors i and j, with the production and consumption rates ri and
rj , respectively. We denote the values corresponding to their position in their
repetition vector by x′

i and x′′
j . Algorithm 1 takes into account two cases. The

case where the two actors come from two different repetition vectors is treated
on line 3 of the algorithm: vector x′ is associated to actor i and the repetition
vector x′′ corresponds to actor j. If the two actors have the same corresponding
repetition vector, then x′ ≡ x′′ (line 17 of Algorithm 1). Given a consistent
SDF graph and its corresponding repetition vector x, we note that a consistent
connection between actors i and j of the graph satisfies the equation

rixi = rjxj . (2)

This equation ensures that after xi activations of actor i and xj activations of
actor j, the channel returns at its initial state. In order to avoid unnecessary
operations, we first verify if the new connection is consistent. In this case, we
make the consistency flag true on line 2. Then, we consider two cases: the case
where the two actors come from two different repetition vectors, i.e. there is
no path between the two actors before the new connection is made (line 3),
and the case where the two actors come from the same graph, i.e. they have
the same repetition vector (line 17). If the two actors come from two different
repetition vectors, and the new connection is consistent, then we concatenate the
two repetition vectors x′ and x′′ into a new repetition vector, denoted by x. This
corresponds to lines 3–6 of Algorithm 1. If the initial consistency condition (2)
does not hold before the new connection is made (line 7), we use Proposition 1
and claim that a newly created channel connecting actor i to actor j is consistent
if we can find two coefficients ci, cj ∈ N satisfying

cirix
′
i = cjrjx

′′
j . (3)

We remark that coefficients ci and cj play a role in updating the repetition
vectors x′ and x′′ after the connection. In the following, we present how to
choose ci and cj coefficients so that they satisfy Eq. (3) for the general case in

which we connect two actors. If we choose ci = x′′
j

ri
and cj = x′

i

rj
, and replace

them in Eq. (3), then we obtain x′′
j

ri
rix

′
i = x′

i

rj
rjx

′′
j , which is always true. We note

that this choice of parameters does not guarantee positive integer values for ci
and cj . Because we are searching for ci, cj ∈ N, we multiply the equation above
by m

d , where1

m = lcm(ri, rj), and d = gcd(x′
i, x

′′
j).

Thus, we obtain the coefficients ci = m
d

x′′
j

ri
, and cj = m

d
x′
i

rj
, satisfying the consis-

tency condition (3). If we are looking for the minimal repetition vector, we have

1 lcm stands for the least common multiple, and gcd stands for the greatest common
divisor.

Local Consistency Check in Synchronous Dataflow Models 395

to make sure that we multiply the initial elements of the repetition vector only
by the coefficients divided by their greatest common divisor:

ci =
m
d

x′′
j

ri

gcd
(

m
d

x′′
j

ri
, m

d

x′
i

rj

) , and cj =
m
d

x′
i

rj

gcd
(

m
d

x′′
j

ri
, m

d

x′
i

rj

) . (4)

We remark that ci and cj coefficients defined by (4) satisfy Eq. (3). If the two
actors are coming from two distinct repetition vectors and the initial consistency
condition (2) is not satisfied, then we compute ci and cj given by (4) on lines
8–14 of Algorithm 1. Then, the resulting repetition vector x is updated on line
15, using Proposition 1 and its Corollary 1. If the two actors we would like to
connect come from the same repetition vector (line 17) and the consistency flag
is true (line 18), then we have nothing more to verify: the new repetition vector
is identical to the original one (lines 19–20). Otherwise (line 21), the connection
is not consistent, i.e. the resulting graph is not consistent (lines 22–24). ��
Example 1. We consider that the graph depicted in Fig. 1(c) is modified, such
that a new actor is added. The resulting graph is depicted in Fig. 2. We note that
this modification can be seen either as an alteration of the initial graph depicted
in Fig. 1(c), or as a step in the construction of the graph depicted in Fig. 2. In
both cases, the modification actually consist in adding a new connection between
actor B and actor C. In this case, xi = 1 and corresponds to the second element
of repetition vector associated to the initial graph, and xj = 1 by convention. On
the new channel, actor B produces one token, which means ri = 1, and actor C
consumes two tokens, which means rj = 2. We know that the repetition vector
corresponding to the initial graph is (1 1), and we would like to compute the
new repetition vector resulting after the connection is made. For this, we only
need to find the ci and cj coefficients. We replace the known variables in Eq. (3),
and we obtain ci = 2cj . If we search the minimal repetition vector, we choose
ci = 2 and cj = 1. Thus, the values corresponding to the actors B and C in the
new repetition vector will be x∗

i = cixi = 2, and x∗
j = cjxj = 1, respectively. In

this case, the consistency property is preserved by Proposition 1. However, the
repetition vector element corresponding to actor A also changes, as indicated in
Corollary 1. Thus, after connecting actors B and C, the new repetition vector is
(2 2 1) and it corresponds to the graph depicted in Fig. 2.

2 2

1 1

A B C
1 2

Fig. 2. A consistent and live graph obtained after including a new actor, denoted by
actor C, to the graph depicted in Fig. 1(c). The corresponding repetition vector is
(2 2 1).

396 D. Irofti and P. Dubrulle

Remark 1. We note that, for Example 1, the computation of a new Γ matrix is
not necessary in order to find a valid repetition vector. We only need to find the
coefficients ci and cj and then apply Corrolary 1. However, we remark that the
repetition vector we find x = (2 2 1) satisfies Eq. (1), where

Γ =

⎡
⎣

1 −1 0
−2 2 0
0 1 −2

⎤
⎦ , and q = x.

The minimal repetition vector is unique, given the particular structure of Γ
matrix (only two non-zero elements per row, as a channel only has two end-
points). This means that Algorithm 1 finds the same (minimal) repetition vector
as other state-of-the-art methods based on the framework presented in Sect. 2.

Example 2. We apply Algorithm1 at the construction of the graph depicted in
Fig. 3. When actors A, B, C, and D are created, each of them have a repetition
vector x = (1). The connections are made in the following order: (A → B),
(A → C), (B → D), (C → D). After the connection (A → B), Algorithm 1
gives ci = 3, cj = 2, and x = (3 2), as the two actors come from two different
repetition vectors. In a similar way, ci = 1, cj = 3, and x = (3 2 3) when the
connection (A → C) is made. Connection (B → D) emphasizes the importance
of lines 12–14 in Algorithm 1: before line 12, ci = cj = 2; using these coefficients,
we do not obtain a minimal repetition vector when updating x as on line 15,
hence, the role of dividing the coefficients by d. The case expressed on the lines 17
and 18 in Algorithm 1 illustrates the connection (C → D): the repetition vector
does not change, it is the same as after connection (C → D), x = (3 2 3 1).

2

2

2

3

A

B

D

1

2

C 1

3

Fig. 3. A graph with a split-
join configuration.

Example 2 illustrates how to apply the Algo-
rithm 1 on a given graph. From this example, we
observe that lines 8–14 guarantee a set of inte-
ger coefficients necessary to obtain a minimal
repetition vector. However, the local consistency
check has another important feature, namely it
can reduce the number of operations required,
especially in the case of modular applications.

Example 3. We consider a modular dataflow
application, in which a dataflow program described by the graph depicted in
Fig. 3 is added to an existing dataflow program described by Fig. 2 graph. The
resulting graph is depicted in Fig. 4. As the consistency property has been already
checked for the two graphs, only the new connection between B1 actor of the
first graph and B2 actor of the second graph needs to be checked. We apply
Algorithm 1 with the inputs x′ = (2 2 1), x′′ = (3 2 3 1), i = 2, j = 2, ri = 1,
rj = 5, and obtain ci = 5 and cj = 1. The repetition vector given by Algorithm1
output is x = (10 10 5 3 2 3 1). We note that the three first elements of vector
x correspond to repetition vector x′ and have been multiplied by ci.

Remark 2. Example 3 shows that Algorithm 1 can locally check the consistency
property: when two consistent graphs are connected, the user does not have to

Local Consistency Check in Synchronous Dataflow Models 397

recheck their consistency. The proposed algorithm checks only the new connec-
tions in this case, and deduces the resulting repetition vector from the two initial
repetition vectors. This is one important advantage when compared to the clas-
sical method used in the literature, for which a new topology matrix has to be
computed and a new matrix equation of type (1) has to be solved.

Remark 3. Example 3 gives some insights into the advantages of locally checking
the consistency property. The modular application described by this example,
can also be seen as the construction of a graph: first, three actors are created
and linked, then other four actors are created and linked, and finally the two
subgraphs are connected. For example, this is how graphs are constructed in the
SDF3 open source tool [14], starting from an xml file where the actors and the
connections are given in a random order. More details are given in Subsect. 4.1.

The examples and remarks presented above emphasize the advantages of
locally checking the consistency property. On the considered examples, we can
see that the computation of the topology matrix is not necessary, and that the
minimal repetition vector can be found in a more efficient way. Another advan-
tage of our approach is that the inconsistent elements can be identified, and not
the entire graph is needed in order to decide on the graph consistency. Algo-
rithm1 basically describes how the consistency can be checked on a connection,
and can be applied incrementally during the dataflow graph construction. It
can be also applied after the graph construction, on each channel of the graph.
This means that graphs with many connections need more time for the consis-
tency check. We define fully connected graphs as dataflow graphs where all
actors are connected to all actors. Moreover, we remark that, for fully connected
graphs, Algorithm1 efficiency also depends on the order in which the chan-
nels are checked for consistency. When channels connecting actors from different
graphs are first read, more operations are executed in Algorithm1, as lines 3–16
contains more instructions than lines 17–24. This way of reading the channels
on fully connected graphs represent the worst-case execution scenario for
Algorithm 1, and can be avoided by changing the order of reading. For a given
fully connected graph under the worst-case execution scenario, we neglect the
complexity for gcd and lcm functions, as they are difficult to predict, and we
estimate Algorithm 1 complexity to

c =
n−1∑
i=1

(2i + 5) + 24(n − 1) + 16
[
n2 − (n − 1)

]
= 17n2 + 12n − 18, (5)

where n is the number of actors in the graph. Because of space restrictions, we
give only some insights into why the Eq. (5) is quadratic: in a fully connected
graph with n actors, the number of connections is n2. In the next section, we
experimentally verify these observations by testing our algorithm on a few thou-
sands graphs, of different size and topology.

398 D. Irofti and P. Dubrulle

4 Experimental Results

4.1 Implementation in the SDF3 Open Source Tool

SDF3 tool is written in C/C++ and provides analysis, random generation and
implementation techniques for SDF graphs and other similar models. In par-
ticular, it contains a function to check the consistency for SDF graphs. The
algorithm used by the consistency check function in the SDF3 tool is based on
the recursive algorithm presented in Section IV.D from [11]. It basically consists
in one graph traversal to compute a fraction corresponding to each node in the
graph. These fractions are then reduced to integer numbers by using Euclid’s
algorithm to find the least common multiple of all denominators. These integer
numbers are actually the components of the smallest repetition vector. In the
remaining part of this paper, we denote this algorithm by SDF3 algorithm.
Even if the technique presented in Sect. 2 is the most commonly used for the
consistency study in the models extending the SDF model, SDF3 algorithm is
more efficient as it only involves a single graph traversal instead of solving a
matrix equation.

2 2

1 1

A1 B1 C1

1 2

2

2

2

3

A2

B2

D2

1

2

C2 1

3

1

5

Fig. 4. A modular dataflow graph
obtained by adding a connection
between two modules. The first
module is the graph depicted in
Fig. 2, and the second module is
the graph illustrated in Fig. 3. The
connection between the two mod-
ules is the (B1 → B2) connection.

In short, we have chosen the SDF3 tool
for our experimental setup because it pro-
vides the right framework to generate thou-
sands of graphs on which we can test Algo-
rithm 1, and because it provides a consis-
tency check function to which we can com-
pare our algorithm performance. The machine
on which we conduct the experimental tests
is an Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10 GHz running Ubuntu 16.1 Linux 4.4.0-
135-generic. We used only one core for
the measurements in our experiments. We
define the running time of an algorithm as
the time measured by calls to clock gettime
on CLOCK PROCESS CPUTIME ID around
the function call.

We have included an additional function
to SDF3, implementing Algorithm1. In our
experiments, we compare the running times

necessary for the consistency check for the two algorithms, SDF3 algorithm and
Algorithm 1. We have also included a function that checks and thus guarantees,
in our experiments, that Algorithm 1 provides the same results and the same
repetition vector as the consistency check function implemented in the SDF3

tool. This function experimentally confirms the observation made at the end of
Remark 1. Moreover, we have added and adapted a few functions to the consid-
ered benchmark, as presented in the following subsection.

Local Consistency Check in Synchronous Dataflow Models 399

4.2 Benchmark

There is no standard benchmark set of SDF graphs. However, there are a few
graphs describing some typical applications in the literature, such as a modem,
a satellite receiver, a sample-rate converter or an MP3 decoder (see [9] and ref-
erences therein). Models extending the SDF model have been used to describe,
for instance, a speech compression application [3] and an MP3 play-back appli-
cation [7]. In this work, we have chosen to evaluate our algorithm on a very large
number of graphs, and we preferred to generate a benchmark of random graphs
by using the SDF3 tool. More precisely, we consider three sets of graphs, denoted
in the remaining part of the paper by the notation in bold.

Homogeneous Graphs. We use this benchmark to compare the experimen-
tal results to the theoretical complexity (5) computed for Algorithm1 in the
worst-case execution scenario of fully connected graphs. With this benchmark
we measure the run-time without taking into account the gcd and lcm functions.
Considering fully connected homogeneous synchronous dataflow graphs (HSDF)
allows us to neglect these functions, since all production and consumption rates
are equal to one. This benchmark contains 10 graphs. The number of actors of
each graph varies between 100 and 1000, with a step of 100. We implemented an
additional function that changes the order in which the channels are read in the
SDF3 tool, to simulate the worst-case execution scenario. We precise that we use
this additional function only for the homogeneous graph benchmark. We note
that in the original form of the SDF3 tool the channels are read in a random
order.

Fully Connected Graphs. We consider fully connected graphs with the num-
ber of actors varying between 10 and 300 with a step of 10. We generate 100
different consistent graphs of size s, with the number of actors s varying between
10 and 300, with random rates on the channels. We set in the SDF3 generator
the rate average 2, the minimum acceptable rate 1, the maximum acceptable
rate 3, the rates variance 1, and the repetition vector sum equal to 9 times the
number of nodes in the generated graph. This fully connected graph benchmark
contains 3000 graphs in total.

Practical Graphs. In practical applications, dataflow programs are very rarely
represented by fully connected graphs; in general, less connections are involved.
Practical applications usually contains actors connected in a linear way mixed
with actors connected in a split-join configuration, as the one depicted in Fig. 3,
but with more actors of type B and C in the middle. For our experimental setup,
we estimate that in practical applications the average number of connections
of an actor to other actors in the graph is equal to 4. For instance, in the
illustrative modem example presented in [4], we can see that the average number
of connections per actor is close to 3. In this work, we suppose that for more
realistic and complex applications, the average is around 4. We generate with the
SDF3 generator 30 sets of 100 consistent graphs, each set of a size between 10 and
300 nodes with a step of 10. In the generator, we set the average number of actor
connections to 4, the rate average 2, the minimum rate 1, the maximum rate 3,

400 D. Irofti and P. Dubrulle

the rates variance 1, and the repetition vector sum 9 times the number of nodes in
the generated graph. This benchmark totals 3000 graphs. We have implemented
a verification function in SDF3, and checked that all graphs generated for this
benchmark have the average connection close to 4.

We have also encountered some problems when we generated the benchmark
with the SDF3 tool. One difficulty was that sometimes the rate average and
range do not satisfy the generator settings. Some graphs have very large produc-
tion and consumption rates, but they are limited by the sum of the repetition
vector settings. Another major problem was that, even if it should generate only
consistent graphs, the generator sometimes fails to do so for large-size graphs.
We have remarked that for graphs with more than 100 nodes, the SDF3 genera-
tor has a 3% error probability: 3 out of 100 generated graphs of size larger than
100 nodes are not consistent. We have fixed this problem by replacing the non-
consistent graphs with other, newly generated, consistent graphs. We verified
that each graph considered in our benchmark is consistent by checking it with
both our algorithm and SDF3 algorithm and comparing the results. We have
also verified that for all considered graphs, SDF3 and our algorithm provide the
same minimal repetition vector. Also, the number of actors considered for our
benchmark is reasonable, similar, for instance, to some applications implemented
in StreamIt language [16].

4.3 Results Obtained on the Experimental Setup

Throughout this section, we experimentally validate Algorithm1 and compare
it to the SDF3 algorithm.

Fig. 5. Experimental results obtained on homoge-
neous graph benchmark.

We first validate the imp-
lementation of Algorithm 1
in SDF3 by analysing the
experimental results obtai-
ned on the homogeneous
graph benchmark. We can-
cel all compiler optimiza-
tion (only for our experi-
ments on the homogeneous
graph benchmark), and we
measure the run-time nec-
essary for the SDF3 algo-
rithm and for Algorithm1
to check the consistency
on the homogeneous bench-
mark. The result is depicted
in Fig. 5, where the continu-

ous curves correspond to the experimental results, the blue one to Algorithm 1,
and the orange one to SDF3 algorithm. The dotted, purple curve in Fig. 5 repre-
sents the polynomial 17n2, with n the number of nodes in the graph, multiplied
by a constant 10−8. We estimated this constant so that the dotted purple curve

Local Consistency Check in Synchronous Dataflow Models 401

fits the experimental blue curve. We note that 17n2 corresponds to complex-
ity (5); this means that the experimental curve given by Algorithm1 has the
same slope as the estimated complexity (5). The dotted green curve in Fig. 5 is
only a translation of the purple curve: it is obtained by multiplying the poly-
nomial giving the purple curve by 7.8. These experimental results suggest that
Algorithm 1 performs between 7 and 8 times better than SDF3 algorithm on
fully connected graphs under the worst-case execution scenario. We remark that
locally checking the consistency property can be advantageous, especially for
large-size graphs, as the time needed for Algorithm 1 is smaller than the time
needed for SDF3 algorithm.

In Fig. 6(a), we compare the results obtained with Algorithm 1 (blue trian-
gles) to the results obtained with SDF3 algorithm (orange dots) on the fully
connected graph benchmark. For each size of a fully connected graph we plot
100 points corresponding to the time needed for SDF3 algorithm (in orange
dots) and for Algorithm 1 (in blue triangles). We can remark that our algorithm
performs better. We can also remark a time variation, especially for the results
obtained by SDF3 algorithm. We recall that the 100 graphs of size s, with s
varying between 10 and 300 in this benchmark, have exactly the same topol-
ogy (the same number of actors, the same number of connections), but different
rates on the channels. Thus, one possible explanation for this variation is the fact
that the production and consumption rates are different for the same topology
considered for the 100 points plotted for a given graph size. Another source of
variation can be linked to the compiler optimization and to the order in which
the channels are read by the SDF3 tool. We note that randomly reading the
channels means avoiding the worst-case scenario execution. Overall, the experi-
mental results presented in Fig. 6(a) show that locally checking the consistency
outperforms the SDF3 technique in the case of graphs with a very high average
number of connections per actor.

Next, we present the experimental results obtained on the practical graph
benchmark. We measure the running time needed for both algorithms on this
benchmark and plot the results in Fig. 6, where the orange dots correspond to
SDF3 algorithm and the blue triangles correspond to Algorithm1. We remark
that in this case, the two algorithm performance is similar; Algorithm1 performs
a bit better, though. A difference, when compared to the fully connected graphs
results, is that the results obtained with our algorithm also varies, even if the
variation is less important than the one produced by SDF3 algorithm. An expla-
nation for this variation is also the production and consumption rate variation
determined by the SDF3 graph generator. For example, we have noticed that
the graphs in the practical graph benchmark contains a larger interval for their
channels’ rates, as opposed to the graphs in the fully connected graph bench-
mark, which contains many unitary rates generated by SDF3. We note that a
large variation of rates will induce different results of the time measured for gcd
and lcm functions for Algorithm1. However, we consider that this variation is
reasonable.

402 D. Irofti and P. Dubrulle

(a) Experimental results obtained on fully
connected graph benchmark.

(b) Experimental results obtained on
practical graph benchmark.

Fig. 6. Experimental results on fully connected and practical graph benchmark. (Color
figure online)

One major advantage of our approach of locally checking the consistency
property is illustrated on the following experiment concerning modular appli-
cations. Because of space limitation, we illustrate only the add operation for
modular applications, i.e. two modules are connected. However, our approach
can be generalized for the remove operation (e.g. a module elimination), and for
a changing rate operation (composed by an add and a remove operation). For
this experiment, we consider two fully connected graphs G1 and G2, with n1 and
n2 actors, respectively. We suppose that n2 is comparable to n1: either n2 = n1,
or n2 = n1+10. We would like to check the consistency of a modular application
described by a fully connected graph G3 = G1

⋃
G2. In other words, we connect

all actors from G1 to all actors of G2 and obtain G3 graph. We propose two
strategies to check the graph G3 consistency.

Strategy 1: apply Algorithm1 on G3.

Strategy 2: apply Algorithm1 on G1, then apply Algorithm1 on G2, and then
use Algorithm 1 to verify only the new connections made when the modular
graph G3 is created.

We note that for this experiment we have implemented an additional func-
tionality in the SDF3 tool, corresponding to Strategy 2. Moreover, we have cre-
ated a new benchmark for this experiment, by using 50 graphs of each size up to
150 nodes from the fully connected graph benchmark for G1 graph, and another
50 graphs for the G2 graph. In Fig. 7(a), we compare the time needed for Strat-
egy 1 (orange dots) and Strategy 2 (blue triangles) to merge two graphs G1

and G2, and obtain a modular application G3 of various size represented on the
horizontal axis. We remark that Strategy 2 outperforms Strategy 1. We note
also that the results summarized in Fig. 7(a) include only one merge of two pos-
sible applications. We can extrapolate by saying that Strategy 2 will perform
even better when more applications are merged into one graph. This statement
is confirmed by the experiment depicted in Fig. 7(b), where the two strategies

Local Consistency Check in Synchronous Dataflow Models 403

(a) Connection of two dataflow modules of
similar size.

(b) Connection of a dataflow application
to a module of size 10.

Fig. 7. Experimental results on modular applications. The graph size represented on
the horizontal axis is the size of the resulting dataflow graph. (Color figure online)

are compared for n1 varying from 30 to 290 with a step of 10, and n2 = 10 is
fixed. We note that for this experiment we have used 100 graphs of each size
up to 290 from the fully connected graph benchmark for G1, and all 100 graphs
of size 10 from the same benchmark for G2. The horizontal axis in Fig. 7(b)
represents the size of the resulting dataflow graph G3, and the vertical axis rep-
resents the measured run-time for the two strategies. We remark that, in this
case, Strategy 2 clearly outperforms Strategy 1. We can conclude by saying that
one major contribution of Algorithm1 is that it allows the implementation of
Strategy 2, which is not the case for any existing consistency check techniques
in the dataflow literature, as far as we know.

5 Related Work

Generally, the technique presented in Sect. 2 is the most commonly used for SDF
graphs and models extending the SDF model [3,5,11,15]. The same method is
used in Berkley’s Ptolemy Project [13], ΣC language [1] and StreamIt language
and compiler. For all these models, the consistency is checked by solving a matrix
equation. However, the SDF3 algorithm is more efficient than solving Eq. (1), as
solving this matrix equation is generally an operation of complexity order three.
In the cited models, the consistency check technique does not identify the incon-
sistent elements in the graph. However, a small modification can be made to
the SDF3 algorithm to identify the inconsistent elements and stop the algorithm
when such an element is found, as our algorithm do. Moreover, Algorithm1 has
another advantage when compared to these techniques: it is more efficient for
modular dataflow application, as the modules put together do not have to be
checked again; checking only the new connections between the modules is suf-
ficient. Thus, our algorithm and Strategy 2 can significantly decrease the time

404 D. Irofti and P. Dubrulle

needed for consistency check in modular applications in which a topology explo-
ration is performed (i.e. where many random graphs are generated). Algorithm 1
can be generalized for other models extending the SDF model.

6 Concluding Remarks

We have proposed a new approach and method for consistency check in syn-
chronous dataflow graphs. This approach has two main differences when com-
pared to state-of-the-art methods. Firstly, we propose checking the consistency
during the dataflow graph construction, and not after the construction, i.e. on
the entire graph. Secondly, we propose locally checking the consistency, meaning
checking the consistency on every modification suffered by the graph starting
to its construction, and thus immediately identifying the inconsistent connec-
tions. We have proposed an algorithm using this approach, and implemented
it in an existing open source tool. We have generated an experimental bench-
mark totalling more than six thousands dataflow graphs, and we have tested
our algorithm on this benchmark. We have also validated the results obtained
with our algorithm, as they are identical to the results given by the state of
the art consistency check algorithm implemented in the open source tool. We
have compared the time performance given by our algorithm to the time needed
by the existing algorithm, and found out that our algorithm performs better
on the considered benchmark. The experimental results we obtained show that
our algorithm has the advantage of being extremely efficient for complex sys-
tems represented by dataflow applications build from several modules and with
highly dynamic topology. For future work, we consider to model an Industry 4.0
supply chain using the SDF model, and apply the proposed approach to simulate
and control reconfigurable production processes. For such complex systems, the
efficiency gain provided by our algorithm and Strategy 2 is significant.

Acknowledgements. Many thanks to Jason Lecerf for its attentive reading and sug-
gestions. We thank Löıc Cudennec and Thierry Goubier for our discussions.

References

1. Aubry, P., et al.: Extended cyclostatic dataflow program compilation and execution
for an integrated manycore processor. In: Alchemy 2013-Architecture, Languages,
Compilation and Hardware Support for Emerging ManYcore Systems, vol. 18, pp.
1624–1633 (2013)

2. Benazouz, M., Munier-Kordon, A., Hujsa, T., Bodin, B.: Liveness evaluation of a
cyclo-static dataflow graph. In: 2013 50th ACM/EDAC/IEEE on Design Automa-
tion Conference (DAC), pp. 1–7. IEEE (2013)

3. Bhattacharya, B., Bhattacharyya, S.S.: Parameterized dataflow modeling for DSP
systems. IEEE Trans. Signal Process. 49(10), 2408–2421 (2001). https://doi.org/
10.1109/78.950795

4. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Synthesis of embedded software from
synchronous dataflow specifications. J. VLSI Signal Process. Syst. Signal Image
Video Technol. 21(2), 151–166 (1999)

https://doi.org/10.1109/78.950795
https://doi.org/10.1109/78.950795

Local Consistency Check in Synchronous Dataflow Models 405

5. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow.
IEEE Trans. Signal Process. 44(2), 397–408 (1996). https://doi.org/10.1109/78.
485935

6. Buck, J.T., Lee, E.A.: Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. In: 1993 IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 1993, vol. 1, pp. 429–432. IEEE (1993).
https://doi.org/10.1109/ICASSP.1993.319147

7. Geilen, M., Tripakis, S., Wiggers, M.: The earlier the better: a theory of timed
actor interfaces. In: Proceedings of the 14th International Conference on Hybrid
Systems: Computation and Control, pp. 23–32. ACM (2011)

8. Ghamarian, A.H., Geilen, M., Basten, T., Theelen, B.D., Mousavi, M.R., Stuijk,
S.: Liveness and boundedness of synchronous data flow graphs. In: 2006 Formal
Methods in Computer Aided Design, FMCAD 2006, pp. 68–75. IEEE (2006)

9. Ghamarian, A.H., et al.: Throughput analysis of synchronous data flow graphs.
In: 2006 Sixth International Conference on Application of Concurrency to System
Design. ACSD 2006, pp. 25–36. IEEE (2006)

10. Lee, E.A.: Consistency in dataflow graphs. IEEE Trans. Parallel Distrib. Syst. 2(2),
223–235 (1991). https://doi.org/10.1109/71.89067

11. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987). https://doi.org/10.1109/PROC.1987.13876

12. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. 100(1), 24–35 (1987).
https://doi.org/10.1109/TC.1987.5009446

13. Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II, vol.
1. Ptolemy.org, Berkeley (2014)

14. Stuijk, S., Geilen, M., Basten, T.: SDF3: SDF for free. In: 2006 Sixth International
Conference on Application of Concurrency to System Design, ACSD 2006, pp.
276–278. IEEE (2006). https://doi.org/10.1109/ACSD.2006.23

15. Theelen, B.D., Geilen, M.C., Basten, T., Voeten, J.P., Gheorghita, S.V., Stuijk, S.:
A scenario-aware data flow model for combined long-run average and worst-case
performance analysis. In: 2006 Fourth ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, MEMOCODE 2006, Proceedings,
pp. 185–194. IEEE (2006). https://doi.org/10.1109/MEMCOD.2006.1695924

16. Thies, W., Amarasinghe, S.: An empirical characterization of stream programs
and its implications for language and compiler design. In: Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques,
pp. 365–376. ACM (2010)

17. Wiggers, M.H., Bekooij, M.J., Smit, G.J.: Buffer capacity computation for through-
put constrained streaming applications with data-dependent inter-task communi-
cation. In: 2008 Real-Time and Embedded Technology and Applications Sympo-
sium, RTAS 2008, pp. 183–194. IEEE (2008). https://doi.org/10.1109/RTAS.2008.
10

18. Wiggers, M.H., Bekooij, M.J., Smit, G.J.: Buffer capacity computation for
throughput-constrained modal task graphs. ACM Trans. Embed. Comput. Syst.
(TECS) 10(2), 17 (2010)

https://doi.org/10.1109/78.485935
https://doi.org/10.1109/78.485935
https://doi.org/10.1109/ICASSP.1993.319147
https://doi.org/10.1109/71.89067
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1109/ACSD.2006.23
https://doi.org/10.1109/MEMCOD.2006.1695924
https://doi.org/10.1109/RTAS.2008.10
https://doi.org/10.1109/RTAS.2008.10

Gray-Box Monitoring of Hyperproperties

Sandro Stucki1(B) , César Sánchez2 , Gerardo Schneider1 ,
and Borzoo Bonakdarpour3

1 University of Gothenburg, Gothenburg, Sweden
sandro.stucki@gu.se, gerardo@cse.gu.se
2 IMDEA Software Institute, Madrid, Spain

cesar.sanchez@imdea.org
3 Iowa State University, Ames, USA

borzoo@iastate.edu

Abstract. Many important system properties, particularly in security
and privacy, cannot be verified statically. Therefore, runtime verification
is an appealing alternative. Logics for hyperproperties, such as Hyper-
LTL, support a rich set of such properties. We first show that black-box
monitoring of HyperLTL is in general unfeasible, and suggest a gray-
box approach. Gray-box monitoring implies performing analysis of the
system at run-time, which brings new limitations to monitorability (the
feasibility of solving the monitoring problem). Thus, as another contri-
bution of this paper, we refine the classic notions of monitorability, both
for trace properties and hyperproperties, taking into account the com-
putability of the monitor. We then apply our approach to monitor a
privacy hyperproperty called distributed data minimality, expressed as a
HyperLTL property, by using an SMT-based static verifier at runtime.

1 Introduction

Consider a confidentiality policy ϕ that requires that every pair of separate exe-
cutions of a system agree on the position of occurrences of some proposition a.
Otherwise, an external observer may learn some sensitive information about the
system. We are interested in studying how to build runtime monitors for prop-
erties like ϕ, where the monitor receives independent executions of the system
under scrutiny and intend to determine whether or not the system satisfies the
property. While no such monitor can determine whether the system satisfies
ϕ—as it cannot determine whether it has observed the whole (possibly infinite)
set of traces—it may be able to detect violations. For example, if the monitor
receives finite executions t1 = {a}{}{}{a}{} and t2 = {a}{a}{}{}{a}, then it is

This research has been partially supported by the United States NSF SaTC
Award 1813388, by the Swedish Research Council (Vetenskapsr̊adet) under Grant 2015-
04154 “PolUser”, by the Madrid Regional Government under Project S2018/TCS-4339
“BLOQUES-CM”, by EU H2020 Project 731535 “Elastest”, and by Spanish National
Project PGC2018-102210-B-100 “BOSCO”.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 406–424, 2019.
https://doi.org/10.1007/978-3-030-30942-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_25&domain=pdf
http://orcid.org/0000-0001-5608-8273
http://orcid.org/0000-0003-3927-4773
http://orcid.org/0000-0003-0629-6853
http://orcid.org/0000-0003-1800-5419
https://doi.org/10.1007/978-3-030-30942-8_25

Gray-Box Monitoring of Hyperproperties 407

straightforward to see that the pair (t1, t2) violates ϕ (the traces do not agree
on the truth value of a in the second, fourth, and fifth positions).

Now, if we change the policy to ϕ′ requiring that, for every execution, there
must exist a different one that agrees with the first execution on the position
of occurrences of a, the monitor cannot even detect violations of ϕ′. Indeed, it
is not possible to tell at run-time whether or not for each execution (from a
possibly infinite set), there exists a related one. Such properties for which no
monitor can detect satisfaction or violation are known as non-monitorable.

Monitorability was first defined in [26] as the problem of deciding whether
any extension of an observed trace would violate or satisfy a property expressed
in LTL. We call this notion semantic black-box monitorability. It is semantic
because it defines a decision problem (the existence of a satisfying or violat-
ing trace extension) without requiring a corresponding decision procedure. In
settings like LTL the problem is decidable and the decision procedures are well-
studied, but in other settings, a property may be semantically monitorable even
though no algorithm to monitor it exists. This notion of monitorability is “black-
box” because it only considers the temporal logic formula to determine the plau-
sibility of an extended observation that violates or satisfies the formula. This is
the only sound assumption without looking inside the system. Many variants of
this definition followed, mostly for trace logics [17] (see also [4]).

The definition of semantic monitorability is extended in [1] to the context of
hyperproperties [10]. A hyperproperty is essentially a set of sets of traces, so mon-
itoring hyperproperties involves reasoning about multiple traces simultaneously.
The confidentiality example discussed above is a hyperproperty. The notion of
monitorability for hyperproperties in [1] also considers whether extensions of an
observed trace, or of other additional observed traces, would violate or satisfy
the property. An important drawback of these notions of monitorability is that
they completely ignore the role of the system being monitored and the possible
set of executions that it can exhibit to compute a verdict of a property.

Fig. 1. The monitorability cube.

In this paper, we consider a landscape
of monitorability aspects along three dimen-
sions, as depicted in Fig. 1. We explore the
ability of the monitor to reason about mul-
tiple traces simultaneously (the trace/hy-
per dimension). We first show that a large
class of hyperproperties that involve quanti-
fier alternations are non-monitorable. That
is, no matter the observation, no verdict can
ever be declared. We then propose a solution
based on a combination of static analysis and
runtime verification. If the analysis of the sys-
tem is completely precise, we call it white-
box monitoring. Black-box monitoring refers
to the classic approach of ignoring the system and crafting general monitors
that provide sound verdicts for every system. In gray-box monitoring, the mon-

408 S. Stucki et al.

itor uses an approximate set of executions, given for example as a model, in
addition to the observed finite execution. The combination of static analysis and
runtime verification allows to monitor hyperproperties of interest, but it involves
reasoning about possible executions of the system (the black/gray dimension in
Fig. 1). This, in turn, forces us to consider the computability limitations of the
monitors themselves as programs (the computability dimension).

We apply this approach to monitoring a complex hyperproperty of interest in
privacy, namely, data minimization. The principle of data minimization (intro-
duced in Article 5 of the EU General Data Protection Regulation [13]) from a
software perspective requires that only data that is semantically used by a pro-
gram should be collected and processed. When data is collected from independent
sources, the property is called distributed data minimization (DDM) [3,24]. Our
approach for monitoring DDM is as follows. We focus on detecting violations of
DDM (which we express in HyperLTL using one quantifier alternation). We then
create a gray-box monitor that collects dynamically potential witnesses for the
existential part. The monitor then invokes an oracle (combining symbolic execu-
tion trees and SMT solving) to soundly decide the universally quantified inner
sub-formula. Our approach is sound but approximated, so the monitor may give
an inconclusive answer, depending on the precision of the static verification.

Contributions. In summary, the contributions of this paper are the following:

(1) Novel richer definitions of monitorability that consider trace and hyper-
properties, and the possibility of analyzing the system (gray-box monitor-
ing). This enables the monitoring, via the combination of static analysis and
runtime verification, of properties that are non-monitorable in a black-box
manner. Our novel notions of monitorability also cover the computability
limitations of monitors as programs, which is inevitable once the analysis is
part of the monitoring process.

(2) We express DDM as a hyperproperty and study its monitorability within
the richer landscape defined above. We then apply the combined approach
where the static analysis in this case is based on symbolic execution (Sect. 4).

Full proofs as well as a detailed description of our proof-of-concept implemen-
tation and its empirical evaluation can be found in the extended version of this
paper [27]. The source code of our implementation is freely available online.1

2 Background

Let AP be a finite set of atomic propositions and Σ = 2AP be the finite alphabet.
We call each element of Σ a letter (or an event). Throughout the paper, Σω

denotes the set of all infinite sequences (called traces) over Σ, and Σ∗ denotes
the set of all finite traces over Σ. For a trace t ∈ Σω (or t ∈ Σ∗), t[i] denotes the
ith element of t, where i ∈ N. We use |t| to denote the length (finite or infinite) of

1 At https://github.com/sstucki/minion/.

https://github.com/sstucki/minion/

Gray-Box Monitoring of Hyperproperties 409

trace t. Also, t[i, j] denotes the subtrace of t from position i up to and including
position j (or ε if i > j or if i > |t|). In this manner t[0, i] denotes the prefix of
t up to and including i and t[i, ..] denotes the suffix of t from i (including i).

Given a set X, we use P(X) for the set of subsets of X and Pfin(X) for the
set of finite subsets of X. Let u be a finite trace and t a finite or infinite trace.
We denote the concatenation of u and t by ut. Also, u � t denotes the fact that
u is a prefix of t. Given a finite set U of finite traces and an arbitrary set W
of finite or infinite traces, we say that W extends U (written U � W) if, for
all u ∈ U , there is a v ∈ W , such that u � v. Note that every trace in U is
extended by some trace in W (we call these trace extensions), and that W may
also contain additional traces with no prefix in U (we call these set extensions).

2.1 LTL and HyperLTL

We now briefly introduce LTL and HyperLTL. The syntax of LTL [25] is:

ϕ:: = a
∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ © ϕ

∣
∣ ϕ U ϕ

where a ∈ AP. The semantics of LTL is given by associating to a formula the set
of traces t ∈ Σω that it accepts:

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t �|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2

t |= ©ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for somei, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

We will also use the usual derived operators (ϕ ≡ trueUϕ) and (�ϕ ≡ ¬ ¬ϕ).
All properties expressible in LTL are trace properties (each individual trace sat-
isfies the property or not, independently of any other trace). Some important
properties, such as information-flow security policies (including confidentiality,
integrity, and secrecy), cannot be expressed as trace properties but require rea-
soning about two (or more) independent executions (perhaps from different
inputs) simultaneously. Such properties are called hyperproperties [10]. Hyper-
LTL [11] is a temporal logic for hyperproperties that extends LTL by allowing
explicit quantification over execution traces. The syntax of HyperLTL is:

ϕ:: = ∀π.ϕ
∣
∣ ∃π.ϕ

∣
∣ ψ ψ:: = aπ

∣
∣ ¬ψ

∣
∣ ψ ∨ ψ

∣
∣ © ψ

∣
∣ ψ U ψ

A trace assignment Π : V → Σω is a partial function mapping trace variables in
V to infinite traces. We use Π∅ to denote the empty assignment, and Π[π → t]
for the same function as Π, except that π is mapped to trace t. The semantics
of HyperLTL is defined by associating formulas with pairs (T,Π), where T is a
set of traces and Π is a trace assignment:

T,Π |= ∀π.ϕ iff for all t ∈ T the following holds T,Π[π → t] |= ϕ
T,Π |= ∃π.ϕ iff there exists t ∈ T such that T,Π[π → t] |= ϕ
T,Π |= ψ iff Π |= ψ

410 S. Stucki et al.

The semantics of the temporal inner formulas is defined in terms of the traces
associated with each path (here Π[i, ..] denotes the map that assigns π to t[i, ..]
if Π(π) = t):

Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2

Π |= ¬ψ iff Π �|= ψ
Π |= ©ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i,Π[i, ..] |= ψ2, and for all j < iT,Π[j, ..] |= ψ1

We say that a set T of traces satisfies a HyperLTL formula ϕ (denoted T |= ϕ)
if and only if T,Π∅ |= ϕ.

Example 1. Consider the HyperLTL formula ϕ = ∀π.∀π′.�(aπ ↔ aπ′) and
T = {t1, t2, t3}, where t1 = {a, b}{a, b}{}{b} · · · , t2 = {a}{a}{b} · · · and
t3 = {}{a}{b} · · · Although traces t1 and t2 together satisfy ϕ, t3 does not
agree with the other two, i.e., a ∈ t1(0), a ∈ t2(0), but a /∈ t3(0). Hence, T �|= ϕ.

2.2 Semantic Monitorability

Runtime verification (RV) is concerned with (1) generating a monitor from a
formal specification ϕ, and (2) using the monitor to detect whether or not ϕ holds
by observing events generated by the system at run time. Monitorability refers
to the possibility of monitoring a property. Some properties are non-monitorable
because no finite observation can lead to a conclusive verdict. We now present
some abstract definitions to encompass previous notions of monitorability in
a general way. These definitions are made concrete by instantiating them for
example to traces (for trace properties) or sets of traces (for hyperproperties),
see Example 2 below.

– Observation. We refer to the finite information provided dynamically to the
monitor up to a given instant as an observation.
We use O and P to denote individual observations and O to denote the set
of all possible observations, equipped with an operator O � P that captures
the extension of an observation.

– System behavior. We use B to denote the universe of all possible behaviors
of a system. A behavior B ∈ B may, in general, be an infinite piece of infor-
mation. By abuse of notation, O � B denotes that observation O ∈ O can
be extended to a behavior B.

Example 2. When monitoring trace properties such as LTL, we have O = Σ∗,
an observation is a finite trace O ∈ Σ∗, O � O′ is the prefix relation on finite
strings, and B = Σω. When monitoring hyperproperties such as HyperLTL, an
observation is a finite set of finite traces O ⊂ Σ∗, that is, O = Pfin(Σ∗). The
relation � is the prefix for finite sets of finite traces defined above. That is, O � P
whenever for all t ∈ O there is a t′ ∈ P such that t � t′. Finally, B = P(Σω).

Gray-Box Monitoring of Hyperproperties 411

We say that an observation O ∈ O permanently satisfies a formula ϕ, if every
B ∈ B that extends O satisfies ϕ:

O |=s ϕ iff for all B ∈ B such that O � B, B |= ϕ

where |= denotes the satisfaction relation in the semantics of the logic. Similarly,
we say that an observation O ∈ O permanently violates a formula ϕ, if every
extension B ∈ B violates ϕ:

O |=v ϕ iff for all B ∈ B such that O � B, B �|= ϕ

Monitoring a system for satisfaction (or violation) of a formula ϕ is to decide
whether a finite observation permanently satisfies (resp. violates) ϕ.

Definition 1 (Semantic Monitorability). A formula ϕ is (semantically)
monitorable if every observation O has an extended observation P O, such
that P |=s ϕ or P |=v ϕ.

A similar definition of monitorability only for satisfaction or only for violation
can be obtained by considering only P |=s ϕ or only P |=v ϕ. Instantiating
this definition of monitorability for LTL and finite traces as observations (O =
Σ∗ and B = Σω) leads to the classic definitions of monitorability for LTL by
Pnueli and Zaks [26] (see also [17]). Similarly, instantiating the definitions for
HyperLTL and observations as finite sets of finite traces leads to monitorability
as introduced by Agrawal and Bonakdarpour [1].

Example 3. The LTL formula � a is not (semantically) monitorable since it
requires an infinite-length observation, while formulas �a and a are moni-
torable. Similarly, ∀π.∀π.�(aπ ↔ ¬aπ′) is monitorable, but ∀π.∃π.�(aπ ↔ ¬aπ′)
is not, as it requires an observation set of infinite size. We will prove this claim
in detail in Sect. 3.

3 The Notion of Gray-Box Monitoring

Most of the previous definitions of monitorability make certain assumptions: (1)
the logics are trace logics, i.e. do not cover hyperproperties, (2) the system under
analysis is black-box in the sense that every further observation is possible, (3)
the logics are tractable, in that the decision problems of satisfiability, liveness,
etc. are decidable. We present here a more general notion of monitorability by
challenging these assumptions.

3.1 The Limitations of Monitoring Hyperproperties

Earlier work on monitoring hyperproperties is restricted to the quantifier alter-
nation-free fragment, that is either ∀∗.ψ or ∃∗.ψ properties. We establish now an
impossibility result about the monitorability of formulas of the form ∀π.∃π′.�F ,
where F is a state predicate. That is, F is formed by atomic propositions, aπ or

412 S. Stucki et al.

aπ′ and Boolean combinations thereof, and can be evaluated given two valuations
of the propositions from AP, one from each path π and π′ at the current position.
For example, the predicate F = (aπ ↔ ¬aπ′) for AP = {a} depends on the
valuation of a at the first state of paths π and π′. We use v and v′ in F (v, v′) to
denote that F uses two copies of the variables v (one copy from π and another
from π′). A predicate F is reflexive if for all valuations v ∈ 2AP, F (v, v) is true.
A predicate F is serial if, for all v, there is a v′ such that F (v, v′) is true.

Theorem 1. A HyperLTL formula of the form ψ = ∀π.∃π′.�F is non-
monitorable if and only if F is non-reflexive and serial.

Proof (Sketch). For the “⇐” direction, it is easy to see that seriality implies
that Σω is a model of ϕ. Also, non-reflexivity means any observation can be
extended to a non-model by adding v to every trace, so that ¬F (v, v). Since every
observation can be extended to a model and a non-model, ϕ is non-monitorable.

For the “⇒” direction, we prove that reflexivity or non-seriality imply mon-
itorability. Reflexivity implies that ϕ is vacuously true by taking the same trace
for π and π′. Then, assume non-seriality, and append to one path in the obser-
vation v such that for no v, F (v, v′), generating a permanent violation. ��

The fragment of ∀∃ properties captured by Theorem 1 is very general (and
this result can be easily generalized to ∀+∃+ hyperproperties). First, the tem-
poral operator is just safety (the result can be generalized for richer temporal
formulas). Also, every binary predicate can be turned into a non-reflexive predi-
cate by distinguishing the traces being related. Moroever, many relational prop-
erties, such as non-interference and DDM, contain a tacit assumption that only
distinct traces are being related. Seriality simply establishes that F cannot be
falsified by only observing the local valuation of one of the traces. Intuitively, a
predicate that is not serial can be falsified by looking only at one of the traces, so
the property is not a proper hyperproperty. The practical consequence of Theo-
rem 1 is that many hyperproperties involving one quantifier alternation cannot
be monitored.

3.2 Gray-Box Monitoring. Sound and Perfect Monitors

To overcome the negative non-monitorability result, we exploit knowledge about
the set of traces that the system can produce (gray-box or white-box monitor-
ing). Given a system that can produce the set of system behaviors S ⊆ B, we
parametrize the notions of permanent satisfaction and permanent violation to
consider only behaviors in S:

O |=s
S ϕ iff for all B ∈ S such that O � B,B |= ϕ

O |=v
S ϕ iff for all B ∈ S such that O � B,B �|= ϕ

First, we extend the definition of monitorability (Definition 1 above) to consider
the system under observation.

Gray-Box Monitoring of Hyperproperties 413

Definition 2 (Semantic Gray-Box Monitorability). A formula ϕ is
semantically gray-box monitorable for a system S if every observation O has
an extended observation P O in S, such that P |=s

S ϕ or P |=v
S ϕ.

In this definition, monitors must now analyze and decide properties of extended
observations which is computationally not possible with full precision for suffi-
ciently rich system descriptions.

We now introduce a novel notion of monitors that consider S and the com-
putational power of monitors (the diagonal dimension in Fig. 1). A monitor for
a property ϕ and a set of traces S is a computable function MS : O → {�,⊥, ?}
that, given a finite observation O, decides a verdict for ϕ: � indicates success,
⊥ indicates failure, and ? indicates that the monitor cannot declare a definite
verdict given only u. To avoid clutter, we write M instead of MS when the sys-
tem is clear from the context. The following definition captures when a monitor
for a property ϕ can give a definite answer.

Definition 3 (Sound monitor). Given a property ϕ and a set of behaviors S,
a monitor M is sound whenever, for every observation O ∈ O,

1. if O |=s
S ϕ, then M(O) = � or M(O) = ?,

2. if O |=v
S ϕ, then M(O) = ⊥ or M(O) = ?,

3. otherwise M(O) = ?.

If a monitor is not sound then it is possible that an extension of O forces M to
change a � to a ⊥ verdict, or vice-versa. The function that always outputs ? is
a sound monitor for any property, but this is the least informative monitor. A
perfect monitor precisely outputs whether satisfaction or violation is inevitable,
which is the most informative monitor.

Definition 4 (Perfect Monitor). Given a property ϕ and a set of traces S, a
monitor M is perfect whenever, for every observation O ∈ O,

1. if O |=s
S ϕ then M(O) = �,

2. if O |=v
S ϕ then M(O) = ⊥,

3. otherwise M(O) = ?.

Obviously, a perfect monitor is sound. Similar definitions of perfect monitor only
for satisfaction (resp. violation) can be given by forcing the precise outcome only
for satisfaction (resp. violation).

A black-box monitor is one where every behavior is potentially possible, that
is S = B. If the monitor uses information about the actual system, then we say
it is gray-box (and we use white-box when the monitor can reason with absolute
precision about the set of traces of the system). In some cases, for example to
decide instantiations of a ∀ quantifier, a satisfaction verdict that is taken from
S can be concluded for all over-approximations (dually under-approximations
for violation and for ∃). For space limitations, we do not give the formal details
here.

414 S. Stucki et al.

Using Definitions 3 and 4, we can add the computability aspect to capture
a stronger definition of monitorability. Abusing notation, we use O ∈ S to say
that observation O can be extended to a trace allowed by the system.

Definition 5 (Strong Monitorability). A property ϕ is strongly monitorable
for a system S if there is a sound monitor M s.t. for all observations O ∈
O, there is an extended observation P ∈ S for which either M(P) = � or
M(P) = ⊥.

A property is strongly monitorable for satisfaction if the extension with M(P) =
� always exists (and analogously for violation). In what follows we will use the
term monitorability to refer to strong monitorability whenever no confusion may
arise. It is easy to see that if a property is not semantically monitorable, then it
is not strongly monitorable, but in rich domains, some semantically monitorable
properties may not be strongly monitorable. One trivial example is termination
for deterministic programs (that is, the halting problem). Given a prefix of the
execution of a deterministic program, either the program halts or it does not, so
termination is monitorable in the semantics sense. However, it is not possible to
build a monitor that decides the halting problem.

Lemma 1. If ϕ is strongly monitorable, then ϕ is semantically monitorable.

A property may not be monitorable in a black-box manner, but monitorable in
a gray-box manner. In the realm of monitoring of LTL properties, strong and
semantic monitorability coincide for finite state systems (see [28]) both black-box
and gray-box (for finite state systems), because model-checking and the problem
of deciding whether a state of a Büchi automaton is live are decidable.

Following [8] we propose to use a combination of static analysis and runtime
verification to monitor violations of ∀+∃+ properties (or dually, satisfactions of
∃+∀+). The main idea is to collect candidates for the outer ∃ part dynamically
and use static analysis at runtime to over-approximate the inner ∀ quantifiers.

4 Monitoring Distributed Data Minimality

In this section, we describe how to monitor DDM, which can be expressed as a
hyperproperty of the form ∀+∃+. In the particular case of DDM, although we
mainly deal with the input/output relation of functions and are not concerned
with infinite temporal behavior, we still need to handle possibly infinite set
extensions S for black-box monitoring.

In the remainder of this section, we discuss the following, seemingly contra-
dictory aspects of DDM:

(P1) DDM is not semantically black-box monitorable,
(P2) DDM is semantically white-box monitorable (for programs that are not

DDM),
(P3) checking DDM statically is undecidable,

Gray-Box Monitoring of Hyperproperties 415

(P4) DDM is strongly gray-box monitorable for violation, and we give a sound
monitor.

The apparent contradictions are resolved by careful analysis of DDM along the
different dimensions of the monitorability cube (Fig. 1).

We will show how to monitor DDM and similar hyperproperties using a gray-
box approach. In our approach, a monitor can decide at run time the existence
of traces using a limited form of static analysis. The static analyzer receives the
finite observation O collected by the monitor, but not the future system behavior.
Instead it must reason under the assumption that any system behavior in S that
is compatible with O, may eventually occur. For example, given an ∃∀ formula,
the outer existential quantifier is instantiated with a concrete set U of runtime
traces, while possible extensions of U provided by static analysis can be used to
instantiate the inner universal quantifier.

4.1 DDM Preliminaries

We briefly recapitulate the formal notion of data-minimality from [3]. Given
a function f : I → O, the problem of data minimization consists in finding a
preprocessor function p : I → I, such that f = f ◦ p and p = p ◦ p. The goal of p
is to limit the information available to f while preserving the behavior of f .

There are many possible such preprocessors (e.g. the identity function), which
can be ordered according to the information they disclose, that is, according to
the subset relation on their kernels. The kernel ker(p) of a function p is defined
as the equivalence relation (x, y) ∈ ker(p) iff p(x) = p(y). The smaller ker(p) is,
the more information p discloses. The identity function is the worst preprocessor
since it discloses all information (its kernel is equality—the least equivalence
relation). An optimal preprocessor, or minimizer, is one that discloses the least
amount of information.

A function f is monolithic data-minimal (MDM), if it fulfills either of the
following equivalent conditions:

1. the identity function is a minimizer for f ,
2. f is injective.

Condition 1. is an information-flow-based characterization that can be general-
ized to more complicated settings in a straightforward fashion. Condition 2. is
a purely logical or data-based characterization more suitable for implementation
in e.g. a monitor.

MDM is the strongest form of data minimality, where one assumes that
all input data is provided by a single source and thus a single preproces-
sor can be used to minimize the function. If inputs are provided by multi-
ple sources (called a distributed setting) and access to the system implement-
ing f is restricted, it might be impossible to use a single preprocessor. For
example, consider a web-based auction system that accepts bids from n bid-
ders, represented by distinct input domains I1, . . . , In, and where concrete bids
xk ∈ Ik are submitted remotely. The auction system must compute the function

416 S. Stucki et al.

m(x1, . . . , xn) = maxk{xk}, which is clearly non-injective and, hence, non-MDM.
In this case, a single, monolithic minimizer cannot be used since different bidders
need not have any knowledge of each other’s bids. Instead, bidders must try to
minimize the information contained in their bid locally, in a distributed way,
before submitting it to the auction.

The problem of distributed data minimization consists in building a collec-
tion p1, . . . , pn of n independent preprocessors pk : Ik → Ik for a given function
f : I1 × · · · × In → O, such that their parallel composition p(x1, . . . , xn) =
(p1(x1), . . . , p(xn)) is a preprocessor for f . Such composite preprocessors are
called distributed, and a distributed preprocessor for f that discloses the least
amount of information is called a distributed minimizer for f . Then, one can
generalize the (information-flow) notion of data-minimality to the distributed
setting as follows. The function f is distributed data-minimal (DDM) if the
identity function is a distributed minimizer for f . Returning to our example, the
maximum function m defined above is DDM. As for MDM, there is an equivalent,
data-based characterization of DDM defined next.

Definition 6 (distributed data minimality [3,23]). A function f is dis-
tributed data-minimal (DDM) if, for all input positions k and all x, y ∈ Ik such
that x �= y, there is some z ∈ I, such that f(z[k �→ x]) �= f(z[k �→ y]).

We use Definition 6 to explore how to monitor DDM. In the following, we assume
that the function f : I1 × · · · × In → O has at least two arguments (n ≥ 2).
Note that for unary functions, DDM coincides with MDM. Since MDM is a
∀+-property (involving no quantifier alternations), most of the challenges to
monitorability discussed here do not apply [24]. We also assume, without loss
of generality, that the function f being monitored has only nontrivial input
domains, i.e. |Ik| ≥ 2 for all k = 1, . . . n. If Ik is trivial then this constant input
can be ignored. Finally, note that checking DDM statically is undecidable (P3)
for sufficiently rich programming languages [3].

4.2 DDM as a Hyperproperty

We consider data-minimality for total functions f : I → O. Our alphabet, or set
of events, is the set of possible input-output (I/O) pairs of f , i.e. Σf = I × O.
Since a single I/O pair u = (uin, uout) ∈ Σf captures an entire run of f , we
restrict ourselves to observing singleton traces, i.e. traces of length |u| = 1. In
other words, we ignore any temporal aspects associated with the computation
of f . This allows us to use first-order predicate logic—without any temporal
modalities—as our specification logic.

DDM is a hyperproperty, expressed as a predicate over sets of traces, even
though the traces are I/O pairs. The set of observable behaviors Of of a given
f consists of all finite sets of I/O pairs Of = Pfin(Σf). The set of all possible
system behaviors Bf = P(Σf) additionally includes infinite sets of I/O pairs.

Example 4. Let f : N × N → N be the addition function on natural numbers,
f(x, y) = x+y. Then I = N×N, O = N, and a valid trace u ∈ Σf takes the form

Gray-Box Monitoring of Hyperproperties 417

u = ((x, y), z), where x, y and z are all naturals. Both U = {((1, 2), 3), ((2, 1), 3)}
and V = {((1, 1), 3)} are considered observable behaviors U, V ∈ Of , even
though V does not correspond to a valid system behavior since f(1, 1) �= 3.
Remember that we do not discriminate between valid and invalid system behav-
iors in a black-box setting.

We now express DDM as a hyperproperty, using HyperLTL, but with only
state predicates (no temporal operators). Given a tuple x = (x1, x2, . . . , xn), we
write proji(x) or simply xi for its i-th projection. Given an I/O pair u = (x, y)
we use uin for the input component and uout for the output component (that is
uin = x and uout = y). Given trace variables π, π′, we define

output(π, π′) def= πout = π′
out π and π′ agree on their output,

samei(π, π′) def= proji(πin) = proji(π
′
in) π and π′ agree on the i-th input,

almosti(π, π′) def=
∧

k �=i

projk(πin) = projk(π′
in) π and π′ agree on all but the

i-th input

Example 5. Let u = ((1, 2), 3), u′ = ((2, 1), 3), and Π = {π �→ u, π′ �→ u′}.
Then Π |= output(π, π′), but Π �|= same1(π, π′) and Π �|= almost1(π, π′).

We define DDM for input argument i as follows:

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π′) →
(

samei(π, τ) ∧ samei(π′, τ ′) ∧
almosti(τ, τ ′) ∧ ¬ output(τ, τ ′)

)

In words: given any pair of traces π and π′, if πin and π′
in differ in their i-th posi-

tion, then there must be some common values z for the remaining inputs, such
that the outputs of f for τin = z[i �→ proji(πin)] and τ ′

in = z[i �→ proji(π′
in)] dif-

fer. Note that z does not appear in ϕi directly, instead it is determined implicitly
by the (existentially quantified) traces τ and τ ′. Finally, distributed data mini-
mality for f is defined as

ϕdm =
n∧

i=1

ϕi.

The property ϕdm follows the same structure as the logical characterization of
DDM from Sect. 4.1. The universally quantified variables range over the possible
inputs at position i, while the existentially quantified variables τ and τ ′ range
over the other inputs and the outputs. Note also that, given the input coordinates
of π, π′, and τ , all the output coordinates, as well as the input coordinates of
τ ′, are uniquely determined.2

2 For simplicity, even though ϕdm is not in prenex normal form, it is a finite conjunction
of ∀∀∃∃ formulas in prenex normal form so a finite number of monitors can be built
and executed in parallel, one per input argument.

418 S. Stucki et al.

Example 6. Consider again U = {((1, 2), 3), ((2, 1), 3)} and V = {((1, 1), 3)}
from Example 4. Then, V |= ϕdm trivially holds, but U �|= ϕdm because
when Π(π) �= Π(π′) there is no choice of Π(τ),Π(τ ′) ∈ U for which Π |=
¬ output(τ, τ ′) holds.

Note that, in the above example, V |= ϕdm holds despite the fact that V is not
a valid behavior of the example function f(x, y) = x+ y. Indeed, whether or not
U |= ϕdm holds for a given U is independent of the choice of f . In particular, Σf |=
ϕdm, for any choice of f regardless of whether f is data-minimal or not. This is
already a hint that the notion of semantic black-box monitorability is too weak to
be useful when monitoring ϕdm. Since Σf is a model of ϕdm, no observation U can
have an extension that permanently violates ϕdm. As we will see shortly, gray-
box monitoring does not suffer from this limitation. Monitorability of DDM for
violations becomes possible once we exclude potential models such as Σf which
do not correspond to valid system behaviors.

Remark. Note that though our definition and approach work for general (reac-
tive) systems, the DDM example is admittedly a non-reactive system with traces
of length 1. This, however, is not a limitation of the approach. Extending DDM
for reactive systems is left as future work.

4.3 Properties of DDM

Since ϕdm is a ∀+∃+ property, it should not come as a surprise that it is not
semantically black-box monitorable in general (P1). Although DDM is not a
temporal property, the proof of non-monitorability follows the same basic struc-
ture as that of Theorem 1 [27]. In particular, since Σf |= ϕdm for any f , no set
of I/O pairs U can permanently violate ϕdm. In other words, ϕdm is clearly not
black-box monitorable for violations.

However, and perhaps surprisingly, ϕdm is semantically white-box moni-
torable for violations (P2). That is, if f is not DDM, there is hope to detect
it. To make this statement more precise, we first need to identify the set of valid
system behaviors Sf of f . We define Σ#

f = {(x, y) | f(x) = y} to be the set
of I/O pairs that correspond to executions of f . Then Sf = P(Σ#

f) precisely
characterizes the set of valid system behaviors.

Example 7. Define g : N×N → N as g(x, y) = x, i.e. g simply ignores its second
argument. Then Σ#

g = {((x, y), x) | x, y ∈ N}. It is easy to show that DDM is
white-box monitorable for g. Any finite set of valid traces U can be extended
to include a pair of traces u, u′ that only differ in their second input value,
e.g. u = ((1, 1), 1) and u′ = ((1, 2), 1). Now, consider any T ∈ Sf that extends
U ∪ {u, u′}. Clearly, T cannot contain any trace v for which proj1(vin) = 1 but
vout �= 1 as that would constitute an invalid system behavior. But T would have
to contain such a trace to be a model of ϕ2. Hence, T �|= ϕdm for any such T ,
which means U ∪ {u, u′} permanently violates ϕdm.

Gray-Box Monitoring of Hyperproperties 419

Note the crucial use of information about g in the above example: it is the
restriction to valid extensions T ∈ Sf that excludes trivial models such as Σf and
thereby restores (semantic) monitorability for violations. The apparent conflict
between (P1) and (P2) is thus resolved.

With the extra information that gray-box monitoring affords, we can make
more precise claims about properties like DDM: whether or not a property is
monitorable may, for instance, depend on whether the property actually holds
for the system under scrutiny. Concretely, for the case of DDM, we show the
following.

Theorem 2. Given a function f : I → O, the formula ϕdm is semantically gray-
box monitorable in Sf if and only if either f is distributed non-minimal or the
input domain I is finite.

Proof (Sketch). If I is finite, Σ#
f ∈ Sf is a finite extension of any U and also

permanently satisfies or violates ϕdm. If, instead, I is infinite and f is not dis-
tributed minimal, then there must be some input position i and some pair of
distinct inputs x �= x′ ∈ Ii, such that f(z[i �→ x]) = f(z[i �→ x′]) for any choice
of z ∈ I. Any set U extended by a pair of traces featuring these inputs at posi-
tion i (permanently) violates ϕdm. The proof for the case where I is infinite and
f is distributed minimal uses a similar idea to construct counterexamples to
permanent satisfaction of ϕdm. (See our tech-report for the full proof [27].) ��
Intuitively, this means that f cannot be monitored for satisfaction. Note that
the semantic monitorability property established by Theorem2 is independent
of whether we can actually decide DDM for the given f . We address the question
of strong monitorability later on in this section.

If I is finite, it is easy to strengthen Theorem2 by providing a perfect monitor
Mdm for ϕdm. Since f is assumed to be a total function with a finite domain, we
can simply check the validity of ϕdm for every trace U ⊆ Σ#

f and tabulate the
result. To do so, the ∃ and ∀ quantifiers in ϕdm can be converted into conjunctions
and disjunctions over U .

Corollary 1. For f : I → O with finite I, ϕdm is strongly monitorable in Sf .

If I is infinite, then ϕdm is not semantically monitorable for satisfaction, but we
can still hope to build a sound monitor for violation of ϕdm.

4.4 Building a Gray-Box Monitor for DDM

In what follows, we assume a computable function capable of deciding DDM
only for some instances. This function, that we call oracle, will serve as the basis
for a sound monitor for DDM (P4). This monitor will detect some, but not
all, violations of DDM when given sets of observed traces, thus resolving the
apparent tension between (P3) and (P4).

420 S. Stucki et al.

Given f : I1 × · · · × In → O, we define the predicate ϕf as

ϕf (i, x, y) = ∃z ∈ I. f(z[i �→ x]) �= f(z[i �→ y]),

and assume a total computable function Nf,i : Ii × Ii → {�,⊥, ?} such that

Nf,i(x, y) =

{

� or ? if ϕf (i, x, y) holds,
⊥ or ? otherwise.

The function Nf,i acts as our oracle to instantiate the existential quantifiers
in ϕdm. As discussed earlier, such oracles may be implemented by statically
analyzing the system under observation (here, the function f). In our proof-of-
concept implementation, we extract ϕf (i, x, y) from f using symbolic execution,
and use an SMT solver to compute Nf,i(x, y) [27].

We now define a monitor Mdm for ϕdm as follows:

Mdm(U) =

⎧

⎪⎨

⎪⎩

? if f(uin) �= uout for some u ∈ U,

? if
∧n

i=1

∧

u,u′∈U Nf,i(proji(uin),proji(u′
in)) �= ⊥,

⊥ otherwise.

Intuitively, the monitor Mdm(U) checks the set of traces U for violations of DDM
by verifying two conditions: the first condition ensures the consistency of U , i.e.
that every trace in U does in fact correspond to a valid execution of f ; the second
condition is necessary for U not to permanently violate ϕdm. Hence, if it fails,
U must permanently violate ϕdm. Since Nf,i is computable, so is Mdm. Note
that Mdm never gives a positive verdict �. This is a consequence of Theorem 2:
if f is DDM, then ϕdm is not monitorable in Sf . In other words, DDM is not
monitorable for satisfaction.

The second condition in the definition of Mdm is an approximation of ϕdm:
the universal quantifiers are replaced by conjunctions over the finite set of input
traces U , while the existential quantifiers are replaced by a single quantifier
ranging over all of Σ#

f (not just U). This approximation is justified formally by
the following theorem [27].

Theorem 3 (soundness). The monitor Mdm is sound. Formally,

1. U |=s
Sf

ϕdm if Mdm(U) = �, and
2. U |=v

Sf
ϕdm if Mdm(U) = ⊥.

4.5 Proof-of-Concept Implementation

We have implemented the ideas described above in a proof-of-concept monitor for
data minimization called minion. The monitor uses the symbolic execution API
and the SMT backend of the KeY deductive verification system [2,18] to extract
logical characterizations of Java programs (their symbolic execution trees). It
then extends them to first-order formulas over sets of observed traces, and checks

Gray-Box Monitoring of Hyperproperties 421

the result using the state-of-the-art SMT solver Z3 [20,21]. The minion monitor
is written in Scala and provides a simple command-line interface (CLI). Its source
code is freely available online at https://github.com/sstucki/minion/. A detailed
description of minion, including examples, appears in the extended version of
this paper [27].

5 Related Work

LTL Monitorability. Pnueli and Zaks [26] introduced monitorability as the
existence of extension of the observed traces that permanently satisfy or violate
an LTL property. It is known that the set of monitorable LTL properties is a
superset of the union of safety and co-safety properties [5,6] and that it is also a
superset of the set of obligation properties [14,15]. Havelund and Peled [17] intro-
duce a finer-grained taxonomy distinguishing between always finitely satisfiable
(resp. refutable), and sometimes finitely satisfiable where only some prefixes are
required to be monitorable (for satisfaction). Their taxonomy also describes the
relation between monitorability and classical safety properties. This is a new
dimension in the monitorability cube in Fig. 1 which we will study in the future.
While all the notions mentioned above ignore the system, predictive monitor-
ing [28] considers the traces allowed in a given finite state system.

Monitoring HyperLTL. Monitoring hyperproperties was first studied in [1],
which introduces the notion of monitorability for HyperLTL [11] and gives an
algorithm for a fragment of alternation-free HyperLTL. This is later generalized
to the full fragment of alternation-free formulas using formula rewriting in [9],
which can also monitor alternating formulas but only with respect to a fixed
finite set of finite traces. Finally, [16] proposes an automata-based algorithm for
monitoring HyperLTL, which also produces a monitoring verdict for alternating
formulas, but again for a fixed trace set. The complexity of monitoring different
fragments of HyperLTL was studied in detail in [7]. The idea of gray-box moni-
toring for hyperproperties, as a means for handling non-monitoriable formulas,
was first proposed in [8].

Data Minimization. A formal definition of data minimization and the con-
cept of data minimizer as a preprocessor appear in [3], which introduces the
monolithic and distributed cases. Minimality is closely related to information
flow [12]. Malacaria et al. [19] present a symbolic execution-based verification of
non-interference security properties for the OpenSSL library. In our paper, we
have focused on a version of distributed minimization which is not monitorable
in general. For stronger versions (cf. [3]), Pinisetty et al. [23,24] show that mon-
itorability for satisfaction is not possible, but it is for violation. (the paper also
introduces an RV approach for similar safety hyperproperties for deterministic
programs).

https://github.com/sstucki/minion/

422 S. Stucki et al.

6 Conclusions

We have rephrased the notion of monitorability considering different dimensions,
namely (1) whether the monitoring is black-box or gray-box, (2) whether we con-
sider trace properties or hyperproperties, and (3) taking into account the com-
putatibility aspects of the monitor as a program. We showed that many hyper-
properties that involve quantifier alternation are non-monitorable in a black-box
manner and proposed a technique that involves inspecting the behavior of the
system. In turn, this forces to consider the computability limitations of the mon-
itor, which leads to a more general notion of monitorability.

We have considered distributed data minimality (DDM) and expressed this
property in HyperLTL, involving one quantifier alternation. We then presented
a methodology to monitor violations of DDM, based on a model extracted from
the program being monitored in the form of its symbolic execution tree, and an
SMT solver. We have implemented a tool (minion) and applied it to a number
of representative examples to assess the feasibility of our approach [27].

As future work, we plan to extend the proposed methodology for other hyper-
properties, particularly in the concurrent and distributed setting. We are also
planning to use bounded model checking as our verifier at run-time by combin-
ing over- and under-approximated methods to deal with universal and existen-
tial quantifiers in HyperLTL formulas. Another interesting problem is to apply
gray-box monitoring for hyperproperties with real-valued signals (e.g., Hyper-
STL [22]). Finally, we intend to extend the definition and results of data mini-
mality in order to capture reactivity, and study monitorability in this setting.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: Proceedings of the IEEE 29th Computer Security Foundations
(CSF 2016), pp. 239–252. IEEE CS Press (2016)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice.
LNCS, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-49812-6

3. Antignac, T., Sands, D., Schneider, G.: Data minimisation: a language-based app-
roach. In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC 2017. IAICT,
vol. 502, pp. 442–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
58469-0 30

4. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM T. Softw. Eng. Meth. 20(4), 14 (2011)

6. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-58469-0_30
https://doi.org/10.1007/978-3-319-58469-0_30
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11

Gray-Box Monitoring of Hyperproperties 423

7. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties.
In: CSF 2018, pp. 162–174. IEEE CS Press (2018)

8. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03421-4 2

9. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free hyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 5

10. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

11. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

12. Cohen, E.: Information transmission in computational systems. SIGOPS Oper.
Syst. Rev. 11(5), 133–139 (1977)

13. European Commission: Proposal for a Regulation of the European Parliament and
of the Council on the protection of individuals with regard to the processing of
personal data and on the free movement of such data (GDPR). Technical Report
2012/0011 (COD), European Commission, January 2012

14. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0 4

15. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transfer (STTT) 14(3), 349–382 (2012)

16. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 12

17. Havelund, K., Peled, D.: Runtime verification: from propositional to first-order
temporal logic. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237,
pp. 90–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 7

18. KeY contributors: The KeY project. https://www.key-project.org. Accessed 5
November 2018

19. Malacaria, P., Tautchning, M., DiStefano, D.: Information leakage analysis of com-
plex c code and its application to openSSL. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 909–925. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 63

20. Microsoft Research: The Z3 theorem prover. https://github.com/Z3Prover/z3.
Accessed 5 Nov 2018

21. de Moura, L., Bjørner, N.: Z3: an efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

22. Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Johnson, T.T.: Hyperprop-
erties of real-valued signals. In: Proceedings of the 15th ACM-IEEE International
Conference on Formal Methods and Models for System Design (MEMOCODE
2017), pp. 104–113. ACM (2017)

23. Pinisetty, S., Antignac, T., Sands, D., Schneider, G.: Monitoring data minimisation.
Technical Report, CoRR-arXiv.org (2018). http://arxiv.org/abs/1801.02484

https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-030-03769-7_7
https://www.key-project.org
https://doi.org/10.1007/978-3-319-47166-2_63
https://doi.org/10.1007/978-3-319-47166-2_63
https://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1801.02484

424 S. Stucki et al.

24. Pinisetty, S., Sands, D., Schneider, G.: Runtime verification of hyperproperties for
deterministic programs. In: Proceedings of the 6th Conference on Formal Methods
in Software Engineering (FormaliSE@ICSE 2018), pp. 20–29. ACM (2018)

25. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–67. IEEE
Computer Society Press (1977)

26. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

27. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring
of hyperproperties (extended version). Technical Report, CoRR-arXiv.org (2019).
http://arxiv.org/abs/1906.08731

28. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

https://doi.org/10.1007/11813040_38
http://arxiv.org/abs/1906.08731
https://doi.org/10.1007/978-3-642-28891-3_37

Quantitative Verification of Numerical
Stability for Kalman Filters

Alexandros Evangelidis(B) and David Parker

School of Computer Science, University of Birmingham, Birmingham, UK
{a.evangelidis,d.a.parker}@cs.bham.ac.uk

Abstract. Kalman filters are widely used for estimating the state of a
system based on noisy or inaccurate sensor readings, for example in the
control and navigation of vehicles or robots. However, numerical insta-
bility may lead to divergence of the filter, and establishing robustness
against such issues can be challenging. We propose novel formal verifica-
tion techniques and software to perform a rigorous quantitative analysis
of the effectiveness of Kalman filters. We present a general framework for
modelling Kalman filter implementations operating on linear discrete-
time stochastic systems, and techniques to systematically construct a
Markov model of the filter’s operation using truncation and discretisa-
tion of the stochastic noise model. Numerical stability properties are then
verified using probabilistic model checking. We evaluate the scalability
and accuracy of our approach on two distinct probabilistic kinematic
models and several implementations of Kalman filters.

1 Introduction

Estimating the state of a continuously changing system based on uncertain infor-
mation about its dynamics is a crucial task in many application domains rang-
ing from control systems to econometrics. One of the most popular algorithms
for tackling this problem is the Kalman filter [16], which essentially computes
an optimal state estimate of a noisy linear discrete-time system, under certain
assumptions, with the optimality criterion being defined as the minimisation of
the mean squared estimation error.

However, despite the robust mathematical foundations underpinning the
Kalman filter, developing an operational filter in practice is considered a very
hard task since it requires a significant amount of engineering expertise [20]. This
is because the underlying theory makes assumptions which are not necessarily
met in practice, such as there being precise knowledge of the system and the
noise models, and that infinite precision arithmetic is used [12,24]. Avoidance of
numerical problems, such as round-off errors, remains a prominent issue in filter
implementations [11,12,24,26]. Our goal in this paper is to develop techniques
that allow the detection of possible failures in filters due to numerical instability
arising as a result of these assumptions.

The Kalman filter repeatedly performs two steps. The first occurs before the
next measurements are available and relies on prior information. This is called
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 425–441, 2019.
https://doi.org/10.1007/978-3-030-30942-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_26&domain=pdf
http://orcid.org/0000-0003-4032-3042
http://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-030-30942-8_26

426 A. Evangelidis and D. Parker

the time update (or prediction step) and propagates the “current” state estimate
forward in time, along with the uncertainty associated with it. These variables
are defined as the a priori state estimate x̂− and estimation-error covariance
matrix P−, respectively. The second step is called the measurement update (or
correction step) and occurs when the next state measurements are available. The
Kalman filter then uses the newly obtained information to update the a priori
x̂− and P− to their a posteriori counterparts, denoted x̂+ and P+, which are
adjusted using the so-called optimal Kalman gain matrix K.

The part of the filter that could hinder its numerical stability, and so cause it
to produce erroneous results, is the propagation of the estimation-error covari-
ance matrix P in the time and measurement updates [4,12,20]. This is because
the computation of the Kalman gain depends upon the correct computation
of P and round-off or computational errors could accumulate in its computa-
tion, causing the filter either to diverge or slow its convergence [12]. While, from
a mathematical point of view, the estimation-error covariance matrix P should
maintain certain properties such as its symmetry and positive semidefiniteness
to be considered valid, subtle numerical problems can destroy those properties
resulting in a covariance matrix which is theoretically impossible [17]. Out of the
two update steps in which the filter operates, the covariance update in the correc-
tion step is considered to be the “most troublesome” [20]. In fact, the covariance
update can be expressed with three different but algebraically equivalent forms,
and all of them can result in numerical problems [4].

To address the aforementioned challenges, we present a general framework
for modelling and verifying different filter implementations operating on linear
discrete-time stochastic systems. It consists of a modelling abstraction which
maps the system model whose state is to be estimated and a filter implementation
to a discrete-time Markov chain (DTMC). This framework is general enough to
handle the creation of various different filter variants. The filter implementation
to be verified is specified in a mainstream programming language (we use Java)
since it needs access to linear algebra data types and operations.

Once the DTMC has been constructed, we verify numerical stability proper-
ties of the Kalman filter being modelled using properties expressed in a reward-
based extension [10] of the temporal logic PCTL (probabilistic computation
tree logic) [13]. This requires generation of non-trivial reward structures for the
DTMC computed using linear algebra computations on the matrices and vectors
used in the execution of the Kalman filter implementation. The latter is of more
general interest in terms of the applicability of our approach to analyse complex
numerical properties via probabilistic model checking.

We have implemented this framework within a software tool called VerFilter,
built on top of the probabilistic model checker PRISM [18]. The tool takes the
filter implementation, a description of the system model being estimated and
several extra parameters: the maximum time the model will run, the number of
intervals the noise distribution will be truncated into, and the numerical pre-
cision, in terms of the number of decimal places, to which the floating-point
numbers which are used throughout the model will be rounded.

Quantitative Verification of Numerical Stability for Kalman Filters 427

The decision to let the user specify these parameters is particularly impor-
tant in the modelling and verification of stochastic linear dynamical systems,
where the states of the model, which comprise of floating-point numbers, as well
as the labelling of the states, are the result of complex numerical linear alge-
bra operations. Lowering the numerical precision usually means faster execution
times at the possible cost of affecting the accuracy of the verification result. This
decision is further motivated by the fact that many filter implementations run
on embedded systems with stringent computational requirements [24], and being
able to produce performance guarantees is crucial.

We demonstrate the applicability of our approach by verifying two distinct
filter implementations: the conventional Kalman filter and the Carlson-Schmidt
square-root filter. This allows us to evaluate the trade-offs of one versus the
other. In fact, our tool has been tested on five implementations, but we restrict
our attention to these two due to space restrictions. For the system models, we
use kinematic state models, since they are used extensively in the areas of navi-
gation and tracking [4,19]. We evaluate our approach with two distinct models.
We demonstrate that our approach can successfully analyse a range of useful
properties relating to the numerical stability of Kalman filters, and we evaluate
the scalability and accuracy of the techniques.

Related Work. Studies of Kalman filter numerical stability outside of for-
mal verification are discussed above and in more detail in the next section. To
the best of our knowledge, there is no prior work applying probabilistic model
checking to the verification of Kalman filters. Perhaps the closest is the use of
non-probabilistic model checking on a variant of the filter algorithm is the work
by [21], which applied model checking to target estimation algorithms in the
context of antimissile interception. In general, applying formal methods in state
estimation programs is an issue which has concerned researchers over the years.
For example, [23,25] combined program synthesis with property verification in
order to automate the generation of Kalman filter code based on a given spec-
ification, along with proofs about specific properties in the code. Other work
relevant to the above includes [22], which used the language ACL2 to verify the
loop invariant of a specific instance of the Kalman filter algorithm.

2 Preliminaries

2.1 The Kalman Filter

The Kalman filter tracks the state of a linear stochastic discrete-time system of
the following form:

xk+1 = Fkxk + wk zk = Hkxk + vk (1)

where xk is the (n × 1) system state vector at discrete time instant k, Fk is a
square (n × n) state transition matrix, which relates the system state vector xk

428 A. Evangelidis and D. Parker

between successive time steps in the absence of noise. In addition, zk is the (m×1)
measurement vector, Hk is the (m × n) measurement matrix, which relates the
measurement with the state vector. Finally, wk and vk represent the process and
measurement noises, with covariance matrices Qk and Rk, respectively. Given
the above system and under certain assumptions, the Kalman filter is an optimal
estimator in terms of minimising the mean squared estimation error.

The task of the Kalman filter is to find the optimal Kalman gain matrix Kk in
terms of minimising the sum of estimation-error variances, which can be obtained
by summing the elements of the main diagonal of the a posteriori estimation-
error covariance matrix P+. The estimation process begins by initialising x̂+

0 =
E[x0], and P+

0 = E[(x0 − x̂+
0)(x0 − x̂+

0)T]. Then, the conventional Kalman filter
algorithm proceeds by iterating between two steps. The time update is given as:

x̂−
k+1 = Fkx̂+

k P−
k+1 = FkP+

k FT
k + Qk (2)

The measurement update is given as:

yk+1 = zk+1 − Hk+1x̂
−
k+1 Sk+1 = Hk+1P

−
k+1H

T
k+1 + Rk+1 (3)

Kk+1 = P−
k+1H

T
k+1S

−1
k+1 (4)

x̂+
k+1 = x̂−

k+1 + Kk+1yk+1 P+
k+1 = (I − Kk+1Hk+1)P−

k+1 (5)

2.2 Numerical Instability of the Kalman Filter

In order for P to be statistically valid it must be (symmetric) positive definite.
Briefly, this means that all of its eigenvalues are positive real numbers. This is for
two reasons. First, from a modelling perspective, if its eigenvalues were zero, this
would translate to a filter which completely trusts its estimates and consequently
would avoid taking into account the subsequent measurements, placing all of its
“belief” in the system model [4]. Second, from a numerical stability perspective,
it does not suffice for the eigenvalues of P to be greater than zero, because if
they are in close proximity to zero, then round-off errors could cause them to
become negative, rendering it totally invalid [2,12,15].

In fact, the three equivalent forms to express the covariance measurement
update are susceptible to numerical errors [4] and cannot guarantee the numer-
ical stability of P . For example, the covariance update P+

k = (I − KkHk)P−
k is

generally not preferred because it is too sensitive to round-off errors [4], which
means neither the symmetry nor the positive definiteness of Pk can be guar-
anteed. That is because this update takes the product of nonsymmetric and
symmetric matrices, a form which has been characterised as undesirable [20].

Alternatively, changing the covariance measurement update equation to
P+

k = P−
k − KkSkKT

k could potentially pose a “serious numerical problem”
[20], such as Pk losing positive definiteness. Finally, while Joseph’s stabilised
form [8], given by P+

k = (I − KkHk)P−
k (I − KkHk)T + KkRkKT

k , is consid-
ered to preserve the numerical robustness of P+, it is not totally insensitive to
numerical errors [4]. An additional disadvantage is the high computational com-
plexity, which is O(n3) [12,20], since the number of arithmetic operations such

Quantitative Verification of Numerical Stability for Kalman Filters 429

as additions and multiplications is considerably higher compared to the simpler
form.

To ameliorate these numerical problems, an alternative form of expressing the
covariance time and measurement updates is using so-called square-root filters.
These are generally considered superior to conventional filter implementations
mainly because of their ability to increase the numerical stability of the propaga-
tion of the estimation-error covariance matrix P , and have often been described
as outstanding [17,20]. It should be noted that the term square-root filter is
mostly used to refer to the measurement update of the Kalman filter algorithm,
since it is this part that can cause numerical problems [11]. They were moti-
vated by the need for increased numerical precision because of word lengths of
limited size in the 1960s [24] and by the concern with respect to the numerical
accuracy of P in the measurement update of the Kalman filter equations [11].
Potter [5] proposed the idea of the so-called square-root filters and this idea has
evolved ever since. The idea, which was limited to noiseless systems, is that P
is factored into its square root C, such that P = CCT , and as a result C is
propagated through the measurement update equations, instead of P . Replacing
P with its square-root factor C has the effect of doubling the numerical pre-
cision of the filter, thus making it particularly suitable for matrices which are
not well-conditioned or when increased precision cannot be obtained from the
hardware [11,12,20,24].

2.3 The Carlson-Schmidt Square-Root Filter

The Carlson-Schmidt filter is a form of a square-root filter which relies on the
decomposition of P into its Cholesky factors in the time and measurement update
equations. The Carlson part of the filtering algorithm, originally given by Carl-
son [9], corresponds to the measurement update, while the Schmidt part corre-
sponds to the time update of the Kalman filter equations, respectively. Carlson’s
algorithm is capable of handling noise and, like Potter’s algorithm, processes
measurements as scalars. It factors P into the product of an upper-triangular
Cholesky factor and its transpose such that P = CCT . Note that unlike Pot-
ter’s initial square-root filter where the factor C is not required to be triangular,
in Carlson’s square-root implementation the Cholesky factor C is an upper-
triangular matrix. Maintaining C in upper-triangular form has been shown to
provide several advantages in terms of storage and computational speed com-
pared to Potter’s algorithm [9,20]. While the choice between a lower and upper-
triangular Cholesky factor C is arbitrary [20], Carlson motivated the preference
to choose an upper-triangular Cholesky factor by the fact that in the time update
part of the algorithm, fewer retriangularisation operations are required especially
when someone designs a filter to be applied in a tracking or in a navigation prob-
lem, respectively [9].

430 A. Evangelidis and D. Parker

3 Quantitative Verification of Kalman Filters

In this section, we describe our approach to modelling and verifying the numeri-
cal stability of Kalman filter implementations. This is based on the construction
and analysis of a probabilistic model (a discrete-time Markov chain) representing
the behaviour of a particular Kalman filter executing in the context of estimat-
ing the state of a linear stochastic discrete-time system. The probabilistic model
is automatically constructed based on a specification of the filter and the sys-
tem whose state it is trying to estimate. Numerical stability properties are then
verified using probabilistic model checking queries. We describe these phases in
the following two sections.

3.1 Constructing Probabilistic Models of Kalman Filter Execution

We define a high-level modelling abstraction which can be instantiated to con-
struct models of various different Kalman filter implementations. The modelling
abstraction comprises three components: the first and second correspond to the
system and measurement models along with their associated noise distributions;
the third is the Kalman filter implementation itself used to estimate the state
of the system model in the presence of uncertainty. The first two of these are
defined mathematically along the lines described in Sect. 2.1. The third is speci-
fied in detail using a mainstream programming language, since it requires linear
algebra data types and operations. Our implementation (see Sect. 4) uses Java
and associated numerical libraries.

The DTMC which represents the evolution of the system model along with
the filter estimates is not a static process. Rather it occurs in a dynamic fashion,
involving the interaction of several components. For example, we do not assume
that the measurements emitted from the system model are already given to us or
that the filter estimates are already predetermined. Rather, as the system model
evolves from state to state, the Kalman filter executes and tries to estimate its
true state, imitating a real-time tracking scenario.

DTMC States and Transitions. The variables which define the Markov
chain’s states correspond to the system, measurement and filter models. All
of these variables can be made independent of the filter implementations. For
example, in a square-root filter implementation, C+ can be either reconstructed
or not in each time step, before being passed into the Markov chain’s state,
which demonstrates the modularity and extensibility of our approach.

The evolution of the states of the Markov chain corresponds to the system
model perturbed by different noise values. Each of the Markov chain’s states
stores the “true” values of the system model’s state and the noisy measurements
emitted at each time step k. These variables, along with the a posteriori state
estimate and the estimation-error covariance, are included in the state of the
Markov chain because they are needed for verification purposes. Then, before
the Markov chain transitions to the next state (between time k and k + 1), the
time update of the corresponding filter variant is invoked. Both of the a priori
variables depend on their a posteriori counterparts.

Quantitative Verification of Numerical Stability for Kalman Filters 431

Specifically, once we are in a state for time instant k, our goal is to compute in
the next state at time k+1 both the system model’s updated state vector and the
a posteriori variables of the respective filter, x̂+ and P+. The a priori variables
of the Kalman filter types are encapsulated between these two updates as an
intermediate step. Note that x̂ and P are essentially the same variables which
are used in the computation of both the a priori and a posteriori state estimates
and estimation-error covariance matrices, respectively. What distinguishes x’s
semantics is whether the measurement z has been processed. This allows us to
concretely define the notion of time k in each of the Markov chain’s states.

In particular, a time instant k in the Markov chain can be thought of as
encompassing: (i) state variables before the measurement is processed; and (ii)
state variables after the measurement has been processed. Combining this tem-
poral order into one state allows us to save storage by merging what would
otherwise require two states to be represented.

The number of outgoing transitions and their probability values are deter-
mined by a granularity level of the noise, that we denote gLevel. The Gaussian
distribution of the noise is discretised into gLevel disjoint intervals. The intervals
used for each granularity level are shown in Table 1.

The measure used to determine these intervals is the standard deviation σ,
which is a common practice in statistical contexts; see for example the so-called
68–95–99.7 rule, which states that, assuming the data are normally distributed,
then 68%, 95% and 99.7% of them will fall between one, two and three standard
deviations of the mean, respectively. This statement can be expressed probabilis-
tically as well by computing the cumulative distribution function (CDF) of a
normally distributed random variable X, usually by converting it to its standard
counterpart and using the so-called standard normal tables. While computing
the probability that a noise value will fall inside an interval is relatively easy,
the computation of its expected value is slightly more difficult. This is because
we can choose to either truncate the distribution to intervals which contain the
mean value of the distribution, which is the easier case, or to intervals which
do not. For the first case, the expected value will be 0, which is the mean of
distribution; for the second, this is not true.

Usually, for those cases, one might use a simple heuristic such as dividing
the sum of the two endpoints of the interval by two, which is actually quite
common. However, this might not be representative of the actual expected value
since it does not weigh the values lying inside the interval according to the
corresponding value of the density correctly. In other words, since the mean is
also interpreted as the “centre of gravity” of the distribution [6], in the case of
truncated intervals which do not contain the mean, more accurate techniques
are needed. The probabilities of the Markov chain for a given granularity level
are computed by first standardising the random variable, the noise in our case,
and then evaluating its CDF at the two endpoints of the corresponding interval.
Then, by subtracting them, we obtain the probability that it will fall within a
certain interval.

432 A. Evangelidis and D. Parker

Table 1. Intervals according to the granularity level.

gLevel Intervals

2 [−∞..μ], [μ.. + ∞]

3 [−∞.. − 2σ], [−2σ.. + 2σ], [+2σ.. + ∞]

4 [−∞.. − 2σ], [−2σ..μ], [μ.. + 2σ], [+2σ.. + ∞]

5 [−∞.. − 2σ], [−2σ.. − σ], [−σ.. + σ], [+σ.. + 2σ], [+2σ.. + ∞]

6 [−∞.. − 2σ], [−2σ.. − σ], [−σ..μ], [μ.. + σ], [+σ.. + 2σ], [+2σ.. + ∞]

Once the probabilities have been computed, it remains to find the expected
value of the random variable for the corresponding intervals. In order to avoid the
situation described earlier, and obtain the mean in a more accurate way, we have
used the truncated normal distribution to compute the mean for the respective
intervals. Formally, if a normal random variable X is normally distributed and
lies within an interval [a..b], where −∞ ≤ a ≤ b ≤ +∞, then X conditioned
on a < X < b has a truncated normal distribution. The PDF of a normally
truncated random variable X is characterised by four parameters: (i-ii) the mean
μ and standard deviation σ of the original distribution and (iii-iv) the lower and
upper truncation points, a and b. Compactly, the mean value of the noise for a
corresponding interval can be expressed as the conditional mean, E[X|a < X <
b], given by the following formula [14]:

E[X|a < X < b] = μ + σ
φ(a−μ

σ) − φ(b−μ
σ)

Φ(b−μ
σ) − Φ(a−μ

σ)
(6)

Note that in the expression above, φ and Φ denote the PDF and CDF of the
standard normal distribution, respectively. Also note that the denominator has
already been computed in the previous step, when the transition probabilities
were computed. As a result, the computation of the transition probabilities and
the conditional mean values for each of the corresponding intervals can be done
in a unified manner.

3.2 Verification of Numerical Stability

Next, we discuss how to capture numerical stability properties for our Kalman
filter models (see the earlier summary in Sect. 2) using the probabilistic temporal
logic [10] of the PRISM model checker [18]. We explain the properties below, as
we introduce them, and refer the reader to [10] for full details of the logic.

Verifying Positive Definiteness. In order to construct this property, we per-
form an eigenvalue-eigenvector decomposition of P+ into the matrices [V,D].
The eigenvalues are obtained from the diagonal matrix D, and their positivity
is determined and used to label each state of the Markov chain accordingly: we
use an atomic proposition isPD for states in which P+ is positive definite.

Quantitative Verification of Numerical Stability for Kalman Filters 433

We can then specify the probability that the matrix remains positive defi-
nite for the duration of execution of the filter using the formula P=?[� isPD],
where the temporal logic operator �, which is often referred to as “always” or
“globally”, is used to represent invariance.

Examining the Condition Number of the Estimation-Error Covariance
Matrix. The verification of certain numerical properties, such as those related
to positive definiteness, is a challenging task and should be treated with caution.
This is because, while convenient, focusing the verification on whether an event
will occur or not, might not capture inherent numerical difficulties related to the
numerical stability of state estimation algorithms. In other words, it does not
suffice to check whether P+ is positive definite or not by checking its eigenvalues
because, as mentioned earlier, if they are in close proximity to zero, then round-
off errors could cause them to become negative [12].

For example, it is often the case that estimation practitioners want to detect
matrices that are close to becoming singular, a concept which is often referred
to as “detecting near singularity” [7]. In other words, since a positive definite
matrix is nonsingular, one wants to determine the “goodness” of P+ in terms of
its “closeness” to singularity, within some level of tolerance, usually the machine
precision [12]. A matrix is said to be well-conditioned if it is “far” from sin-
gularity, while ill-conditioned describes the opposite. In order to quantify the
goodness of P+, we use the so-called condition number, which is a concept used
in numerical linear algebra to provide an indication of the sensitivity of the solu-
tion of a linear equation (e.g. Ax = b), with respect to perturbations in b [12,20].
In our case, this concept is used to obtain a measure of goodness of P+.

The condition number of P+ is given as κ(P+) = σmax/σmin, where σmax

and σmin are the maximum and minimum singular values, respectively [11,20].
These can be obtained by performing the singular value decomposition (SVD)
of P+. A “small” condition number indicates that the matrix is well-conditioned
and nonsingular, while a “large” condition number indicates the exact opposite.
Note that the smallest condition number is 1 when σmax = σmin.

We express this property as the formula Rcond=? [I=k], which gives the expected
value of the condition number after k time steps. We assign the condition number
to each state of the DTMC using a reward function cond and we set k to be
maxTime, the period of time for which we verify the respective filter variant.

Providing Bounds on Numerical Errors. Another useful aspect of the con-
dition number is that it can be used to obtain an estimate of the precision loss
that numerical computations could cause to P+. For instance, for a single preci-
sion and a double precision floating-point number format, the precision is about 7
and 16 decimal digits, respectively. Since our computations take place in the dec-
imal number system, the logarithm of the condition number (e.g. log10(κ(P+))),
gives us the ability to define more concretely when a condition number will be
considered “large” or “small” [3,20,24]. For example, a log10(κ(P+)) > 6 and
a log10(κ(P+)) > 15 could cause numerical problems in the estimation-error
covariance computation and render P+ as ill-conditioned when implemented in
a single and a double precision floating-point number format, respectively.

434 A. Evangelidis and D. Parker

Table 2. User inputs for each of the models.

Input Description Used in: Type

x̂+
0 A posteriori state estimate vector Filter RealVector

P+
0 A posteriori estimation-error covariance matrix Filter RealMatrix

x State vector System RealVector

w Process noise vector System RealVector

v Measurement noise vector System RealVector

F State transition matrix Shared RealMatrix

Q Process noise covariance matrix Filter RealMatrix

H Measurement matrix Shared RealMatrix

R Measurement noise covariance matrix Shared RealMatrix

gLevel Granularity of the noise Shared int

decPlaces Number of decimal places Shared int

maxTime Maximum time the model will run Shared int

filterType Type of filter variant Shared int

So, to verify this property we construct a closed interval whose endpoints will
be based on the appropriate values of the numerical quantity of log10(κ(P+)).
This lets us label states whose log10(κ(P+)) value will fall within “acceptable”
values in the interval, when, for instance, double precision is used. We then use
the property P=?[� isCondWithin], in a similar fashion to the first property
above, where isCondWithin labels the “acceptable” states. A probability value
of less than 1 should raise an alarm that numerical errors may be encountered.

4 Tool Support: VerFilter

Next, we provide some details about the tool, VerFilter, which is the software
implementation of the framework defined in Sect. 3. The VerFilter tool is written
in the Java programming language in order to be seamlessly integrated with the
PRISM libraries, which are written in Java as well. The tool and supporting files
for the results in the next section are available from [27].

VerFilter Inputs. In Table 2 we show the user inputs available to VerFilter,
by distinguishing which of those refer to the system and measurement model,
which refer specifically to the filter models and which are shared between them.
The RealVector and RealMatrix shown in Table 2 are implemented as one-
dimensional and two-dimensional arrays of type double, respectively. VerFilter
also takes as inputs four extra parameters: (i) gLevel which takes an integer
between 2 and 6, and has been discussed in Sect. 3.1; (ii) decPlaces which
allows the user to specify an integer between 2 and 15, the number of decimal
places, to which the numerical values used in the computations will be rounded;
(iii) maxTime which is an integer and determines the maximum time the model
will run; and (iv) filterType which is the type of filter to be executed.

Quantitative Verification of Numerical Stability for Kalman Filters 435

VerFilter Algorithms. In this paper, we focus on two of our filter variants:
the conventional Kalman filter (CKFilter) and the Carlson-Schmidt square-root
filter (SRFilter). In VerFilter, several of the numerical linear algebra computa-
tions for implementing Kalman filters are done using the Apache Commons Math
library [1], while other parts have been manually implemented. In CKFilter, for
example, the library is used for “basic” matrix operations and for the eigen and
singular value decomposition of P . For SRFilter, algorithms implemented man-
ually include the upper-triangular Cholesky factorisation and Carlson’s measure-
ment update with Schmidt’s time update using Householder transformations.

5 Experimental Results

We now illustrate results from the implementation of our techniques on the
two filters CKFilter and SRFilter mentioned above. For the system models in
our experiments, we use two distinct kinematic state models which describe the
motion of objects as a function of time. For the first, the discrete white noise
acceleration model (DWNA), the initial estimation-error covariance matrix P+

0

is defined as
[
10 0
0 10

]
. Defining P+

0 as a diagonal matrix is quite common, since

it is initially unknown whether the state variables are correlated to each other.
The process noise covariance matrix is given by Q = Γσ2

wΓT where the noise
gain matrix Γ = [12Δt2 Δt]T is initialised by setting the sampling interval Δt
to 1, which results in Γ = [0.5 1]T . The variance σ2

w is set to 0.001 initially.
For the second model, the continuous white noise acceleration model (CWNA),
σ2

w is initially set to 0.001. Note that each of these models results in a different
process noise covariance matrix Q. For more details on these models, see [27].

5.1 Verification of Kalman Filter Implementations

In the first set of experiments, shown in Fig. 1, we analyse the condition number
of P+, in order to verify that it remains well-conditioned in terms of maintaining
its nonsingularity as it is being propagated forward in time (as discussed in
Sect. 3.2). This property is verified against two inputs which we vary; the first is
the numerical precision in terms of the number of decimal places, which we vary
from 3 to 6 inclusive. The second input is the time horizon of the model which
in our case is measured in discrete time steps and is varied from 2 to 20.

Our goal is twofold. Firstly, we examine whether an increase in the numer-
ical precision has a meaningful effect on how accurately the condition number
is computed. This is important since, as we show in Sect. 5.2, a decrease in
the numerical precision usually makes verification more efficient. Being able to
consider an appropriate threshold above which an increase in the numerical pre-
cision will not have an effect on the property to be verified can determine the
applicability of these verification mechanisms in realistic settings. Secondly, we
examine whether letting the model evolve for a greater amount of time could
have an impact on the property that is being verified.

436 A. Evangelidis and D. Parker

Fig. 1. Condition number of P+ over time under various degrees of precision.

Fig. 2. Verifying goodness of P+

The first observation between Fig. 1a and b is that the increased numerical
precision actually determines the verification result. For example, we note that
for maxTime values in the range of [4–20], when the input to our model for
the numerical precision is 3 decimal places, the instantaneous reward jumps to
infinity. An infinite reward in this case means that the condition number of P+ is
≈1.009e+16, which practically means that P+ is “computationally” singular and
consequently positive definiteness is not being preserved. Conversely, when we
increase the numerical precision to a value >4, positive definiteness is preserved
and the instantaneous reward assigned to the states fluctuates around small
values close to zero. Another interesting observation is that the instantaneous
rewards stabilise to a value of ≈3, irrespective of whether the numerical precision
is 4, 5 or 6. In fact, the actual absolute difference of the rewards over the states
in which positive definiteness is preserved between a numerical precision of 5
and 6 decimal places, is ≈0.1.

Quantitative Verification of Numerical Stability for Kalman Filters 437

Table 3. Comparison between two filter variants.

CKFilter SRFilter CKFilter SRFilter

P=?[� isPD] P=?[� isPD] Rcond=? [I=maxTime] Rcond=? [I=maxTime]

1 1 5001 69.88

1 1 6.85 2.48

0 1 +∞ 2.01

0 1 +∞ 1.94

0 1 +∞ 1.94

0 1 +∞ 1.94

In the second set of experiments the system model is a CWNA kinematic
model. Our goal is to examine how VerFilter can be used to examine heuristic-
based approaches and ad-hoc methods such as artificial noise injection in terms
of their usefulness in correcting potential numerical problems in P+. This is also
helpful in situations where it is challenging to determine the elements of Q, by
performing an automatic search over those values which will produce an optimal
performance, in this case in terms of the numerical robustness of P .

To this end, we verify whether P+ will remain well-conditioned or not, by
varying the elements of Q. The noise variance σ2

w, which determines the elements
of Q, is the input to our model, P+ is being verified against. We do not vary
the maximum time; rather, we let the Markov chain evolve to a fixed maxTime
value of 20 time steps, which corresponds to ≈1 × 106 states.

In Fig. 2 we show the effects of increasing the variance of the noise by small
increments, which is then multiplied with the elements of Q. The first point
of the plot (0.1, 1000), means that for a value of σ2

w = 0.1, the corresponding
instantaneous reward which corresponds to the condition number of P+ in a set
of states where maxTime=20, is 1000. As we increase σ2

w, the “quality” of P+

increases, reaching a condition number of ≈43.
In summary, for this particular example, the optimal σ2

w = 1.3. It is important
to note that when performing verification on Markov chains whose trajectories
evolve over multiple states, to verify that the positive definiteness of P+ is not
destroyed between successive states (i.e. successive time steps). To this end, it is
advisable to use a property of the form P=?[� isPD] and reject models in which
the previous property is not satisfied with probability one.

In Table 3 we compare two of the filter variants available in VerFilter; the
CKFilter and the SRFilter. In this set of experiments, the setup is similar to the
first one. First, our purpose is to demonstrate the correctness of our approach by
comparing the condition numbers of P+ and C+, respectively. The superiority of
the SRFilter compared to CKFilter, is demonstrated from the fact that for the
same set of parameters the numerical robustness of P+ is preserved. This can
be seen by comparing the computed results of the reward-based properties as
shown in the third and fourth column of Table 3. We note that when choosing the

438 A. Evangelidis and D. Parker

3 4 5 6
Decimal places

0

50

100

150

200

250

300
M

od
el

 c
on

st
ru

ct
io

n
tim

e
(s

ec
s)

CKFilter
SRFilter-1
SRFilter-2

(a) Model construction time

3 4 5 6
Decimal places

0

0.5

1

1.5

2

2.5

3

3.5

M
od

el
 c

he
ck

in
g

tim
e

(s
ec

s)

CKFilter
SRFilter-1
SRFilter-2

(b) Model checking time

Fig. 3. Time comparisons between three filters.

CKFilter, the reward value shoots up to +∞, representing an estimation-error
covariance matrix in which the PD property is destroyed, while in the SRFilter
case the corresponding reward value settles around the small value of 1.94. This
is also evident by observing the first and second columns of Table 3 which tell
us whether the PD invariant will be maintained in all the states of the model.
Notably, the PD property in the CKFilter does not hold for every state, in fact
the probability is zero, while for the SRFilter the PD property holds for every
state with probability one.

5.2 Scalability Analysis

In this section, we report on the scalability of our approach in terms of the model
construction and model checking time, across three filter variants. The model
has been generated by letting the Markov chain evolve to a fixed maxTime value
of 20 time steps, which corresponds to ≈1 × 106 states. The rationale behind
this section is to emphasise the careful analysis that needs to be performed to
systematically evaluate the trade-offs between the accuracy of the verification
result and the fastness of the verification algorithms.

In Fig. 3 we show the time comparisons, for varying degrees of precision,
between a model which encodes the conventional Kalman filter (CKFilter),
and our two implementations of the Carlson-Schmidt square-root filter with
(SRFilter-1) and without (SRFilter-2) reconstruction of the estimation-error
covariance matrix, respectively. The model checking time refers to the total time
it takes to verify the first and second property of Sect. 3.2. These sets of exper-
iments were run on a 16 GB RAM machine with an i7 processor at 1.80 GHz,
running Ubuntu 18.04.

By observing Fig. 3a it is apparent that the increased numerical precision
affects the construction time of the models. The average model construction
time of the three filter variants increased by a factor of ≈3 from 3 to 6 decimal
places. Specifically, the average time is ≈83 s for 3 decimal places compared

Quantitative Verification of Numerical Stability for Kalman Filters 439

to ≈249 s, when 6 decimal places were used. Moreover, the construction of the
CKFilter was the fastest in all the degrees of precision considered, however, as
it was noted in Sect. 5.1 it produces an inaccurate verification result when the
number of decimal places is 3.

Conversely, the construction times of the two square-root filters were about
the same, and it seems that the extra computational step (P = CCT) did not
have a significant effect on the performance of the model construction. However,
it should be borne in mind that these experiments were conducted on systems
represented by two-dimensional matrices. The model checking times are shown
in Fig. 3b and one can observe that they follow a similar pattern with the model
construction times shown earlier, in terms of the increase in time from 3 to 6
decimal places. For instance, the average model checking time increases by a
factor of ≈3 when 6 decimal places are used, compared to 3.

Another observation is that the model checking time appears to be indepen-
dent of the type of the filter used. This can be seen from the limited variability
the model checking time experiences between the three filter variants, since for
the degrees of precision considered, it remains at approximately the same level.
This is in contrast to the model construction time which appears to be affected
by the filter type, since it is considerably less for the CKFilter compared to
its square-root variants. In fact, for a precision of 6 decimal places, and once
CKFilter is chosen as an input we experience a drop in the model construction
time of about 53 s. However, for the same amount of precision, the time it takes
to model check all the three filters is around 3 s.

6 Conclusion

We have presented a framework for the modelling and verification of Kalman
filter implementations. It is general enough to analyse a variety of different imple-
mentations, and various system models, and to study a range of numerical issues
which may hinder the effective deployment of the filters in practice. We have
implemented the techniques in a tool and illustrated its applicability and scala-
bility with a range of experiments. Due to space limitations, we showed results for
two filters, the conventional Kalman filter and for the Carlson-Schmidt square-
root filter, but our implementation already supports three others.

In general, the evaluation of Kalman filters in terms of their performance
has attracted considerable attention, since the early days of their development.
However, formal methods such as probabilistic model checking have not been
used for their verification. This is, to the best of our knowledge, the first work
where these types of problems are applied to a probabilistic verification setting.
Our main contribution in this work is that we show that probabilistic verification
can be a promising alternative in verifying these types of systems.

Acknowledgements. This work has been partially supported by an EPSRC-funded
Ph.D. studentship (award ref: 1576386) and the PRINCESS project (contract FA8750-
16-C-0045) funded by the DARPA BRASS programme.

440 A. Evangelidis and D. Parker

References

1. Math - Commons-Math: The Apache Commons Mathematics Library. http://
commons.apache.org/math/

2. Anderson, B., Moore, J.: Optimal Filtering. Dover Books on Electrical Engineering.
Dover Publications, New York (2012)

3. Bar-Shalom, Y.: Tracking and Data Association. Academic Press Professional Inc.,
San Diego (1987)

4. Bar-Shalom, Y., Li, X.R.: Estimation with Applications to Tracking and Naviga-
tion. Wiley, New York (2001). https://doi.org/10.1002/0471221279

5. Battin, R.H.: Astronautical Guidance. McGraw-Hill, New York (1964). Electronic
sciences

6. Bertsekas, D., Tsitsiklis, J.: Introduction to Probability. Athena Scientific, Athena
Scientific optimization and computation series (2008)

7. Bierman, G.J.: Factorization Methods for Discrete Sequential Estimation (1977)
8. Bucy, R.S., Joseph, P.D.: Processes with Applications to Guidance. Interscience

Publishers, New York (1968)
9. Carlson, N.A.: Fast triangular formulation of the square root filter. AIAA J. 11(9),

1259–1265 (1973). https://doi.org/10.2514/3.6907
10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-

niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

11. Gibbs, B.P.: Advanced Kalman Filtering, Least Squares and Modeling: A Practical
Handbook. Wiley, New York (2011). https://doi.org/10.1002/9780470890042

12. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using MAT-
LAB, 4th edn. Wiley-IEEE Press, New York (2014)

13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

14. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions.
Wiley, New York (1994)

15. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)
16. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME

J. Basic Eng. 82, 35–45 (1960)
17. Kaminski, P., Bryson, A., Schmidt, S.: Discrete square root filtering: a survey of

current techniques. IEEE Trans. Autom. Control 16(6), 727–736 (1971). https://
doi.org/10.1109/TAC.1971.1099816

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

19. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking part. i. dynamic
models. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1333–1364 (2003). https://
doi.org/10.1109/TAES.2003.1261132

20. Maybeck, P.S.: Stochastic Models, Estimation, and Control: Mathematics in Sci-
ence and Engineering, vol. 1. Elsevier Science, Burlington (1982)

21. Moulin, M., Gluhovsky, L., Bendersky, E.: Formal verification of maneuvering tar-
get tracking. In: AIAA Guidance, Navigation, and Control Conference and Exhibit
(2003). https://doi.org/10.2514/6.2003-5716

http://commons.apache.org/math/
http://commons.apache.org/math/
https://doi.org/10.1002/0471221279
https://doi.org/10.2514/3.6907
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1002/9780470890042
https://doi.org/10.1007/BF01211866
https://doi.org/10.1109/TAC.1971.1099816
https://doi.org/10.1109/TAC.1971.1099816
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/TAES.2003.1261132
https://doi.org/10.1109/TAES.2003.1261132
https://doi.org/10.2514/6.2003-5716

Quantitative Verification of Numerical Stability for Kalman Filters 441

22. R. Gamboa, J. Cowles, J.V.B.: On the verification of synthesized kalman filters.
In: 4th International Workshop on the ACL2 Theorem Prover and Its Applications
(2003)

23. Roşu, G., Venkatesan, R.P., Whittle, J., Leuştean, L.: Certifying optimality of
state estimation programs. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 301–314. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6 30

24. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. Wiley, New York (2006)

25. Whittle, J., Schumann, J.: Automating the implementation of kalman filter algo-
rithms. ACM Trans. Math. Softw. 30(4), 434–453 (2004). https://doi.org/10.1145/
1039813.1039816

26. Zarchan, P., Musoff, H.: Fundamentals of Kalman filtering : A Practical Approach,
4th edn. American Institute of Aeronautics and Astronautics, Reston (2015)

27. Supporting material. www.prismmodelchecker.org/files/fm19kf/

https://doi.org/10.1007/978-3-540-45069-6_30
https://doi.org/10.1007/978-3-540-45069-6_30
https://doi.org/10.1145/1039813.1039816
https://doi.org/10.1145/1039813.1039816
www.prismmodelchecker.org/files/fm19kf/

Concolic Testing Heap-Manipulating
Programs

Long H. Pham1(B), Quang Loc Le2, Quoc-Sang Phan3, and Jun Sun4

1 Singapore University of Technology and Design, Singapore, Singapore
longph1989@gmail.com

2 School of Computing & Digital Technologies, Teesside University,
Middlesbrough, UK

3 Synopsys, Inc., Mountain View, USA
4 Singapore Management University, Singapore, Singapore

Abstract. Concolic testing is a test generation technique which works
effectively by integrating random testing generation and symbolic execu-
tion. Existing concolic testing engines focus on numeric programs. Heap-
manipulating programs make extensive use of complex heap objects like
trees and lists. Testing such programs is challenging due to multiple rea-
sons. Firstly, test inputs for such programs are required to satisfy non-
trivial constraints which must be specified precisely. Secondly, precisely
encoding and solving path conditions in such programs are challenging
and often expensive. In this work, we propose the first concolic testing
engine called CSF for heap-manipulating programs based on separation
logic. CSF effectively combines specification-based testing and concolic
execution for test input generation. It is evaluated on a set of challenging
heap-manipulating programs. The results show that CSF generates valid
test inputs with high coverage efficiently. Furthermore, we show that
CSF can be potentially used in combination with precondition inference
tools to reduce the user effort.

1 Introduction

Unit testing is essential during the software development process. To automate
unit testing effectively, we are required to generate valid test inputs which
exercise program behaviors comprehensively and efficiently. Many techniques
for automating unit testing have been proposed, including random testing [18]
and symbolic execution [45]. A recent development is the concolic testing tech-
nique [32,40]. Concolic testing works by integrating random testing and symbolic
execution to overcome their respective limitations [46]. It has been shown that
concolic testing often works effectively [47].

Existing concolic testing engines focus on numeric programs, i.e., programs
which take numeric type variables as inputs. In contrast, heap-manipulating pro-
grams make extensive use of heap objects and their inputs are often dynamically
allocated data structures. Test input generation for heap-manipulating programs

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 442–461, 2019.
https://doi.org/10.1007/978-3-030-30942-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_27

Concolic Testing Heap-Manipulating Programs 443

is hard for two reasons. Firstly, the test inputs are often heap objects with com-
plex structures and strict requirements over their shapes and sizes. Secondly, the
inputs have unbounded domains. Ideally, test generation for heap-manipulating
programs must satisfy three requirements.

1. (Validity). It must generate valid test inputs.
2. (Comprehensiveness). It must exercise program behaviors comprehensively,

e.g., maximizing certain code coverage.
3. (Efficiency). It must be efficient.

Existing approaches often overlook one or more of the requirements. The state-
of-the-art approaches are based on classical symbolic execution [26] with lazy
initialization [45]. To achieve comprehensiveness and efficiency, lazy initialization
postpones the initialization of reference type symbolic variables and fields until
they are accessed. However, lazy initialization has limited support to capture con-
straints on the shapes of the input data structures. As a result, invalid test inputs
are generated, which are not only wasteful but also lead to the exploration of
infeasible program paths. Furthermore, because the values of un-accessed fields
are not initialized, the generated test inputs need to be further concretized.
Subsequent works on improving lazy initialization [15,16,21,45] share the same
aforementioned problems. To address the validity requirement, Braione et al. [11]
introduced a logic called HEX as a specification language for the input data struc-
tures. However, HEX has limited expressiveness and thus cannot describe many
data structures (unless using additional user-provided methods called triggers).

Inspired by the recent success of concolic execution (e.g., [1,41]), we aim to
develop a concolic execution engine for heap-manipulating programs. Develop-
ing a concolic execution engine which achieves validity, comprehensiveness and
efficiency is however highly non-trivial. For validity, we need a specification lan-
guage which is expressive enough to capture constraints over the shapes and
sizes of heap objects. We thus adopt a recently proposed fragment of separation
logic which is shown to be expressive and decidable [30]. For comprehensive-
ness and efficiency, we propose a novel concolic testing strategy which combines
specification-based testing and concolic execution. That is, we first generate test
inputs according to the specification in a black-box manner and then apply con-
colic execution to cover those uncovered program parts.

In summary, we make the following contributions. Firstly, we propose a con-
colic execution engine for heap-manipulation programs based on separation logic.
Secondly, we combine specification-based testing with concolic execution in order
to reduce the cost of constraint solving. Thirdly, we implement the proposal in a
tool called Concolic StarFinder (CSF) and evaluate it in multiple experiments.

The rest of this paper is organized as follows. Section 2 illustrates our app-
roach through an example. Section 3 describes our specification language and
specification-based test input generation. Next, we present our concolic execu-
tion engine in Sect. 4. We show the implementation and experiments in Sect. 5.
Section 6 discusses related works and finally Sect. 7 concludes.

444 L. H. Pham et al.

Fig. 1. Sample program

2 Approach at a Glance

We illustrate our approach using method remove in class BinarySearchTree
from the SIR repository [7]. The method is shown in Fig. 1. It checks if a binary
search tree object contains a node with a specific value and, if so, removes the
node. To test the method, we must generate two inputs, i.e., a valid binary
search tree object t and an integer x, and then execute t.remove(x). Note that
a valid binary search tree object must satisfy strict requirements. Firstly, all
BinaryNode objects must be structured in a binary tree shape. Secondly, for
any BinaryNode object in the tree, its element value must be greater than all
the element values of its left sub-tree and less than those of the right sub-tree.
One way to define valid binary search tree objects is through programming a
repOK method [9,45].

If a repOK method is provided, we can use the black-box enumeration (BBE)
approach [45] to generate test inputs. BBE performs symbolic execution with
lazy initialization on the repOK method. Although BBE can generate valid test
inputs, it also generates many invalid ones, e.g., the generated input is a cyclic
graph instead of a tree1. In our experiment with BBE for this method, a total
of 225 test inputs are generated and only 9 of them are valid. Moreover, because

1 When BBE runs, we count the structures that the repOK method returns true as
valid ones, and the structures that the repOK method returns false as invalid ones.

Concolic Testing Heap-Manipulating Programs 445

Fig. 2. Specification language, where k is a 32-bit integer constant, v̄ is a sequence of
variables

BBE generates test inputs based on the repOK method only, it may not generate
a high coverage test suite.

One way to obtain a high coverage test suite is to use the white-box enumer-
ation approach [45]. First, white-box enumeration performs symbolic execution
on the method under test to create some partially initialized data structures.
Then, these data structures are used as initial inputs to perform symbolic exe-
cution with the repOK method. However, because the approach still uses lazy
initialization, many invalid test inputs may be generated. Moreover, white-box
enumeration requires the availability of a conservative repOK method in the
first step, which is not easy to derive. Another approach is to use the HEX
logic [12] as a language to specify valid data structures. During lazy initializa-
tion, the exploration is pruned when the heap configuration violates the specifi-
cation. However, HEX has limited expressiveness, e.g., HEX cannot capture the
property that the nodes in the binary search tree are sorted due to the lack of
arithmetic constraints.

In comparison, our approach works as follows. We use separation logic to
define a predicate bst(root,minE,maxE), which specifies valid binary search
trees where root is the root of the tree and minE (resp. maxE) is the minimum
(resp. maximum) bound of the element values of the tree. We refer the readers
to Sect. 3 for details of the definition. The precondition of method remove is
then specified as bst(this root,minE,maxE). With the specification, we first
apply specification-based testing based on the precondition in a black-box man-
ner. That is, we generate the test inputs according to the precondition using a
constraint solver without exploring the method body. After this step, we gen-
erate 22 test inputs and they cover 14 over 15 feasible branches of the method
remove (including auxiliary method findMin). The only branch which is not
covered is the else branch at line 21. We then perform concolic execution with
the generated test inputs to identify a feasible path which leads to the uncovered
branch. After solving that path condition, we obtain the test inputs for 100%
branch coverage.

3 Specification-Based Testing

Our approach takes as input a heap-manipulating program which has a precon-
dition specified using a language recently developed in [14,30]. In the follow-

446 L. H. Pham et al.

Algorithm 1: genFromSpec(Γ, n)
1 if n = 0 then
2 tests ← ∅
3 foreach Δ ∈ Γ do
4 r, model ← sat(Δ)
5 if r = SAT then
6 tests ← tests ∪ toUnitTest(model)

7 return tests

8 else
9 Γ ′ ← ∅

10 foreach Δ ∈ Γ do
11 Γ ′ ← Γ ′ ∪ unfold(Δ)

12 return genFromSpec(Γ ′, n − 1)

ing, we introduce the language and present the first step of our approach, i.e.,
specification-based testing based on the provided precondition.

Specification Language. The language we adopt supports separation logic,
inductive predicates and arithmetical constraints, which is expressive to specify
many data structures [14,30]. Its syntax is shown in Fig. 2. In general, the pre-
condition is a disjunction of one or more symbolic heaps. A symbolic heap is an
existentially quantified conjunction of a heap formula κ and a pure formula π.
While a pure formula is a constraint in the form of the first-order logic, the heap
formula is a conjunction of heap predicates which are connected by separating
operation ∗. A heap predicate may be the empty predicate emp, a points-to pred-
icate x�→c(v̄) or an inductive predicate P(v̄). Reference types are annotated by
the keyword data. Variables may have type τ as boolean bool or 32-bit integer
int or user-defined reference type c.

Inductive predicates are supplied by the users with the keyword pred. They
are used to specify constraints on recursively defined data structures like linked
lists or trees. Inductive predicates are defined in the same language. For instance,
the inductive predicate bst(root,minE,maxE) introduced in Sect. 2 is defined
as follows

pred bst(root, minE, maxE) ≡ (emp ∧ root = null)
∨ (∃elt, l, r. root
→BinaryNode(elt, l, r) ∗

bst(l, minE, elt) ∗ bst(r, elt, maxE) ∧ minE < elt ∧ maxE > elt),

where root is the root of the tree and minE (resp. maxE) is the minimum
(resp. maximum) bound of the element values of the tree. Using this defini-
tion with this root as symbolic value for field root in class BinarySearchTree,
the precondition of method remove in the preceding section is then specified as
bst(this root,minE,maxE).

Concolic Testing Heap-Manipulating Programs 447

Fig. 3. Unfoldings

Specification-Based Testing. If we follow existing concolic testing strate-
gies [18], we would first generate random test inputs before applying concolic
execution. However, it is unlikely that randomly generated heap objects are
valid due to the strict precondition. Thus, we apply specification-based testing
to generate test inputs based on the user-provided precondition instead.

The details are shown in Algorithm 1. The inputs are a set of formulae Γ
and a bound on n. The initial value of Γ contains only the precondition of the
program under test. The output is a set of test inputs which are both valid and
fully initialized. Algorithm 1 has two phases.

In the first phase, from line 8 to 12, procedure unfold is applied to each
symbolic heap Δ in Γ (at line 11) to return a set of unfolded formulae. Recall
that a symbolic heap is a conjunction of a heap constraint κ and a pure constraint
π. If the heap constraint κ contains no inductive predicates (i.e., it is a base
formula), κ is returned as it is. Otherwise, each inductive predicate Pi(t̄i) in κ is
unfolded using its definition. Note that the definition of Pi(t̄i) is a disjunction of
multiple base cases and inductive cases. During unfolding, κ is split into a set
of formulae, one for each disjunct in the definition of every inductive predicate
Pi(t̄i) in κ. The process ends when n reaches 0.

Procedure unfold is formalized as follows. Given an inductively predicate
definition pred Pi(v̄i) ≡ Φi and a formula constituted with this predicate, e.g.,
Δi ∗ Pi(t̄i), unfold proceeds in two steps. First, it replaces the occurrences of
the inductive predicate with its definition as: unfold(Δi ∗ Pi(t̄i), Pi(t̄i)) ≡ Δi ∗
(Φi[t̄i/v̄i]). After that, it applies the following axioms to normalizes the formula
into the grammar in Fig. 2:

(κ1 ∧ π1) ∗ (κ2 ∧ π2) ≡ (κ1 ∗ κ2) ∧ (π1 ∧ π2)
(∃w̄. Δ1) ∗ (∃v̄. Δ2) ≡ ∃w̄, v̄′. (Δ1 ∗ Δ2[v̄

′/v̄])

The correctness of these axioms could be found in [23,38]. We then use
unfold(Δ) ≡ ⋃n

i=1 unfold(Δ, Pi(t̄i)), Pi(t̄i) ∈ Δ. For example, given the above-
specified precondition for method remove , we obtain 6 formulae shown in Fig. 3
after unfolding twice.

448 L. H. Pham et al.

Fig. 4. Two test inputs

Fig. 5. A core intermediate language

Unit Test Generation. After unfolding, Γ contains a set of formulae, each
of which satisfies the precondition. In the second phase, at lines 1–7, these for-
mulae are transformed into test inputs. First, we check the satisfiability of each
formula using a satisfiability solver S2SATSL [28,30] at line 4. The result of the
solver is a pair (r, model) where r is a decision of satisfiability and model is
a symbolic model which serves as the evidence of the satisfiability. Intuitively,
a symbolic model is a base formula where every variable is assigned a symbolic
value. Formally, a symbolic model is a quantifier-free base formula Δm where
Δm is satisfiable and for each variable v in Δm, if v has a reference type, Δm

contains v �→c(...), or v = v′, or v = null; otherwise, Δm contains v = k with k
is either a boolean or 32-bit integer constant.

At line 6, the symbolic model is transformed into a test input using procedure
toUnitTest, which initializes the variables according to the symbolic model
(e.g., for each points-to predicate v �→c(...), a new object of type c is created and
assigned to v). Figure 4 shows two test inputs generated for the example shown
in Fig. 1. These two test inputs correspond to the first two formulae shown in
Fig. 3 (where x is assigned the default value 0).

The correctness of the algorithm, i.e., each generated test input is a valid one,
is straightforward as each symbolic model obtained from the unfolding satisfies
the original precondition, since each one is an under-approximation of a Δ in Γ .

Concolic Testing Heap-Manipulating Programs 449

4 Concolic Execution

Specification-based testing allows us to generate test inputs which cover some
parts of the program. Some program paths however are unlikely to be covered
with such test inputs without exploring the program code [46]. Thus, the second
step of our approach is to apply concolic execution to cover the remaining parts
of the program.

We take a program, a set of test inputs and a constraint tree as inputs. The
constraint tree allows us to keep track of both explored nodes and unexplored
nodes. Informally, the concolic execution engine executes the test inputs, expands
the tree and then generates new test inputs to cover the unexplored parts of the
tree. This process stops when there are no unexplored nodes in the tree or it
times out.

For simplicity, we present our concolic engine based on a general core inter-
mediate language. The syntax of the language is shown in Fig. 5, which cov-
ers common programming language features. A program in our core language
includes several data structures and statements. Our language supports boolean
and 32-bit integer as primitive types. Program statements include assignment,
memory store, goto, assertion, conditional goto, memory allocation, and mem-
ory deallocation. Expressions are side-effect free and consist of typical non-heap
expressions and memory load. We use opb to represent binary operators, e.g.,
addition and subtraction, and opu to represent unary operators, e.g., logical
negation. k is either a boolean or 32-bit integer constant.

We assume the program is in the form of static single assignments (SSA) and
omit the type-checking semantics of our language (i.e., we assume programs are
well-typed in the standard way). Note that our prototype implementation is for
Java bytecode, which in general can be translated to the core language (with
unsupported Java language features are abstracted during the translation). The
core language is easily extended to interprocedural scenario with method calls.

Execution Engine. Our concolic execution engine incrementally grows the
constraint tree. Formally, the constraint tree is a pair (V,E) where V is a finite
set of nodes and E is a set of labeled and directed edges (v, l, v′) where v′

is a child of v. Having edge (v, l, v′) means that we can transit from v to v′

via an execution rule l. Each node in the tree is a concolic state in the form
of a 6-tuple 〈Σ,Δ, s, pc, flag〉ι where Σ is the list of program statements; Δ
is the symbolic state (a.k.a. the path condition); s is the current valuation of
the program variables (i.e., the stack); pc is the program counter; flag is a flag
indicating whether the current node has been explored or not and ι is the current
statement. Note that Σ and s are mapping functions, i.e., Σ maps a number to
a statement, and s maps a variable to its value.

Initially, the constraint tree has only one node 〈Σ, pre, ∅, 0, true〉ι0 where ∅
denotes an empty mapping function and ι0 is the initial statement. Note that the
initial symbolic state is the precondition. We start with executing the program
concretely, with some initial test inputs (at least one), and build the constraint
tree along the way. The initial test inputs may come from specification-based

450 L. H. Pham et al.

testing or be provided by the users. Before each execution, s is initialized with
values according to the test input. In the execution process, given a node, our
engine systematically identifies an applicable rule (based on the current state-
ment) to generate one or more new nodes. If no rule matches (e.g., accessing a
dangling pointer), the execution halts. Note that some of the generated nodes
are marked explored whereas some are marked unexplored (depending on the
outcome of the concrete execution).

After executing all initial test inputs, the engine searches for unexplored
nodes in the tree. If there is one such node with symbolic state Δ, the engine
solves Δ using a solver [28,30]. If Δ is satisfiable, the unexplored path is feasible
and the symbolic model generated by the solver is transformed into a new test
input (as shown in the Sect. 3). The new test input is then executed and the
constraint tree is expanded accordingly. If Δ is unsatisfiable, the node is pruned
from the tree. This process is repeated until there are no more unexplored nodes
or it times out.

The growing of the tree is governed by the execution rules, which effectively
defines the semantics of our core language. The detailed execution rules are
presented in Fig. 6. One or more rules may be defined for each kind of statements
in our core language. Each rule, applied based on syntactic pattern-matching, is
of the following form.

conditions
current state � end state1, ..., end staten

Intuitively, if the conditions above the line is satisfied, a node matching the
current state generates multiple children nodes.

In the following, we explain some of the rules in detail. In the rule [C−ASSIGN]

which assigns the value evaluated from expression e to variable v, for the concrete
state our system first evaluates the value of e based on the concrete state s
prior to updating the state of v with the new value. For the symbolic state,
it substitutes the current value of v to a fresh symbol v′ prior to conjoining
the constraint for the latest value of v. In the rule [C−NEW] which assigns new
allocated object to variable v, for the concrete state our system updates the
stack with an assignment of the variable to a fresh location. For the symbolic
state, it substitutes the current value of v to a fresh symbol v′ prior to spatially
conjoining the points-to predicate for the latest value of v.

In the rule [C−LOAD] (resp. [C−STORE]) which reads from (resp. writes into)
the field fi of an object v, in the concrete state we implicitly assume that the
corresponding variable of the field is l.fi where l is the concrete address of v and
proceed accordingly. For the symbolic states, checking whether a variable has
been allocated before accessed is much more complicated as the path condition
(with the precondition) may include occurrences of inductive predicates (which
represent unbounded heaps), so our system keeps the constraints with the field-
access form (i.e., v.fi) and field-assign form (i.e., v.fi := e) and will eliminate
them before sending these formulae to the solver.

In the rule [C−TCOND], two new nodes denoting the then branch and the
else branch of the condition are added into the tree with the current node is

Concolic Testing Heap-Manipulating Programs 451

Fig. 6. Execution rules: Σ[x ← k] updates the mapping Σ by setting x to be k; fresh
is used as an overloading function to return a new variable/address; s e ⇓ k denotes
the evaluation of expression e to a concrete value k in the current context s

their parent. The symbolic states (path conditions) of both nodes are updated
accordingly (Δ1 and Δ2). The concrete state s helps to identify that the exe-
cution is going to follow the then branch and marks this branch as explored.
The remaining node is marked as unexplored. The rule [C−FCOND] is interpreted
similarly.

For example, Fig. 7 show the constraint trees constructed during the concolic
execution of the example in Fig. 1 with two initial test inputs in Fig. 4. The input
of the first test case is an empty tree. The condition of the if − statement at
line 21 evaluates to true, satisfying the rule [C−TCOND]. The constraint tree
in Fig. 7(a) is constructed. The input of the second test case is a tree with
one node and x is 0. Thus the node is to be removed as its element is 0. The
rule [C−FCOND] is applied, which results in the tree in Fig. 7(b). The condi-
tion x < t.element is then used to generate a new test input with x = 0 and
t.element = 1. Executing this new test input triggers the rule [C−TCOND] at
line 9, and updates the constraint tree as in Fig. 7(c).

Path Condition Transformation. Note that the path conditions generated
according to the execution rules may contain field-access and field-assign expres-

452 L. H. Pham et al.

Fig. 7. Constraint trees construction: a question mark represents an unexplored path
and OK denotes the execution terminates without error

sions which are beyond the syntax in Fig. 2 and the support of the solver [28,30].
Thus, these expressions need to be eliminated. The details of the transformation
are presented in the Algorithm 2. The input of the algorithm is a path condition
which may contain field-access and field-assign expressions. The output are mul-
tiple path conditions, i.e., a disjunction of path conditions, without field-access
and field-assign expressions.

The algorithm begins by recording all symbolic values for all fields of points-
to predicates (lines 1–3). Then it considers each conjunct, which in form of a
binary expression with left-hand side and right-hand side, in the path condition
(line 4). In general, the field-access expression is substituted by symbolic value
of the field. For each field-access expression v.fi in the conjunct (line 5), if the
current path condition implies v is null, the path condition is unsatisfiable and
is discarded (lines 6–7). In case the path condition implies v is constrained by
a points-to predicate, it substitutes v.fi with the corresponding symbolic name
for the field in the predicate (lines 8–9). Otherwise, if v is constrained by an
inductive predicate, it unfolds the predicate to find points-to predicate for v (lines
10–14). In the last case (lines 15–16), it considers the current path condition
does not have enough information to resolve v.fi and simply returns empty. For
field-assign expression v.fi := e, after transforming the expression with above
steps, it substitutes the left-hand side with a fresh symbolic name f ′

i , update the
mapping from v.fi (or x.fi in case Δ =⇒ x = v) to f ′

i , then change := to = (lines
17–20). Note that the update at line 19 may override the update at line 9 for left-
hand side. Similar to Algorithm 1, the correctness of Algorithm 2 follows from
the fact that each final path condition is an under-approximation of the original
path condition because of the unfolding process. For instance, the path condition
bst(this root,minE,maxE)∧t = this root∧t �= null∧x < t.element has field-
access expression t.element which need to be transformed. Using Algorithm 2,
we get the final path condition which can be passed to the solver:

∃elt, l, r. this root
→BinaryNode(elt, l, r) ∗ bst(l, minE, elt) ∗ bst(r, elt, maxE) ∧
minE < elt ∧ maxE > elt ∧ t = this root ∧ t �= null ∧ x < elt

Concolic Testing Heap-Manipulating Programs 453

Algorithm 2: preprocess(Δ)
1 map ← ∅
2 foreach v
→c(v1, ..., vn) ∈ Δ do
3 map ← map ∪ {v.fi ← vi}
4 foreach (lhs op rhs) ∈ Δ do
5 foreach v.fi ∈ (lhs op rhs) do
6 if Δ =⇒ v = null then
7 return ∅
8 else if map(v.fi) = vi ‖ map(x.fi) = vi && Δ =⇒ v = x then
9 (lhs op rhs) ← (lhs op rhs)[vi/v.fi]

10 else if P(v̄) ∈ Δ && (v ∈ v̄ ‖ x ∈ v̄ && Δ =⇒ v = x) then
11 Δs ← unfold(Δ, P(v̄)), Γ ← ∅
12 foreach Δi ∈ Δs do
13 Γ ← Γ ∪ preprocess(Δi)

14 return Γ

15 else
16 return ∅
17 if op is := then
18 Substitute lhs with a fresh symbolic name
19 Update the field in map to the new name
20 Substitute := with =

21 return {Δ}

The solver verifies that the path condition is satisfiable and then returns a model
which is a BinarySearchTree with 1 node. The element field of the node has
value 1 and the value of parameter x is 0.

5 Implementation and Experiments

We have implemented our proposal in a tool, named Concolic StarFinder (CSF),
with 6770 lines of Java code as a module inside the Java PathFinder frame-
work. In the following, we conduct three experiments and contrast CSF’s per-
formance with existing approaches. All experiments are conducted on a laptop
with 2.20 GHz and 16 GB RAM.

First Experiment. In this experiment, we assume CSF is used as a stand-
alone tool to generate test inputs for heap-manipulating programs. That is, the
users provide a program and a precondition, then apply CSF to automatically
generate a set of test inputs. The experimental subject is a comprehensive set
of benchmark programs collected from previous publications, which includes
Singly-Linked List (SLL), Doubly-Linked List (DLL), Stack, Binary Search Tree
(BST), Red Black Tree (RBT) from SIR [7], AVL Tree, AA Tree (AAT) from

454 L. H. Pham et al.

Sireum/Kiasan [8], Tll from [27], the motivation example from SUSHI [10], the
TSAFE project [17], and the Gantt project [3]. In total, we have 74 methods
whose line of codes range from dozens to more than one thousand. For each
method, the precondition according to the original publication is adopted for
generating test inputs using CSF. In the specification-based testing stage, CSF
is configured to generate all test inputs with a depth of 1 (e.g., unfolding the
precondition once).

We compare CSF with two state-of-the-art tools, e.g., JBSE [12] and
BBE [45]. JBSE uses HEX for specifying the invariants of valid test inputs and
generates test inputs accordingly. We use the same invariants reported in [12]
in our experiments. Note that because the HEX invariants for SLL, Stack, BST,
AA Tree and Tll are not available2, we skip running JBSE with these test sub-
jects. BBE is explained in Sect. 2. In the following, we answer multiple research
questions (RQ) through experiments.

RQ1: Does CSF generate valid test inputs? We apply CSF to generate test inputs
for the 74 methods. To check whether the generated test inputs are valid, we
validate the generated test inputs with the repOK method in the data struc-
tures. The results are shown in the columns named #Tests in Table 1 for each
test subject. The entries for JBSE and BBE are in the form of the number
of valid test inputs over the total number of test inputs. As expected, all test
inputs generated by CSF are valid. In comparison, JBSE generates 4.65% valid
test inputs and BBE generates 7.83% valid test inputs. The reason for the poor
results of JBSE and BBE is that the reference variables/fields are initialized
with the wrong values or never initialized if they are not accessed. Note that
by default, JBSE generates partially initialized test inputs, so we additionally
call method repOK to concretize them. CSF solves the path conditions, which
contain the precondition, to generate test inputs, which are guaranteed to be
valid. We thus conclude that using an expressiveness language is important in
achieving validity.

RQ2: Can CSF achieve high code coverage? We use JaCoCo [4] to measure the
branch coverage of the generated test inputs. The results are shown in the sub-
columns named Cov.(%) (which is the coverage achieved by valid test inputs)
and NCov.(%) (which is the coverage achieved by all test inputs including the
invalid ones) in Table 1. The winners are highlighted in bold. Note that for
CSF, because all the test inputs are valid, we omit the column NCov.(%). The
results show that CSF achieves nearly 100% branch coverage for almost all pro-
grams except TSAFE, whose coverage is 59.46%. For 70 out of 74 methods, CSF
can obtain 100% branch coverage (including branches for auxiliary methods
and excluding infeasible branches). CSF fails to cover 1 branch in two methods
(i.e., remove for RBT and remove for AAT) and 3 branches in one method
(i.e., put for RBT). The reason is that although the path conditions leading to
those branches are satisfiable, the solver times out. For method TS R 3, CSF

2 and it is unclear to us whether HEX is capable to specify them.

Concolic Testing Heap-Manipulating Programs 455

Table 1. Experiment 1 & 2: Results

Program
CSF JBSE BBE

#Tests Cov.(%) #Calls T(s) #Tests Cov.(%) NCov.(%) T(s) #Tests Cov.(%) NCov.(%) T(s)
DLL 75 100 40/58 32 121/5146 56 100 206 0/35 0 21 21
AVL 62 100 36/654 274 76/295 100 100 48 17/117 70 89 69
RBT 133 99 14/1106 2403 137/291 87 91 38 14/380 26 53 333
SUSHI 5 100 3/38 8 0/900 0 100 24 2/27 25 25 8
TSAFE 16 59 1/595 1190 0/32 0 5 10 0/1 0 0 1
Gantt 22 100 2/156 25 17/887 55 90 24 0/6 0 5 2
SLL 29 100 21/8 11 - - - - 16/50 66 71 19
Stack 18 100 16/2 7 - - - - 11/14 84 84 6
BST 47 100 16/33 14 - - - - 19/260 69 86 131
AAT 46 99 21/352 277 - - - - 3/166 6 43 111
Tll 6 100 2/4 2 - - - - 1/4 38 50 2
Math 320 88 576/0 73 - - - - 128/320 75 79 95

achieves 59.46% branch coverage because in the execution, some native meth-
ods are invoked and applying symbolic execution to those paths are infeasible.
Moreover, some of the path conditions contain string constraints which are not
supported by the solver. For JBSE and BBE, the average coverage is 68.54%
and 37.85% respectively if we consider valid test inputs only. If all test inputs
are considered, the average coverage increases to 95.59% for JBSE and 54.66%
for BBE. Note that the coverage is inflated with invalid test inputs.

RQ3: Is CSF sufficiently efficient? We measure the time needed to generate test
inputs (sub-columns T (s) in the Table 1). The results show that CSF needs 57.34
s on average for each program. The numbers for JBSE and BBE are 8.75 and
9.50 s respectively. Both JBSE and BBE are faster than CSF since they solve
simpler constraints (e.g., without inductive predicates). However, their efficiency
has a cost in term of the validity of the generated test inputs and the achieved
code coverage. To conclude, we believe CSF is sufficiently efficient to be used in
practice. We further show the number of solver calls used in CSF, i.e., the sub-
column #Calls in the Table 1. The results are represented in form of the number
of solver calls for specification-based testing over that of concolic execution. The
results show that CSF needs 43 calls in average. Note that the number of solver
calls in the specification-based testing stage varies according to the number of
disjuncts in the precondition.

Second Experiment. One infamous limitation of symbolic execution testing
approach is it cannot handle programs with complex numerical conditions. On
the other hand, specification-based testing approach does not suffer this limita-
tion because it generates test inputs independently of programs under test. In
this experiment, we aim to show the usefulness of specification-based testing in
CSF, especially for programs with complex numerical conditions. To do that,
we systematically compose a set of programs which travel a singly-linked list,
apply a method from java.lang.Math library to the list elements, and check if
the result satisfies some condition. One example is shown in Fig. 8 with method

456 L. H. Pham et al.

Fig. 8. An example in the second experiment

cos, which returns the cosin value of an integer. In total, we have 32 programs
with 32 different methods from java.lang.Math library. We run CSF with only
specification-based testing (to generate 10 test inputs) and compare the results
with BBE. We cannot compare with JBSE because we do not have the HEX
invariant for singly-linked list. However, we note that JBSE is a symbolic exe-
cution engine, which means it has difficulties in handling complex numerical
conditions. The list elements has random values from −32 to 31 for all the tools.
Due to randomness, we repeat the experiment 10 times for each program.

In average, while CSF obtains 88.28% branch coverage, BBE obtains 75.31%.
The average number of solver calls is 18 and the average time is 2.27 s for
each program. For BBE, it generates 10 test inputs for each program but only
4 of them satisfy repOK in 2.97 s. From the results, we conclude that the
specification-based testing phase is useful, especially for programs with com-
plex numerical conditions.

Third Experiment. Although having a specification language based on separa-
tion logic allows us to precisely specify preconditions of the programs under test
and generate valid test inputs, it could be non-trivial for ordinary users to use
such a language. This problem has been recognized by the community and there
have been multiple approaches to solve this problem [2,27,31,39]. One noticeable
example which has made industrial impact is the Infer static analyzer [2], which
infers preconditions of programs through bi-abduction [13]. In this experiment,
we show that CSF can be effectively combined with Infer so that CSF can be
applied without user-specified preconditions.

We first apply Infer to generate preconditions of the programs under test
and then apply CSF to generate test inputs accordingly. The test subject is
PLEXIL [5], i.e., NASA’s plan automation and execution framework. Specifically,
we analyze its verification environment PLEXIL5 [6] with Infer, and collect 88
methods that have explicit preconditions returned by Infer.

The experimental results are shown in Table 2, which are categorized based
on the number of initial test inputs generated from Infer’s preconditions (column
#Init Tests). The second column #Methods shows the number of methods in
the category. The column #Tests shows the number of generated test inputs
and the column #Exceptions shows the number of exceptions in the category.
Lastly, two columns #Calls and Time(s) show the number of solver calls and the
time needed to generate the test inputs respectively. In summary, CSF generates
292 test inputs in 344 s which achieved 58.36% branch coverage in average. Our

Concolic Testing Heap-Manipulating Programs 457

Table 2. Experiment 3 with Infer: Results

#Init Tests #Methods #Tests #Exceptions #Calls Time (s)

1 8 10 10 8/14 16

2 51 130 119 102/206 167

3 29 152 132 87/254 161

Fig. 9. A test input which leads to RuntimeException

investigation shows that all of these test inputs are valid according to the inferred
preconditions. Interestingly, 261 out of the 292 test inputs (i.e., 89%) lead to
RuntimeException during execution. The interpretation can be either (1) the
inferred preconditions are too weak to capture all the necessary conditions for
valid test inputs generation, or (2) there are potential bugs in the programs.

To give an example, method integerV alue receives an Abstract Syntax Tree
(AST) as input and the AST must contain an INT token. The inferred pre-
condition only says that the input should not be null. One of the test inputs
generated by CSF is shown in Fig. 9. The execution result is RuntimeException
because the value of field ttype does not match with the value of INT token,
which is 108.

It would be interesting to develop a full integration of CSF and the recent
bi-abduction for erroneous specification inference [39] so that we can generate
meaningful test inputs automatically to witness bugs for any program.

6 Related Work

We review closely related work in the following, emphasis is given to approaches
that generate test inputs for heap-manipulating programs.

Concolic Testing Programs with Heap Inputs. This work is the first work that uses
separation logic for concolic testing. The engineering design of our tool is based
on that of JDart [32]. However, JDart, like most concolic execution engines,
e.g., [18,19,24,33,42], does not support data structures as symbolic input for
testing methods. Our work is related to CUTE [40] and Pex [43]. CUTE [40]
does support data structures as input by using the so-called logical input map to

458 L. H. Pham et al.

keep track of input memory graph. However, CUTE cannot handle unbounded
inputs nor capture the shape relations between pointers, which leads to impreci-
sion. Pex [43] uses a type system [44] to describe disjointness of memory regions.
But again, Pex cannot handle unbounded inputs. Moreover, the type system can
only reason about the global heap, which leads to complex constraints and hence
poor scalability. In comparison, our work handles unbounded inputs and shape
relations are well-captured by separation logic predicates.

Lazy Initialization. As far as we know, lazy initialization [25] is the only
way to handle unbounded inputs. However, most works in this direction,
e.g., [15,16,21,45], did not address the problem of generating invalid test inputs
due to the lack of constraints on the shapes of the input data structures. This
work is related to the tool JSF presented in [35,36]. While JSF uses separa-
tion logic for specifying preconditions and apply classical symbolic execution,
ours relies on concolic execution. Moreover, to support memory access, JSF
unfolds those heaps accessed by reference variables in advance, our work pre-
pares heap accesses via lazy unfolding which helps to encode both executed/not-
yet-executed paths and heap accesses together. Another related work is [11] by
Braione et al., which we have discussed extensively in previous sections. The
logic presented in [11], HEX, is not expressive enough to describe many popular
data structures, including the binary search tree in our motivating example.

Specification-Based Testing has been an active research area for decades.
Depending on the testing goals, different types of logic have been used as the
specification languages to generate test inputs, for example Alloy [34], Java pred-
icates [9], and temporal logic [20,22]. However, we are not aware of any existing
work that generate test inputs from the specification in separation logic like ours.

Separation Logic. Research in separation logic focuses on static verification [13,
14,27,29,37], which may return false positives and are not able to generate test
inputs.

7 Conclusion

We have presented a novel concolic execution engine for heap-manipulating pro-
grams based on separation logic. Our engine starts with generating a set of initial
test inputs based on preconditions. It concretely executes, monitors the execu-
tions and generates new inputs to drive the execution to unexplored code. We
have implemented the proposal in CSF and evaluated it over benchmark pro-
grams. The experimental results show CSF’s effectiveness and practical applica-
tions.

Acknowledgments. This research is supported by MOE research grant MOE2016-
T2-2-123.

Concolic Testing Heap-Manipulating Programs 459

References

1. A Fuzzer and a Symbolic Executor Walk into a Cloud. https://blog.trailofbits.
com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/

2. Facebook Infer. https://fbinfer.com/
3. GanttProject. https://github.com/bardsoftware/ganttproject
4. JaCoCo. https://www.eclemma.org/jacoco/
5. PLEXIL. http://plexil.sourceforge.net
6. PLEXIL5. https://github.com/nasa/PLEXIL5
7. SIR. http://sir.unl.edu/portal/index.php
8. Sireum. https://code.google.com/archive/p/sireum/downloads
9. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java

predicates. In: Frankl, P.G. (ed.) ISSTA 2002, pp. 123–133. ACM (2002). https://
doi.org/10.1145/566172.566191

10. Braione, P., Denaro, G., Mattavelli, A., Pezzè, M.: Combining symbolic execution
and search-based testing for programs with complex heap inputs. In: Bultan, T.,
Sen, K. (eds.) ISSTA 2017, pp. 90–101. ACM (2017). https://doi.org/10.1145/
3092703.3092715

11. Braione, P., Denaro, G., Pezzè, M.: Symbolic execution of programs with heap
inputs. In: Nitto, E.D., Harman, M., Heymans, P. (eds.) FSE 2015, pp. 602–613.
ACM (2015). https://doi.org/10.1145/2786805.2786842

12. Braione, P., Denaro, G., Pezzè, M.: JBSE: A symbolic executor for Java programs
with complex heap inputs. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.)
FSE 2016, pp. 1018–1022. ACM (2016). https://doi.org/10.1145/2950290.2983940

13. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. JACM 58(6), 26:1–26:66 (2011). https://doi.org/
10.1145/2049697.2049700

14. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012). https://doi.org/10.1016/j.scico.2010.07.004

15. Deng, X., Lee, J., Robby: Bogor/Kiasan: a k-bounded symbolic execution for check-
ing strong heap properties of open systems. In: ASE 2006, pp. 157–166. IEEE
Computer Society (2006). https://doi.org/10.1109/ASE.2006.26

16. Deng, X., Robby, Hatcliff, J.: Towards a case-optimal symbolic execution algorithm
for analyzing strong properties of object-oriented programs. In: SEFM 2007. IEEE
Computer Society (2007). https://doi.org/10.1109/SEFM.2007.43

17. Dennis, G.D.: TSAFE : building a trusted computing base for air traffic control
software. Master’s thesis, Massachusetts Institute of Technology, USA (2003)

18. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Sarkar, V., Hall, M.W. (eds.) PLDI 2005, pp. 213–223. ACM (2005). https://
doi.org/10.1145/1065010.1065036

19. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue 10(1), 20:20–20:27 (2012). https://doi.org/10.1145/2090147.2094081

20. Heimdahl, M.P.E., Rayadurgam, S., Visser, W., Devaraj, G., Gao, J.: Auto-
generating test sequences using model checkers: a case study. In: Petrenko, A.,
Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 42–59. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24617-6 4

21. Hillery, B., Mercer, E., Rungta, N., Person, S.: Exact heap summaries for sym-
bolic execution. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS,
vol. 9583, pp. 206–225. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49122-5 10

https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://fbinfer.com/
https://github.com/bardsoftware/ganttproject
https://www.eclemma.org/jacoco/
http://plexil.sourceforge.net
https://github.com/nasa/PLEXIL5
http://sir.unl.edu/portal/index.php
https://code.google.com/archive/p/sireum/downloads
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1145/2786805.2786842
https://doi.org/10.1145/2950290.2983940
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1109/ASE.2006.26
https://doi.org/10.1109/SEFM.2007.43
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1007/978-3-540-24617-6_4
https://doi.org/10.1007/978-3-662-49122-5_10
https://doi.org/10.1007/978-3-662-49122-5_10

460 L. H. Pham et al.

22. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage and generation. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 327–341. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46002-0 23

23. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Hankin, C., Schmidt, D. (eds.) POPL 2001, pp. 14–26. ACM (2001).
https://doi.org/10.1145/360204.375719

24. Jayaraman, K., Harvison, D., Ganesh, V., Kiezun, A.: jFuzz: a concolic whitebox
fuzzer for Java. In: Denney, E., Giannakopoulou, D., Pasareanu, C.S. (eds.) NFM
2009, pp. 121–125 (2009)

25. Khurshid, S., Pǎsǎreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 40

26. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

27. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 4

28. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 21

29. Le, Q.L., Sun, J., Qin, S.: Frame inference for inductive entailment proofs in sep-
aration logic. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805,
pp. 41–60. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 3

30. Le, Q.L., Tatsuta, M., Sun, J., Chin, W.-N.: A decidable fragment in separation
logic with inductive predicates and arithmetic. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10427, pp. 495–517. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63390-9 26

31. Le, X.D., Le, Q.L., Lo, D., Le Goues, C.: Enhancing automated program repair
with deductive verification. In: ICSME 2016, pp. 428–432. IEEE Computer Society
(2016). https://doi.org/10.1109/ICSME.2016.66

32. Luckow, K., et al.: JDart: a dynamic symbolic analysis framework. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 26

33. Marinescu, P.D., Cadar, C.: Make test-zesti: a symbolic execution solution for
improving regression testing. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) ICSE
2012, pp. 716–726. IEEE Computer Society (2012). https://doi.org/10.1109/ICSE.
2012.6227146

34. Marinov, D., Khurshid, S.: TestEra: a novel framework for automated testing of
Java programs. In: ASE 2001, pp. 22–31. IEEE Computer Society (2001). https://
doi.org/10.1109/ASE.2001.989787

35. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Enhancing symbolic execution
of heap-based programs with separation logic for test input generation. In: ATVA
2019. To appear

36. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Testing heap-based programs
with Java StarFinder. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M.
(eds.) ICSE 2018, pp. 268–269. ACM (2018). https://doi.org/10.1145/3183440.
3194964

https://doi.org/10.1007/3-540-46002-0_23
https://doi.org/10.1007/3-540-46002-0_23
https://doi.org/10.1145/360204.375719
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/978-3-319-41528-4_21
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1007/978-3-319-63390-9_26
https://doi.org/10.1007/978-3-319-63390-9_26
https://doi.org/10.1109/ICSME.2016.66
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1109/ICSE.2012.6227146
https://doi.org/10.1109/ICSE.2012.6227146
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1145/3183440.3194964
https://doi.org/10.1145/3183440.3194964

Concolic Testing Heap-Manipulating Programs 461

37. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

38. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS
2002, pp. 55–74. IEEE Computer Society (2002). https://doi.org/10.1109/LICS.
2002.1029817

39. Santos, J.F., Maksimović, P., Sampaio, G., Gardner, P.: JaVerT 2.0: compositional
symbolic execution for JavaScript. PACMPL 3(POPL), 66:1–66:31 (2019). https://
doi.org/10.1145/3290379

40. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Wermelinger, M., Gall, H.C. (eds.) FSE 2005, pp. 263–272. ACM (2005). https://
doi.org/10.1145/1081706.1081750

41. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS 2016. The Internet Society (2016)

42. Tanno, H., Zhang, X., Hoshino, T., Sen, K.: TesMa and CATG: automated test
generation tools for models of enterprise applications. In: Bertolino, A., Canfora,
G., Elbaum, S.G. (eds.) ICSE 2015, pp. 717–720. IEEE Computer Society (2015).
https://doi.org/10.1109/ICSE.2015.231

43. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

44. Vanoverberghe, D., Tillmann, N., Piessens, F.: Test input generation for programs
with pointers. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol.
5505, pp. 277–291. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00768-2 25

45. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with java
PathFinder. In: Avrunin, G.S., Rothermel, G. (eds.) ISSTA 2004, pp. 97–107. ACM
(2004). https://doi.org/10.1145/1007512.1007526

46. Wang, X., Sun, J., Chen, Z., Zhang, P., Wang, J., Lin, Y.: Towards optimal concolic
testing. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (eds.) ICSE 2018,
pp. 291–302 (2018). https://doi.org/10.1145/3180155.3180177

47. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM : a practical concolic execution
engine tailored for hybrid fuzzing. In: Enck, W., Felt, A.P. (eds.) USENIX Security
2018, pp. 745–761. USENIX Association (2018)

https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3290379
https://doi.org/10.1145/3290379
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-642-00768-2_25
https://doi.org/10.1007/978-3-642-00768-2_25
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/3180155.3180177

Specification Languages

Formal Semantics Extraction from
Natural Language Specifications for ARM

Anh V. Vu(B) and Mizuhito Ogawa

Japan Advanced Institute of Science and Technology, Nomi, Japan
{anhvv,mizuhito}@jaist.ac.jp

Abstract. This paper proposes a method to systematically extract the
formal semantics of ARM instructions from their natural language speci-
fications. Although ARM is based on RISC architecture and the number
of instructions is relatively small, an abundance of variations diversely
exist under various series including Cortex-A, Cortex-M, and Cortex-
R. Thus, the semi-automatic semantics formalisation of rather simple
instructions results in reducing tedious human efforts for tool develop-
ments e.g., the symbolic execution. We concentrate on six variations: M0,
M0+, M3, M4, M7, and M33 of ARM Cortex-M series, aiming at cov-
ering IoT malware. Our systematic approach consists of the semantics
interpretation by applying translation rules, augmented by the sentences
similarity analysis to recognise the modification of flags. Among 1039 col-
lected specifications, the formal semantics of 662 instructions have been
successfully extracted by using only 228 manually prepared rules. They
are utilised afterwards to preliminarily build a dynamic symbolic execu-
tion tool for Cortex-M called Corana. We experimentally observe that
Corana is capable of effectively tracing IoT malware under the presence
of obfuscation techniques like indirect jumps, as well as correctly detect-
ing dead conditional branches, which are regarded as opaque predicates.

Keywords: Semantics formalisation · Dynamic symbolic execution ·
Iot malware analysis · Natural language processing · ARM Cortex-M

1 Introduction

Symbolic execution [1] is an old, powerful, and popular technique to analyse
and/or verify software. It has been developed mainly for high-level programming
languages, such as C and Java. Recently, the number of symbolic execution tools
for binaries has gradually increased (e.g., Mcveto [2], Miasm [3], Mayhem [4],
Klee-mc [5], Codisasm [6], Be-pum [7], and Angr [8]); however, most of them
target x86 architecture. When analysing the dynamic behaviour of malware, the
major obstacles are obfuscated codes (e.g., indirect jumps, opaque predicates,
self-modification), which can be effectively solved by applying dynamic symbolic
execution (also known as concolic testing). In particular, the concolic testing
is able to dynamically explore the hidden destination of indirect jumps, whilst
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 465–483, 2019.
https://doi.org/10.1007/978-3-030-30942-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_28

466 A. V. Vu and M. Ogawa

the symbolic execution can discover dead conditional branches, which will be
eventually ignored. Considering the evolving threats of IoT malware, extending
such tools to disparate architectures (e.g., ARM, MIPS, and PowerPC) becomes
highly desired. There are two existing approaches to interpreting machine codes:

– Translating to an intermediate representation (e.g., LLVM in Klee-mc and
VEX in Angr), where the coverage performance basically depends on the
translators, such as Valgrind [9] in Klee-mc and Capstone [10] in Angr.

– Interpreting directly from binary codes, such as Mcveto and Be-pum (x86).

When the obfuscations exist, the former shares the difficulties with syntax-based
disassemblers (e.g., Ida [11] and Capstone), which typically fail to disassemble
malware [12]. We adopt the latter approach, which is more powerful; however,
since it heavily requires a platform-wise implementation, an expensive engineer-
ing effort must be paid (e.g., 3155 instructions for x86-64 are counted in [13]).
Contrary to a general impression on the intricacy of binaries, the good news is:

– IoT malware is mainly an user-mode sequential program without floating-
point arithmetic. Avoiding multi-threads, weak memory models, and floating-
point arithmetic allows us to consider a simple semantics framework as the
transitions on the environment made by memory, stack, registers, and flags.

– Each instruction set officially contains a rigid natural language specification.
– Since various debuggers and emulation environments are available, the ambi-

guity occurring in the natural language processing can be resolved by testing.

This intuitively suggests the feasibility of semi-automatically formalising the
semantics of rather simple instructions from their natural language specifica-
tions.

ARM is based on RISC architecture, thus, it has relatively few instructions
(� 60–300). However, various series diversely exist such as Cortex-A for rich
operating systems (e.g., Android OS), Cortex-R for real-time systems (e.g., LTE
modems), and Cortex-M for micro-controllers (e.g., IoT devices). Moreover, each
of them has numerous variations (e.g., 16 in Cortex-A, 5 in Cortex-R, and 9 in
Cortex-M), which have been steadily increasing. Our study intentionally focuses
on ARM Cortex-M, aiming at covering IoT malware. After collecting the official
specifications of Cortex-M instructions on ARM developer website [14], their for-
mal semantics are extracted by a systematic method, and the obtained semantics
are utilised afterwards to preliminarily develop a dynamic symbolic execution
tool for Cortex-M called Corana (Cortex Analyser) [15]. Note that, instead of
trying to provide a fully automatic approach, our ultimate goal is significantly
reducing tedious human efforts by automatically handling rather simple but
many instructions, thus enables human to mainly concentrate on most complex
parts.

Extraction Overview. Figure 1 briefly illustrates an overview of the seman-
tics extraction, where manually prepared tasks are bounded with dashed boxes.
For each instruction i, among 5 sections from its natural language specification

Formal Semantics Extraction from Natural Language Specifications for ARM 467

(Sect. 2.1), 3 sections are utilised: syntax (name and arguments of i), operation
(an informal interpretation of i), and flags-update (describing whether flags are
modified after i is executed). Given a sentence S, after normalising its syntax
(Sect. 3) (I), if S comes from the operation section, the semantics interpretation
(II) based on rewriting rules translates the normalised syntax tree to a Java code
statement (Sect. 4). If S is from the flags-update section, the similarity analy-
sis (III) recognises whether the flags are modified (Sect. 5). Thereafter, a Java
method is automatically generated by instantiating the interpreted data into a
pre-defined template, which represents the semantics framework as a transition
on the environment. The correctness of generated methods is then verified using a
conformance testing by comparing the execution results with a trusted emulator
(Sect. 6). By instantiating the extracted semantics into a prepared framework,
Corana is created (Sect. 7). Our experiments on the sampled IoT malware
reported in Sect. 8 show that Corana is capable of dynamically handling condi-
tional data instructions and indirect jumps, as well as detecting dead branches,
which are regarded as typical obfuscation techniques in IoT malware.

Fig. 1. A high-level overview of our semantics extraction approach

Related Work. There are several works focusing on extracting the specifica-
tion from natural language descriptions. Nevertheless, they are mostly for human
understanding (e.g., the requirements [16] and UML [17]), rather than the formal
semantics of binaries. An interesting approach for the synthesis of x86-64 seman-
tics is by learning formulas on BitVectors [18]. They confirmed the correctness by
random testing, in which the results between their Strata [18] and Stoke [19]

468 A. V. Vu and M. Ogawa

are compared. Alternatively, an expensive human effort must be paid to describe
the formal semantics, such as 3155 x86-64 instructions in the K-framework [13].

In fact, the formal semantics implicitly appears in the implementation of
numerous binary emulators (e.g., μVision [20]) and symbolic execution tools
(e.g., Mcveto [2], Miasm [3], Mayhem [4], Klee-mc [5], Codisasm [6], Be-
pum [7], and Angr [8]). Whilst Miasm, Mayhem, Angr, and Klee-mc first
translate machine codes into an intermediate representation, Mcveto, Codis-
asm, and Be-pum directly interpret x86 binaries. Except for Mcveto and
Miasm, they support the dynamic symbolic execution. Be-pum would be the
first study of applying the binary semantics extraction from the natural language
specifications [21]. After a three-year effort of the manual implementation, Be-
pum roughly supported 250 instructions. Thereafter, the automatic extraction
successfully generated 299 among 530 collected specifications, and 5 semantics
bugs in the manual implementation were reported. At the moment, Be-pum cov-
ers around 400 instructions in total. Since the pseudocodes of x86 instructions
are explicitly included in the Intel Developer Manuals, the semantics extrac-
tion was pretty simple by preparing roughly 30 primitive functions appearing in
the pseudocodes. In contrast, the specifications of ARM instructions are given
entirely in natural language, which makes the formalisation process [22] become
more challenging.

2 Formal Semantics of ARM

2.1 Natural Language Specification

The specification of a Cortex-M instruction collected from the official ARM
developer website [14] consists of five sections: mnemonic, description, syn-
tax, operation, and flags-update. Table 1 shows an example of the rigid natural
language specification (given in English) of the instruction UMAAL in ARM
Cortex-M7.

Table 1. The natural language specification of UMAAL in ARM Cortex-M7

Mnemonic UMAAL

Description Signed multiply with accumulate long

Syntax UMAAL{cond} RdLo, RdHi, Rn, Rm

Operation The UMAAL instruction multiplies the two unsigned 32-bit integers
in the first and second operands. Adds the unsigned 32-bit integer
in RdHi to the 64-bit result of the multiplication. Adds the unsigned
32-bit integer in RdLo to the 64-bit result of the addition. Writes
the top 32-bits of the result to RdHi. Writes the lower 32-bits of the
result to RdLo

Flags-update This instruction does not affect the condition code flags

Formal Semantics Extraction from Natural Language Specifications for ARM 469

2.2 Operational Semantics

The implementation of numerous binary analysis tools (e.g., binary emulators,
binary symbolic execution engines) implicitly contains the formal semantics of
instructions, which have been formally defined in several recent studies (e.g.,
for x86 [13,23,24]). Although the semantics of binaries is seemingly intricate for
human, the semantics framework for sequential programs is rather simple, which
rigidly consists of a tuple of four ingredients: registers, flags, memory, and stack.

Definition 1. The environment model E = 〈F,R,M,S〉 of the 32-bit ARM
Cortex-M binaries consists of:

– F : a set of 6 flags: F = {N,Z,C, V,Q,GE}
– R: a set of 17 registers:

R = {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, sp, lr, pc, apsr}

where apsr is a special register storing the values of all flags N,Z,C, V (also
includes Q,GE in some particular versions of ARM).

– M : a set of n contiguous memory locations: M = {m0,m1, . . . , mn−1}
– S(⊆ M): a set of k contiguously allocated memory to store the stack:

S = {s0, s1, . . . , sk−1} with k < n.

Since our target (IoT malware) is mainly a sequential user-mode process, the
weak memory models and multi-threads are omitted. Accordingly, the execution
of an instruction i is simply regarded as a transition ti on a quadruplet in Fig. 2:

Fig. 2. The semantics transition ti while executing an instruction i

For instance, the formal semantics of UMAAL is described in the SOS style [25]:

Rpc = k; instr(k) = umaal rdlo rdhi rn rm;Rrdlo = lo;Rrdhi = hi;
Rrn = n;Rrm = m; a = m ∗ n + lo + hi;hi′ = a � 32; lo′ = (a � 32) � 32;
〈F,R,M,S〉 → 〈F,R[pc ← k + | instr(k) |;Rrdlo ← lo′;Rrdhi ← hi′],M, S〉 [UMAAL]

2.3 Java Specification as Formal Semantics

The formal semantics of an instruction i, which is considered as a transition
ti on the environment, is represented by a Java specification built on top of a
customised class BitVec – a pair 〈bs, s〉 where bs is a BitSet value (a 32-bit
BitVector supported in Java by default) and s is a string. After executing i, the

470 A. V. Vu and M. Ogawa

concrete result of the operators is stored in bs whilst the corresponding symbolic
formula (in SMT format of BitVector theory) is represented by s (an example is
shown in Sect. 7.1). In particular, this formal specification is technically obtained
by instantiating the missing parameters into a pre-defined Java template:

public void $name($params, Character suffix) {
arithmeticMode = $arithmeticMode;
char[] flags = new char[]{$flags};
BitVec result = null;
$execCode
if (suffix != null && suffix == ’s’) {

if (result != null) {
updateFlags(flags, result);

}
}

}

where:

1. The parameters that need to be instantiated: params (the missing arguments
of this method), name (the instruction name), arithmeticMode (to specify
whether the floating-point arithmetic is required), execCode (the main formal
interpreted operations), and flags (the list of flags that might be modified).

2. Default arguments: suffix (if the suffix s occurs, the flags appearing in flags
might be optionally updated based on the result of operators in execCode).

3. Manually prepared methods: updateFlags (update flags occurring in flags).

For instance, the generated Java method representing the semantics of UMAAL
is described as follows, where dashed boxes indicate the instantiated parameters:

public void UMAAL(Character l, Character h, Character n,
Character m, Character suffix) {
arithmeticMode = ArithmeticMode.BINARY;
char[] flags = new char[]{};
BitVec result = null;
result = mul(val(n),val(m));
result = add(result,val(h));
result = add(result,val(l));
write(h,shift(result,Mode.RIGHT,32));
write(l,shift(shift(result,Mode.LEFT,32),Mode.RIGHT,32));
if (suffix != null && suffix == ’s’) {

if (result != null) {
updateFlags(flags, result);

}
}

}

To interpret the Java specifications, 35 simple primitive functions are manually
prepared, including arithmetic operators (e.g., add, sub, mul), logical operators
(e.g., and, or, xor), and IO operators (e.g., write, load, store). Note that, some

Formal Semantics Extraction from Natural Language Specifications for ARM 471

pre-defined functions do not have any corresponding representations in SMT
format by default, thus their macros must be additionally declared (e.g., bvmin,
bvmax, bvabs, bvclz). Among them, some instructions especially contain loops,
which must be unfolded to be acceptable by theorem provers. A representative
instance is the clz r instruction, which aims at counting the number of leading
zeros of the value stored in the register r. Whilst its standard implementations
normally require executing a loop, considering a 32-bit architecture, its macro
in SMT format can be unfolded by iterating up to 32 times as indicated below:

(declare−const r0 (BitVec 32))
(declare−const c0 (BitVec 32))
... same declarations for r1,c1 ... r31,c31 ...
(declare−const r32 (BitVec 32))
(declare−const c32 (BitVec 32))
(declare−const z (BitVec 32))
(declare−const m (BitVec 32))
(define−fun clz ((x (BitVec 32))) (BitVec 32)
(if (and

(= r0 x) (= z #x00000000) (= m #x00000001) (= c0 #x00000020)
(= c1 (ite (bvsgt (bvashr r0 m) z) (bvsub c0 m) c0))
(= r1 (ite (bvsgt (bvashr r0 m) z) (bvashr r0 m) r0))
... same declarations for c2,r2 ... c31,r31 ...
(= c32 (ite (bvsgt (bvashr r31 m) z) (bvsub c31 m) c31))
(= r32 (ite (bvsgt (bvashr r31 m) z) (bvashr r31 m) r31))

) c32 #x00000021))

3 Syntax Normalisation

Before proceeding further analyses, each raw sentence in the operation section
is sequentially normalised by parsing, lemmatisation, and words refinement. In
the implementation, we utilise parsing and lemmatisation modules provided in
an open library namely NLTK [26]. Figure 3 illustrates an example of the nor-
malisation applied on the first sentence in the operation section of the UMAAL
specification: S – “The UMAAL instruction multiplies the two unsigned 32-bit
integers in the first and second operands”, which contains three sequential steps.

(1) Parsing. Parsing is applied for transforming each sentence to its structured
syntax tree along with the corresponding labels in the grammatical categories
(e.g., NP – Noun Phrase, DT – Determiner) based on the context-free grammar.

(2) Lemmatisation. Words written in English might have various expressions,
such as conjugations and plural forms. Lemmatisation aims at unifying them to
their standardised state. For instance, in Fig. 3, the words bounded with dashed
boxes at the leaves of the syntax tree are the normalised results of this lemma-
tisation: multiplies → multiply, integers → integer, and operands → operand.

472 A. V. Vu and M. Ogawa

Fig. 3. The syntax tree, lemmatisation results, and TF·IDF of words in S

(3) Words Refinement. The popular measure TF·IDF [27] is utilised to effec-
tively refine unimportant words in each sentence. For instance, the TF·IDF of
words in S are put along with the leaves of the syntax tree. By setting a threshold
h = 0.05, the strikethrough words in Fig. 3 are deleted and the removal recur-
sively propagates to the root. Note that, the instruction name is also removed.

4 Semantics Interpretation by Translation Rules

Our semantics interpretation adopts a rule-based approach, which utilises the
normalised syntax tree of sentences as the input. The key intuitive idea is: a
less number of manually prepared rules can cover a large number of instructions.
Firstly, we extract some popular phrases from the normalised syntax trees, which
we named NP-Phrases (Sect. 4.1). Thereafter, a set of appropriate instructions
is carefully selected to obtain an optimal trade-off – the ratio between the num-
ber of rules needed and the number of covered instructions (Sect. 4.2). Next,
the translation rules are manually described by a recursive process (Sect. 4.3).
Eventually, by employing these prepared rewriting rules, the formal semantics of
instructions are interpreted in a bottom-up manner (Sect. 4.4). Note that, since
our method is sentence-wise, the interpretation proceeds in sequence. Therefore,
if an operation description is constituted of multiple sentences, the actual order
of generated Java statements rigidly corresponds to the order of these sentences.

4.1 NP-Phrases Extraction

As a result of the syntax normalisation in Sect. 3, all unimportant terms in the
syntax trees are finally removed. We now extract some particular phrases by

Formal Semantics Extraction from Natural Language Specifications for ARM 473

concentrating on sub-trees with the root label “NP”. An NP-Term is a flattened
string of a sub-tree in the normalised syntax tree in which only the root is labelled
“NP”. An NP-Phrase is either an NP-Term or the flattened string of the whole
normalised syntax tree after substituting each NP-Term by an indexed blank
hole �i. For instance, in Fig. 3, the sub-trees surrounded by dashed lines are
NP-Terms, and the extracted NP-Phrases are: “two unsigned 32-bit integer”,
“first and second operand”, and “multiply �2 in �1”. These NP-Phrases are
further utilised as the input of the instruction selection strategy described in
Sect. 4.2.

4.2 Instructions Selection Strategy

We observe: (1) an instruction may carry various semantics in different variations
(e.g., the instruction UASX appears both in M33 and M4, but the flag-updates
sections are slightly different), and (2) since some instructions are presented
by long and complex descriptions though appearing only once among all varia-
tions, they do not pay off the effort for preparing the corresponding rules (e.g.,
STLEX, VLLDM, and LDAEX only appear in M33). Thus, we aim to seek a
set of appropriate candidates to obtain an optimal trade-off. The very high-level
strategy is:

The importance of an instruction i is measured by the sum of TF·IDF scores
of NP-Phrases in i. Select k instructions that maximise the sum divided by k.

To be more specific, for a list of k chosen candidates, we use ϕ(k) to measure
the efficiency of the selection strategy over all instructions in six variations. The
greater ϕ(k), the better selected candidates. Let I is the set of all n instructions:

I = {i1, i2, . . . , in}
where an instruction i consists of a set Ti including w NP-Terms:

Ti = {〈t1, f1〉, 〈t2, f2〉, . . . , 〈tw, fw〉}
where tj is the jth NP-Term, and fj is the frequency of tj in i. Let p(tj) is the
proportional occurrence of tj over all NP-Terms in I, the importance of i over I
is defined as:

mi =
w∑

j=1

p(tj).fj

Let M is the sorted set (descending) of all m:

M = sorted(m1,m2, . . . , mn−1,mn)

Let Mq is the qth value of M , k is the number of expected candidates, ϕ(k) is
then defined as:

ϕ(k) =
1
k

k∑

q=1

Mq

474 A. V. Vu and M. Ogawa

Now, given k, this strategy can effectively obtain an optimal trade-off by taking
the first k candidates in M to make ϕ(k) as large as possible. Obeying to this
strategy, 692 instructions are selected. After combining similar NP-Phrases as
conditional terms, 228 selected NP-Phrases become a set of left-hand side (LHS)
candidates, which is further utilised as the input of the rules preparation process.

4.3 Translation Rules Preparation

A semantics interpretation rule translates a left-hand side (LHS) – an NP-Phrase,
to a right-hand side (RHS) – a Java code statement. Note that, the LHS can-
didates, which are automatically selected by the strategy presented in Sect. 4.2,
are classified into 2 categories: NP-Phrase LHS (e.g.,“first and second operand”)
and Context-Based LHS (e.g.,“multiply �2 in �1”). Additionally, a conditional
LHS can be used to combine LHSes carrying similar semantics (e.g., “halfword
data” and “halfword value”: 〈halfword data | halfword value〉). The RHSes are
systematically prepared by a flow depicted in Fig. 4, including 5 following steps:

1. The set of LHS candidates (C) is sorted (descending) by their frequency.
2. The highest frequency LHS c ∈ C is completed as a rule r : c → u (u is the

corresponding RHS which is directly interpreted by manually checking the
specifications consisting of c).

3. R = R ∪ {r}; C = C \ {c}.
4. Rules in R then rewrite remaining LHSes in C. When a substitution to � in

ci ∈ C occurs, the LHS of ci is updated.
5. Continue until C = ∅, a set of rules R is completely obtained.

Fig. 4. Recursive rewriting rules preparation

In our experiment, 228 LHSes are automatically extracted. Thereafter, 228
rewriting rules are manually prepared, which is constituted of 208 NP-Phrase
rules and 20 Context-Based rules. The number of rules containing conditional
LHSes is 85.

Formal Semantics Extraction from Natural Language Specifications for ARM 475

4.4 A Comprehensive Example

Recall the sentence S in the Sect. 3. After sequentially normalising the syntax
tree, a set of NP-Phrases is obtained C = {c1, c2, c3} where c1 : first and second
operand, c2 : two unsigned 32-bit integer, and c3 : multiply �2 in �1. Note that
c3 is obtained by substituting c2 and c1 in “multiply two unsigned 32-bit integer
in first and second operand” by �2 and �1, respectively. Since in the syntax
tree, lower-degree nodes are practically more likely to occur than higher ones,
the frequency ordering is: c1 > c2 > c3. Three rules are then prepared as follows:

1. Select c1 and manually prepare r1 : first and second operand → rn, rm. By
r1, c2 is kept unchanged and c3 is rewritten to c′

3 = multiply �2 in rn,rm.
2. Select c2 and manually prepare r2 : two unsigned 32-bit integer → val(�3),

val(�4). By r2, c′
3 is rewritten to c′′

3 : multiply val(�3), val(�4) in rn, rm.
3. Select c3 and manually prepare r3 : multiply (val�3), val(�4) in rn, rm →

mul(val(rn), val(rm)). Expected rules r1, r2, r3 are now completely obtained.

Note that, if some rules already exist, the preparation simply reuses them. Even-
tually, when all the rules are prepared, the formal semantics of S represented by
a Java statement is interpreted in a bottom-up manner as illustrated in Fig. 5:

multiply two unsigned 32-bit integer in first and second operand
r1→ multiply two unsigned 32-bit integer in rn, rm
r2→ multiply val(�3), val(�4) in rn, rm
r3→ mul(val(rn), val(rm))

Fig. 5. Semantics interpretation in a bottom-up manner

476 A. V. Vu and M. Ogawa

5 Detecting Modified Flags

Detecting the modification of flags in instructions is practically not straightfor-
ward since (1) their descriptions are written totally in natural language and (2)
synonyms are diversely used in the flags-update sections as indicated in Table 2.

Table 2. The diversity of flags-update descriptions

Flags-update descriptions Implications

This instruction does not change the flags

This instruction does not affect the condition code flags Flags are unchanged

The V flag is left unmodified

This instruction updates the N, Z, C and V flags according to
the result

Modify specific flags
Updates the N and Z flags according to the result. Does not
affect the C and V flags

Figure 6 briefly illustrates our proposed solution. Instead of employing a rule-
based approach, we adopt a sentences similarity analysis by utilising a well-
known topic modeling method called Latent Dirichlet Allocation (LDA) [28]. To
train an LDA model, each sentence is firstly represented as a frequency vector of
words. Thereafter, when all parameters of the model have already been trained,
a topic is considered as a distribution of words and a sentence is represented
as a distribution of topics, which gives their classification based on a similarity
measure. Note that, before training the model, each sentence from the flags-
update section is sequentially normalised by lemmatisation and words refinement
(previously mentioned in Sect. 3). After training (unsupervised) the model by
all sentences (1), the topic distribution of a targeted sentence s and the model
sentence m = “update affect set change modify” are estimated as two dimensional

Fig. 6. Detecting modified flags by applying a sentences similarity analysis

Formal Semantics Extraction from Natural Language Specifications for ARM 477

real-number vectors #»vs, # »vm, respectively (2). In fact, m is reasonably chosen since
it caries a strong meaning of modified. The similarity between s and m is then
evaluated by calculating the Cosine similarity between #»vs and # »vm (3). If the result
does not exceed a threshold t, s is considered as modified, otherwise unmodified.
Our module utilises an LDA implementation provided in Sklearn [29], in which
the hyperparameters are set: α = 0.1, β = 0.1, ntopics = 10, twords = 10, niters
= 2000, and t = 0.85. The major advantage behind this approach is that, when
extending our method to other architectures, we solely need to redefine t and
a new model sentence m, then the algorithm handles the rest. Comparing with
rule-based approaches in case applied, this method is obviously more generalised.

6 Conformance Testing

To verify the correctness of a generated Java specification m, we first apply
JDart [30] – a dynamic symbolic execution engine built on top of Java Path-
finder [31], to generate a set of test inputs T which covers all feasible execution
paths of m. The conformance testing is then performed by comparing the exe-
cution results of T by m and μVision [20] – a trusted binary emulator support-
ing numerous ARM variations. Figure 7 illustrates how our conformance testing
works:

Fig. 7. Conformance testing on the generated Java methods

where: (1) applying dynamic symbolic execution on m, (2) all possible test cases
T are generated by JDart, (3) each test case in T is simultaneously executed by
m and μVision, and (4) two environments after execution are compared. Finally,
if all the test results are passed, it is argued that the correctness of m is verified.

7 The CORANA Tool

The extraction of the formal semantics explicitly implies the generation of a
dynamic symbolic execution tool for ARM Cortex-M. By utilising the extracted
Java methods, a preliminary version of this tool called Corana [15] has been
developed, which is able to directly interpret and trace obfuscated IoT malware.
Corana takes the advantages of existing powerful engines: Capstone [10] as
the single-step disassembler, and Z3 Solver [32] as the back-end theorem prover.

478 A. V. Vu and M. Ogawa

7.1 CORANA Architecture

Figure 8 depicts a high-level architecture of Corana, as well as describes how it
precisely traces and incrementally reconstructs the Control Flow Graph (CFG)
of obfuscated ARM binaries. Corana is constituted of two main components:
(I) An execution kernel provides the semantics framework and the path condi-
tion generation, and (II) A symbolic executor, which consists of the generated
Java methods built on top of primitive functions, dynamically executes inputted
instructions and generates the CFG based on the (in)feasibility of tracing results.

Fig. 8. Corana architecture

(1) Single-step disassembles the ARM binary file starting from the program
counter register pc to obtain an instruction i.

(2) Symbolically executes i, updates the environment and path conditions.
(3) The feasible paths are traced and tested in the depth-first manner, which

incrementally generates the CFG.
(4) Repeats disassembling until reaching the end of the binary file or obtaining

an unsupported instruction.

To be more specific, step (3) has two main objectives: exploring the destination of
indirect jumps, and decrypting self-modifying codes (if exist). Although current
IoT malware infrequently contains self-modification, indirect jumps widely occur.

7.2 Path Conditions Generation

By introducing the customised class BitVec, the environment transformations is
implicitly embedded inside the BitVec operators. Since BitVec computations are
totally declared within the primitive functions, the environment is updated with-
out paying an extra effort. As a result, the path conditions are also generated.
For instance, the instruction i : subs r1, r0, r1 sets r1 by r0−r1 and updates flags

Formal Semantics Extraction from Natural Language Specifications for ARM 479

based on the subtraction. Let r1, r0, z are BitVec values: r1 = 〈x; a〉, r0 = 〈y; b〉,
z = 〈z0; c〉, where x, y, z0 are BitSet values and a, b, c are symbolic values. The
semantics transitions on the register r0, r1 and the flag z are produced as follows:

r0 : 〈y; b〉 i→ 〈y; b〉
r1 : 〈x; a〉 i→ 〈y − x ; (bvsub b a)〉
z : 〈z0; c〉 i→ 〈(y − x) == 0 ; (= (bvsub b a) 0)〉

where bvsub is the subtraction operator supported in BitVector theory by
default. When a conditional branch occurs at a conditional jump (e.g., bne) or
a conditional data instruction (e.g., addne), Corana symbolically executes this
instruction and generates the new path conditions by taking the conjunctions
of the pre-condition and the new suffixes at both true and false branches. For
instance, if an instruction bne occurs right after the i : subs r1, r0, r1, Corana
adds the suffix ne and its negation ¬ne to the current path condition ψ (pre-
condition) of true and false branches, respectively: (ψ true = ψ ∧ (not (=
(bvsub b a) 0))) and (ψ false = ψ ∧ (= (bvsub b a) 0)) to obtain the post-
conditions (in ARM, the conditional suffix ne means checking ¬z). While exe-
cuting another instruction i′ that constitutes of more complex semantics (e.g.,
UMALL), the environment transforming and path condition generating become
seemingly complicated, but since i′ is a combination of primitive functions, it
will be automatically handled.

8 Experiments

8.1 Semantics Extraction

Table 3 shows the experimental result of the semantics formalisation. Among
1039 collected ARM instructions over 6 variations, the Java specifications of 692
instructions (66.60%) are generated by using only 228 rewriting rules (approxi-
mately 0.33 rules are needed to cover an instruction) and 662 of them (63.72%)
have passed the conformance testing. We observed two reasons causing failures:

Incorrect Modified Flags Detection. The presence of relatively complex
synonym phrases such as “left unmodified” confuses our sentences similarity
analysis. For instance, the descriptions of flags-update sections in the instruc-
tion RORS (Cortex-M0 and Cortex-M0+) contain a sentence “The V flag is left
unmodified”, which is challenging to be correctly distinguished by our method
at the moment.

Inappropriate Sentences Ordering in the Operation Sections. Our
method interprets in a sentence-wise manner, which follows the ordering of
sentences in the operation section. Thus, if the sentences have an inappropri-
ate order, failures occur. For instance, the instruction STRB (Cortex-M7) is

480 A. V. Vu and M. Ogawa

described as “STRB instruction store a register value into memory. Unsigned
byte, zero extend to 32 bits on loads”, but the correct semantics should be defined
in the opposite order: “STRB instruction zero-extend an unsigned byte value then
store into memory”.

Table 3. The number of successfully extracted semantics over six variations

Variation Collected Selected Generated Verified

Cortex-M0 63 44 (69.84%) 44 (69.84%) 41 (65.08%)

Cortex-M0+ 63 44 (69.84%) 44 (69.84%) 41 (65.08%)

Cortex-M3 129 80 (62.02%) 80 (62.02%) 74 (57.36%)

Cortex-M4 244 167 (68.44%) 167 (68.44%) 161 (65.98%)

Cortex-M7 261 178 (68.20%) 178 (68.20%) 172 (65.90%)

Cortex-M33 279 179 (64.16%) 179 (64.16%) 173 (62.00%)

Total 1039 692 (66.60%) 692 (66.60%) 662 (63.72%)

8.2 Dynamically Handling Jumps by CORANA

Since IoT malware rarely contains self-modifications, typical disassemblers (e.g.,
Capstone and Ida) are able to correctly disassemble them. Nevertheless, when
control structures matter, such as VM-aware malware [33] and trigger-based
behaviour [34,35], revealing the hidden destination of jumps becomes immensely
essential. We describe how Corana traces obfuscated IoT malware by sampling
37c81e – a Linux.Mirai detected by VirusTotal [36], taken from VirusShare [37].

Conditional Jumps. Figure 9 illustrates the presence of a conditional jump
beq at 0x37648, where Corana adds eq and ¬eq to the path conditions of true
and false branches, respectively. Afterwards, Corana detects that these paths
are both feasible by checking the satisfiability of their symbolic constraints. As
a result, instead of solely executing the next instruction at 0x3764C, Corana
additionally traces the true branch at 0x37658, which presents a correct execu-
tion behaviour.

Dead Conditional Jumps. Figure 10 depicts an example of a conditional jump
bne at 0x5C354, where Corana detects that the path constraints of the true and
the false branches are unsatisfiable and satisfiable, respectively. In other words,
the true branch will be never executed and hence, this jump will be eventually
ignored. This is regarded as the opaque predicates obfuscation in IoT malware.

Indirect Jumps. Figures 11 and 12 describe how Corana dynamically handles
indirect jumps. At 0x00058, when a conditional indirect jump bxeq lr occurs,
Corana adds eq and ¬eq to the path conditions of true and false branches,

Formal Semantics Extraction from Natural Language Specifications for ARM 481

respectively. It then checks the feasibility of these branches and detects that
both of them are feasible. Especially, by testing with a satisfiable instance at
0x00058, Corana identifies a possible hidden destination stored in lr: 0x0004.

Fig. 9. Conditional jump handling Fig. 10. Dead jump detection

Fig. 11. Disassembled indirect jump Fig. 12. Indirect jump traced by Corana

9 Conclusion

Through our study, the feasibility of extracting the formal semantics from natu-
ral language specifications has been investigated. To demonstrate this possibil-
ity, we present an approach to systematically formalise the semantics of ARM
Cortex-M instructions from their official specifications over six variations. Note
that, instead of aiming to provide a fully automatic method, our ultimate goal
is effectively reducing a large amount of tedious human effort on the imple-
mentation of tools relying on formal methods. Additionally, by instantiating the
extracted semantics into a prepared framework, a dynamic symbolic execution
tool for Cortex-M called Corana has been preliminarily developed, which is
able to correctly trace IoT malware under the presence of obfuscation tech-
niques such as indirect jumps and opaque predicates. We expect our method
can be practically extended to other architectures in the same manner without
adding complicated modifications. Furthermore, we do hope our work enlightens
the ability to leverage the benefits of adopting natural language processing and
machine learning to automate rather simple but tedious tasks in the development
of formal methods.

Future Directions. Beyond six previously mentioned variations, the pro-
posed method is being considered to apply on other architectures such as MIPS
and other ARM Cortex series. Contrary to Cortex-M, the specifications of

482 A. V. Vu and M. Ogawa

Cortex-A and Cortex-R are not structurally documented (only PDF files are
available on ARM Developer Website at the moment). After parsing the struc-
tured data from these PDFs, our approach can be feasibly applied for them in
the same manner.

Acknowledgments. We are grateful to Nao Hirokawa, Le Minh Nguyen, and the
anonymous reviewers of FM’19 for their insightful feedback and invaluable comments.
We sincerely thank Xuan Tung Vu, Thi Hai Yen Vuong, and Lam Hoang Yen Nguyen
for their constructive discussions, as well as Thu Trang Hoang for her sharp comments
on some grammatical issues. This study is partially supported by JSPS KAKENHI
Grant-in-Aid for Scientific Research (B) 19H04083.

References

1. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

2. Thakur, A., et al.: Directed proof generation for machine code. In: Tayssir, T.,
Byron, C., Paul, J. (eds.) CAV 2010. LNCS, vol. 6174, pp. 288–305. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 27

3. Desclaux, F.: miasm: Framework de reverse engineering. In: Actes du SSTIC (2012)
4. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on binary

code. In: IEEE S and P 2012, pp. 380–394 (2012)
5. Anthony, R.: Methods for binary symbolic execution. In: Ph.D. Dissertation, Stan-

ford University (December 2014)
6. Bonfante, G., Fernandez, J., Marion, J.Y., Rouxel, B., Sabatier, F., Thierry, A.:

Codisasm: medium scale concatic disassembly of self-modifying binaries with over-
lapping instructions. In: CCS 2015, pp. 745–756 (2015)

7. Hai, N.M., Ogawa, M., Tho, Q.T.: Obfuscation code localization based on CFG
generation of malware. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS
2015. LNCS, vol. 9482, pp. 229–247. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30303-1 14

8. Shoshitaishvili, Y., et al.: (State of) the art of war: offensive techniques in binary
analysis. In: IEEE S and P 2016, pp. 138–157 (2016)

9. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic
binary instrumentation. In: ACM PLDI 2007, pp. 89–100 (2007)

10. Capstone Engine. http://capstone-engine.org. Accessed 9 July 2019
11. Ida. https://hex-rays.com/products/ida. Accessed 9 July 2019
12. Krishnamoorthy, N., Debray, S., Fligg, K.: Static detection of disassembly errors.

In: IEEE WCRE 2009, pp. 259–268 (2009)
13. Dasgupta, S., Park, D., Kasampalis, T., Adve, V.S., Rosu, G.: A complete formal

semantics of x86-64 user-level instruction set architecture. In: ACM PLDI 2019,
pp. 1133–1148 (2019)

14. ARM Developer. https://developer.arm.com. Accessed 9 July 2019
15. The Corana Tool. https://anhvvcs.github.io/corana. Accessed 9 July 2019
16. Robeer, M., Lucassen, G., van der Werf, J.M.E., Dalpiaz, F., Brinkkemper, S.:

Automated extraction of conceptual models from user stories via NLP. In: IEEE
RE 2016, pp. 196–205 (2016)

17. Yue, T., Briand, L.C., Labiche, Y.: aToucan: an automated framework to derive
UML analysis models from use case models. ACM TOSEM 24(3), 13:1–13:52
(2015)

https://doi.org/10.1007/978-3-642-14295-6_27
https://doi.org/10.1007/978-3-319-30303-1_14
https://doi.org/10.1007/978-3-319-30303-1_14
http://capstone-engine.org
https://hex-rays.com/products/ida
https://developer.arm.com
https://anhvvcs.github.io/corana

Formal Semantics Extraction from Natural Language Specifications for ARM 483

18. Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis: automatically
learning the x86-64 instruction set. In: ACM PLDI 2016, pp. 237–250 (2016)

19. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: ASPLOS
2013, pp. 305–316 (2013)

20. µVision. http://keil.com/mdk5/uvision. Accessed 9 July 2019
21. Yen, N.L.H.: Automatic extraction of x86 formal semantics from its natural lan-

guage description. In: Master’s Thesis, School of Information Science, JAIST
(March 2018)

22. Anh, V.V.: Formal semantics extraction from natural language specifications for
ARM. In: Master’s Thesis, School of Information Science, JAIST (December 2018)

23. Bonfante, G., Marion, J.Y., Reynaud-Plantey, D.: A computability perspective on
self-modifying programs. In: SEFM 2009, pp. 231–239 (2009)

24. Degenbaev, U.: Formal specification of the x86 instruction set architecture. In:
Ph.D. Dissertation, Universitat des Saarlandes (February 2012)

25. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. Handbook
of Process Algebra, pp. 197–292 (2001)

26. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: ACL (2004)
27. Robertson, S.: Understanding inverse document frequency: on theoretical argu-

ments for IDF. J. Documentation 60(5), 503–520 (2004)
28. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.

Res. 3, 993–1022 (2003)
29. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
30. Luckow, K., et al.: JDart: a dynamic symbolic analysis framework. In: Chechik,

M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 442–459. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 26

31. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

33. Kirat, D., Vigna, G., Kruegel, C.: barebox: efficient malware analysis on bare-
metal. In: ACSAC 2011, pp. 403–412 (2011)

34. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automati-
cally identifying trigger-based behavior in malware. In: Wenke L., Cliff W., David
D. (eds.) Botnet Detection 2008, ADIS, vol. 36, pp. 65–88. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-0-387-68768-14

35. Fleck, D., Tokhtabayev, A., Alarif, A., Stavrou, A., Nykodym, T.: PyTrigger: a
system to trigger & extract user-activated malware behavior. In: AERES 2013,
pp. 92–101 (2013)

36. Virus Total. https://www.virustotal.com. Accessed 9 July 2019
37. Virus Share. https://virusshare.com. Accessed 9 July 2019

http://keil.com/mdk5/uvision
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-0-387-68768-14
https://www.virustotal.com
https://virusshare.com

GOSPEL—Providing OCaml
with a Formal Specification Language

Arthur Charguéraud1, Jean-Christophe Filliâtre2, Cláudio Lourenço2,
and Mário Pereira3(B)

1 Inria Nancy - Grand Est, Strasbourg, France
2 Inria Saclay - Île de France, Palaiseau, France

3 NOVA LINCS & DI, FCT, Universidade Nova de Lisboa, Lisbon, Portugal
mjp.pereira@fct.unl.pt

Abstract. This paper introduces GOSPEL, a behavioral specification
language for OCaml. It is designed to enable modular verification of data
structures and algorithms. GOSPEL is a contract-based, strongly typed
language, with a formal semantics defined by means of translation into
Separation Logic. Compared with writing specifications directly in Sepa-
ration Logic, GOSPEL provides a high-level syntax that greatly improves
conciseness and makes it accessible to programmers with no familiarity
with Separation Logic. Although GOSPEL has been developed for spec-
ifying OCaml code, we believe that many aspects of its design could
apply to other programming languages. This paper presents the design
and semantics of GOSPEL, and reports on its application for the devel-
opment of a formally verified library of general-purpose OCaml data
structures.

1 Introduction

Functional programming languages are particularly suited for producing formally
verified code. For example, the formally verified C compiler CompCert [26] is
written in the applicative subset common to OCaml and Coq [35]. As another
example, the verified microkernel seL4 [21] features components that are written
and verified in Haskell, and then translated into C. The main reason for this
adequacy is that most functional language constructs directly map to logical
counterparts. In Coq, purely functional programs may be directly viewed as
logical definitions. Thus, writing specifications for a purely functional program
simply amounts to stating a lemma relating input and output values.

Functional programming is not, however, limited to purely applicative pro-
gramming. The use of effectful features such as arrays and mutable records is
necessary to implement efficient data structures and algorithms. For example,
OCaml allows writing clean and concise code for functional and imperative data
structures and algorithms. The OCaml language (excluding its object-oriented

This research was partly supported by the French National Research Organization
(project VOCAL ANR-15-CE25-008).
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 484–501, 2019.
https://doi.org/10.1007/978-3-030-30942-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_29

GOSPEL—Providing OCaml with a Formal Specification Language 485

features) provides a straightforward semantics for its constructs that facilitates
the verification process, compared with other languages that pervasively use
more complex features such as dynamic dispatch or inheritance. Thus, program-
ming in an effectful functional language such as OCaml can be an interesting
route to producing verified, relatively efficient code.

Unlike purely functional code that may be mapped directly to logical def-
initions, effectful code needs additional infrastructure to write specifications.
Indeed, one needs means of describing the scope and the nature of side effects.
For each function, it is necessary to specify what part of the mutable state it
may access, modify, create, and destroy. Prior work has proposed Separation
Logic [32] for reasoning about imperative programs, including those featuring
nontrivial manipulations of the mutable state. Although it is very expressive,
Separation Logic suffers from two downsides that, we believe, limit its wide
adoption. First, Separation Logic specifications are fairly verbose in practice.
Second, its standard presentation often appears fairly technical.

In this work, we present GOSPEL, a specification language for OCaml inter-
faces whose semantics is defined in terms of Separation Logic. Compared with
Separation Logic, GOSPEL greatly improves conciseness and accessibility. The
GOSPEL acronym stands for “Generic Ocaml SPEcification Language”. In par-
ticular, the word “Generic” underlines the fact that this specification language is
not tied to a specific verification tool, but rather intended to be used for different
purposes, such as verification, testing, or even informal documentation.

GOSPEL fits in the tradition of other behavioral specification languages [15]
such as SPARK [3], JML [23], or ACSL [1]. In contrast with these languages,
GOSPEL features permissions as in Separation Logic. Unlike other tools based
on Separation Logic, such as VeriFast [17] or Viper [27], GOSPEL implicitly
associates permissions with data types, thereby significantly improving concision.

The contributions of this paper are as follows. First, we introduce GOSPEL
through examples (Sect. 2). Second, we propose a formal semantics by means of
a translation into Separation Logic (Sect. 3). Third, we report on an implemen-
tation of GOSPEL and its application to the verification of an OCaml library
(Sect. 4). We finish by discussing related (Sect. 5) and future work (Sect. 6).

2 An Overview of GOSPEL

2.1 Basic Operations on a Mutable Queue

We first present a GOSPEL specification for a mutable queue data structure.
This specification covers operations exposed by an OCaml interface for mutable
queues, independently of any specific implementation (which could be based,
e.g., on doubly-linked lists, ring buffer, etc.). In OCaml, an abstract interface is
described in an .mli file. Within such a file, the GOSPEL specifications appear
in comments that begin with the @ symbol. Such comments are ignored by the
OCaml compiler, but can be parsed and processed by a verification tool.

486 A. Charguéraud et al.

The abstract data type ’a t represents a parameterized queue storing ele-
ments of type ’a. To begin with, we provide a mutable model annotation for
this type, to associate a model field called view with every value of type ’a t.

type ’a t
(*@ mutable model view: ’a seq *)

For a given queue q, the projection q.view describes the mathematical sequence
of elements stored in the queue. The model field view has type ’a seq, which
corresponds to the type of purely applicative sequences (i.e., logical sequences).
This type ’a seq is defined in the GOSPEL standard library.

The view field is tagged mutable to account for the fact that the sequence
of elements stored in a queue may change over time. In general, a given OCaml
type may feature several model fields, each being mutable or not. For example,
a fixed-capacity mutable queue would typically feature an immutable model
field describing its maximum capacity, in addition to the mutable model field
describing the sequence of its elements.

Let us now declare and specify the operation that pushes an element of type
’a to the front of a queue of type ’a t. We first write the OCaml type, then the
GOSPEL specification.

val push: ’a -> ’a t -> unit
(*@ push v q

modifies q
ensures q.view = v :: old q.view *)

The GOSPEL specification first names the two arguments with v and q. Next,
it indicates that q might be mutated during a call to push using the modifies
clause. Last, it features an ensures clause describing the postcondition. In this
case, it asserts that the updated sequence of elements in the queue (q.view)
consists of the sequence of elements before the call (old q.view), extended with
the new element v added at the front. We choose arbitrarily to model the queue
with insertion at the front of the sequence and removal at the end of it.

Here, the type of q features a single mutable model field, thus the clause
modifies q is equivalent to modifies q.view. In the case of a type featuring
several model fields, the modifies clause may include only a subset of the fields,
capturing the fact that the fields which are not mentioned remain unchanged.

We next present three more functions from the interface of mutable queues
to illustrate other features of GOSPEL. The function pop extracts an element
from the back of a nonempty queue. This function includes a requires clause,
to express the precondition asserting that the queue must be nonempty. Note
that the first line of the GOSPEL specification assigns the name v to the return
value, so that it may be referred to in the postcondition.

val pop: ’a t -> ’a
(*@ v = pop q

requires q.view <> empty
modifies q
ensures old q.view = q.view ++ v :: nil *)

GOSPEL—Providing OCaml with a Formal Specification Language 487

The next function, is_empty, tests whether a queue is empty. This function does
not mutate the queue, as reflected by the absence of a modifies clause.

val is_empty: ’a t -> bool
(*@ b = is_empty q

ensures b <-> q.view = empty *)

The function create below, returns a fresh queue data structure, with empty
contents. It is specified as follows.

val create: unit -> ’a t
(*@ q = create ()

ensures q.view = empty *)

The fact that the function returns a queue distinct from any previously-allocated
queue is implicit because the type ’a t has been declared with a mutable model
field. This design choice is motivated by the fact that writing a function that
returns a non-fresh, mutable data structure is considered bad practice in OCaml.

2.2 Destructive and Nondestructive Operations

We next explain how to specify functions that involve more than one mutable
value, by presenting three concatenation functions for mutable queues. The first
function, called in_place_concat, receives two (distinct) queues as arguments.
It migrates the contents of the first queue to the front of the second queue, then
clears the contents of the first queue.

val in_place_concat: ’a t -> ’a t -> unit
(*@ concat q1 q2

modifies q1, q2
ensures q1.view = empty
ensures q2.view = old q1.view ++ old q2.view *)

The clause modifies q1, q2 asserts that both queues are updated. The first
ensures clause describes the new state of q1 as the empty sequence. The second
ensures clause describes the new state of q2 as the result of the concatenation
of the two original sequences. The queues q1 and q2 are implicitly required to
be separated, that is, not aliased. This implicit assumption is another deliberate
design choice of GOSPEL. Only arguments that are read-only may be aliased.

The next function, specified below, is similar to in_place_concat, with the
difference that it destroys the queue q1 instead of emptying it. In other words,
after the call, q1 cannot be used anymore. To describe the loss of the queue q1,
we replace modifies q1 with the clause consumes q1, as shown below.

val in_place_destructive_concat: ’a t -> ’a t -> unit
(*@ concat q1 q2

consumes q1 modifies q2
ensures q2.view = old q1.view ++ old q2.view *)

488 A. Charguéraud et al.

Note that the ensures clause may only refer to old q1.view, but not to
q1.view, since there is no “valid new state” for q1. Note also that an imple-
mentation of in_place_destructive_concat is allowed to performed arbitrary
side effects on q1, which gets discarded after the call.

The third function, called nondestructive_concat, takes two queues as
read-only arguments, and produces a fresh queue with the concatenation of the
contents of the two input queues. It is specified as follows.

val nondestructive_concat: ’a t -> ’a t -> ’a t
(*@ q3 = concat q1 q2

ensures q3.view = q1.view ++ q2.view *)

The absence of a modifies clause implicitly asserts that the arguments are read-
only. When arguments are read-only, it is safe to alias them. For example, a call
of the form non_destructive_concat q q is allowed.

2.3 Higher-Order Functions

In OCaml, iterations over containers are typically implemented using a higher-
order function. For example, map f q produces a fresh queue whose elements are
the pointwise applications of the function f to the elements from the queue q.
Although Separation Logic does support the general case where the function f
may perform arbitrary side effects [5,6], we cover in this paper only the simpler
case where f is a pure function. In this case, we specify map as follows:

val map: (’a -> ’b) -> ’a t -> ’b t
(*@ r = map f q

ensures length r.view = length q.view
ensures forall i. 0 <= i < length q.view ->

r.view[x] = f q.view[i] *)

We leave the generalization to the general case of an effectful f to future work.

2.4 Ghost Variables

Ghost arguments and ghost return values may be used to specify a function.
In GOSPEL syntax, ghost entities appear within square brackets in a function
prototype. Consider the example below of a function that computes the largest
power of two no greater than a given integer n. The ghost return value k is a
convenient means of specifying that r is a power of two.

val power_2_below: int -> int
(*@ r, [k: integer] = power_2_below n

requires n >= 1
ensures r = power 2 k && r <= n < 2 * r *)

In GOSPEL, the type of a ghost variable must be provided. Here, k is declared
with type integer, which denotes the GOSPEL type of mathematical integers.

GOSPEL—Providing OCaml with a Formal Specification Language 489

2.5 Non-visible Side Effects

We next discuss operations that may modify the internal state of a data structure
without modifying the value of the model fields. Simply pretending that the
operation does not modify the structure would be unsound, as it would suggest
that the structure is read-only.

As a first example, consider a random generator module. Type rand_state
represents the internal state of a generator (i.e., the current value of the seed).
We do not wish to expose the implementation of the state, yet we wish to expose
in the specification the fact that there exists an internal state. To achieve this,
we associate with the type rand_state a mutable model field of type unit.

type rand_state
(*@ mutable model internal: unit *)

The function random_init takes as argument a seed and produces a fresh ran-
dom generator state of type rand_state. This function needs no specification.

val random_init: int -> rand_state

The function random_int takes as argument a state s and an integer m, and
returns a pseudo-random integer smaller than m. This function performs a side
effect on the state s, hence the clause modifies s.

val random_int: rand_state -> int -> int
(*@ n = random_int s m

requires m > 0 modifies s ensures 0 <= n < m *)

Similarly to the mutable queue example, here the clause modifies s is equiva-
lent to modifies s.internal. Even though there is only one possible value of
type unit for this model field, the fact that it is declared in the modifies clause
is important because it specifies that internal side effects may be performed. If
no modifies clause were provided, the argument s would be implicitly assumed
to be read-only: no side effects would be allowed, even internally.

As a second and more challenging example, consider a union-find data struc-
ture that maintains disjoint sets using a pointer-based representation of a reverse
forest. Each element of a union-find is represented as a value of type elem, an
abstract data type. Operations on a union-find instance perform path compres-
sion, hence they modify the internal state of the structure, even when the exposed
logical state remains unchanged. To account for the fact that an operation per-
formed on a given element does not alter only this element, but potentially all
the elements in the union-find instance, we do not associate any mutable model
field to the type elem. Instead, we introduce a ghost type named uf_instance,
meant to describe the state of all the elements in the union-find instance.

The ghost type uf_instance features three mutable model fields: a domain
dom describing the set of elements in the current instance; a logical map rep that
binds each element to its representative; and a model field called internal of
type unit. The latter is used to describe the internal side effects performed by
operations such as find which exposes no visible side effect.

490 A. Charguéraud et al.

We impose several well-formedness invariants on these fields. These invariants
must hold for any value of type uf_instance, before and after any call to a
function from the interface. The GOSPEL specification is as follows.

type elem
(*@ type uf_instance *)
(*@ mutable model dom: elem set *)
(*@ mutable model rep: elem -> elem *)
(*@ mutable model internal: unit *)
(*@ invariant forall x. mem x dom -> mem (rep x) dom *)
(*@ invariant forall x. mem x dom -> rep (rep x) = rep x *)

The function equiv below takes as arguments a ghost value uf of type
uf_instance and two elements of type elem from the domain of the instance.
It tests whether the two elements belong to the same class. The modifies
uf.internal clause indicates that side effects may be performed on the internal
state.

val equiv: elem -> elem -> bool
(*@ b = equiv [uf: uf_instance] e1 e2

requires mem e1 uf.dom && mem e2 uf.dom
modifies uf.internal
ensures b <-> uf.rep e1 = uf.rep e2 *)

The ghost function create_instance, specified below, enables creating a fresh
and empty instance of union-find.

(*@ val create_instance: unit -> uf_instance *)
(*@ uf = create_instance ()

ensures uf.dom = {} *)

The function make populates a given instance with a fresh element. It updates the
union-find instance to reflect the extension of its domain with the new element.

val make: unit -> elem
(*@ e = make [uf: uf_instance] ()

modifies uf
ensures not (mem e (old uf.dom))
ensures uf.dom = union (old uf.dom) (singleton e)
ensures uf.rep = update (old uf.rep) e e *)

The full union-find interface may be found in the VOCaL library—see Sect. 4.

3 Semantics

In this section, we provide a formal semantics for GOSPEL, by means of a
translation into Separation Logic. First, we describe the source and the target
languages of this translation. Then, we illustrate the translation using functions
from Sect. 2. Finally, we present the general translation scheme.

GOSPEL—Providing OCaml with a Formal Specification Language 491

3.1 General Form of GOSPEL Specifications

In the following, we say that a type is represented if its type declaration features
one or more mutable model fields. By extension, we say that an argument of
a function is represented if its type is represented. Otherwise, we say that it is
non-represented. The terminology reflects the fact that such arguments get, or
do not get, represented as predicates in Separation Logic.

A GOSPEL specification consists of the prototype of a function, followed
with a list of clauses.The prototype indicates the name of the function, of its
arguments, and of its return values, including ghost arguments and ghost return
values within square brackets. The list of clauses include one or several of each
requires, modifies, consumes, and ensures.

The requires clause consists of a proposition that may refer to the model
fields of represented arguments and to the names of the non-represented argu-
ments, whether they are ghost or not. The consumes clause consists of a list
of represented arguments. The modifies clause consists of a list of mutable
model fields associated with represented arguments. These arguments must not
already appear in the consumes clause. If the name of an argument appears in
the modifies clause without a projection, it is interpreted as the list of mutable
model fields associated with that arguments. The ensures clauses consists of a
proposition that may refer to the same entities as the requires clause, minus
the arguments listed in the consumes clause, plus the “old versions” of the fields
listed in the modifies clause. If several requires (or ensures) clauses appear,
they can be grouped using a conjunction. If several consumes (or modifies)
clause appear, they can be grouped by appending their contents.

3.2 Basics of Separation Logic

A heap predicate, written H, is a predicate over the mutable state. If Heap
denotes the type of states, and Prop denotes the type of logical propositions,
then a heap predicate H has type Heap → Prop.

We write HOARE{H} t {λx.H ′} to denote a Hoare triple [16] for a program
term t, with precondition H and postcondition H ′, where x binds a name for
the result produced by t. In total correctness, the interpretation of such a triple
is: “if the predicate H holds in the input state, then the evaluation of t terminates
and produces a value x for which the predicate H ′ holds in the output state”.

In Hoare logic, H and H ′ describe the whole input and output states. In
contrast, Separation Logic allows specifying only the fragment of the state that
is relevant to the execution of the program. For this purpose, Separation Logic
introduces the star operator: H1 � H2 is a predicate that holds of a state that can
be decomposed in two disjoint parts, one satisfying H1 and another satisfying H2.

A Separation Logic triple is written SL{H} t {λx.H ′}. Such a triple is equiv-
alent to the proposition: ∀H ′′. HOARE{H � H ′′} t {λx.H ′ � H ′′}. This equiva-
lence captures the property that a Separation Logic triple is a specification that
remains valid in any extension of the input heap over which the program t oper-
ates, with the guarantee that the evaluation of t does not alter values from this
extension. This property is reflected by the frame rule:

492 A. Charguéraud et al.

SL{H} t {λx. H ′}
SL{H � H ′′} t {λx. H ′ � H ′′} frame

Three other Separation Logic operators are useful for the purpose of this
paper. The construct [P] lifts a pure proposition P of type Prop into a predicate
of type Heap → Prop. The construct ∃∃x.H denotes existential quantification
over heap predicates. The construct RO(H) denotes a read-only version of the
predicate H. Read-only predicates are provided by an extension of Separation
Logic [8] that features the following read-only-frame rule:

SL{H � RO(H ′′)} t {λx. H ′}
SL{H � H ′′} t {λx. H ′ � H ′′} ro-frame

We employ read-only predicates in our translation from GOSPEL to Separation
Logic. All that the reader needs to know is that read-only predicates are duplicat-
able at will; that they may be discarded at any time (i.e., they are not linear, but
affine); and that they may appear only in preconditions, not in postconditions.

3.3 Example Translations of Mutable Queue Specifications

Before presenting the general translation scheme from GOSPEL to Separation
Logic, we first provide concrete instances of the translation for some queue oper-
ations from Sect. 2. Recall that a queue has a single mutable model field of type
’a seq. As a consequence, we introduce a representation predicate R of type
loc → ’a seq → Heap → Prop. Here, loc denotes the type of pointers in
Separation Logic. Concretely, given a pointer q and a sequence L, the heap pred-
icate R q L captures the piece of state and invariants involved in the memory
representation of a mutable queue at address q with contents L.

The translations for the specifications of the queue operations push, pop,
is_empty, and create are shown below.1 Thereafter, variable v has type ’a,
variable L type ’a seq, variable b type bool, and variable u type unit.

{ (R q L) } push v q { λu. ∃∃ L’. (R q L’) � [L’ = v::L] }
{ (R q L) � [L �=nil] } pop q { λv. ∃∃ L’. (R q L’) � [L = L’++v::nil] }
{ RO (R q L) } is_empty q { λb. [b = true ↔ L = nil] }
{ [True] } create u { λq. ∃∃ L. (R q L) � [L = nil] }

Observe in particular how the function is_empty takes as argument a read-only
description of the queue. The corresponding triple implicitly asserts that the
queue is returned unmodified in the postcondition.

We next present the translation for the three variants of the concatenation
function from Sect. 2.
1 The triples are obtained by applying our translation scheme; more concise triples

may be derived for push and create by eliminating existential quantifiers.

GOSPEL—Providing OCaml with a Formal Specification Language 493

{ (R q1 L1) � (R q2 L2) }
in_place_concat q1 q2
{ λu. ∃∃ L1’ L2’. (R q1 L1’) � (R q2 L2’) � [L1’ = nil ∧ L2’ = L1++L2] }

{ (R q1 L1) � (R q2 L2) }
in_place_destructive_concat q1 q2
{ λu. ∃∃ L2’. (R q2 L2’) � [L2’ = L1++L2] }

{ RO (R q1 L1) � RO (R q2 L2) }
nondestructive_concat q1 q2
{ λq3. ∃∃ L3’. (R q3 L3’) � [L3’ = L1++L2] }

The first function clears the contents of its first argument, whereas the second
function consumes the representation predicate for its first argument. The third
function differs in that it takes two read-only arguments.

3.4 General Translation Scheme from GOSPEL to Separation Logic

To keep things concise and readable, we define the general pattern of the transla-
tion by considering an example that captures the various possible cases. Without
lack of generality, let us assume a type t with two mutable model fields called
left and right. Their types are irrelevant to what follows.

type t
(*@ mutable model left: type1 *)
(*@ mutable model right: type2 *)

To specify values of type t in Separation Logic, we introduce a representation
predicate, called T, of type loc → type1 → type2 → Heap → Prop. Con-
cretely, a heap predicate of the form T p X Y describes the memory layout of a
structure of type t at address p, whose left and right model fields are described
by X and Y, respectively. If invariants were attached to the data type t (as illus-
trated for example in Sect. 2.5), predicate T would capture those invariants.

Consider now the function f specified as follows, for the sake of example.

val f: t -> t -> t -> t -> int -> t * t * int
(*@ p5, p6, m, [h: integer] = f p1 p2 p3 p4 n [g: integer]

requires P
modifies p1, p2.left consumes p3
ensures Q *)

Argument p1 appears in the modifies clause, thus both its model fields may be
modified; argument p2 has only its left field modifiable, thus its right model
field remains unchanged; argument p3 is declared in the consumes clause, thus
it gets lost during the call; argument p4 is not declared in the modifies clause,
thus it is read-only.

Additionally, a precondition P and a postcondition Q are declared. The pre-
condition P is a logical proposition that may refer to the left and right pro-
jections of p1, p2, p3, and p4, as well as to n and g. The postcondition Q may

494 A. Charguéraud et al.

refer to the same set of variables, minus p3 (which is consumed), plus the old
values of the modified model fields (namely, old p1.left, old p1.right, and
old p2.left), plus the left and right projections of the return values p5 and
p6, as well as to the return values m and h.

We translate the specification for the function f into the following Separation
Logic statement, where the variables Xi (resp. Yi) refer to the values of the left
(resp. right) model fields.

∀p1 p2 p3 p4 n g X1 Y1 X2 Y2 X3 Y3 X4 Y4,
{ [P] � (T p1 X1 Y1) � (T p2 X2 Y2) � (T p3 X3 Y3) � RO (T p4 X4 Y4) }
f p1 p2 p3 p4 n
{ λ(p5,p6,m). ∃∃ h X1’ Y1’ X2’ X5’ Y5’ X6’ Y6’. [Q] �

(T p1 X1’ Y1’) � (T p2 X2’ Y2) � (T p5 X5’ Y5’) � (T p6 X6’ Y6’)

Observe in particular how the postcondition first binds the return values, then
quantifies existentially: (1) the ghost return value h, (2) the updated model fields
associated with the represented arguments, and (3) the model fields associated
with the represented return values. Observe also how the read-only predicate for
p4 appears only in the precondition (as discussed in Sect. 3.2).

The above example illustrates the general scheme behind our translation.
Two other minor aspects are worth mentioning. First, if an argument features
an immutable model field, then we treat this field like a mutable model field not
declared in the modifies clause. Second, for a polymorphic function, we need
to quantify the appropriate type variables in the Separation Logic statement.

4 Implementation and Application

We next describe GOSPEL tools and applications: its parser, its type-checker, its
mathematical library, its connection with verification tools, and its application to
the specification and verification of a general-purpose library of data structures
and algorithms.

Parsing and Type-Checking of GOSPEL Specifications. As explained in Sect. 2.1,
GOSPEL specifications appear in comments in an OCaml interface file. The
GOSPEL parser proceeds in two stages. First, the parser from the OCaml com-
piler is invoked to parse the structure of the file. It produces a parse tree that
features, in particular, type and prototype declarations. The GOSPEL comments
are stored as attributes to these definitions, with payloads represented as strings.2
Second, a dedicated GOSPEL parser is used to parse the attributes that corre-
spond to GOSPEL specifications, and to integrate them with the corresponding
OCaml declarations. The use of two distinct parsers is a deliberate choice, aimed
at making the framework easily maintainable in the face of evolution of either
the OCaml syntax or the GOSPEL syntax.
2 We patched the parser from the OCaml compiler so as to process comments of the

form (*@ ...*) as if they were written as OCaml attributes of the form [@@gospel
“...”]. The OCaml parser already processes documentation comments in this way.

GOSPEL—Providing OCaml with a Formal Specification Language 495

After being parsed, GOSPEL specifications are type checked. We developed a
type checker independent from that of the OCaml compiler to handle, e.g., types
associated with model fields. Our type checker performs ML-style type inference,
allowing the user to quantify variables without providing their types, and to
apply polymorphic functions without explicit instantiations. The GOSPEL type-
checker verifies in particular the well-formedness of the specification clauses.
For example, it checks that only legitimate variables appear in the requires,
consumes, modifies, and ensures clauses (as explained in Sect. 3.1).

The GOSPEL Library. The purpose of the GOSPEL library is twofold. First,
the library provides mathematical theories to be used in specifications, covering
unbounded integers, sequences, sets, bags, and maps. For example, a queue is
specified using a sequence, a priority queue is specified using a bag, etc. Sec-
ond, the library provides logical models for built-in OCaml data types, such
as machine integers, lists, arrays, and strings. The GOSPEL library takes the
form of regular OCaml .mli files, containing only GOSPEL declarations. These
libraries may contain symbols that are left uninterpreted. For instance, the
library currently does not give any definition for what a “set” is. For the moment,
it appears more practical to leave a collection of mathematical symbols abstract
and to provide, for each verification tool, a mapping from these abstract symbols
towards their corresponding realization (e.g., in SMT theories or Coq mathemat-
ical theories).

Program Verification w.r.t. GOSPEL Specifications. In Sect. 3, we have provided
GOSPEL with a formal semantics. The existence of this semantics means that
GOSPEL specifications make sense independently of which verification tool is
used to carry out the proofs. Thus, for a given program, we are free to use the
most suitable verification tool. For example, if the code is purely functional, it
makes sense to verify it directly using Coq. If the code features advanced pointer
manipulations, then CFML [5,6], with its interactive proofs in Separation Logic,
would be the tool of choice. If mutability is limited, then the Why3 tool [13]
provides convenient support for automated proofs, by leveraging SMT provers.
Thanks to the existence of the common specification language GOSPEL, it is
even possible to build modular proofs where different components are verified
using distinct tools.

Implementing a verification tool to handle GOSPEL specifications can be
achieved in several ways. In the case of Why3, the GOSPEL specification is trans-
lated into Why3’s specification language; the source code is written in WhyML,
proved to satisfy the specification, then extracted into OCaml code.3 In the case
of CFML, the GOSPEL specification is translated into CFML’s specification
language; the OCaml source to be verified is parsed by CFML and converted
into a characteristic formula expressed in higher-order logic; one then proves
that the characteristic formula entails the desired specification.

3 More details about the Why3 workflow may be found in Pereira’s PhD thesis [30].

496 A. Charguéraud et al.

Application to the VOCaL Library. A collection of general-purpose data struc-
tures and algorithms is an essential ingredient for the successful construction
of a large-scale software. When it comes to formal verification, it thus makes
sense to start with the verification of such libraries. This observation has moti-
vated efforts in the deductive verification community to verify programming
libraries [11,31]. OCaml is a programming language that lends itself particularly
well to formal verification, in particular thanks to its simple semantics. More-
over, OCaml is used to implement several tools whose soundness is critical, e.g.,
proof assistants [35], static analysis tools [9,20], SMT solvers [2]. Thus, there
would be strong benefits in developing a verified library for OCaml.

The recent VOCaL project precisely aims at developing a “mechanically
Verified OCaml Library” of efficient general-purpose data structures and algo-
rithms. The public GitHub repository of the project already includes several
OCaml modules, such as resizable arrays, priority queues, and union-find.4 These
libraries have been verified using Why3 or CFML. As a contribution of the
present work, we provide GOSPEL specifications for all these verified libraries.

The VOCaL library may be looked at in different ways, depending on one’s
needs. First, one could choose to ignore all the GOSPEL annotations and sim-
ply be interested in using VOCaL as a trustworthy library of OCaml code. Sec-
ond, one could be interested in reading GOSPEL annotations from the VOCaL
libraries in order to unambiguously understand what is the semantics of the oper-
ations that it provides. Third, one might be interested in producing a formally
verified OCaml program, by leveraging the VOCaL libraries. In this case, the
user would engage in verification proofs and would reason about interactions
with the VOCaL libraries by exploiting their GOSPEL specifications.

5 Related Work

In recent years, a number of behavioral specification languages [15] have been
proposed for various state-of-the-art programming languages, such as JML for
Java [23] and ACSL for C [1]. The SPARK [3] programming and specification
language is a subset of the Ada language targeting verification. Several verifi-
cation tools, such as VeriFast [17], Viper [27], Why3 [13], and Dafny [24], come
with their own specification languages.

Three important aspects influence the design of specification languages. The
first aspect is whether specifications are meant to be executable or not. For exam-
ple, JML and SPARK specifications are executable [22]. ACSL specifications are
not executable, but contains an executable subset called E-ACSL [33]. Requir-
ing executable specifications severely constrains expressivity. For this reason, we
chose to not impose executable specifications in GOSPEL. A second aspect is
whether specifications are meant to be entirely discharged by automated tools.
For example, Dafny emits proof obligations for SMT solvers (Z3, in particular).
Targeting fully automated proofs may impose a certain presentation style for

4 https://github.com/vocal-project/vocal.

https://github.com/vocal-project/vocal

GOSPEL—Providing OCaml with a Formal Specification Language 497

specifications. GOSPEL is agnostic to the verification tool. Both SMT-based
and interactive-proofs-based approaches can be used.

The third aspect of a specification language is how it treats the frame problem,
and how it describes the separation of arguments and the freshness of return
values. Specifications languages such as SPARK, JML, or ACSL require explicit
freshness assertions. Dafny [24] exploits Dynamic Frames [19], an approach that
is flexible but that leads to relatively verbose specifications [18]. Chalice [25]
leverages Implicit Dynamic Frames [34]. This approach, partially inspired by
Separation Logic, aims at providing first-order tool support. Its assertions are
interpreted with non-separating conjunctions, like in Separation Logic, yet with
explicit accessibility predicates. For more details on Dynamic Frames technique,
we refer to Kassios’ tutorial [18], and to an article by Parkinson and Summers [29]
which formally explores the relationship between Implicit Dynamic Frames and
Separation Logic. In contrast, GOSPEL is firmly grounded on Separation Logic:
accessibility predicates, disjointness and freshness assertions are always implicit.

Why3 [13] is a deductive verification tool with a dedicated programming
and specification language called WhyML. A number of aspects of GOSPEL
are based on WhyML. There are, however, important differences. A first impor-
tant difference is that the semantics of GOSPEL is given by means of Separa-
tion Logic, whereas WhyML is given a more traditional semantics in terms of
weakest-precondition calculus and first-order logic [12]. A second difference is
that GOSPEL targets a mainstream programming language used in the devel-
opment of large and complex software systems. Although WhyML has many fea-
tures similar to OCaml, it remains a verification-oriented language, with many
OCaml features missing. In contrast, GOSPEL intends to introduce, lightly and
incrementally, ideas of formal methods into the OCaml community. For instance,
GOSPEL may be used in large projects to specify and verify a number of critical
core components, while leaving other components unverified.

Compared with writing specifications directly in Separation Logic, the use
of GOSPEL significantly improves the practical experience of writing and read-
ing specifications. The example from Sect. 3.4 gives an idea of how much more
concise a GOSPEL specification might be relative to its Separation Logic coun-
terpart. We next summarize the key design choices that we have made w.r.t.
plain Separation Logic.

In Separation Logic, one has the possibility to introduce several representa-
tion predicates for a same type. This possibility may be useful in rare cases for
specifying advanced access patterns in complex data structures. In practice, the
vast majority of data structures are naturally specified with a unique representa-
tion predicate. In GOSPEL, we leave the representation predicates implicit, and
instead refer directly to the names of the model fields. (We could add support
for multiple representation predicates in the future, while keeping the current
behavior as a default). Furthermore, in GOSPEL, unlike in Separation Logic, we
do not need to provide names for the model fields that are not explicitly involved
in the specification.

498 A. Charguéraud et al.

Another difference is that in Separation Logic, permissions (representation
predicates) have to be provided even for read accesses. Yet, it would serve little
purpose to provide a function with a pointer if not providing at least the cor-
responding read permission. Thus, we have chosen for GOSPEL a design that
assumes implicit read permissions for all the arguments provided to a function.
For arguments that require write access, Separation Logic specifications require
to repeat the permission both in the precondition and the postcondition. One
exception is in the rare case where an argument is consumed. In GOSPEL, we
only require a list of the names of the modified arguments to appear either in
the modifies clause or in the consumes clause. This design avoids repetitions
and significantly reduces the clutter.

VeriFast [17] is a verification tool targeting C and Java programs. It features a
specification language based on Separation Logic. As recently demonstrated [4],
it is possible to encode model fields in VeriFast, although with some overheads.
On the contrary, GOSPEL provides builtin support for representation predicates.
Thus, it can leverage dedicated features for manipulating and referring to model
fields, and indicating which ones may be modified. This design enables important
gains in conciseness.

Viper [27] is an intermediate verification language, which features front-ends
for several programming languages, including Java, Python, and Rust. Viper’s
specification language is based on permissions, which are explicitly manipulated
both in contracts and in the code. To indicate that a method has access to a
field, the specification must include an explicit accessibility predicate. Moreover,
to distinguish between read and write accesses, Viper relies on fractional permis-
sions: only a full permission (i.e., a fraction equal to 1) enables write access. In
contrast, GOSPEL design makes read-access permissions implicit for all fields,
and write-access permissions are simply listed in the modifies clause. Further-
more, GOSPEL design takes advantage of read-only permissions, whose benefits
over fractional permissions are discussed in details in the paper that introduces
read-only permissions [8] (§1.3 and §5.4).

6 Conclusion and Future Work

We have presented GOSPEL, a behavioral specification language for OCaml. So
far, a subset of OCaml was identified for which GOSPEL specifications can be
translated to Separation Logic. We expect to extend GOSPEL to a larger subset
of OCaml in the future, to support other constructs such as signature constraints
(with type) and inclusion (include). GOSPEL can also be extended in other
directions, e.g., to allow specifying the asymptotic cost of each function [7,14,28].

We have developed verification frameworks on top of GOSPEL and success-
fully applied them to the verification of an algorithms and data structures library.
So far, these frameworks are based on Why3 and CFML. It would be interesting
to also try and target the Viper ecosystem [27]. One could hope for a straightfor-
ward translation from GOSPEL to Viper, which is based on Separation Logic.

There are several other interesting directions for future work for GOSPEL.
It could be extended to include invariants for, e.g., loops. It could be exploited

GOSPEL—Providing OCaml with a Formal Specification Language 499

for runtime assertion checking, by identifying an executable subset. It could be
integrated with a property-based testing framework, for example leveraging the
qcheck [10] tool that generates random test values satisfying given invariants.

Acknowledgments. We are grateful to X. Leroy, F. Pottier, A. Guéneau, and A.
Paskevich for discussions and comments during the preparation of this paper.

References

1. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y.,Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, version 1.4 (2009). http://frama-c.cea.fr/
acsl.html

2. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The Alt-Ergo automated theorem prover (2008). http://alt-ergo.lri.fr/

3. Carré, B., Garnsworthy, J.: SPARK–an annotated Ada subset for safety-critical
programming. In: Proceedings of the Conference on TRI-Ada 1990, New York,
NY, USA, pp. 392–402. ACM Press (1990)

4. Cauderlier, R., Sighireanu, M.: A verified implementation of the bounded list con-
tainer. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
172–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_10

5. Charguéraud, A.: Characteristic Formulae for Mechanized Program Verifica-
tion. PhD thesis, Université Paris (2010). http://www.chargueraud.org/arthur/
research/2010/thesis/

6. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Manuel, M.T., Chakravarty, Hu, Z., Danvy, O. (eds.) Proceeding of
the 16th ACM SIGPLAN International Conference on Functional Programming
(ICFP), Tokyo, Japan, pp. 418–430. ACM, September 2011

7. Charguéraud, A., Pottier, F.: Verifying the correctness and amortized complexity
of a union-find implementation in separation logic with time credits. J. Autom.
Reasoning (2017)

8. Charguéraud, A., Pottier, F.: Temporary read-only permissions for separation logic.
In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 260–286. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1_10

9. Cousot, P.,Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTRÉE analyzer. In: ESOP, number 3444 in Lecture Notes in Computer
Science, pp. 21–30 (2005)

10. Cruanes, S., Grinberg, R., Deplaix, J.-P., Midtgaard, J.: Qcheck (2019). https://
github.com/c-cube/qcheck

11. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Autom. Reasoning (2017)

12. Filliâtre, J.-C.: One logic to use them all. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS (LNAI), vol. 7898, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38574-2_1

13. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

14. Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: formalizing asymp-
totic complexity claims via deductive program verification. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 533–560. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1_19

http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html
http://alt-ergo.lri.fr/
https://doi.org/10.1007/978-3-319-89960-2_10
http://www.chargueraud.org/arthur/research/2010/thesis/
http://www.chargueraud.org/arthur/research/2010/thesis/
https://doi.org/10.1007/978-3-662-54434-1_10
https://github.com/c-cube/qcheck
https://github.com/c-cube/qcheck
https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1007/978-3-319-89884-1_19

500 A. Charguéraud et al.

15. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580, 583 (1969)

17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

18. Kassios, I.T.: Dynamic frames and automated verification (2011). Tutorial for the
2nd COST Action IC0701 Training School, Limerick 6/11, Ireland

19. Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267–288
(2011)

20. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

21. Klein, G., et al.: seL4: formal verification of an OS kernel. Commun. ACM 53(6),
107–115 (2010)

22. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 461–478. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2_32

23. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98–06i, Iowa State Uni-
versity (2000)

24. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

25. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9_27

26. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009)

27. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

28. Mével, G., Jourdan, J.-H., Pottier, F.: Time credits and time receipts in iris. In:
Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 3–29. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17184-1_1

29. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. Log. Methods Comput. Sci. 8(3) (2012)

30. Pereira, M.J.P.: Tools and Techniques for the Verification of Modular Stateful
Code. PhD thesis, Université Paris-Saclay (2018)

31. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. For-
mal Aspects Comput. 30(5), 495–523 (2018)

32. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science. IEEE (2002)

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-030-17184-1_1

GOSPEL—Providing OCaml with a Formal Specification Language 501

33. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a Runtime Verification Tool for
Safety and Security of C Programs (Tool Paper). In: International Workshop on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Run-
time Verification Tools (RV-CuBES 2017), September 2017

34. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol.
5653, pp. 148–172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03013-0_8

35. The Coq Development Team. The Coq Proof Assistant Reference Manual - Version
V8.9 (2019). http://coq.inria.fr

https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8
http://coq.inria.fr

Unification in Matching Logic

Andrei Arusoaie(B) and Dorel Lucanu

Alexandru Ioan Cuza University, Iaşi, Romania
{arusoaie.andrei,dlucanu}@info.uaic.ro

Abstract. Matching Logic is a framework for specifying programming
language semantics and reasoning about programs. Its formulas are called
patterns and are built with variables, symbols, connectives and quanti-
fiers. A pattern is a combination of structural components (term pat-
terns), which must be matched, and constraints (predicate patterns),
which must be satisfied. Dealing with more than one structural com-
ponent in a pattern could be cumbersome because it involves multiple
matching operations. A source for getting patterns with many structural
components is the conjunction of patterns. Here, we propose a method
that uses a syntactic unification algorithm to transform conjunctions of
structural patterns into equivalent patterns having only one structural
component and some additional constraints. We prove the soundness
and the completeness of our approach, and we provide sound strategies
to generate certificates for the equivalences.

Keywords: Matching Logic · Syntactic term unification ·
Semantic unification · Certification

1 Introduction

Matching Logic [21] (hereafter shorthanded as ML) is a novel framework which
is currently used for specifying programming languages semantics [8,11,12,19]
and for reasoning about programs [5,10,14,22,24–26]. Inspired by the domain
of programming language semantics, the logic uses the operational semantics of
a programming language for both execution and verification of programs.

The ML formulas, called patterns, are built using variables, symbols, connec-
tives and quantifiers. A pattern is evaluated to the set of values that it matches.
ML makes no distinction between function and predicate symbols. Not having
this distinction increases the expressivity of the language, where various notions
(e.g., function, equality) can be specified using symbols that satisfy some axioms.

For example, the next ML formula ϕ1 matches over the set of lists that start
at address p + 2 and store the sequence a, which contains an even number on
the third position:

ϕ1 � list(p + 2, a) ∧ ∃k.(select a 3) = 2 ∗ k

Basically, the novelty in ML w.r.t. first-order logics is that structural components
are formulas as well. In our example, ϕ1 is a conjunction of a structural com-
ponent list(p + 2, a) – a list that starts at address p + 2 and stores a sequence
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 502–518, 2019.
https://doi.org/10.1007/978-3-030-30942-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_30

Unification in Matching Logic 503

implemented as an array (encoded using the select-store axioms), – together
with the constraint ∃k.(select a 3) = 2 ∗ k. In ML, the structural components
are called term patterns, whereas the constraints are called predicate patterns.

The conjunction of two ML patterns may produce a new pattern with more
than one structural component, as shown in this example:

structure
︷ ︸︸ ︷

list(p + 2, a) ∧
constraint

︷ ︸︸ ︷

∃k.(select a 3) = 2 ∗ k
︸ ︷︷ ︸

ϕ1

∧
structure

︷ ︸︸ ︷

list(q, (store b 3 y)) ∧
constraint
︷ ︸︸ ︷

y > 2
︸ ︷︷ ︸

ϕ2

Finding a set of elements that matches the conjunction ϕ1 ∧ ϕ2 is not neces-
sarily an easy task, mainly because both structural components (list(p + 2, a))
and (list(q, (store b 3 y))) need to be matched simultaneously. In theory, this
set is the intersection of the sets matched by ϕ1 and ϕ2 independently.

In practice, dealing with multiple structural components in one formula is
cumbersome. The issue comes from the fact that reasoning in ML could generate
conjunctions with many structural components. Therefore, an implementation
of a ML prover needs to handle conjunctions in an efficient way.

Let us explain what produces large conjunctions. ML is designed to reason
about programs using the semantics of programming languages. Inspired from
Rewriting Logic, where programming language semantics can be encoded using
rewrite rules, in ML the semantics can be encoded by axioms of the form t1 ∧
φ1 → •(t2 ∧ φ2) (as shown in [1]). Here, t1 and t2 are term patterns that are
meant to match over program states, and φ1 and φ2 are predicate patterns,
i.e., constraints over program states. Also, • is a special symbol called one-path
next [9], which is interpreted as a transition relation. The formula •(t2 ∧ φ2)
matches all states that have at least one next state (w.r.t. the transition relation)
that is matched by t2 ∧ φ2. The implication t1 ∧ φ1 → •(t2 ∧ φ2) can be
understood as an inclusion of the set that matches t1 ∧ φ1 into the set that
matches •(t2 ∧ φ2).

These axioms are used to perform symbolic execution of programs, which is
essential in a ML prover implementation: it increases the level of automation. A
symbolic execution is a sequence of symbolic steps t∧φ ⇒ t′ ∧φ′, where the next
symbolic configuration t′ ∧ φ′ is obtained from the current one t ∧ φ by applying
a semantics axiom t1 ∧ φ1 → •(t2 ∧ φ2). Now, t′ ∧ φ′ is computed such that only
the states matched by (t1 ∧φ1)∧ (t∧φ)∧•(t2 ∧φ2) transition to states matched
by t′ ∧ φ′. It is easy to see now where the conjunction of patterns occurs: it is
used to compute the symbolic successors of t ∧ φ. The size of the conjunction
grows when repeatedly applying symbolic steps, and thus, it becomes unfeasible
to compute symbolic successors from conjunctions that have multiple structural
components. Computing a convenient form t′ ∧ φ′ for conjunctions also enables
the use of SMT solvers (e.g., Z3 [18], CVC4 [7]): if such a solver finds that φ′ is
not satisfiable, then the current symbolic execution path is unfeasible, and thus,
it is not worth exploring it.

504 A. Arusoaie and D. Lucanu

In ML, the semantics of ϕ1 ∧ ϕ2 is the largest set of elements matching ϕ1

and ϕ2. The conjunction of two patterns can be seen as a semantic unification of
the patterns [21]. So, it makes sense to relate syntactic unification to this notion
of semantic unification. Let us consider the particular case when ϕi � ti ∧ φi,
where ti is a term pattern and φi is a predicate pattern, i ∈ {1, 2}. Using
ML reasoning, the conjunction ϕ1 ∧ ϕ2 can be written in an equivalent form
t1 ∧ (t1 = t2) ∧ φ1 ∧ φ2. The predicate patterns expressing the equality of two
term patterns t1 = t2 cannot be handled, e.g., by SMT solvers. Thus, it would be
convenient to reduce it to an equivalent predicate φt1=t2 , which can be handled
by SMT solvers. Also, it would be worth producing a proof certificate of the
equivalence of t1 = t2 and φt1=t2 .

At a first sight, unification of terms seems to be useful here. If σ is the most
general unifier of t1 and t2, seen as first-order terms, then t1σ = t2σ. Unifiers
are substitutions, and substitutions can be expressed as ML formulas [4].

In our list example, list(p + 2, a) and list(q, (store b 3 y)) have σ = {q �→
p + 2, a �→ (store b 3 y)} as the most general unifier. Translating σ to a formula
results in φσ � (q = p + 2) ∧ (a = (store b 3 y)). The equality list(p + 2, a) =
list(q, (store b 3 y)) is now equivalent to φσ. Moreover, the semantic unifier
ϕ1 ∧ ϕ2 is equivalent to list(p + 2, a) ∧ φσ ∧ (∃k.(select a 3) = 2 ∗ k) ∧ y > 0.
This form is now convenient since it has only one structural component and a
constraint manageable by an SMT solver.

Contributions. First, we show that φt1=t2 is equivalent to a φσ obtained using
the most general unifier σ of t1 and t2, whenever it exists. The proof of the
equivalence between t1 = t2 and φσ is not trivial and, surprisingly, it depends
on the algorithm used to compute the most general unifier. Our proof uses the
syntactic unification algorithm proposed by Martelli and Montanari [16].

Second, we find the minimal requirements, expressed as ML axiom patterns,
such that this algorithm is sound for semantic unification in ML:

1. if the syntactic unification algorithm returns a most general unifier σ for term
patterns t1 and t2, then t1 and t2 are unifiable in ML as well, and σ can be
encoded as a predicate pattern.

2. if the algorithm returns that t1 and t2 are not syntactically unifiable, then
they are not unifiable in ML.

Third, the completeness of syntactic unification is proved in a similar manner:

1. if t1 and t2 are unifiable in ML, then t1 and t2 are syntactically unifiable;
2. if t1 and t2 are not unifiable in ML, then they are not syntactically unifiable.

Finally, a provableness property of the Martelli-Montanari unification algo-
rithm is shown: we provide a sound strategy to generate a proof certificate of
the equivalence between t1 ∧ t2 and t1 ∧ φσ, where σ is the most general unifier
of t1 and t2. This proof uses the original ML proof system [21].

Unification in Matching Logic 505

Paper Organisation. In Sect. 2.1 we recall the main notions and notations from
the unification theory that we use in this paper. Section 2.2 includes a concise
presentation of Matching Logic based on [21]. In Sect. 3 we show how to find the
convenient representation of our semantic unifiers using the syntactic unification
algorithm. We prove that the unification algorithm is sound and complete for
semantic unification. In Sect. 4 we describe sound strategies for generating proofs
that can be further used to generate proof certificates. The last section includes
concluding remarks and how this research can be continued.

2 Preliminaries

2.1 Syntactic Unification

We recall from [6] the notions related to unification that we use in this paper,
and from [16], the algorithm for finding the most general unifier (mgu).

Let S be a set of sorts. We consider a (countably) infinite S-indexed set of
variables Var and a signature Σ, i.e., a (finite or countably infinite) S-indexed
set of function symbols. To keep the presentation simple (as in [6]), we do not
explicitly show the sorts of the terms unless they cannot be inferred from context.
This does not restrict in any way the generality and will be handled properly
when transferring all these to Matching Logic.

We use the typical conventions and notations. Letters x, y, z denote variables
and c, f, g denote function symbols. Terms are either variables x ∈ Var , or
compound terms of the form f(t1, . . . , tn). If n = 0 then f() is a constant denoted
by f . The membership f ∈ Σs1...sn,s means that f has arity s1 . . . sn, s, that is,
for each i = 1, n, the subterm ti has sort si, and f(t1, . . . , tn) has sort s.

By var(t) we denote the set of variables occurring in t. For substitutions we
use σ, η, θ or directly a set of bindings {x1 �→ t1, . . . , xn �→ tn}. Substitutions
σ are extended to terms in the usual way; tσ denotes the term obtained after
applying σ to variables in t. The composition of substitutions σ and η is denoted
as ση. Two substitutions σ and η are equal, written σ = η, if they are extension-
ally equal: xσ = xη for every x. We say that σ is more general than η, written
as σ ≤ η, if there is θ such that σθ = η.

Definition 1 (Unifier, Most General Unifier). A substitution σ is a unifier
of two terms t and t′ if tσ = t′σ. A unifier σ is a most general unifier (mgu) if
for every unifier σ′ of t and t′ we have σ ≤ σ′.

Example 1. If t � f(g(x, c), y) and t′ � f(z, y′) are terms then σ = {z �→
g(x, c), y �→ y′} is a unifier of t and t′: tσ = f(g(x, c), y′) = t′σ.

Whenever there exists a unifier for two given terms we say that the terms
are syntactically unifiable. In the particular context of syntactic unification, for
every two syntactically unifiable terms there exists a most general unifier, which
is unique up to a composition with a renaming substitution.

506 A. Arusoaie and D. Lucanu

Fig. 1. Syntactic unification algorithm

Definition 2 (Unification problem, Solution, Solved form). A unifica-
tion problem P is either a set of pairs of terms {t1 =̇ t′1, . . . , tn =̇ t′n} or a special
symbol ⊥⊥⊥. A substitution σ is a solution of a P = {t1 =̇ t′1, . . . , tn =̇ t′n} if σ is a
unifier of ti and t′i, for every i = 1, n. A unification problem P is in solved form
if P =⊥⊥⊥ or P = {x1 =̇ t′1, . . . , xn =̇ t′n} with xi �∈ var(tj) for all i, j = 1, n.

Let unifiers(P) = {σ | σ is a solution of P} denote the set of solutions
of P . If P =⊥⊥⊥ then unifiers(P) = ∅. Each unification problem P =
{x1 =̇ t′1, . . . , xn =̇ t′n} in solved form defines a solution σP = {x1 �→ t′1, . . . , xn �→
t′n}.

A well-known algorithm for finding the mgu is presented in [16]. It consists
of a set of transformations P ⇒ P ′, where the relation ⇒ is defined in Fig. 1.

Remark 1. If P is a unification problem then the following facts hold (cf. [6]):

1. Progress: If P is not in solved form, then there exists P ′ such that P ⇒ P ′;
2. Solution preservation: If P ⇒ P ′ then unifiers(P) = unifiers(P ′);
3. Termination: There is no infinite sequence P ⇒ P1 ⇒ P2 ⇒ · · · ;
4. Most general unifier : If θ is a solution for P , then for any maximal sequence

of transformations that starts with P and ends with P ′, either P ′ is ⊥⊥⊥ or
σP ′ ≤ θ. There is no solution for P iff P ′ is ⊥⊥⊥.

A direct consequence of Remark 1 is that the unification algorithm produces the
mgu whenever it exists.

Example 2. Recall t � f(g(x, c), y) and t′ � f(z, y′) from Example 1. Consider
the unification problem P = {t =̇ t′}. Using the unification algorithm we obtain:

P = {t =̇ t′} � {f(g(x, c), y) =̇ f(z, y′)} ⇒ (Decomposition)
{g(x, c) =̇ z, y =̇ y′} ⇒ (Orient)
{z =̇ g(x, c), y =̇ y′} � P ′

The obtained unification problem P ′ is in solved form; the corresponding sub-
stitution σP ′ = {z �→ g(x, c), y �→ y′} is the most general unifier of t and t′.

P ⇒∗ P ′ denotes that P ′ is obtained by applying zero or more rules from
Fig. 1 to P . We use P ⇒! P ′ to further denote that P ′ is in solved form.

Unification in Matching Logic 507

2.2 Matching Logic

Matching Logic [21] started as a logic over a particular case of constrained
terms [5,10,14,22–25], but now it is developed as a solid logical framework.
We recall from [21] the definitions and notions that we use in the paper.

ML formulas are defined over a many-sorted signature (S,Σ), where Σ is a
S∗ × S-indexed set of symbols. The formulas in ML are patterns:

Definition 3 (ML Formula). A Σ-pattern ϕs of sort s is defined by:

ϕs ::= xs | f(ϕs1 , . . . , ϕsn
) | ¬ϕs | ϕs ∧ ϕs | ∃x.ϕs

where si and s range over S, xs ranges over the variables of sort s (xs ∈ Vars),
f ranges over Σs1...sn,s, and x ranges over the set of variables (of any sort).

When sorts are not relevant or can be inferred from the context we drop the
sort subscript (ϕs becomes ϕ). The derived patterns are defined as expected:
s � ∃x.x (x of sort s), ⊥s � ¬s

1, ϕ1∨ϕ2 � ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 � ¬ϕ1∨ϕ2,
ϕ1 ↔ ϕ2 � (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

Definition 4 (ML model). An ML Σ-model M consist of:
– an S-sorted set Ms for each s ∈ S, the carrier of sort s of M;
– a function fM : Ms1 × · · · × Msn

→ P(Ms) for each symbol f ∈ Σs1...sn,s

(note the use of the powerset P(Ms) as the co-domain).

The functions fM are extended to fM : P(Ms1) × · · · × P(Msn
) → P(Ms) by

setting fM (A1, . . . , An) =
⋃{fM (a1, . . . , an) | ai ∈ Ai, i = 1, n}.

The meaning of patterns is given by using variable valuations ρ as in first-
order logic, but the result of the interpretation is a set of elements that the
pattern “matches”, similar to the worlds in modal logic.

Definition 5 (M-valuations). If ρ : Var → M is a variable valuation and
ϕ a pattern, then the extension ρ(ϕ) of ρ to patterns is inductively defined as
follows:
1. ρ(x) = {ρ(x)};
2. ρ(f(ϕ1, . . . , ϕn)) =

⋃{fM (v1, . . . , vn) | vi ∈ ρ(ϕi), i = 1, . . . , n};
3. ρ(¬ϕ) = Ms \ ρ(ϕ), where the sort of ϕ is s;
4. ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1) ∩ ρ(ϕ2), where ϕ1 and ϕ2 have the same sort;
5. ρ(∃x.ϕ) =

⋃

v∈Ms
ρ[v/x](ϕ), where x ∈ Vars and ρ[v/x] is the valuation ρ′

s.t. ρ′(y) = ρ(y) for all y �= x, and ρ′(x) = v.

When a symbol is a constant c (case 2 in Definition 5) we have ρ(c)=cM ⊆ Ms.
Additional constructs can be handled similarly (e.g. ρ(ϕ1∨ϕ2) = ρ(ϕ1)∪ρ(ϕ2)).

Example 3. Let Nat be a sort and Σ a signature which includes symbols o ∈
ΣNat and succ ∈ ΣNat,Nat . Then, o, succ(x), o ∨ ∃x.succ(x) are ML patterns.

A possible Σ-model M includes a set MNat = N, a constant function oM

which evaluates to the singleton set {0}, and a function succM : N → P(N)
1 Note that ⊥ is different from the (bold) symbol ⊥⊥⊥ used in Sect. 3.

508 A. Arusoaie and D. Lucanu

Fig. 2. Sound and complete proof system of Matching Logic [21]

which returns a singleton set containing the successor of the given natural
number. The pattern succ(x) matches {1} since ρ(succ(x)) = succM (ρ(x)) =
succM ({ρ(x)}) = succM ({0}) = {1}, whenever ρ(x) = 0.

Here, the interpretations of the two symbols have singleton sets as results.
This is not always the case. Let us enrich Σ with a new symbol ≤ ∈ ΣNatNat,Nat .
We may choose the following interpretation for this symbol: ≤M : N×N → P(N),
where ≤M (x, y) = N if x is less or equal than y, and ≤M (x, y) = ∅ otherwise.
The pattern x ≤ succ(x) matches MNat = N, while succ(x) ≤ x matches ∅.

A model M satisfies ϕs, written M |= ϕs, if Ms = ρ(ϕs) for each ρ : Var →
M . A pattern ϕ is valid (written |= ϕ) iff M |= ϕ for all M . In Example 3,
M |= o ∨ ∃x.succ(x) since, for all ρ : Var → M we have ρ(o ∨ ∃x.succ(x)) =
MNat .

A particular type of patterns are M-predicates. These are meant to capture
the usual meaning of predicates, i.e., patterns that can be either true or false. A
pattern ϕs is an M-predicate iff for any valuation ρ : Var → M , ρ(ϕs) is either
Ms or ∅. Also, ϕs is called a predicate iff ϕ is an M -predicate for all models M .
For instance, the patterns x ≤ y and o ∨ ∃x.succ(x) (Example 3) and o ∧ succ(o)
are M -predicates.

Definition 6 (ML specifications). A matching logic specification is a triple
(S,Σ, F), where F is a set of Σ-patterns. The Σ-patterns in F are axiom pat-
terns. We say that ϕ is a semantical consequence of F , written F |= ϕ, iff
M |= F implies M |= ϕ, for each Σ-model M .

An important ingredient of ML is the definedness symbol � �s2
s1

∈ Σs1,s2 : if ϕ
is matched by some values of sort s1 then �ϕ�s2

s1
is s2 , otherwise it is ⊥s2 . This

Unification in Matching Logic 509

interpretation is enforced by adding the axiom �x�s2
s1

to F . Using this symbol
and its axiom we may define:

– conjunction of patterns with different sorts : for instance, if the symbol ≤b ∈
ΣNat Nat,Bool , then the pattern x ∧ o ≤b x is not syntactically correct, because
x has sort Nat whereas o ≤b x has sort Bool . Using definedness we can now
write a syntactically correct formula x ∧ �o ≤b x�Nat

Bool ;
– membership pattern: x ∈s2

s1
ϕ � �x ∧ ϕ�s2

s1
with x ∈ Vars1 ;

– equality pattern: ϕ =s2
s1

ϕ′ � ¬�¬(ϕ ↔ ϕ′)�s2
s1

.

In ML we can easily specify that certain symbols are interpreted as functions:

Definition 7 (Functional patterns, Term patterns). A pattern ϕ is func-
tional in a model M iff | ρ(ϕ) |= 1 for any valuation ρ : Var → M . The pattern
ϕ is functional in (S,Σ, F) iff it is functional in all models M such that M |= F .
Term patterns are formulas containing only functional symbols.

The patterns o and succ(x) (in Example 3) are functional in MNat since they
are interpreted as functions (i.e., oM and succM) which return a singleton set.

Obviously, any term pattern is functional. Moreover, given a ML specification
(S,Σ, F), a pattern ϕ is functional in all (S,Σ, F)-models iff F |= ∃y.(ϕ = y).

When functional patterns have the same sort, the proposition below holds:

Proposition 1 (Proposition 5.24 in [21]). If ϕ and ϕ′ are two functional
patterns of the same sort, then |= (ϕ ∧ ϕ′) = ϕ ∧ (ϕ = ϕ′).

The Proof System of Matching Logic. Matching Logic provides a proof
system that is sound and complete (Fig. 2). The notation ϕ[ϕ′/x] denotes the
pattern obtained from ϕ by replacing all free occurrences of x with ϕ′. Note that
the propositional calculus reasoning is subsumed by rules R1-R2 of the proof
system. According to [2], R1 is in fact a set of rules that includes a version of
the implicational propositional calculus (proposed by �Lukasievicz [15]).

Unification in Matching Logic. In [21], unification has a semantical defini-
tion. More precisely, it is defined in terms of conjunctions of patterns. Let us
consider two ML patterns ϕ and ϕ′. Both patterns can be matched by (possibly
infinite) sets of elements, say ρ(ϕ) and ρ(ϕ′), given some valuation ρ. In this
context, finding a unifier is the same as finding a pattern ϕu that matches over
a set of elements included in both ρ(ϕ) and ρ(ϕ′), that is, ρ(ϕu) ⊆ ρ(ϕ) ∩ ρ(ϕ′),
for any ρ. The most general pattern ϕu that corresponds to the largest set with
this property (i.e., ρ(ϕ) ∩ ρ(ϕ′)), is (by Definition 5) the pattern ϕ ∧ ϕ′.

3 Syntactic Unification and Matching Logic

The idea of transforming the pattern t1 ∧ t2 into an equivalent one t ∧ φ was
suggested in [21], using an example. Here we propose a general solution that
involves the unification algorithm shown in Fig. 1. Example 4 illustrates how the
rules of the unification algorithm are simulated by pattern transformations.

510 A. Arusoaie and D. Lucanu

Example 4. If t1 � f(x, g(1), g(z)) and t2 � f(g(y), g(y), g(g(x)) then t1 ∧ t2 can
be transformed into an equivalent formula t ∧ φ:

t1 ∧ t2 = f(x, g(1), g(z)) ∧ f(g(y), g(y), g(g(x)) (1)
= f(x, g(1), g(z)) ∧ (f(x, g(1), g(z)) = f(g(y), g(y), g(g(x))) (2)
= f(x, g(1), g(z)) ∧ (x = g(y)) ∧ (g(1) = g(y)) ∧ (g(z) = g(g(x))) (3)
= f(x, g(1), g(z)) ∧ (x = g(y)) ∧ (1 = g(y)) ∧ (g(z) = g(g(x))) (4)
= f(x, g(1), g(z)) ∧ (x = g(y)) ∧ (1 = y) ∧ (z = g(x)) (5)
= f(x, g(1), g(z)) ∧ (x = g(y)) ∧ (y = 1) ∧ (z = g(x)) (6)
= f(x, g(1), g(z)) ∧ (x = g(1)) ∧ (y = 1) ∧ (z = g(x)) (7)
= f(x, g(1), g(z))

︸ ︷︷ ︸

t

∧ (x = g(1)) ∧ (y = 1) ∧ (z = g(g(1)))
︸ ︷︷ ︸

φσ

(8)

Except the step (2) - which is a direct consequence of Proposition 1 applied
to (1) - the rest of the equations correspond to the steps of the algorithm:
Decomposition for (3, 4, 5), Orient for (6), and Elimination for (7, 8). Note
that φσ corresponds to the most general unifier σ = {x �→ g(1), y �→ 1, z �→
g(g(1))} of t1 and t2. Moreover, φσ is also equivalent to t1 = t2 (from step (2)).
In this section we answer the following questions:

1. What is the relationship between φσ and t1 = t2, when σ is a unifier of t1
and t2? In particular, if σ is the mgu, are φσ and t1 = t2 equivalent?

2. Is t1 ∧ t2 different from ⊥ if t1 and t2 are syntactically unifiable?
3. Is t1 ∧ t2 equivalent to ⊥ if t1 and t2 are not syntactically unifiable?
4. Are t1 and t2 syntactically unifiable if t1 ∧ t2 is different from ⊥?
5. Are t1 and t2 not syntactically unifiable if t1 ∧ t2 is equivalent to ⊥?

3.1 Encoding Syntactic Unification in ML

Terms, substitutions, and unification problems can be naturally expressed in ML
as patterns provided that the following symbols and axioms are added to the
specification (S,Σ, F):

1. The definedness symbols and their corresponding patterns, needed to define
equality and membership;

2. An axiom ∃y.f(x1, . . . , xn) = y for each symbol f occurring in term patterns.

We assume that the syntactic unification algorithm is applied on terms that are
encoded as term patterns in ML. Next, we encode unification problems as ML
patterns:

Definition 8. For each unification problem P = {v1 =̇u1, . . . , vn =̇un} we
define a corresponding ML predicate φP �

∧n
i=1 vi = ui. Also, φ⊥⊥⊥ = ⊥.

Substitutions can be encoded as ML predicates called substitution patterns:

Unification in Matching Logic 511

Definition 9. A substitution pattern, which corresponds to a substitution σ =
{xi �→ ui | i = 1, . . . , n}, is a predicate of the form φσ �

∧n
i=1 xi = ui.

For the particular case when σP corresponds to a unification problem P �= ⊥⊥⊥
in solved form we have φσP = φP .

Using this encoding, we can establish a first result relating the unification
patterns and the equality of the term patterns:

Lemma 1. If σ is a unifier of term patterns t1 and t2 then F |= φσ → (t1 = t2).

For the converse implication we need additional axioms, as shown in Sect. 3.2.

3.2 Unification Algorithms as Constraint Patterns Transformers

The syntactic unification algorithm in Fig. 1 defines a transformation relation
P ⇒! P ′ between unification problems. In Sect. 3.1, for unification problems P we
define a corresponding predicate φP . In this section we establish the relationship
between φP and φP ′

. More precisely, our goal is to show that these constraint
patterns are equivalent.

To prove this equivalence when P ′ �= ⊥⊥⊥, the next axiom has to be added to F :

Injectivity : f(x1, . . . , xn) = f(y1, . . . , yn) → x1 = y1 ∧ . . . ∧ xn = yn.

Injectivity is needed to handle the case when P ′ is reached using Decom-
position. Lemma 2 shows that a step performed by the syntactic unification
algorithm can be encoded as an implication in ML.

Lemma 2. For all P and P ′, if P ⇒ P ′ and P ′ �= ⊥⊥⊥ then F |= φP → φP ′
.

By applying Lemma 2 repeatedly we easily obtain the following result:

Corollary 1. If {t1 =̇ t2} ⇒! P and P �= ⊥⊥⊥ then F |= (t1 = t2) → φσP .

A first contribution of this paper is given by the next result: it establishes
that the equality of two term patterns is equivalent to the substitution pattern
corresponding to their unifier.

Theorem 1. If {t1 =̇ t2} ⇒! P and P �= ⊥⊥⊥ then F |= (t1 = t2) ↔ φσP .

To obtain a similar result for the case when P ′ is ⊥⊥⊥, we need more axioms
to handle the transformation rules SymbolClash and OccursCheck.

For the SymbolClash case we add the following axiom, which is used in [21]
to axiomatise constructors:

No confusion, different constructors:
¬(c(x1, . . . , xm) ∧ c′(y1, . . . , yn)), with c �=c′, c∈Σs1..sm,s, and c∈Σs1..sn,s.

512 A. Arusoaie and D. Lucanu

The Occurs check case is more complicated because it expresses a particular
property of terms. Terms can be formalised as an ML model, say term, which
consists of:

– a carrier set terms for each s ∈ S, which contains all Σ-terms of sort s;
– a function fterm : terms1 × · · · × termsn

→ P(terms), for all f ∈ Σs1..sn,s,
where fterm(t1, . . . , tn) = {f(t1, . . . , tn)}.

Working only in this particular model is not practical since not all symbols
are required to be functional (e.g., predicate symbols). Therefore, we need to
axiomatise the property required by Occurs check. This property is implied by
the axiom (C) from Malcev’s axiomatisation of the term algebra [3], x �= t(x),
where t(x) is a term containing x as a variable2. Unfortunately this is not an
ML axiom, but an axiom schema because we must have an axiom for each such
term. We build a new ML specification (S∗, Σ∗, F ∗), starting from (S,Σ, F), as
follows:
– S∗ = S ∪ {s∗}, where s∗ is a new sort;
– Σ∗ = Σ ∪ {<} where the symbol < ∈ Σ∗

s∗s∗,s∗ ;
– F ∗ includes F and the following axioms:

Supersort : ∃x:s∗. x =
∨

s∈S ∃y:s.y
Basecase : xi < f(x1, .., xi, .., xn)
Irreflexive : ¬(x < x)
Transitivity : x < y ∧ y < z → x < z
Predicate : ((x < y) = ⊥s) ∨ ((x < y) = s)

The axiomatization of < is similar to that of the predicate Sub in [13]3. The
next result shows that these axioms solve the OccursCheck problem.

Lemma 3. If x ∈ var(f(t1, .., tn)) then F ∗ |= ¬(x = f(t1, .., tn)).

In the next example we show how the axioms F ∗ are used.

Example 5. We prove by contradiction that F ∗ |= ¬(x = f(g(x, y), z)). Assume
that F ∗ |= x = f(g(x, y), z) (♠). Then:

F ∗ |= x < g(x, y) by Basecase

F ∗ |= g(x, y) < f(g(x, y), z) by Basecase and funct. subst.
F ∗ |= x < f(g(x, y), z) by Transitivity

F ∗ |= x < x by ♠ and eq. elim.

which contradicts the Irreflexive axiom.

As expected, with the new set of axioms F ∗, the following holds:

Lemma 4. For all unification problems P , if P ⇒ ⊥⊥⊥ then F ∗ |= φP → ⊥.

The next result completes the first contribution of the paper:

Theorem 2. If P ⇒! ⊥⊥⊥ then F ∗ |= φP → ⊥.
2 The other two axioms (A) and (B) in [3] correspond to Injectivity and No con-

fusion, different constructors.
3 We thank to the anonymous referee for having noticed this similarity.

Unification in Matching Logic 513

3.3 Soundness and Completeness

The main contributions reported in this section includes the soundness and the
completeness of the syntactic unification algorithm for the semantic unification
in ML. Throughout this section we assume the ML specifications (S,Σ, F) and
(S∗, Σ∗, F ∗) as presented in Sect. 3.2.

The first result that we present states that if the unification algorithm pro-
duces the mgu σ, then the semantic unifier t1 ∧ t2 can be expressed as ti ∧ φσ

with i ∈ {1, 2}, i.e., a conjunction of a term pattern and a constraint. Note that
this is precisely the convenient form that we discussed in Sect. 1 of this paper.

Lemma 5. If {t1 =̇ t2} ⇒! P �= ⊥⊥⊥ then F |= t1∧ t2 = ti ∧φσP , where i ∈ {1, 2}.
In order to state the soundness and completeness results we need to define

what it means that two patterns t1 and t2 are semantically unifiable in ML:

Definition 10. Two term patterns t1 and t2 are unifiable (in ML) iff F |=
�∃x.t1 ∧ t2�, where x = var(t1 ∧ t2). Obviously, t1 and t2 are not unifiable iff
F |= ¬�∃x.t1 ∧ t2�.
Recall that �∃x.t1 ∧ t2� holds iff ∃x.t1 ∧ t2 is matched by some values, i.e. iff t1
and t2 are unifiable in some model.

The next theorem states the soundness of our approach: if the syntactic
unification algorithm produces a syntactic unifier for term patterns t1 and t2
then t1 and t2 are unifiable in ML as well. If the algorithm finds that t1 and t2
are not syntactically unifiable, then they are not unifiable in ML.

Theorem 3 (Soundness). If {t1 =̇ t2} ⇒! P then the following hold:

1. If P �= ⊥⊥⊥ then F |= �∃x.t1 ∧ t2� and F |= (t1 ∧ t2) = (t1 ∧ φσP);
2. If P = ⊥⊥⊥ then F ∗ |= ¬�∃x.t1 ∧ t2�.

The next theorem states the completeness of our approach: if t1 and t2 are
unifiable in ML, then they are syntactically unifiable; if t1 and t2 are not unifiable
in ML, then they are not syntactically unifiable.

Theorem 4 (Completeness). Let t1 and t2 be two term patterns.

1. If F ∗ |= �∃x.t1 ∧ t2� then {t1 =̇ t2} ⇒! P �= ⊥⊥⊥ and σP is the mgu of t1, t2;
2. If F |= ¬�∃x.t1 ∧ t2� then {t1 =̇ t2} ⇒! ⊥.

In the second case of Theorem 3 and the first case of the Theorem4 we use
the set of axioms F ∗ instead of F . The issue comes from the fact that F is
not sufficient to avoid situations when patterns are unifiable in ML, but they
are not syntactically unifiable. Here is an example. Let s be a sort and Σ a
signature which includes only a functional symbol f ∈ Σs,s. Also, let M be a
ML model where fM (a) = a, with a the only element in Ms. We obviously have
M |= �∃x.x ∧ f(x)�, i.e., x and f(x) are unifiable in ML. It is easy to see that
x and f(x) are not syntactically unifiable.

514 A. Arusoaie and D. Lucanu

4 Generating Proofs

In this section we show the provableness property of the syntactic unification algo-
rithm, i.e., how a formal proof can be generated from its executions. More precisely,
if the executions returns a mgu σ, then a formal proof of equivalence between t1∧t2
and t1 ∧ φσ can be generated. If the algorithm returns ⊥⊥⊥, then a formal proof of
equivalence between t1 ∧ t2 and ⊥ is generated. This strategy uses the rules of
the ML proof system [21] and some derived rules that mimic the steps of the syn-
tactic unification algorithm. Since the conjunction of the patterns occurs often in
the proofs, the formal proofs that justify the use of the syntactic term unification
algorithm are crucial when a ML prover outputs a proof certificate.

Our current approach is to generate proofs in two stages: first, we start with
t1 ∧ t2 as hypothesis and we derive t1 ∧ φσ using several derived proof rules,
which are proved separately using the ML proof system; second, we start with
t1∧φσ as hypothesis and we derive t1∧ t2 using the original proof system of ML.

Stage 1. The list of derived rules that we use in the first stage is shown here:

Δ1. F, ϕ ∧ (t = t) � ϕ Delete
Δ2. F, ϕ ∧ (f(t1, .., tn) = f(t′

1, .., t
′
n)) � ϕ ∧ t1 = t′

1 ∧ .. ∧ tn = t′
n Decomposition

Δ3. F, ϕ ∧ (f(t1, .., tn) = x) � ϕ ∧ (x = f(t1, .., tn)) Orient
Δ4. F, ϕ ∧ (x = t) � ϕ[t/x] ∧ (x = t), if x �∈ var(t), x ∈ var(ϕ) Elimination
Δ5. F ∗, ϕ ∧ (f(t1, .., tn) = g(t′

1, .., t
′
n)) � ⊥ Symbol clash

Δ6. F ∗, ϕ ∧ (x = f(t1, .., tn)) � ⊥, if x ∈ var(f(t1, . . . , tn)) Occurs check

For each rule we indicate the corresponding rule from the unification algorithm.
Also, we used the notation F,ϕ � ϕ′ instead of F ∪{ϕ} � ϕ′. For this first stage,
the proof is dictated by the syntactic unification algorithm as shown here:

i

t1
︷ ︸︸ ︷

f(x, g(1), g(z)) ∧
t2

︷ ︸︸ ︷

f(g(y), g(y), g(g(x)) hypothesis
ii f(x, g(1), g(z)) ∧ (f(x, g(1), g(z)) = f(g(y), g(y), g(g(x)))) Prop 1 : i
iii f(x, g(1), g(z)) ∧ (x=g(y)) ∧ (g(1) = g(y)) ∧ (g(z)=g(g(x))) Δ2: ii
iv f(x, g(1), g(z)) ∧ (x = g(y)) ∧ (1 = g(y)) ∧ (g(z) = g(g(x))) Δ2: iii
v f(x, g(1), g(z)) ∧ (x = g(y)) ∧ (1 = y) ∧ (z = g(x)) Δ2: iv
vi f(x, g(1), g(z)) ∧ (x = g(y)) ∧ (y = 1) ∧ (z = g(x)) Δ3: v
vii f(x, g(1), g(z)) ∧ (x = g(1)) ∧ (y = 1) ∧ (z = g(x)) Δ4: vi
viii f(x, g(1), g(z))

︸ ︷︷ ︸

t1

∧ (x = g(1)) ∧ (y = 1) ∧ (z = g(g(1)))
︸ ︷︷ ︸

φσ

Δ4:vii

Each line represents a proof step annotated with a justification specified as 〈the
applied proof rule〉:〈references to previous steps〉. We intentionally omit F �
before each proof step and we prefer to add some useful annotations at the end.

The first line is our hypothesis. The pattern derived at the second line is
obtained by applying Proposition 1 to pattern i. The third line is obtained by
applying Δ2 to ii, that is, Decomposition for symbol f . To keep the above
proof simple, we silently use the associativity and commutativity of ∧.

Unification in Matching Logic 515

The first stage of our strategy is sound. The derived rules and Proposition 1
can be proved using the rules of the ML proof system. Some of these proofs
are trivial (e.g., the proofs for Δ1 or Δ3), but others are more interesting. For
example, this the proof for Δ2:

i ϕ ∧ (f(t1, .., tn) = f(t′1, .., t
′
n)) hypothesis

ii ϕ R1: i
iii f(t1, .., tn) = f(t′1, .., t

′
n) R1: i

iv f(t1, .., tn) = f(t′1, .., t
′
n) → t1 = t′1 ∧ .. ∧ tn = t′n F: Injectivity

v t1 = t′1 ∧ .. ∧ tn = t′n R2: iii, iv
vi ϕ ∧ t1 = t′1 ∧ .. ∧ tn = t′n R1: ii, v

As expected, the proof uses the Injectivity axiom. The other rules are the ones
for propositional calculus which are used only to arrange the goals conveniently.

Stage 2. The strategy corresponding to this stage has five steps:

1. start with t1 ∧ φσ as hypothesis;
2. use R1 to break the large conjunction in the hypothesis (e.g., steps ii–vii)
3. use R6 to introduce equalities t1 = t1 and t2 = t2 (e.g., steps viii, ix);
4. use R7 to replace the variables occurring in the left hand sides of the equalities

(e.g., steps xi, xiv);
5. use R7 to equate the right hand sides of the equalities produced by the pre-

vious step (e.g. xv); then apply R1 (∧ introduction, e.g., xvi), and finally
Proposition 1 (e.g., xvii).

Applying the above strategy on the reversed implication of our previous
example we get the following proof:

i

t1
︷ ︸︸ ︷

f(x, g(1), g(z)) ∧
φσ

︷ ︸︸ ︷

(x = g(1)) ∧ (y = 1) ∧ (z = g(g(1))) hypothesis
ii f(x, g(1), g(z)) R1: i
iii (x = g(1)) ∧ (y = 1) ∧ (z = g(g(1))) R1: i
iv x = g(1) R1: iii
v (y = 1) ∧ z = g(g(1)) R1: iii
vi y = 1 R1: v
vii z = g(g(1)) R1: v
viii f(x, g(1), g(z)) = f(x, g(1), g(z)) R6
ix f(g(y), g(y), g(g(x)) = f(g(y), g(y), g(g(x)) R6
x f(g(1), g(1), g(z)) = f(x, g(1), g(z)) R7: viii, iv
xi f(g(1), g(1), g(g(g(1)))) = f(x, g(1), g(z)) R7: x, vii
xii f(g(1), g(y), g(g(x)) = f(g(y), g(y), g(g(x)) R7: ix, vi
xiii f(g(1), g(1), g(g(x)) = f(g(y), g(y), g(g(x)) R7: xii, vi
xiv f(g(1), g(1), g(g(g(1))) = f(g(y), g(y), g(g(x)) R7: xiii, iv
xv f(x, g(1), g(z)) = f(g(y), g(y), g(g(x)) R7: xi, xiv
xvi f(x, g(1), g(z))∧(f(x, g(1), g(z)) = f(g(y), g(y), g(g(x))) R1: ii, xv
xvii f(x, g(1), g(z))

︸ ︷︷ ︸

t1

∧ f(g(y), g(y), g(g(x)))
︸ ︷︷ ︸

t2

Prop 1: xvi

516 A. Arusoaie and D. Lucanu

This strategy essentially rebuilds the semantic unifier t1∧t2 starting with t1∧φσ.
Because φσ has the form

∧n
i=1 xi = ui the step 2 will always produce equalities of

the form xi = ui for all i = 1, n. In the left hand sides of the equalities introduced
by step 3 we can always substitute xi by ui. Since σ is the most general unifier,
the left hand sides will become equal after substitutions performed by step 4.
Finally, we can always apply R7, R1, and Proposition 1 conveniently to obtain
t1 ∧ t2. This strategy is sound since it uses only rules from the original proof
system of ML and Proposition 1.

5 Conclusions

Previous verification efforts with ML [5,10,14,17,20,22–26] were based on uni-
fication. However, unification was always considered a trusted component.

In this paper we finally tackle down this issue by proposing a sound method
for unification which involves a syntactic unification algorithm. More precisely,
we show that, under the presence of certain axioms (cf. Sect. 3.2), the syntac-
tic unification algorithm proposed by Martelli and Montanari [16] is sound and
complete for semantic unification in ML. Finally, we show a provableness prop-
erty: we provide a sound strategy to generate proof certificates. This strategy
uses some derived rules and the rules of the original ML proof system [21].

Related Work. The closest related work is Kore [2]: an implementation of ML
which is currently under development [1]. They handle conjunctions via a set
of transformations over patterns intended to serve a more general purpose, for
instance, to deal with partiality and injections (subsort relations). Here, we focus
on how the syntactic unification algorithms can be used to help reasoning in ML.

In this paper unification is used to tackle conjunctions of ML patterns. On
the other hand, disjunctions of patterns can be tackled using anti-unification.
This is almost completely treated in [21] using the Plotkin’s algorithm for anti-
unification. What is missing in [21] is the generation of a formal proof.

Future Work. The fact that the proof of the soundness of our approach depends
on the unification algorithm is intriguing. We intend to explore whether there is
an independent proof, which uses only the definition of the most general unifier.

Recently, in [9] a new proof system for ML together with a deduction theo-
rem is presented. We intend to adapt our proof generation strategy to use this
new proof system instead. The fixpoint constructs from modal μ-logic increase
the expressivity of the logic and it is challenging to investigate whether the
axiomatisation proposed in this paper can be improved in the new framework.

It also interesting to test how efficient is our approach. The results we
obtained for several small experiments are promising, but a deeper investiga-
tion is needed, especially for the OccursCheck rule.

Finally, a completely new ground to explore is unification modulo axioms
(e.g., commutativity, associativity). Obviously, it is more challenging to use the
existing unification modulo axioms algorithms in the same manner as we have

Unification in Matching Logic 517

done for syntactic unification. Another possible direction is to study the unifi-
cation in many/order sorted algebras.

Acknowledgements. We thank the anonymous reviewers for their insightful com-
ments. We would like to especially thank the Kore developers and researchers: Phillip
Harris, Traian Şerbănuţă and Virgil Şerbănuţă for their valuable assistance and feed-
back. They helped us with our proof generation strategy and they suggested improve-
ments for our current work. We also want to specially thank Grigore Roşu for the
fruitful discussions that we had about this topic at FROM 2018. This work was sup-
ported by a grant of the “Alexandru Ioan Cuza” University of Iaşi, within the Research
Grants program, Grant UAIC, ctr. no. 6/01-01-2017.

References

1. The Kore language (GitHub repository). https://github.com/kframework/kore.
Accessed 07 Nov 2018

2. The semantics of K (online document). https://github.com/kframework/kore/
blob/master/docs/semantics-of-k.pdf. Accessed 07 Nov 2018

3. Chapter 23 axiomatizable classes of locally free algebras of various types. In:
Mal’cev, A.I. (ed.) The Metamathematics Algebraic Systems, Studies in Logic and
the Foundations of Mathematics, vol. 66, pp. 262–281. Elsevier (1971). https://
doi.org/10.1016/S0049-237X(08)70560-3

4. Arusoaie, A., Lucanu, D., Rusu, V.: Symbolic execution based on language trans-
formation. Comput. Lang. Syst. Struct. 44, 48–71 (2015)

5. Arusoaie, A., Nowak, D., Rusu, V., Lucanu, D.: A certified procedure for RL verifi-
cation. In: SYNASC 2017, pp. 129–136. IEEE CPS, Timişoara, Romania, Septem-
ber 2017. https://hal.inria.fr/hal-01627517

6. Baader, F.: Unification theory. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS,
vol. 572, pp. 151–170. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55124-7 5

7. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

8. Bogdanas, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2015, pp. 445–456. ACM, New York (2015). https://doi.
org/10.1145/2676726.2676982

9. Chen, X., Roşu, G.: Matching mu-logic. In: Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2019) (2019, to
appear)

10. Ştefănescu, A., Ciobâcă, Ş., Mereuta, R., Moore, B.M., Şerbănută, T.F., Roşu, G.:
All-path reachability logic. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp.
425–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08918-8 29

11. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2012, pp. 533–544. ACM, New York
(2012). https://doi.org/10.1145/2103656.2103719

12. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2015, pp. 336–345. ACM, New York (2015). https://
doi.org/10.1145/2737924.2737979

https://github.com/kframework/kore
https://github.com/kframework/kore/blob/master/docs/semantics-of-k.pdf
https://github.com/kframework/kore/blob/master/docs/semantics-of-k.pdf
https://doi.org/10.1016/S0049-237X(08)70560-3
https://doi.org/10.1016/S0049-237X(08)70560-3
https://hal.inria.fr/hal-01627517
https://doi.org/10.1007/3-540-55124-7_5
https://doi.org/10.1007/3-540-55124-7_5
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1007/978-3-319-08918-8_29
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979

518 A. Arusoaie and D. Lucanu

13. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning.
In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 2017, pp. 260–270. ACM, New York (2017). https://doi.
org/10.1145/3009837.3009887

14. Lucanu, D., Rusu, V., Arusoaie, A., Nowak, D.: Verifying reachability-logic proper-
ties on rewriting-logic specifications. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C.
(eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 451–474. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 21

15. �Lukasiewicz, J.: The shortest axiom of the implicational calculus of propo-
sitions. Proc. R. Irish Acad. Sect. Math. Phys. Sci. 52, 25–33 (1948).
http://www.jstor.org/stable/20488489

16. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Pro-
gram. Lang. Syst. 4(2), 258–282 (1982). https://doi.org/10.1145/357162.357169

17. Moore, B., Peña, L., Rosu, G.: Program verification by coinduction. In: Ahmed, A.
(ed.) ESOP 2018. LNCS, vol. 10801, pp. 589–618. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89884-1 21

18. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

19. Park, D., Ştefănescu, A., Roşu, G.: KJS: a complete formal semantics of JavaScript.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pp. 346–356. ACM, New York (2015).
https://doi.org/10.1145/2737924.2737991

20. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verification tool for
ethereum VM bytecode. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018, pp. 912–915. ACM, New York (2018).
https://doi.org/10.1145/3236024.3264591

21. Roşu, G.: Matching logic. Log. Methods Comput. Sci. 13(4), 1–61 (2017).
http://arxiv.org/abs/1705.06312

22. Roşu, G., Ştefănescu, A.: From Hoare logic to matching logic reachability. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 387–402.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 32

23. Roşu, G., Ştefănescu, A.: Matching logic: a new program verification approach. In:
Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu, HI, USA, 21–28 May 2011, pp. 868–871 (2011). https://
doi.org/10.1145/1985793.1985928

24. Roşu, G., Ştefănescu, A., Ştefan Ciobâcă, Moore, B.M.: One-path reachability
logic. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 358–367 (2013). https://
doi.org/10.1109/LICS.2013.42

25. Rusu, V., Arusoaie, A.: Proving reachability-logic formulas incrementally. In:
Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 134–151. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44802-2 8

26. Ştefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program ver-
ifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2016, pp. 74–91. ACM, New York (2016). https://doi.org/10.1145/
2983990.2984027

https://doi.org/10.1145/3009837.3009887
https://doi.org/10.1145/3009837.3009887
https://doi.org/10.1007/978-3-319-23165-5_21
http://www.jstor.org/stable/20488489
https://doi.org/10.1145/357162.357169
https://doi.org/10.1007/978-3-319-89884-1_21
https://doi.org/10.1007/978-3-319-89884-1_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/3236024.3264591
https://arxiv.org/abs/1705.06312
https://doi.org/10.1007/978-3-642-32759-9_32
https://doi.org/10.1145/1985793.1985928
https://doi.org/10.1145/1985793.1985928
https://doi.org/10.1109/LICS.2013.42
https://doi.org/10.1109/LICS.2013.42
https://doi.org/10.1007/978-3-319-44802-2_8
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1145/2983990.2984027

Embedding High-Level Formal
Specifications into Applications

Philipp Körner(B) , Jens Bendisposto , Jannik Dunkelau ,
Sebastian Krings , and Michael Leuschel

Institut für Informatik, Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

{p.koerner,jens.bendisposto,jannik.dunkelau,
sebastian.krings,michael.leuschel}@hhu.de

Abstract. The common formal methods workflow consists of formalis-
ing a model followed by applying model checking and proof techniques.
Once an appropriate level of certainty is reached, code generators are
used in order to gain executable code.

In this paper, we propose a different approach: instead of generating
code from formal models, it is also possible to embed a model checker or
animator into applications in order to use the formal models themselves
at runtime. We present the enabling technology ProB 2.0, a Java API to
the ProB animator and model checker. We describe several case studies
that use ProB 2.0 to interact with a formal specification at runtime.

1 Introduction

When designing safety-critical software, the use of formal methods is highly rec-
ommended [13] to ensure correctness. This is often done by combining (manual
and automatic) proof with model checking.

Once a formal model has been found to be correct, it is required to translate
the model into a traditional programming language. Low-level formalisms are
usually close enough that code can be generated easily. When using high-level
formalisms though, the model has to be gradually refined to an implementation
level so that it only uses a restricted version of the specification language, dis-
allowing high-level constructs which require, e.g., constraint solving techniques
or unconstrained memory for execution. The alternative to code generation is
manual implementation, which is known to be error-prone.

In this paper, we investigate another approach: we assume that a high-level
specification is written to be executable, in the sense that a tool like an animator
or model checker is able to compute all state transitions. Can we then imple-
ment a program interfacing with, e.g., a model checker that also simulates the
environment and executes the model by choosing a traversing transition?

This paper is a mixture of a position, tool and application paper: in the follow-
ing, we briefly introduce two high-level specification languages, B and Event-B,
as well as ProB, an animator and model checker for these languages. After-
wards, we present the enabling technology ProB 2.0, a Java API for interaction
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 519–535, 2019.
https://doi.org/10.1007/978-3-030-30942-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_31&domain=pdf
http://orcid.org/0000-0001-7256-9560
http://orcid.org/0000-0001-5914-1092
http://orcid.org/0000-0003-0819-5554
http://orcid.org/0000-0001-6712-9798
http://orcid.org/0000-0002-4595-1518
https://doi.org/10.1007/978-3-030-30942-8_31

520 P. Körner et al.

with ProB in Sect. 2. Following, we evaluate our approach by implementing and
discussing several new case studies based on ProB 2.0 in Sect. 3, summarising
its use in existing industrial applications and insights gained from implementa-
tion work. Finally, we argue for using formal models as runtime artefacts and
discuss similar approaches in Sect. 4.

1.1 B, Event-B and ProB

Both B [3] and its successor, Event-B [2], are state-based specification languages
that allow for high levels of abstraction. They are based on Zermelo-Fraenkel
set theory with the axiom of choice [17,18], using sets for data modelling. Fur-
ther, they make use of generalised substitution for state modifications, and of
refinement calculus [4,5] to describe models at different levels of abstraction [9].

The highest level of abstraction includes, besides set theory, formulation of
quantified formulae over arbitrary domains, functional composition and lambda
expressions, as well as non-deterministic assignments1.

In the following, we describe several projects that make use of ProB [33],
an animator and model checker for both B and Event-B. Its core is developed
mainly in SICStus Prolog [11], with some parts being implemented in C and
Java, and makes use of co-routines and SICStus’ CLP(FD) library [10]. Besides
B, ProB offers support for several other formalisms as well, including TLA+ [30]
(via translation to B [22]), Z [38,42], CSP [8,25] and more. Hence, the approach
discussed in this article is immediately applicable to languages other than B and
Event-B.

2 ProB 2.0

As ProB is written in Prolog, which admittedly is neither the most popular
nor the easiest language to pick up, it is hard for formal method experts to
use anything but the default animation and model checking capabilities. Thus,
a main design goal of ProB 2.0 was to offer access to the API of ProB via
a scripting language that allows easy embedding of domain specific languages
(DSLs). For this, we picked and embraced Groovy, a dynamic programming
language running on the JVM, which is (almost) a superset of Java. ProB 2.0
is available on GitHub2.

A general overview of ProB 2.0 is given in Fig. 1. For each B model that is
interacted with, an instance of the ProB-CLI (command line interface), which
actually loads the model, is started in socket-mode. This means that the ProB-
CLI listens on a socket for commands to execute whitelisted Prolog code. The
whitelist offers fine-grained access to ProB’s constraint solving, animation and
model checking capabilities as well as ProB’s preferences and machine compo-
nents.

1 Cf. https://www3.hhu.de/stups/prob/index.php/Summary of B Syntax.
2 https://github.com/bendisposto/prob2.

https://www3.hhu.de/stups/prob/index.php/Summary_of_B_Syntax
https://github.com/bendisposto/prob2

Embedding High-Level Formal Specifications into Applications 521

Fig. 1. Overview of the ProB ecosystem

Each command on the whitelist has a corresponding implementation in ProB

2.0. This offers an API that is fairly low-level and intended for ProB and ProB

2.0 developers. It is complemented by a high-level API that is built on top and
abstracts away from ProB’s internals in Prolog. The high-level API allows easy
animation of the model, exploration of the state space, solving custom constraints
over the variables in the state space, or registration of listeners subscribed to
custom formulae which are notified once a new state is reached.

The State Space acts as the central interface to the ProB-CLI. It is a repre-
sentation of the underlying labelled transition system. Exploring the state space
by executing operations adds transitions and newly encountered states. It allows
animation of the model, evaluation of predicates in arbitrary states, extraction
of states that match a given predicate, and, in general, execution of arbitrary
ProB 2.0 commands.

The Model is an in-memory version of the loaded B machine. ProB 2.0 offers
convenient access to the contents of the specification. This includes invariants,
variables, operations and their preconditions, etc. Upon that, it is possible to
expand on loaded machines by adding further invariants or operations, resulting
in a dynamically altered version with stricter semantics [14].

The Trace keeps track of the path throughout the state space starting from the
initialisation of the machine. Traces behave like a browser history in the sense
that they are append-only, but it is possible to “go back in time” and start a
new fork. Executing an operation during animation automatically appends the
successor state to the currently active trace.

The State objects are linked to their corresponding state space. They store
outgoing transitions as well as map abstractions of variables and formulas to
abstractions of values. For example, it is possible to retrieve the value of a given
state variable but also to add expressions and predicates which are automatically
evaluated in every state and are kept track of.

522 P. Körner et al.

Value Translation is required to give a meaningful representation to the values
of state variables. By default, ProB provides a string representation of each
value to ProB 2.0. However, they can be translated into Java data structures as
well: For example, B integers are translated into BigIntegers, B sets correspond
to Java sets and sequences to Java lists. Naturally, this translation does not
work for infinite sets. To avoid duplication of the entire state space in ProB

and ProB 2.0, only up to 100 states are cached in Java. If a non-cached state
is required, it is retrieved via a handle (a unique state ID) from the ProB-CLI.

Trace Synchronisation is a tool that is provided by ProB 2.0. It allows cou-
pling of multiple traces, even on different machines. One example is that a refined
machine is synchronised with a more abstract version upon the shared opera-
tions, in order to ensure that it is a valid refinement. Another example is syn-
chronisation of two entirely different machines that are two components in a
system.

3 Examples

In this section, we describe different use cases based on several examples. The
first couple of examples we discuss are student projects implementing two well-
known games: Pac-Man and Chess. Additionally, the approach found use in two
more complex projects, namely a timetable planner for university courses, and
a safety critical, industrial application for the ETCS Hybrid Level 3 concept.

In all four examples we use the state that is translated into Java data struc-
tures in order to provide an (interactive) visualisation.

3.1 Real-Time Animation: Pac-Man

Our first example application is based on a formal model of Pac-Man3.
The formal model itself is written in Event-B. It specifies all valid positions on

the board that the Pac-Man and the ghosts can be in. There are state transitions
that describe valid moves, though in the model itself ghosts are allowed to turn
around. The model also manages the duration and targets of super pills (so that
ghosts may be eaten, but only once per pill), and encounters of the Pac-Man with
pills and ghosts. Finally, it keeps tracks of the Pac-Man’s lives and deadlocks the
game once none of Pac-Man’s lives are left. It is possible to play a turn-based
version of Pac-Man in the animator.

Note that the model is non-deterministic in the sense that there are multiple
available operations, one for each direction the Pac-Man and each ghost may
move.

Additional to the model, we implemented a plugin in ProB 2.0 that allows to
play the game via traditional controls instead of executing transitions by clicking
in the operation view. On the press of an arrow key, the following actions happen
(Fig. 2):
3 Available at: https://github.com/pkoerner/EventBPacman-Plugin.

https://github.com/pkoerner/EventBPacman-Plugin

Embedding High-Level Formal Specifications into Applications 523

Front-End (Visualisation)

(Groovy)

KeyListener
Move Pac-Man
Move Ghosts

Event-B Machine

us
er

inp
ut

execute

event

send updated state
to visualisation

Fig. 2. Architecture of a Pac-Man game based on a formal model

– In the current state, it is evaluated whether the Pac-Man may move into that
direction and the operation to move him is executed if allowed. Operations
that result in eating a pill are preferred. This yields a new Trace object.

– For each ghost, it is evaluated whether enough time has passed to leave the
monster pen. If so, the transition to move the ghost in a direction mandated
by a heuristic is executed. New Trace objects are generated for each ghost
and are extended by the next movement operation.

– It is verified whether the Pac-Man or some of the ghosts have to jump to
the other side of the board via the tunnel. If the operation is enabled, it is
executed.

– If available, operations that catch a ghost or the Pac-Man are executed.
– The GUI inspects the current state of the Trace and updates based on the new

state values. The positions of the ghosts and the Pac-Man, the remaining pills,
the score and the amount of remaining lives are extracted from the animation
state.

For this kind of application, as the calculation of the next-state function
is very fast, we did not encounter any performance issues when executing the
model. We found that, even though the visualisation is in Java, depending on
the operating system and JDK implementation, the game can run smoothly or
just below acceptable performance4. Yet, we find it especially note-worthy that
it is indeed possible to create real-time applications that depend on user input
based on formal models, as at least five events per tick are executed, one to move
the Pac-Man and four to move the ghosts. Plain animation in ProB could not
capture this, instead it would turn Pac-Man into a turn-based game.

4 On a Mac, it runs smoothly. On more powerful Linux PCs, it runs with stutters. We
suspect that the socket communication is slower depending on the OS.

524 P. Körner et al.

Main Contribution: Real-Time Animation. The Pac-Man case study
shows that our approach is feasible for real-time applications as long as the
computation of successor states is reasonably complex. The application is able
to timely react to user input, directly embedding the formal model in the appli-
cation does not lead to a noticeable performance decline.

Lessons Learned: Non-determinism. The case study made obvious that it
is hard to get the amount of non-determinism right. The formal model itself has
to incorporate certain aspects non-deterministically, e.g. we have to take into
account every key the player might press. Simultaneously, the model has to be
as deterministic as possible. As at least the ghosts are to be moved automatically,
the computer controlled aspects of Pac-Man have to be modelled deterministi-
cally in order to avoid ambiguity and to avoid having to implement how to decide
between different options.

3.2 Predicting the Future: Chess

In the chess example5, we have two use cases. Firstly, we want two (human)
players to be able to play against each other. Secondly, a (simple) chess AI
should be available to play against.

As with Pac-Man, we use the formal specification in order to specify the rules
of the game. The model offers all valid moves as enabled actions, checkmate is
encoded as an invariant violation. Then, we can use the vanilla ProB animator
to play chess (preferably with an additional visualisation of the current state).

The more interesting part is that an AI is hard to specify but somewhat easy
to implement. Thus, the AI was written in Java using ProB 2.0: we implemented
a Minimax algorithm with alpha-beta pruning [27]. The calculated tree has the
current state at its root and its children are the successor states representing
all valid turns by the AI. Their children again are their corresponding successor
states where each state represents a turn by the human player and so forth. For
termination, we limit the depth of the state space that should be explored, i.e.
the amount of turns the AI is able to look ahead. Hence, this depth determines
the AI’s strength.

The Java side hereby is responsible for two things. It decides which child
states need to be expanded and picks the most beneficial action for the AI
opponent based on the explored game tree. Figure 3 visualises the execution.
After the user’s turn, the state space is explored, uncovering all possible courses
the game could take. Then, the best action is chosen and the current chess state
is updated accordingly. Note that the calculation of successor states happens on
ProB side, as the game logic is fully implemented in B.

In order to assign a weight to each state, we use a more sophisticated eval-
uation function that only depends on a single state. It incorporates both the
amount of pieces on the board and their positions and is also specified in B.

5 Available at: https://github.com/pkoerner/b-chess-example.

https://github.com/pkoerner/b-chess-example

Embedding High-Level Formal Specifications into Applications 525

Fig. 3. Architecture of chess based on a formal model

Then, after checking states until a given depth, the turn suggested by Minimax
is picked for the opponent. This strategy is very similar to bounded model check-
ing [6], though execution is kept explicit instead of resorting to symbolic means.
However, regarding this chess implementation we are not particularly concerned
with violated invariants other than for identifying a checkmate state (which the
AI accounts for). Instead, all possible outcomes are generated via execution of
the model. Afterwards, a trace is chosen based on its Minimax value, eventually
leading to an action that guarantees the most favourable outcome.

This case study offers worse results than Pac-Man. Due to the state space
explosion caused by the sheer amount of possible moves, generating all successor
states as deep as required by a strong chess engine is infeasible. An implementa-
tion in, e.g., plain C or Java is orders of magnitudes faster. Modern chess engines
usually make use of additional heuristics, and opening and end game databases
in order to improve performance. Using our approach following a somewhat naive
implementation, only a small part of the state space from a given board position
can be generated in reasonable time, which results in the AI being a rather weak
opponent.

Main Contribution: Game-Driven Model Exploration. In this case study,
we replaced the common exploration strategies of ProB (breadth-first, depth-
first and random) by an exploration strategy based on the current state of a

526 P. Körner et al.

game. The Minimax algorithm is used to drive the model checker, with the aim
of expanding the most promising states, rather than exhaustively analysing the
state space. Hence, we were able to implement a heuristic-based model checking
approach.

Although ProB offers support for directed model checking [32] with a cus-
tom heuristic function already, our game-driven model exploration offers a huge
advantage. Specifying an exploration heuristic in B is limited to the closed world
of the calculated state. For each state the heuristic provides a value after which
it is sorted into a priority queue. It is not possible to argue about the heuristic
values of, e.g., sister nodes in the search tree. By animating the model externally
in ProB 2.0 however, we are able to do exactly that: comparing heuristic values
of different nodes to decide which states do not need to be explored further by
alpha-beta pruning.

Lessons Learned: Model Complexity. Fully encoding all possible moves on
a chessboard has lead to a model that is very complex and features a very large
state space. Even though our traversal strategy avoids exhaustively expand-
ing it, debugging and partial exploration were extremely difficult. Furthermore,
the high complexity prevented our proof efforts. Further investigation into a
refinement-based implementation of chess might help to overcome the difficul-
ties.

3.3 ProB as a Constraint Solver: PlüS

PlüS6 is an application for planning university timetables [40,41]. The goal is
to show that it is possible for students to finish their studies in legal standard
time for all courses or combinations of major and minor subjects. If a course or
a combination is found to be infeasible, the smallest conflicting set of classes and
timeframes should be provided such that it can be fixed manually. This process
is started from the current timetables. Complete re-generation of timetables is
avoided due to informal agreements, e.g., lecturers prefer given timeslots or are
unavailable on certain days.

A database stores information about all courses, e.g., for which subject they
can be attributed, whether they are mandatory or if other courses are required
to be completed beforehand. From this database, a B model is compiled. This is
included in another B machine that allows checking for feasibility of a subject,
move lectures etc. from one time-slot to another and to calculate the unsatisfiable
core if applicable.

The formal model is the foundation for a GUI in JavaFX. The initial state is
the initial timetable setup. Each course and combination can be checked individ-
ually, which triggers the state transition that checks feasibility. If the B model
returns that there are conflicts, they are highlighted in the GUI. Then, the user
can move courses to different timeslots and re-calculate. This is done via drag-
and-drop and, again, triggers the corresponding operation in the B machine.
6 Available at: https://plues.github.io/en/index/.

https://plues.github.io/en/index/

Embedding High-Level Formal Specifications into Applications 527

If a course works out with the current scheduling, the state variable that rep-
resents the timetable is used to generate PDF files containing a default timetable
that can be given to students so they know in what semester they should attend
which courses.

In this application, the interaction with ProB is hidden from the user, i.e.,
they do not need to know about formal methods, states and transitions. It is
currently used by the University of Düsseldorf.

Main Contribution: Improving the B Eco-System. PlüS was one of the
earlier projects that used ProB 2.0 extensively in the way presented. In particu-
lar, the value translator that translates B values into Java data structures, which
is used in the other case studies, was created during the development of PlüS.
Furthermore, certain shortcomings of B were identified: if-then-else statements
are only available for substitutions, but not in the predicate and expression sub-
language. Similarly, it is not possible to use let-like syntax to locally capture
values for any identifier. These have been addressed in newer versions of ProB,
which extend the syntax of B in these ways.

Lastly, it is hard to express function-like constructs that calculate values
that can be used in predicates. B offers definitions, which offer a macro system
similar to the C-preprocessor with all its shortcomings, e.g. shadowing of variable
identifiers, which are unacceptable in a formal language. Currently, we work on
a language extension for ProB that allows a more sophisticated construct to
implement pure functions.

Lessons Learned: Model Interaction. Interacting with the model can be
quite cumbersome: in particular, feeding information from scratch into the model
can be slow or very complex. Instead, it is easier to generate a large model
containing all information.

Initially, the idea was to work on pure predicates without a state machine in
order to find scheduling conflicts. However, the aforementioned shortcomings in
the language resulted in large predicates with many repetitions that were hard
to debug. We found that incorporating the information into a state machine with
given operations for manipulation of the schedule is more sensible. Additionally,
this offers a simple undo-feature by reverting the trace to an earlier state.

3.4 Real Time Animation: ETCS Hybrid Level 3 Concept

We also used ProB 2.0 in an industrial project, for a demonstrator of the ETCS
(European Train Control System) HL3 (hybrid level 3) principles. HL3 is a
novel approach to increase the capacity of the railway infrastructure, by allowing
multiple trains to occupy the same track section. This is achieved by dividing
the track sections into virtual subsections (VSS). While the status of the track
sections is determined by existing wayside infrastructure (axle counters or track
circuits), the status of the VSS is computed from train position reports.

528 P. Körner et al.

Fig. 4. Screenshot from a video of Deutsche Bahn https://www.youtube.com/watch?
v=FjKnugbmrP4 showing a formal Event-B model in action

In this application, the formal model was used as a component at runtime
to control real trains in real time. This can be seen in Fig. 4, where in the
lower center one can see the ProB 2.0 visualisation of the formal model. The
visualisation shows that two trains occupy the same occupied track section, but
occupy disjoint virtual subsections. The ETCS hybrid level 3 principles were
independently used as a case study for ABZ 2018 [23]. Due to page constraints,
we can only give a high-level overview here. More details can be found in [23].

VBF
(B)

Input
(via File)

IXL
(C)

RBC
(C)

OMS
(C)

Train
Information

Signals
Points

Modified Signals
Points

Virtual Track
Sections

Fig. 5. Architecture of the HL3 prototype

When considering railroad tracks, they are usually divided in subsections. On
the boundaries, usually there are sensors like axle counters in order to determine
whether a train is occupying the corresponding subsection. The main idea is that
by using a Virtual Block Function (VBF), the capacity of existing railroad net-
works can be increased. The VBF subdivides the tracks into virtual subsections
without having to install further sensors or other hardware onto the tracks. As
main part of the demonstration, the VBF was written as a B model, managing
the status of said virtual subsections.

For the overall demonstrator, the VBF was interfaced with other hardware
components (Fig. 5):

– an interlocking (IXL) which manages the signals and the status of the track
sections,

https://www.youtube.com/watch?v=FjKnugbmrP4
https://www.youtube.com/watch?v=FjKnugbmrP4

Embedding High-Level Formal Specifications into Applications 529

– a Thales Radio Block Centre (RBC) which communicates with the trains and
grants movement authorities,

– and an Operation and Maintenance Server (OMS).

These three components feed information into the model via ProB 2.0 in
order to drive the formal model.

The model itself is non-deterministic. Based on the inputs from the exter-
nal sources, the corresponding operation is chosen. After updating the state
of the model, the successor state is passed to a consumer in Java that in turn
sends information to the IXL, OMS and RBC. The VBF application, comprising
ProB, ProB 2.0 and the B formal model, performs well enough on a regular
notebook computer for a real-life demonstration involving the management of
actual trains on their VSS.

Though we cannot disclose the model and the application itself, the overall
architecture of the VBF demonstrator is very similar to the Pac-Man example.
The Pac-Man board can be seen equivalent to the railtrack topology, and the
Pac-Man behaves similar to trains, as they move based on external input. Instead
of only visualising the model state to the user, additionally the application reacts
to it and communicates with other components.

Main Contribution: Application Based on Model Alone. The ETCS
case study fully relies on an embedded model rather than on code generation.
By doing so, it has proven our approach to be both feasible and efficient in a
real-world application. The overall development time was low when compared to
manual or automated code generation. In addition, the formal model was very
close to the HL3 natural language requirements. Changes to the requirements
and model could be quickly carried out. Indeed, the use of our demonstrator
has uncovered over 40 issues in the original HL3 principles paper, which were
corrected in the official document along with our formal model. Of course, a
fully refinement-based approach ending with code generation would be able to
prove the system correctness and hence deliver a higher level of certainty than
our approach does. However, we believe that for prototypes and demonstrators,
a model-checked and well-tested specification that is directly executed can beat
non-formal software development by a wide margin in terms of development time
and costs.

Lessons Learned: Full-Stack Debugging Workflow. One important benefit
of our approach was that we could store the formal model’s behaviour in log files
and later replay these traces in the ProB animator. This allowed us to analyse
suspect behaviours, fix the HL3 specification and model, and then check that
the corrected model solved the uncovered issues by replaying the trace again.
I.e., we automatically got record and replay capabilities of debuggers as in [35].

530 P. Körner et al.

4 Discussion and Related Work

When thinking of executing formal specifications, one usually has animation
or code generation (cf. [20,44]) in mind. Yet, we will first discuss whether the
approach itself makes sense: in the past, there has been thorough discussion [19,
21,24] whether specifications should be executable in the first place.

4.1 Soundness of Approach

Some argue [24] that formal specifications should not be executable for several
reasons:

– Proof is more important than (finite) execution,
– Forms of usable specifications are restricted,
– Executable specifications tend to be over-specified,
– Execution is inefficient.

We deliberately go against this judgement and use a formal specification
language, B, that has powerful tooling such as animators, model checkers, PO
generators, etc.

This does not mean that we disagree with these arguments; firstly, we find
formal proof to be very important. However, we have observed that for most
formal specifications, which are more involved and are written to be executable,
it is very hard and cumbersome to discharge any proof obligation. On the other
hand, models written to be proven usually are not executable either. Yet, proof
should always be complemented by animation in order to verify that not only
the model is consistent in itself, but also describes the desired behaviour.

Secondly, B is a language that is very high-level and allows writing non-
executable specifications (as one could encode a non-decidable problem in a sin-
gle state transition). Instead, we embrace specifications an animator can handle
and execute.

Thirdly, over-specification does not seem to be an issue for our use case. An
example from [24] is a sorting algorithm. In B, this can be calculated by the
constraint solver by purely specifying the property what it means for a sequence
to be sorted. An example for a valid B predicate that can be solved by ProB

in order to yield a sorted sequence is given in Fig. 6. Note that no concrete
implementation is specified, as the problem is solved in a declarative manner.

In the typical workflow of the B-Method, a concrete implementation happens
during refinement. Thus, the writer of the specification is usually able to choose
the level of abstraction herself.

The last argument concerning performance is carefully reviewed for each of
our case studies individually in Sect. 3 and overall in Sect. 5.

Being able to execute specifications also gives rise to techniques such as
animation and model checking. Both of them have proven to be vital during
creation and debugging of a formal specification, as errors can be caught early
on.

Embedding High-Level Formal Specifications into Applications 531

input = [12,−3, 42, 7] ∧ (input sequence)

output ∈ 1..size(input) → ran(input) ∧ (type of output)

∀e ∈ ran(input) · (card(input � {e}) = card(output � {e}))) ∧ (keep elements)

∀i · 1 ≤ i < size(input) =⇒ output(i) ≤ output(i+ 1) (ordering)

Fig. 6. Sorting predicate

4.2 Animation

As mentioned above, animation of a formal specification is an important means
to quickly find errors by executing certain scenarios. This can either be done
manually or even replaying a given trace in an automated manner. Executing
a longer trace by hand and verifying each encountered state is correct is very
cumbersome and might be aided by state visualisations.

In contrast to the approach we presented earlier, the user interacts with
the formal model directly. This also means that all events have been chosen by
hand, even ones that should be picked by the environment. In our examples,
that includes movement of the ghosts in Pac-Man, moving the chess pieces of
the enemy and providing the input of signals, points, etc.

Another approach [37] executes several example runs on probabilistic models.
Yet, it is not possible to let an environment interact with the model itself. On
the other hand, this approach encourages non-deterministic models.

4.3 Visualisation

All the presented projects include a GUI which displays a visualisation of the
current state. State visualisation by itself is a useful tool to understand the
application state more easily and is often used during the development of a
model, debugging, and also to explain it to a domain expert.

BMotionWeb [28,29] is a tool for state visualisation based on web technolo-
gies. It also builds upon the ProB 2.0 API and allows simple interaction with
the model. The chess example from Sect. 3.2 uses this tool both for visualisation
and embedding the script that controls the AI. A heavy disadvantage however
is the complex technology stack: BMotionWeb builds upon ProB 2.0 and uses
Groovy, SVG, JavaScript and HTML5, where each component of the stack may
go wrong, rendering development very cumbersome.

State visualisation is not unique to the B formalisms: e.g., another tool that
allows visualisations based on web technologies is WebASM [45], which works on
top of CoreASM [16]. CoreASM is a tool that can be used to execute abstract
state machines (ASM).

4.4 Code Generation

A more traditional approach is to generate (low-level) code based on the specifi-
cation. Translation tools usually cannot work on most constructs that high-level

532 P. Körner et al.

formalisms have to offer, e.g. calculation of an appropriate parameter for an oper-
ation, set comprehensions or solving quantifications usually require constraint
solving techniques which are infeasible to generate.

A popular implementation-level subset of B is named B0 [1,15], from which
translation into an imperative language is fairly straightforward. Many features
of the B language are missing though, including many operators on functions,
relations and sets as well as quantifications.

For B and Event-B, several code generators exist. One such code generator is
C4B which is integrated in Atelier B [15]. It allows generation of C code from the
implementation level subset of B (i.e. B0). However, refining a model of industrial
size down to B0 is a notably cumbersome task to do. Another code generator
that is capable to cope with a subset of B0 is b2llvm [7] that generates LLVM
code. A notable toolset Event-B is EB2ALL [34], which allows code generation
to several languages including C and Java.

Currently, we explore which level of abstraction is required to render it feasi-
ble to generate code from higher-level specifications [43]. Supporting more con-
structs from B that are not included in B0 might make an approach using code
generation more feasible. This work is aligned with EventB2Java [12,39] that
also translates higher-level constructs.

4.5 Other Approaches

Another formal specification language is part of the Vienna Development Method
(VDM) [26]. A well-known tool for VDM is Overture [31], which implements an
interpreter in Java. In [36], an extension to the VDM language and Overture
was presented. It allows execution of Java code from VDM specifications and, in
turn, to control the interpreter to evaluate expressions in the current state. The
goal is to add visualisation of the current state to the model and to integrate
models with legacy systems, as we did, e.g., in Sect. 3.4.

5 Conclusions

In this paper, we presented ProB 2.0, which offers a Java API to the ProB

model checker. ProB 2.0 renders it possible to write applications that interact
with a formal model at runtime, offering declarative programming, rapid pro-
totyping and easy debugging. Furthermore, we embedded formal models into
actual applications and investigated this approach via four different case stud-
ies. We also considered counterarguments regarding executable specifications and
re-evaluated them given the gained experiences.

Overall, we can draw the following conclusions:

– We think that specifications can and should indeed be executable, as it allows
verification of an interpretation or an implementation against the specifica-
tion. Given a suitable high-level specification language, many counterargu-
ments such as over-specification do not hold. With a tool as presented in

Embedding High-Level Formal Specifications into Applications 533

Sect. 2 or in [36], it is possible and (often) viable to use that specification as
a library in an application, allowing embedment of declarative programming
into traditional, imperative programming languages.

– Development of complex components is significantly eased by the level of
abstractions a high-level specification language, such as B, can provide. Inte-
gration with existing code, that may be written in other programming lan-
guages or running on different machines, is very powerful. In particular, when
re-iterating on the formal model, changes can immediately be re-evaluated by
a test scenario in the context of an entire application. Otherwise, an imple-
mentation has to be changed as well, which allows introduction of new bugs.
Tool support such as model checking or animation proved to be invaluable
to uncover errors early on which may otherwise have gone unnoticed for a
longer time.

– The main concern for real-life applications, as already stated in 1989 by [24], is
performance. Low-level applications written in traditional imperative, func-
tional or even logical programming languages can be orders of magnitudes
faster because they can work at lower levels of abstraction. Hence, for many
time-critical applications the execution of formal specifications is not the way
to go yet. However, as long as performance requirements are reasonable (e.g.,
if data sets are rather small), utilising formal models at runtime allows us
to quickly deploy complex applications that can make use of the eco-system
associated with formal methods, from proof to animation and model checking.

Acknowledgement. We thank Christoph Heinzen and David Geleßus for authoring
and improving the presented Pac-Man application, as well as Philip Höfges for the
chess model, AI and GUI. Additionally, we want to thank the many people who were
involved in the development of both ProB and ProB 2.0, the Slot Tool and the ETCS
Hybrid Level 3 case study.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, Cambridge (2010)

3. Abrial, J.-R., Lee, M.K.O., Neilson, D.S., Scharbach, P.N., Sørensen, I.H.: The B-
method. In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, pp. 398–405.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0020001

4. Back, R.: On correct refinement of programs. J. Comput. Syst. Sci. 23(1), 49–68
(1981)

5. Back, R.-J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (2012)

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model
checking. Adv. Comput. 58(11), 117–148 (2003)

7. Bonichon, R., Déharbe, D., Lecomte, T., Medeiros, V.: LLVM-based code genera-
tion for B. In: Braga, C., Mart́ı-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp.
1–16. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15075-8 1

https://doi.org/10.1007/BFb0020001
https://doi.org/10.1007/978-3-319-15075-8_1

534 P. Körner et al.

8. Butler, M., Leuschel, M.: Combining CSP and B for specification and prop-
erty verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, pp. 221–236. Springer, Heidelberg (2005). https://doi.org/10.
1007/11526841 16

9. Cansell, D., Méry, D.: Foundations of the B method. Comput. Inf. 22(3–4), 221–
256 (2012)

10. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

11. Carlsson, M., et al.: SICStus Prolog User’s Manual, vol. 3. Swedish Institute of
Computer Science Kista, Sweden (1988)

12. Cataño, N., Rivera, V.: EventB2Java: a code generator for Event-B. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 13

13. CENELEC. Railway Applications - Communication, signalling and processing
systems - Software for railway control and protection systems. Technical report
EN50128, European Standard (2011)

14. Clark, J., Bendisposto, J., Hallerstede, S., Hansen, D., Leuschel, M.: Generating
Event-B specifications from algorithm descriptions. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 183–197. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 11

15. ClearSy: Atelier B, User and Reference Manuals. Aix-en-Provence, France (2016).
http://www.atelierb.eu/

16. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: an extensible ASM execution
engine. Fundamenta Informaticae 77(1–2), 71–103 (2007)

17. Fraenkel, A.: Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Math.
Ann. 86(3), 230–237 (1922)

18. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory, vol. 67. Else-
vier, Amsterdam (1973)

19. Fuchs, N.E.: Specifications are (preferably) executable. Softw. Eng. J. 7(5), 323–
334 (1992)

20. Ghezzi, C., Kennerer, R.A.: Executing formal specifications: the ASTRAL to TRIO
translation approach. In: Proceedings of the Symposium on Testing, Analysis, and
Verification, TAV4, pp. 112–122. ACM (1991)

21. Gravell, A., Henderson, P.: Executing formal specifications need not be harmful.
Softw. Eng. J. 11(2), 104–110 (1996)

22. Hansen, D., Leuschel, M.: Translating TLA+ to B for Validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-
4 3

23. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with real trains. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 292–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 20

24. Hayes, I.J., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng.
J. 4(6), 330–339 (1989)

25. Hoare, C.A.R.: Communicating sequential processes. In: Hansen, P.B. (ed.) The
Origin of Concurrent Programming, pp. 413–443. Springer, New York (1978).
https://doi.org/10.1007/978-1-4757-3472-0 16

26. Jones, C.B.: Systematic Software Development Using VDM, vol. 2. Princeton, Cite-
seer (1990)

https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/BFb0033845
https://doi.org/10.1007/978-3-319-40648-0_13
https://doi.org/10.1007/978-3-319-33600-8_11
http://www.atelierb.eu/
https://doi.org/10.1007/978-3-642-30729-4_3
https://doi.org/10.1007/978-3-642-30729-4_3
https://doi.org/10.1007/978-3-319-91271-4_20
https://doi.org/10.1007/978-1-4757-3472-0_16

Embedding High-Level Formal Specifications into Applications 535

27. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),
293–326 (1975)

28. Ladenberger, L.: Rapid creation of interactive formal prototypes for validating
safety-critical systems. Ph.D. thesis (2017)

29. Ladenberger, L., Leuschel, M.: BMotionWeb: a tool for rapid creation of formal
prototypes. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
403–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 27

30. Lamport, L.: Specifying Systems: the TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

31. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.:
The overture initiative integrating tools for VDM. ACM SIGSOFT Softw. Eng.
Notes 35(1), 1–6 (2010)

32. Leuschel, M., Bendisposto, J.: Directed model checking for B: an evaluation and
new techniques. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF 2010. LNCS, vol.
6527, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19829-8 1

33. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

34. Méry, D., Singh, N.K.: Automatic code generation from event-B models. In: Pro-
ceedings SoICT, pp. 179–188. ACM (2011)

35. Narayanasamy, S., Pokam, G., Calder, B.: BugNet: continuously recording pro-
gram execution for deterministic replay debugging. In: ACM SIGARCH Computer
Architecture News, vol. 33, pp. 284–295. IEEE Computer Society (2005)

36. Nielsen, C.B., Lausdahl, K., Larsen, P.G.: Combining VDM with executable code.
In: Derrick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 266–279. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7 19

37. Nummenmaa, T.: Executable formal specifications in game development: design,
validation and evolution. Ph.D. thesis (2013)

38. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator and
model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-
5 25

39. Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code generation for Event-B. STTT
19(1), 31–52 (2017)

40. Schneider, D.: Constraint modelling and data validation using formal specification
languages. Ph.D. thesis. Heinrich-Heine-Universität Düsseldorf (2017)

41. Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for univer-
sity timetable validation and improvement. Formal Aspects Comput. 30, 545–569
(2018)

42. Spivey, J.M., Abrial, J.: The Z Notation. Prentice Hall, Hemel Hempstead (1992)
43. Vu, F.: A high-level code generator for safety critical B models. Bachelor’s thesis,

Heinrich Heine Universität Düsseldorf, August 2018
44. Wahls, T., Leavens, G.T., Baker, A.L.: Executing formal specifications with con-

current constraint programming. Autom. Softw. Eng. 7(4), 315–343 (2000)
45. Zenzaro, S., Gervasi, V., Soldani, J.: WebASM: an abstract state machine execution

environment for the web. In: Ait Ameur, Y., Schewe, K.D. (eds.) Abstract State
Machines, Alloy, B, TLA, VDM, and Z. ABZ 2014. LNCS, vol. 8477, pp. 216–221.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 19

https://doi.org/10.1007/978-3-319-41591-8_27
https://doi.org/10.1007/978-3-642-19829-8_1
https://doi.org/10.1007/978-3-642-19829-8_1
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-642-30885-7_19
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/978-3-540-73210-5_25
https://doi.org/10.1007/978-3-662-43652-3_19

Reasoning Techniques

Value-Dependent Information-Flow
Security on Weak Memory Models

Graeme Smith1,2(B), Nicholas Coughlin2, and Toby Murray3

1 Defence Science and Technology Group, Brisbane, Australia
2 School of Information Technology and Electrical Engineering,

The University of Queensland, Brisbane, Australia
smith@itee.uq.edu.au

3 School of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

Abstract. Weak memory models implemented on modern multicore
processors are known to affect the correctness of concurrent code. They
can also affect whether or not it is secure. This is particularly the case
in programs where the security levels of variables are value-dependent,
i.e., depend on the values of other variables. In this paper, we illustrate
how instruction reordering allowed by contemporary multicore processors
leads to vulnerabilities in such programs, and present a compositional,
timing-sensitive information-flow logic which can be used to detect such
vulnerabilities. The logic allows step-local reasoning (one instruction at
a time) about a thread’s security by tracking information about depen-
dencies between instructions which guarantee their order of occurrence.
Program security can then be established from individual thread security
using rely/guarantee reasoning.

1 Introduction

Modern multicore processors utilise weak memory models which, for reasons of
efficiency, allow instructions to take effect in an order different to that in the
program text [25]. Such instruction reordering is constrained by basic principles,
the key one being that the sequential semantics of each thread in the original
code should be preserved [6,7]. This ensures the effects of weak memory models
can largely be ignored by programmers whose code is either not concurrent, or
is concurrent but data-race free.1 However, these effects do need to be consid-
ered by programmers writing efficient low-level code for device drivers and data
structures. Such code is generally concurrent and non-blocking, i.e., using no, or
minimal, locking, and hence inherently not data-race free [16]. It is well known
that this affects the correctness of such code on weak memory models [2]. As
shown by Vaughan and Milstein [26] (for the weak memory model TSO) and
Mantel et al. [14] (for TSO, PSO and IBM-370), it also leads to security viola-
tions which are not detectable using the standard approaches to information-flow
security.
1 The recently discovered Meltdown [12], Spectre [11] and Foreshadow [4] vulnerabil-

ities show that this is not strictly the case.

c© Commonwealth of Australia 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 539–555, 2019.
https://doi.org/10.1007/978-3-030-30942-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_32&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_32

540 G. Smith et al.

While TSO [24] is widely used (by chip manufacturers Intel and AMD), PSO
and IBM-370 are not supported on recent processors. More relevant weak mem-
ory models are ARM [9,22] and IBM POWER [23]; the former being widely used
in mobile devices [8]. These memory models are significantly weaker (allowing
more kinds of reordering) than those studied by the papers above, yet have
received little attention from the security community.

Additionally, the effects of weak memory models on programs with security
levels that are value-dependent [13,18,27] have not been explored to date. In
such programs, the security level of a variable may depend on the values of one
or more other variables. Hence, it may change as the program changes the state.

Building on Mantel et al.’s compositional information-flow logic for concur-
rent programs [15], Murray et al. [19,20] provide two information-flow logics for
concurrent programs which are compositional and also handle dynamic, value-
dependent security levels. The latter of these has been successfully applied to a
non-trivial concurrent program running on an embedded device which facilitates
secure interaction with multiple classified networks.

In this paper, we take this work further by incorporating the effects of weak
memory models. Our logic specifically captures the effects of the revised version
of ARMv8 [22], the latest version of ARM.2 This memory model has much in
common with prior versions of ARM [9], and with IBM POWER [23]. Our logic
has been proven sound with respect to a recent operational semantics of ARMv8
[6] which has been validated against approximately 10,000 litmus tests run on
actual hardware.

We begin with an overview of weak memory models in Sect. 2 and demon-
strate how they can lead to security vulnerabilities in value-dependent security
systems in Sect. 3. In Sect. 4, we present a formal framework for our logic which
is presented in full in Sect. 5. We discuss the issue of timing sensitivity in Sect. 6
and conclude in Sect. 7.

2 Weak Memory Models

Hardware weak memory models, as exemplified by TSO [24], ARM [9,22] and
IBM POWER [23], aim at optimising assembly code by restricting accesses to
global shared memory: a well known cause of inefficiency in multicore systems.
This can be achieved, for example, by buffering writes to memory and letting
the hardware control when those writes actually occur, or by allowing speculative
execution of code occurring in a branch of the program before evaluating whether
that branch should be taken (which may require access to shared memory). It
can also be achieved by propagating writes to other cores rather than the shared
memory (referred to as non-multi-copy atomicity since different cores may receive
a particular write at different times).

The effects of such optimisations can lead to the instructions of one thread
appearing to occur out-of-order from the perspective of threads running on other

2 We will refer to this as simply ARMv8 in the remainder of this paper.

Value-Dependent Information-Flow Security on Weak Memory Models 541

cores. For example, if a thread t buffers the writes to variables x and y while
executing the code x := 1; y := 2 and then the hardware flushes the value assigned
to y first, it appears to threads running on other cores as if t executed the code
y := 2; x := 1.

Colvin and Smith [6,7] define four constraints related to this perceived
reordering of assignments on weak memory models. These constraints, which
are common to all contemporary weak memory models, ensure that the sequen-
tial semantics of the thread on which the reordering occurs is unchanged. An
assignment x := e can be reordered with an assignment y := f if, and only if, (i)
x and y are distinct variables; (ii) x is not referred to in f ; (iii) y is not referred
to in e; and (iv) e and f do not reference any common global variables.

Constraint (i) is obviously required as x := 1; x := 2 has a different final
value of x (and hence different behaviour) than x := 2; x := 1. Constraint (ii)
is required since x := 1; y := x will result in a different value for y than y := x;
x := 1 when the initial value of x is not 1. Similarly, constraint (iii) is required
since x := y; y := 1 can result in a different value for x than y := 1; x := y.
Finally, constraint (iv) is required so that the order of updates and accesses of
each global variable, considered individually, is maintained: x := z; y := z will
not behave the same as y := z; x := z in an environment which modifies z since
the former will never result in y having an earlier value of z than x.

In contemporary processors, constraint (ii) is weakened by forwarding which
allows a program such as x := e; y := x to be reordered to y := e; x := e when e
does not refer to global variables, i.e., the effect of the first assignment is taken
into account when determining whether the second can be reordered with it.

Specific memory models may add additional constraints, e.g., TSO does not
allow a write to a global variable to be reordered with a subsequent write to
a global variable. They will also have reordering constraints related to other
types of instructions such as branch instructions and fences (see Sect. 3.1 for the
branch constraints on ARM). Fences are a means by which the programmer can
enforce ordering where necessary in their program. For example, letting fence
denote a full fence (e.g., the instruction DMB on ARM), the program x := 1;
fence; y := 2 ensures the write to x is seen by other threads before the write to
y. A full set of reordering constraints for TSO, ARM and POWER which have
been validated against existing test suites on hardware is provided in [6,7].

3 Weak Memory Models and Security

We are interested in evaluating the security of assembly code running on ARMv8
processors [9]. For ease of presentation, we adopt a high-level language to repre-
sent assembly commands (as in [6,7]). The syntax of a command, i.e., a program,
c in this language is as follows:

c :: = skip | c ; c | if (b) then c else c | while (b) do c | x := e | fence
where x is a (global or local) variable, b a Boolean condition, and e an expression.
In our examples, we also allow do c while (b) as a shorthand for c ; while (b) do c.

542 G. Smith et al.

This simple language has only one kind of fence (a full fence which requires all
updates to be seen by all threads before proceeding). ARM additionally supports
store fences (which maintain an order on stores only) and a control fence (for
restricting speculative execution beyond branch points). Extending our approach
to cater for such additional constructs is beyond the scope of this paper which
focusses on the interplay between value-dependent security levels and instruction
reordering in weak memory models.

To illustrate this interplay we introduce the example of Fig. 1. In this exam-
ple, the four operations are of an IO-driver object which receives input data from
an IO device, such as a keyboard, and stores it in the variable x. This variable
is intended to be an abstract representation of an input buffer.

write:
x := data

secret write:
z := z+1;
x := secret;
...
x := 0;
z := z+1

read:
do

do
r1:= z;

while (r1 % 2 �= 0)
r2 := x;

while (z �= r1)
y := r2

secret read:
y := x

Fig. 1. An IO-driver object with oper-
ations for accepting input from a key-
board at unclassified (write) and classified
(secret write) levels, and for reading input
data at unclassified (read) and classified
(secret read) levels.

As well as a simple write opera-
tion, the object has a secret write oper-
ation. This is used when the user indi-
cates (via the keyboard or another
input device) that the information to
be input is classified. The operation
sets a variable z, which is initially 0,
to an odd number by incrementing it
before allowing the input data to be
assigned to x. After the data is read
(how this is detected is elided in the
abstract representation of Fig. 1), the
operation enters some unclassified data
in x (the value 0) before setting z back
to an even number by incrementing it
again. As we will see, the setting of z
ensures that the classified input is not
readable by all applications running on
the computer to which the keyboard is
attached.

We call z a control variable because it controls the security level of x; when
it is even x may only contain unclassified data, but when it is odd it may also
contain classified data. The use of such control variables provides us with value-
dependent security [13,18,27].

Next consider the operations which read from the buffer. We have
a secret read operation which only applications which are allowed access
to classified information can call, as well as a general read operation
which all applications can call. To avoid leaks of classified data, the lat-
ter should not read the variable x when z is odd; this is the only
time when x can contain classified data. A naive approach would be
to use an if statement in read to disallow reading x when z is odd:
if (z% 2 = 0) then y := x else skip where y is a variable which the application
calling the operation can access. Obviously, this will not work in a concurrent
setting since the check of z’s value could be made before z is incremented for the

Value-Dependent Information-Flow Security on Weak Memory Models 543

first time by secret write and subsequently the assignment to y made immediately
after x is assigned the classified data.

To avoid this undesirable behaviour, we could ensure mutual exclusion
between the operations secret write and read using a lock; each of these opera-
tions would acquire the lock as it first step and release it as its last. This, however,
would be highly inefficient. Firstly, there may be many applications running and
wishing to access the keyboard data, and requiring each to acquire the lock
before reading would create an obvious bottleneck. Secondly, the secret write
operation should preferably not be made to acquire a lock as it needs to react
without delay in order to accept (real-time) keyboard input.

A better solution is to use a non-blocking algorithm [16]. Such algorithms
allow threads to run concurrently on the same object with no, or minimal, use
of locking. For example, consider the implementation of read in Fig. 1 where r1
and r2 are local variables. This operation waits in a loop until z is even (and
hence x does not contain classified information) and then reads x into r2. It then
checks that z has not changed (and hence has been even the entire time since
it was checked) before copying the value of r2 to y. Since z can only stay at its
current value or increase, if its value is the same as at some earlier time t , we
can deduce that z has not changed since time t .

This algorithm allows the secret write operation to operate without locking
or delay, and allows multiple threads to call the read operation simultaneously.
It is based on a Linux read-write mechanism called seqlock [3], and is a typical
example of a non-blocking algorithm.

3.1 Value-Dependent Security and Reordering

The implementation in Fig. 1 is secure on a sequentially consistent memory
model, i.e., one that does not allow instruction reordering. It is also secure on a
memory model such as TSO where writes are seen by other threads in the order
in which they occur. For weaker memory models such as ARM and POWER,
this is not the case. These memory models allow writes by a thread to be seen
out-of-order by other threads since no additional constraints are added to the
four common constraints presented in Sect. 2.

For example, consider the operation secret write. If from the perspective of
threads running read, the assignment of the classified data to x occurred before
the first assignment to z then that classified data could be read into the variable
y. To avoid this situation, a fence is required between these two assignments.
Similarly, if the second assignment to z occurred before the assignment of 0 to
x then again the classified data in x could be read into y. The solution again is
to maintain the order by placing a fence between these assignments. A secure
version of secret write is given in Fig. 2.

Similar issues arise with the read operation. To understand these, we first
provide the rules for reordering involving branch instructions on ARM processors
[6,7].

1. An assignment x := e following a branch instruction with branching condition
b can be reordered with the branch instruction if, and only if, x is a local

544 G. Smith et al.

variable and does not appear free in b, and b and e do not reference common
global variables.

2. An assignment x := e preceding a branch with branching condition b can be
reordered with the branch if, and only if, x does not appear free in b, and b
and e do not reference common global variables.

3. Two branch instructions can be reordered if, and only if, their branching
conditions do not reference common global variables.

secret write:
z := z+1;
fence;
x := secret;
...
x := 0;
fence;
z := z+1

read:
do

do
r1:= z;

while (r1 % 2 �= 0)
fence;
r2 := x;
fence;

while (z �= r1)
y := r2

Fig. 2. Versions of the operations
(secret write) and (read) which are secure
when run on the ARMv8 memory model.

In case 1 the assignment is specu-
latively executed (before the branch
condition is evaluated). It is there-
fore restricted to assignments to local
variables since if it is later deter-
mined that the branch should not be
executed, it is necessary to discard
the results of such assignments. This
cannot be done with assignments to
global variables.

In the read operation two prob-
lems arise due to these reorderings.
Firstly, since r2 is a local variable, the
assignment to r2 could be reordered
with the first branch instruction
(case 1) and further reordered with the assignment to r1. This results in reading
a value of x into r2 before checking that z is even. If this value is classified and
subsequently z is made even by secret write, the check will pass and the classified
information in r2 will be able to be passed into y. A fence before the assignment
to r2 will prevent this reordering.

Secondly, if the assignment to r2 is reordered with the second branch con-
dition (case 2) then it is possible that a secret write operation begins after the
check of that branch condition and hence r2 is loaded with classified data. Again,
a fence can prevent the reordering. A secure version of read is included in Fig. 2.

4 Formal Framework

In this section, we provide a formal framework on which we build our logic in
Sect. 5. We let Var be the set of all program variables. Variables are partitioned
into global (i.e. shared) variables Global , and local variables Local , i.e., Var =
Global ∪Local and Local ∩Global = ∅. We let var(e) denote the set of variables
which occur free in an expression e.

4.1 Assumptions and Guarantees

An important issue when reasoning about concurrent systems is compositional-
ity. For scalability, we want to reason about individual threads in isolation and

Value-Dependent Information-Flow Security on Weak Memory Models 545

combine this reasoning to deduce properties of the entire program. One way
to do this is to utilise rely/guarantee reasoning [5,10]. Reasoning done on an
individual thread will be valid in the wider context of its execution if all of its
assumptions are matched by a guarantee from all other threads. For example, if
the thread assumes that no other thread writes to z then all other threads must
guarantee that they do not.

Mantel et al. [15] adopt this approach in their concurrent information-flow
logic by assigning variables referenced by a thread to one or more of the following
modes.

– AssNoRW - the variable is not read or written to by another thread
– AssNoW - the variable is not written to by another thread (but may be read

by another thread)
– GuarNoW - this thread does not write to the variable (but may read it)
– GuarNoRW - this thread does not read or write to the variable.

In our logic, such modes are represented by a function M : Mode → PVar
mapping each mode to the set of variables which have that mode. Local vari-
ables are always non-readable and non-writable by other threads, i.e., Local ⊆
M (AssNoRW).

4.2 Value-Dependent Security Levels

Murray et al. [19,20] extend the approach of Mantel et al. [15] to include value-
dependent security levels. As in that work, we adopt a two-point lattice of secu-
rity levels with values Low and High such that Low � High and High �� Low
(meaning that information classified High should not flow to a variable classified
Low).

Also following [19,20], we let L(x), for a variable x , be a predicate which is
true precisely when x has security level Low . For example, L(x) = (z%2 = 0)
in the example of Sect. 3, i.e., the security level of x depends on the parity of z.
L is provided by the user and is independent of the program’s state. In order to
determine the security level of a variable in our logic, we introduce the following.

– A partial function Γ : Var �→ {Low ,High} whose domain is the set of stable
variables, i.e., variables in M (AssNoRW) ∪M (AssNoW), and which returns
the security level of data held by those variables. This data can be at a lower
level than the variable’s security level, i.e., a variable with a High security
level may hold Low data. The data referred to by Γ at any point in the
execution of a program assumes that precisely the instructions up to that
point have been executed, i.e., instruction reordering due to a weak memory
model is not considered.

– A predicate P on the program’s variables (capturing the current state). We
let lowP (x) =̂ P 	 L(x) denote that x ’s security level is provably Low when
P holds, and highP (x) =̂ P 	 ¬ L(x) denote that x ’s security level is provably
High when P holds. As for Γ , at any point in the execution of a program, P
assumes that precisely the instructions up to that point have been executed,
i.e., instruction reordering is not considered.

546 G. Smith et al.

Based on these we define the following shorthand for determining the security
level t of an expression e (as the highest level of any free variable in e).

Γ,P 	 e : t =̂ t =
x∈var(e) ΓP (x)

where ΓP (x) =̂

⎧

⎨

⎩

Γ (x) if x ∈ dom Γ
Low if x �∈ dom Γ and lowP (x)
High otherwise

Note that when the security level of one or more variables in an expression is
unknown (i.e., neither specified in Γ nor derivable from P), ΓP will default to
security level High for those variables. This ensures that an expression which we
are assigning to a variable is given its highest possible security level.

When determining the security level of a variable x to which we assign a
value, on the other hand, we want to default to Low .

evalP (x) =̂
{

High if highP (x)
Low otherwise

Following Murray et al. [19,20], we assume control variables are always Low , i.e.,
L(z) = true for each control variable z. As a result, it is not necessary to include
them in Γ when they are stable.

4.3 Weak Memory Models

Γ and P ignore the effects of reordering possible under a weak memory model.
This is not a problem for Γ under the defined reordering constraints, as it is
only consulted for the reads of an instruction. If an instruction containing such
an expression e is reordered before a prior write to a variable x then, according
to the constraints in Sect. 2, either (i) x is not in e, or (ii) x is in e and the
reordering involves forwarding. In case (i), the assignment does not affect the
value of Γ for any of the variables in e and hence does not affect the evaluation
of e’s security level. In case (ii), since forwarding involves taking into account
the prior assignment’s effect, using the updated value for x in Γ is appropriate.

P , on the other hand, cannot be used directly to determine the security level
of a variable or expression. To use P we need to consider guarantees on the
ordering of program instructions. To capture these guarantees in our logic, we
introduce a function knownW where, for a given instruction a, knownW (a) is
the set of variables whose most recent prior write in the program is known to
have occurred. Hence, these variables’ values in P can be used when determining
the security level of x (using evalP (x)) and the expression assigned to x (using
Γ,P 	 e : t).

The value of knownW (a) evolves as the program progresses. For example,
given the code z := x; y := x; z := 0; y := x where z, y and x are global variables,

Value-Dependent Information-Flow Security on Weak Memory Models 547

after the first assignment knownW (y := x) contains z since the first assignment
must occur before the second due to constraint (iv) of Sect. 2. However, after the
third assignment knownW (y := x) does not contain z since the fourth assignment
can be reordered before the third.

We similarly introduce a function knownR(a) to denote the set of variables
whose most recent prior read in the program is known to have occurred. This
set is required in cases where a read of a variable may be reordered with an
instruction which changes the variable’s security level (see Sect. 5 for details).

We define knownW and knownR in terms of four other functions each of type
Var → PVar capturing the dependencies between writes and reads:

– Ww (x) returns the set of variables whose prior writes, if any, have occurred
when we reach an instruction which writes to x ;

– Wr (x) returns the set of variables whose prior writes, if any, have occurred
when we reach an instruction which reads x ;

– Rw (x) returns the set of variables whose prior reads, if any, have occurred
when we reach an instruction which writes to x ; and

– Rr (x) returns the set of variables whose prior reads, if any, have occurred
when we reach an instruction which reads x .

Given these definitions, we define knownψ(a) where ψ stands for either W
or R as

knownψ(a) =
{

Var if a = fence
⋃

y∈wr(a) ψw (y) ∪ ⋃

y∈rd(a) ψr (y) otherwise

where wr(a) is the set of variables written to by instruction a and rd(a) the set
of variables read by a.

Initially the functions Ww , Wr , Rw and Rr map all variables to Var . At other
points in the program their values are defined in terms of allowable instruction
reorderings. We define laterw (a) to return the set of variables whose writes can-
not be reordered before a. Similarly, we define laterr (a) to return the set of vari-
ables whose reads cannot be reordered before a. For example, y ∈ laterw (x := e)
implies writes of y cannot be reordered before the instruction x := e. This will be
the case when y = x (due to constraint (i) of Sect. 2) or y ∈ var(e) (due to con-
straint (iii) of Sect. 2). Similarly, y ∈ laterr (x := e) implies reads of y cannot be
reordered before x := e. This will be the case when y = x and e contains global
variables (due to the weakened constraint (ii) of Sect. 2) or y ∈ var(e) ∩ Global
(due to constraint (iv) of Sect. 2). The full definitions are:

laterw (Fence) = Var
laterw (x := e) = {x} ∪ var(e)
laterw (b) = var(b) ∪ Global

laterr (Fence) = Var
laterr (b) = var(b) ∩ Global

laterr (x := e) =
{{x} ∪ (var(e) ∩ Global) if var(e) ∩ Global �= ∅

∅ otherwise

548 G. Smith et al.

where an argument b denotes the guard of an if or while instruction. The ‘oth-
erwise’ case of the definition of laterr (x := e) allows for forwarding.

Let f [a] denote the update of function f (which may be Ww , Wr , Rw or Rr)
when instruction a occurs, and ψ stand for either W or R. Then

ψw [a](x) =
{

ψw (x) ∪ knownψ(a) if x ∈ laterw (a)
ψw (x) \ killψ(a) otherwise

ψr [a](x) =
{

ψr (x) ∪ knownψ(a) if x ∈ laterr (a)
ψr (x) \ killψ(a) otherwise

where killW (a) = wr(a) and killR(a) = rd(a).
For example when an instruction a occurs, for any instruction a1,

knownW (a1) is updated by changes to Ww (y) for any variable y written in a1,
and Wr (y) for any variable y read in a1. These changes reflect the instruction
reorderings captured in laterw (a) and laterr (a). If the instruction a1 cannot be
reordered before a (due to a variable written or read in a1 being in laterw (a) or
laterr (a), respectively) then any writes that are known to have occurred before
a will also be known to have occurred before a subsequent instruction a1. Hence,
they are added into Ww (y) or Wr (y). If, on the other hand, a1 can be reordered
before a then any writes in a are removed from those known to have occurred
before a1 (by removing them from both Ww (y) and Wr (y)).

5 The Logic

In this section, we present our logic in which a thread c is secure when a judge-
ment Γ,P ,D {c}M Γ ′,P ′,D ′ can be derived from the logic’s rules under modes
M where D is the tuple (Ww ,Wr ,Rw ,Rr) capturing the dependencies between
instructions. Initially, Γ (x) is Low for those stable variables x for which L(x) is
true and High otherwise, P is true, and all functions in D map each variable to
Var . In the logic, we let C ⊆ Var represent the set of control variables.

The rules for skip, sequential composition, if statements and while loops
(see Fig. 3) are based on those of Murray et al. [19,20]. The most significant
modification is the introduction of Pa , a version of P restricted to the writes
which are guaranteed to have occurred prior to reaching instruction a. We define
Pa = P |knownW (a), where

P |S =̂ ∃ y1, ...yn · P where {y1, .., yn} = Var \ S

As in Murray et al. [19,20], rules with branching conditions restrict the
expression to be Low . This is necessary to ensure our logic is timing-sensitive
(see Sect. 6). Additionally, we introduce an update to D based on an instruction
a, D [a], which updates all of its components as described in Sect. 4.

These rules also uses the notation [b]M , which is the condition b with all free
occurrences of unstable variables removed.

[b]M =̂ ∃ y1, ...yn · b
where {y1, ..., yn} = Var \ (M (AssNoRW) ∪ M (AssNoW))

Value-Dependent Information-Flow Security on Weak Memory Models 549

Fig. 3. Rules of the logic.

The removal of free occurrences of unstable variables is required as these
variables may be changed by another thread at any time (invalidating the rela-
tionship between them and stable variables). For example, if variables x and y
are stable but z is not, the guard expression x = y + z should add the predicate
∃ z · x = y + z to P , rather than x = y + z .

The Rewrite rule is typically required when using the If and While rules
to ensure both branches have corresponding analysis states and to establish loop
invariants, respectively. The rule allows for the introduction of stronger Γ , P and
D on the left-hand side, and weaker Γ ′, P ′ and D ′ on the right. To express this,
we introduce a relation ⊇ between values of D .

D ⊇ D ′ =̂ ∀ x : Var · ψw (x) ⊇ ψ′
w (x) ∧ ψr (x) ⊇ ψ′

r (x) where ψ ∈ {W ,R}
Additionally, we introduce a relation ≥ between values of Γ . This relation

constrains the entries in the weaker Γ to be higher or equal to those in the
stronger, as any expressions that pass the logic’s rules with a High read will also
succeed with a Low read. Such a rewriting property allows for branches that

550 G. Smith et al.

consider the same variable at different security levels to merge, rewriting to the
highest level.

Γ ≥ Γ ′ =̂ dom Γ = dom Γ ′ ∧ ∀ x : dom Γ · Γ (x) � Γ ′(x)

While the use of the Rewrite rule requires user interaction, its application
can be automated based on the context, e.g., through the introduction of a
specialised If rule as in Murray et al. [19,20].

There are two rules for assignment. The first rule, Assign, corresponds to
the assignment of an expression e to a non-control variable x . If another thread
can read x , the expression’s security level should not be higher than x ’s security
level when considered under Px :=e .

Γ , P and D are updated to reflect the assignment. The notation Γ [x �→ t]
denotes reassignment, where the function Γ is updated so that x maps to t
provided x ∈ dom Γ . For P we use a shorthand that denotes the strongest
postcondition, sp, of the assignment x := e from a state satisfying P with all
free occurrences of unstable variables removed.

P [x := e]M =̂ sp(x := e,P) |M (AssNoRW)∪M (AssNoW)

The second assignment rule, AssignC, corresponds to an assignment to a
control variable. In this case, the expression must have a Low security level to
conform with the restriction on control variables introduced in Sect. 4.2. More-
over, the effect of the assignment on the security level of controlled variables
must be taken into account. If the security level of a readable controlled vari-
able y falls from High to Low , it is necessary that any earlier writes to y are
guaranteed to have occurred, and that the final such write has set y to Low .

If, on the other hand, the security level of y rises from Low to High, it is
necessary that any earlier reads of y are guaranteed to have occurred. To see
why this is required, consider the code z = 0; x = y; z = 1 where L(y) = (z = 0)
and L(x) = true. If the assignment z = 1 occurs before x = y then another thread
may update y to a High value before x = y occurs. This would result in a High
value being passed to x which has a Low security level.

The required condition for assignment to control variables is captured by the
shorthand secure updateΓ,P,D,M (x := e) defined below.

secure updateΓ,P,D,M (x := e) =̂
(∀ y : falling(x ,P ,P ′) \ M (AssNoRW) ·

y ∈ knownW (x := e) ∧ Γ,P ′ 	 y : Low) ∧
(∀ y : rising(x ,P ,P ′) · y ∈ knownR(x := e))

where P ′ = P [x := e]M is the predicate after the assignment and

falling(x ,P ,P ′) =̂ {y : Var | x ∈ var(L(y)) ∧ ¬ (lowP (y)) ∧ ¬ (highP ′(y))}
rising(x ,P ,P ′) =̂ {y : Var | x ∈ var(L(y)) ∧ ¬ (highP (y)) ∧ ¬ (lowP ′(y))}

Value-Dependent Information-Flow Security on Weak Memory Models 551

The sets falling and rising identify all variables that could change security
level due to the modification of a control variable x . As not all information may
be available in P or P ′ to determine security levels, for soundness the definitions
default to assume a change has occurred.

The final rule is for fences. After a fence, it is guaranteed that the earlier
reads and writes of all variables have occurred.

5.1 Soundness

The logic has been encoded in Isabelle/HOL [21] and proved sound with respect
to an encoding of the operational semantics of ARMv8 [6]. The soundness proof
follows the structure of prior proofs for sequentially consistent logics [15,19,20]
and proves that programs that pass the logic’s rules will satisfy a compositional
non-interference property. That compositional property requires showing that
whenever two copies of the program each perform an execution step from states
that agree on the values of Low variables, then the resulting states also agree
on their Low variables. The main extra complexity of the proof concerns the
case in which one copy performs a step that is out-of-order. In this case we must
prove that the other copy must also perform this out-of-order step. To do so,
we encode into the operational semantics the assumption that the choice about
when to reorder instructions never depends on sensitive information, akin to
prior work that made a similar assumption about the thread schedule [19,20]
by quantifying over all deterministic interleavings of threads. The theories are
available at https://bitbucket.org/wmmif/wmm-if.

5.2 Example Revisited

writer thread:
1 z := 0;
2 x := 0;
3 while (true)
4 z := z+1;
5 fence;
6 x := secret;

...
7 x := 0;
8 fence;
9 z := z+1

reader thread:
10 while(true)
11 do
12 do
13 r1:= z;
14 while (r1 % 2 �= 0)
15 fence;
16 r2 := x;
17 fence;
18 while (z �= r1)
19 y := r2

Fig. 4. Writer and reader threads using the operation
secret write and read of Fig. 2.

The sequential composition
rule allows us to step through
a program one line at a
time. The values of Γ , P
and D following a given line
can be calculated from the
applied rule. If we reach a
line of code that no rule
can be applied to, this indi-
cates a potential security
leak. For example, consider
the writer thread in Fig. 4
for which we will assume
M (AssNoW) = {z, x}. This
thread initialises the vari-
ables z and x and then
repeatedly calls the secret write operation of Fig. 2. Applying rules AssignC and
Assign to lines 1 and 2, respectively, shows that the code up to line 2 is secure.
Following line 2, we have Γ = {z �→ Low , x �→ Low}, P = (z = 0 ∧ x = 0),

https://bitbucket.org/wmmif/wmm-if

552 G. Smith et al.

and D comprises Ww = {z �→ {z}, x �→ {x}}, Wr = {x �→ ∅, z �→ ∅} and
Rw = Rr = {z �→ {x, z}, x �→ {x, z}}.

The Rewrite rule can then be applied to weaken P to z%2 = 0 ∧ x =
0 and leave Γ and D unchanged. These values become the starting point for
evaluating lines 4 to 9. We can show that these lines are also secure by applying
rules AssignC, Fence and Assign. Note that without the fence at line 5, z
would not be a member of knownW (x := secret) and hence not in Px :=secret .
Therefore, Assign would not be applicable (since the value of z is required to
be odd for this assignment to be secure). Hence, no rule would be applicable for
line 6. This demonstrates how the leak of x would be detected by the logic if
lines 4 and 6 could be reordered.

Similarly, without the fence at line 8, no rule would be applicable to line 9.
In this case, since z becomes even at line 9, the variable x must hold Low data
to satisfy secure updateΓ,Pz := z + 1,D,M . This could not be ascertained, however,
since x would not be in knownW (z := z + 1). This demonstrates how the leak
of x would be detected by the logic if lines 7 and 9 could be reordered.

The situation for the reader thread is not as straightforward. Even with the
fences (as suggested in Sect. 3), the logic cannot be used to show that the code
is secure. This is because z is not stable and hence the assignment at line 16
cannot guarantee that r2’s value is Low . Although the logic is sound, it is not
precise enough to determine that reader thread’s code is secure.

5.3 A More Precise Logic

The reason that the reader thread of Fig. 4 is secure, is that it only reaches line
19 when z is stable from line 13 (when it is assigned to r1) until line 18 (where
it is checked to be equal to r1). The algorithm works on the principle that there
is a high chance of z being stable while these lines are executed, and hence the
reader thread will reach line 19 without too many iterations of the outer do-loop.
This reliance on stability is common among non-blocking algorithms.

To allow for us to check the security of such algorithms, we allow non-blocking
loops, such as the outer loop in reader thread, to be annotated with a variable
which we expect to be stable (z in this example). The annotation allows local
reasoning to assume that the nominated variable is stable using the following
rule (where c can be a while or do loop).

Γ,P |knownW (z)	 z : t
Γ ∪ {z �→ t},P ,D {c}M z Γ ′ ∪ {z �→ t ′},P ′,D ′

NonBlocking
Γ,P ,D {cz}M Γ ′,P ′,D ′

where Γ is updated with a value for z (based on what is known to have
occurred if the variable were read) and M is extended to Mz = M [AssNoW �→
M (AssNoW) ∪ {z},GuarNoW �→ M (GuarNoW) ∪ Global].

The extension of GuarNoW in Mz ensures that, while in the loop, no writes
can be made by the thread to any global variables. This is required in such non-
blocking algorithms so that the execution can be discarded and restarted when
z is discovered not to be stable.

Value-Dependent Information-Flow Security on Weak Memory Models 553

For the rule to be sound, we also require that the loop cannot be exited
unless the variable is stable from the time that it is entered. This check requires
reasoning about the functionality of the code and is outside of the scope of the
logic (similar to the obligation that assumptions are matched by guarantees on
other threads). In the case of reader thread, the proof follows from the fact that
the value of z is never decreased (as described in Sect. 3).

6 Timing Sensitivity

In earlier work on information-flow security on weak memory models [14,26],
an auxiliary variable is introduced (called wt in [26] and pt in [14]) to record
the lowest security level of a pending write, i.e., one that has occurred locally
but has not necessarily been flushed to global memory. This is argued to be
necessary to prevent Low variables being flushed on a High path (i.e., a path
entered depending on the value of a High variable) and thus revealing that the
program has taken that path. In our logic, we do not allow High paths and hence
do not require such a variable.

Thread 1:
low := 0;
if (high=0)
then while (high < 1000) high++;
else skip;
low := 1;

Thread 2:
output=low;

Fig. 5. Example illustrating the need for
timing-sensitive security.

Our justification for this restric-
tion is based on the fact that a com-
positional information-flow logic must
be timing-sensitive, i.e., information
should not be leaked to an attacker
who is able to time the execution of
a program. As argued in [19], this is
not possible in the presence of High
paths. For example, consider the pro-
gram in Fig. 5 in which high is a High
variable and low and output are Low
variables. Both threads are timing-
insensitive secure since low is never
dependent on the value of high. However, when they are composed the value
written to output is more likely to be 0 than 1 when high is 0. Hence, although
the threads are timing-insensitive secure, their composition is not. This does not
require a probabilistic argument: under a round-robin scheduler with time slices
less than the time it takes to execute the loop, the result output = 1 would
indicate that high = 1.

The first thread is obviously not timing-sensitive secure (as its execution
time depends directly on high) and hence under timing-sensitive security the
issue with compositionality does not arise. Eliminating High paths from code
can be achieved using program transformations as described, for example, in
[1,17].

7 Conclusion

In this paper, we have presented the first information-flow logic for the ARMv8
weak memory model; a memory model which is significantly weaker than those

554 G. Smith et al.

such as TSO for which prior information-flow logics have been considered. Our
logic supports dynamic, value-dependent security levels and is compositional
and timing-sensitive. It has been proven sound with respect to an operational
semantics of ARMv8 which has been validated against extensive test suites.

This work, focusing on instruction reordering, is a first step towards a more
extensive logic in terms of its coverage of both ARM instructions and behaviours,
and potential security vulnerabilities. We also anticipate improving the com-
pleteness of the logic, in particular by supporting more general rely/guarantee
conditions, and adapting it for other weak memory models including those of
IBM POWER and prior versions of ARM.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: Holz, T., Savage, S. (eds.) 25th USENIX Secu-
rity Symposium, USENIX Security 16, pp. 53–70. USENIX Association (2016)

2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: Hermenegildo, M.V., Palsberg, J. (eds.)
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, pp. 7–18. ACM (2010)

3. Boehm, H.: Can seqlocks get along with programming language memory models?
In: Zhang, L., Mutlu, O. (eds.) Proceedings of the 2012 ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness: Held in Conjunction with PLDI
2012, pp. 12–20. ACM (2012)

4. Bulck, J.V., et al.: Foreshadow: extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In: Enck, W., Felt, A.P. (eds.) 27th USENIX
Security Symposium, USENIX Security 2018, pp. 991–1008. USENIX Association
(2018)

5. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of
parallel computations. Commun. ACM 24(4), 198–206 (1981)

6. Colvin, R.J., Smith, G.: A high-level operational semantics for hardware weak
memory models. CoRR, abs/1812.00996 (2018)

7. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 240–257. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7 14

8. Fitzpatrick, J.: An interview with Steve Furber. Commun. ACM 54(5), 34–39
(2011)

9. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: Bod́ık, R., Majumdar, R. (eds.), Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, pp. 608–621. ACM (2016)

10. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

11. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. CoRR,
abs/1801.01203 (2018)

12. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: Enck, W.,
Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, pp.
973–990. USENIX Association (2018)

https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14

Value-Dependent Information-Flow Security on Weak Memory Models 555

13. Lourenço, L., Caires, L.: Dependent information flow types. In: Rajamani, S.K.,
Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015, pp. 317–328. ACM
(2015)

14. Mantel, H., Perner, M., Sauer, J.: Noninterference under weak memory models.
In: IEEE 27th Computer Security Foundations Symposium, CSF 2014, pp. 80–94.
IEEE Computer Society (2014)

15. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for composi-
tional noninterference. In: Proceedings of the 24th IEEE Computer Security Foun-
dations Symposium, CSF 2011, pp. 218–232. IEEE Computer Society (2011)

16. Moir, M., Shavit, N.: Concurrent data structures. In: Mehta, D.P., Sahni, S. (eds.),
Handbook of Data Structures and Applications. Chapman and Hall/CRC (2004)

17. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

18. Murray, T.C.: Short paper: on high-assurance information-flow-secure program-
ming languages. In: Clarkson, M., Jia, L. (eds.), Proceedings of the 10th ACM
Workshop on Programming Languages and Analysis for Security, PLAS@ECOOP
2015, pp. 43–48. ACM (2015)

19. Murray, T.C., Sison, R., Engelhardt, K.: COVERN: a logic for compositional verifi-
cation of information flow control. In: 2018 IEEE European Symposium on Security
and Privacy, EuroS&P 2018, pp. 16–30. IEEE (2018)

20. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification
and refinement of concurrent value-dependent noninterference. In: IEEE 29th Com-
puter Security Foundations Symposium, CSF 2016, pp. 417–431. IEEE Computer
Society (2016)

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

22. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
PACMPL 2(POPL), 19:1–19:29 (2018)

23. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Hall, M.W., Padua, D.A. (eds.), Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, pp. 175–186. ACM (2011)

24. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

25. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, San Rafael (2011)

26. Vaughan, J.A., Millstein, T.D.: Secure information flow for concurrent programs
under Total Store Order. In: Chong, S. (ed), 25th IEEE Computer Security Foun-
dations Symposium, CSF 2012, pp. 19–29. IEEE Computer Society (2012)

27. Zheng, L., Myers, A.C.: Dynamic security labels and static information flow con-
trol. Int. J. Inf. Sec. 6(2–3), 67–84 (2007)

https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

Reasoning Formally About Database
Queries and Updates

Jon Haël Brenas1, Rachid Echahed2 , and Martin Strecker3(B)

1 UTHSC - ORNL, Memphis, TN, USA
2 CNRS and University Grenoble Alpes, Grenoble, France

3 Toulouse, France
http://martin-strecker.org/

Abstract. This paper explores formal verification in the area of
database technology, in particular how to reason about queries and
updates in a database system. The formalism is sufficiently general to be
applicable to relational and graph databases. We first define a domain-
specific language consisting of nested query and update primitives, and
give its operational semantics. Queries are in full first-order logic. The
problem we try to solve is whether a database satisfying a given pre-
condition will satisfy a given post-condition after execution of a given
sequence of queries and updates. We propose a weakest-precondition cal-
culus and prove its correctness. We finally examine a restriction of our
framework that produces formulas in the guarded fragment of predicate
logic and thus leads to a decidable proof problem.

Keywords: Automated theorem proving · Modal logic ·
Graph transformations · Program verification

1 Introduction

1.1 Context and Contributions

The work reported here has initially grown out of an effort to verify graph-
manipulating programs that owe much to a traditional imperative programming
style. The transformation language presented in this paper is inspired by query
and update primitives found in graph databases such as Cypher [27], but we
do not try to mimic a specific DB language, and our language is sufficiently
general that it is also interesting for relational DBs. The structure of the lan-
guage is in principle very simple, consisting of nested match constructs (however
with queries that are full first-order logic formulas) and addition and deletion of
relations. We are here interested in structural aspects, dealing only with unin-
terpreted relations. The transformation language (syntax and well-formedness
constraints and semantics) will be defined in Sect. 2.

The transformation language has a clearly imperative (as opposed to func-
tional) flavour, with a notion of DB state that coincides with a non-standard
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 556–572, 2019.
https://doi.org/10.1007/978-3-030-30942-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_33&domain=pdf
http://orcid.org/0000-0002-8535-8057
http://orcid.org/0000-0001-9953-9871
https://doi.org/10.1007/978-3-030-30942-8_33

Reasoning Formally About Database Queries and Updates 557

notion of interpretation of formulas. The main focus of the paper is on verifying
whether a DB satisfying a given pre-condition will satisfy a given post-condition
after the transformation. These conditions are again full first-order formulas. It
is important to emphasise that we are dealing with the verification of the cor-
rectness of transformations as such, and not the validation of the satisfaction
of constraints for particular instances of a DB (thus a kind of model check-
ing problem). The program correctness calculus (a particular form of weakest
pre-condition calculus) is described in Sect. 3. The resulting proof obligations
are undecidable in general. However, in Sect. 4, we restrict our attention to the
Guarded Fragment of predicate logic. By imposing suitable restrictions on the
formulas occurring in assertions and selection statements, we identify a natural
class of transformations that give rise to decidable proof obligations.

A particular challenge of our formalism is to take into account contextual
information stemming from nested match statements, and to deal with relational
update (an essentially second-order construct) in a first-order framework.

Related Work. The view of a database transformation as an imperative program,
with pre- and post-conditions, seems to be new.

Work in the context of deductive DBs ([8,26], also see [23] for an overview)
mainly seems to address the problem of maintaining the consistency of DB w.r.t.
specific constraints after individual updates, and not deductive verification. Con-
sistency maintenance is then often enforced by Prolog-like inference rules. The
more general question of DB updates as theory updates, for example in [11], has
triggered an extensive amount of work, including investigations in non-monotonic
logics. This line of research is not at all related to our approach that is situated
in classical logic, with the credo that updates modify models and not theories.

A notable exception to the above is the work by Benedikt, Griffin and Libkin
[5] that considers the problem of definability of database transactions for a very
abstract notion of transformation language, leading mainly to negative decidabil-
ity results. Contrary to this, we start with a specific (and, in particular in Sect. 4,
restricted) language, to arrive at a proposal for a practically useful verification
framework.

XML transformations [19,22] are transformations of particular tree-like struc-
tures, and the powerful type systems developed for them can be assimilated with
program correctness assertions. However, XML transducers have a functional
flavour, the verification method is not comparable to ours.

As mentioned before, our work has its origin in the verification of graph
transformations. The landscape is heterogeneous, ranging from approaches based
on category theory [16] to work in Monadic Second Order logic [10,20]. The graph
decompositions inherent to this latter approach are often not compatible with
updates performed naturally in graph structures (insertion or deletion of arcs,
updates of attributes).

Our own work [6,7,9] has so far concentrated on particular decidable log-
ics (modal or description logics). We have evoked the problem of the procedural
transformation language; we mention in particular the difficulty with loops whose
verification requires an annotation with invariants, so the verification approach

558 J. H. Brenas et al.

is not fully automatic. Work that is very similar in spirit, also based on descrip-
tion logics and consistency management in ontologies, is [1–3]. The limitation
of expressiveness of description logics leads to unpleasant circumlocutions: the
logics are often not closed under simple operations like substitutions of relational
expressions, with the consequence that extraction of proof obligations and proof
procedures are intertwined. In order to have a clearer picture of the underlying
mechanisms, we choose a plain first-order setting in this paper.

The modification of databases in conjunction with an imperative program-
ming language is described in [21], with a verification procedure based on
two-variable first order logic. To obtain decidability, severe restrictions on
the domains (bounded domains and only one unbounded domain) have to be
imposed.

As mentioned in the outset, we want to capture the spirit of DB languages
like Cypher, without reproducing these languages in detail; our nested match
statements seem to go beyond what is currently available in Cypher, and there
are a huge number of features we do not cover, in particular paths. We are aware
of a formal definition of the semantics of Cypher [12] and hope that a merger
of this semantics and our language might make it possible to formally reason
about integrity constraints in languages like Cypher.

1.2 Introductory Example

Before starting with the technical development, we present an example that
informally introduces the principal notions and gives an overview of the verifi-
cation methodology.

We consider the scenario of a database of a service provider for subscrip-
tion of potential clients to its services. The database maintains some integrity
constraints:

– ValidClient : All clients C registered in the database have to have their sub-
scription approved (V alid) by an employee (E) of the company: (∀c.C(c) −→
∃e.E(e) ∧ V alid(e, c))

– ActiveIfSubscr : A service is activated for a client only if the client has previ-
ously subscribed to it: (∀s c. Active(s, c) −→ Subscr(s, c)). The provider may
suspend a service, so the inverse is not necessarily the case.

After registering at the service provider and subscribing to some services,
the potential clients first get the status of applicants (A). At regular intervals,
the database runs the program of Fig. 1 to integrate applicants into its standard
client base. This program proceeds as follows: it first retrieves all the applicants a
that have their subscription approved (outer match) and adds these applicants as
clients (first add statement). It then retrieves all the services s a given applicant
a has subscribed to and activates these services (inner match). Finally, it removes
the selected applicants from the set A (del statement).

The program is annotated with a pre-condition (the integrity constraint men-
tioned before) and a post-condition: the integrity constraint and the knowledge
that all applicants remaining in A have not had their demand validated so far.

Reasoning Formally About Database Queries and Updates 559

Fig. 1. An example program

Let us run the program on a particular instance of a DB (the operational
semantics in full generality is defined in Sect. 2.3). The extensions of the unary
predicates are sets of elements; and of the binary relations are sets of pairs. At
the start of the program, we assume:

A = {a1, a2, a3} E = {e1, e2}
C = {c1, c2} S = {s1, s2}
V alid = {(e1, c1), (e1, c2), (e1, a1), (e2, a2)}
Subscr = {(s1, c1), (s2, c2), (s1, a1), (s2, a1), (s2, a2)}
Active = {(s1, c1)}
Before looking in more detail at the execution of the program, it is impor-

tant to understand the notion of a state of a program, which coincides with
our non-standard notion of interpretation of a formula, which is set-based and
not instance-based, as explained in the following. An interpretation is made up
of three components: a domain (in this case, the set {a1, a2, . . . s1, s2}) and an
interpretation of the predicate symbols (as above); all this is standard. The dif-
ference is in the way individual variables are interpreted: instead of having a
single function mapping variables into the domain, we take a set of such func-
tions. We are in particular interested in maximal interpretations that contain all
the individual interpretation functions satisfying certain requirements.

As the precondition contains no free variables, the maximal interpretation
set is initially the set of all functions mapping the set of variables to elements of
the domain. The first match restricts the set of variable interpretations to those
that map variable a to a1 or a2, as only these satisfy the condition of the match
(the relation interpretations are not modified by match, and the domain remains
invariant for all operations). The first add operation has an effect on the inter-
pretation of relation C, adding the elements a1, a2 so that it will then become
{c1, c2, a1, a2} (here, the individual interpretations are not modified). The inner
match limits the set of admissible individual interpretations still further to the
set {(a �→ a1, s �→ s1), (a �→ a1, s �→ s2), (a �→ a2, s �→ s2)}. These pairs are then
added to Active, whose extension is {(s1, c1), (s1, a1), (s2, a1), (s2, a2)} at the
end of the inner match statement. Note in particular that we do not simply take
the cross-product of the elements {s1, s2} bound to s and the elements {a1, a2}
bound to a: the pair (s1, a2) is not added to Active. We finally execute the del

560 J. H. Brenas et al.

statement, which sets A to {a3}. The net effect of the program is therefore an
update of the relations A, C and Active in the DB.

Reasoning about these programs proceeds by backwards propagation of post-
conditions, by computing weakest pre-conditions (wp). There are in particular
two challenges for wp reasoning: taking into account contextual information
(given by the conditions in the match clauses), and reasoning about sets and
relations, instead of individuals.

When reasoning backwards, we first have to take the effect of del(A(a)) into
account. We look up the contextual information about variable a. Its defining
clause is A(a) ∧ ∃e.E(e) ∧ V alid(e, a), so we symbolically remove from A in
the post-condition all the elements satisfying this predicate. The subformula
(∀a.A(a) −→ ¬∃e.E(e)∧V alid(e, a)) then becomes (∀a.(A(a)∧¬(A(a)∧∃e.E(e)∧
V alid(e, a))) −→ ¬∃e.E(e)∧V alid(e, a)), which reduces to true. The subformula
ValidClient ∧ ActiveIfSubscr is not affected by the delete statement.

We next examine the effective of add(Active(s, a)) on the remaining post-
condition. The contextual information for variable a is as before, and for variable
s is S(s) ∧ Subscr(s, a). In ActiveIfSubscr , we replace Active(s, c) by a formula
describing the union of Active and the conjunction of the characterising formulas
of a and s, which yields ∀s c. (Active(s, c)∨A(c)∧(∃e.E(e)∧V alid(e, c))∧S(s)∧
Subscr(s, c)) −→ Subscr(s, c). It is easy to see that this formula is implied by
ActiveIfSubscr in the precondition of the program. In a similar spirit, we reason
about add(C(a)), replacing C(c) in the precondition ValidClient by C(c)∨A(c)∧
∃e.E(e) ∧ V alid(e, c).

2 Transformation Language

This section defines the syntax of the transformation language (Sect. 2.1); it
presents two notions of interpretation of formulas that are also instrumental for
the concept of program state (Sect. 2.2); and it gives the operational semantics
of programs (Sect. 2.3). The rest of this paper uses a semi-formal, mathematical
style. A fully formal development in the Isabelle proof assistant is under way.1

2.1 Syntax

The syntax of statements stmt and programs prog is defined by the following
grammar, where boldface v stands for a list of variables v1, . . . , vn:

stmt ::= Skip
| add(R(v))
| del(R(v))
| match v where form { stmt }
| stmt; stmt

prog ::= Pre : form stmt Post : form

1 Parts of the development can be found in the repository https://bitbucket.org/
Martin Strecker/db queries updates/.

https://bitbucket.org/Martin_Strecker/db_queries_updates/
https://bitbucket.org/Martin_Strecker/db_queries_updates/

Reasoning Formally About Database Queries and Updates 561

Formulas form are occurring in match clauses and the pre- and post-
conditions. They are formulas of standard first-order logic, defined by

form ::=⊥ | R(v) | x = y | ¬form | form ∧ form | ∀v.form

featuring constant symbol ⊥, relational application R(v), equality x = y between
individual variables, negation, binary connectors, first-order quantification over
individual variables v. Other connectors and quantifiers than those shown are
defined as usual.

Renaming individual variable x by y in formula φ is written φ[x := y]. In
formula manipulations like these, we assume that bound variables are correctly
renamed to avoid clashes.

We assume that relation symbols have a fixed arity which can be enforced by
typing or a naming convention; we do not describe the details here. Well-typing
of a statement c in a context (list of variables) Γ , written Γ 	 c, is defined by:

– Γ 	 add(R(v)) if v ⊆ Γ and similarly for del
– Γ 	 match v where b {c} if Γ ∩ v = {} and Γ@v 	 c and fv(b) ⊆ Γ@v,

where @ is list concatenation and fv(b) is the set of free individual variables
of b. In particular, match binds the variables v in b and c, and these variables
should not occur in the context.

– Γ 	 c1; c2 if Γ 	 c1 and Γ 	 c2

Pre- and post-conditions and statements may contain free individual variables,
whose declaration constitutes the initial context for type checking. Since the
programs we present in the examples are all closed, we have omitted the variable
declaration clauses.

Apart from typing, we have to impose another restriction on the programs
we analyse: There are no modifications of defining relations before use.

Example 1. Before defining this notion, we will look at a counter-example:

match a where A(a) {
match b where B(b) {

add(A(b))
};
del(C(a))

}
When reasoning about relation updates (add or del), we describe the changes
induced w.r.t. the defining properties of the variables. Before the add in Exam-
ple 1, the defining properties of a and b are A(a) and B(b) respectively. Intu-
itively and using a set-theoretic notation, the effect of the add is that the new
A becomes A0 ∪ B, where A0 is the original value of A. Computing this effect is
not difficult.

The problem is the following del(C(a)), where we cannot proceed in a similar
fashion. We cannot say that new C is C0 − A by looking up how a was defined

562 J. H. Brenas et al.

in the corresponding match statement, because relation A has been modified
between definition and use of a, but the variable a is still bound to the original
values: before the del statement, A(a) is not true any more. In fact, it should
be that C = C0 − A0. Intuitively speaking, it seems that our analysis would
become considerably more complex if it were necessary to precisely track which
property was true for a variable in the execution history of the program, instead
of taking its defining value.

We give a series of definitions that are reminiscent of the notion of definition-
use chains in compiler technology [24], whence the name of DU-stability intro-
duced below.

Definition 1 (DU-stability). For a statement match v where P , we say that
the v ∈ v are defined by this statement, and we say that P is their defining
property. Note that in a well-typed program, a variable occurs in at most one
match, so this notion is well-defined. The set of defining relations of a variable
v, def rels(v), is the set of relation symbols R that occur in the defining property
of v. We say that a variable is used in the predicate of a match or in an add

or del statement if it is among the free variables of the respective predicates.
We say that a relation R is modified by an update if this update is add(R(v))
or del(R(v)). We say that a variable v defined in a match is DU-stable if in
none of the execution paths leading from the definition to a use of v, any of the
defining relations of v is modified. We say that a program is DU-stable if all its
variables are.

In order to avoid clutter, these definitions have been kept semi-formal in the
sense that they are not defined inductively over the syntax and some parameters
(such as the underlying program) remain implicit. Some related, more formal
definitions are provided in Sect. 3.2.

The program of Example 1 is not DU-stable because the defining relation A
is modified between the use of a in del(C(a)) and its definition. The program in
Fig. 1 is DU-stable, but it would not be if swapping add(C(a)) and del(A(a)),
because then, the defining relation A of variable a would be modified before the
uses of a.

Note that the restriction to property-preserving bindings is not a limitation,
at least in principle and disregarding questions of efficiency of execution. Indeed,
any breach of DU-stability can be avoided by storing values in an auxiliary
relation and then retrieving this copy instead of referring to the modified relation.

2.2 Interpretations

We will introduce two kinds of semantics:

– an individual semantics that is the traditional logical semantics;
– a set-based semantics allowing to reason about sets of assignments of indi-

vidual variables.

Reasoning Formally About Database Queries and Updates 563

The individual semantics is given by interpretations ι = (ιd, ιr, ιi) where ιd
is a domain, ιr is a function that assigns to each n-ary relation symbol of the
language a subset of ιnd , and ιi a function that assigns to each individual variable
an element of ιd. The relation ι |= φ (interpretation ι is a model of formula φ)
is defined as usual:

– ι �|=⊥
– ι |= R(v) if ιi(v) ∈ ιr(R), where ιi(v) is the obvious mapping of ιi on a

vector of variables.
– ι |= x = y if ιi(x) = ιi(y)
– ι |= ¬ψ if ι �|= ψ
– ι |= ψ ∧ φ if ι |= ψ and ι |= φ
– ι |= ∀v.ψ (first-order quantification) if for all vi ∈ ιd, we have ιv:=vi |= ψ.

Here, if ι = (ιd, ιr, ιi), then ιv:=vi = (ιd, ιr, ιi(v := vi)) and ιi(v := vi) is the
update of function ιi at variable v with value vi.

The set-based semantics is given by interpretations σ = (σd, σr, σi) where
σd and σr are as for the individual semantics, and σi is a set of individual
assignments. We write ι ∈ σ if ι = (ιd, ιr, ιi) with ιd = σd and ιr = σr and
ιi ∈ σi.

For instance, in the example of Sect. 1.2, we considered a set-based interpre-
tation σ with a domain σd and relational assignment σr as defined there, and
σi = {(a �→ a1, s �→ s1), (a �→ a1, s �→ s2), (a �→ a2, s �→ s2)}. One of the individ-
ual interpretations ι ∈ σ has the same domain and relational assignment, and
individual variable assignment ιi = (a �→ a1, s �→ s1).

The model relation2 for the set-based semantics is defined by σ |= φ iff for
all ι ∈ σ, ι |= φ. The intuitive meaning of σ |= φ is that σ is a result for a query
φ, where σi is the (not necessarily maximal) set of solutions, i.e. assignments to
the free variables that satisfy φ, given the extension of the database as defined
by σr.

A possibly bewildering consequence of this definition is that also formulas
that are inconsistent (according to the individual semantics) have a model in the
set-based semantics. Indeed, (σd, σr, {}) |=⊥. This choice is motivated by the
intended behaviour of the operational semantics, which should be non-blocking:
execution can always proceed after a match statement, even for an inconsistent
match condition, but then with an empty solution set.

As usual, a formula is called valid if it is true under every interpretation. The
notions coincide for the two semantics:

Lemma 1. A formula is valid under the individual semantics iff it is valid under
the set-based semantics.

2 We use the same relation symbol |= and disambiguate individual and set-based
semantics with the designation of the model (ι resp. σ).

564 J. H. Brenas et al.

Fig. 2. Big-step semantics rules

2.3 Operational Semantics

The operational semantics defines how the program state evolves when executing
the instructions of a program. In our case, a program state is precisely a set-
based interpretation in the sense of Sect. 2.2. Intuitively, in an interpretation σ =
(σd, σr, σi), the component σr corresponds to the extension of the database that
is manipulated by add and del statements, and the component σi corresponds
to variable bindings established by the match clauses. The domain σd remains
unchanged throughout the program.

The rules of the operational semantics have the form (c, σ) ⇒ σ′, meaning
that execution of statement c transforms state σ to state σ′. The inductive
definition of the transition relation is given in Fig. 2.

Before commenting on these rules, we introduce some more notation for
manipulating interpretations. In an interpretation σ = (σd, σr, σi), we retrieve
the component σd, σr, resp. σi with σ.d, σ.r, resp. σ.i. Component update is
written in banana brackets. Thus, σ′′�i := σ.i� (as in rule Match) is the inter-
pretation (σ′′

d , σ′′
r , σi).

The rule for the add statement is defined with the aid of an auxiliary function
that adds to relation R the values bound to variables v in state σ. The precise
definition of add rel si R v σ is: σ�r := σ.r(R := (σ.r(R) ∪ ((λii.map ii v) �
σ.i)))�.

In a similar spirit, the definition of del rel si R v σ is: σ�r := σ.r(R :=
(σ.r(R) − ((λii.map ii v) � σ.i)))�.

Let us decipher the definition of add rel si: We update the relational inter-
pretation of σ for relation R, so that the new interpretation of R becomes
(σ.r(R) ∪ ((λii.map ii v) � σ.i)). This is the old interpretation of relation R,
plus new elements resulting from mapping the individual interpretations on the
variable vector v. Here, map is the mapping of a function on a list, and � is the
image of a set under a function. For example, if the relation to be updated is
Active with interpretation σ.r(Active) = {(s1, c1)} and the individual variable
interpretation σ.i = {(a �→ a1, s �→ s1), (a �→ a1, s �→ s2), (a �→ a2, s �→ s2)}, the
expression ((λii.map ii (s, a)) � σ.i) yields {(s1, a1), (s2, a1), (s2, a2)} which are
added to σ.r(Active) (cf. example of Sect. 1.2).

Reasoning Formally About Database Queries and Updates 565

For executing the match statement, we first compute the maximal model
satisfying condition b in σ. Note that σ already incorporates the cumulative
effect of surrounding match statements. The auxiliary function is defined as
max model b σ := fusion σ {ι ∈ σ | ι |= b}, where fusion σ I := (σd, σr,

⋃
ι ∈

I.{ι.i}). “Maximality” of a set-based interpretation is here understood as “con-
taining the maximum of individual interpretations”. If σ is the maximal interpre-
tation satisfying the surrounding match conditions, then max model b σ is the
maximal model satisfying in addition the current condition. Note that for a con-
dition b that is inconsistent with the surrounding conditions, max model b σ =
(σd, σr, {}).

Starting from this model, we execute the body c of the match statement, to
reach a state σ′′. We finally obtain the result state by restoring the individual
variable bindings of the outer scope; of course, we keep the modifications induced
by c on the relational assignment σr. The rules for Skip (no-op) and sequential
composition are standard.

3 Program Logic

In this section, we show how to reason about the programs introduced in Sect. 2.
For the programming language, we introduce extended Hoare triples (Sect. 3.1)
that take contextual information into account, and establish a correspondence
with the operational semantics, in the form of a soundness result (Sect. 3.2). We
then show how to derive weakest pre-conditions (Sect. 3.3).

3.1 Hoare Triples: Definition

As is common practice in program logics, we reason about programs with Hoare
triples {P} c {Q} which express that when started in a program state that satis-
fies condition P , execution of statement c ends up in a program state satisfying
condition Q. The programs of our language always terminate, never get stuck,
and the language is deterministic, so there is no need to distinguish between
partial and total correctness of programs.

To this triple, we add a context β that is the list of conditions accumulated
while diving into nested match statements. This list dynamically grows or shrinks
as we move into or out of a match statement. The conjunction of these formulas
can be assumed to hold at the given point of the program. Indeed, in formulas
(such as R(v)∨β), β does not stand for a list of formulas, but for the conjunction
of the elements of the list. The inductive definition of the relation β 	 {P} c {Q}
is given in Fig. 3. At the start of a program, the context is assumed to be empty:
β = []. In spite of its four components, we continue speaking about Hoare triples.

Again, the rules Skip and Seq are standard, and so is Conseq that per-
mits to weaken pre- respectively post-conditions and that is provided to ensure
completeness of the calculus.

The Match rule adds the match condition b to the list of bindings β (list
concatenation β@[b]) and then computes the pre-condition P for the body of the

566 J. H. Brenas et al.

Fig. 3. Hoare triples

match statement. Whereas Q is outside the scope of the variables v bound by
match, these variables could appear in P . The pre-condition of match therefore
discharges the local condition b and abstracts over the local variables v.

In rules Add and Del, we use relation update:

Definition 2. The update of relation R by relation S in formula Q is written
as Q[R := λv.S], where the variables v may occur in S. It is defined recursively
with base case R(a1, . . . , an)[R := λv1, . . . , vn.S] = (λv1, . . . , vn.S)(a1, . . . , an) =
S[v1 := a1, . . . vn := an] and R′(a1, . . . , an)[R := λv1, . . . , vn.S] = R′(a1, . . . , an)
for R �= R′. The propagation of update [R := λv.S] through Boolean connectives
is standard, with variable renaming in (∀v.ψ)[R := λv.S] = (∀v′.ψ[v := v′][R :=
λv.S]) to avoid free variable capture.

Please refer back to Sect. 1.2 for an illustration: For example, for state-
ment add(Active(s, a)), the context β is the conjunction of A(a) ∧ ∃e.E(e) ∧
V alid(e, a) and S(s) ∧ Subscr(s, a), and relation update (∀s c. Active(s, c) −→
Subscr(s, c))[Active := λs a.Active(s, a) ∨ β] yields ∀s c. (Active(s, c) ∨ A(c) ∧
(∃e.E(e) ∧ V alid(e, c)) ∧ S(s) ∧ Subscr(s, c)) −→ Subscr(s, c).

3.2 Hoare Triples: Soundness

The proof of soundness follows a general approach that is relatively standard, see
for example [25]. We first define a semantic notion of validity of a Hoare triple
and then show that the inductively defined relation of Fig. 3 implies semantic
validity. We first define a simplified variant of validity (Definition 3), from which
soundness is not directly provable. For the induction to go through and to take
into account the notion of DU-stability, we have to define a more complex notion
of validity (Definition 6) with a more involved soundness lemma (Lemma 2) of
which the desired theorem (Theorem 1) is an instance.

Reasoning Formally About Database Queries and Updates 567

Definition 3 (Validity of Hoare Triples). For formulas P and Q and state-
ment c, we define the relation |= {P} c {Q} as: For all states σ, σ′, if (c, σ) ⇒ σ′

and σ |= P , then σ′ |= Q.

Theorem 1 (Soundness). Let c be a well-typed and DU-stable program. If
[] 	 {P} c {Q}, then |= {P} c {Q}.

We prove this theorem later and first introduce additional notation.
An exclusion set X is a set of variables, with the intended meaning that if

v ∈ X at a particular point in program execution, then there exists an R that
is a defining relation of v (see Definition 1) and R has been modified since the
definition of v. Intuitively, this has as a consequence that if P (v) is the defining
property of v, then there is a risk that P (v) is not true at this point any more.

To keep track of how exclusion sets evolve during execution of a program, we
define a relation of exclusion propagation.

Definition 4 (Exclusion Propagation). For statement c and exclusion sets
X,X ′, we inductively define the relation of exclusion propagation (c,X) ×−→ X ′

by:

– (Skip,X) ×−→ X

– (add(R(v)),X) ×−→ X ∪ D(R) where D(R) is the set of variables v such that
R is a defining relation of v

– (del(R(v)),X) ×−→ X ∪ D(R)
– (match v where b {c},X) ×−→ (X ′ − v) if (c,X) ×−→ X ′

Note that the local variables v are not visible outside of c and can therefore
be removed after the match.

– ((c1; c2),X) ×−→ X ′ if (c1,X) ×−→ X ′′ and (c2,X ′′) ×−→ X ′

Example 2. Let us look back at the introductory example in Fig. 1. When start-
ing exclusion propagation with an empty set at the beginning of the program, it
remains empty most of the time, until after the del statement, when it becomes
{a}, so the defining property of a is not usable in the following, but this is not
problematic as there are no further statements (a fortiori, statements where a
is used).

Now please refer back to the program of Example 1. When starting exclusion
propagation with an empty set, after the add statement, the exclusion set is {a},
and it remains so until the del statement. The problem is that variable a is still
used at this point.

Definition 5 (Admissible Predicates). For a list of formulas β and an exclu-
sion set X, the set of admissible predicates is adm(β,X) = {b ∈ β | fv(b)∩X =
{}}. Taken as a formula, adm(β,X) is understood to be the conjunction of the
formulas contained in the set.

Consider an exclusion propagation of a program that starts with an empty
exclusion set. Assume that at a point before a statement add(R(v)) (or similarly

568 J. H. Brenas et al.

del), there is a v ∈ v that is also contained in the current exclusion set. Then this
would contradict DU-stability of v and thus of the whole program. Differently
said, in a DU-stable program, the variables of an add or del do not occur in an
exclusion set.

Definition 6 (Validity of Hoare Triples with Exclusion Sets). For a list
of formulas β, exclusion set X, formulas P and Q and statement c, we define
the relation β,X |= {P} c {Q} as: For all states σ, σ′, if (c, σ) ⇒ σ′ and
σ |= adm(β,X) ∧ P , for all X ′, if (c,X) ×−→ X ′, then σ′ |= adm(β,X ′) ∧ Q.

Lemma 2 (Soundness with Exclusion Sets). Let c be a sub-statement of
a well-typed and DU-stable program. If β 	 {P} c {Q}, then β,X |= {P} c {Q}
for all X.

A proof of this lemma is given in the formal Isabelle development.

Proof. (of Theorem 1): The theorem is an instance of Lemma 2, for β = [] and
X = {}.

3.3 Weakest Pre-conditions

The weakest pre-condition wp for a given post-condition Q and statement c is
a pre-condition that is implied by any other pre-condition. We compute the wp
with function wp(β, c,Q) that also takes into account the local bindings. The
recursive definition of wp is given in Fig. 4.

Fig. 4. Weakest pre-conditions

The correspondence between the weakest pre-conditions and the program
calculus of Sect. 3.1 is established by the following lemma, whose proof is by an
easy induction over c.

Lemma 3. β 	 {wp(β, c,Q)} c {Q}.
Initially, β is assumed to be empty. Proving the correctness of a pro-

gram {Pre} prog {Post} therefore amounts to showing that Pre −→
wp([], prog, Post) is valid, by an application of rule Conseq.

Let us emphasise one point: in Sect. 2.2, we have defined two semantics.
Because the notion of validity of Hoare triples is defined with reference to the set-
based semantics, the whole soundness argument is carried out in this semantics.
Showing that Pre −→ wp([], prog, Post) is valid can be done w.r.t. the set-based
semantics, but according to Lemma 1, it is equivalent to the standard individual
semantics, so it is more convenient to switch to this semantics here to be able
to use standard proof procedures of predicate logic.

Reasoning Formally About Database Queries and Updates 569

4 Guarded Fragment

The results established in the previous section are sound for programs containing
full first-order formulas, but application of the wp calculus to such programs will
in general produce proof problems that are undecidable. The Guarded Fragment
(GF) is a fragment of first-order predicate logic that has been introduced by
Andréka, Németi and van Benthem [4] and studied in depth [14,15]. The aspect
of interest for us is that GF is decidable; several decision procedures have been
described [13,17] and implemented [18].

We summarise the essential features of GF: An atomic formula or atom is
defined as an equality x = y or the application of a relation symbol to a tuple
of variables, R(v). On this basis, we define GF:

Definition 7 (Guarded Fragment, GF).

– All quantifier-free first-order formulas are formulas of GF.
– If ψ and φ are formulas of GF, then so are ¬ψ and (ψ ∧ φ).
– If ψ(x,y) is a formula of GF and α(x,y) is an atom and fv(ψ(x,y)) ⊆

fv(α(x,y)), then ∃y.α(x,y) ∧ ψ(x,y) and ∀y.α(x,y) −→ ψ(x,y) are for-
mulas of GF. Here, we call α(x,y) the guard and ψ(x,y) the body of a
quantified formula.

We say that a formula is guarded if it belongs to the guarded fragment of
first-order logic. The definitions of ValidClient and ActiveIfSubscr of Sect. 1.2
are examples of guarded formulas.

Definition 8 (Guarded statement and program). We say that a formula
b is a quasi-guard if it can be written as α1(v1) ∧ . . . ∧ αn(vn) ∧ ψ, where ψ is
a guarded formula and the αi are atoms, where different vi,vj are disjoint.

We say that a match clause match v where b is guarded if b is a quasi-guard.
We say that a statement is guarded if all its match clauses are guarded. We

say that a program is guarded if its pre- and post-conditions and its constituting
statement are guarded.

For example, the program of Fig. 1 is guarded. A program with a clause
match v1, v2 where (∃x.R(x, v1)) ∧ (∃y.R(y, v2)) is not guarded.

Theorem 2. If c is a guarded statement, Q a guarded formula and β a list of
quasi-guards, then wp(β, c,Q) is a guarded formula.

Proof. The proof is by induction on the structure of the statement. The propo-
sition is evident for Skip. For a sequence c1; c2 of instructions and guarded
Q, by induction hypothesis, we obtain a guarded formula for wp(β, c2, Q).
Similarly, for a match statement, wp(β@[b], c,Q) is a guarded formula G. If
match v where b is guarded and b a quasi-guard, we can write ∀v.b −→ G as
∀v1.α1(v1) −→ . . . −→ ∀vn.αn(vn) −→ ψ −→ G, which is again guarded.

The main concern is therefore preservation of guardedness in relation update;
we first discuss the case Q[R := λv.(R(v)∨β)]. We reason by induction on Q. The

570 J. H. Brenas et al.

only critical cases are existential and universal quantification; we only look at
the latter, the former is similar. Thus, assume Q is of the form ∀y.α(x,y) −→
ψ(x,y). The case where α �= R poses no problem, so assume Q of the form
∀y.R(x,y) −→ ψ(x,y), with Q[R := λv.(R(v) ∨ β)] = ∀y.(R(x,y) ∨ β[v :=
x,y]) −→ ψ′, where ψ′ is the result of the relation update in ψ(x,y). This
formula is not guarded any longer, but we can rewrite it to a conjunction of
∀y.R(x,y) −→ ψ′ (which is guarded) and ∀y.β[v := x,y] −→ ψ′, with β a list
of quasi-guards, which can be turned into a guarded formula in a similar form
as seen for the match statement.

The reasoning for a relation update Q[R := λv.(R(v) ∧ ¬β)] for a delete
statement proceeds along the same line, but is slightly simpler: the intermediate
formula ∀y.(R(x,y) ∧ ¬β[v := x,y]) −→ ψ′ can directly be rewritten to the
guarded ∀y.R(x,y) −→ (¬β[v := x,y]) −→ ψ′.

From this theorem, the fact that a program {Pre} c {Post} yields a proof
obligation Pre −→ wp([], c, Post), and the decidability of GF, we obtain:

Corollary 1.

– Application of the weakest pre-condition calculus of Sect. 3.3 to a guarded
program produces a guarded proof obligation.

– The correctness problem of guarded programs is decidable.

5 Conclusions

This paper has presented a language combining queries and updates that can be
used for graph and relational databases. The focus of the paper is on verifying
assertions in the form of pre- and post-conditions, the operational aspect of
the language was secondary. It might nevertheless be interesting to make this
language executable, which is not possible when bluntly taking the operational
semantics as it stands, because the semantics is manipulating possibly infinite
sets of individual interpretations. We are however convinced that it is easy to
derive a realistic operational semantics, by a restriction to relevant variables (the
variables occurring in the program).

Our current efforts concentrate on formally verifying the theory developed
in this paper in the Isabelle proof assistant, in order to obtain a fully verified
proof obligation generator. Completeness of the calculus presented here is an
open question. Further steps in the theory are extensions of the logic permitting
to reason about paths in graphs, leading us to consider logics with transitive
closure.

Acknowledgements. We are grateful to Lison Kardassevitch for implementing a pro-
totype of the verification framework.

Reasoning Formally About Database Queries and Updates 571

References

1. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. In: Proceedings of the 28th AAAI Con-
ference on Artificial Intelligence (AAAI 2014), pp. 966–973. AAAI Press (2014).
http://www.inf.unibz.it/∼calvanese/papers-html/AAAI-2014-graph-dbs.html

2. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. ACM Trans. Comput. Log. 18(4), 27:1–
27:35 (2017). https://doi.org/10.1145/3143803

3. Ahmeti, A., Calvanese, D., Polleres, A.: Updating RDFS ABoxes and TBoxes in
SPARQL. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 441–456.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 28

4. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded
fragments of predicate logic. J. Philos. Log. 27(3), 217–274 (1998).
http://www.fenrong.net/teaching/Andreka.pdf

5. Benedikt, M., Griffin, T., Libkin, L.: Verifiable properties
of database transactions. Inf. Comput. 147(1), 57–88 (1998).
https://core.ac.uk/download/pdf/82337092.pdf

6. Brenas, J.H., Echahed, R., Strecker, M.: Ensuring correctness of model transfor-
mations while remaining decidable. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016.
LNCS, vol. 9965, pp. 315–332. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46750-4 18

7. Brenas, J.H., Echahed, R., Strecker, M.: A Hoare-like calculus using the SROIQσ

logic on transformations of graphs. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.)
TCS 2014. LNCS, vol. 8705, pp. 164–178. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44602-7 14

8. Bry, F., Decker, H., Manthey, R.: A uniform approach to constraint satisfaction
and constraint satisfiability in deductive databases. In: Schmidt, J.W., Ceri, S.,
Missikoff, M. (eds.) EDBT 1988. LNCS, vol. 303, pp. 488–505. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-19074-0 69

9. Chaabani, M., Echahed, R., Strecker, M.: Logical foundations for reasoning about
transformations of knowledge bases. In: Eiter, T., Glimm, B., Kazakov, Y.,
Krötzsch, M. (eds.) DL - Description Logics. CEUR Workshop Proceedings, vol.
1014, pp. 616–627. CEUR-WS.org (2013)

10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, a
Language Theoretic Approach. Cambridge University Press (2011). http://www.
labri.fr/perso/courcell/Book/TheBook.pdf

11. Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases.
In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pp. 352–365. ACM (1983)

12. Francis, N., et al.: Cypher: An evolving query language for property graphs.
In: Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, 10–15 June 2018, pp. 1433–
1445 (2018). https://doi.org/10.1145/3183713.3190657. https://doi.org/10.1145/
3183713.3190657

13. Grädel, E.: Decision procedures for guarded logics. In: Ganzinger, H. (ed.) CADE
1999. LNCS, vol. 1632, pp. 31–51. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48660-7 3

14. Grädel, E.: On the restraining power of guards. J. Symb. Log. 64, 1719–1742
(1999). http://www.logic.rwth-aachen.de/pub/graedel/Gr-jsl99.ps

http://www.inf.unibz.it/~calvanese/papers-html/AAAI-2014-graph-dbs.html
https://doi.org/10.1145/3143803
https://doi.org/10.1007/978-3-319-11964-9_28
http://www.fenrong.net/teaching/Andreka.pdf
https://core.ac.uk/download/pdf/82337092.pdf
https://doi.org/10.1007/978-3-319-46750-4_18
https://doi.org/10.1007/978-3-319-46750-4_18
https://doi.org/10.1007/978-3-662-44602-7_14
https://doi.org/10.1007/978-3-662-44602-7_14
https://doi.org/10.1007/3-540-19074-0_69
http://www.labri.fr/perso/courcell/Book/TheBook.pdf
http://www.labri.fr/perso/courcell/Book/TheBook.pdf
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1007/3-540-48660-7_3
https://doi.org/10.1007/3-540-48660-7_3
http://www.logic.rwth-aachen.de/pub/graedel/Gr-jsl99.ps

572 J. H. Brenas et al.

15. Grädel, E.: Decidable fragments of first-order and fixed-point logic. From prefix-
vocabulary classes to guarded logics. In: Proceedings of Kalmár Workshop on
Logic and Computer Science, Szeged (2003). http://www.logic.rwth-aachen.de/
pub/graedel/Gr-kalmar03.ps

16. Habel, A., Pennemann, K.-H., Rensink, A.: Weakest preconditions for high-level
programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841883 31

17. Hirsch, C.: Guarded logics: algorithms and bisimulation. Ph.D. thesis, RWTH
Aachen (2002). http://www.logic.rwth-aachen.de/pub/hirsch/hirsch.pdf

18. Hladik, J.: Implementation and optimisation of a tableau algorithm for the guarded
fragment. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381,
pp. 145–159. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45616-
3 11

19. Hosoya, H.: XML Processing - The Tree-Automata Approach. Cambridge Univer-
sity Press, Cambridge (2011)

20. Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-transformation verifi-
cation using monadic second-order logic. In: International ACM SIGPLAN Sympo-
sium on Principles and Practice of Declarative Programming (PPDP), pp. 17–28,
July 2011. http://dl.acm.org/authorize?442117

21. Itzhaky, S., et al.: On the automated verification of web applications with embed-
ded SQL. In: Benedikt, M., Orsi, G. (eds.) 20th International Conference on
Database Theory (ICDT 2017). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 68, pp. 16:1–16:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.ICDT.2017.16.
http://drops.dagstuhl.de/opus/volltexte/2017/7050

22. Martens, W., Neven, F.: Frontiers of tractability for typechecking simple XML
transformations. J. Comput. Syst. Sci. 73(3), 362–390 (2007)

23. Martinenghi, D., Christiansen, H., Decker, H.: Integrity checking and maintenance
in relational and deductive database and beyond. In: Intelligent Databases: Tech-
nologies and Applications, pp. 238–285. IGI Global (2007)

24. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
Burlington (1997)

25. Nipkow, T., Klein, G.: Concrete Semantics (2014). http://concrete-semantics.org/
26. Olivé, A.: Integrity constraints checking in deductive databases. In: VLDB, pp.

513–523. Citeseer (1991)
27. openCypher Project: Cypher Query Language Reference, version 9 edn. (2018).

http://www.opencypher.org/

http://www.logic.rwth-aachen.de/pub/graedel/Gr-kalmar03.ps
http://www.logic.rwth-aachen.de/pub/graedel/Gr-kalmar03.ps
https://doi.org/10.1007/11841883_31
http://www.logic.rwth-aachen.de/pub/hirsch/hirsch.pdf
https://doi.org/10.1007/3-540-45616-3_11
https://doi.org/10.1007/3-540-45616-3_11
http://dl.acm.org/authorize?442117
https://doi.org/10.4230/LIPIcs.ICDT.2017.16
http://drops.dagstuhl.de/opus/volltexte/2017/7050
http://concrete-semantics.org/
http://www.opencypher.org/

Abstraction and Subsumption in Modular
Verification of C Programs

Lennart Beringer(B) and Andrew W. Appel

Princeton University, Princeton, NJ 08544, USA
{eberinge,appel}@cs.princeton.edu

Abstract. Representation predicates enable data abstraction in sep-
aration logic, but when the same concrete implementation may need
to be abstracted in different ways, one needs a notion of subsumption.
We demonstrate function-specification subtyping, analogous to subtyp-
ing, with a subsumption rule: if φ is a funspec-sub of ψ, that is φ <: ψ,
then x : φ implies x : ψ, meaning that any function satisfying specifi-
cation φ can be used wherever a function satisfying ψ is demanded. We
extend previous notions of Hoare-logic sub-specification, which already
included parameter adaption, to include framing (necessary for separa-
tion logic) and impredicative bifunctors (necessary for higher-order func-
tions, i.e. function pointers). We show intersection specifications, with the
expected relation to subtyping. We show how this enables compositional
modular verification of the functional correctness of C programs, in Coq,
with foundational machine-checked proofs of soundness.

Keywords: Foundational program verification · Separation logics ·
Specification subsumption

1 Introduction

Even in the 21st century, the world still runs on C: operating systems, run-
time systems, network stacks, cryptographic libraries, controllers for embedded
systems, and large swaths of critical infrastructure code are either directly hand-
coded in C or employ C as intermediate target of compilation or code synthesis.
Analysis methods and verification tools that apply to C thus remain a vital area
of research. The Verified Software Toolchain (VST) [4] is a semi-automated proof
system for functional-correctness verification of C programs that integrates two
long-standing lines of research: (i) program logics with machine-checked proofs
of soundness; (ii) practical verification tools for industry-strength programming
languages. VST consists of three main components:

Verifiable C [3] is a higher-order impredicative concurrent separation logic
covering almost all the control-flow and data-structuring features of C (we
currently omit goto and by-copy whole-struct assignment);

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 573–590, 2019.
https://doi.org/10.1007/978-3-030-30942-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_34&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_34

574 L. Beringer and A. W. Appel

VST-Floyd [7] is a library of lemmas, definitions, and automation tactics that
assist the user in applying the program logic to a program, using forward
symbolic execution, with separation logic assertions as symbolic states;

The semantic model justifies the proof rules, exploiting the theories of step-
indexing, impredicative quantification, separation algebras, and concurrent
ghost state. The semantic model is the basis of a machine-checked proof [4],
in Coq, that the Verifiable C program logic is sound w.r.t. the operational
semantics of CompCert Clight. Thus the user’s Coq proof in Verifiable C com-
poses with our soundness proof of Verifiable C and with Leroy’s CompCert
compiler correctness proof [15] to yield an end-to-end proof of the functional
correctness of the assembly-language program.

VST’s key feature—distinguishing it from tools such as VCC [8], Frama-C [11],
or VeriFast [9]—is that it is entirely implemented in the Coq proof assistant. A
user imports C code into the Coq development environment and applies VST-
Floyd’s automation—computational decision procedures from Coq’s standard
library, plus custom-built tactics for forward symbolic execution and entailment
checking—to construct formal derivations in the Verifiable C program logic.
The full power of Coq and its libraries are available to manipulate application-
specific mathematics. The semantic validity of the proof rules—machine-checked
by Coq’s kernel—connects these derivations to Clight, i.e. CompCert’s represen-
tation of parsed and determinized C code.

Recent applications of VST include the verification of cryptographic primi-
tives from OpenSSL [2,6] and mbedTLS [24], an asynchronous communication
mechanism [17], and an internet-facing server component [13]. Ongoing efforts
elsewhere include a generational garbage collector and a malloc-free library.

Motivated by these applications, we now add support for data abstraction, a key
enabler of scalability. As shown in previous work [21], separation logic can easily
express data abstraction, using abstract predicates: just as the client program of
an abstract data type (ADT) can be written without knowing the representation,
verification of the client can proceed without knowing the representation. In type
theory, this is the principle of existential types [18].

But in real-life modular programming, the same function may want more than
one specification. For example, a function may expose a concrete specification
to “friend” functions that know the representation of internal data and a more
abstract specification for clients that do not. In this case, one should not have to
verify the function-body twice, once for each specification; instead, one should
verify the function-body with respect to the concrete specification, then prove
the concrete implies the abstract. Again, type theory provides an appropriate
notion: subtyping [22]. In other cases, it may be desirable to specify different
use cases of a function—applying, for example, to different input configurations,
or to different control flow paths—using different specifications, perhaps using
different abstract predicates. Yet again, type theory provides a useful analogue:
intersection types, a form of ad-hoc polymorphism.

These observations motivate the use of type-theoretic principles as guidelines
for developing specification mechanisms and automation features for abstrac-

Abstraction and Subsumption in C 575

tion. We now take a step in this direction, focusing primarily on the notion of
subtyping. The observation that Hoare’s original rule of consequence is insuf-
ficiently powerful in languages with (recursive) procedures motivated research
into parameter adaptation, by (among others) Kleymann, Nipkow, and Nau-
mann [12,19,20]. Indeed, Kleymann observed that ([12], p. 9).

– in proving that the postcondition has been weakened, one may also assume the
precondition of the conclusion holds. . .

– one may adjust the auxiliary variables in the premise. Their value may depend
on the value of auxiliary variables in the conclusion and the value of all pro-
gram variables in the initial state.

But these developments were carried out for small languages and predate the
emergence of separation logic. The present article hence revisits these ideas in the
context of VST, by developing a powerful notion of function-specification sub-
typing for higher-order impredicative separation logic. Our treatment improves
on previous work in several regards:

– We support function-specifications of function pointers, as part of our support
for almost the entire C language. Kleymann only considers a single (anony-
mous, parameterless, but possibly recursive) procedure, while Nipkow sup-
ports mutual recursion between named procedures.

– Our notion of subtyping avoids direct quantification over states, thus permit-
ting a higher-order impredicative separation logic in the style of VST and
Iris [10], where “assertion” must be an abstract type with a step-indexed
model rather than simply state→Prop. This is necessary to fully support
function pointers and higher-order resource invariants (for concurrent pro-
gramming). In contrast, Kleymann’s and Nipkow’s assertions are predicates
over states, and the side conditions of their adaptation rules explicitly quan-
tify over states. Naumann’s formulation using predicate transformers captures
the same relationship in a slighty more abstract manner.

– VST associates function specifications to globally named functions in its proof
context Δ and includes a separation logic assertion func-at that attaches spec-
ifications to function-pointer values. Our treatment integrates subsumption
coherently into proof contexts, func-at, and the soundness judgment. We sup-
port subsumption at function call sites but also incorporate subsumption in
a notion of (proof) context subtyping that is reminiscent of record subtyp-
ing [22]. This will allow bundling function specifications into specifications of
objects or modules that can be abstractly presented to client programs and
are compatible with behavioral subtyping [14,16,23].

– We introduce intersection specifications and show that their interaction with
subsumption precisely matches that of intersection types.

Our presentation is example-driven: we illustrate several use cases of sub-
sumption on concrete code fragments in Verifiable C. Technical adaptations
of the model that support these verifications have been machine-checked for
soundness, but in the paper we only sketch them. The full Coq proofs of our
example are in the VST repo, github.com/PrincetonUniversity/VST in direc-
tory progs/pile.

http://github.com/PrincetonUniversity/VST

576 L. Beringer and A. W. Appel

2 Function Specifications in Verifiable C

Our main example is an abstract data type (ADT) for piles, simple collections
of integers. Figure 1 (on the next page) shows a modular C program that throws
numbers onto a pile, then adds them up.

main.c

pile list
32

triang.c apile.conepile.c

pile.h pile_private.h

pile.c

onepile.h triang.h apile.h

main.c

pile
5

onepile.c triang.c fastapile.c

fastpile_private.hpile.h

fastpile.c

triang.honepile.h apile.h

The diagram at left shows that pile.c is imported by onepile.c (which manages a
single pile), apile.c (which manages a single pile in a different way), and triang.c
(which computes the nth triangular number). The latter three modules are
imported by main.c. Onepile.c and triang.c import the abstract interface pile.h;
apile.c imports also the low-level concrete interface pile-private.h that exposes the
representation—a typical use case for this organization might be when apile.c
implements representation-dependent debugging or performance monitoring.

When—as shown on the right—pile.c is replaced by a faster implementation
fastpile.c (code in Fig. 3) using a different data structure, apile.c must be replaced
with fastapile.c, but the other modules need not be altered, and neither should
their specification or verification.

Figure 2 presents the specification of the pile module, in the Verifiable C
separation logic. Each C-language function identifier (such as -Pile-add) is bound
to a funspec, a function specification in separation logic.

Before specifying the functions (with preconditions and postconditions), we
must first specify the data structures they receive as arguments and return as
results. Linked lists are specified as usual in separation logic: listrep is a recursive
definition over the abstract (“mathematical”) list value σ, specifying how it is
laid out in a memory footprint rooted at address p. Then pilerep describes a
memory location containing a pointer to a listrep.

A funspec takes the form, WITH �x : �τ PRE . . . POST For example, take
Pile-add-spec from Fig. 2: the �x are bound Coq variables visible in both the pre-
condition and postcondition, in this case, p:val, n:Z, σ:list Z, gv :globals, where p
is the address of a pile data structure, n is the number to be added to the pile,
σ is the sequence currently represented by the pile, and gv is a way to access all
named global variables. The PREcondition is parameterized by the C-language
formal parameter names -p and -n. An assertion in Verifiable C takes the
form, PROP(propositions) LOCAL(variable bindings) SEP(spatial conjuncts). In

Abstraction and Subsumption in C 577

Fig. 1. The pile.h abstract data type has operations new, add, count, free. The triang.c
client adds the integers 1–n to the pile, then counts the pile. The pile.c implementation
represents a pile as header node (struct pile) pointing to a linked list of integers. At
bottom, there are two modules that each implement a single “implicit” pile in a module-
local global variable: onepile.c maintains a pointer to a pile, while apile.c maintains a
struct pile for which it needs knowledge of the representation through pile-private.h.

578 L. Beringer and A. W. Appel

Fig. 2. Specification of the pile module (Pile-free-spec not shown).

Abstraction and Subsumption in C 579

this case the PROP asserts that n is between 0 and max-int; LOCAL asserts1 that
address p is the current value of C variable -p, integer n is the value of C variable
-n, and gv is the global-variable access map. The precondition’s SEP clause has
two conjuncts: the first one says that there’s a pile data structure at address p
representing sequence σ; the second one represents the memory-manager library.
The spatial conjunct (mem-mgr gv) represents the private data structure of the
memory-manager library, that is, the global variables in which the malloc-free
system keeps its free lists.

The SEP clause of the POSTcondition says that the pile at address p now
represents the list n::σ, and that the memory manager is still there.

Verifying that pile.c’s functions satisfy the specifications in Fig. 2 using VST-
Floyd is done by proving Lemmas like this one (in file verif-pile.v):

Lemma body-Pile-new: semax-body Vprog Gprog f-Pile-new Pile-new-spec.
Proof. ... (∗7 lines of Coq proof script∗).... Qed.

This says, in the context Vprog of global-variable types, in the context Gprog
of function-specs (for functions that Pile-new might call), the function-body
f-Pile-new satisfies the function-specification Pile-new-spec.

Linking

A modular proof of a modular program is organized as follows: CompCert parses
each module M.c into the AST file M.v. Then we write the specification file
spec-M.v containing funspecs as in Fig. 2. We write verif-M.v which imports spec
files of all the modules from which M.c calls functions, and contains semax-body
proofs of correctness (such as body-Pile-new at the end of Sect. 2), for each of
the functions in M.c.

What’s special about the main() function is that its separation-logic precon-
dition has all the initial values of the global variables, merged from the global
variables of each module. In spec-main we merge the ASTs (global variables
and function definitions) of all the M.v by a simple, computational, syntactic
function. This is illustrated in the Coq files in VST/progs/pile.

VST’s main soundness statement is that, when running main() in CompCert’s
operational semantics, in the initial memory induced from all global-variable ini-
tializers, the program is safe and correct—with a notion of partial correctness in
interacting with the world via effectful external function calls [13] and returning
the “right” value from main.

3 Subsumption of Function Specifications

We now turn to the replacement of pile.c by a more performant implementa-
tion, fastpile.c, and its specification—see Fig. 3. As fastpile.c employs a differ-
1 A LOCAL clause temp -p p asserts that the current value of C local variable -p is

the Coq value p. If n is a mathematical integer, then Int.repr n is its projection into
32-bit machine integers, and Vint projects machine integers into the type of scalar
C-language values.

580 L. Beringer and A. W. Appel

Fig. 3. fastpile.c, a more efficient implementation of the pile ADT. Since the only query
function is count, there’s no need to represent the entire list, just the sum will suffice.
In the verification of a client program, the pilerep separation-logic predicate has the
same signature: list Z → val →mpred, even though the representation is a single number
rather than a linked list.

ent data representation than pile.c, its specification employs a different repre-
sentation predicate pilerep. As pilerep’s type remains unchanged, the function
specifications look virtually identical2; however, the VST-Floyd proof scripts
(in file verif-fastpile.v) necessarily differ. Clients importing only the pile.h inter-
face, like onepile.c or triang.c, cannot tell the difference (except that things run
faster and take less memory), and are specified and verified only once (files
spec-onepile.v/verif-onepile.v and spec-triang.v/verif-triang.v).

But we may also equip fastpile.c with a more low-level specification (see Fig. 4)
in which the function specifications refer to a different representation predicate,
countrep. In reasoning about clients of this low-level interface, we do not need
a notion of “sequence”—in contrast to pilerep in Fig. 3. The new specification is
less abstract than the one in Fig. 3, and closer to the implementation. The sub-
sumption rule (to be introduced shortly) allows us to exploit this relationship:

2 Existentially abstracting over the internal representation predicates would further
emphasize the uniformity between fastpile.c and pile.c—a detailed treatment of this
is beyond the scope of the present article.

Abstraction and Subsumption in C 581

Fig. 4. The fastpile.c implementation could be used in applications that simply
need to keep a running total. That is, a concrete specification can use a predicate
countrep: Z → val →mpred that makes no assumption about a sequence (list Z). In
countrep, the variable s′ and the inequalities are needed to account for the possibility
of integer overflow.

we only need to explicitly verify the code against the low-level specification and
can establish satisfaction of the high-level specification by recourse to subsump-
tion. This separation of concerns extends from VST specifications to model-level
reasoning: for example, in our verification of cryptographic primitives we found
it convenient to verify that the C program implements a low-level functional
model and then separately prove that the low-level functional model implements
a high-level specification (e.g. cryptographic security).3 In our running example,
fastpile.c’s low-level functional model is integer (the Coq Z type), and its high
level specification is list Z.

To formally state the desired subsumption lemma, observe that notation like
DECLARE -Pile-add WITH ... PRE ... POST ... is merely VST’s syntactic sugar

3 For example: in our proof of HMAC-DRBG [24], before VST had function-spec
subsumption, we had two different proofs of the function f-mbedtls-hmac-drbg-seed,
one with respect to a more concrete specification drbg-seed-inst256-spec and one
with respect to a more abstract specification drbg-seed-inst256-spec-abs. The latter
proof was 202 lines of Coq, at line 37 of VST/hmacdrbg/drbg protocol proofs.v
in commit 3e61d2991e3d70f5935ae69c88d7172cf639b9bc of https://github.com/
PrincetonUniversity/VST. Now, instead of reproving the function-body a second
time, we have a funspec sub proof that is only 60 lines of Coq (at line 42 of the same
file in commit c2fc3d830e15f4c70bc45376632c2323743858ef).

https://github.com/PrincetonUniversity/VST
https://github.com/PrincetonUniversity/VST

582 L. Beringer and A. W. Appel

for a pair that ties the identifier -Pile-add to the funspec WITH...PRE...POST.
For -Pile-add we have two such specifications,

spec-fastpile.Pile-add-spec: ident∗funspec (∗ in Figure 3 ∗)
spec-fastpile-concrete.Pile-add-spec: ident∗funspec (∗ in Figure 4 ∗).
and our notion of funspec subtyping will satisfy the following lemma.

Lemma sub-Pile-add: funspec-sub (snd spec-fastpile-concrete.Pile-add-spec)
(snd spec-fastpile.Pile-add-spec).

and similarly for Pile-new and Pile-count. Specifically, we permit related specifica-
tions to have different WITH-lists, in line with Kleymann’s adaptation-complete
rule of consequence

� {P ′}c{Q′}
� {P}c{Q} ∀Z.∀σ. PZσ → ∀τ. ∃Z ′.(P ′Z ′σ ∧ (Q′Z ′τ → QZτ))

where assertions are binary predicates over auxiliary and ordinary states, and
Z,Z ′ are the WITH values.4

Our subsumption applies to function specifications, not arbitrary statements
c. In the rule for function calls, it ensures that a concretely specified function
can be invoked where callers expect an abstractly specified one, just like the

subsumption rule of type theory:
Γ � e : σ σ <: τ

Γ � e : τ
. It is also reflexive and tran-

sitive.

Support for Framing. An important principle of separation logic is the frame
rule: {P}c{Q}

{P ∗ R}c{P ∗ R} (modifiedvars(c) ∩ freevars(R) = ∅)

We have found it useful to explicitly incorporate framing in funspec-sub, because
abstract specifications may have useless data. Consider a function that performs
some action (e.g., increment a variable) using some auxiliary data (e.g., an array
of 10 integers):

int incr1(int i, unsigned int ∗auxdata) {auxdata[i%10] += 1; return i+1;}
The function specification makes clear that the private contents of the auxdata
is, from the client’s point of view, unconstrained; the implementation is free to
store anything in this array:

Definition incr1-spec := DECLARE -incr1
WITH i: Z, a: val, π: share, private: list val
PRE [-i OF tint, -auxdata OF tptr tuint]

PROP (0≤ i < Int.max-signed; writable-share π)

4 We give Kleymann’s rule for total correctness here. VST is a logic for partial cor-
rectness, but its preconditions also guarantee safety; Kleymann’s partial-correctness
adaptation rule cannot guarantee safety.

Abstraction and Subsumption in C 583

LOCAL(temp -i (Vint (Int.repr i)); temp -auxdata a)
SEP(data-at sh (tarray tuint 10) private a)

POST [tint]
EX private ′: list val, PROP() LOCAL(temp ret-temp (Vint (Int.repr (i+1))))

SEP(data-at π (tarray tuint 10) private ′ a).

You might think the auxdata is useless, but (i) real-life interfaces often have
useless or vestigial fields; and (ii) this might be where the implementation keeps
profiling statistics, memoization, or other algorithmically useful information.

Here is a different implementation that should serve any client just as well:

int incr2(int i, unsigned int ∗auxdata) {return i+1;}
Its natural specification has an empty SEP clause:

Definition incr2-spec := DECLARE -incr2
WITH i: Z
PRE [-i OF tint, -auxdata OF tptr tuint]

PROP (0≤ i < Int.max-signed) LOCAL(temp -i (Vint (Int.repr i))) SEP()
POST [tint]

PROP() LOCAL(temp ret-temp (Vint (Int.repr (i+1)))) SEP().

The formal statement that incr2 serves any client just as well as incr1 is another
case of subsumption:

Lemma sub-incr12: funspec-sub (snd incr2-spec) (snd incr1-spec).

In the proof, we use (data-at π (tarray tuint 10) private a) as the frame.
If the auxdata is a global variable instead of a function parameter, all the

same principles apply:

int global-auxdata[10];
int incr3(int i) {global-auxdata[i%10] += 1; return i+1;}
int incr4(int i) {return i+1;}
We define a funspec for incr3 whose SEP clause mentions the auxdata, we define
a funspec for incr4 whose SEP clause is empty, and we can prove,

Lemma sub-incr34: funspec-sub (snd incr4-spec) (snd incr3-spec).

For another example of framing, consider again Fig. 2, the specification of
pilerep, pile-freeable, Pile-new-spec, etc. One might think to combine pile-freeable
(the memory-deallocation capability) with pile-rep (capability to modify the con-
tents) yielding a single combined predicate pilerep’. That way, proofs of client
programs would not have to manage two separate conjuncts.

That would work for clients such as triang.c and onepile.c, but not for apile.c
which has an initialized global variable (a-pile) that satisfies pilerep but not
pile-freeable (since it was not obtained from the malloc-free system). Further-
more, the specifications of pile-add and pile-count do not mention pile-freeable in
their pre- or postconditions, since they have no need for this capability.

By using funspec-sub (with its framing feature), we can have it both ways.
One can easily make a more abstract spec in which the funspecs of pile-new,

584 L. Beringer and A. W. Appel

pile-add, pile-count, pile-free all take pilerep’ in their pre- and postconditions;
onepile and triang will still be verifiable using these specs. But in proving
funspec-sub, therefore, specifications for pile-add and pile-count now do implicitly
take pile-freeable in their pre- and postconditions, even though they have no use
for it; this is the essence of the frame rule.

4 Definitions of Funspec Subtyping

Except in certain higher-order cases, we use this notion of function specification:

NDmk-funspec (f: funsig) (cc: calling-convention)
(A: Type) (Pre Post: A → environ →mpred): funspec.

To construct a nondependent (ND) function spec, one gives the function’s C-
language type signature (funsig), the calling convention (usually cc=cc-default),
the precondition, and the postcondition. A gives the type of variable (or tuple of
variables) “shared” between the precondition and postcondition. Pre and Post are
each applied to the shared value of type A, then to a local-variable environment
(of type environ) containing the formal parameters or result-value (respectively),
finally yielding an mpred, a spatial predicate on memory.

For example, to specify an increment function with formal parameter -p
pointing to an integer in memory, we let A = int, so that

Pre = λi : A. λρ. ρ(p) �→ i and Post = λi : A. λρ. ρ(p) �→ (i + 1).

This form suffices for most C programming. But sometimes in the presence
of higher-order functions, one wants impredicativity: A may be a tuple of types
that includes the type mpred. If this is done naively, it cannot typecheck in CiC
(there will be universe inconsistencies); see the Appendix.

General Funspec. Higher-order function specs are (mostly) beyond the scope of
this paper. When precondition and postcondition must predicate over predicates,
we must ensure that each is a bifunctor, that is, we must keep track of covari-
ant and contravariant occurrences, and so on. This approach was outlined by
America and Rutten [1] and has been implemented both in Iris [10] and VST.5

VST’s most general form of function spec is,

Inductive funspec :=
mk-funspec: forall (f: funsig) (cc: calling-convention) (A: TypeTree)
(P Q: forall ts, dependent-type-functor-rec ts (AssertTT A) mpred)
(P-ne: super-non-expansive P) (Q-ne: super-non-expansive Q), funspec.

Here, super-non-expansive is a proof that the precondition (or postcondition) is
a nonexpansive (in the step-indexing sense) bifunctor; see the Appendix. The
nondependent (ND) form of mk-funspec shown above is simply a derived form of
dependent mk-funspec.
5 Bifunctor function-specs in VST were the work of Qinxiang Cao, Robert Dockins,

and Aquinas Hobor.

Abstraction and Subsumption in C 585

Too-Special Funspec Subtyping. Let’s consider the obvious notion of funspec
subtyping: φ1 is a subtype of φ2 if the precondition of φ2 entails the precondition
of φ1, and the postcondition of φ1 entails the postcondition of φ2.

Definition far-too-special-NDfunspec-sub (f1 f2 : funspec) :=
let Δ := funsig-tycontext (funsig-of-funspec f1) in
match f1, f2 with
NDmk-funspec fsig1 cc1 A1 P1 Q1, NDmk-funspec fsig2 cc2 A2 P2 Q2 ⇒
fsig1 = fsig2 ∧ cc1 = cc2 ∧ A1 = A2 ∧ (∀x : A1, Δ, P2 nil x � P1 nil x) ∧
(∀x : A1, (ret0-tycon Δ), Q1 nil x � Q2 nil x)

end.

We write Δ, P2 nil x � P1 nil x, where P1 and P2 are the preconditions of f1
and f2, nil expresses that these are nondependent funspecs (no bifunctor struc-
ture), and x is the value shared between precondition and postcondition. The
type-context Δ provides the additional guarantee that the formal parameters
are well typed, and ret0-tycon Δ guarantees that the return-value is well typed.

This notion of funspec-sub is sound (w.r.t. subsumption), but barely useful:
(1) it requires that the witness types of the two funspecs be the same (A1 = A2),
(2) it doesn’t support framing, and (3) it requires Q1 � Q2 even when P2 is not
satisfied. Each of these omissions prevents the practical use of funspec-sub in
real verifications, but only (1) and (3) were addressed in previous work [12,20].

Useful, Ordinary Funspec Subtyping. If NDmk-funspec were a constructor, we
could define,

Definition NDfunspec-sub (f1 f2 : funspec) :=
let Δ := funsig-tycontext (funsig-of-funspec f1) in
match f1, f2 with
NDmk-funspec fsig1 cc1 A1 P1 Q1, NDmk-funspec fsig2 cc2 A2 P2 Q2 ⇒
fsig1 = fsig2 ∧ cc1 = cc2 ∧
∀x2 : A2,

Δ, P2 nil x2 �
EX x1:A1, EX F :mpred, (((λρ.F) ∗ P1 nil x1) &&

!! ((ret0-tycon Δ), (λρ.F) ∗ Q1 nil x1 � Q2 nil x2))
end.

Here, each of the three deficiencies is remedied: the witness value x1 : A1 is
existentially derived from x2 : A2, the frame F is existentially quantified, and
the entailment Q1 � Q2 is conditioned on the precondition P2 being satisfied.

This version of funspec-sub is, we believe, fully general for NDmk-funspec,
that is, for function specifications whose witness types A do not contain (covari-
ant or contravariant) occurrences of mpred. We present the general, dependent
funspec-sub in the Appendix, with its constructor mk-funspec, and show the con-
struction of NDmk-funspec as a derived form. And actually, since NDmk-funspec
is not really a constructor (it is a function that applies the constructor
mk-funspec), we must define NDfunspec-sub as a pattern-match on mk-funspec;
see the Appendix.

586 L. Beringer and A. W. Appel

5 The Subsumption Rules

The purpose of funspec-sub is to support subsumption rules.
Our Hoare-logic judgment takes the form Δ � {P}c{Q} where the context

Δ describes the types of local and global variables and the funspecs of global
functions. We say Δ <: Δ′ if Δ is at least as strong as Δ′; in Verifiable C this is
written tycontext-sub Δ Δ′. Again, this relation is reflexive and transitive.

Definition (glob-specs): If i is a global identifier, write (glob-specs Δ)!i to be the
option(funspec) that is either None or Some φ.

Lemma funspec-sub-tycontext-sub: Suppose Δ agrees with Δ′ on types
attributed to global variables, types attributed to local variables, current func-
tion return type (if any), and differs only in specifications attributed to global
functions, in particular: For every global identifier i, if (glob-specs Δ)!i = Some φ
then (glob-specs Δ′)!i = Some φ′ and funspec-sub φ φ′. Then Δ <: Δ′.

Proof. Trivial from the definition of Δ <: Δ′.

Theorem (semax-Delta-subsumption):

Δ <: Δ′ Δ′ � {P}c{Q}
Δ � {P}c{Q}

Proof. Nontrivial. Because this is a logic of higher-order recursive function point-
ers, our Coq proof6 in the modal step-indexed model uses the Löb rule to handle
recursion, and unfolds our rather complicated semantic definition of the Hoare
triple [4].

But this is not the only subsumption rule we desire. Because C has function-
pointers, the general function-call rule is for Δ � {P}ef (e1, . . . , en){Q} where
ef is an expression that evaluates to a function-pointer. Therefore, we cannot
simply look up ef as a global identifier in Δ. Instead, the precondition P must
associate the value of ef with a funspec. Without subsumption, the rules are:

(glob specs Δ)!f = Some φ
Δ � f ⇓ v

Δ � {func ptr v φ ∧ P}c{Q}
Δ � {P}c{Q}

Δ � ef ⇓ v
Δ � e1 ⇓ v1 . . . Δ � en ⇓ vn

P ∗ F � func ptr v φ
φ(w) = {P}{Q}

Δ � {P ∗ F}ef (e1, e2, . . . , en){Q ∗ F}
The rule semax-fun-id at left says, if the global context Δ associates identifier
f with funspec φ, and if f evaluates to the address v, then for the purposes of
proving {P}c{Q} we can assume the stronger precondition in which address v
has the funspec φ.

The semax-call rule says, if ef evaluates to address v, and the precondition
factors into conjuncts P ∗F that imply address v has the funspec φ, then choose a
6 See file veric/semax lemmas.v in the VST repo.

Abstraction and Subsumption in C 587

witness w (for the WITH clause), instantiate the witness of φ with w, and match
the precondition and postcondition of φ(w) with P and Q; then the function-call
is proved. (Functions can return results, but we don’t show that here.)

To turn semax-call into a rule that supports subsumption, we simply replace
the hypothesis φ(w) = {P}{Q} with φ <: φ′ ∧ φ′(w) = {P}{Q}.

To reconcile semax-Delta-subsumption and semax-fun-id, we build <: into the
definition of the predicate func-ptr v φ, i.e. permit φ to be more abstract than
the specification associated with address v in VST’s semantic model (“rmap”).

6 Intersection Specifications

In some of our verification examples, we found it useful to separate different use
cases of a function into separate function specifications. One can easily do this
using a pattern that discriminates on a boolean value from the WITH list jointly
in the pre- and postcondition:

WITH b : bool, �x : �τ PRE if b then P1 else P2 POST if b then Q1 else Q2.

To attach different WITH-lists to different cases, we may use Coq’s sum type
to define a type such as Variant T := case1: int | case2: string. and use it in a
specification

WITH �x : �τ , t : T, �y : �σ
PRE [. . .] match t with case1 i ⇒ P1(�x, i, �y) | case2 s ⇒ P2(�x, s, �y) end
POST [. . .] match t with case1 i ⇒ Q1(�x, i, �y) | case2 s ⇒ Q2(�x, s, �y) end.

which amounts to the intersection of
WITH �x : �τ , i : int, �y : �σ PRE [. . .] P1 (�x, i, �y) POST [. . .] Q1(�x, i, �y) and
WITH �x : �τ , s : string, �y : �σ PRE [. . .] P2(�x, i, �y) POST [. . .] Q2(�x, i, �y).

Generalizing to arbitrary index sets, we may—for a given function signature
and calling convention—combine specifications into specification families. (We
show the nondependent (ND) case; the Coq proofs cover the general case.)

Definition funspec-Pi-ND sig cc (I:Type) (A : I →Type)
(Pre Post: forall i, A i → environ →mpred): funspec := ...

In previous work [5] we showed how relational (2-execution) specifications
can be encoded as unary VDM-style specifications. Intersection specifications
internalize VDM’s “sets of specifications” feature.

The interaction between this construction and subtyping follows precisely
that of intersection types in type theory: the lemmas

Lemma funspec-Pi-ND-sub: forall fsig cc I A Pre Post i,
funspec-sub (funspec-Pi-ND fsig cc I A Pre Post)

(NDmk-funspec fsig cc (A i) (Pre i) (Post i)).

Lemma funspec-Pi-ND-sub3: forall fsig cc I A Pre Post g (i:I)
(HI: forall i, funspec-sub g (NDmk-funspec fsig cc (A i) (Pre i) (Post i))),

funspec-sub g (funspec-Pi-ND fsig cc I A Pre Post).

588 L. Beringer and A. W. Appel

are counterparts of the typing rules ∧j∈Iτj <: τi (for all i ∈ I) and
∀i, σ <: τi
σ <: ∧i∈Iτi

,

the specializations of which to the binary case appear on page 206 of TAPL [22].
We expect these rules to be helpful for formalizing Leavens and Naumann’s
treatment of specification inheritance in object-oriented programs [14].

7 Conclusion

Even without funspec subtyping, separation logic easily expresses data abstrac-
tion [21]. But real-world code is modular (as in our running example) and recon-
figurable (as in the substitution of fastpile.c for pile.c). Therefore a notion of
specification re-abstraction is needed. We have demonstrated how to extend
Kleymann’s notion from commands to functions, and from first-order Hoare
logic to higher-order separation logic with framing. We have a full soundness
proof for the extended program logic, in Coq. Our funspec-sub integrates nicely
with our existing proof automation tools and our existing methods of verify-
ing individual modules. As a bonus, one’s intuition that function-specs are like
the “types” of functions is borne out by our theorems relating funspec-sub to
intersection types.

Future Work: When a client module respects data abstraction, such as onepile.c
and triang.c in our example, its Coq proof script does not vary if the imple-
mentation of the abstraction changes (such as changing pile.c to fastpile.c). But
our current proofs need to rerun the proof scripts on the modified definition of
pilerep. As footnote 2 suggests, this could be avoided by the use of existential
quantification, in Coq, to describe data abstraction at the C module level.

Acknowlegdements. This work was funded by the National Science Foundation
under the awards 1005849 (Verified High Performance Data Structure Implementa-
tions, Beringer) and 1521602 Expedition in Computing: The Science of Deep Specifica-
tion, Appel). We are grateful to the members of both projects for their feedback, and
we greatly appreciate the reviewers’ comments and suggestions.

Appendix: Fully General funspec sub

NDfunspec-sub as introduced in Sect. 4 specializes the “real” subtype relation
φ <: ψ in two regards: first, it only applies if φ and ψ are of the NDfunspec form,
i.e. the types of their WITH-lists (“witnesses”) are trivial bifunctors as they do
not contain co- or contravariant occurrences of mpred. Second, it fails to exploit
step-indexing and is hence unnecessarily strong.

The technical report (www.cs.princeton.edu/∼eberinge/funspec sub.pdf)
contains a brief appendix presenting the fully general funspec-sub-si.

www.cs.princeton.edu/{~}eberinge/funspec_sub.pdf

Abstraction and Subsumption in C 589

References

1. America, P., Rutten, J.: Solving reflexive domain equations in a category of com-
plete metric spaces. J. Comput. Syst. Sci. 39(3), 343–375 (1989)

2. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans. on
Program. Lang. Syst. 37(2), 7:1–7:31 (2015)

3. Appel, A.W., Beringer, L., Cao, Q., Dodds, J.: Verifiable C: applying the verified
software toolchain to C programs (2019). https://vst.cs.princeton.edu/download/
VC.pdf

4. Appel, A.W., et al.: Program Logics for Certified Compilers. Cambridge University
Press, Cambridge (2014)

5. Beringer, L.: Relational decomposition. In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 39–54. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22863-6 6

6. Beringer, L., Petcher, A., Ye, K.Q., Appel, A.W.: Verified correctness and security
of OpenSSL HMAC. In: 24th USENIX Security Symposium, pp. 207–221. USENIX
Assocation, August 2015

7. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: a sepa-
ration logic tool to verify correctness of C programs. J. Autom. Reason. 61(1–4),
367–422 (2018)

8. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

9. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

10. Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. J. Funct. Program. 28 (2018)

11. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

12. Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects Comput. 11(5),
541–566 (1999)

13. Koh, N., et al.: From C to interaction trees: specifying, verifying, and testing a
networked server. In: Proceedings of the 8th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, pp. 234–248. ACM (2019)

14. Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance,
and modular reasoning. ACM Trans. Program. Lang. Syst. 37(4), 13:1–13:88 (2015)

15. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

16. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

17. Mansky, W., Appel, A.W., Nogin, A.: A verified messaging system. In: Proceed-
ings of the 2017 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2017. ACM (2017)

18. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans.
Program. Lang. Syst. 10(3), 470–502 (1988)

https://vst.cs.princeton.edu/download/VC.pdf
https://vst.cs.princeton.edu/download/VC.pdf
https://doi.org/10.1007/978-3-642-22863-6_6
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

590 L. Beringer and A. W. Appel

19. Naumann, D.A.: Deriving sharp rules of adaptation for Hoare logics. Technical
report 9906, Department of Computer Science, Stevens Institute of Technology
(1999)

20. Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism.
In: Bradfield, J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 103–119. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45793-3 8

21. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2005), pp. 247–258 (2005)

22. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
23. Pierik, C., de Boer, F.S.: A proof outline logic for object-oriented programming.

Theor. Comput. Sci. 343(3), 413–442 (2005)
24. Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A., Appel, A.W.:

Verified correctness and security of mbedTLS HMAC-DRBG. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2017). ACM (2017)

https://doi.org/10.1007/3-540-45793-3_8

Modelling Languages

IELE: A Rigorously Designed Language
and Tool Ecosystem for the Blockchain

Theodoros Kasampalis1(B), Dwight Guth2, Brandon Moore2,
Traian Florin S, erbănut, ă2,3, Yi Zhang1, Daniele Filaretti2, Virgil S, erbănut, ă2,

Ralph Johnson2, and Grigore Ros,u1,2

1 University of Illinois at Urbana-Champaign, Urbana, USA
kasampa2@illinois.edu

2 Runtime Verification, Urbana, USA
3 University of Bucharest, Bucharest, Romania

Abstract. This paper proposes IELE, an LLVM-style language,
together with a tool ecosystem for implementing and formally reason-
ing about smart contracts on the blockchain. IELE was designed by
specifying its semantics formally in the K framework. Its implementa-
tion, a IELE virtual machine (VM), as well as a formal verification tool
for IELE smart contracts, were automatically generated from the for-
mal specification. The automatically generated formal verification tool
allows us to formally verify smart contracts without any gap between the
verifier and the actual VM. A compiler from Solidity, the predominant
high-level language for smart contracts, to IELE has also been (manu-
ally) implemented, so Ethereum contracts can now also be executed on
IELE.

1 Introduction

Ethereum [5], with more that 500,000 daily transactions [13] is the largest
blockchain network supporting smart contracts. The smart contracts used in the
context of Ethereum transactions are written in the language of the Ethereum
Virtual Machine (EVM) [38], a stack-based assembly-level language.

Unfortunately, recent exploits on EVM smart contracts have led to losses in
the range of hundreds of millions USD [1,4,7,34,35]. In response, KEVM [15]
was developed, a formal semantics of the EVM in K [29], to provide formal verifi-
cation assistance to the EVM smart contract world [26,32]. We and others in the
Ethereum community have embraced and adopted KEVM, as a more rigorous
and thus precise alternative to the Yellow paper [38]. Through our own experi-
ence with KEVM and the reports of others, we became aware of the limitations
of EVM as a language: it includes features that are easily exploitable and its
low-level nature makes formal verification efforts tedious and time-consuming.
On the positive side, as reported in [15], the EVM interpreter automatically gen-
erated from KEVM by the K framework [29] was only one order of magnitude
slower than the official EVM client written in C++ [10]. Since the node client

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 593–610, 2019.
https://doi.org/10.1007/978-3-030-30942-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_35&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_35

594 T. Kasampalis et al.

code takes only a small fraction of the total execution time on a blockchain,
the KEVM performance was considered acceptable by IOHK (http://iohk.io),
the company that is in charge of the Ethereum Classic blockchain, to deploy a
testnet that is entirely powered by the auto-generated KEVM client [17].

In response to these limitations of EVM, we have designed and implemented
IELE, a new language for smart contracts. IELE is a low-level language with
syntax similar to that of LLVM [22]. It is designed to be both human readable
and suitable as a compilation target for more high-level languages. IELE has var-
ious high-level features, such as function calls/returns, static jumps, arbitrary-
precision integer arithmetic among others, that both make automatic formal
verification more straight-forward and the language itself more secure.

IELE was designed using a formal specification, and its implementation was
automatically generated from its specification using the same technology that was
used to generate the implementation of KEVM [15], namely K [29]. In contrast,
other languages have separate specifications and implementations, and it is hard
to keep them from differing. Sometimes the specification is informal, like that
of LLVM [22] and sometimes formal, like that of SML [23], but in either case
the implementation is separate so it is not possible to execute test cases against
the specification. To bridge the gap between specification and tools, K provides
support for developing language semantic definitions as well as a host of tools
for such a definition, such as parser, interpreter, deductive verifier, and more.
These tools are automatically generated so any change to the formal seman-
tics is automatically propagated to the tools. For IELE, we use the generated
parser/interpreter to obtain a IELE Virtual Machine (IELE VM) tool (also ref-
erence implementation). We also use the capability of K to generate sound and
relatively complete deductive program verifiers for the defined languages [6], to
obtain a IELE smart contract formal verification tool. As a result, IELE is for-
mally specified and its implementation and verifier are correct by construction
and remain correct, with zero effort, in the presence of updates to the language.

We have deployed the IELE VM in a testnet supported by IOHK, a major
blockchain company [16]. To do so, we have built appropriate infrastructure
around the IELE VM: a full compiler for Solidity [11], a popular high-level
language for smart contracts that until now could only be compiled to EVM, as
well as integration with the Mantis Ethereum client [18]. This allows us to run
real-world Solidity contracts on IELE (see appendix B in [20] for more details).

In summary, our contributions are:

– IELE, a smart contract language designed from the ground up using for-
mal methods with the goals of security, verification, human-readability, and
portability in mind, using the K framework. IELE is publicly available [33].

– Useful tools for IELE: A IELE virtual machine that was deployed as a testnet
by a major blockchain company and a IELE smart contract verifier automat-
ically generated by the K framework from the IELE formal semantics.

More details can be found on Github [33] and on the IELE testnet [16].

http://iohk.io

IELE: A Rigorously Designed Language for the Blockchain 595

2 Background

We briefly discuss the K framework, Ethereum and the EVM, as well as other
smart contract languages currently under development.

The K Language Semantic Framework. K [29] is a rewriting-/reachability-
based framework for defining executable semantic specifications of programming
languages. Given the syntax and semantics of a language, K automatically gener-
ates a parser, an interpreter, as well as formal analysis tools such as a deductive
verifier. This avoids duplication while improving efficiency and consistency. For
example, using the interpreter, one can test the semantics immediately, which
significantly increases the efficiency of and confidence in semantics development.
There exists a rich literature on using K for formalizing existing languages, such
as C [9,14], Java [3] and JavaScript [25], among others. K has also been used to
formally specify the Ethereum Virtual Machine (EVM) [15], the current smart
contract language for Ethereum. In fact, the process of formalizing EVM as an
executable semantics uncovered various inconsistencies and unspecified behav-
iors in its original English specification (the Yellow paper) [38].

Blockchain and Ethereum. A blockchain is an append-only ledger that is
commonly used for synchronization in distributed protocols. Cryptocurrencies
such as Bitcoin [24], refer to such protocols that allow a set of clients to trans-
fer and maintain a balance of virtual coins. A cryptocurrency network consists
of accounts (essentially encrypted client IDs) with cryptocurrency balances, a
blockchain of verified transactions, and a set of so-called miners, computation
resources that process pending transactions and append them in the blockchain.

Ethereum [5] is a blockchain-based network that provides a decentralized,
replicated computer for distributed applications and uses a blockchain to store
its global state. Ethereum supports a programming language for writing smart
contracts, which are programs associated with Ethereum accounts. Ethereum
accounts interact with each other using transactions over a cryptocurrency called
Ether. When an Ethereum account associated with a smart contract receives a
transaction, execution of its smart contract code is triggered. Such transactions
can both transfer Ether and pass input data to the smart contract.

Ethereum smart contracts often manage large monetary amounts, in the
range of 100M USD. Ethereum’s popularity is largely due to the fact that there
is no need for a trusted third party (such as a bank) to verify the transactions;
the trust comes from the consensus algorithm and the fact that smart contract
code is binding. Ethereum transactions are irreversible and the source code of
the involved smart contracts is public and immutable. Moreover, any transaction
can be replicated through the information stored in the blockchain.

EVM. Currently, Ethereum contracts should be translated to the language of
the Ethereum Virtual Machine (EVM) [38]. The EVM is a stack-based VM with
an assembly-level language with no code/data separation or function-level call-
s/returns. The language is loosely specified in the Yellow Paper [38], but has been
recently formally specified as a K definition in KEVM [15]. KEVM provides a ref-

596 T. Kasampalis et al.

erence implementation that is considered for adoption by the Ethereum Founda-
tion, a deductive verifier that has been used to verify real-world contracts [26,32],
and the Jello Paper [21], an English language specification of EVM generated
from the documentation of the KEVM semantics definition.

Other Smart Contract Languages. Several smart contract programming lan-
guages have been proposed either as alternatives to EVM or as higher-level, more
programmer-friendly options. Solidity [11] and Vyper [12] are popular high-level
languages for Ethereum contracts that are typically compiled down to EVM.
Plutus [19] is a high-level functional language that offers increased security
due to features such as type safety. Rholang [28] is a functional, concurrency-
oriented language that powers RChain, an evolution of traditional blockchain
networks that allows for concurrent transactions. We believe that IELE could
serve as a compilation target of all these languages. In fact, we have imple-
mented a Solidity-to-IELE compiler as part of our evaluation (see appendix B.1
in [20]). Intermediate-level smart contract languages include Michelson [36], a
stack-based, but also statically typed language, Scilla [39], a language that offers
clear separation between in-contract computation and inter-contract communi-
cation to facilitate formal reasoning about smart contracts, and Simplicity [2],
a language designed to have simple semantics which lend themselves to static
analysis and formal reasoning. IELE shares the goals of enhanced security and
ease of formal verification with these languages. We believe that the novelty in
the design of IELE, compared to those efforts, stems from the fact that its formal
specification and its de-facto implementation are one and the same artifact: any
change to IELE’s specification is automatically propagated to the implementa-
tion of the language execution engine and verification tools.

3 The IELE Language

Based on experience with KEVM and formal verification of EVM smart con-
tracts, we identified five desired properties for an ideal blockchain low-level
language and designed IELE around them. Our design was done using formal
semantics, and the implementation was generated automatically [16,33].

Security. Smart contracts often manage large monetary amounts and have been
targets of attackers that seek to exploit any vulnerabilities in their code [1].
Very often, language design weaknesses such as undefined behaviors, execution
of arbitrary data as code, and silent integer overflow act as enablers for attackers
to exploit corresponding bugs. IELE avoids all of the above (and more) design
weaknesses and hence eliminates many possible attack vectors by design.

Formal Verification. No matter how many insecure features are avoided at
the language definition level, software bugs can always allow for exploits. The
three most expensive exploits of Ethereum smart contracts are all due to soft-
ware errors [4,7,35]. A strong defense against such exploits is formal correctness
verification and IELE is designed with the goal of formal verification in mind.

IELE: A Rigorously Designed Language for the Blockchain 597

Human Readable. Smart contracts act as binding agreements between human
end-users. Being human readable reinforces this intention, as it is easier for the
agreeing parties to trust a formal agreement they can read and understand.
Ideally smart contracts should be human readable at the exact level they are
stored in the blockchain and executed. This is true for IELE contracts, since
the IELE syntax was designed to be almost identical to that of LLVM [22], a
state-of-the-art intermediate language designed to be human readable.

Determinism. Ethereum’s blockchain stores transactions that can be replicated
by any Ethereum client and many of these transactions require execution of
smart contract code to be replayed. For this reason it is important that the
underlying smart contract language and its implementation are deterministic.
The IELE specification contains no undefined and/or implementation-defined
behaviors, as well as no by-design non-deterministic features.

Gas Model. The philosophy behind IELE’s gas model is simple: no limitations
in code execution, but costs are analogous to the resource consumption. For
example, IELE programs have access to an unlimited number of registers, but
more used registers incur steeper gas charges. Similarly IELE uses unbounded
integer arithmetic, but the larger the numbers at runtime, the more gas required.
A detailed discussion of IELE’s gas model can be found in appendix A in [20].

Listing 1 shows a simple forwarder contract in IELE. The contract forwards
any amount of Ether1 sent to it to the account that created the contract. The
@init function of the contract is executed when a transaction creates this con-
tract. The built-in @iele.caller returns the account address of the account
that posted the transaction, which is the creator of this contract. This address is
saved in the account storage of the forwarder. The @deposit function is a pub-
lic function meaning it can be invoked by incoming transactions. The built-in
@iele.callvalue returns the amount of Ether that was sent to the forwarder
with the incoming transaction. This amount is forwarded to the creator account
by invoking its own @deposit function with the IELE instruction call .. at.
Note that the forwarder specifies an upper limit of gas to spend at the creator
during the account call. If the forwarding fails (e.g., due to lack of gas), the
built-in @iele.invalid is called that reverts any global state change made so
far, including the Ether receipt for the forwarder account.

The full formal semantics of the IELE language, given as an executable K
definition that also serves as a reference implementation, can be found in [33].
In the remainder of this section we give a high-level presentation of IELE and
discuss the improvements over the state-of-the-art EVM.

3.1 IELE Contracts

A IELE contract is the main compilation unit of code that can be associated with
a blockchain account. A IELE contract has a name and contains one or more

1 IELE can be used in any Ethereum-style blockchain, where the cryptocurrency may
be called differently. We use Ether throughout the paper for the sake of concreteness.

598 T. Kasampalis et al.

functions, global variables, and external contract declarations. Public functions
can be invoked from other accounts while private functions only from within the
contract. Global variables are accessible from anywhere within the contract and
hold a constant value. The Listing 1 contract has one global variable, @creator,
one private function, @init, and one public function, @deposit.

Account Storage. An account includes a storage that is an unbounded sparse
array of arbitrary-precision signed integers. The storage is persistent, i.e., it holds
its contents throughout the account’s lifetime. As such the storage contents
of all accounts are part of the global state and any modification on them is
recorded in the blockchain. IELE code associated with an account can access
the account storage through the dedicated sload and sstore instructions. IELE
global variables are typically used to hold specific storage addresses, so that the
contract code can refer to those addresses by the name of the variable. See, e.g.,
how the global variable @creator is used in the contract of Listing 1.

Listing 1. Forwarder contract in IELE
� �

// Contract forwards any funds it receives to its creator account

contract Forwarder {

// account storage index holding the creator account address

@creator = 1

// initializes a forwarder

define @init() {

// get the address of the creator account

%creator = call @iele.caller()

// store the creator ’s address in the storage

sstore %creator , @creator

}

// forwards the received funds to the creator of this account

define public @deposit() {

// get the received funds

%value = call @iele.callvalue()

// get the creator account address from the storage

%creator = sload @creator

// forward funds by calling deposit at the creator account

%status = call @deposit at %creator () send %value ,

gaslimit 2300

br %status , throw // contract call failed

ret void

throw:

call @iele.invalid()

}

}
� �

Contract Creation. An account can be created and associated with a IELE
contract manually by an end user, by posting of an appropriate transaction, or
dynamically by another executing IELE contract, using IELE’s create instruc-
tion. We say that a new contract created this way is deployed, since an exe-
cutable object (including smart contract code and state) is literally stored in the
blockchain. Listing 2 shows a contract that dynamically creates accounts asso-
ciated with the Forwarder contract shown in Listing 1. The create instruction
dynamically creates a new account, deploys the Forwarder smart contract, and
finally returns the new account’s address. The send attribute specifies that no
initial amount of Ether is sent to the new account.

The smart contract code to be associated with a newly created account should
be available at creation time. In case of dynamic account creation, we chose to

IELE: A Rigorously Designed Language for the Blockchain 599

design IELE with the stricter requirement that the code should have been avail-
able at creation time of the creator contract. For this purpose, a IELE contract
contains a list of external contracts that it is allowed to create at runtime, and
the code for each of these contracts should be available when the contract itself
is created. Recursively, the code of each contract that these contracts may create
should also be available. Hence, all code that can be stored in the blockchain is
available at the time when some end user posts an account creation transaction.

In Listing 2, the Wallet contract declares the Forwarder contract as external.
This means that if a new Wallet contract is to be created and deployed, at
that time both the code of the Wallet contract and the code of the Forwarder
contract should be provided and will be stored in the blockchain as part of the
creation transaction. Later, during execution, the Wallet contract is able to
dynamically create Forwarder contracts using the available Forwarder code.

Listing 2. Wallet contract that creates Forwarder contracts
� �

// Wallet contract that creates new accounts that forward funds sent to them to this wallet.

contract Wallet {

external contract Forwarder

define @init() {}

// @deposit is empty: any received funds are simply added the associated account ’s balance

define public @deposit() {}

// creates a new account that simply forwards any funds sent to it to this wallet and

// returns the address of the created forwarder account

define public @newForwarder() {

// ensure that the caller is the account associated with the wallet

%caller = call @iele.caller()

%owner = call @iele.address()

%isnotowner = cmp ne %caller , %owner

br %isnotowner , throw

// create a new account associated with a Forwarder contract and return its address

%status , %addr = create Forwarder () send 0

br %status , throw

ret %addr

throw:

call @iele.invalid()

}

}
� �

Dynamic contract creation is thus guaranteed to only use code that has
already become available in the blockchain; no dynamic code generation is
allowed. This design has two major advantages. Expensive code validation checks
(well-formedness, formal verification, etc.) need only take place when account
creation transactions are posted and never during code execution. Also code can
be stored in the blockchain separately from the account it is associated with:
contracts can be stored in a separate storage (with no duplicate contract code)
and accounts need only store a pointer to their associated code. This allows
for cheap dynamic account creation that doesn’t generate duplicate code in the
blockchain.

Contract Initialization. A special private @init function can be defined and
will be executed at contract creation time. This function typically contains ini-
tialization code, e.g. initialization of the account storage. It is not callable and
it can only be invoked at contract creation time. This way, IELE guarantees

600 T. Kasampalis et al.

that the state of an already deployed contract cannot be reset maliciously by
invoking initialization code after contract creation, thus avoiding a weakness of
the current Ethereum design that has been exploited in the past [4].

3.2 IELE Functions

IELE functions are the main structural units of a IELE contract. A function
definition includes the function signature, the function body and whether or not
the function is public. A function signature includes a function name and names
of formal arguments. A public function can be called by other accounts, while
a private one can only be called by other functions within the same contract.
Listing 3 shows a simple implementation of the factorial as a IELE function.

Listing 3. IELE function for factorial
� �

define public @factorial(%n) {

// ensure %n >= 0

%lt = cmp lt %n, 0

br %lt, throw

%result = 1

condition:

%cond = cmp le %n, 0

br %cond , after_loop

loop_body:

%result = mul %result , %n

%n = sub %n, 1

br condition

after_loop:

ret %result

throw:

call @iele.invalid()

}
� �

Control Flow. The function body code is organized in labeled blocks. The
execution falls through from the last instruction of a block to the first of the
next one, or jumps to the start of a specific block. IELE supports jumps to
statically known targets only: The branch instruction accepts a block label as
an argument for the target of the jump. This differs from the EVM, where jumps
amount to pushing a possibly computed number on the stack and then jumping
to it regarded as an address. IELE ensures a statically known control flow graph
and thus makes static analysis and formal verification easier.

Function Calls. A public function can be invoked manually by an end user
posting a transaction, or dynamically by another executing contract using IELE’s
account call instruction, call .. at. The address of the callee and the name of
the called function are provided at call time. The call may be accompanied with
an Ether amount to be transferred from the caller to the callee. IELE defines
a simple call/return convention: Called functions expect a specific number of
arguments (the number of formal arguments) and return a specific number of
return values (the number of return values at ret plus an exit status). If an
ABI error occurs (e.g. incorrect number of arguments, function not found or not
public, etc), a corresponding erroneous exit status is returned.

IELE: A Rigorously Designed Language for the Blockchain 601

For reference, in EVM the caller just sends an arbitrary bytestream con-
taining the call arguments. There is an externally defined ABI convention that
most EVM compilers follow, but it is not enforced. EVM does not have a notion
of callable function; instead, the execution always starts at the contract’s first
instruction. The higher abstraction level of IELE’s calls and its more structured
design makes IELE contracts more readable and less tedious to formally verify.

EVM supports another type of account call, namely delegatecall, that
differs from the normal call, in that the code of the callee is executed in the
environment of the caller. This essentially means that the storage of the caller
account becomes accessible and writable from the callee code. EVM offers this
feature to avoid code duplication: typically library code is associated with a
single account and invoked with delegatecall by multiple clients. IELE offers
a different solution to the code duplication problem as discussed in Sect. 3.1. For
this reason and because delegatecall poses serious security concerns and has
been exploited in the past [35], we decided to drop delegatecall in IELE.

Deposit Handler. A special public function, @deposit, can be defined for a
IELE contract and it is invoked whenever the account receives a payment that
is not accompanied with a specific function call. A contract can forbid such
payments by refusing to define a @deposit function.

3.3 IELE Instructions

IELE instructions take the form of opcodes that accept a specific number of
arguments and return a specific number of values. There are various families of
instructions, including arithmetic, bitwise, comparison, and hashing operations.
There are also dedicated instructions for accessing the local memory, accessing
the account storage, and appending to the account log. Finally there are branch
instructions, the function call/return instructions, and the account create/selfde-
struct instructions. In addition to instructions, IELE supports a number of useful
intrinsics that can be called like private functions and provide functionality such
as querying the local or network state, cryptographic functions, etc.

IELE is register-based: Instructions operate on and store their output in
virtual registers. An infinite number of virtual registers is available, but the
actual number of registers used by the function can be determined statically by
counting the different register names used in its code. We chose to design IELE as
a register-based language, unlike the stack-based EVM, for two reasons. First,
it makes IELE code significantly more human-readable. Second, IELE formal
verification tools do not need to reason about the size of the operation stack
(bounded to 1024 words, a tedious requirement for verifying EVM programs).

3.4 IELE Datatypes

IELE uses arbitrary-precision signed integers. All virtual registers and account
storage locations hold values of this type. They can also be stored in and loaded

602 T. Kasampalis et al.

from the local memory. Arbitrary-precision arithmetic removes arithmetic over-
flows thus making specification and formal verification less tedious, as well as
making attacks like [27] that exploit arithmetic overflow bugs not viable.

4 Formal IELE Language Definition in K

Here we describe the formal semantics of IELE, from which several of our IELE
tools are generated automatically by the K framework, such as an interpreter,
a well-formedness checker, and a program verifier. In total, the IELE semantics
consists of 3122 lines of K code (not including literate comments), including 729
productions (for syntactic or semantic constructs) and 1255 semantic rules [33].
For comparison, the K EVM semantics in [15] consists of 2628 lines of K code,
including 510 productions and 1025 semantic rules; these total less than 20% the
size of the VM code component of the official EVM client implemented in C++
(about 15k LOC) [10]. A similar save would be seen if IELE had a conventional
VM implementation in C++, although such an implementation was never needed
because the IELE VM was automatically generated from the formal semantics.

Listing 4. K syntax productions for IELE contracts
� �

syntax ContractDefinition ::= "contract" IeleName "{" TopLevelDefinitions "}"

syntax TopLevelDefinitions ::= List{TopLevelDefinition, ""}

syntax TopLevelDefinition ::= FunctionDefinition

| GlobalDefinition

| ContractDeclaration

syntax GlobalDefinition ::= GlobalName "=" IntConstant

syntax ContractDeclaration ::= "external" "contract" IeleName

syntax FunctionDefinition ::= "define" FunctionSignature "{" Blocks "}"

| "define" "public" FunctionSignature "{" Blocks "}"

syntax FunctionSignature ::= GlobalName "(" FunctionParameters ")"

syntax FunctionParameters ::= LocalNames

syntax GlobalName ::= "@" IeleName

syntax LocalName ::= "%" IeleName

syntax LocalNames ::= List{LocalName, ","}
� �

4.1 IELE Formal Semantics Overview

The formal semantics of IELE [33] is spread among several files: iele-syntax.md
contains a quick introduction to the various features of the language along with
their syntactical definitions. iele.md contains the semantics of the various lan-
guage features and the specification of the program execution state. iele-gas.md
contains the semantics of the gas model of IELE. welformdness.md contains a
formal definition of a well-formed IELE contract, a syntactically valid IELE
contract free from type errors and other malformed instructions and/or func-
tions. Finally, data.md contains the semantics of various data structures and
utilities used in the rest of the specification. In the following paragraphs, we
discuss examples from the formal specification of IELE along with features of K
as needed.

Syntax. The syntax of IELE is specified as a collection of EBNF-style produc-
tions. As an example, the productions shown in Listing 4 define the syntax for

IELE: A Rigorously Designed Language for the Blockchain 603

a IELE contract and its contents. The left-hand side of each syntax production
defines a K sort and the right-hand side of the production gives one or more
syntactically valid ways to construct a value of the sort. The keywords enclosed
in double quotes represent terminal symbols. K uses these productions to auto-
matically derive a parser for the language.

Execution State (Configuration). The execution state of a IELE program
is defined as a K configuration, that is an ordered list of potentially nested
cells, specified with an XML-like notation. At any given time during execution,
each cell contains a corresponding value that reflects the current execution state.
When declaring a K configuration, initial values for the cell contents are supplied.
Among other components, the configuration for IELE contains a description of
the local state and the network state.

(1) The local state is created when a transaction is sent to a specific account
and contains information about the smart contract code associated with the
account, the intra-contract call stack, the amount of gas remaining, and the
state of the local memory and virtual register file (see Listing 5).

Listing 5. Configuration for local state
� �

<id> 0 </id> // Currently executing account

<caller> 0 </caller> // Account that called current account

<gas> 0 </gas> // Current gas remaining

<program>

<functions>

<function multiplicity="*" type="Map">

<funcId> deposit </funcId> // Name of the function

<nparams> 0 </nparams> // Number of parameters

<jumpTable> .Map </jumpTable> // Jump table

<nregs> 0 </nregs> // Number of registers

<instructions>

(.Instructions .LabeledBlocks):Blocks

</instructions> // The blocks of the function

</function>

</functions>

// ... more cells ...

</program>

<localCalls> .List </localCalls> // Intra -contract call stack

<regs> .Array </regs> // Current values of registers

<localMem> .Map </localMem> // Current values of local memory
� �

The id cell contains the address of the currently executing account and the
caller cell contains the address of the account that initiated the transaction.
The program cell and its nested cells contain the code of the currently executing
smart contract. The code is contained in one or more function cells, one for
each function of the smart contract. These cells in turn contain the code for
the corresponding function as a list of blocks and other information, such as the
function name and number of formal parameters, and a jump table mapping
label names to corresponding blocks. The gas cell contains the amount of gas
remaining. This cell is initialized upon receiving the transaction to the amount
of gas sent from the caller and is being reduced while the smart contract code
executes. Finally, the cells regs and localMem map virtual register names and
local memory addresses to their containing values, while the cell localCalls
contains a stack of frames for all the functions in the current call stack.

604 T. Kasampalis et al.

(2) The network state contains information about the Ethereum network,
such as active accounts, their balance in Ether, their storage contents, whether
or not they are associated with code, pending transactions, and more. The
Ethereum network state at any point in time can be reached by replaying all the
transactions that are stored in the blockchain up to this point. Instead of specify-
ing the network state as a transaction log, we choose to describe only the current
network state, as only it is relevant for the rest of the formal specification.

Listing 6 shows part of the network state that describes the state of active
Ethereum accounts. The accounts cell contains one cell per account in the net-
work. Active accounts have their address in the acctID cell and their balance in
the balance cell. The code cell contains any associated smart contract code. The
storage cell maps storage addresses to their current contents for the account’s
storage. The nonce cell contains a monotonically increasing integer that counts
the number of transactions performed by this account.

Listing 6. Configuration for network state
� �

<network>

<accounts>

<account multiplicity="*" type="Map">

<acctID> 0 </acctID> // ID of account

<balance> 0 </balance> // Funds in account

<code> #emptyCode </code> // Contract of account

<storage> .Map </storage> // Permanent storage

<nonce> 0 </nonce> // Nonce of account

</account>

</accounts>

// ... more cells ...

</network>
� �

Transition Rules. Transition rules define valid rewrites of the current config-
uration to a next one. Each rule consists of a left-hand side that is a pattern
over one or more configurations (meaning it may contain variables) and a right-
hand side that describes how a matched configuration should be rewritten to the
next valid configuration. A pattern matches an actual configuration when there
exists an assignment of its variables that makes it equal to the configuration.
The derived interpreter that K generates matches patterns found in the left-
hand side of rules with the contents of the current configuration, and rewrites
it according to the right-hand side. The program verifier does the same, except
that it applies the rules symbolically, using unification instead of matching.

The k cell of the configuration drives the execution: It contains at any time a
list of execution steps to be matched and rewritten. The IELE semantics defines
a set of internal operators that represent different such execution steps and
maintains a list of such operators inside the k cell during execution.

As an example, Listing 7 shows the rules that specify the behavior of the
div instruction. The syntax production defines the internal operator #exec,
which represents the execution of a single IELE instruction. Both rules match
a configuration where the top of the k cell contains the #exec operator with a
division instruction. The first rule matches when the denominator is different
from zero, as specified in the requires clause. Then, the top of the k cell is
rewritten to another internal operator, #load, that loads the result of the division

IELE: A Rigorously Designed Language for the Blockchain 605

to the left-hand side virtual register. The /Int and =/=Int operators are K built-
in operators for arbitrary-precision signed integers.

Listing 7. Rules for the div instruction
� �

syntax InternalOp ::= "#exec" Instruction

// --

rule <k> #exec REG = div W0 , W1 => #load REG W0 /Int W1 ... </k>

requires W1 =/=Int 0

rule <k> #exec REG = div W0 , 0 => #exception USER_ERROR ... </k>
� �

The second rule matches in the case of division by zero and rewrites the top of
the k cell to an #exception with the appropriate error code (here USER ERROR is a
macro that stands for corresponding error code). Other parts of the specification
provide rules that handle exceptions by reverting all account state changes since
the account started execution for the current transaction and returning the error
code to the caller. The ellipses (...) is K syntax for a pattern that matches the
rest of the k cell, which is a list of internal operators.

Listing 8. Rules for the #load internal operator
� �

syntax InternalOp ::= "#load" LValue Int

| "#load" Int Int Int [klabel(#loadAux)]

// --

rule <k> #load % REG VALUE => #load REG VALUE {REGS [REG]} ...</k>

<regs> REGS </regs>

rule <k> #load REG VALUE OLD => </k>

<regs> REGS => REGS [REG <- VALUE] </regs>

<currentMemory>

CURR => CURR -Int intSize(OLD) +Int intSize(VALUE)

</currentMemory>
� �

The rules shown in Listing 8 specify the behavior of the #load internal oper-
ator, used to store values in virtual registers. Note that the syntax for a virtual
register (after desugaring) is % Int and the integer that is the name of the
register is used as an index in the register file to look up its value.

The first rule accesses the current register file in the regs cell and looks up
the old value of the register to be updated. It then rewrites the #load operator
to an auxiliary operator that matches the second rule. The second rule updates
the register file using the K built-in operator [<-] for writing array elements.
It also updates the total size of the register file in the currentMemory cell; this
information is needed to compute the gas cost of the operation. The top of the
k cell is rewritten to “.”, which is a K idiom for the empty string.

As a last example, intSize, used above to compute the size in 64-bit words
of the given arbitrary-precision signed integer, is defined as shown in Listing 9.

Listing 9. Rules for the intSize operator
� �

syntax Int ::= intSize (Int) [function]

// ---

rule intSize(N) => (log2Int(N) +Int 2) up/Int 64 requires N >Int 0

rule intSize(0) => 1

rule intSize(N) => intSize(~Int N) requires N <Int 0
� �

The syntax production specifies the pattern intSize() as a member of the
Int sort (the arbitrary-precision signed integers) and attaches the function
attribute to it. This attribute informs K that the pattern is “pure”, as in the

606 T. Kasampalis et al.

rules for rewriting it do not depend on any context other than its argument. The
K rewrite engine will attempt to rewrite these pattern as much as possible when
they appear anywhere in the current configuration.

5 Formal Verifier of IELE Smart Contracts

K provides a sound and relatively complete language-parametric program ver-
ifier. That is, given a language semantics as input, K yields a program verifier
for that language that can prove, modulo a domain reasoning oracle (currently
Z3 [8]), any reachability property about any program in that language. This
important capability of K, that generalizes and eliminates the need for Hoare
logic, has already been demonstrated with languages that are much larger than
IELE, such as C, Java and JavaScript, and shown to offer the same level of
automation and performance as program verifiers crafted specifically for the
languages in question (e.g., VCC for C) [6]. Here we briefly explain how the
K verifier works with IELE as input language, to verify IELE smart contracts.
We emphasize how it compares with the same generic verifier instantiated with
the EVM semantics [15], which has been used extensively as part of commercial
services [26,32].

As discussed in Sect. 3, formal verification of smart contracts was one of the
main forces driving the design of IELE, often in sharp contrast to the design of
the EVM: statically known jumps allow us to write and compose code properties
modularly; eliminating stack bounds for arithmetic expression evaluation allows
us to soundly focus only on functional properties of code and write simpler,
higher-level properties; eliminating the ABI encoding conventions allow us to
reason about any programs, not only about those that obey the conventions;
unbounded integers eliminate the need to reason about arithmetic overflow; etc.

We now discuss how to verify in IELE the most popular smart contract,
ERC20 [37], which provides functionality for maintaining and exchanging tokens.
Details about the verification of ERC20 in EVM can be found in [26,32].

Formal Specification. We start with ERC20-K [30], a complete language-
independent formalization of the high level business logic of the ERC20 standard.
ERC20-K clarifies what data (e.g., balances and allowances) are handled by
the various ERC20 functions and the precise meaning of those functions on
such data. More importantly, ERC20-K clarifies the meaning of all the corner
cases that the ERC20 standard omits to discuss, such as transfers to itself and
transfers that result in arithmetic overflow. From ERC20-K, we can easily derive
the specification for the ERC20 contract written in IELE by mapping ERC20-K
to the configuration of IELE. We follow the same approach and DSL used for
EVM [26], but taking the specifics of IELE into account. Mathematically, the
ERC20 specification consists of a set of reachability formulae of the form φ ⇒ ψ,
with the meaning that the set of states satisfying/matching the pattern φ will
either reach a state in ψ or not terminate when executed with IELE.

Listing 10 shows a snippet of the specification for two possible behaviors
of transfer. For each case, it specifies the function name (fid), the function

IELE: A Rigorously Designed Language for the Blockchain 607

parameters (callData and regs), the return value (output), whether an excep-
tion occurred (k), the log generated (log), the storage update (storage), and
the path-condition (requires). The success case ([transfer-success]) spec-
ifies that the function succeeds in transferring the VALUE tokens from the FROM
account to the TO account, with generating the corresponding log message, and
returns 1 (i.e., true), provided that the FROM account has sufficient balance. The
failure case ([transfer-failure]) specifies that the function throws an excep-
tion without modifying the account balances, if the FROM balance is insufficient.

Listing 10. Formal specification of ERC20 transfer
� �

[transfer -success]

k: #execute => #end ...

callData: TO, VALUE , .Ints

output: _ => (1, .Ints)

regs: (0 |-> TO_ID 1 |-> VALUE .Map) => _

fid: transfer

log: ... (. => #eventLog(FROM , #topics(TransferEvent , FROM , TO), Int2Bytes(VALUE)))

storage: #mapKey({BALANCE}, FROM) |-> (BAL_FROM => BAL_FROM -Int VALUE)

#mapKey({BALANCE}, TO) |-> (BAL_TO => BAL_TO +Int VALUE)

...

requires: andBool 0 <=Int VALUE

andBool FROM =/=Int TO

andBool VALUE <=Int BAL_FROM

[transfer -failure]

k: #execute => #exception(4) ...

callData: TO, VALUE , .Ints

output: _ => _

regs: (0 |-> TO_ID 1 |-> VALUE .Map) => _

fid: transfer

log: ...

storage: #mapKey({BALANCE}, FROM) |-> BAL_FROM

#mapKey({BALANCE}, TO) |-> BAL_TO

...

requires: andBool 0 <=Int VALUE

andBool FROM =/=Int TO

andBool VALUE >Int BAL_FROM
� �

Formal Verification. We verified the hand-written IELE implementation of
ERC20 at [31], following the same automatic process used for EVM-level ver-
ification described in [26]. All 15 high-level ERC20 properties were seamlessly
proved, automatically. It is insightful to compare the IELE and EVM verifica-
tion experiences. We found that most of the EVM-level verification challenges
described in [26] are addressed by the IELE language design. For example:

(Arithmetic Overflow). Since EVM performs modular arithmetic (i.e., mod
2256), detecting arithmetic overflow is critical for preventing security attacks.
When writing EVM-level specifications, one needs to reverse engineer constraints
on the input such that the arithmetic overflow checks in the program pass. For
example, in case transfer-success, one needs to add constraints to make sure
that the balance of TO account does not overflow. This is not only tedious, but
also imposes non-trivial proof obligations on SMT solvers. In contrast, IELE
arithmetic instructions admit unbounded integers, which not only makes the
smart contract more secure but also makes it much easier to specify correctly.

608 T. Kasampalis et al.

(Hash Collision). Due to the storage limitation of EVM, compilers such as
Solidity and Vyper use SHA3 hash to implement the builtin map. However, SHA3
is not cryptographically collision free. The contract developers simply assume
collisions will not occur during normal execution and SHA3 hash is modeled as an
injective function during the verification of EVM smart contracts. Unfortunately,
that is unsound: one can derive false, using the pigeonhole principle. In contrast,
IELE provides infinite memory and storage, so injective functions can be defined
to map different keys to different locations instead of SHA3 hashing.

6 Conclusion

We presented IELE, a new low-level language for smart contracts. The full formal
specification of IELE is available as a K specification, serving at the same time
as the implementation as well as a formal documentation of the language. The
specification/implementation of IELE is in par with the state of the art in the
world of smart contract virtual machines. With the support of a Solidity to IELE
compiler (see appendix B.1 in [20]) and a fully functional Ethereum client that
is based on Mantis and powered by the IELE virtual machine (see appendix
B.2 in [20]), we were able to deploy and execute IELE contracts in a real-world
blockchain testnet. This makes IELE the first practical language to be defined
and implemented directly as a formal semantics specification and significantly
raises the bar for how virtual machines for the blockchain must be developed.
In this new and disruptive field where security and correctness are paramount,
it is in our view unjustified to adopt any lower standards anymore.

Acknowledgements. We are grateful to IOHK (http://iohk.io) for funding the IELE
project, as well as for insightful discussions, encouragements and constructive criticisms
along the way. The work on the K framework and its tooling was supported in part
by NSF grant CNS 16-19275 and by the United States Air Force and DARPA under
Contract No. FA8750-18-C-0092.

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts. IACR Cryptology ePrint Archive 2016, 1007 (2016). https://eprint.iacr.org/
2016/1007.pdf

2. Blockstream: Simplicity blog post and resources (2019). https://blockstream.com/
2018/11/28/en-simplicity-github/

3. Bogdanas, D., Rosu, G.: K-Java: a complete semantics of Java. In: Proceedings of
the 42nd Symposium on Principles of Programming Languages (POPL2015), pp.
445–456. ACM, January 2015. https://doi.org/10.1145/2676726.2676982

4. Breidenbach, L., Daian, P., Juels, A., Sirer, E.G.: An in-depth look at the parity
multisig bug (2017). http://hackingdistributed.com/2017/07/22/deep-dive-parity-
bug/

5. Buterin, V., Ethereum Foundation: Ethereum White Paper (2013). https://github.
com/ethereum/wiki/wiki/White-Paper

http://iohk.io
https://eprint.iacr.org/2016/1007.pdf
https://eprint.iacr.org/2016/1007.pdf
https://blockstream.com/2018/11/28/en-simplicity-github/
https://blockstream.com/2018/11/28/en-simplicity-github/
https://doi.org/10.1145/2676726.2676982
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

IELE: A Rigorously Designed Language for the Blockchain 609

6. Ştefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program ver-
ifiers for all languages. In: Proceedings of the 31th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2016), pp. 74–91.
ACM, November 2016. https://doi.org/10.1145/2983990.2984027

7. Daian, P.: DAO attack (2016). http://hackingdistributed.com/2016/06/18/analy
sis-of-the-dao-exploit/

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2012), pp. 533–544. ACM, January 2012. https://
doi.org/10.1145/2103656.2103719

10. Ethereum: Ethereum C++ Client (2019). https://github.com/ethereum/cpp-
ethereum

11. Ethereum: Solidity documentation (2019). http://solidity.readthedocs.io
12. Ethereum: Vyper documentation (2019). https://vyper.readthedocs.io
13. Etherscan: Ethereum Transaction Growth (2019). https://etherscan.io/chart/tx
14. Hathhorn, C., Ellison, C., Rosu, G.: Defining the undefinedness of C. In: Proceed-

ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2015), pp. 336–345. ACM, June 2015. https://doi.org/
10.1145/2813885.2737979

15. Hildenbrandt, E., et al.: KEVM: a complete semantics of the Ethereum virtual
machine. In: 2018 IEEE 31st Computer Security Foundations Symposium, pp.
204–217. IEEE (2018). https://doi.org/10.1109/CSF.2018.00022

16. IOHK: IELE Testnet (2019). https://testnet.iohkdev.io/iele/
17. IOHK: KEVM Testnet (2019). https://testnet.iohkdev.io/kevm/
18. IOHK: Mantis Ethereum Classic Client (2019). https://iohk.io/blog/mantis-

ethereum-classic-beta-release
19. IOHK: Plutus testnet (2019). https://testnet.iohkdev.io/plutus/
20. Kasampalis, T., et al.: IELE: a rigorously designed language and tool ecosystem

for the blockchain. Technical report, University of Illinois, July 2019. http://hdl.
handle.net/2142/104601

21. KEVM: Jello paper (2019). https://jellopaper.org/
22. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-

ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
2004, p. 75. IEEE Computer Society, Washington, DC, USA (2004). http://llvm.
org

23. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML:
Revised. MIT Press, Cambridge (1997)

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

25. Park, D., Stefanescu, A., Rosu, G.: KJS: a complete formal semantics of JavaScript.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2015), pp. 346–356. ACM, June 2015. https://
doi.org/10.1145/2737924.2737991

https://doi.org/10.1145/2983990.2984027
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://github.com/ethereum/cpp-ethereum
https://github.com/ethereum/cpp-ethereum
http://solidity.readthedocs.io
https://vyper.readthedocs.io
https://etherscan.io/chart/tx
https://doi.org/10.1145/2813885.2737979
https://doi.org/10.1145/2813885.2737979
https://doi.org/10.1109/CSF.2018.00022
https://testnet.iohkdev.io/iele/
https://testnet.iohkdev.io/kevm/
https://iohk.io/blog/mantis-ethereum-classic-beta-release
https://iohk.io/blog/mantis-ethereum-classic-beta-release
https://testnet.iohkdev.io/plutus/
http://hdl.handle.net/2142/104601
http://hdl.handle.net/2142/104601
https://jellopaper.org/
http://llvm.org
http://llvm.org
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991

610 T. Kasampalis et al.

26. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A Formal verification tool
for Ethereum VM bytecode. In: Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2018). ACM, November 2018. https://doi.org/10.1145/
3236024.3264591

27. PeckShield: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-
2018-10299) (2018). https://medium.com/coinmonks/alert-new-batchoverflow-
bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536

28. RChain Cooperative: Rchain and rholang documentation (2019). https://
architecture-docs.readthedocs.io/

29. Rosu, G., Serbanuta, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010). http://kframework.org

30. RuntimeVerification: ERC20-K: Formal Executable Specification of ERC20 (2017).
https://github.com/runtimeverification/erc20-semantics

31. RuntimeVerification: ERC20 Token in IELE (2019). https://github.com/
runtimeverification/iele-semantics/blob/master/iele-examples/erc20.iele

32. RuntimeVerification: Formal Smart Contract Verification (2019). https://
runtimeverification.com/smartcontract/

33. RuntimeVerification: The formal semantics for IELE – source code (2019). https://
github.com/runtimeverification/iele-semantics

34. Solana, J.: $500K hack challenge backfires on blockchain lottery Smart-
Billions (2017). https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-
backfires-blockchain-lottery-smartbillions/

35. Steiner, J.: Security is a process: a postmortem on the parity multi-sig library
self-destruct (2017). http://goo.gl/LBh1vR

36. Tezos: Michelson documentation (2019). https://tezos.gitlab.io/master/index.html
37. The Ethereum Foundation: ERC20 token standard (2019). https://github.com/

ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
38. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Proj. Yellow Pap. 151, 1–32 (2014)
39. Zilliqa: Scilla language webpage (2019). https://scilla-lang.org/

https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1145/3236024.3264591
https://medium.com/coinmonks/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536
https://medium.com/coinmonks/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536
https://architecture-docs.readthedocs.io/
https://architecture-docs.readthedocs.io/
http://kframework.org
https://github.com/runtimeverification/erc20-semantics
https://github.com/runtimeverification/iele-semantics/blob/master/iele-examples/erc20.iele
https://github.com/runtimeverification/iele-semantics/blob/master/iele-examples/erc20.iele
https://runtimeverification.com/smartcontract/
https://runtimeverification.com/smartcontract/
https://github.com/runtimeverification/iele-semantics
https://github.com/runtimeverification/iele-semantics
https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-backfires-blockchain-lottery-smartbillions/
https://calvinayre.com/2017/10/13/bitcoin/500k-hack-challenge-backfires-blockchain-lottery-smartbillions/
http://goo.gl/LBh1vR
https://tezos.gitlab.io/master/index.html
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
https://scilla-lang.org/

APML: An Architecture Proof
Modeling Language

Diego Marmsoler(B) and Genc Blakqori

Technische Universität München, Munich, Germany
diego.marmsoler@tum.de

Abstract. To address the increasing size and complexity of modern
software systems, compositional verification separates the verification
of single components from the verification of their composition. In
architecture-based verification, the former is done using Model Check-
ing, while the latter is done using interactive theorem proving (ITP).
As of today, however, architects are usually not trained in using a full-
fledged interactive theorem prover. Thus, to bridge the gap between ITP
and the architecture domain, we developed APML: an architecture proof
modeling language. APML allows one to sketch proofs about component
composition at the level of architecture using notations similar to Mes-
sage Sequence Charts. With this paper, we introduce APML: We describe
the language, show its soundness and completeness for the verification
of architecture contracts, and provide an algorithm to map an APML
proof to a corresponding proof for the interactive theorem prover Isabelle.
Moreover, we describe its implementation in terms of an Eclipse/EMF
modeling application, demonstrate it by means of a running example,
and evaluate it in terms of a larger case study. Although our results are
promising, the case study also reveals some limitations, which lead to
new directions for future work.

Keywords: Compositional verification ·
Interactive Theorem Proving · Architecture-based Verification ·
FACTum · Isabelle

1 Introduction

Software intensive systems are becoming increasingly big and complex, which
makes their verification a challenge. To address this challenge, compositional
verification techniques separate the verification of single components from the
verification of their composition. In architecture-based verification (ABV) [30],
for example, verification of such systems is split into two parts: First, suitable
contracts are identified for the involved components and their implementation
is verified against these contracts. Since a single component is usually of limited
complexity, in ABV this step is fully automated using Model Checking [2]. In a
second step, component contracts are combined to verify overall system proper-
ties. Reasoning about the composition of contracts, however, might be difficult
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 611–630, 2019.
https://doi.org/10.1007/978-3-030-30942-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_36&domain=pdf
http://orcid.org/0000-0003-2859-7673
https://doi.org/10.1007/978-3-030-30942-8_36

612 D. Marmsoler and G. Blakqori

and sometimes requires manual interaction [29]. Thus, in ABV, it is done using
interactive theorem provers, such as Isabelle [34].

A full-fledged interactive theorem prover, however, can be quite complex and
its usage usually requires expertise which is not always available in the archi-
tecture context [28]. Thus, in an effort to bridge the gap between interactive
theorem proving and the architecture domain, we developed APML: a language
to specify proofs for the composition of contracts using abstractions an archi-
tect is familiar with. APML comes with a graphical notation, similar to Message
Sequence Charts [15], to sketch proofs at the architecture level and it is shown
to be sound and complete regarding the verification of architecture contracts. It
is implemented in Eclipse/EMF [41], where it can be used to model proofs for
architecture contracts and synthesize corresponding proofs for Isabelle’s struc-
tured proof language Isar [43,44].

The aim of this paper is to introduce APML. To this end, we provide the
following contributions: (i) We provide a formal description of APML, including
a formal semantics for architecture contracts. (ii) We show soundness and com-
pleteness of APML for the verification of architecture contracts. (iii) We present
an algorithm to map an APML proof to a corresponding proof in Isabelle/Isar.
(iv) We describe its implementation in terms of an Eclipse/EMF modeling appli-
cation. (v) We demonstrate the approach by means of a running example and
report on the outcome of a case study in which we applied APML for the veri-
fication of a railway control system. Thereby, to the best of our knowledge, this
is the first attempt to synthesize proofs for an interactive theorem prover from
an architecture description.

Our presentation is structured as follows: In Sect. 2, we provide some back-
ground to clarify our understanding of architecture in general and specifically
our notion of architecture contract. In Sect. 3, we describe our running example,
a reliable calculator. In Sect. 4, we introduce APML, demonstrate it by verifying
a property for our running example, and present our soundness and completeness
results. In Sect. 5, we present our algorithm to map an APML proof to a cor-
responding proof in Isabelle/Isar and demonstrate it by means of the running
example. In Sect. 6, we describe the implementation of APML in terms of an
Eclipse/EMF modeling application and in Sect. 7 we describe our effort to eval-
uate APML by means of a larger case study. In Sect. 8, we discuss related work
before we conclude the paper in Sect. 9 with a brief summary and a discussion
of future work.

2 Background

2.1 Basic Mathematical Notations

For a function f : D → R, we shall use f |D′ : D′ → R to denote the restriction of
f to domain D′ ⊆ D. In addition, we shall use partial functions f : D ��� R for
which we denote with dom (f) ⊆ D its domain and with ran (f) ⊆ R its range.

We will also use finite as well as infinite sequences of elements. Thereby, we
denote with (E)∗ the set of all finite sequences over elements of a given set E,

APML: An Architecture Proof Modeling Language 613

by (E)∞ the set of all infinite sequences over E, and by (E)ω the set of all finite
and infinite sequences over E. The n-th element of a sequence s is denoted with
s(n−1) and the first element is s(0). Moreover, we shall use #s ∈ N∞ to denote
the length of s. For a sequence s ∈ (D → R)∞ of functions we shall use s|D′ to
denote the sequence of all restrictions s(n)|D′ .

2.2 Architecture Model

In our model [27,33], components communicate to each other by exchanging
messages over ports. Thus, we assume the existence of set M, containing all
messages, and set P, containing all ports, respectively. Moreover, we postulate
the existence of a type function

T : P → ℘(M) (1)

which assigns a set of messages to each port.
Ports are means to exchange messages between a component and its environ-

ment. This is achieved through the notion of port valuation. Roughly speaking,
a valuation for a set of ports is an assignment of messages to each port.

Definition 1 (Port Valuation). For a set of ports P ⊆ P, we denote with P
the set of all possible, type-compatible port valuations, formally:

P
def
=

{
μ ∈

(
P → M

)
| ∀p ∈ P : μ(p) ∈ T (p)

}

Components communicate through interfaces by receiving messages on its
input ports and sending messages through its output ports.

Definition 2 (Interface). An interface is a pair (I ,O), consisting of disjoint
sets of input ports I ⊆ P and output ports O ⊆ P. For an interface f , we
denote by in(f) the set of input ports, out(f) the set of output ports, and port(f)
the set of all ports. A set of interfaces is called disjoint iff its interfaces do not
share any ports. For such sets of interfaces, we shall use the same notation as
introduced for single interfaces, to denote their input, output, and all ports.

In addition, a component has a behavior which is given in terms of a non-empty
set of sequences of port valuations over its interface.

In our model, an architecture connects input and output ports of a set of
interfaces. Thereby, the types of connected ports must be compatible.

Definition 3 (Architecture). An architecture is a pair (F,N), consisting of
a disjoint set of interfaces F and a connection N : in(F) ��� out(F), such that

∀p ∈ dom (N) : T (N (p)) ⊆ T (p) (2)

Note that a connection is modeled as a partial function from input to output
ports, meaning that not every input port of an architecture is connected to a
corresponding output port and vice versa. Thus, ports of an architecture can
be classified as either connected (given by dom (N) ∪ ran (N)) or disconnected
(given by (in(F) \ dom (N)) ∪ (out(F) \ ran (N))).

614 D. Marmsoler and G. Blakqori

2.3 Composition

The interface of an architecture with its environment is given by its disconnected
ports.

Definition 4 (Architecture Interface). For an architecture A = (F,N), its
interface is defined as A⊗ = (I ,O), consisting of input ports I = in(F)\dom (N)
and output ports O = out(F) \ ran (N).

Note that, since F is required to be disjoint, an architecture’s input and output
ports are guaranteed to be disjoint, too. Thus, an architecture interface fulfills
all the requirements of Definition 2 and thus represents a valid interface. Hence,
we can use the same notation as introduced for interfaces to access its ports.

We can now define a notion of composition to obtain the behavior of an
architecture from the behavior of its components.

Definition 5 (Architecture Behavior). Given an architecture A = (F,N)
and a non-empty behavior Bf ⊆ (port(f))∞ for all of its interfaces f ∈ F . The
behavior of the composition is given by a set of traces A⊗ B ⊆ (port(A⊗))∞,
defined as follows:

A⊗ B def
= {t|port(A⊗) | t ∈ (port(F))∞ ∧ (3)

(
∀f ∈ F : t|port(f) ∈ Bf

)
∧ (4)

(∀(i, o) ∈ N, n ∈ N : t(n)(i) = t(n)(o))} (5)

Roughly speaking, the behavior of a composition is defined as all traces over the
architecture’s interface (Eq. (3)), which respect the behavior of each component
(Eq. (4)) and the connections imposed by the architecture (Eq. (5)).

2.4 Contracts

In the following, we are considered with the specification of architectures (as they
were described in the previous section). To this end, we assume the existence of
a set of predicates Γ (P) to specify valuations for a set of ports P ⊆ P.

Our notion of contract is inspired by Dwyer’s work on specification pat-
terns [18] which is often found in practice [24]. Thereby, contracts have the
form: “if P is true then Q happens after d time points”.

Definition 6 (Contracts). A contract for an interface (I ,O) is a triple
(tg , gr , d), consisting of a (possibly empty) trigger tg ∈ (Γ (I) × N)∗, a guar-
antee gr ∈ Γ (O), and a duration d ∈ N. For every entry e of a trigger, we
denote by state(e) its predicate and with time(e) its time point. Moreover, we
require the following conditions for a contract:

APML: An Architecture Proof Modeling Language 615

– The time point of the first trigger is 0: time(tg(0)) = 0 (if #tg > 0).
– Triggers are ordered by their time points: ∀j, j′ < #tg : j ≤ j′ =⇒

time(tg(j)) ≤ time(tg(j′)).
– The guarantee is after the last trigger: d > time(tg(#tg − 1)) (or d > 0 if

tg = 〈〉).

Moreover, since they are specified over interfaces, contracts can be specified for
components as well as for architectures. They are best expressed graphically
using a notation similar to Message Sequence Charts [15] (see Figs. 4 or 5 for an
example).

In the following, we define what it means for a behavior of a component
(or architecture) to satisfy a corresponding contract. Thereby, we denote with
μ |= γ that a valuation μ ∈ P satisfies a predicate γ ∈ Γ (P).

Definition 7 (Satisfaction). A behavior B for an interface satisfies a con-
tract k = (tg , gr , d) for that interface, written B |= k, whenever for all t ∈ B,
satisfaction of the triggers implies satisfaction of the guarantee:

∀n ∈ N :
((

∀j < #tg : t(n + time(tg(j))) |= state(tg(j))
)

=⇒ t(n + d) |= gr
)

Again, the same definition can be applied for component contracts as well as for
architecture contracts.

2.5 Isabelle

Isabelle [34] is a generic proof assistant which allows mathematical formulæ to
be expressed in a formal language and which provides tools for proving those
formulas in a logical calculus. The version of Isabelle used for the work presented
in this paper is Isabelle/HOL, which includes tools to support the specification
of datatypes, inductive definitions, and recursive functions.

Fig. 1. A typical Isabelle locale.

Specifications in Isabelle are grouped into
so-called theories, which may import other
theories. To modularize results, Isabelle sup-
ports the development of abstract specifica-
tions by means of locales [3]. Figure 1 shows
how such a locale usually looks like: It con-
sists of a name, a list of parameters, and a
list of assumptions about these parameters.
In previous work [29], we show how to map an
architecture specification to a corresponding
Isabelle locale. Thereby, ports are mapped to
corresponding locale parameters and specifi-
cations to locale assumptions.

616 D. Marmsoler and G. Blakqori

Fig. 2. A typical Isabelle/Isar proof.

In Isabelle, proofs can
be expressed in a natural
way using Isabelle’s struc-
tured proof language Isar [44].
A typical Isar proof is depicted
in Fig. 2: It consists of a
sequence of proof steps, which
are discharged by some proof
methods. For example, Isabelle’s
classical reasoner blast can perform long chains of reasoning steps to prove for-
mulas. Or the simplifier simp can reason with and about equations. Moreover,
external, first-order provers can be invoked through sledgehammer.

3 Running Example: A Reliable Adder

As a running example, let us consider a simple system which calculates the sum
of two numbers in a redundant way. Its architecture is depicted in Fig. 3: It
consists of a dispatcher component which receives two numbers as input from
its environment and forwards copies of these numbers to two different adder
components. The adder components then calculate the sum of the two numbers
and communicate their result to a merger component. The merger component
compares the two results and forwards the final result to its environment.

Fig. 3. Architecture for a reliable adder.

The behavior of each component is specified in terms of contracts (as intro-
duced by Definition 6) by the sequence diagrams depicted in Fig. 4: Fig. 4a
depicts contract dispatch for the dispatcher component. It requires a dispatcher
to forward incoming messages received at ports i1 and i2, on its output ports
o1 − o4, within one time unit. The contracts for the two adder components,
add1 and add2, are depicted in Fig. 4b and c, respectively. They both require an
adder to calculate the sum of the numbers obtained on its input ports i1 and i2
and output it on its output port o. For our example, we assume that the two
components use different algorithms to calculate the sum, which is why Adder1
requires four time units while Adder2 requires only three time units to output its
result. Figure 4d, e, and f, depict three different contracts for the merger compo-
nent. Contract merge1 requires the merger component to compare the messages

APML: An Architecture Proof Modeling Language 617

received on its input ports i1 and i2, and for the case they coincide, to forward
the message after two time units on its output port o. Contracts merge2 and
merge3 require the merger component to cope with a potential delay of one time
unit for messages received on its input ports i2 and i1, respectively.

Fig. 4. Contracts for components of reliable adder.

Among other things, we expect the resulting system to output the sum of
two numbers it receives on its input ports i1 and i2 after seven time units on its
output port o. This can be expressed in terms of a contract over its architecture
as specified by the sequence diagram depicted in Fig. 5.

Fig. 5. Contract for reliable adder.

Note that our running example is deliber-
ately oversimplified, since its main purpose is
to demonstrate our concepts and ideas rather
than evaluating the approach in a real world
scenario. For details about how the approach
works on a real example, we refer to the
description of the case study in Sect. 7.

4 Modeling Architecture Proofs

An architecture contract can be verified from a set of contracts for its components
through a sequence of proof steps.

Definition 8 (Proof Step). A proof step for an architecture (F,N) and cor-
responding contracts Kf for its interfaces f ∈ F , is a 4-tuple s = (tp, γ, r , rf),
consisting of

618 D. Marmsoler and G. Blakqori

– a time point tp ∈ N denoted time(s),
– an architecture state γ ∈ Γ (out(f)) (for some f ∈ F) denoted state(s),
– a rationale r = (tg , gr , d) ∈ Kf (for some f ∈ F) denoted rat(s),
– a (possibly empty) sequence of references rf ∈ (R)∗ denoted ref (s), such that

#rf = #tg and where R is a non-empty set of elements N ∪ (N × ℘(N)).

Note that an element of R is either a reference to an assumption N of the
architecture contract we want to prove, or a reference to another proof step N

and a set of connections ℘(N). An architecture proof is given by a sequence of
corresponding proof steps.

Definition 9 (Architecture Proof). Given an architecture A = (F,N) and
corresponding contracts Kf for its interfaces f ∈ F . An architecture proof for
a contract (tg , gr , d) over the architecture’s interface A⊗ is a finite, non-empty
sequence ps of proof steps, such that the state of the last entry implies the guar-
antee of the architecture contract:

state(ps(#ps − 1)) =⇒ gr (6)

the time of the last entry corresponds to the duration of the architecture contract:

time(ps(#ps − 1)) = d (7)

and for all entries 0 ≤ i < #ps, such that rat(ps(i)) = (tg ′, gr ′, d ′):

1. ps(i) refers only to triggers of the architecture contract or previous proof steps:

∀j < #ref (ps(i)) :(
∀k ∈ ref (ps(i))(j) : k < #tg

)
∧

(
∀(k, n) ∈ ref (ps(i))(j) : k < i

)

Note that this implies that ref (ps(0)) contains only references to triggers tg
of the architecture contract.

2. The time points of the referenced entries respect the time points of the triggers
of the rationale. Thus, we first introduce a function time (for #ref (ps(i)) > 0)
to return the relative time point of a reference:

time(ref (ps(i))(j)) =

{
time(tg(k)) if k ∈ ref (ps(i))(j)
time(ps(k)) if (k, n) ∈ ref (ps(i))(j)

Now we can use this function to formalize the condition (note that by Defi-
nition 8, #ref (ps(i)) = #tg ′):

∀j < #ref (ps(i)) : time(ref (ps(i))(j)) = time(ref (ps(i))(0)) + time(tg ′(j))

Note that this condition implies that for all j < #ref (ps(i)), the referenced
time points of all entries e ∈ ref (ps(i))(j) is the same.

APML: An Architecture Proof Modeling Language 619

3. The referenced entries imply the corresponding triggers of the rationale:

∀j < #ref (ps(i)) :

⎛
⎝ ∧

k∈ref (ps(i))(j)

state(tg(k))

⎞
⎠ ∧

⎛
⎝ ∧

(k,n)∈ref (ps(i))(j)

state(ps(k)) ∧
∧

(pi,po)∈n

pi = po

⎞
⎠ =⇒ state(tg ′(j))

4. The time of the current entry respects the duration of the rationale (note that
the time of ref (ps(i))(0) corresponds to the time point of the first trigger of
the rationale):

time(ps(i)) = time(ref (ps(i))(0)) + d ′

5. The guarantee of the rationale implies the current state:

gr ′ =⇒ state(ps(i))

Similar as for contracts, architecture proofs are best expressed graphically
using a notation similar to Message Sequence Charts (see Fig. 6 for an example).

4.1 Verifying Reliable Adder

Table 1 shows an architecture proof for the contract of our running example
depicted in Fig. 5. It consists of four steps: 0. First, we apply contract dispatch
of the dispatcher component to trigger 0 of the architecture contract, to obtain
a valuation of the dispatcher’s output ports at time point 1 with messages x and
y, respectively. 1. Then, we use connections (a1i1 , do1) and (a1i2 , do2) to pass
messages x and y to the corresponding input ports of Adder1 and apply contract
add1 to obtain a new state for time point 5, in which the output port of Adder1
contains the sum of x and y. 2. Similarly, we can use connections (a2i1 , do3)
and (a2i2 , do4) to apply contract add2 to the architecture state given by step
0, to obtain a new state for time point 4, in which the output port of Adder2
contains the sum of x and y. 3. Finally, we can use connections (mi1 , a1o) and
(mi2 , a2o) to pass the calculated sums to the input of the merger component
and apply contract merge3 to forward it on its output port. Note that the proof
is only valid, since we chose contract merge3 for the merger component. If we
had chosen merge1 or merge2, the proof would have violated condition 2 of
Definition 9.

As mentioned above, architecture proofs can also be expressed graphically
using a notation similar to Message Sequence Charts. For example, the proof
from Table 1, could also be expressed graphically as depicted in Fig. 6.

620 D. Marmsoler and G. Blakqori

Table 1. Architecture proof for reliable adder.

tp γ r rf

0 1 do1 = x ∧ do2 = y dispatch {0}
1 5 a1o = x + y add1 {(0, {(a1i1 , do1), (a1i2 , do2)})}
2 4 a2o = x + y add2 {(0, {(a2i1 , do3), (a2i2 , do4)})}
3 7 mo = x + y merge3 {(1, {(mi1 , a1o)}), (2, {(mi2 , a2o)})}

Fig. 6. Architecture proof by means of Message Sequence Chart.

4.2 Soundness and Completeness

In the following, we provide two theoretical results for APML. The first one
ensures that if we can prove an architecture contract from the contracts of its
components using APML, then, an architecture in which the components sat-
isfy the corresponding contracts is indeed guaranteed to satisfy the architecture
contract.

Theorem 1 (Soundness). Given an architecture A = (F,N) and correspond-
ing contracts Kf for each interface f ∈ F , such that ∀f ∈ F : Bf |= Kf . If there
exists an architecture proof ps for an architecture contract k = (tg , gr , d), we
have A⊗B |= k.

Proof (The full proof is provided in [31]). According to Definition 7 we have to
show that for all t ∈ A⊗B and all n ∈ N,

(
∀j < #tg : t(n + time(tg(j))) |=

state(tg(j))
)

=⇒ t(n + d) |= gr . Thus, we assume ∀j < #tg : t(n +
time(tg(j))) |= state(tg(j)) and we show by complete induction over the length
of the proof sequence that ∀i < #ps : t(n + time(ps(i))) |= state(ps(i)). Thus,
t(n + time(ps(#ps − 1))) |= state(ps(#ps − 1)) and, by Eqs. (6) and (7), we
can conclude t(n + d) |= gr . �

The second result guarantees that, whenever the satisfaction of contracts for
components of an architecture leads to the satisfaction of a corresponding contract
for the architecture, then it is possible to find a corresponding APML proof.

APML: An Architecture Proof Modeling Language 621

Theorem 2 (Completeness). Given an architecture A = (F,N) and corre-
sponding contracts Kf for each interface f ∈ F . For each architecture contract
k, such that for all possible behaviors B:

(
∀f ∈ F : Bf |= Kf

)
=⇒ A⊗B |= k (8)

there exists an architecture proof ps for k = (tg , gr , d).

Proof (The full proof is provided in [31]). For the proof we construct a “maximal”
architecture proof ps, according to Definition 9, by repeatedly applying all feasi-
ble contracts. If we eventually reach an entry such that state(ps(#ps − 1)) =⇒
gr and time(ps(#ps − 1)) = d then we are done. If not, then we build an archi-
tecture trace t ∈ (port(F))∞, such that ∀j < #tg : t(time(tg(j))) |= state(tg(j))
and ∀i < #ps : t(time(ps(i))) |= state(ps(i)) and t(d) �|= gr and for all
other n, we choose t(n), such that the projection to every interface f ∈ F
does not satisfy the assumptions of any contract Kf . Now, we can show that
∀f ∈ F : Bf |= Kf and thus, by Eq. (8) we can conclude A⊗B |= k. Thus, since
∀j < #tg : t(time(tg(j))) |= state(tg(j)), we can conclude t(d) |= gr which is a
contradiction to t(d) �|= gr . �

Algorithm 1.Mapping anAPML proof to a corresponding proof in Isabelle/Isar
Input: a proof ps according to definition 9 and a function toIsabelle to convert port

predicates
Output: a proof in Isabelle/Isar [43]
1: i = 0
2: while i < #ps do
3: (tp, γ, r , rf) := ps(i); (tg , gr , d) := r ;
4: if rf = 〈〉 then print “have s” + i + “: ” + toIsabelle(γ, tp) + “ by simp” else
5: i′ = 0
6: while i′ < #rf do
7: if i′ > 0 then print “moreover ” end if
8: print “from ”
9: for all i′′ ∈ rf (i′) do print “a” + i′′ + “ ” end for

10: for all (i′′, n′) ∈ rf (i′) do print “s” + i′′ + “ ” end for
11: print “have ” + toIsabelle(state(tg(i′)), time(tg(i′))) + “ ”
12: if rf (i′) \ N �= ∅ then print “using ” end if
13: for all (i′′, n′) ∈ rf (i′) and (pi, po) ∈ n′ do print “pi po ” end for
14: print “ by simp”
15: i′ + +
16: end while
17: if i′ = 1 then print “hence ” else
18: if i′ > 1 then print “ultimately have ” end if
19: print “s” + i + “: ” + toIsabelle(γ, tp) + “ using ” + r + “ by blast” end if
20: i + +
21: end while
22: print “thus ?thesis by auto”

622 D. Marmsoler and G. Blakqori

5 From APML to Isabelle

To verify soundness of an APML proof, Algorithm1 shows how an APML proof
can be mapped to a corresponding Isar proof for the interactive theorem prover
Isabelle.

Let us see how the algorithm can be applied to generate an Isar proof for the
APML proof of our running example, described in Sect. 4.1. First, we create an
Isabelle locale for the architecture as described in Fig. 3:

locale rsum =
fixes

— Dispatcher: di1 ::nat⇒nat and di2 ::nat⇒nat
and do1 ::nat⇒nat and do2 ::nat⇒nat and do3 ::nat⇒nat and do4 ::nat⇒nat
— Adder1: and a1i1 ::nat⇒nat and a1i2 ::nat⇒nat and a1o::nat⇒nat
— Adder2: and a2i1 ::nat⇒nat and a2i2 ::nat⇒nat and a2o::nat⇒nat
— Merger: and mi1 ::nat⇒nat and mi2 ::nat⇒nat and mo::nat⇒nat
— Contracts:

assumes dispatch:
∧
n x y . [[di1 n = x ; di2 n = y]] =⇒

do1 (n+1) = x ∧ do2 (n+1) = y ∧ do3 (n+1) = x ∧ do4 (n+1) = y
and add1 :

∧
n x y . [[a1i1 n = x ; a1i2 n = y]] =⇒ a1o (n+4) = x + y

and add2 :
∧
n x y . [[a2i1 n = x ; a2i2 n = y]] =⇒ a2o (n+3) = x + y

and merge1 :
∧
n x . [[mi1 n = x ; mi2 n = x]] =⇒ mo (n+2) = x

and merge2 :
∧
n x . [[mi1 n = x ; mi2 (n+1) = x]] =⇒ mo (n+3) = x

and merge3 :
∧
n x . [[mi2 n = x ; mi1 (n+1) = x]] =⇒ mo (n+3) = x

— Connections
and do1-a1i1 :

∧
n. a1i1 n = do1 n and a1i2-do2 :

∧
n. a1i2 n = do2 n

and do3-a2i1 :
∧
n. a2i1 n = do3 n and a2i2-do4 :

∧
n. a2i2 n = do4 n

and a1o-mi1 :
∧
n. mi1 n = a1o n and mi2-a2o:

∧
n. mi2 n = a2o n

Note that each contract, as presented in Fig. 4, results in a corresponding locale
assumption. Now, we can create a theorem for the architecture contract described
by Fig. 5:

theorem sum:
fixes n x y assumes a0 : di1 n = x ∧ di2 n = y
shows mo (n+7) = x + y

Finally, we can apply Algorithm1 to create an Isar proof for the theorem from
the APML proof described in Table 1:

APML: An Architecture Proof Modeling Language 623

proof −
from a0 have di1 n = x ∧ di2 n = y by auto
hence s1 : do1 (n+1) = x ∧ do2 (n+1) = y ∧ do3 (n+1) = x ∧ do4 (n+1) = y
using dispatch by blast

from s1 have a1i1 (n+1) = x ∧ a1i2 (n+1) = y
using do1-a1i1 a1i2-do2 by auto

hence s2 : a1o (n+5) = x + y using add1 by blast
from s1 have a2i1 (n+1) = x ∧ a2i2 (n+1) = y
using do3-a2i1 a2i2-do4 by auto

hence s3 : a2o (n+4) = x + y using add2 by blast
from s2 have mi1 (n+5) = x + y using a1o-mi1 by auto
moreover from s3 have mi2 (n+4) = x + y using mi2-a2o by auto
ultimately have mo (n+7) = x+y using merge3 by blast
thus ?thesis by auto

qed

6 Modeling Architecture Proofs in FACTum Studio

To support the development of APML proofs in practice, we implemented the lan-
guage in FACTum Studio [32]: an architecture modeling application based on
Eclipse/EMF [41]. FACTum Studio now supports the user in the development
of “correct” APML proofs by means of three key features: (i) It analyses the struc-
ture of a given APML proof and checks it for syntactical errors. (ii) It uses so-called
validators to check for violations of the conditions described in Definition 8 and,
to a limited extent, also the ones described in Definition 9. (iii) The textual devel-
opment of APML proofs in Xtext [5] is complemented by corresponding graphical
notations using Sirius [35]. To support the verification of single proof steps, we
implemented Algorithm 1 in FACTum Studio. Thus, after specifying an APML
proof, a user can automatically generate a corresponding Isar proof for Isabelle.

Figure 7 depicts the specification of our running example in FACTum Studio:
First, the architecture is specified graphically in terms of interfaces (represented
as gray rectangles) and connections between their input (empty circles) and
output (filled circles) ports. Then, contracts can be added for each component
using a textual notation.

Fig. 7. Specification of reliable adder in FACTum Studio.

624 D. Marmsoler and G. Blakqori

Fig. 8. APML proof in FACTum Studio.

Figure 8 shows how we can ver-
ify the adder system using FAC-

Tum Studio’s APML implementa-
tion: After specifying the contract,
we can provide a corresponding proof
in terms of a sequence of proof steps
as described in Definition 8.

As mentioned above, FACTum

Studio performs several checks to
ensure consistency of proofs: (i) For
each step it checks whether enough
rationales are provided (last condi-
tion of Definition 8). (ii) It verifies
that only existing connections are
used in the “with” clause (last con-
dition of Definition 8). (iii) It ensures
that each step only refers to trig-
gers of the contract or previous proof
steps (condition 1 of Definition 9) (iv) It ensures consistency of the time points
of contracts with those of rationales (conditions 2 and 4 of Definition 9).

Fig. 9. Automatic Train Control System

7 Case Study: Trainguard MT Control System

We evaluated our approach by applying it for the verification of a railway-control
system. To investigate whether the approach can indeed be used to apply inter-
active theorem proving by users not trained in using this technology, verification
was performed by a subject with no prior experience with formal methods in
general and specifically with the use of interactive theorem provers. The sub-
ject holds a Bachelor of Science degree in computer science and has four years of
industrial experience as software developer in the domain of business information
systems.

Study Context. Trainguard MT (TGMT) is an automatic train control system for
metros, rapid transit, commuter, and light rail systems currently in development
by one of our industrial partners. For the purpose of this case study, we focused
on the verification of one key feature of TGMT: controlling of the platform
screen doors (PSDs). The situation is depicted by Fig. 9: In an effort to make

APML: An Architecture Proof Modeling Language 625

train stations safer for the passengers, modern stations protect their rail zone
with a wall (represented by a black line) with several doors (represented by gray
lines), the so-called PSDs. When a train arrives at the station, its onboard control
unit communicates with the Wayside control unit to control opening/closing of
the PSDs.

Study Setup. To model the PSD functionality, the company provided four doc-
uments as input, which were taken directly from the PSD development: a high-
level system requirements specification (59 pages), a more detailed system archi-
tecture specification (299 pages), a performance specification (57 pages), and a
glossary (42 pages). Based on the documents, we specified a corresponding archi-
tecture for the PSD functionality, consisting of 33 components with 36 contracts
in total.

Study Execution. The subject then verified five architecture contracts: (P1) If
the train is moving, the PSDs are closed. (P2) If the train is at standstill and
the position of the train doors match the position of the PSDs, the PSDs are
opened. (P3) If the train doors open on the right hand side, the platform must
be on the right hand side. (P4) If door release is permissive and the train is at
standstill, its doors are open. (P5) When the train indicates that the doors are
closed, the PSDs are closed.

P1
P2
P3
P4
P5

14
14

1
1

15

Fig. 10. Number of proof
steps for each property.

Results. After a study of the architecture and a brief
introduction into APML, the subject was able to ver-
ify versions of all the properties with no further guid-
ance. Figure 10 depicts the verification effort in terms
of APML proof steps required for each property. In
total, the subject required roughly 25 working hours
to develop the proofs. Sometimes, however, the orig-
inal contracts needed to be adapted to fit the struc-
ture of a contract as defined by Definition 6. This was
mainly due to two reasons: (i) Some of the contracts
required to express statements of the form “whenever x happens, after n time
points y happens and in between z holds”. (ii) In addition, some components
required contracts combined by disjunction rather than conjunction. Moreover,
the proofs for properties P1 and P5 share a common proof sequence of 8 proof
steps, which is more than 50% of the steps required to proof the properties.
Finally, some of the proof steps could only be discharged by adapting the gener-
ated Isabelle script to tune the simplifier and the logical reasoner, respectively.

Conclusions. From our results, we derive the following conclusions:

C1 The approach can be used to support users with no prior experience
with formal methods in the development of proofs for interactive theorem
provers.

C2 Some of the properties sometimes required in a practical setting cannot yet
be expressed by the notion of contract used in this paper.

C3 The verification of properties can involve considerable, redundant proof
sequences.

626 D. Marmsoler and G. Blakqori

C4 Some initial setup may be required to automatically discharge generated
proof steps.

8 Related Work

Related work can be found in two different areas: verification of contract-based
specifications and interactive verification of component-based systems.

Verification of Contract-Based Specifications. Verification of contract-based spec-
ifications is not a new topic, at all. First works in this area go back to Pnueli’s
work about modular model checking [37] and Clarke’s work on compositional
model checking [14], in which they investigated possibilities to leverage assump-
tions about a component’s environment for the verification of its implementation.
Later on, attempts were made to automatically synthesize minimal assumptions
from a component’s implementation [7,19,20,36]. In all these studies, the focus
is mainly on the verification of component implementations under the presence
of assumptions about its environment. In contrary, the focus of the work pre-
sented in this paper, is on the verification of contract-composition, without even
considering component implementations.

Another line of research in this area is work which focuses on the analysis
of contract compatibility. In parametric AG reasoning [39], there may even be
many assumptions and guarantees for each component. An example of work
in this area is Damm et al. [16], in which the authors describe an approach
for virtual integration testing based on rich components. Another example is the
work of Chilton et al. [11], which provides an approach to AG reasoning for safety
properties. Later on, Kugele and Marmsoler [25] provide an approach to check
compatibility of AG contracts using SMT solvers [17]. Finally, Broy [8] provides
a detailed characterization about compatible assumptions and guarantees for
Focus [9]. While the work in this line of research also focuses on the verification
at the level of contracts, the focus is mainly on the verification of contract
compatibility. With our work, however, we focus on a related, though different
problem: verification of refinement of contracts.

Work in this area of research which is most closely related to our work is
Cimatti’s work on OCRA [12,13]. Here, the author proposes an approach based
on bounded model checking [6] to verify refinement of LTL-based contracts. With
our work, we follow a similar goal by applying an alternative approach based
on interactive theorem proving, which is why we actually complement Cimatti’s
work.

Interactive Verification Component based Systems. There exists some work which
investigates the application of interactive theorem proving (ITP) for the veri-
fication of component-based systems. Fensel and Schnogge [21], for example,
apply the KIV interactive theorem prover [38] to verify architectures in the area
of knowledge-based systems. More recently, some attempts were made to apply
ITP for the verification of architectural connectors: Li and Sun [26], for exam-
ple, apply the Coq proof assistant [4] to verify connectors specified in Reo [1].

APML: An Architecture Proof Modeling Language 627

Moreover, there exists work on the formalization of OCL [42] in Isabelle [10]. In
addition, Spichkova [40] provides a framework for the verification of component-
based systems in Isabelle and Marmsoler [28] extends the work to deal with
dynamic reconfiguration. Also the mechanization of UTP [23] in Isabelle, due by
Foster et al. [22], belongs to this line of research. However, while most of these
works focus on the interactive verification of component based systems, verifica-
tion is usually done at the level of the prover. With the work presented in this
paper, we aim to contribute to this line of research by exploring possibilities and
limitations of synthesizing proofs for the provers from architectural descriptions.

Summary. Concluding, to the best of our knowledge, this is the first attempt to
synthesize proof for an interactive theorem prover for the verification of contract
composition from architectural descriptions.

9 Conclusion

With this paper, we introduced APML: an architecture proof modeling language.
To this end, we first introduced a formal semantics for component contracts as
well as architecture contracts. Then, we described APML and showed soundness
and completeness of it for the verification of architecture contracts. Moreover,
we presented an algorithm to map an APML proof to a corresponding proof
in Isabelle/Isar and discussed its implementation in Eclipse/EMF. Finally, we
demonstrated the approach by means of a running example and evaluated it by
means of a larger case study from the railway domain.

Our theoretical results (Sect. 4.2) show that APML can indeed be used to
specify abstract proofs for the composition of contracts using a notation similar
to Message Sequence Charts. Moreover, as indicated by C1 of our case study,
it supports users with no prior experience in interactive theorem proving in the
development of proofs. Thus, APML indeed contributes to the overall goal of
bridging the gap between software architecture and interactive theorem prov-
ing. Nevertheless, the case study also revealed some limitations of the approach,
which should be addressed by future work: As indicated by C2, future work
should investigate possibilities to enhance expressiveness of the contracts. Specif-
ically, the support for until-like contracts and disjunction of contracts should be
investigated. Moreover, as indicated by C3, future work should investigate pos-
sibilities to support reuse of proof sequences. To this end, a proof step should
be allowed to reference to already verified contracts. Finally, as indicated by C4,
future work should investigate possibilities to increase automation at the level
of interactive theorem proving.

Acknowledgments. We would like to thank Simon Foster and Mario Gleirscher for
inspiring discussions about APML. Parts of the work on which we report in this paper
was funded by the German Federal Ministry of Education and Research (BMBF) under
grant no. 01Is16043A.

628 D. Marmsoler and G. Blakqori

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(03), 329–366 (2004)

2. Baier, C., Katoen, J., Larsen, K.: Principles of Model Checking. MIT Press (2008).
https://books.google.de/books?id=nDQiAQAAIAAJ

3. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 34–50. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24849-1 3

4. Barras, B., et al.: The Coq proof assistant reference manual: version 6.1. Ph.D.
thesis, Inria (1997)

5. Bettini, L.: Implementing Domain-specific Languages with Xtext and Xtend. Packt
Publishing Ltd., Birmingham (2016)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

7. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70545-1 14

8. Broy, M.: Theory and methodology of assumption/commitment based system inter-
face specification and architectural contracts. Formal Methods Syst. Des. 52(1),
33–87 (2018). https://doi.org/10.1007/s10703-017-0304-9

9. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, Heidelberg (2012)

10. Brucker, A.D., Wolff, B.: A proposal for a formal OCL semantics in Isabelle/HOL.
In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410,
pp. 99–114. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45685-6 8

11. Chilton, C., Jonsson, B., Kwiatkowska, M.: Assume-guarantee reasoning for safe
component behaviours. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS,
vol. 7684, pp. 92–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35861-6 6

12. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refine-
ment of temporal contracts. In: 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 702–705, November 2013

13. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97(P3), 333–348 (2015). https://doi.
org/10.1016/j.scico.2014.06.011

14. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: 1989
Proceedings of Fourth Annual Symposium on Logic in Computer Science, pp. 353–
362. IEEE (1989)

15. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal
Methods Syst. Des. 19(1), 45–80 (2001)

16. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture
design. In: 2011 Design, Automation & Test in Europe, pp. 1–6. IEEE (2011)

17. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011). https://doi.org/10.1145/1995376.
1995394

https://books.google.de/books?id=nDQiAQAAIAAJ
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/s10703-017-0304-9
https://doi.org/10.1007/3-540-45685-6_8
https://doi.org/10.1007/978-3-642-35861-6_6
https://doi.org/10.1007/978-3-642-35861-6_6
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394

APML: An Architecture Proof Modeling Language 629

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No. 99CB37002), pp. 411–420. IEEE (1999)

19. Elkader, K.A., Grumberg, O., Păsăreanu, C.S., Shoham, S.: Automated circular
assume-guarantee reasoning. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 23–39. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 3

20. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-guarantee verification
for interface automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68237-0 10

21. Fensel, D., Schnogge, A.: Using KIV to specify and verify architectures of
knowledge-based systems. In: Automated Software Engineering, pp. 71–80, Novem-
ber 1997

22. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14806-9 2

23. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming, vol. 14. Prentice
Hall, Englewood Cliffs (1998)

24. Huber, F., Schätz, B., Schmidt, A., Spies, K.: AutoFocus—a tool for distributed
systems specification. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS,
vol. 1135, pp. 467–470. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61648-9 58

25. Kugele, S., Marmsoler, D., Mata, N., Werther, K.: Verification of component archi-
tectures using mode-based contracts. In: 2016 ACM/IEEE International Confer-
ence on Formal Methods and Models for System Design, MEMOCODE 2016, Kan-
pur, India, 18–20 November 2016, pp. 133–142. IEEE (2016). https://doi.org/10.
1109/MEMCOD.2016.7797758

26. Li, Y., Sun, M.: Modeling and analysis of component connectors in Coq. In:
Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 273–290.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 17

27. Marmsoler, D., Gleirscher, M.: On activation, connection, and behavior in dynamic
architectures. Sci. Ann. Comput. Sci. 26(2), 187–248 (2016)

28. Marmsoler, D.: A framework for interactive verification of architectural design
patterns in Isabelle/HOL. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol.
11232, pp. 251–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02450-5 15

29. Marmsoler, D.: Hierarchical specification and verification of architectural design
patterns. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 149–
168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-1 9

30. Marmsoler, D.: Verifying dynamic architectures using model checking and interac-
tive theorem proving. In: Becker, S., Bogicevic, I., Herzwurm, G., Wagner, S. (eds.)
Software Engineering and Software Management 2019, pp. 167–169. Gesellschaft
für Informatik e.V., Bonn (2019). https://doi.org/10.18420/se2019-52

31. Marmsoler, D., Blakqori, G.: APML: An architecture proof modeling language.
https://arxiv.org/abs/1907.03723, July 2019. Extended preprint

32. Marmsoler, D., Gidey, H.K.: FACTum studio: a tool for the axiomatic specification
and verification of architectural design patterns. In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 279–287. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02146-7 14

https://doi.org/10.1007/978-3-319-19249-9_3
https://doi.org/10.1007/978-3-319-19249-9_3
https://doi.org/10.1007/978-3-540-68237-0_10
https://doi.org/10.1007/978-3-540-68237-0_10
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1007/3-540-61648-9_58
https://doi.org/10.1007/3-540-61648-9_58
https://doi.org/10.1109/MEMCOD.2016.7797758
https://doi.org/10.1109/MEMCOD.2016.7797758
https://doi.org/10.1007/978-3-319-07602-7_17
https://doi.org/10.1007/978-3-030-02450-5_15
https://doi.org/10.1007/978-3-030-02450-5_15
https://doi.org/10.1007/978-3-319-89363-1_9
https://doi.org/10.18420/se2019-52
https://arxiv.org/abs/1907.03723
https://doi.org/10.1007/978-3-030-02146-7_14
https://doi.org/10.1007/978-3-030-02146-7_14

630 D. Marmsoler and G. Blakqori

33. Marmsoler, D., Gleirscher, M.: Specifying properties of dynamic architectures using
configuration traces. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol.
9965, pp. 235–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4 14

34. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

35. Obeo: Sirius. https://www.eclipse.org/sirius/
36. Păsăreanu, C.S., Dwyer, M.B., Huth, M.: Assume-guarantee model checking of

software: a comparative case study. In: Dams, D., Gerth, R., Leue, S., Massink,
M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 168–183. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48234-2 14. http://dl.acm.org/citation.cfm?id=64
5879.672067

37. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI
Series (Series F: Computer and Systems Sciences), vol. 13, pp. 123–144. Springer,
Berlin (1985). https://doi.org/10.1007/978-3-642-82453-1 5

38. Reif, W.: The Kiv-approach to software verification. In: Broy, M., Jähnichen, S.
(eds.) KORSO: Methods, Languages, and Tools for the Construction of Correct
Software. LNCS, vol. 1009, pp. 339–368. Springer, Heidelberg (1995). https://doi.
org/10.1007/BFb0015471

39. Reussner, R.H., Becker, S., Firus, V.: Component composition with parametric
contracts. In: Tagungsband der Net. ObjectDays 2004, pp. 155–169 (2004)

40. Spichkova, M.: Focus on Isabelle: from specification to verification. In: 21st Inter-
national Conference on Theorem Proving in Higher Order Logics, p. 104. Citeseer
(2008)

41. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, London (2008)

42. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley Object Technology Series (1998)

43. Wenzel, M.: The Isabelle/Isar reference manual (2004)
44. Wenzel, M.: Isabelle/Isar - a generic framework for human-readable proof docu-

ments. In: From Insight to Proof - Festschrift in Honour of Andrzej Trybulec, vol.
10, no. 23, pp. 277–298 (2007)

https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://www.eclipse.org/sirius/
https://doi.org/10.1007/3-540-48234-2_14
http://dl.acm.org/citation.cfm?id=645879.672067
http://dl.acm.org/citation.cfm?id=645879.672067
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/BFb0015471
https://doi.org/10.1007/BFb0015471

Learning-Based Techniques and
Applications

Learning Deterministic Variable
Automata over Infinite Alphabets

Sarai Sheinvald(B)

Department of Software Engineering, Braude College of Engineering, Karmiel, Israel
sarai@braude.ac.il

Abstract. Automated reasoning about systems with infinite domains
requires an extension of automata, and in particular, finite automata, to
infinite alphabets. One such model is Variable Finite Automata (VFA).
VFAs are finite automata whose alphabet is interpreted as variables
that range over an infinite domain. On top of their simple and intuitive
structure, VFAs have many appealing properties. One such property is
a deterministic fragment (DVFA), which is closed under the Boolean
operations, and whose containment and emptiness problems are decid-
able. These properties are rare amongst the many different models for
automata over infinite alphabets. In this paper, we continue to explore
the advantages of DVFAs, and show that they have a canonical form,
which proves them to be a particularly robust model that is easy to rea-
son about and use in practice. Building on these results, we construct
an efficient learning algorithm for DVFAs, based on the L

∗ algorithm for
regular languages.

1 Introduction

Automata-based formal methods are successfully applied in automated reasoning
about systems. When the systems are finite-state, their behaviors and specifica-
tions can be modeled by finite automata. Infinite-state systems, and in particular
systems over infinite data domains, such as communication and e-commerce sys-
tems or large databases, require models that can handle languages over infinite
alphabets.

Many types of automata over infinite alphabets have been defined and stud-
ied, with varying closure and decidability properties. We briefly survey some of
these models.

A register automaton [SF94] has a finite set of registers, each of which may
contain a letter from the infinite alphabet. The transitions of a register automa-
ton compare and store the input letter in a register. Several variants of this
model have been studied. For example, [KF94] forces the inequality in the regis-
ters content, [NSV01] adds alternation and two-wayness, and [KZ08] allows the
registers to change their content nondeterministically during the run.

A pebble automaton [NSV01] places pebbles on the input word in a stack-
like manner. The transitions of a pebble automaton compare the letter in the

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 633–650, 2019.
https://doi.org/10.1007/978-3-030-30942-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_37&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_37

634 S. Sheinvald

input with the letters in positions marked by the pebbles. Several variants of this
model have been studied. For example, [NSV01] studies alternating and two-way
pebble automata, and [Tan09] introduces top-view weak pebble automata.

A data automaton [BMS+06,BMSS09] runs on data words, which are words
over the alphabet Σ ×F , where Σ is infinite and F is a finite auxiliary alphabet.
A data automaton consists of two components. The first is a letter-to-letter
transducer that runs on the projection of the input word on F and generates
words over yet another alphabet Γ . The second is a regular automaton that
runs on subwords (determined by the equivalence classes of letter equality) of
the word generated by the transducer.

Symbolic automata allow the transitions to carry predicates over an infinite
alphabet, determining the subset from which the letter that is read along the
transition is taken. Different theories lead to different types of languages, and
[DD17,AD18] study learning of symbolic automata.

Variable finite automata (VFA) [GKS10], are a special case of nondetermin-
istic register automata, in which some of the registers are preassigned values
that do not change during the run, and one register is allowed free assignments.
VFAs are especially convenient to work with, as they can be easily modeled by
standard nondeterministic finite automata (NFA). A VFA is an NFA A over a
pattern alphabet, which consists of constant letters, bound variables, which may
be assigned the same unique letter throughout the run, and a free variable, which
is freely assigned during the run. Thus, every word in the pattern language of
A induces a set of words over the infinite alphabet. Modeling VFAs as NFAs
allows using standard methods for NFAs for various computations for VFAs. For
example, checking the emptiness of a VFA amounts to checking the emptiness of
the underlying pattern NFA. VFAs have further appealing properties: they are
closed under union and intersection, and their emptiness is NL-complete,

[GKS10] also identified a deterministic fragment of VFA, called DVFA, in
which every word over the infinite alphabet has a single run. DVFAs are the
focus of this paper. It does not suffice for the pattern NFA of a DFA to be a
deterministic finite automaton, as a word w may have several different pattern
words, which differ in the variables that are assigned the letters of w. However,
[GKS10] shows that syntactic conditions on the pattern NFA do exist, and can
be easily checked. DVFAs are closed under the Boolean operations, and their
emptiness and universality problems are NL-complete. These qualities are rare
in the realm of automata over infinite alphabets, which, in general, tend to be
highly undecidable.

In [FGS18], VFAs were generalized to alternating variable automata, which
were shown to model a fragment of first order LTL, an extension of LTL that
expresses properties of systems over infinite data. The full capacity of VFAs is
not always needed, and in many useful cases such properties can be modeled by
VFAs and DVFAs. For example, the property “Every communication interaction
begins and ends by transmitting the same interaction ID” can be modeled by
DVFA.

Learning Deterministic Variable Automata over Infinite Alphabets 635

Session automata were introduced in [BHLM14]. Like VFA, session automata
are a special case of register automata, in which registers may be reassigned with
fresh values only. [BHLM14] showed that session automata are a decidable and
closed model. Moreover, session automata have a canonical form, which enables
an L

∗-based learning algorithm for them. Session automata are incomparable
with DVFA. For example, session automata are able to express the language of
all words whose letters are different which DVFAs cannot express, but are unable
to express the language of all words whose first and last letters are similar, which
DVFAs can express.

The automata learning algorithm L
∗, first introduced in [Ang87], consists of

two entities: a learner, whose goal is to construct an automaton for a language
L, and a teacher, who helps the learner by answering membership queries – “ is
w ∈ L?”, and equivalence queries – “ is A an automaton for L?”. In case that
A does not accept L, the teacher also returns a counterexample: a word which
is accepted by A and is not in L, or vice versa. [Ang87] presented a learning
algorithm for regular languages, in which the learner constructs a minimal finite
automaton for L, which runs in polynomial time in the number of states in the
automaton and in the length of the longest counterexample that is returned by
the teacher in the process.

Automata learning has useful applications in system verification. For exam-
ple, [PGB+08] uses learning of regular languages in order to find a minimal
component in an assume-guarantee style compositional verification.

In this paper, we show that on top of their previously known advantages, and
much like session automata, DVFAs have a canonical form, called ordered DVFA,
which allows a standard representation to every language that is expressible by
a DVFA. Essentially, an ordered DVFA dictates an order of using the bound
variables, so that every word has a single possible pattern word. As in the case
of regular languages, this ordered form is based on an equivalence relation that is
defined over the language. In the case of DVFAs, the relation is over the pattern
language. The ordered form enables finding an equivalent ordered DVFA that
is not only minimal in the number of states, but also uses a minimal number of
variables.

We then exploit the canonical form of DVFAs to construct a learning algo-
rithm for them, called DVL

∗, that is based on the L
∗ algorithm. In our case,

not only the state space of the DVFA is unknown in advance, but also its set
of variables. DVL

∗ manages finding both the minimal ordered DVFA and the
minimal set of variables needed to express the language L that it learns.

A run of DVL
∗ proceeds in iterations. In every iteration, an ordered DVFA

is constructed, based on the current pattern alphabet and the current answers of
the teacher to the membership and equivalence queries. Membership queries are
submitted for concrete words over the infinite alphabet, which are translated by
DVL

∗ to pattern words over the current pattern alphabet. Once it is recognized
that the current number of variables does not suffice to distinguish between two
words w1, w2 that do not agree on their membership to L, then more variables

636 S. Sheinvald

are added in a way that distinguishes between the pattern words of w1 and w2,
and a new iteration begins.

We prove the correctness of DVL
∗, and demonstrate its details with an

example.

2 Preliminaries

A nondeterministic finite automaton (NFA) is a tuple A = 〈Γ,Q, q0, δ, F 〉, where
Γ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state,
δ : Q×Γ → 2Q is a transition function, and F ⊆ Q is a set of accepting states. If
δ(q, a) �= ∅, we say that a exits q. A run of A on a word w = σ1σ2 . . . σn in Γ ∗ is
a sequence of states r = r0, r1, . . . , rn such that r0 = q0 and for every 1 ≤ i ≤ n
it holds that ri ∈ δ(ri−1, σi). If rn ∈ F then r is accepting. Note that a run may
not exist. If a run does exist, we say that w is read along A. If a run of A on w
reaches a state q, we denote q ∈ δ∗(q0, w). The language of A, denoted L(A), is
the set of words w for which there exists an accepting run of A on w.

An NFA is deterministic (DFA) if for every q ∈ Q and every a ∈ Γ , there is
a single state q′ such that q′ ∈ δ(q, a). Consequently, a DFA has exactly one run
over every word over Γ .

Let Σ be an infinite alphabet, and let Γ = ΣA ∪ X ∪ {y}, where ΣA ⊂ Σ is
a finite set of constant letters, X is a finite set of bound variables and y is a free
variable. The variables range over Σ \ ΣA. We refer to Γ as a pattern alphabet.

Consider a word u = u1u2 . . . un ∈ Γ ∗, and a word w = w1w2 . . . wn ∈ Σ∗.
We say that w is a legal instance of u if

– ui = wi for every ui ∈ ΣA,
– For ui, uj ∈ X, it holds that wi = wj iff ui = uj , and wi, wj /∈ ΣA, and
– For ui = y and uj �= y, it holds that wi �= wj .

Intuitively, a legal instance of u leaves all occurrences of ui ∈ ΣA unchanged,
associates all occurrences of uj ∈ X with the same unique letter, not in ΣA, and
associates every occurrence of y freely with letters from Σ \ ΣA, different from
those associated with X variables.

We say that a word u ∈ Γ ∗ is a pattern word for a word w ∈ Σ∗ if w is a
legal instance of u. We sometimes refer to w ∈ Σ∗ as a concrete word. Note that
u may be the pattern word for infinitely many words in Σ∗, and that a word in
Σ∗ may have several pattern words (or have none). The language of u, denoted
L(u), is the set of all legal instances of u. We denote the set of variables that
occur in u by var(u).

A variable finite automaton (VFA) is a pair A = 〈Σ,A〉, where Σ is an
infinite alphabet and A is an NFA over a pattern alphabet Γ , which we call the
pattern automaton of A, and its language (over Γ) is the pattern language of A.
The language of A, denoted L(A), is

⋃
u∈L(A) L(u). That is, L(A) is the set of

words in Σ∗ for which there exists a pattern word in L(A).
For a word w ∈ Σ∗, a run of A on w is a run of A on a pattern word for w.

Learning Deterministic Variable Automata over Infinite Alphabets 637

Fig. 1. The pattern automata for A, D, and B.

Example 1. Let A = 〈Σ,A〉 where A is the NFA appearing in Fig. 1. Then, L(A)
is the language of all words in Σ∗ in which some letter appears at least twice. By
deleting the x1 labels from the self loop in q2, we get the language of all words
in which some letter appears exactly twice.

A VFA A = 〈Σ,A〉 is deterministic (DVFA, for short), if for every word
w ∈ Σ∗, there exists exactly one run of A on w.

Note that, equivalently, a VFA is deterministic if for every word in Σ∗ there is
exactly one pattern word on which there is a single run in the pattern automaton.

Example 2. Consider the VFA D = 〈Σ,D〉, where D is the DFA appearing
in Fig. 1. The language of D is the set of all words over Σ in which the first
letter is equal to the last letter. To see that D is deterministic, consider a word
w = w1w2 . . . wn in Σ∗. A pattern word for w is over x1 and y. Since only x1

exits the initial state, then x1 must be assigned w1, and all other occurrences of
other letters must be assigned to y. Therefore, every word w has a single pattern
word u that is read along D. Since D is deterministic, every pattern word has a
single run in D. It follows that D is deterministic.

It is not enough for the pattern automaton to be deterministic for a VFA
A to be deterministic, since there can be several different pattern words to the
same word w. However, a syntactic characterization does exists, as shown in
[GKS10]. A VFA with a pattern automaton A = 〈Γ,Q, q0, δ, F 〉 is deterministic
iff the following hold.

1. For every σ ∈ ΓA and every q ∈ Q, exactly one transition labeled σ exits q,
2. For every z ∈ X ∪{y} and every q ∈ Q, at most one transition labeled z exits

q,
3. For every q ∈ Q and every z ∈ X ∪ {y} that occurs along a path from q0 to

q, it holds that z exits q,
4. For every q ∈ Q, either y exits q, or a variable x ∈ X that does not occur

along a path from q0 to q exits q (but not both).

638 S. Sheinvald

These conditions make sure that from every state q there is exactly one
transition with every letter in ΣA, one transition with every letter that has been
read up to q, and one transition with a new letter. The latter is ensured by
condition 4.

DVFAs are closed under the Boolean operations. Moreover, their emptiness,
universality and containment problems are NL-complete, and membership is in
P.

We say that a language L over Σ∗ is deterministic if there exists a DVFA D
such that L(D) = L.

3 A Canonical Form for DVFA

In this section we show that deterministic languages have a canonical form, much
like regular languages. The form is based on an ordering on the variables in a way
that ensures that every word over the infinite alphabet Σ has a single ordered
pattern word.

Let ΣA be a set of constant letters. For k ∈ N, we denote the pattern alphabet
ΣA ∪ {x1, x2, . . . xk, y} by Γk.

Definition 1. Let u be a pattern word over Γk. We say that u is Γk-ordered if
the following hold.

1. For every 1 ≤ i < j ≤ k, the first occurrence of xi in u precedes the first
occurrence of xj in u.

2. y occurs in u only after xk first occurs in u.

Example 3. For ΣA = {a},

– x1ax2x1yx1 is Γ2-ordered.
– x1yax2 is not Γk-ordered for every k ∈ N, since y occurs before x2 first occurs.
– x1x3x1 is not Γk-ordered for every Γk ∈ N, since x3 occurs before x2 first

occurs.

We denote by O(Γk) the set of all Γk-ordered words over Γk. We match every
word w ∈ Σ∗ with a pattern word oΓk

(w) ∈ O(Γk), which we call the Γk-ordering
of w, as follows. Let σ1, σ2, . . . σj be the letters in Σ\ΣA that occur in w, ordered
by their first occurrence in w. The word oΓk

(w) is obtained from w by replacing
every occurrence of σi with xi for 1 ≤ i ≤ k, and by y for k < i ≤ j.

It is easy to see that for every w ∈ Σ∗, it holds that w ∈ L(oΓk
(w)), and that

oΓk
(w) is the only Γk-ordered pattern word for w.

Example 4. For ΣA = a and w = cddaefcg, we have

– oΓ0(w) = yyyayyyy
– oΓ1(w) = x1yyayyx1y
– oΓ2(w) = x1x2x2ayyx1y

Learning Deterministic Variable Automata over Infinite Alphabets 639

Lemma 1. Let D = 〈Γk, Q, q0, δ, F 〉 be an NFA that meets the following condi-
tions.

1. For every state q ∈ Q and every α ∈ Γk, at most one transition labeled α
exits q,

2. For every u ∈ Γ ∗
k , it holds that u is read along D iff u ∈ O(Γk).

Let D be a VFA whose pattern automaton is D. Then the following hold.

1. D is a DVFA,
2. For every state q ∈ Q there exists 0 ≤ i ≤ k such that every word u for which

q ∈ δ∗(q0, u), it holds that var(u) = {x1, . . . xi}, and if i = k, var(u) may
also contain y.

Intuitively, every word w ∈ Σ∗ has exactly one run in D, on its Γk-ordering.
Moreover, for two pattern words u1, u2 that reach the same state q, for every
letter a that exits q, it must hold that both u1 · a and u2 · a are ordered, which
is possible only if they contain the same set of bound variables.

We call a DVFA that meets the conditions of Lemma 1 a Γk-ordered DVFA.
We call a DVFA that is Γk-ordered for some k an ordered DVFA. For example,
in Fig. 1, the DVFA D whose pattern automaton D is Γ1-ordered, and the DVFA
B whose pattern automaton is B is Γ2-ordered.

According to Lemma 1, for a state q in a Γk-ordered DVFA D, all words that
are read along D from the initial state to q have the same set of bound variables
{x1, x2, . . . xi}, for some 0 ≤ i ≤ k. We then say that q is in level i in D.

We now show that every DVFA has an equivalent ordered DVFA.

Theorem 1. Let D = 〈D,Σ〉 be a DVFA over Γk. Then there exists an equiv-
alent Γ ′

k-ordered DVFA D′ = 〈D′, Σ〉, where Γ ′
k is a pattern alphabet over ΣA

with k bound variables.

Proof. Let D = 〈Γk, Q, q0, δ, F 〉. Intuitively, we unwind D while maintaining a
function that assigns new variable names to the variables of D.

Let Γ ′
k = ΣA ∪ Z ∪ {y′}, where Z = {z1, z2, . . . zk} is a set of bound

variables, and y′ is a free variable. The states of D′ are Q × G, where
G = {x1, x2, . . . xk, y}{z1,z2,...zk} is the set of one-to-one partial functions from
{z1, z2, . . . zk} to {x1, x2, . . . xk, y}. We denote the domain of a partial function
g ∈ G by Dom(g), its range by Range(g), and the maximal index of a bound
variable in Z in Dom(g) by max(g). If g = ∅, then max(g) = 0. The initial
state of D′ is s0 = 〈q0, ∅〉. We construct the transition relation δ′ of D′ in two
stages. In the first stage, we translate the transitions in D over X to transitions
of D′ over Z, in increasing order of variable indices. We add transitions to δ′ as
follows.

1. For every 〈q, a, q′〉 ∈ δ, where a ∈ ΣA, we add 〈〈q, g〉, a, 〈q′, g〉〉 to δ′ for every
g ∈ G.

2. For every 〈q, xi, q
′〉 ∈ δ, we add 〈〈q, g〉, zj , 〈q′, g〉〉 to δ′ for every g ∈ G such

that xi ∈ Range(g) and g(zj) = xi.

640 S. Sheinvald

3. For every 〈q, xi, q
′〉 ∈ δ, we add 〈〈q, g〉, zj , 〈q′, g′〉〉 to δ′ for every g ∈ G such

that xi /∈ Range(g), where j = max(g) + 1, and g′ = g ∪ {(zj , xi)}.
4. For every 〈q, y, q′〉 ∈ δ′, we add 〈〈q, g〉, y′, 〈q′, g〉〉 for every g ∈ G.

Notice that in every state 〈q′, g〉 of D′, the Z-variables in Dom(g) are
z1, z2, . . . zi for some 1 ≤ i ≤ k. Therefore, zj in (3) is always well defined,
as j ≤ k. Also, if 〈〈q, g〉, α, 〈q′, g′〉〉 ∈ δ′ for some q, q′, α, g, g′, then g ⊆ g′.
Accordingly, along every path in D′, for j > i, it holds that zj does not first
occur before zi first occurs. Also, since D is deterministic, along every path, y
does not occur before a variable in X first occurs. Accordingly, along every path
in D′, the free variable y′ does not occur before a variable in Z first occurs.

However, there may be a path along D′ in which y′ first occurs not after all
the variables in Z occur, since no extension of the matching path in D makes
use of all the variables in X. In the second stage, we fix δ′ so that y′ only occurs
after zk first occurs.

Intuitively, along every path, we transform the premature y′ transitions to a
sequence of Z-transitions, until all variables in Z occur along the path. We say
that a state 〈q, g〉 such that max(g) < k and y′ exits 〈q, g〉 is premature.

For every transition 〈〈q, g〉, y′, 〈q′, g〉〉 such that 〈q, g〉 is premature, we remove
the transition and add the transition 〈〈q, g〉, zj , 〈q′, g′〉〉, where j = max(g) + 1,
and where g′ = g ∪{(zj , y)}. In addition, we add 〈〈q, g〉, zi, 〈q′, g〉〉 to δ′ for every
zi such that g(zi) = y.

Once all premature transitions have been removed, every word that is read
along D′ is ordered.

It holds that for every state s = 〈q, g〉 in Q′, the set of bound variables along
every path that reaches s is exactly Dom(g). Since q satisfies the determinism
conditions in D, it holds that every constant in ΣA and every variable in Dom(g)
exits s exactly once, as well as a new variable or y.

For every pattern word u that is read along D, the VFA D′ matches the
i’th occuring bound variable in u with zi and maintains this match in reachable
states. Therefore, there exists a bijection from the runs of D to the runs of D′,
and every such run induces the same set of concrete words.

Example 5. Consider the DVFA A seen in Fig. 2, over the pattern alphabet
Γ2 = {x1, x2, y}. While A is deterministic1, it is not ordered. For example,
along the path (q0, q1, q2, q2), the variable x2 does not occur at all yet y occurs,
and along the path (q0, q3, q4, q5), the variable x2 first occurs before x1. The
translation of A to a Γ ′

2-ordered DVFA D also appears in Fig. 2. Note that q4
has two copies in D: one in which z1 represents x1, and one in which z1 represents
x2. This is due to the two different paths that lead to q4, which have a different
order of X variables. As a result, q5 has three copies in D: two that follow q4
after both z1, z2 have been seen, and one that follows q4 after only z1 has been
seen. The state q2 also has two copies in D, to account for the missing bound
variable along the path (q0, q1, q2, q2).

1 we omit the transitions labeled a from every state, for clarity of presentation.

Learning Deterministic Variable Automata over Infinite Alphabets 641

Fig. 2. A pattern automaton for A (on the left), and its translation to an ordered
DVFA D.

Let L be a language over Σ. We define a relation ∼L,Γk
over O(Γk), as follows.

For every u1, u2 ∈ O(Γk), we define u1 ∼L,Γk
u2 iff for every u ∈ Γ ∗

k , it holds
that u1 · u is Γk-ordered iff u2 · u is Γk-ordered, and if both u1 · u and u2 · u are
Γk-ordered, then either L(u1 · u) ⊆ L and L(u2 · u) ⊆ L,

or L(u1 · u) ∩ L = ∅ and L(u2 · u) ∩ L = ∅.
It is easy to see that ∼L,Γk

is an equivalence relation.

Example 6. Consider the language L(D) of the DVFA whose pattern automaton
is D of Fig. 1, which is the language of all words over Σ whose first and last letters
are equal. Then for ΣA = ∅, it holds that x1yy ∼L(D),Γ1 x1y. Indeed, since x1

occurs in both words, for every word u over Γ1 it holds that x1yy · u and x1y · u
are Γ1-ordered. Moreover, if u ends with x1 then both L(x1yy ·u) and L(x1y ·u)
are contained in L(D), and if u ends with y then both L(x1yy ·u) and L(x1y ·u)
are disjoint from L(D),

Lemma 2. If u1 ∼L,Γk
u2, then the sets of bound variables in u1 and u2 are

equal.

Proof. Assume the contrary. Then, without loss of generality, u1 contains more
variables than u2. Let xj be the highest indexed variable that occurs in u1. If
j = k, then let u = y. Otherwise, let u = xj+1. In either case, u1 ·u is Γk-ordered
and u2 · u is not, a contradiction.

We say that L is Γk-ordered if for every w ∈ L, it holds that L(oΓk
(w)) ⊆ L,

and for every w /∈ L, it holds that L(oΓk
(w)) ∩ L = ∅. We say that L is finitely

Γk-ordered if it is Γk-ordered, and rank(∼L,Γk
) is finite. If L is finitely Γk-ordered

for some k, we say that L is finitely ordered.

Lemma 3. If L is finitely Γk-ordered, then L is deterministic.

Proof. We construct a DVFA D = 〈D,Σ〉 over the pattern alphabet Γk such
that L(D) = L, as follows. The set of states of D is the set E of equivalence

642 S. Sheinvald

classes of ∼L,Γk
. The initial state is [ε]. For every [u] ∈ E and α ∈ Γk such that

u · α is Γk-ordered, we add a transition 〈[u], α, [u · α]〉 to the transition relation
of D. A state [u] is accepting iff L([u]) ⊆ L.

It follows from Theorem 1 that if L is deterministic, then it is finitely ordered.
Indeed, the equivalence classes of L match the Myhill-Nerode equivalence classes
of the pattern automaton of an equivalent ordered DVFA (restricted to ordered
words). Together with Lemma 3, we conclude the following.

Theorem 2. L is deterministic iff L is finitely ordered.

3.1 Finding a Minimal Set of Variables

Once we construct a Γk-ordered DVFA D for a deterministic language L, we
can find a minimal equivalent Γk-ordered DVFA by applying the classic Myhill-
Nerode minimization for DFAs on its pattern automaton (while considering only
the relevant transitions from each state, according to its level). Indeed, the result-
ing pattern DFA accepts an equivalent pattern language, and is therefore a DVFA
that accepts L.

However, it might be the case that L can be expressed by an ordered DVFA
with fewer than k bound variables. We can find the minimal k′ for which L is
Γk′-ordered, as follows2.

Let D = 〈Γk, Q, q0, δ, F 〉 be the pattern automaton of D, and let A be the
pattern automaton obtained from D by replacing every occurrence of xk with
y. Notice that A may be nondeterministic, since states in level k may now have
two transitions labeled y that exit them. Also notice that the set of words on
which A runs is exactly O(Γk−1).

Let w be a word over Σ∗. Then oΓk−1(w) is obtained from oΓk
(w) by replacing

all occurrences of xk with y. Notice that if oΓk
(w) contains no occurrences of

xk, then oΓk
(w) = oΓk−1(w), and so both D and A have a single identical run

on oΓk−1(w).
We then have the following. For every w ∈ Σ∗, if w ∈ L, then oΓk

(w) ∈
L(D), and therefore there exists an accepting run on oΓk−1 in A. If w /∈ L, then
oΓk

(w) /∈ L(D), and therefore there exists a rejecting run on oΓk−1(w) in A.
Moreover, k − 1 bound variables suffice to express L by an ordered DVFA iff

there exist no two words w1, w2 such that w1 ∈ L, w2 /∈ L, such that oΓk−1(w1) =
oΓk−1(w2). Two such words exist iff oΓk−1(w1) has two runs in A, one is accepting
and the other rejecting.

As a corollary to the above, in order to construct a Γk−1-ordered DVFA for
L, we apply the standard subset construction on A to obtain a Γk−1-ordered
DVFA D′. If one of the subsets includes two states such that one is accepting
and the other rejecting, we conclude that Γk is minimal, and otherwise, we have
that L(D′) = L(D) = L.

We can now repeat the process until reaching a minimal set Γk′ .
2 It may be the case that L can be expressed with even fewer than k′ variables, by a

non-ordered VFA. Here, we only consider ordered DVFA.

Learning Deterministic Variable Automata over Infinite Alphabets 643

Example 7. Consider the ordered DVFA B whose pattern automaton B appears
in Fig. 1. Its language is the set of all words whose first and last letters are equal.
The VFA B′ obtained from B by replacing all transitions labeled x2 with y is
deterministic, and is therefore equivalent to its subset construction. We then
have that B′ is equivalent to B, but uses fewer variables.

4 A Learning Algorithm for DVFA

In this section we exploit the canonical form defined in Sect. 3 to construct
a learning algorithm for DVFAs. Our algorithm, DVL

∗, is based on the L
∗

algorithm for learning regular languages, and we use some of the terminology
and mechanisms of [Ang87].

Let L be a deterministic language with a set of constants ΣA. DVL
∗ learns

an ordered DVFA that accepts L, with a minimal set of variables and a minimal
set of states. Much like L∗, DVL

∗ consists of a learner and a teacher. The learner
constructs an ordered DVFA by submitting a sequence of membership (“is the
word w in L?”) and equivalence (“does the DVFA A accept L?”) queries. We only
expect the teacher to handle concrete words, and so the membership queries, as
well as the counterexamples provided by the teacher, are concrete.

The run maintains a pattern alphabet Γk = ΣA ∪ X ∪ {y}, where initially
X = ∅. The run proceeds in iterations, which gradually increase the number of
variables in X. In every iteration, a set of tables T = {T0, T1, . . . Tk} is con-
structed and maintained for the current Γk (we sometimes refer to T itself as a
table).

The rows of the tables are words from a set S ∪ S · Γk of Γk-ordered words,
where S is prefix-closed, and the columns of the tables are from a set E of suffix-
closed words over Γk. The rows of Tm are denoted Sm, and the columns of Tm

are denoted Em. For every s ∈ Sm, it holds that var(s) = {x1, . . . xm}, and
words in Sk may also contain y. For every Tm, a word e ∈ E is in Em only if
s · e is Γk-ordered for every s ∈ Sm (notice that since all the words in Sm use
the same set of bound variables, either s · e ∈ O(Γk) for every s ∈ Sm, or for
none). Every s ∈ S ∪ S · Γk and e ∈ E are assigned concrete words w(s) and
w(e), respectively. These words are used for membership queries.

For 1 ≤ m ≤ k, the table Tm matches each s ∈ Sm and e ∈ Em with a truth
value in {0, 1}, such that Tm(s, e) = 1 iff w(s) · w(e) ∈ L. We denote by T (s, e)
the truth value for Tm(s, e).

Notice that Tm(s, e) = 1 does not necessarily imply that L(s·e) ⊆ L, since we
only have L(s·e) ∩ L �= ∅. Dually, Tm(s, e) = 0 does not mean that L(s·e) ∩ L =
∅. Recall that if L is Γk-ordered, for every ordered word u, either L(u) ⊆ L or
L(u)∩L = ∅. In case that L(s ·e) does not satisfy either condition, there are two
words w1, w2 in L(s ·e) that do not agree on membership to L, yet have the same
Γk-ordering. Adding bound variables will enable to distinguish between w1 and
w2. During the run, counterexamples for such s, e are produced by the teacher,
and accordingly lead to an update of Γk.

644 S. Sheinvald

In order to maintain the consistency in the assignments to the words assigned
by w, every bound variable xi is always assigned the same letter ai in Σ. More-
over, in S ∪ S · Γk, the variable y is always assigned the same letter.

For s ∈ S ∪ S · Γk, we refer to row(s) as the vector of truth values in the
table in which s is a row.

We say that Tm is consistent if for every s1, s2 ∈ Sm such that row(s1) =
row(s2), for every a ∈ Γk such that s1 · a, s2 · a are Γk-ordered, it holds that
row(s1 · a) = row(s2 · a). Notice that s1 · a, s2 · a may either both be in Tm, or
both be in Tm+1 (the latter in case that a = xm+1).

We say that Tm is closed if for every s · a ∈ (S · Γk ∩ Sm) there exists
s′ ∈ S ∩ Sm such that row(s) = row(s′).

We say that T is refined if for every s, s′, e, e′ such that s ∈ Sm, e ∈ Em,
s′ ∈ Sm′ , e′ ∈ Tm′ such that s · e = s′ · e′, it holds that Tm(s, e) = Tm′(s′, e′).
That is, T is consistent for similar Γk-ordered words.

During the run, the tables in T are filled by submitting membership queries
of the type w(s) · w(e) to the teacher.

Initially, the pattern alphabet is Γ0. We construct a single table T0, and
initially set S = E = {ε}. Accordingly, S ·Γk = ΣA ∪{y}. We set S0 = S ∪S ·Γk,
and E0 = E. We set w(y) = a for some a ∈ Σ, and fill the entries in T0 by
membership queries.

In later iterations, for a pattern alphabet Γk with k > 0, we construct a set
of tables {T0, . . . , Tk}, and initially set S = {ε, x1, x1x2, . . . , x1x2 · · · xk}. The
set S ·Γk is calculated accordingly. The words in S ∪S ·Γk are distributed along
S0, S1, . . . Sk according to the variables they contain, and Em = {ε} for every
0 ≤ m ≤ k. We assign words w(s) and w(e) in L(s) and L(e) for every s ∈ S ·Γk

and e ∈ E as described above, and fill the tables accordingly.
We now describe how to fix the tables in case that T is not consistent, closed

or refined.
If some table Tm is not consistent, then there exist two words s1, s2 ∈ Sm ∩S

such that row(s1) = row(s2), and a ∈ Γk such that s1 · a, s2 · a are Γk-ordered,
such that row(s1 · a) �= row(s2 · a). Let e be a word for which T (s1 · a · e) �=
T (s2 · a · e). Then a · e is a separating word for s1, s2. We add a · e to Em, assign
it a word w(a · e) that preserves the previous assignment to a and e, and fill the
table accordingly. Notice that since T was suffix-closed for E, it remains so also
after adding a · e. Also, now row(s1) �= row(s2).

If some table Tm is not closed, then there exists a word s · a ∈ Sm ∩ (S · Γk)
for which there exists no s′ ∈ Sm ∩S such that row(s ·a) = row(s′). In this case,
we add s ·a to S, and add words of the type s ·a · b for every b for which s ·a · b is
Γk-ordered to S ·Γk, and either to Sm (if b �= xm+1) or Sm+1 (otherwise). We fill
the table entries accordingly. Notice that since S was prefix-closed, it remains
so also after adding s · a.

If T is not refined, then there are s ∈ Sm, s′ ∈ Sm′ and e ∈ Em, e′ ∈ Em′

such that s · e = s′ · e′, but Tm(s · e) = 1 yet Tm′(s′ · e′) = 0. This means
that L(s · e) � L, and yet L(s · e) ∩ L �= ∅. To distinguish between w(s) · w(e)
and w(s′) · w(e′), the pattern alphabet must be refined by adding more bound

Learning Deterministic Variable Automata over Infinite Alphabets 645

variables such that the ordering of these two words will be different. We do
so by calculating k′, the minimal required number of bound variables for which
oΓk′ (w(s) ·w(e)) �= oΓk′ (w(s′) ·w(e′)). For example, 3 bound variables are needed
to distinguish between abcd and abcc. The minimal number of bound variables
that is needed to distinguish between two words w1 and w2 is calculated as
follows. Let j be the minimal index for which there exists i < j such that
w1(i) = w1(j), yet w2(i) �= w2(j). Then the number of bound variables needed
to distinguish between w1 and w2 is the index, in order of first occurrences, of
w1(i).

We then begin a new iteration with Γk′ , the updated pattern alphabet.
Once T is closed, consistent and refined, it can be translated to a DVFA AT

whose pattern automaton is AT = 〈Γk, Q, q0, δ, F 〉, as follows.

– Q = {〈row(s),m〉|s ∈ Sm ∩ S, 1 ≤ m ≤ k},
– q0 = 〈row(ε), 0〉,
– Let s · a ∈ Sm ∩ (S · Γk). Then s ∈ Sm′ where either m′ = m, or m′ = m − 1

(if a = xm+1). Since T is closed, there exists s′ ∈ Sm ∩S such that row(s′) =
row(s · a). Then we set δ(〈row(s),m′〉, a) = 〈row(s′),m〉.

– F = {〈row(s),m〉|Tm(s, ε) = 1, 1 ≤ m ≤ k}.

Since T is consistent, it holds that for s1, s2 ∈ S∪S ·Γk, if row(s1) = row(s2)
then both s1 · a and s2 · a are Γk-ordered (since s1, s2 are in the same table).
Also, since T is consistent, we have that row(s1) = row(s2) implies row(s1 ·a) =
row(s2 · a), and so δ is well defined.

The learner constructs AT , and submits an equivalence query. The teacher
either confirms that L(AT) = L, thus terminating the run, or returns a coun-
terexample w′ which AT accepts although w′ /∈ L, or rejects although w′ ∈ L.

In case of a counterexample, we add oΓk
(w′) and all its suffixes to E, and

distribute them to Em according to their variables. We attach a word v(u) ∈ L(u)
to every such suffix u, as follows. Let bibi+1 . . . bn the suffix of w′ that induces
u. The word v(u) is consistent with w (that is, every xi is assigned ai), and
v(u)j = v(u)j′ iff bj = bj′ . Notice that since w′ ∈ L(u), the latter two conditions
are consistent. The words bibi+1 . . . bn and v(u) are then equivalent up to letter
identity. For every new suffix u, we set w(u) = v(u), add u to the appropriate
tables and fill the missing table entries. For every suffix u that is already in T ,
we proceed as follows. For every m such that u ∈ Em, for every s ∈ Sm, we run a
membership query for w(s) · v(u). If some membership query returns a different
answer from Tm(s, u), we conclude that more variables must be added. Indeed,
w(s) · w(u) and w(s) · v(u) have the same Γk-ordering, yet one is in L and the
other is not. As with the case of a non-refined table, we add the minimal number
of variables needed to distinguish between w(s) · w(u) and w(s) · v(u), and start
a new iteration.

As we show next, DVL
∗ finds a minimal DVFA for L. Our main theorem is

the following.

Theorem 3. If T is closed, consistent and refined, then AT is a minimal
ordered DVFA that is consistent with T .

646 S. Sheinvald

We prove Theorem 3 by the following sequence of lemmas.

Lemma 4. Let T be a closed, consistent and refined table, and let AT be the
pattern automaton for its matching DVFA. Then the following hold.

1. For every word s ∈ S, it holds that δ∗(q0, s) = 〈row(s),m〉, where s ∈ Sm.
2. For every 1 ≤ m ≤ k, for every s ∈ Sm and e ∈ Em, it holds that δ∗(q0, s·e) ∈

F iff Tm(s, e) = 1.
3. Let n be the number of states in AT . Then every Γk-ordered DVFA with n or

fewer states that is consistent with T is isomorphic to AT .

Lemma 4 is proved in a similar way to similar lemmas in [Ang87], with some
added technicalities due to the more complicated nature of T .

Lemma 4 holds for DVFAs that are consistent with T and use the same
pattern alphabet. However, we need to show that DVL

∗ eventually converges to
the minimal number of required variables.

We first show that upon termination, AT uses a minimal pattern alphabet.

Lemma 5. Let T be a closed, consistent and refined table with k bound vari-
ables. Then an ordered DVFA for L must use at least k bound variables.

Proof. Assume by contradiction that an ordered DVFA A for L uses k′ < k
variables. DVL

∗ begins with a free variable only. Recall that new variables are
added when the run finds two words w,w′ in L(u) for some pattern word u in
T such that w ∈ L and w′ /∈ L, in which case the new number of variables is
the minimal number for which the ordering of w,w′ is different. Let w,w′ be
the last pair of words that led to the last increase in the number of variables in
T . Since k is the minimal number of variables needed to distinguish between w
and w′, we have that oΓk′ (w) = oΓk′ (w′), and therefore A cannot accept L, a
contradiction.

Finally, we show that as long as the minimal number of required variables
has not been reached, DVL

∗ does not produce a larger DVFA than the minimal
one for L.

Lemma 6. Let T be a closed, consistent and refined table over Γk, and let n be
the number of states in AT . Then every ordered DVFA with more than k bound
variables that is consistent with T with respect to the concrete words assigned by
w has at least n states.

Proof. Let A be an ordered DVFA that is consistent with T whose pattern
automaton is 〈Γk′ , Q′, q0, F ′, δ′〉, where k′ > k.

We define a function f : Q → Q′ by f(〈row(s),m〉) = δ′∗(q′
0, w(s)). We show

that f is one-to-one. Let s1, s2 ∈ S. If s1, s2 are in different tables Tm, Tm′ , they
are not mapped to the same state in AT , and var(s1) �= var(s2). Since only
words in Sk contain y, at most one of s1, s2 can contain y. Assume, without
loss of generality, that var(s1) ⊂ var(s2). Then w(s1) contains j < k different
letters, and w(s2) contains more than j different letters. Since k′ > k, we have

Learning Deterministic Variable Automata over Infinite Alphabets 647

that oΓk′ (w(s1)), oΓk′ (w(s2)) have different sets of bound variables. Therefore,
δ′∗(q′

0, oΓk′ (w(s1))) and δ′∗(q′
0, oΓk′ (w(s2))) are in different levels in Q′, and so

are not the same state.
If s1, s2 ∈ Sm such that row(s1) �= row(s2), then there exists a word e ∈ E

such that Tm(s1, e) �= Tm(s2, e). Therefore, w(s1) · w(e) ∈ L and w(s2) · w(e) /∈
L, or vice versa. Let q1 = δ′∗(q′

0, w(s1)), and q2 = δ′∗(q′
0, w(s2)). Since A is

consistent with T , we have that either w(s1) · w(e) ∈ L(A) and w(s2) · w(e) /∈
L(A), or vice versa. Since A is deterministic, it must be the case that q1 �= q2,
otherwise, since w(e) has a single run from every state in Q′, both w(s1) · w(e)
and w(s2) · w(e) are accepted by A, or both are rejected by A, a contradiction.

Notice that in every change in T , we either add at least one state to AT ,
or add at least one bound variable to the pattern alphabet. Together with the
lemmas above, we conclude that DVL

∗ always converges to a minimal ordered
DVFA for L.

The size of every table in T is polynomial in n, the number of states of a
minimal ordered DVFA for L, and m, the length of the longest counterexample
provided by the teacher. The number of tables in T is at most k, the minimal
number of bound variables for L. Checking for consistency, closure and refine-
ment are all polynomial in the size of T , and so every iteration of DVL

∗, much
like L

∗, runs in time polynomial in n,m and k. The total number of iterations
is at most k. Therefore, DVL

∗ runs in time polynomial in n,m, and k.

Example Run. Let L be the language of all words over Σ∗ in which the first
and second letters are different, and the second and last letters are equal. L is
deterministic, and an ordered DVFA for L needs two bound variables, to keep
the first and second letters.

We demonstrate the first iterations of a run of DVL
∗ on L. As standard in

these cases, the upper rows of the tables are the words in S, and the lower are
the words in S · Γ .

Initially the pattern alphabet is Γ0 = {y}. Figure 3 describes the stages of
constructing T for Γ0. In stage (1), S0 consists of S = {ε} and S · Γ0 = {y}.
Both are assigned concrete words by w, and the table is filled. T is now is closed,
consistent and refined, and AT is a single rejecting state with a self loop labeled
y. An equivalence query is then submitted to the teacher. The teacher returns a
counterexample abb.

The Γ0-ordering of abb is yyy, and so in stage (2), yyy and all its suffixes
are added to E0. Each suffix is assigned a concrete word by w that is consistent
with abb, and the table is filled.

Since T0 is not closed in stage (2), In stage (3) y is added to S, and conse-
quently yy is added to S ·Γ0, and the missing entries are filled. At this point, due
to the concrete words w has assigned, we have that T0(y, yyy) �= T0(yy, yy), that
is, T is not refined. As we have explained, this means that the pattern alphabet
must contain more variables. The minimal number of bound variables needed to
distinguish between w(y) · w(yyy) = aabb and w(yy) · w(yy) = abbb is one, and
so a new iteration begins with the new alphabet Γ1.

648 S. Sheinvald

Fig. 3. T for Γ0.

Fig. 4. Reconstructing T after adding a variable x1.

Figure 4 describes the second iteration of DVL
∗ on L. In stage (1) of this

iteration, S = {ε, x1}, which are distributed to S0, S1, respectively. S · Γ1 is
calculated and distributed accordingly, in this case, to S1. Concrete words are
then assigned to S,E by w, and the tables entries are filled. Since all entries
are 0, once again AT is empty. This time, since AT is Γ1-ordered, there are two
rejecting states, one that reads x1 and one with a self-loop labeled x1, y. An
equivalence query returns a counterexample bcc.

Since oΓ1(bcc) = x1yy, we construct a matching word v(x1yy) = abb, add
x1yy and all of its prefixes to the appropriate tables: x1yy is added to T0, T1

(recall that we add a word to Em only if its concatenation with Sm is ordered),
and the rest are added to T1. The tables are filled accordingly. Stage (2) of Fig. 4
describes T0 and T1 after filling the entries and closing T by adding x1x1, x1y
and later x1yy to S. At this point, T is closed, consistent and refined, AT is
constructed and a new equivalence query is submitted.

The teacher then returns a counterexample dfe, which is in L(AT) but is not
in L. Since oΓ1(dfe) = x1yy, we construct v(x1yy) = abc, which is consistent
with both the assignments of w and with the structure of dfe. For s = ε, we
have that T0(ε, x1yy) = 1, whereas w(ε) · v(u) /∈ L. Therefore, bound variables
need to be added. The minimal number of bound variables needed to distinguish
between abb and abc is 2, and so a new iteration begins with Γ2. Since Γ2 suffices
to express L, this is the final iteration. From here, the run continues much like
L

∗, with respect to the concrete words assigned by w.

Learning Deterministic Variable Automata over Infinite Alphabets 649

5 Summary and Future Work

We have presented ordered DVFAs, and proved them to be a canonical form for
DVFAs. We have further presented a use for this canonical form in an L

∗-based
learning algorithm for DVFAs.

DVFAs are a special restrictive form of register automata. As future work,
we would like to push the boundaries of this fragment and find richer models for
which a canonical form exists, in which the registers have a more free behavior.
It was shown in [GKS10] that VFAs are in general not determinizable, hence
further fragments would need to be in between DVFA and VFA, or, like session
automata, incomparable to these models.

VFAs and DVFAs are used for modeling both infinite state systems whose
control is finite and whose source of infinite state space is the data, and spec-
ifications for these systems. In the future, in a similar manner to [PGB+08],
we plan to use DVL

∗ as basis for compositional verification procedures for such
infinite state systems.

References

[AD18] Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981,
pp. 427–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3 23

[Ang87] Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75(2), 87–106 (1987)

[BHLM14] Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A robust class of
data languages and an application to learning. Logical Methods Comput.
Sci. 10, 11 (2014)

[BMS+06] Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-
variable logic on words with data. In: LICS, pp. 7–16. IEEE Computer
Society (2006)

[BMSS09] Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data trees and XML reasoning. J. ACM 56(3), 1–48 (2009)

[DD17] Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Mar-
garia, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 10

[FGS18] Frenkel, H., Grumberg, O., Sheinvald, S.: An automata-theoretic approach
to model-checking systems and specifications over infinite data domains.
J. Autom. Reasoning, 1–25 (2018). https://doi.org/10.1007/s10817-018-
9494-0

[GKS10] Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infi-
nite alphabets. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13089-2 47

[KF94] Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput.
Sci. 134(2), 329–363 (1994)

[KZ08] Kaminski, M., Zeitlin, D.: Extending finite-memory automata with non-
deterministic reassignment. In: Csuhaj-Varjú, E., Ézik, Z. (eds.) AFL, pp.
195–207 (2008)

https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/s10817-018-9494-0
https://doi.org/10.1007/s10817-018-9494-0
https://doi.org/10.1007/978-3-642-13089-2_47
https://doi.org/10.1007/978-3-642-13089-2_47

650 S. Sheinvald

[NSV01] Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infi-
nite alphabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001.
LNCS, vol. 2136, pp. 560–572. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44683-4 49

[PGB+08] Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Bar-
ringer, H.: Learning to divide and conquer: applying the L* algorithm to
automate assume-guarantee reasoning. Formal Methods Syst. Des. 32, 175–
205 (2008)

[SF94] Shemesh, Y., Francez, N.: Finite-state unification automata and relational
languages. Inf. Comput. 114, 192–213 (1994)

[Tan09] Tan, T.: Pebble automata for data languages: separation, decidability, and
undecidability. Ph.D. thesis, Technion - Computer Science Department
(2009)

https://doi.org/10.1007/3-540-44683-4_49
https://doi.org/10.1007/3-540-44683-4_49

L∗-Based Learning of Markov Decision
Processes

Martin Tappler1(B), Bernhard K. Aichernig1, Giovanni Bacci3,
Maria Eichlseder2, and Kim G. Larsen3

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{martin.tappler,aichernig}@ist.tugraz.at

2 Institute of Applied Information Processing and Communications, Graz University
of Technology, Graz, Austria

maria.eichlseder@iaik.tugraz.at
3 Department of Computer Science, Aalborg University, Aalborg, Denmark

{giovbacci,kgl}@cs.aau.dk

Abstract. Automata learning techniques automatically generate sys-
tem models from test observations. These techniques usually fall into
two categories: passive and active. Passive learning uses a predetermined
data set, e.g., system logs. In contrast, active learning actively queries
the system under learning, which is considered more efficient.

An influential active learning technique is Angluin’s L∗ algorithm for
regular languages which inspired several generalisations from DFAs to
other automata-based modelling formalisms. In this work, we study L∗-
based learning of deterministic Markov decision processes, first assuming
an ideal setting with perfect information. Then, we relax this assumption
and present a novel learning algorithm that collects information by sam-
pling system traces via testing. Experiments with the implementation of
our sampling-based algorithm suggest that it achieves better accuracy
than state-of-the-art passive learning techniques with the same amount
of test data. Unlike existing learning algorithms with predefined states,
our algorithm learns the complete model structure including the states.

Keywords: Model inference · Active automata learning ·
Markov decision processes

1 Introduction

Automata learning automatically generates models from system observations
such as test logs. Hence, it enables model-based verification for black-box soft-
ware systems [1,22], e.g. via model checking. Automata learning techniques gen-
erally fall into two categories: passive and active learning. Passive algorithms
take a given sample of system traces as input and generate models consistent
with the sample. The quality and comprehensiveness of learned models therefore
largely depend on the given sample. In contrast, active algorithms actively query
the system under learning (SUL) to sample system traces. This enables to steer
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 651–669, 2019.
https://doi.org/10.1007/978-3-030-30942-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_38&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_38

652 M. Tappler et al.

the trace generation towards parts of the SUL’s state space that have not been
thoroughly covered, potentially finding yet unknown aspects of the SUL.

Many active automata learning algorithms are based on Angluin’s L∗ algo-
rithm [4]. It was originally proposed for learning deterministic finite automata
(DFA) accepting regular languages and later applied to learn models of reactive
systems, by considering system traces to form regular languages [23]. L∗ has
been extended to formalisms better suited for modelling reactive systems such as
Mealy machines [30,35] and extended finite state-machines [14]. Most L∗-based
work, however, targets deterministic models, with the exceptions of algorithms
for non-deterministic Mealy machines [25] and non-deterministic input-output
transition systems [43]. Both techniques are based on testing, but abstract away
the observed frequency of events, thus they do not use all available information.

Here, we present an L∗-based approach for learning models of stochastic
systems with transitions that happen with some probability depending on non-
deterministically chosen inputs. More concretely, we learn deterministic Markov
decision processes (MDPs), like IoAlergia [28,29], a state-of-the-art passive
learning algorithm. Such models are commonly used to model randomised dis-
tributed algorithms [8], e.g. in protocol verification [26,32]. We present two
learning algorithms: the first takes an ideal view assuming perfect knowledge
about the exact distribution of system traces. The second algorithm relaxes this
assumption, by sampling system traces to estimate their distribution. We refer to
the former as exact learning algorithm L∗

mdpe and to the latter as sampling-based
learning algorithm L∗

mdp. We implemented L∗
mdp and evaluated it by comparing

it to IoAlergia [28,29]. Experiments showed favourable performance of L∗
mdp,

i.e. it produced more accurate models than IoAlergia given approximately the
same amount of data. Generally, models learned by L∗

mdp converge in the limit
to an MDP observationally equivalent to the SUL. To the best of our knowledge,
L∗
mdp is the first L∗-based learning algorithm for MDPs that can be implemented

via testing. Our contributions span the algorithmic development of learning algo-
rithms, the implementation and the evaluation of learning algorithms. The full
technical report on L∗

mdp [38] additionally includes convergence proofs, further
experiments and implementation details.

The rest of this paper is structured as follows. We introduce notational
conventions, preliminaries on MDPs and active automata learning in Sect. 2.
Section 3 discusses semantics of MDPs and presents the exact learning algo-
rithm L∗

mdpe . Section 4 describes the sampling-based L∗
mdp. Section 5 discusses

the evaluation and in Sect. 6, we discuss related work. We provide a summary
and concluding remarks in Sect. 7.

2 Preliminaries

Notation and Auxiliary Definitions. Let S be a set. We denote the concatenation
of two sequences s and s′ in S∗ by s · s′, the length of a sequence s by |s| and
the empty sequence by ε. We implicitly lift elements in S to sequences of length
one. Sequence s is a prefix of s′ if there exists an s′′ such that s · s′′ = s′,

L∗-Based Learning of Markov Decision Processes 653

denoted by s � s′. The pairwise concatenation of sets of sequences A,B ⊆ S∗ is
A · B = {a · b | a ∈ A, b ∈ B}. A set of sequences A ⊆ S∗ is prefix-closed, iff for
every a ∈ A, A also contains all prefixes of a. Suffixes and suffix-closedness are
defined analogously. For a sequence s in S∗, s[i] is the element at index i, with
indexes starting at 1, s[� i] is the prefix of s with length i and prefixes(s) =
{s′ | s′ ∈ S∗ : s′ � s} is the set of all prefixes of s. Given a multiset S, we
denote the multiplicity of x in S by S(x). Dist(S) denotes the set of probability
distributions over S, i.e. for all μ : S → [0, 1] in Dist(S) we have

∑
s∈S μ(s) = 1.

In the remainder of this paper, distributions μ may be partial functions, in which
case we implicitly set μ(e) = 0 if μ is not defined for e. For A ⊆ S, 1A denotes
the indicator function of A, i.e. 1A(e) = 1 if e ∈ A and 1A(e) = 0 otherwise.

Markov Decision Processes

Definition 1 (Markov decision process (MDP)). A labelled Markov deci-
sion process (MDP) is a tuple M = 〈Q,ΣI, ΣO, q0, δ, L〉 where Q is a finite
non-empty set of states, ΣI and ΣO are finite sets of inputs and outputs, q0 ∈ Q
is the initial state, δ : Q × ΣI → Dist(Q) is the probabilistic transition func-
tion, and L : Q → ΣO is the labelling function. An MDP is deterministic if
∀q ∈ Q,∀i : δ(q, i)(q′) > 0 ∧ δ(q, i)(q′′) > 0 → q′ = q′′ ∨ L(q′) �= L(q′′).

Fig. 1. MDP model of a faulty coffee machine

We learn deterministic labelled
MDPs as learned by passive
learning techniques like IoAler-
gia [29]. Such MDPs define at
most one successor state for each
source state and input-output
pair. In the following, we refer to
these models uniformly as MDPs. We use Δ : Q × ΣI × ΣO → Q ∪ {⊥} to
compute successor states. The function is defined by Δ(q, i, o) = q′ ∈ Q with
L(q′) = o and δ(q, i)(q′) > 0 if there exists such a q′, otherwise Δ returns ⊥.
Figure 1 shows an MDP model of a faulty coffee machine [3]. Outputs in curly
braces label states and inputs with corresponding probabilities label edges. After
providing the inputs coin and but, the coffee machine MDP produces the output
coffee with probability 0.8, but with probability 0.2, it resets itself, producing
the output init.

Execution. A path ρ through an MDP is an alternating sequence of states and
inputs starting in the initial state q0, i.e. ρ = q0 ·i1 ·q1 ·i2 ·q2 · · · in−1 ·qn−1 ·in ·qn.
In each state qk, the next input ik+1 is chosen non-deterministically and based on
that, the next state qk+1 is chosen probabilistically according to δ(qk, ik+1). The
execution of an MDP is controlled by a so-called scheduler, resolving the non-
deterministic choice of inputs by specifying a distribution over the next input
given the current execution path. The composition of an MDP and a scheduler
induces a Markov chain with a corresponding probability measure, see e.g. [19].

Sequences of Observations. During the execution of a finite path ρ, we observe
a trace L(ρ) = t, i.e. an alternating sequence of inputs and outputs starting

654 M. Tappler et al.

with an output, with t = o0i1o1 · · · in−1on−1inon and L(qi) = oi. Since we
consider deterministic MDPs, L is invertible, thus each trace in ΣO×(ΣI×ΣO)∗

corresponds to at most one path. We say that a trace t is observable if there
exists a path ρ with L(ρ) = t. In a deterministic MDP M, each observable trace
t uniquely defines a state of M reached by executing t from the initial state q0.
We compute this state by δ∗(t) = δ∗(q0, t) defined by δ∗(q, L(q)) = q and

δ∗(q, o0i1o1 · · · in−1on−1inon) = Δ(δ∗(q, o0i1o1 · · · in−1on−1), in, on).

If t is not observable, then there is no path ρ with t = L(ρ), denoted by
δ∗(t) = ⊥. We denote the last output on of a trace t = o0 · · · inon, by last(t).

We use three types of observation sequences with short-hand notations:

– Traces: abbreviated by T R = ΣO × (ΣI × ΣO)∗

– Test sequences: abbreviated by T S = (ΣO × ΣI)∗

– Continuation sequences: abbreviated by CS = ΣI × T S

These sequence types alternate between inputs and outputs, thus they are related
among each other. In slight abuse of notation, we use A×B and A·B interchange-
ably for the remainder of this paper. Furthermore, we extend the sequence nota-
tions and the notion of prefixes to ΣO, ΣI, T R, T S and CS, e.g., test sequences
and traces are related by T R = T S · ΣO.

As noted, a trace in T R leads to a unique state of an MDP M. A test
sequence in s ∈ T S of length n consists of a trace in t ∈ T R with n outputs
and an input i ∈ ΣI with s = t · i; thus executing test sequence s = t · i puts M
into the state reached by t and tests M’s reaction to i. Extending the notion of
observability, we say that the test sequence s is observable if t is observable. A
continuation sequence c ∈ CS begins and ends with an input, i.e. concatenating
a trace t ∈ T R and c creates a test sequence t · c in T S. Informally, continuation
sequences test M’s reaction in response to multiple consecutive inputs.

Active Automata Learning. We consider active automata learning in the
minimally adequate teacher (MAT) framework [4], introduced by Angluin for
the L∗ algorithm. It assumes the existence of a MAT, which is able to answer
queries. L∗ learns a DFA representing an unknown regular language L over some
alphabet A and therefore requires two types of queries: membership and equiv-
alence queries. First, L∗ repeatedly selects strings in A∗ and checks if they are
in L via membership queries. Once the algorithm has gained sufficient informa-
tion, it forms a hypothesis DFA consistent with the membership query results.
It then poses an equivalence query checking for equivalence between L and the
language accepted by the hypothesis. The teacher responds either with yes sig-
nalling equivalence; or with a counterexample to equivalence, i.e. a string in the
symmetric difference between L and the language accepted by the hypothesis.
After processing a counterexample, L∗ starts a new round of learning, consisting
of membership queries and a concluding equivalence query. Once an equivalence
query returns yes, learning stops with the final hypothesis as output.

L∗-Based Learning of Markov Decision Processes 655

L∗ has been extended to learn models of reactive systems such as Mealy
machines [35]. In practice, queries for learning models of black-box systems are
usually implemented via testing [2]. Therefore, equivalence queries are generally
only approximated as complete testing for black-box systems is impossible unless
there is an upper bound on the number of system states.

3 Exact Learning of MDPs

This section presents L∗
mdpe , an exact active learning algorithm for MDPs, the

basis for the sampling-based algorithm presented in Sect. 4. In contrast to sam-
pling, L∗

mdpe assumes the existence of a teacher with perfect knowledge about
the SUL that is able to answer two types of queries: output distribution queries
and equivalence queries. The former asks for the exact distribution of outputs
following a test sequence in the SUL. The latter takes a hypothesis MDP as input
and responds either with yes iff the hypothesis is observationally equivalent to
the SUL or with a counterexample to equivalence. A counterexample is a test
sequence leading to different output distributions in hypothesis and SUL. First,
we describe how we capture the semantics of MDPs.

Semantics of MDPs. We can interpret an MDP as a function M : T S →
Dist(ΣO) ∪ {⊥}, mapping test sequences s to output distributions or unde-
fined behaviour for non-observable s. This follows the interpretation of Mealy
machines as functions from input sequences to outputs [36]. Viewing MDPs as
reactive systems, we consider two MDPs to be equivalent, if their semantics are
equal, i.e. we make the same observations on both.

Definition 2 (MDP Semantics). Given an MDP 〈Q,ΣI, ΣO, q0, δ, L〉, its
semantics is a function M , defined for i ∈ ΣI, o ∈ ΣO, t ∈ T R as follows:

M(ε)(L(q0)) = 1
M(t · i) = ⊥ if δ∗(t) = ⊥

M(t · i)(o) = p otherwise if δ(δ∗(t), i)(q) = p > 0 ∧ L(q) = o

MDPs M1 and M2 with semantics M1 and M2 are output-distribution equiv-
alent, denoted M1 ≡od M2, iff M1 = M2.

Definition 3 (M-Equivalence of Traces). Two traces t1, t2 ∈ T R are equiv-
alent with respect to M : T S → Dist(ΣO)∪{⊥}, denoted t1 ≡M t2, iff last(t1) =
last(t2) and for all continuations v ∈ CS it holds that M(t1 · v) = M(t2 · v).

A function M defines an equivalence relation on traces, like the Myhill-Nerode
equivalence for formal languages [31] (see also [38]). Two traces are M -equivalent
if they end in the same output and if their behaviour in response to future
inputs is the same. Two traces leading to the same MDP state are in the same
equivalence class of ≡M , as in Mealy machines [36].

656 M. Tappler et al.

Queries. We are now able to define queries focusing on the observable behaviour
of MDPs. Assume that we want to learn a model of a black-box deterministic
MDP M, with semantics M . Output distribution queries (odq) and equivalence
queries (eq) are then defined as follows:

– output distribution (odq): an odq(s) returns M(s) for input s ∈ T S.
– equivalence (eq): an eq query takes a hypothesis MDP H with semantics H

as input and returns yes if H ≡od M; otherwise it returns an s ∈ T S such
that H(s) �= M(s) and M(s) �= ⊥.

Observation Tables. Like L∗, we store information in observation table triples
〈S,E, T 〉, where:

– S ⊂ T R is a prefix-closed set of traces, initialised to {o0}, with o0 being the
initial SUL output,

– E ⊂ CS is a suffix-closed set of continuation sequences, initialised to ΣI,
– T : (S ∪ Lt(S)) · E → Dist(ΣO) ∪ {⊥} is a mapping from test sequences

to output distributions or ⊥ denoting undefined behaviour. This mapping
basically stores a finite subset of M . The set Lt(S) ⊆ S · ΣI · ΣO is given by
Lt(S) = {s · i · o|s ∈ S, i ∈ ΣI, o ∈ ΣO,odq(s · i)(o) > 0}.

We can view an observation table as a two-dimensional array with rows labelled
by traces in S∪Lt(S) and columns labelled by E. We refer to traces in S as short
traces and to their extensions in Lt(S) as long traces. An extension s·i·o of a short
trace s is in Lt(S) if s · i · o is observable. Analogously to traces, we refer to rows
labelled by S as short rows. The table cells store the mapping defined by T . To
represent rows labelled by traces s we use functions row(s) : E → Dist(ΣO)∪{⊥}
for s ∈ S∪Lt(S) with row(s)(e) = T (s·e). Equivalence of rows labelled by traces
s1, s2, denoted eqRowE(s1, s2), holds iff row(s1) = row(s2)∧ last(s1) = last(s2)
and approximates M -equivalence s1 ≡M s2, by considering only continuations in
E, i.e. s1 ≡M s2 implies eqRowE(s1, s2). The observation table content defines
the structure of hypothesis MDPs based on the following principle: we create one
state per equivalence class of S/eqRowE , thus we identify states with traces in
S reaching them and we distinguish states by their future behaviour in response
to sequences in E (as is common in active automata learning [36]). The long
traces Lt(S) serve to define transitions. Transition probabilities are given by the
distributions in the mapping T .

Table 1 shows a part of the observation table created during learning of the
coffee machine shown in Fig. 1. The set S has a trace for each state of the MDP.
Note that these traces are pairwise inequivalent with respect to eqRowE , where
E = ΣI = {but, coin}. We only show one element of Lt(S), which gives rise to
the self-loop in the initial state with the input but and probability 1.

Definition 4 (Closedness). An observation table 〈S,E, T 〉 is closed if for all
l ∈ Lt(S) there is an s ∈ S such that eqRowE(l, s).

L∗-Based Learning of Markov Decision Processes 657

Table 1. Parts of observation table for learning the faulty coffee machine (Fig. 1).

but coin

S init {init �→ 1} {beep �→ 1}
init · coin · beep {coffee �→ 0.8, init �→ 0.2} {beep �→ 1}
init · coin · beep · but · coffee {init �→ 1} {beep �→ 1}

Lt(S) init · but · init {init �→ 1} {beep �→ 1}
.

Algorithm 1. Making an observation table closed and consistent
1: function MakeClosedAndConsistent(〈S, E, T 〉)
2: if 〈S, E, T 〉 is not closed then
3: l ← l′ ∈ Lt(S) such that ∀s ∈ S : row(s)
= row(l′) ∨ last(s)
= last(l′)
4: S ← S ∪ {l}
5: else if 〈S, E, T 〉 is not consistent then
6: for all s1, s2 ∈ S such that eqRowE(s1, s2) do

7: for all i ∈ ΣI, o ∈ ΣO do
8: if T (s1 · i)(o) > 0 and ¬eqRowE(s1 · i · o, s2 · i · o) then
9: e ← e′ ∈ E such that T (s1 · i · o · e′)
= T (s2 · i · o · e′)

10: E ← E ∪ {i · o · e}
11: return 〈S, E, T 〉

Definition 5 (Consistency). An observation table 〈S,E, T 〉 is consistent if
for all s1, s2 ∈ S, i ∈ ΣI, o ∈ ΣO such that eqRowE(s1, s2) it holds either that
(1) T (s1 · i)(o) = 0 ∧ T (s2 · i)(o) = 0 or (2) eqRowE(s1 · i · o, s2 · i · o).

Closedness and consistency are required to derive well-formed hypotheses, anal-
ogously to L∗ [4]. We require closedness to create transitions for all inputs in all
states and we require consistency to be able to derive deterministic hypotheses.
During learning, we apply Algorithm1 repeatedly to establish closedness and
consistency of observation tables. The algorithm adds a new short trace if the
table is not closed and adds a new column if the table is not consistent.

We derive a hypothesis H = 〈Qh, Σ
I, ΣO, q0h, δh, Lh〉 from a closed and con-

sistent observation table 〈S,E, T 〉, denoted H = hyp(S,E, T), as follows:

– Qh = {〈last(s), row(s)〉|s ∈ S}
– q0h = 〈o0, row(o0)〉, o0 ∈ S is the trace consisting of the initial SUL output
– for s ∈ S, i ∈ ΣI and o ∈ ΣO :

δh(〈last(s), row(s)〉, i)(〈o, row(s · i · o)〉) = p if T (s · i)(o) = p > 0
– for s ∈ S: Lh(〈last(s), row(s)〉) = last(s)

Learning Algorithm. Algorithm 2 implements L∗
mdpe using queries odq and

eq. First, the algorithm initialises the observation tables and fills the table cells
with output distribution queries (Lines 1 to 3). The main loop in Lines 4 to 15
makes the observation table closed and consistent, derives a hypothesis H and
performs an equivalence query eq(H). If a counterexample cex is found, all its
prefix traces are added as short traces to S, otherwise the final hypothesis is

658 M. Tappler et al.

Algorithm 2. The main algorithm implementing L∗
mdpe

Input: ΣI, exact teacher capable of answering odq and eq
Output: learned model H (final hypothesis)
1: o0 ← o such that odq(ε)(o) = 1

2: S ← {o0}, E ← ΣI

3: fill(S, E, T)
4: repeat
5: while 〈S, E, T 〉 not closed or not consistent do
6: 〈S, E, T 〉 ← MakeClosedAndConsistent(〈S, E, T 〉)
7: fill(S, E, T)

8: H ← hyp(S, E, T)
9: eqResult ← eq(H)

10: if eqResult
= yes then
11: cex ← eqResult
12: for all (t · i) ∈ prefixes(cex) with i ∈ ΣI do
13: S ← S ∪ {t}
14: fill(S, E, T)

15: until eqResult = yes
16: return hyp(S, E, T)
17: procedure fill(S, E, T)
18: for all s ∈ S ∪ Lt(S), e ∈ E do
19: if T (s · e) undefined then � we have no information about T (s · e) yet
20: T (s · e) ← odq(s · e)

returned, as it is output-distribution equivalent to the SUL. Whenever the table
contains empty cells, the Fill procedure assigns values to these cells via odq.

Theorem 1. L∗
mdpe terminates and learns an MDP H that is output-distribution

equivalent to the SUL and minimal in the number of states [38, Theorem 3].

4 Learning MDPs by Sampling

The sampling-based L∗
mdp is based on L∗

mdpe , but samples SUL traces instead of
posing exact queries. Distribution comparisons are consequently approximated
through statistical tests. While using similar data structures, L∗

mdp has a slightly
different algorithm structure allowing to stop before reaching exact equivalence.

Queries. The sampling-based teacher maintains a multiset of traces S for the
estimation of output distributions that grows during learning. It offers an equiv-
alence query and three queries relating to output distributions and samples S.

– frequency (fq): given a test sequence s ∈ T S, fq(s) : ΣO → N0 are output
frequencies observed after s, where fq(s)(o) = S(s · o) for o ∈ ΣO.

– complete (cq): given a test sequence s ∈ T S, cq(s) returns true if sufficient
information is available to estimate an output distribution from fq(s); returns
false otherwise.

– refine (rfq): instructs the teacher to refine its knowledge of the SUL by testing
it directed towards rarely observed samples. Traces sampled by rfq are added
to S, increasing the accuracy of subsequent probability estimations.

L∗-Based Learning of Markov Decision Processes 659

– equivalence (eq): given a hypothesis H, eq tests for output-distribution
equivalence between the SUL and H; returns a counterexample from T S
showing non-equivalence, or returns none if no counterexample was found.

To implement these queries, we require the ability to reset the SUL, to perform
a single input on the SUL and to observe the SUL output.

4.1 Learner Implementation

Observation Table. L∗
mdp also uses observation tables. They carry similar

information as in Sect. 3, but instead of output distributions in Dist(ΣO), we
store integral output frequencies (ΣO → N0), from which we estimate distribu-
tions.

Definition 6. (Sampling-based Observation Table). An observation table
is a tuple 〈S,E, T̂ 〉, consisting of a prefix-closed set of traces S ⊂ T R, a suffix-
closed set of continuation sequences E ⊂ CS, and a mapping T̂ : (S∪Lt(S))·E →
(ΣO → N0), where Lt(S) = {s · i · o | s ∈ S, i ∈ ΣI, o ∈ ΣO : fq(s · i)(o) > 0}.

Hypothesis Construction. As in Sect. 3, observation tables need to be closed
and consistent for a hypothesis to be constructed. Here, we test statistically if
cells and rows are approximately equal, referred to as compatible. The statistical
tests applied in Definition 7 are based on Hoeffding bounds, as in [13]. Definition 8
serves as basis for adapted notions of closedness and consistency.

Definition 7. (Different). Two sequences s and s′ in T S produce statistically
different output distributions with respect to f : T S → (ΣO → N0), denoted
diff f(s, s′), iff (1) cq(s) ∧ cq(s′) ∧ n1 > 0 ∧ n2 > 0 where n1 =

∑
o∈ΣO f(s)(o),

n2 =
∑

o∈ΣO f(s′)(o), and (2) one of the following conditions holds:

2a. ∃o ∈ ΣO : ¬(f(s)(o) > 0 ⇔ f(s′)(o) > 0), or

2b. ∃o ∈ ΣO :
∣
∣
∣
f(s)(o)

n1
− f(s′)(o)

n2

∣
∣
∣ >

(√
1

n1
+

√
1

n2

)
·
√

1
2 ln 2

α , where α specifies

the confidence level (1−α)2 for testing each o separately based on a Hoeffding
bound [13,21].

Definition 8. (Compatible). Two cells labelled by c = s ·e and c′ = s′ ·e′ are
compatible, denoted compatible(c, c′), iff ¬diff

̂T (c, c′). Two rows labelled by s
and s′ are compatible, denoted compatibleE(s, s′) iff last(s) = last(s′) and the
cells corresponding to all e ∈ E are compatible, i.e. compatible(s · e, s′ · e).

Compatibility Classes. In Sect. 3, we formed equivalence classes of traces with
respect to eqRowE creating one hypothesis state per equivalence class. Now we
partition rows labelled by S based on compatibility. Compatibility given by
Definition 8, however, is not an equivalence relation, as it is not transitive in
general. As a result, we cannot simply create equivalence classes. We apply the
heuristic implemented by Algorithm 3 to partition S.

660 M. Tappler et al.

Algorithm 3. Creating compatibility classes
1: for all s ∈ S do
2: rank(s) ← ∑

i∈ΣI
∑

o∈ΣO ̂T (s · i)(o)

3: unpartitioned ← S, R ← ∅
4: while unpartitioned
= ∅ do
5: r ← m where m ∈ unpartitioned with largest rank(m)
6: R ← R ∪ {r}
7: cg(r) ← {s ∈ unpartitioned | compatibleE(s, r)}
8: for all s ∈ cg(r) do
9: rep(s) ← r

10: unpartitioned ← unpartitioned \ cg(r)

First, we assign a rank to each trace in S. Then, we partition S by iteratively
selecting the trace r with the largest rank and computing a compatibility class
cg(r) for r. The trace r is the (canonical) representative for s in cg(r), which
we denote by rep(s) (Line 9). Each r is stored in the set of representative traces
R. In contrast to equivalence classes, elements in a compatibility class need not
be pairwise compatible and an s may be compatible to multiple representatives,
where the unique representative rep(s) of s has the largest rank.

Definition 9. (Sampling Closedness). An observation table 〈S,E, T̂ 〉 is
closed if for all l ∈ Lt(S) there is a representative s ∈ R with compatibleE(l, s).

Definition 10. (Sampling Consistency). An observation table 〈S,E, T̂ 〉 is
consistent if for all compatible pairs of short traces s, s′ in S and all input-
output pairs i · o ∈ ΣI · ΣO, we have that (1) at least one of their extensions
has not been observed yet, i.e. T̂ (s · i)(o) = 0 or T̂ (s′ · i)(o) = 0, or (2) both
extensions are compatible, i.e. compatibleE(s · i · o, s′ · i · o).

Given a closed and consistent observation table 〈S,E, T̂ 〉, we derive hypothesis
MDP H = hyp(S,E, T̂) through the steps below. Note that extensions s · i · o of
s in S define transitions. Some extensions may have few observations, i.e. T̂ (s · i)
is low and cq(s · i) = false. In case of such uncertainties, we add transitions to
a special sink state labelled by “chaos”, an output not in the original alphabet1.
A hypothesis is a tuple H = 〈Qh, ΣI, ΣO ∪ {chaos}, q0h, δh, Lh〉 where:

– representatives for long traces l ∈ Lt(S) are given by (see Algorithm 3):
rep(l) = r where r ∈ {r′ ∈ R | compatibleE(l, r′)} with largest rank(r)

– Qh = {〈last(s), row(s)〉 | s ∈ R} ∪ {qchaos},
• for q = 〈o, row(s)〉 ∈ Qh \ {qchaos}: Lh(q) = o
• for qchaos: Lh(qchaos) = chaos and for all i ∈ ΣI: δh(qchaos, i)(qchaos) = 1

– q0h = 〈L(q0), row(L(q0))〉
– for q = 〈last(s), row(s)〉 ∈ Qh \ {qchaos} and i ∈ ΣI (note that ΣI ⊆ E):

– If ¬cq(s · i):
δ(q, i)(qchaos) = 1, i.e. move to chaos

– Otherwise estimate a distribution μ = δh(q, i) over the successor states:
for o ∈ ΣO with T̂ (s ·i)(o) > 0: μ(〈o, row(rep(s ·i ·o))〉) =

̂T (s·i)(o)
∑

o′∈ΣO ̂T (s·i)(o′)

1 This is inspired by the introduction of chaos states in ioco-based learning [43].

L∗-Based Learning of Markov Decision Processes 661

Algorithm 4. The main algorithm implementing L∗
mdp

Input: sampling-based teacher capable of answering fq, rfq, eq and cq

1: S ← {L(q0)}, E ← ΣI, ̂T ← {} � initialise observation table

2: perform rfq(〈S, E, ̂T 〉) � sample traces for initial observation table
3: for all s ∈ S ∪ Lt(S), e ∈ E do

4: ̂T (s · e) ← fq(s · e) � update observation table with frequency information

5: round ← 0
6: repeat
7: round ← round + 1
8: while 〈S, E, ̂T 〉 not closed or not consistent do

9: 〈S, E, ̂T 〉 ← MakeClosedAndConsistent(〈S, E, ̂T 〉)
10: H ← hyp(S, E, ̂T) � create hypothesis

11: 〈S, E, ̂T 〉 ← trim(〈S, E, ̂T 〉, H) � remove rows that are not needed
12: cex ← eq(H)
13: if cex
= none then � we found a counterexample
14: for all (t · i) ∈ prefixes(cex) with i ∈ ΣI do
15: S ← S ∪ {t} � add all prefixes of the counterexample

16: perform rfq(〈S, E, ̂T 〉) � sample traces to refine knowledge about SUL
17: for all s ∈ S ∪ Lt(S), e ∈ E do

18: ̂T (s · e) ← fq(s · e) � update observation table with frequency information

19: until stop(〈S, E, ̂T 〉, H, round)
20: return hyp(S, E, ̂T) � output final hypothesis

Updating the Observation Table. Analogously to Sect. 3, we make obser-
vation tables closed by adding new short rows and we establish consistency by
adding new columns. While Algorithm2 needs to fill the observation table after
executing MakeClosedAndConsistent, this is not required in the sampling-
based setting due to the adapted notions of closedness and consistency.

Trimming the Observation Table. Observation table size greatly affects learning
performance, therefore it is common to avoid adding redundant information [24,
33]. Due to inexact information, this is hard to apply in a stochastic setting.
We instead remove rows via a function Trim, once we are certain that this
does not change the hypothesis. We remove rows that are (1) not prefixes of
representatives r ∈ R, (2) that are compatible to exactly one r ∈ R, and (3) that
are not prefixes of counterexamples to equivalence between SUL and hypothesis.

Learning Algorithm. Algorithm 4 implements L∗
mdp. It first initialises an

observation table 〈S,E, T̂ 〉 with the initial SUL output as first row and with
the inputs ΣI as columns (Line 1). Lines 2 to 4 perform a refine query and then
update 〈S,E, T̂ 〉, which corresponds to output distribution queries in L∗

mdpe .
Here, the teacher resamples the only known trace L(q0).

After that, we perform Lines 6 to 19 until a stopping criterion is reached. We
establish closedness and consistency of 〈S,E, T̂ 〉 in Line 9 to build a hypothesis
H in Line 10. After that, we remove redundant rows of the observation table via
Trim in Line 11. Then, we perform an equivalence query, testing for equivalence
between SUL and H. If we find a counterexample, we add all its prefix traces
as rows to the observation table like in L∗

mdpe . Finally, we sample new system
traces via rfq to gain more accurate information about the SUL (Lines 16 to
18). Once we stop, we output the final hypothesis.

662 M. Tappler et al.

Stopping. The exact learner L∗
mdpe stops upon reaching equivalence to the SUL,

i.e. once there is no counterexample. In the sampling-based setting, we may
not find a counterexample due to inaccurate hypotheses. Our stopping criterion
therefore takes uncertainty into account, which we quantify with runamb, the
relative number of (unambiguous) traces in S ∪Lt(S) compatible to exactly one
representative in R. Additionally, we check if the chaos state is reachable.

Consequently, we stop when (1) runamb ≥ tunamb where tunamb is a user-
defined threshold, (2) the chaos state is unreachable, and (3) at least rmin rounds
have been executed. We also stop after a maximum of rmax rounds.

4.2 Teacher Implementation

Due to space constraints, we discuss each query only briefly. An accurate descrip-
tion can be found in the full technical report [38].

– frequency (fq): returns output frequencies observed in the sampled traces S.
– complete (cq): complete queries are based on threshold nc. We consider test

sequences complete that have been sampled at least nc times.
– refine(rfq): refine queries take an observation table 〈S,E, T̂ 〉 and resample

incomplete sequences in (S ∪Lt(S)) ·E. The parameter nresample defines how
often we resample.

– equivalence (eq): we apply two strategies for equivalence queries. First, we
test for structural equivalence between hypothesis H and SUL. The testing
strategy inspired by [2] performs random walks on H and has three param-
eters: ntest, the maximum number of tests, pstop, the stop probability, and
prand, the probability of choosing inputs uniformly at random. Second, we
check for conformance between the collected samples S and H via diff fq.

Note that we return no counterexample if trivial counterexamples containing
chaos are observable in the hypothesis. This prompts L∗

mdp to issue further refine
queries, causing the chaos state to be unreachable eventually. Otherwise, the
observation table might grow unnecessarily which is detrimental to performance.

Convergence. We have examined convergence of the sampling-based L∗
mdp in

the limit with respect to the following setup. We configure equivalence testing
such that each input is chosen uniformly at random and the length of each test is
geometrically distributed. This resembles the sampling regime assumed for IoA-
lergia [29]. Likewise, we consider a data-dependent αn = 1

nr with r > 2, where
n is the number of samples collected so far. Finally, we consider L∗

mdp without
trimming of observation tables. Informally, letting the number of rounds and
thus the sample size n approach infinity, we eventually learn the correct MDP.

Theorem 2. L∗
mdp as configured above creates hypotheses Hn that are minimal

in the number of states and output-distribution equivalent to the SUL in the limit
(see Theorem 4 and its proof in [38]).

L∗-Based Learning of Markov Decision Processes 663

5 Experiments

We evaluate the sampling-based L∗
mdp and compare it to the passive IoAler-

gia [29] by learning a gridworld model with both techniques. Experimental
results and the implementation can be found in the evaluation material [37].
We treat the known true MDP model M as a black box for learning and mea-
sure similarity to this model using two criteria: (1) the discounted bisimilarity
distance [6,7] between M and the learned MDPs and (2) the difference between
probabilistic model-checking results for M and learned MDPs. We compute
maximal probabilities of manually defined temporal properties with all models
using Prism 4.4 [27].

Measurement Setup. As in [29], we use a data-dependent εN = 10000
N for IoA-

lergia, where N is the combined length of all learning traces. This parameter
serves a role analogous to the α parameter of L∗

mdp. In contrast, we observed that
L∗
mdp performs better with a fixed α = 0.05. We sample traces for IoAlergia

with a length geometrically distributed with parameter pl and inputs chosen
uniformly at random, also as in [29]. The number of traces is chosen such that
IoAlergia and L∗

mdp learn from approximately the same amount of data.
We implemented L∗

mdp and IoAlergia in Java. Additionally, we use the
MDPDist library [5] for bisimilarity distances, adapted to labelled MDPs. We
performed the experiments with a Lenovo Thinkpad T450 with 16 GB RAM, an
Intel Core i7-5600U CPU with 2.6 GHz and running Xubuntu Linux 18.04.

C C C M

C M

S M G C G

M G C M

G S M G

Fig. 2. The evalua-
tion gridworld

Gridworld. Models similar to our gridworld have, e.g.,
been considered in the context of learning control strate-
gies [20]. Basically, a robot moves around in a world of
tiles of different terrains. It may make errors in move-
ment, e.g. move south west instead of south with an error
probability depending on the target terrain. Our aim is
to learn an environment model, i.e. a map. Figure 2 shows
our gridworld. Black tiles are walls and other terrains are
represented by different shades of grey and letters (Sand,
Mud, Grass & Concrete). A circle marks the initial loca-
tion and a double circle marks a goal location. Four inputs
enable movement in four directions. Observable outputs include the different ter-
rains, walls, and a label indicating the goal. The true model of this gridworld
has 35 different states. All terrains except Concrete have a distinct positive error
probability.

We configured sampling by nresample = 300, ntest = 50, pstop = 0.25 and
prand = 0.25, and stopping by tunamb = 0.99, rmin = 500 and rmax = 4000.
Finally, we set pl = 0.25 for IoAlergia.

Results. Table 2 shows the measurement results for learning the gridworld. Our
active learning stopped after 1147 rounds, sampling 391530 traces (Row 2) with
a combined number of outputs of 3101959 (Row 1). The bisimilarity distance

664 M. Tappler et al.

Table 2. Results for learning the gridworld example.

True model L∗
mdp IoAlergia

outputs - 3 101 959 3 103 607

traces - 391 530 387 746

time [s] - 118.3770 21.4420

states 35 35 21

δ0.9 - 0.1442 0.5241

Pmax(F
≤11(goal)) 0.9622 0.9651 0.2306

Pmax(¬G U≤14(goal)) 0.6499 0.6461 0.1577

Pmax(¬S U≤16(goal)) 0.6912 0.6768 0.1800

discounted with λ = 0.9 to the true model is 0.144 for L∗
mdp and 0.524 for IoA-

lergia (Row 5); thus it can be assumed that model checking the L∗
mdp model

produces more accurate results. This is indeed true for our three evaluation
queries in the last three rows. These model-checking queries ask for the maxi-
mum probability (quantified over all schedulers) of reaching the goal within a
varying number of steps. The first query does not restrict the terrain visited
before the goal, but the second and third require to avoid G and S, respectively.
The absolute difference to the true values is at most 0.015 for L∗

mdp, but the
results for IoAlergia differ greatly from the true values. One reason is that the
IoAlergia model with 21 states is significantly smaller than the minimal true
model, while the L∗

mdp model has as many states as the true model. IoAlergia
is faster than L∗

mdp, which applies time-consuming computations during equiv-
alence queries. However, the runtime of learning-specific computations is often
negligible in practical applications, such as learning of protocol models [34,39], as
the communication with the SUL usually dominates the overall runtime. Given
the smaller bisimilarity distance and the lower difference to the true probabilities
computed with Prism, we conclude that the L∗

mdp model is more accurate.
Due to space constraints, we only present the intuitive gridworld experiment.

The full technical report includes further experiments with a larger gridworld
(72 states), a consensus protocol (272 states) and a slot machine model (109
states) [38]. They also confirm the favourable accuracy of L∗

mdp.

6 Related Work

In the following, we discuss techniques for learning both model structure and
transition probabilities in case of probabilistic systems. There are many learning
approaches for models with a given structure, e.g., for learning control strate-
gies [20]. Covering these approaches is beyond the scope of this paper.

We build upon Angluin’s L∗ [4], thus our work shares similarities with other
L∗-based work like active learning of Mealy machines [30,35]. Interpreting MDPs

L∗-Based Learning of Markov Decision Processes 665

as functions from test sequences to output distributions is similar to the inter-
pretation of Mealy machines as functions from input sequences to outputs [36].

Volpato and Tretmans presented an L∗-based technique for non-deterministic
input-output transition systems [43]. They simultaneously learn an over- and an
under-approximation of the SUL with respect to the input output conformance
(ioco) relation [40]. Inspired by that, we apply completeness queries and we
add transitions to a chaos state in case of incomplete information. Beyond that,
we consider systems to behave stochastically rather than non-deterministically.
Early work on ioco-based learning for non-deterministic systems has been pre-
sented by Willemse [44]. Khalili and Tacchella [25] addressed non-determinism
by presenting an L∗-based algorithm for non-deterministic Mealy machines.

Most sampling-based learning algorithms for stochastic systems are passive.
Notable early works are Alergia [12] and rlips [13], which identify stochastic
regular languages. Both also apply Hoeffing bounds [21] for testing for differ-
ence between probability distributions. We compare L∗

mdp to IoAlergia, an
extension of Alergia by Mao et al. [28,29]. It basically creates a tree-shaped
representation of given system traces and repeatedly merges compatible nodes,
creating an automaton. Normalised observed output frequencies estimate tran-
sition probabilities. IoAlergia also converges in the limit. Chen and Nielsen
applied it in an active setting [16], by sampling new traces to reduce uncertainty
in the data. In contrast to this, we base our sampling not only on data collected
so far (refine queries), but also on observation tables and derived hypothesis
MDPs (refine & equivalence queries), taking information about the SUL’s struc-
ture into account. In previous work, we presented a different approach to active
learning via IoAlergia which takes reachability objectives into account with
the aim at maximising the probability of reaching desired events [3].

Feng et al. [17] learn assumptions for compositional verification in the form
of probabilistic finite automata with an L∗-style method. Their method requires
queries returning exact probabilities, hence it is not applicable in a sampling-
based setting. It shares similarities with an L∗-based algorithm for learning
multiplicity automata [10], a generalisation of deterministic automata. Further
query-based learning in a probabilistic setting has been described by Tzeng [41].
He presented a query-based algorithm for learning probabilistic automata and
an adaptation of Angluin’s L∗ for learning Markov chains. Castro and Gavaldà
review passive learning techniques for probabilistic automata with a focus on
convergence guarantees and present them in a query framework [15]. Unlike
MDPs, the learned automata cannot be controlled by inputs.

7 Conclusion

We presented L∗-based learning of MDPs. For our exact learning algorithm
L∗
mdpe , we assumed an ideal setting that allows to query information about the

SUL with exact precision. Subsequently, we relaxed our assumptions, by approx-
imating exact queries through sampling SUL traces via directed testing. These
traces serve to infer the structure of hypothesis MDPs, to estimate transition

666 M. Tappler et al.

probabilities and to check for equivalence between SUL and learned hypotheses.
The resulting sampling-based L∗

mdp iteratively learns approximate MDPs which
converge to the correct MDP in the large sample limit. We implemented L∗

mdp

and compared it to IoAlergia [29], a state-of-the-art passive learning algorithm
for MDPs. The evaluation showed that L∗

mdp is able to produce more accurate
models. To the best of our knowledge, L∗

mdp is the first L∗-based algorithm for
MDPs that can be implemented via testing. Further details regarding the imple-
mentation, convergence proofs and extended experiments can be found in the
technical report [38] and the evaluation material [37].

The evaluation showed promising results, therefore we believe that our tech-
nique can greatly aid the black-box analysis of reactive systems such as commu-
nication protocols. While deterministic active automata learning has successfully
been applied in this area [18,39], networked environments are prone to be affected
by uncertain behaviour that can be captured by MDPs. A potential direction
for future work is an analysis of L∗

mdp with respect to probably approximately
correct (PAC) learnability [15,42] to provide stronger convergence guarantees. A
challenge towards this goal will be the identification of a distance measure suited
to verification [29]. Furthermore, L∗

mdp provides room for experimentation, e.g.
different testing techniques could be applied in equivalence queries.

Acknowledgment. The work of B. Aichernig, M. Eichlseder and M. Tappler has been
carried out as part of the TU Graz LEAD project “Dependable Internet of Things in
Adverse Environments”. The work of K. Larsen and G. Bacci has been supported by
the Advanced ERC Grant nr. 867096 (LASSO).

References

1. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur et al. [9], pp. 74–100.
https://doi.org/10.1007/978-3-319-96562-8 3

2. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation test-
ing. J. Autom. Reasoning (2018). https://doi.org/10.1007/s10817-018-9486-0

3. Aichernig, B.K., Tappler, M.: Probabilistic black-box reachability checking
(extended version). Formal Methods Syst. Des. (2019). https://doi.org/10.1007/
s10703-019-00333-0

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

5. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: MDPDist library. http://people.
cs.aau.dk/∼giovbacci/tools/bisimdist.zip. Accessed 28 June 2019

6. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing behavioral distances,
compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087,
pp. 74–85. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-
2 9

7. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: The BisimDist library: efficient
computation of bisimilarity distances for Markovian models. In: Joshi, K., Siegle,
M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 278–
281. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1 23

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/s10703-019-00333-0
https://doi.org/10.1007/s10703-019-00333-0
https://doi.org/10.1016/0890-5401(87)90052-6
http://people.cs.aau.dk/~giovbacci/tools/bisimdist.zip
http://people.cs.aau.dk/~giovbacci/tools/bisimdist.zip
https://doi.org/10.1007/978-3-642-40313-2_9
https://doi.org/10.1007/978-3-642-40313-2_9
https://doi.org/10.1007/978-3-642-40196-1_23

L∗-Based Learning of Markov Decision Processes 667

8. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
9. Bennaceur, A., Hähnle, R., Meinke, K. (eds.): Machine Learning for Dynamic Soft-

ware Analysis: Potentials and Limits. LNCS, vol. 11026. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8

10. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity
and equivalence queries. SIAM J. Comput. 25(6), 1268–1280 (1996). https://doi.
org/10.1137/S009753979326091X

11. Bernardo, M., Issarny, V. (eds.): Formal Methods for Eternal Networked Software
Systems - 11th International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems, SFM 2011, Bertinoro, Italy, 13–
18 June 2011, Advanced Lectures. LNCS, vol. 6659. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21455-4

12. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

13. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochas-
tic samples in polynomial time. ITA 33(1), 1–20 (1999). https://doi.org/10.1051/
ita:1999102

14. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Aspects Comput. 28(2), 233–263 (2016). https://doi.org/
10.1007/s00165-016-0355-5

15. Castro, J., Gavaldà, R.: Learning probability distributions generated by finite-state
machines. In: Heinz, J., Sempere, J.M. (eds.) Topics in Grammatical Inference, pp.
113–142. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48395-
4 5

16. Chen, Y., Nielsen, T.D.: Active learning of Markov decision processes for system
verification. In: 11th International Conference on Machine Learning and Applica-
tions, ICMLA, Boca Raton, FL, USA, 12–15 December 2012, vol. 2, pp. 289–294.
IEEE (2012). https://doi.org/10.1109/ICMLA.2012.158

17. Feng, L., Han, T., Kwiatkowska, M.Z., Parker, D.: Learning-based compositional
verification for synchronous probabilistic systems. In: Bultan, T., Hsiung, P.-A.
(eds.) ATVA 2011. LNCS, vol. 6996, pp. 511–521. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24372-1 40

18. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

19. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo and Issarny [11], pp. 53–113.
https://doi.org/10.1007/978-3-642-21455-4 3

20. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control
with temporal logic constraints. In: Fox, D., Kavraki, L.E., Kurniawati, H. (eds.)
Robotics: Science and Systems X, University of California, Berkeley, USA, 12–16
July 2014 (2014). http://www.roboticsproceedings.org/rss10/p39.html

21. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963). http://www.jstor.org/stable/2282952

22. Howar, F., Steffen, B.: Active automata learning in practice - an annotated bibli-
ography of the years 2011 to 2016. In: Bennaceur et al. [9], pp. 123–148. https://
doi.org/10.1007/978-3-319-96562-8 5

https://doi.org/10.1007/978-3-319-96562-8
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1007/978-3-642-21455-4
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1051/ita:1999102
https://doi.org/10.1051/ita:1999102
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/978-3-662-48395-4_5
https://doi.org/10.1007/978-3-662-48395-4_5
https://doi.org/10.1109/ICMLA.2012.158
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-642-21455-4_3
http://www.roboticsproceedings.org/rss10/p39.html
http://www.jstor.org/stable/2282952
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5

668 M. Tappler et al.

23. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–
327. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 31

24. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

25. Khalili, A., Tacchella, A.: Learning nondeterministic Mealy machines. In: Clark, A.,
Kanazawa, M., Yoshinaka, R. (eds.) Proceedings of the 12th International Confer-
ence on Grammatical Inference, ICGI 2014, Kyoto, Japan, 17–19 September 2014.
JMLR Workshop and Conference Proceedings, vol. 34, pp. 109–123. JMLR.org
(2014). http://jmlr.org/proceedings/papers/v34/khalili14a.html

26. Kwiatkowska, M.Z., Norman, G., Parker, D.: Analysis of a gossip protocol in
PRISM. SIGMETRICS Perform. Eval. Rev. 36(3), 17–22 (2008). https://doi.org/
10.1145/1481506.1481511

27. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

28. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learn-
ing Markov decision processes for model checking. In: Fahrenberg, U., Legay, A.,
Thrane, C.R. (eds.) Proceedings Quantities in Formal Methods, QFM 2012, Paris,
France, 28 August 2012. EPTCS, vol. 103, pp. 49–63 (2012). https://doi.org/10.
4204/EPTCS.103.6

29. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016). https://doi.org/10.1007/s10994-016-5565-9

30. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: Ninth IEEE International High-Level Design
Validation and Test Workshop 2004, pp. 95–100. IEEE Computer Society (2004).
https://doi.org/10.1109/HLDVT.2004.1431246

31. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9, 541–544
(1958)

32. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. J. Com-
put. Secur. 14(6), 561–589 (2006). http://content.iospress.com/articles/journal-of-
computer-security/jcs268

33. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

34. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security
15, Washington, D.C., USA, 12–14 August 2015, pp. 193–206. USENIX Asso-
ciation (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/de-ruiter

35. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams,
D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3 14

36. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo and Issarny [11], pp. 256–296. https://doi.
org/10.1007/978-3-642-21455-4 8

37. Tappler, M.: Evaluation material for L∗-based learning of Markov decision pro-
cesses. https://doi.org/10.6084/m9.figshare.7960928.v1

https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
http://jmlr.org/proceedings/papers/v34/khalili14a.html
https://doi.org/10.1145/1481506.1481511
https://doi.org/10.1145/1481506.1481511
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.4204/EPTCS.103.6
https://doi.org/10.4204/EPTCS.103.6
https://doi.org/10.1007/s10994-016-5565-9
https://doi.org/10.1109/HLDVT.2004.1431246
http://content.iospress.com/articles/journal-of-computer-security/jcs268
http://content.iospress.com/articles/journal-of-computer-security/jcs268
https://doi.org/10.1006/inco.1993.1021
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.6084/m9.figshare.7960928.v1

L∗-Based Learning of Markov Decision Processes 669

38. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based
learning of Markov decision processes (extended version). CoRR arXiv:1906.12239
(2019), http://arxiv.org/abs/1906.12239

39. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017,
pp. 276–287. IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.
32

40. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw. Concepts Tools 17(3), 103–120 (1996)

41. Tzeng, W.: Learning probabilistic automata and Markov chains via queries. Mach.
Learn. 8, 151–166 (1992). https://doi.org/10.1007/BF00992862

42. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984).
https://doi.org/10.1145/1968.1972

43. Volpato, M., Tretmans, J.: Approximate active learning of nondeterministic input
output transition systems. ECEASST 72 (2015). https://doi.org/10.14279/tuj.
eceasst.72.1008

44. Willemse, T.A.C.: Heuristics for ioco-based test-based modelling. In: Brim, L.,
Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS 2006. LNCS, vol. 4346, pp.
132–147. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70952-
7 9

http://arxiv.org/abs/1906.12239
http://arxiv.org/abs/1906.12239
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/BF00992862
https://doi.org/10.1145/1968.1972
https://doi.org/10.14279/tuj.eceasst.72.1008
https://doi.org/10.14279/tuj.eceasst.72.1008
https://doi.org/10.1007/978-3-540-70952-7_9
https://doi.org/10.1007/978-3-540-70952-7_9

Star-Based Reachability Analysis
of Deep Neural Networks

Hoang-Dung Tran1, Diago Manzanas Lopez1, Patrick Musau1,
Xiaodong Yang1, Luan Viet Nguyen2, Weiming Xiang1 ,

and Taylor T. Johnson1(B)

1 Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN, USA

taylor.johnson@vanderbilt.edu
2 Department of Computer and Information Science, University of Pennsylvania,

Philadelphia, PA, USA

Abstract. This paper proposes novel reachability algorithms for both
exact (sound and complete) and over-approximation (sound) analysis of
deep neural networks (DNNs). The approach uses star sets as a sym-
bolic representation of sets of states, which are known in short as stars
and provide an effective representation of high-dimensional polytopes.
Our star-based reachability algorithms can be applied to several prob-
lems in analyzing the robustness of machine learning methods, such as
safety and robustness verification of DNNs. The star-based reachability
algorithms are implemented in a software prototype called the neural net-
work verification (NNV) tool that is publicly available for evaluation and
comparison. Our experiments show that when verifying ACAS Xu neural
networks on a multi-core platform, our exact reachability algorithm is on
average about 19 times faster than Reluplex, a satisfiability modulo the-
ory (SMT)-based approach. Furthermore, our approach can visualize the
precise behavior of DNNs because the reachable states are computed in
the method. Notably, in the case that a DNN violates a safety property,
the exact reachability algorithm can construct a complete set of coun-
terexamples. Our star-based over-approximate reachability algorithm is
on average 118 times faster than Reluplex on the verification of prop-
erties for ACAS Xu networks, even without exploiting the parallelism
that comes naturally in our method. Additionally, our over-approximate
reachability is much less conservative than DeepZ and DeepPoly, recent
approaches utilizing zonotopes and other abstract domains that fail to
verify many properties of ACAS Xu networks due to their conservative-
ness. Moreover, our star-based over-approximate reachability algorithm
obtains better robustness bounds in comparison with DeepZ and Deep-
Poly when verifying the robustness of image classification DNNs.

1 Introduction

Deep neural networks (DNNs) have become one of the most powerful techniques
to deal with challenging and complex problems such as image processing [15]
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 670–686, 2019.
https://doi.org/10.1007/978-3-030-30942-8_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_39&domain=pdf
http://orcid.org/0000-0001-9065-8428
http://orcid.org/0000-0001-8021-9923
https://doi.org/10.1007/978-3-030-30942-8_39

Star-Based Reachability Analysis of Deep Neural Networks 671

and natural language translation [9,16] due to its learning ability on large data
sets. Recently, the power of DNNs has inspired a new generation of intelligent
autonomy which makes use of DNNs-based learning enable components such as
autonomous vehicles [5] and air traffic collision avoidance systems [11]. Although
utilizing DNNs is a promising approach, assuring the safety of autonomous appli-
cations containing neural network components is difficult because DNNs usu-
ally have complex characteristics and behavior that are generally unpredictable.
Notably, it has been proved that well-trained DNNs may not be robust and are
easily to be fooled by a slight change in the input [18]. Several recent incidents in
autonomous driving (e.g., Tesla and Uber) raises an urgent need for techniques
and tools that can formally verify the safety and robustness of DNNs before
utilizing them in safety-critical applications.

Safety verification and robustness certification of DNNs have attracted a
huge attention from different communities such as machine learning [1,2,13,
17,20,25,26,31], formal methods [6,10,12,19,23,28–30], and security [7,24,25],
and a recent survey of the area is available [27]. Analyzing the behavior of a
DNN can broadly be categorized into exact and over-approximate analyses. For
the exact analysis, the SMT-based [12] and polyhedron-based approaches [23,
28] are notable representatives. For the over-approximate analysis, the mixed-
integer linear program (MILP) [6], interval arithmetic- [24,25], zonotope- [20],
input partition- [30], linearization- [26], and abstract-domain- [21] based are fast
and efficient approaches. While the over-approximate analysis is usually faster
and more scalable than the exact analysis, it guarantees only the soundness
of the result. In contrast, the exact analysis is usually more time-consuming
and less scalable. However, it guarantees both the soundness and completeness
of the result [12]. Although the over-approximate analysis is fast and scalable,
it is unclear how good the over-approximation is in term of conservativeness
since the exact result is not available for comparison. Importantly, if an over-
approximation approach is too conservative for neural networks with small or
medium sizes, it will potentially produce huge conservative results for DNNs with
a large number of layers and thousands of neurons since the over-approximation
error is accumulated quickly over layers. Therefore, a scalable, exact reachability
analysis is crucial not only for formal verification of DNNs, but also for estimating
the conservativeness of current and up-coming over-approximation approaches.

In this paper, we propose a fast and scalable approach for the exact and
over-approximate reachability analysis of DNN with ReLU activation functions
using the concept of star sets [3], or shortly “star”. Star fits perfectly for the
reachability analysis of DNNs due to its following essential characteristics: (1)
an efficient (exact) representation of large input sets; (2) fast and cheap affine
mapping operations; (3) inexpensive intersections with half-spaces and check-
ing empty. By utilizing star, we avoid the expensive affine mapping operation
in polyhedron-based approach [23] and thus, reduce the verification time sig-
nificantly. Our approach performs reachability analysis for feedforward DNNs
layer-by-layer. In the case of exact analysis, the output reachable set of each
layer is a union of a set of stars. Based on this observation, the star-based exact

672 H.-D. Tran et al.

reachability algorithm naturally can be designed for efficient execution on multi-
core platforms where each layer can handle multiple input sets at the same time.
In the case of over-approximate analysis, the output reachable set of each layer
is a single star which can be constructed by doing point-wise over-approximation
of the reachable set at all neurons of the layer.

We evaluate the proposed algorithms in comparison with the polyhedron
approach [23], Reluplex [12], zonotope [20] and abstract domain [21] approaches
on safety verification of the ACAS Xu neural networks [11] and robust certifica-
tion of image classification DNN. The experimental results show that our exact
reachability algorithm can achieve 19 times faster than Reluplex when running
on multi-core platform and >70 times faster than the polyhedron approach.
Notably, our exact algorithm can visualize the precise behavior of the ACAS
Xu networks and can construct the complete set of counter example inputs in
the case that a safety property is violated. Our over-approximate reachability
algorithm is averagely 118 times faster than Reluplex. It successfully verifies
many safety properties of ACAS Xu networks while the zonotope and abstract
domain approaches fail due to their large over-approximation errors. Our over-
approximate reachability algorithm also provides a better robustness certifica-
tion for image classification DNN in comparison with the zonotope and abstract
domain approaches. In summary, the main contributions of this paper are: (1)
propose novel, fast and scalable methods for the exact and over-approximate
reachability analysis of DNNs; (2) implement the proposed methods in NNV
toolbox that is available online for evaluation and comparison; (3) provide a
thorough evaluation of the new methods via real-world case studies.

2 Preliminaries

2.1 Machine Learning Models and Symbolic Verification Problem

A feed-forward neural network (FNN) consists of an input layer, an output layer,
and multiple hidden layers in which each layer comprises of neurons that are
connected to the neurons of preceding layer labeled using weights. Given an
input vector, the output of an FNN is determined by three components: the
weight matrices Wk, representing the weighted connection between neurons of
two consecutive layers k − 1 and k, the bias vectors bk of each layer, and the
activation function f applied at each layer. Mathematically, the output of a
neuron i is defined by:

yi = f(Σn
j=1ωijxj + bi),

where xj is the jth input of the ith neuron, ωij is the weight from the jth input
to the ith neuron, bi is the bias of the ith neuron. In this paper, we are interested
in FNN with ReLU activation functions defined by ReLU(x) = max(0, x).

Definition 1 (Reachable Set of FNN). Given a bounded convex polyhedron
input set defined as I � {x | Ax ≤ b, x ∈ R

n}, and an k-layers feed-forward

Star-Based Reachability Analysis of Deep Neural Networks 673

neural network F � {L1, · · · , Lk}, the reachable set F (I) = RLk
of the neural

network F corresponding to the input set I is defined incrementally by:

RL1 � {y1 | y1 = ReLU(W1x + b1), x ∈ I},

RL2 � {y2 | y2 = ReLU(W2y1 + b2), y1 ∈ RL1},

...

RLk
� {yk | yk = ReLU(Wkyk−1 + bk) yk−1 ∈ RLk−1},

where Wk and bk are the weight matrix and bias vector of the kth layer Lk,
respectively. The reachable set RLk

contains all outputs of the neural network
corresponding to all input vectors x in the input set I.

Definition 2 (Safety Verification of FNN). Given a k-layers feed-forward
neural network F , and a safety specification S defined as a set of linear con-
straints on the neural network outputs S � {yk | Cyk ≤ d}, the neural network
F is called to be safe corresponding to the input set I, we write F (I) � S, if and
only if RLk

∩ ¬S = ∅, where RLk
is the reachable set of the neural network with

the input set I, and ¬ is the symbol for logical negation. Otherwise, the neural
network is called to be unsafe F (I) � S.

2.2 Generalized Star Sets

Definition 3 (Generalized Star Set [3]). A generalized star set (or simply
star) Θ is a tuple 〈c, V, P 〉 where c ∈ R

n is the center, V = {v1, v2, · · · , vm} is a
set of m vectors in R

n called basis vectors, and P : R
m → {	,⊥} is a predicate.

The basis vectors are arranged to form the star’s n × m basis matrix. The set of
states represented by the star is given as:

�Θ� = {x | x = c + Σm
i=1(αivi) such that P (α1, · · · , αm) = 	}. (1)

Sometimes we will refer to both the tuple Θ and the set of states �Θ� as Θ. In
this work, we restrict the predicates to be a conjunction of linear constraints,
P (α) � Cα ≤ d where, for p linear constraints, C ∈ R

p×m, α is the vector of
m-variables, i.e., α = [α1, · · · , αm]T , and d ∈ R

p×1. A star is an empty set if
and only if P (α) is empty.

Proposition 1. Any bounded convex polyhedron P � {x | Cx ≤ d, x ∈ R
n} can

be represented as a star.1

Proposition 2 [Affine Mapping of a Star]. Given a star set Θ = 〈c, V, P 〉, an
affine mapping of the star Θ with the affine mapping matrix W and offset vector
b defined by Θ̄ = {y | y = Wx + b, x ∈ Θ} is another star with the following
characteristics.

Θ̄ = 〈c̄, V̄ , P̄ 〉, c̄ = Wc + b, v̄ = {Wv1,Wv2, · · · ,Wvm}, P̄ ≡ P.

1 Proofs appear in the appendix of the extended version of this paper [22].

674 H.-D. Tran et al.

Fig. 1. An example of a stepReLU operation on a layer with two neurons.

Proposition 3 (Star and Half-space Intersection). The intersection of a
star Θ � 〈c, V, P 〉 and a half-space H � {x | Hx ≤ g} is another star with
following characteristics.

Θ̄ = Θ ∩ H = 〈c̄, V̄ , P̄ 〉, c̄ = c, V̄ = V, P̄ = P ∧ P ′,

P ′(α) � (H × Vm)α ≤ g − H × c, Vm = [v1 v2 · · · vm].

3 Star-Based Reachability Analysis of FNNs

3.1 Exact and Complete Analysis

Since any bounded convex polyhedron can be represented as a star (Propo-
sition 1), we assume the input set I of an FNN is a star set. From Defi-
nition 1, one can see that the reachable set of an FNN is derived layer-by-
layer. Since the affine mapping of a star is also a star (Proposition 2), the
core step in computing the exact reachable set of a layer with a star input
set is applying the ReLU activation function on the star input set, i.e., compute
ReLU(Θ), Θ = 〈c, V, P 〉. For a layer L with n neurons, the reachable set of the
layer can be computed by executing a sequence of n stepReLU operations as
follows RL = ReLUn(ReLUn−1(· · · ReLU1(Θ))).

The stepReLU operation on the ith neuron, i.e., ReLUi(·), works as follows.
First, the input star set Θ is decomposed into two subsets Θ1 = Θ ∧ xi ≥ 0
and Θ2 = Θ ∧ xi < 0. Note that from Proposition 3, Θ1 and Θ2 are also
stars. Let assume that Θ1 = 〈c, V, P1〉 and Θ2 = 〈c, V, P2〉. Since the later
set has xi < 0, applying the ReLU activation function on the element xi

of the vector x = [x1 · · · xi xi+1 · · · xn]T ∈ Θ2 will lead to the new vec-
tor x′ = [x1 x2 · · · 0 xi+1 · · · xn]T . This procedure is equivalent to mapping
Θ2 by the mapping matrix M = [e1 e2 · · · ei−1 0 ei+1 · · · en]. Also, applying
the ReLU activation function on the element xi of the vector x ∈ Θ1 does

Star-Based Reachability Analysis of Deep Neural Networks 675

Algorithm 3.1. Star-based exact reachability analysis for one layer.
Input: I = [Θ1 · · · ΘN], W , b � star input sets, weight matrix, bias vector

Output: R � exact reachable set

1: procedure R = LayerReach(I, W, b)
2: R = ∅
3: parfor i = 1 : N do � parallel for loop

4: I1 = W ∗ Θi + b = 〈Wci + b, WVi, Pi〉
5: R1 = reachReLU(I1), R = R ∪ R1

6: end parfor

7: procedure R1 = reachReLU(I1)
8: In = I1
9: [lb, ub] = In.getRange � get ranges of all input variables

10: map = find(lb < 0) � construct computation map

11: m = length(map) � minimized number of stepReach operations

12: for i = 1 : m do
13: In = stepReLU(In, map(i), lb(i), ub(i)) � stepReLU operation

14: R1 = In

15: procedure R̃ = stepReLU(Ĩ , i, lbi, ubi)
16: R̃ = ∅, Ĩ = [Θ̃1 · · · Θ̃k] � intermediate star input and output sets

17: for j = 1 : k do
18: R1 = ∅, M = [e1 e2 · · · ei−1 0 ei+1 · · · en]
19: if lbi ≥ 0 then R1 = Θ̃j = 〈c̃j , Ṽj , P̃j〉
20: if ubi ≤ 0 then R1 = M ∗ Θ̃j = 〈Mc̃j , MṼj , P̃j〉
21: if lbi < 0 & ubi > 0 then
22: Θ̃′

j = Θ̃j ∧ x[i] ≥ 0 = 〈c̃j , Ṽj , P̃
′
j〉, Θ̃′′

j = Θ̃j ∧ x[i] < 0 = 〈c̃j , Ṽj , P̃
′′
j 〉

23: R1 = Θ̃′
j ∪ M ∗ Θ̃′′

j

24: R̃ = R̃ ∪ R1

not change the set since we have xi ≥ 0. Consequently, the result of the
stepReLU operation on input set Θ at the ith neuron is a union of two star
sets ReLUi(Θ) = 〈c, V, P1〉 ∪ 〈Mc,MV,P2〉. A concrete example of the first
stepReLU operation on a layer with two neurons is depicted in Fig. 1.

The number of stepReLU operation can be reduced if we know beforehand
the ranges of all states in the input set. For example, if we know that xi is always
larger than zero, then we have ReLUi(Θ) = Θ, or in other words, we do not need
to execute the stepReLU operation on the ith neuron. Therefore, to minimize the
number of stepReLU operations and the computation time, we first determine
the ranges of all states in the input set which can be done efficiently by solving
n-linear programming problems.

The star-based exact reachability algorithm given in Algorithm3.1. works as
follows. The layer takes the star output sets of the preceding layer as input sets
I = [Θ1, · · · , ΘN]. The main procedure in the algorithm is layerReach which
processes the input sets I in parallel. On each input element Θi = 〈ci, Vi, Pi〉,
the main procedure maps the element with the layer weight matrix W and bias
vector b which results a new star I1 = 〈Wci + b,WVi, Pi〉. The reachable set

676 H.-D. Tran et al.

Fig. 2. Over-approximation of ReLU functions with different approaches.

of the layer corresponding to the element Θi is computed by reachReLU sub-
procedure which executes a minimized sequence of stepReLU operations on the
new star I1, i.e., iteratively calls stepReLU sub-procedure. Note that that the
stepReLU sub-procedure is designed to handle multiple star input sets since the
number of star sets may increase after each stepReLU operation.

Lemma 1. The worst-case complexity of the number of stars in the reachable
set of an N -neurons FNN computed by Algorithm3.1. is O(2N).

Lemma 2. The worst-case complexity of the number of constraints of a star in
the reachable set of an N -neuron FNN computed by Algorithm3.1. is O(N).

Theorem 1 (Verification complexity). Let F be an N -neuron FNN, Θ be a
star set with p linear constraints and m-variables in the predicate, S be a safety
specification with s linear constraints. In the worst case, the safety verification
or falsification of the neural network F (Θ) |= S? is equivalent to solving 2N

feasibility problems in which each has N + p + s linear constraints and m-
variables.

Remark 1. Although in the worst-case, the number of stars in the reachable set
of an FNN is 2N , in practice, the actual number of stars is usually much smaller
than the worst-case result which enhances the applicability of the star-based
exact reachability analysis for practical DNNs.

Theorem 2 (Safety and complete counter input set). Let F be an FNN,
Θ = 〈c, V, P 〉 be a star input set, F (Θ) = ∪k

i=1 Θi, Θi = 〈ci, Vi, Pi〉 be the
reachable set of the neural network, and S be a safety specification. Denote Θ̄i =
Θi ∩ ¬S = 〈ci, Vi, P̄i〉, i = 1, · · · , k. The neural network is safe if and only
if P̄i = ∅ for all i. If the neural network violates its safety property, then the
complete counter input set containing all possible inputs in the input set that
lead the neural network to unsafe states is CΘ = ∪k

i=1〈c, V, P̄i〉, P̄i �= ∅.

3.2 Over-Approximate Analysis

Although the exact reachability analysis can compute the exact behavior of FNN,
the number of stars grows exponentially with the number of layers and leads to

Star-Based Reachability Analysis of Deep Neural Networks 677

Algorithm 3.2. Star-based over-approximate reachability analysis for one layer.
Input: I = Θ = 〈c, V, P 〉, W , b � star input set, weight matrix, bias vector

Output: R � over-approximate reachable set

1: procedure R = ApproxLayerReach(I, W, b)
2: I1 = W ∗ Θ + b = 〈Wc + b, WV, P 〉
3: In = I1
4: for i = 1 : n do � n is the number of neurons of the layer

5: In = approxStepReLU(In, i) � ith approximate-stepReLU operation

6: R1 = In

7: procedure R̃ = approxStepReLU(Ĩ , i)
8: Ĩ = Θ̃ = 〈c̃, Ṽ , P̃ 〉
9: [li, ui] = Θ̃.getRange(i) � range of x[i], i.e., li ≤ x[i] ≤ ui

10: M = [e1 e2 · · · ei−1 0 ei+1 · · · en]
11: if li ≥ 0 then R̃ = Θ̃ = 〈c̃, Ṽ , P̃ 〉
12: if ui ≤ 0 then R̃ = M ∗ Θ̃ = 〈Mc̃, MṼ , P̃ 〉
13: if li < 0 & ui > 0 then
14: P̃ (α) � C̃α ≤ d̃, α = [α1, α2, · · · , αm]T � input set’s predicate

15: α′ = [α1, · · · , αm, αm+1]
T

� new variable αm+1

16: C1 = [0 0 · · · 0 -1] ∈ R
1×m+1, d1 = 0 � αm+1 ≥ 0 ⇔ C1α′ ≤ d1

17: C2 = [˜V [i, :] -1] ∈ R
1×m+1, d2 = −c̃[i] � αm+1 ≥ x[i] ⇔ C2α′ ≤ d2

18: C3 = [−ui
ui−li

× ˜V [i, :] 1], d3 = uili
ui−li

×(1−c̃[i]) � αm+1 ≤ ui(x[i]−li)
ui−li

⇔ C3α′ ≤ d3

19: C0 = [C̃ 0m×1], d0 = d̃
20: C′ = [C0; C1; C2; C3], d′ = [d0; d1; d2; d3]
21: P ′(α′) � C′α′ ≤ d′

� output set’s predicate

22: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] � y[i] = ReLU(x[i]) = αm+1

23: R̃ = 〈c′, V ′, P ′〉

an increase in computation cost that limits scalability. In this section, we propose
an over-approximation reachability algorithm for FNNs. The main benefit of this
approach is that the reachable set of each layer is only a single star that can be
constructed efficiently by using an over-approximation of the ReLU activation
function at all neurons in the layer. Importantly, our star-based over-approximate
reachability algorithm is much less conservative than the zonotope-based [20]
and abstract domain [21] based approaches in the way of approximating the
ReLU activation function, shown in Fig. 2. The zonotope-based approach [20]
over-approximates the ReLU activation function by a minimal parallelogram
while the abstract-domain approach [21] over-approximates the ReLU activa-
tion function by a triangle. Our star-based approach also over-approximates the
ReLU activation function with a triangle as in the abstract-domain approach.
However, the abstract-domain approach only uses lower bound and upper bound
constraints for the output yi = ReLU(xi) to avoid the state space explosion [21],
for example, in Fig. 2, these constraints are yi ≥ 0, yi ≤ ui(xi − li)/(ui − li).
To obtain a tighter over-approximation, our approach uses three constraints for
the output yi instead. The over-approximation rule for a single neuron is given
as follows,

678 H.-D. Tran et al.

Algorithm 3.3. Reachability analysis for a FNN.
Input: I = Θ = 〈c, V, P 〉, L = [L1 L2 · · · Lk], scheme � star input set, network’s layers,

reachabiltiy scheme

Output: R � reachable set

1: procedure R = reach(I, L, scheme)
2: In = I
3: for i = 1 : k do � k is the number of layers on the network

4: if scheme = exact then In = Li.LayerReach(In)
5: else if scheme = approx then In = Li.ApproxLayerReach(In)

6: R = In

⎧
⎪⎨

⎪⎩

yi = xi if li ≥ 0
yi = 0 if ui ≤ 0
yi ≥ 0, yi ≤ ui(xi−li)

ui−li
, yi ≥ xi if li < 0 and ui > 0

where li and ui is the lower and upper bounds of xi.
Similar to the exact approach, the over-approximate reachable set of a Layer

with n neurons can be computed by executing a sequence of n approximate-
stepReLU operations performing the above over-approximation rule. The over-
approximate reachability algorithm for a single layer of FNN using star set
given in Algorithm 3.2. works as follows. Given a star input set Θ, the algo-
rithm computes the affine mapping of the input set using the layer’s weight
matrix and bias vector. The resulting star set is the input of a sequence of n
approximate−stepReLU operations. An approximate-stepReLU operation first
computes the lower and upper bounds of the state variable x[i] w.r.t the ith

neuron. If the lower bound is not negative (line 11), the approximate-stepReLU
operation returns a new intermediate reachable set which is exactly the same
as its input set. If the upper bound is not positive (line 12), the approximate-
stepReLU operation returns a new intermediate reachable set which is the same
as its input set except the ith state variable is zero. If the lower bound is negative
and the upper bound is positive (line 13), the approximate-stepReLU operation
introduces a new variable αm+1 to capture the over-approximation of ReLU
function at the ith neuron. As a result, the obtained intermediate reachable
set has one more variable and three more linear constraints in the predicate in
comparison with the corresponding input set. From this observation, we can see
that in the worst case, the over-approximate reachability algorithm will obtain
a reachable set with N +m0 variables and 3N +n0 constraints in the predicate,
where m0, n0 respectively are the number of variables and linear constraints of
the predicate of the input set and N is the total number of neurons of the FNN.

.

Star-Based Reachability Analysis of Deep Neural Networks 679

3.3 Reachability Algorithm for FNNs

The reachability analysis of a FNN is done layer-by-layer in which the output set
of the previous layer is the input set of the next layer. The reachability algorithm
for a FNN is summarized in Algorithm 3.3.

4 Evaluation

In this section, we evaluate the proposed star-based reachability algorithms in
comparison to existing state-of-the-art approaches including exact (sound and
complete) SMT-based (Reluplex [12]) and polyhedron-based [23] approaches, as
well as over-approximate approaches, such as those using zonotopes [20] and
abstract domains [21]. To clarify intuitively the benefit of our approach, we
re-implement the zonotope- and abstract-domain based approaches in our tool
called NNV. This allows the visualization of the over-approximate reachable
set of these approaches. The evaluation and comparison are done by verifying
safety of the ACAS Xu DNNs [11] and the robustness of image classification

Table 1. Safety verification results of ACAS Xu networks. Notation: TO is ‘Timeout’,
Rel states for ‘Reluplex’, Poly is the Polyhedron method, UN states for unknown
(due to over-approximation error), V T is the verification time in seconds, and r1ES , r2ES

are the verification time improvement of the exact, star-based method compared with
Reluplex and the polyhedron-based methods; rZ , rAD and rAS respectively are the
verification time improvement of the zonotope-, abstract domain- and over-approximate
star-based methods compared with Reluplex. The computation time limitation for
polyhedron-based method (run on Amazon cloud) was set to be 1 h while for Reluplex,
it was set at 24 h.

Prop. ID Exact methods Over-approximation methods

Res. Rel Poly Star Zonotope Abstract-domain Star

VT VT VT r1
ES r2

ES Res.V T rZ Res.V T rAD Res.V T rAS

φ1 N1 1 Safe 5986 TO 1481.24.04x – Safe 0.07 85514xSafe 6.22962.4x Safe 13.79434.1x

φ2 N1 3 Safe 1102 TO 77.3 14.3x > 47x UN 0.06 18367xUN 6.3 174.9x UN 6.01 183.4x

N2 1 Safe 1173 TO 51.57 22.8x > 70x UN 0.062 18919xUN 5.72205.1x Safe 5.91 198.5x

N2 2 Safe 634 TO 35.8 17.7x > 101xUN 0.084 7548x UN 5.83108.8x Safe 5.8 109.3x

N2 3 Safe 1014 TO 36.1 28.1x > 100xUN 0.073 13890xUN 5.89172.2x UN 5.79 175.7x

N5 1 Safe 1097 TO 17.76 61.8x > 202xUN 0.081 13543xUN 5.85187.5x UN 5.76 190.5x

φ3 N1 5 Safe 393 1520.29 33.39 11.8x 45.5x UN 0.07964937x UN 6.1 64.4x Safe 5.89 66.7x

N2 2 Safe 451 TO 43.66 10.3x > 83x UN 0.056 8054x UN 5.5781x Safe 5.66 79.7x

N2 3 Safe 293 2759 37.23 7.8x 74.1x UN 0.08 3663x UN 6.0474.7x Safe 5.66 79.7x

N2 8 Safe 653 1152.6 31.04 21x 37.1x Safe 0.102 6401x Safe 6.36102.7x Safe 7.47 87.4x

N2 9 Safe 61 233 6.33 9.63x 36.8x Safe 0.065 938.5x Safe 5.7610.6x Safe 5.88 10.4x

N3 7 Safe 357 1115.6 14 25.5x 79.7x UN 0.085 4200x Safe 5.8860.7x Safe 6 59.5x

N3 8 Safe 149 770 15.2 9.8x 50.7x UN 0.08 1862x UN 5.5326.9x Safe 5.83 25.6x

N3 9 Safe 715 1664.4 40.9 17.5x 40.7x UN 0.076 9408x UN 6.25114.4x Safe 6.13 116.6x

N4 9 Safe 489 1098.7 22.2 22x 49.49x Safe 0.049 9980x Safe 5.3 92.3x Safe 5.57 87.8x

N5 1 Safe 585 1005.3 18.43 31.74x 54.5x UN 0.069 8479x UN 5.8 100.9x Safe 5.83 100.3x

N5 7 Safe 42 275.1 7.69 5.5x 35.8x Safe 0.054 778x Safe 5.5 7.6x Safe 5.54 7.6x

Average time improvement ≈ 18.9x> 70x ≈ 12734x ≈ 150x ≈ 118.4x

680 H.-D. Tran et al.

0 10 20 30 40
N

0

200

400

600

800

V
T

(s
ec

)

Star
Reluplex

(a) Verification times for
property φ3 on N2 8 net-
work with different number
of cores.

(b) The (normalized) complete counter input set for
property φ′

3 on N2 8 network is a part of the normal-
ized input set (red boxes).

Fig. 3. Verification time reduction with parallel computing and complete counter input
set construction. (Color figure online)

DNN against adversarial attacks. All results presented in this section and their
corresponding scripts are available online2.

4.1 Safety Verification for ACAS Xu DNNs

The ACAS Xu networks are DNN-based advisory controllers that map the sensor
measurements to advisories in the Airborne Collision Avoidance System X [11].
It consists of 45 DNNs which are trained to replace the traditional memory-
consuming lookup table. Each DNN denoted by Nx y has 5 inputs, 5 outputs,
and 6 hidden layers of 50 neurons. The detail about ACAS Xu networks and their
safety properties are given in the appendix [22]. The experiments in this case
study are done using Amazon Web Services Elastic Computing Cloud (EC2),
on a powerful m5a.24xlarge instance with 96 cores and 384 GB of memory.
The verification results are presented in Table 1. We used 90 cores for the exact
reachability analysis of the ACAS Xu networks using the polyhedron- and star-
based approaches, and only 1 core for the over-approximate reachability analysis
approaches.

Verification Results and Timing Performance. Safety verification using
star-based reachability algorithms consists of two major steps. The first step
constructs the whole reachable set of the networks. The second step checks the
intersection of the constructed reachable set with the unsafe region. The verifi-
cation time (VT) in our approach is the sum of the reachable set computation
time (RT) and the safety checking time (ST). The reachable set computation
time dominates (averagely 95% of) the verification time in all cases and the
verification time varies for different properties. The detail of the reachable set
computation time and the safety checking time can be found in the verification
results.
2 https://github.com/verivital/nnv/tree/fm2019/nnv/examples/Submission/FM2019.

https://github.com/verivital/nnv/tree/fm2019/nnv/examples/Submission/FM2019

Star-Based Reachability Analysis of Deep Neural Networks 681

Exact Star-Based Method. The experimental results show that the exact
star-based approach is on average >70 times faster than the polyhedron-based
approach and 18.9 times faster than Reluplex when using parallel computing.
Impressively, it can even achieve 61.8 faster than Reluplex when verifying prop-
erty φ2 on N5 1 network. This improvement comes from the fact that star set
that is very efficient in affine mapping and intersection with half-spaces which are
crucial operations for reachable set computation and safety checking. Therefore,
the exact star-based method is much more efficient than the polyhedron-based
approach [23]. In addition, the exact star-based algorithm is well-designed and
optimized (i.e., minimize the number of stepReLU operations) for efficiently
running on multi-core platforms while Reluplex does not exploit the power of
parallel-computing. Figure 3a describes the benefits of parallel computing. The
figure shows that when a single core is used for a verification task, our approach
takes 790.07 s which is a little bit slower than Reluplex with 653 s. However, our
verification time drops quickly to 80.45 s, which is 8 times faster than Reluplex,
when we use 10 cores for the computation.

Zonotope-Based Method [20]. The experimental results show that the over-
approximate, zonotope-based method is significantly faster than the exact meth-
ods. In some cases, it can verify the safety of the networks with less than 0.1 s, for
example, the zonotope-based method successfully verifies property φ3 on N5 7

network in 0.054 s and the corresponding reachable set is depicted in Fig. 4a.
Although the zonotope-based method is time-efficient (on average 12734 times
faster than Reluplex), it is unable to verify the safety of many networks due
to its huge over-approximation error, i.e., if the over-approximate reachable set
reaches an unsafe region, we do not know whether or not the actual reachable
set reaches the unsafe region. For example, Fig. 4b describes the reachable set
obtained by the zonotope-based method for N3 8 network w.r.t property φ3. As
shown in the figure, the obtained reachable set is too conservative and can not
be used for safety verification of the network. The main reason that makes the
zonotope approach fast is that, to do reachability analysis, we need to compute
the lower and upper bounds of each state x[i] of all neurons in each layer. This
information can be obtained straightforwardly in the zonotope method while in
the other approaches, i.e., abstract-domain and star-based approaches, this is
equivalent to solving n linear optimization problems where n is the number of
neurons at that layer. The time for solving these optimization problems increase
over layers since the number of constraints in the reachable set increases. There-
fore, despite the a large over-approximation error, the zonotope-based method
is time-efficient when dealing with large and deep neural networks.

Abstract-Domain Based Method [21]. The over-approximation method
using abstract-domain is 150 times faster than Reluplex on average. It is also
much less conservative than the zonotope-based method as can be seen from
Fig. 4. However, the reachable set computed by the abstract-domain based
method is still too conservative, which makes this approach unable to verify
the safety properties of many ACAS Xu networks.

682 H.-D. Tran et al.

(a) Reachable sets of N5 7 network w.r.t property φ3 with different methods. All meth-
ods successfully verify the property.

(b) Reachable sets of N3 8 network w.r.t property φ3 with different methods. The
zonotope (used in DeepZ [20]) and abstract-domain (used in DeepPoly [21]) methods
cannot verify the property due to large over-approximation error.

Fig. 4. Conservativeness of the reachable sets obtained by different methods.

Over-Approximate Star-Based Method. The experiments show that our
over-approximate star-based approach can obtain tight reachable sets for many
networks compared to the exact sets. Therefore, our over-approximate approach
successfully verifies safety properties of most of ACAS Xu networks. Notably, it
is on average 118.4 times faster than Reluplex. Impressively, it is 434 times faster
than Reluplex when verifying property φ1 on N1 1 network. In comparison with
the zonotope and abstract-domain approaches, our method is timing-comparable
with the abstract-domain method and slower than the zonotope method. How-
ever, our results is much less conservative than those obtained by the zonotope
and abstract-domain methods which are shown in Fig. 4. This makes our app-
roach applicable for safety verification of many ACAS Xu networks where the
zonotope and abstract-domain methods cannot verify.

Benefits of Computing the Reachable Set. The reachable set computed in
our NNV tool are useful for intuitively checking the safety properties of the net-

Star-Based Reachability Analysis of Deep Neural Networks 683

Table 2. Maximum robustness values (δmax) of image classification networks with
different methods in which k is the number of hidden layers of the network, N is the
total number of neurons, Tol is the tolerance error in searching.

Net Parameters Tol δmax

Zonotope Approximate-Star Abstract-Domain Exact-Star

N1 k=5, N=140 0.0001 0.0046 0.0048 0.0046 ≥0.0058

N2 k=5, N=250 0.0001 0.0087 0.0101 0.0095 TimeOut

N3 k=2, N=1000 0.0001 0.0072 0.0089 0.0084 TimeOut

N4 k=1, N=2000 0.0001 0.0027 0.0027 0.0027 TimeOut

N5 k=1, N=4000 0.0001 0.0034 0.0034 0.0034 TimeOut

work. For example, Fig. 4a describes the behaviors of N5 7 network corresponding
to property φ3 requiring that the output COC is not the minimal score. From
the figure, one can see that the COC is not the minimal score and thus, property
φ3 holds on N5 7 network. Importantly, as shown in the figure, via visualization,
one can intuitively observe the conservativeness of different over-approximation
approaches in comparison to the exact ones which is impossible if we use ERAN,
a C-Python implementation of the zonotope and abstract-domain-based meth-
ods. Last but not least, the reachable set is useful in the case that we need
to verify a set of safety properties corresponding to the same input set. In this
case, once the reachable set is obtained, it can be re-used to check different safety
properties without rerunning the whole verification procedure as Reluplex does,
and thus helps saving a significant amount of time.

Complete Counter Example Input Set Construction. Another strong
advantage of our approach in comparison with other existing approaches is,
in the case that a neural network violates its safety specification, our exact,
star-based method can construct a complete counter input set that leads the
neural network to the unsafe region. The complete counter input set can be
used as a adversarial input generator [4,8] for robust training of the network.
We note that finding a single counter input falsifying a safety property of a
neural network can be done efficiently using only random simulations. However,
constructing a complete counter input set that contains all counter inputs is
very challenging because of the non-linearity of a neural network. To the best
of our knowledge, our exact star-based approach is the only approach that can
solve this problem. For example, assume that we want to check the following
property φ′

3 � ¬(COC ≥ 15.8∧StrongRight ≤ 15.09) on N2 8 network with the
same input constraints as in property φ3. Using the available reachable set of
N2 8 network, we can verify that the above property φ′

3 is violated in which 60
stars in 421 stars of the reachable set reach the unsafe region. Using Theorem 2,
we can construct a complete counter input set which is a union of 60 stars in
0.9893 s. This counter input set depicted in Fig. 3b is a part of the input set that
contains all counter inputs that make the neural network unsafe.

684 H.-D. Tran et al.

4.2 Maximum Robustness Certification of Image Classification
DNNs

Robustness certification of DNNs becomes more an more important as many
safety-critical applications using image classification DNNs can be fooled eas-
ily by slightly perturbing a correctly classified input. A network is said to be
δ-locally-robust at input point x if for every x′ such that ‖x − x′‖∞ ≤ δ, the
network assigns the same label to x and x′. In this case study, instead of proving
the robustness of a network corresponding to a given robustness certification
δ, we focus on finding the maximum robustness certification value δmax that
a verification method can provide a robustness guarantee for the network. We
investigate this interesting problem on a set of image classification DNN with
different architectures trained (with an accuracy of 98%) using the well-known
MNIST data set consisting of 60000 images of handwritten digits with a reso-
lution of 28 × 28 pixels [14]. The trained networks have 784 inputs and a single
output with expected value from 0 to 9. We find the maximum robustness verifi-
cation value δmax for the networks on an image of digit one with the assumption
that there is a δmax-bounded disturbance modifying the (normalized) values of
the input vector x at all pixels of the image, i.e., |x[i] − x′[i]| ≤ δmax. The result
are presented in Table 2. We note that the polyhedron and Reluplex approaches
are not applicable for these networks because they cannot deal with high dimen-
sional input space. The table shows that our approximate star approach pro-
duces larger upper bounds of the robustness values of the networks with many
layers. For single layer networks, our approach gives the same results as the
zonotope [20] and the abstract domain [21] methods. The exact-star method can
prove that the network N1 is robust with the bounded disturbance δ = 0.0058.
When δ > 0.0058, we ran into the “out of memory” issue in parallel computation
since the number of the reachable sets becomes too large. The exact star method
reaches timeout (set as 1 h) when finding the maximum robustness value for the
other networks.

5 Conclusion and Future Work

We have proposed two reachability analysis algorithms for DNNs using star
sets, one that is exact (sound and complete) but has scalability challenges and
one that over-approximates (sound) with better scalability. The exact algorithm
can compute and visualize the exact behaviors of DNNs. The exact method is
more efficient than standard polyhedra approaches, and faster than SMT-based
approaches when running on multi-core platforms. The over-approximate algo-
rithm is much faster than the exact one, and notably, it is much less conservative
than recent zonotope and abstract-domain based approaches. Our algorithms are
applicable for real world applications as shown in the safety verification of ACAS
Xu DNNs and robustness certification of image classification DNNs. In future
work, we are extending the proposed methods for convolutional neural networks
(CNN) and recurrent neural networks (RNN), as well as improving scalability
for other types of activation functions such as tanh and sigmoid.

Star-Based Reachability Analysis of Deep Neural Networks 685

Acknowledgments. We thank Gagandeep Singh from ETH Zurich for his help on
explaining DeepZ and DeepPoly methods as well as running his tool ERAN. We also
thank Shiqi Wang from Columbia University for his explanation about his interval prop-
agation method, and Guy Katz from The Hebrew University of Jerusalem for his expla-
nation about ACAS Xu networks and Reluplex. The discussions with Gagandeep Singh,
Shiqi Wang, and Guy Katz is the main inspiration of our work in this paper. The material
presented in this paper is based upon work supported by the Air Force Office of Scien-
tific Research (AFOSR) through contract number FA9550-18-1-0122, and the Defense
Advanced Research Projects Agency (DARPA) through contract number FA8750-18-
C-0089. The U.S. government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of AFOSR or DARPA.

References

1. Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis
for neural agent-environment systems. In: Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (2018)

2. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-
based neural agent-environment systems. In: Proceedings of the 33th AAAI Con-
ference on Artificial Intelligence (AAAI19), Honolulu, HI, USA. AAAI Press (2019,
to appear)

3. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 20

4. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Advances in Neural Infor-
mation Processing Systems, pp. 2613–2621 (2016)

5. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

6. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks. arXiv preprint arXiv:1709.09130 (2017)

7. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai 2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP) (2018)

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

9. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

10. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

11. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. arXiv preprint arXiv:1810.04240 (2018)

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

https://doi.org/10.1007/978-3-319-63387-9_20
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1709.09130
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1810.04240
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

686 H.-D. Tran et al.

13. Kouvaros, P., Lomuscio, A.: Formal verification of CNN-based perception systems.
arXiv preprint arXiv:1811.11373 (2018)

14. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

15. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

16. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep
neural network architectures and their applications. Neurocomputing 234, 11–26
(2017)

17. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv preprint arXiv:1706.07351 (2017)

18. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

19. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

20. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
pp. 10825–10836 (2018)

21. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41 (2019)

22. Tran, H.D., et al: Star-based reachability analysis of deep neural networks:
extended version. In: 23rd International Symposium on Formal Methods (2019).
http://www.taylortjohnson.com/research/tran2019fm extended.pdf

23. Tran, H.D., et al.: Parallelizable reachability analysis algorithms for feed-forward
neural networks. In: 7th International Conference on Formal Methods in Software
Engineering (FormaliSE 2019), Montreal, Canada (2019)

24. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems, pp.
6369–6379 (2018)

25. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. arXiv preprint arXiv:1804.10829 (2018)

26. Weng, T.W., et al.: Towards fast computation of certified robustness for ReLU
networks. arXiv preprint arXiv:1804.09699 (2018)

27. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. CoRR abs/1810.01989 (2018)

28. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety verifi-
cation for neural networks with ReLU activations. arXiv preprint arXiv:1712.08163
(2017)

29. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.,
1–7 (2018)

30. Xiang, W., Tran, H.D., Johnson, T.T.: Specification-guided safety verification for
feedforward neural networks. In: AAAI Spring Symposium on Verification of Neural
Networks (2019)

31. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Advances in
Neural Information Processing Systems, pp. 4944–4953 (2018)

http://arxiv.org/abs/1811.11373
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1706.07351
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
http://www.taylortjohnson.com/research/tran2019fm_extended.pdf
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1712.08163

Refactoring and Reprogramming

SOA and the Button Problem

Sung-Shik Jongmans1,2(B), Arjan Lamers1,3, and Marko van Eekelen1,4

1 Department of Computer Science, Open University of the Netherlands,
Heerlen, The Netherlands

ssj@ou.nl
2 CWI, Netherlands Foundation of Scientific Research Institutes,

Amsterdam, The Netherlands
3 First8, Nijmegen, The Netherlands

4 Institute for Computing and Information Sciences,
Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. Service-oriented architecture (SOA) is a popular architec-
tural style centered around services, loose coupling, and interoperability.
A recurring problem in SOA development is the Button Problem; how
to ensure that whenever a “button is pressed” on some service—no mat-
ter what—the performance of other key services remains unaffected?
The Button Problem is especially complex to solve in systems that have
devolved into hardly comprehensible spaghettis of service dependencies.

In a collaborative effort with industry partner First8, we present the
first formal framework to help SOA developers solve the Button Problem,
enabling automated reasoning about service sensitivities and candidate
refactorings. Our formalization provides a rigorous foundation for a tool
that was already successfully evaluated in industrial case studies, and it is
built against two unique requirements: “whiteboard level of abstraction”
and non-quantitative analysis.

1 Introduction

Context. Service-oriented architecture (SOA) is a popular architectural style
centered around services, loose coupling, and interoperability [19].

A recurring problem in SOA development is the Button Problem: how to
ensure that whenever a “button is pressed” (i.e., an operation is invoked; a
resource is requested) on some service—no matter what—the performance of
other key services remains unaffected? For instance, increased activity on an
accounting service of an e-commerce system should never slow down the front-
end service; sales are lost otherwise [1]. The Button Problem occurs in all stages
of SOA development, from initial analysis (when dependencies among services
are still reasonably well-understood) to final maintenance (when dependencies
have often devolved into a hardly comprehensible spaghetti).

To solve the Button Problem, SOA developers need to engage in two kinds
of activities: (1) they need to analyze dependencies among services to determine
whether or not a service is indeed sensitive to button-presses on other services; if
so, (2) they need to invent a series of refactorings that eliminate the sensitivity,
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 689–706, 2019.
https://doi.org/10.1007/978-3-030-30942-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_40&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_40

690 S.-S. Jongmans et al.

but without changing the system’s functional behavior. Especially in cases where
services and their dependencies are plentiful, these two activities are challenging
to carry out by hand: both service sensitivities and candidate refactorings are
easily missed, leading to suboptimal architecture and deployment decisions.

Contribution. In a collaborative effort with industry partner First8, we present
the first formal framework to help SOA developers solve the Button Problem,
enabling automated reasoning about service sensitivities and candidate refac-
torings in the form of tool support. Our formalization is built against two
unique requirements derived from First8’s experience with large enterprise sys-
tems (Sect. 2): “whiteboard level of abstraction” and non-quantitative analysis.
We provide an extensible core library of refactorings and prove their correct-
ness; this facilitates mechanical exploration of a system’s design space toward
given insensitivity goals. Our formalization provides a rigorous foundation for a
decision support tool (Sect. 2) that we developed and recently demonstrated at
ICSOC 2018 [16].

In Sect. 2, we explain the background of this research project. In Sect. 3,
we present our formalization of architectures and refactorings. In Sect. 4, we
present our formalization of deployments and sensitivities. In Sect. 5, we explain
the implementation of our formal framework. In Sect. 6, we discuss related work
and future work. Proofs of theorems appear in a separate technical report [9].

2 Background

First8. First8 (https://www.first8.nl), subsidiary of Conclusion (https://www.

conclusion.nl), is a software company specialized in custom business-critical sys-
tems, including SOA, in all stages of the software life cycle. SOA developers at
First8 regularly encounter and struggle with the Button Problem. In general, the
industry-wide practice of manually reasoning about service sensitivities and can-
didate refactorings has three major issues. First, it is an intellectually demand-
ing activity that often requires SOA developers to make simplifying assump-
tions. This leads to imprecise refactoring proposals, which may be more costly,
more risky, and less effective than necessary. Second, as refactoring proposals
are based on experience and best-practices, SOA developers can easily overlook
less-intuitive refactorings that may well be most-effective for a given system.
Third, predicting how multiple refactorings will affect each other is hard.

The aim of this research project is to develop a decision support tool (open
source), built on top of a rigorous foundation, that helps SOA developers (First8
or otherwise) solve the Button Problem. Based on extensive experience with large
enterprise systems, First8 imposed two unique requirements on the tool and its
underlying formalization that give our project a novel position among existing
computer-aided software engineering tools (see also Sect. 6):

– “Whiteboard level of abstraction”: Finding a technical solution to the
Button Problem is one thing; convincing business executives that this solu-
tion is truly worth pursuing and implementing is a whole different challenge.

https://www.first8.nl
https://www.conclusion.nl
https://www.conclusion.nl

SOA and the Button Problem 691

Decisions are often made in meetings where there is neither time nor exper-
tise on the executives’ side to go through all the technical intricacies; instead,
high-level whiteboard drawings are the main artifacts to explain service sen-
sitivities and candidate refactorings, their consequences, and their trade-offs.
To truly contribute to executives’ decision-making, it is therefore imperative
that our tool and its foundation are based on the simple whiteboard-style
notation that executives intuitively understand and are accustomed to.

– Non-quantitative analysis: Ultimately, every Button Problem is about
coarse-grained predictability of performance; it is never about reducing
latency by x milliseconds, or increasing throughput by y transactions per
hour. Although it is possible to try to solve the Button Problem using fine-
grained quantitative approaches in terms of absolute latencies and through-
puts (e.g., [3,5,13,15,22]), it is excessive (i.e., not the right tool for the job)
and impractical. One issue is collecting the measurements to instantiate a
quantitative model, which can be cumbersome or even impossible (i.e., if
the system has not been deployed yet). Another issue is that measurements
are implementation-specific and deployment-specific, and therefore brittle:
changes in a service implementation or deployment can greatly impact abso-
lute performance and immediately render a previously instantiated quantita-
tive model obsolete. To solve the Button Problem effectively, using automated
tool support, a non-quantitative approach is needed.

The Elmo Tool. Elmo is the decision support tool that is developed in this
research project (open source; https://bitbucket.org/arjanl/elmo-tool), recently
demonstrated at ICSOC 2018 [10,16] and built on top of the formalization
presented in this paper. Leveraging a whiteboard-style notation for architec-
tures and deployments, Elmo’s main features are (1) automated non-quantitative
analysis of service sensitivities and (2) automated inference of series of can-
didate refactorings that are guaranteed to be behavior-preserving and achieve
given insensitivity goals. If multiple different series of candidate refactorings
achieve the specified goals, Elmo automatically computes a comparison of other
attributes of the final system designs for the user to inspect. Moreover, Elmo
also supports an interactive mode that enables users to manually explore a sys-
tem’s design space by selecting and applying candidate refactorings from a list.
(Elmo does not actually carry out refactorings, though; the tool is geared toward
providing decision support to solve the Button Problem.)

We successfully evaluated Elmo in two case studies involving systems of First8
clients that suffer(ed) from the Button Problem:

1. In an e-commerce system at an undisclosed client, performance issues arose in
key services when the load on seemingly unrelated services increased. First8
was consulted to solve this Button Problem, but Elmo did not yet exist at the
time. Due to the sheer size and complexity of the system, the SOA developers
involved ultimately proposed a broad, coarse-grained refactoring approach
that affected the whole system; they were unable to manually find a more
targeted series of refactorings to solve the problem more locally. The project
revealed the need for a decision support tool to deal with this complexity.

https://bitbucket.org/arjanl/elmo-tool

692 S.-S. Jongmans et al.

Recently, we modeled the system in Elmo and automatically found a much
more localized series of refactorings that achieves the same goals. Moreover,
SOA developers that worked on the project are of the opinion that if Elmo
had existed at the time of the project, this would have resulted in performance
improvements much earlier in the process and with more confidence.

2. JoinData is a digital highway for farm-generated data, used nation-wide in the
Netherlands. It allows for data exchange in the agricultural sector. For exam-
ple, milking-robots on the farm, animal feed suppliers, or soil laboratories
can exchange information with accountancy firms, governmental organisa-
tions, or farm management systems. Due to expected growth, the scalability
of the messaging component, called EDI-Circle, needed to improve by solving
the Button Problem of one of its constituent services.
We compared (i) the manual analysis and proposed course of action by the
lead architect of EDI-Circle with (ii) Elmo’s automated analysis. Whereas
the architect proposed “to change the whole system, since everything is con-
nected”, Elmo proposed a much more localized series of refactorings.

Details of case study 1 are protected by NDA; details of case study 2 are in [16].
In the rest of this paper, we present the rigorous foundation on top of which

Elmo is built. We shall formalize systems at the abstraction level of their archi-
tectures and deployments. Refactorings are subsequently defined over formal
architecture models; sensitivities are derived from formal deployment models.

3 Architectures and Refactorings

3.1 Architecture Models

Our formalization of architectures closely follows the proven whiteboard-style
notation used by First8’s SOA developers to effectively communicate with clients
and business executives. The notation comprises graphical diagrams where ser-
vices are drawn as nodes and calls between services as edges. Services are anno-
tated with the types of information they produce and consume. Calls come in
two flavors: pushes and pulls. A push by service s1 to service s2 entails a single
communication from s1 to s2 (there is no subsequent acknowledgment from s2
to s1

1); a pull by s1 from s2 entails a request for information from s1 to s2, and a
subsequent response from s2 to s1. We formalize these diagrams as architecture
models. Let S denote the set of all services, ranged over by s, and let T denote
the set of all types of information, ranged over by t.

Definition 1. An architecture model A is a tuple (S, T,Π, Γ, ,) where:

– S ⊆ S and T ⊆ T denote sets of services and types;
– Π,Γ : T → 2S denote indexed sets of producers and consumers;

1 In terms of the Osi transport layer, Tcp/Ip packets involved in a push are acknowl-
edged (as part of the Tcp/Ip protocol), but this is at a lower level of abstraction.

SOA and the Button Problem 693

Fig. 1. Example architecture model Fig. 2. Example directions/initiatives

– , : T → 2S×S denote indexed push and pull relations such that
(s1, s2) ∈ (t) implies s1 �= s2, and (s1, s2) ∈ (t) implies s1 �= s2.

Arch denotes the set of all architecture models.

In words, s ∈ Π(t) and s ∈ Γ (t) mean that service s respectively produces and
consumes information of type t (the utility of these sets becomes clear when we
define well-formedness, shortly); we write Πt and Γ t instead of Π(t) and Γ (t).
In words, (s1, s2) ∈ (t) and (s1, s2) ∈ (t) mean that service s1 respectively
pushes and pulls information of type t to and from service s2; we write s1

t
s2

and s1
t

s2 instead of (s1, s2) ∈ (t) and (s1, s2) ∈ (t). The domain of
an architecture model A is its set of services, denoted by Dom(A).

Example 1. Figure 1 shows an architecture model for a webshop system; it is a
simplified version of the e-commerce system discussed in Sect. 2.

The database service, called db, manages information about products and
orders. The front-end service, called chkout , is used by customers to order prod-
ucts; it calls the database service to pull product information and push new
orders, while it pulls from a pricing service, called price, for calculating final
prices (including additional fees and transport costs). The accounting service,
called acc, checks if orders have been paid for; it calls the database service to
pull order information. Finally, the back-office service, called office, maintains
the product catalog; it calls the database service to push updated product infor-
mation.

We note that we distinguish between new order/product information (nprod
and norder), produced by chkout/office, and existing order/product information
(prod and order), produced (i.e., “owned”) by db. ��

Architecture models (Definition 1) specify precisely the direction (i.e., from
pusher to “pushee”, but from “pullee” to puller) and the initiative (i.e., pushers
and pullers; services that start information flows) of information flows; they
abstract from call specifics (e.g., operations that are invoked; resources that are
accessed), quantitative aspects of communication (e.g., call frequencies; latency;
throughput), and transport characteristics (e.g., synchronous vs. asynchronous;
reliable vs. lossy; unordered vs. order-preserving). Direction and initiative serve

694 S.-S. Jongmans et al.

Fig. 3. Refactoring framework

key purposes in our work: in this section, we use direction to reason about
candidate refactorings; in the next section, we use initiative to reason about
service sensitivities. We elicit these notions formally as follows. Let f1 � f2 =
{x 	→ f1(x) | x ∈ X1 \ X2} ∪ {x 	→ f2(x) | x ∈ X2 \ X1} ∪ {x 	→ f1(x) ∪
f2(x) | x ∈ X1 ∩ X2} denote the pointwise union of functions f1 : X1 → 2Y1 and
f2 : X2 → 2Y2 .

Definition 2. , : Arch → (T → 2S×S) denote the (doubly) indexed
direction and initiative relations defined by the following equations:

((S, T,Π, Γ, ,)) =
{
t 	→ (t) ∪ (t)-1 t ∈ T

}

((S, T,Π, Γ, ,)) = �

In words, (s1, s2) ∈ (A)(t) and (s1, s2) ∈ (A)(t) means that flow of infor-
mation of type t is directed and initiated from service s1 to service s2 in architec-
ture model A; we write s1

t
A s2 and s1

t
A s2 instead of (s1, s2) ∈ (A)(t)

and (s1, s2) ∈ (A)(t). Figure 2 exemplifies these relations for Fig. 1.
An architecture model is well-formed if every flow of information of type t

starts at a producer of t (i.e., information should not emerge out of nowhere)
and ends at a consumer of t (i.e., information should not be discarded unused).
Formally, if A = (S, T,Π, Γ, ,) and s1

t
A s2, then there exist services

sp and sc such that: Πt � sp
t ∗

A s1 and s2
t ∗

A sc ∈ Γ t. Well-formedness is
an important sanity condition that models need to satisfy; it catches modeling
inconsistencies and redundancies regarding information availability (which is also
why producers/consumers are explicit elements of the model and not derived).

3.2 Refactoring Framework

We define a rigorous refactoring framework in terms of composition (⊕) and
equivalence (∼) of architecture models (Fig. 3). The idea is to represent an archi-
tecture A as the composition of an “old part” A1 and a “remaining part” A2

(formally: A = A1⊕A2). Refactoring, then, amounts to substituting the old part
with an equivalent “new part” Â1 (formally: A1 ∼ Â1). If the equivalence is in
fact a congruence for composition, substitution of equivalent parts is guaranteed
to yield equivalent wholes, which means that all existing information flows are

SOA and the Button Problem 695

preserved by substitution and no spurious new ones are introduced. This con-
gruence property is pivotal: because of it, to show that a refactoring is correct,
we need to prove only the equivalence of the old part and the new part, while
we can safely ignore the remaining part. We now explain the details.

To compose architecture models A1 and A2, we “glue” them together on
their shared services; through these services, information can subsequently flow
from A1 to A2 and back, in accordance with the original push and pull relations.
Such composition of architecture models corresponds roughly to union of graphs
with overlapping vertex sets but disjoint edge sets.

Definition 3. ⊕ : Arch × Arch → Arch denotes the composition function
defined by the following equation:

A1 ⊕ A2 = (S1 ∪ S2, T1 ∪ T2,Π1 � Π2, Γ1 � Γ2, 1 � 2, 1 � 2)
where Ai = (Si, Ti,Πi, Γi, i, i)

The following theorem states that composition of architecture models preserves
the direction of information flows.

Theorem 1. A1⊕A2 = A1 � A2

Two architecture models are equivalent iff the direction of every flow of infor-
mation in the one can be mimicked in the other, including production and con-
sumption of information, and vice versa. We note that we do not require mimicry
of initiative; the idea is that it does not matter which service initiates sharing
of information, so long as all information reaches the right services.

Definition 4. �,∼ : 2S×S → 2Arch×Arch denote the indexed preorder and
equivalence relations defined by the following equations:

�(R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(A, Â)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∀t, s, s′.
[
s

t
A s′ ⇒ ∃ŝ, ŝ′.

[
ŝ

t
Â ŝ′ ∧ s R ŝ ∧ s′ R ŝ′]]

∧ ∀t, s.
[
s ∈ Πt ⇒ ∃ŝ.

[
ŝ ∈ Π̂t ∧ s R ŝ

]]

∧ ∀t, s.
[
s ∈ Γ t ⇒ ∃ŝ.

[
ŝ ∈ Γ̂ t ∧ s R ŝ

]]

∧ A = (S, T,Π, Γ, ,) ∧ Â = (Ŝ, T̂ , Π̂, Γ̂ ,
∼

,
∼)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∼(R) = �(R) ∩ �(R-1)-1

In words, (A, Â) ∈ �(R) means that relation R associates every service s in
A with a set of services Ŝ = {ŝ | s R ŝ} in Â that collectively2 simulate s
(i.e., every information flow from s to some service s′ in A can be mimicked
as an information flow from some service ŝ ∈ Ŝ to some service ŝ′ in Â; every
information production or consumption by s can be mimicked as an information
production or consumption by some service ŝ ∈ Ŝ). In words, (A, Â) ∈ ∼(R)
means that services in A and in Â simulate each other under the same relation
R. We write A �R Â and A ∼R Â instead of (A, Â) ∈ �(R) and (A, Â) ∈ ∼(R).
2 Individual services in Ŝ may contribute only partially to the simulation (see also

Example 2). This is where our definition of simulation differs significantly from the
classical one in concurrency theory (e.g., [17]). It is also why s R ŝ appears as a
conjunct on the right-hand side of the implication instead of on the left-hand side.

696 S.-S. Jongmans et al.

Fig. 4. Equivalent architecture models (and deployment models) of the example web-
shop systems before and after refactoring. Blue dashed lines indicate the simulation
relation; sets of producers and consumers are omitted to save space. (Color figure
online)

Example 2. Figure 4a and b show two equivalent architecture models of the
example webshop system (Example 1), before and after refactoring; we discuss
Fig. 4c, the gray boxes around services, and the parenthetical mentioning of
“deployment models” in the caption in Sect. 4. Architecture model A in Fig. 4a
is the original (cf. Fig. 1).

Architecture model Â in Fig. 4b results from “splitting” service db in A into
two new services: one that stores only product information, and one that stores
only order information. To see that A and Â are equivalent, observe that prod
information flows from db to services chkout and price in A, while prod infor-
mation flows from service proddb to chkout and price in Â. Thus, db in A is
partially simulated by proddb in Â; likewise, with respect to order information
flows, db in A is partially simulated by service orderdb in Â. Thus, db in A is
collectively simulated by proddb and orderdb in Â. Similarly, we can argue that
Â is simulated by A. ��
Example 3. To further illustrate (the intricacies of) Definition 4, suppose well-
formed architecture A precisely consists of Πt � s

t
s′ t

s′′ ∈ Γ t, while
well-formed architecture Â precisely consists of Πt � s

t
s′
a ∈ Γ t and Πt �

s′
b

t
s′′ ∈ Γ t. These architectures are not equivalent: no relation R exists

such that A ∼R Â. Notably, A �∼R† Â for R† = {(s, s), (s′, s′
a), (s

′, s′
b), (s

′′, s′′)},
because s′

a (resp. s′
b) in Â is consumer (resp. producer), but s′ in A is not. Also,

A �∼R‡ Â for R‡ = {(s, s), (s, s′
b), (s

′′, s′
a), (s

′′, s′′)}, because s′ is missing from R‡.
This also shows that well-formedness does not imply production/consumption
mimicry.

But, A ∼R† Â does hold after updating A such that s′ ∈ Πt∩Γ t. In that case,
splitting s′ into s′

a and s′
b means the consumption and production responsibilities

of s′ are divided over two new services; this can be perfectly fine in practice. ��

SOA and the Button Problem 697

flip

⎛
⎝

s1

s2

t

⎞
⎠ =

s1

s2

t split

⎛
⎝

s1 s2

s3

t1 t2 ; s3, s3a, s3b, {t1}
⎞
⎠ =

s1 s2

s3a s3b

t1 t2

flip

⎛
⎝

s1

s2

t

⎞
⎠ =

s1

s2

t merge

⎛
⎝

s1 s2

s3a s3b

t1 t2 ; {s3a, s3b}, s3
⎞
⎠ =

s1 s2

s3

t1 t2

addqueue(s1
t

s2 ; t, s1, s2, sq) = s1
t

sq
t

s2

addcache(s1
t

s2 ; t, s1, s2, sc, srd) = s1
t

sc
t

srd
t

s2

Fig. 5. Basic instances of example refactorings

The following theorem states that the equivalence relation ∼ (Definition 4) is
a congruence relation for the composition operation ⊕ (Definition 3). To prove
the theorem, we need additional assumptions beside equivalence of the parts.
These additional assumptions state that after substitution, the services on the
“boundary” between the old/new parts and the remaining part (set SB in the
theorem) must be indistinguishable from those before substitution (in terms of
their names and information flows). In other words, the interface must remain
the same: services on the boundary may not be renamed, added, or removed by
a refactoring.

Theorem 2.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 ∼R1 Â1

∧ SB = Dom(A1) ∩ Dom(A2)

∧ SB = Dom(Â1) ∩ Dom(A2)

∧ ∀s, ŝ.
[[

s R1 ŝ ∧ s ∈ SB

] ⇒ s = ŝ
]

∧ ∀s, ŝ.
[[

s R1 ŝ ∧ ŝ ∈ SB

] ⇒ s = ŝ
]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ ∃R.
[
A1 ⊕ A2 ∼R Â1 ⊕ A2

]

3.3 Core Library of Refactorings

Now, every refactoring in our framework (Fig. 3) is defined by a predicate–
function pair (P, f): predicate P identifies (sub)architectures that can take on
the role of A1 (the old part), while function f describes the transformation of A1

into Â1 (the new part). An instance of a refactoring, then, is the transformation
of a concrete A1 that satisfies P into Â1 according to f . We call refactoring
(P, f) correct if, for all A1, satisfaction of P by A1 implies that A1 and f(A1)
are equivalent. Subsequently, Theorem2 ensures that a correct refactoring for
A1 can safely be applied in any architecture that contains A1.

We defined a core library of provably correct refactorings: Flip, Split , Merge,
AddQueue, and AddCache. These refactorings were selected to form a minimal

698 S.-S. Jongmans et al.

Fig. 6. Predicates of refactorings in the core library

set of primitive building blocks to support our two case studies (Sect. 2); due
to the generality of our framework, the core library can straightforwardly be
extended in future work, by need. Figure 5 shows basic instances of these refac-
torings; notationally, we use a semicolon to distinguish the old architecture to
which a refactoring is applied from additional information that is used to com-
pute the refactoring. Refactoring Flip converts pushes between corresponding
“reverse-pulls” and vice versa. Refactoring Split divides the responsibilities of
a single old service s3 over multiple new services s3a and s3b (practically, such
splitting is usually subject to additional constraints, such as information depen-
dencies, which can be manually added as model annotations in the implementa-
tion; Sect. 5, footnote 4). Dually, refactoring Merge combines the responsibilities
of multiple old services s3a and s3b into a single new service s3. Refactoring
Add-Queue introduces a special service sq to replace a push from service s1 to
service s2; the idea is that “producer” s1 now pushes information to “queue” sq
(instead of directly to s2), while “consumer” s2 pulls that information from sq
(at its own pace, independent of s1). Refactoring AddCache introduces special
services sc and srd to replace a pull from service s1 to service s2; the idea is
that “consumer” s1 pulls information from “cache” sc, which is eagerly filled
through pushes from “reader” srd, which gets the information by pulling from
“producer” s2.

Let X[y/Y] denote the substitution in X of element y for every element from
set Y (i.e., X[y/Y] = X if X ∩ Y = ∅, and X[y/Y] = (X \ Y) ∪ {y} otherwise),
and let ◦ : 2X×Y × 2Y ×Z → 2X×Z denote relational composition. Figures 6 and
7 show the predicates and functions that formally define the refactorings in the
core library. The following theorem states their correctness.

Theorem 3.

– Flip?(A) ⇒ ∃R.
[
A ∼R flip(A)

]

– Split?(A; s, s1, s2, T1) ⇒ ∃R.
[
A ∼R split(A; s, s1, s2, T1)

]

– Merge?(A;S, s) ⇒ ∃R.
[
A ∼R merge(A;S, s)

]

– AddQueue?(A; sq) ⇒ ∃R.
[
A ∼R addqueue(A; sq)

]

– AddCache?(A; sc, srd) ⇒ ∃R.
[
A ∼R addcache(A; sc, srd)

]

Together, Theorems 2 and 3 support the refactoring framework shown in
Fig. 3. We note, though, that to apply Theorem2 with Split and Merge (i.e., to

SOA and the Button Problem 699

satisfy the boundary condition), not only the split/merged service s must be in
the old/new parts, but also the services that s calls and those that call s.

4 Deployments and Sensitivities

The whiteboard-style architecture models and rigorous refactoring framework
presented in Sect. 3 offer a formal means of defining and reasoning about (the
correctness of) refactorings. However, the formalism so far does not tell us which
refactorings are “good” and which ones are “bad”; what is missing is a mech-
anism to evaluate the effectiveness of a refactoring. In this section, we define
non-quantitative sensitivity indicators based on which SOA developers can make
informed choices between candidate refactorings to solve the Button Problem.

Example 4. To illustrate core concepts, we shall continue to develop the example
webshop system (Example 1) It actually suffers from exactly the same Button
Problem as the e-commerce system on which our simplified version is based.

Specifically, services chkout and price (in the system as modeled in Fig. 4a)
are sensitive to button-presses on service acc: once acc starts checking whether
orders have been paid for, the performance of chkout and price decreases, as
service db is unable to process the additional calls from acc without affecting
the calls from chkout and price. Checking payment statuses is, however, only a
low-priority task—it does not matter whether it happens immediately or in a
few hours—and it should definitely not hinder the high-priority front-end of the
system (which directly affects business). Refactoring the system to make chkout
and price insensitive to acc is therefore an important improvement. ��

We start by observing that the sensitivity of a service to button-presses on
other services does not depend solely on its incoming push and pull calls, but
also on the machine on which it is deployed: if two architecturally independent
services are deployed on the same machine, an increased load on the one will
affect the performance of the other. To reason about service sensitivities, we
therefore need to take into account deployments as well. Let M denote the set
of all machines, ranged over by M .

Definition 5. A deployment model D is a tuple (A,M,M) where:

– A ∈ Arch denotes an architecture model;
– M ⊆ M denotes a set of machines;
– M : Dom(A) → M denotes a service–machine allocation.

D denotes the set of all deployment models.

Example 5. Reconsider Fig. 4; it actually shows deployment models, where gray
boxes around services represent machines. Thus, in Fig. 4a and b, there are three
machines (from top to bottom: a front-end machine, a database machine, and
an administration machine), whereas in Fig. 4c, there are four machines. ��

700 S.-S. Jongmans et al.

Fig. 7. Functions of refactorings in the core library

Based on a deployment model of a system, we can compute two non-quantita-
tive indicators that we shortly use to formalize sensitivity: stress and delay. The
stress of a service is a non-quantitative abstraction of the number of incoming
calls that it needs to process. The higher the number of calls, the higher the
stress of the service and the lower its performance. The delay of a service is a
non-quantitative abstraction of the number of outgoing pulls whose processing
(by other services) it needs to await. The higher the number of pulls, the higher
the delay of the service and the lower its performance. The stress set of a service
s contains the services that affect the stress of s (including itself): if the stress
of a service in its stress set increases, then so does the stress of s. The delay set
of a service s contains the services that affect the delay of s.

Definition 6. Stress,Delay : D × S → 2S denote the indexed stress and delay
sets defined by the following equations:

Stress(D, s) = {s} ∪ ⋃{Stress(D, s′) | s′ t
A s ∨ M(s′) = M(s)}

Delay(D, s) =
⋃{Stress(D, s′) ∪ Delay(D, s′) | s

t
s′}

where D = (A,M,M) and A = (S, T,Π, Γ, ,).

SOA and the Button Problem 701

Note that the delay set of a service s contains the stress set of every service s′

from which s pulls information. This is because the services in the stress set of s′

may negatively affect the rate at which s′ can process pulls by s: if the services
in the stress set of s′ heavily stress s′, then this rate goes down.

We can now formalize (in)sensitivity to button-presses as follows:

– If service s1 is affected by service s2 regardless of s1’s calls to s2, then s1 is
forcibly sensitive to s2 (i.e., s1 is forcibly sensitive to s2 if s2 stresses s1).

– If service s1 is affected by service s2 because s1 requires information from s2
by means of a pull, then s1 is voluntarily sensitive to s2 (i.e., s1 is voluntarily
sensitive to s2 if s2 delays s1).

– If service s1 is unaffected by service s2, it is insensitive to s2.

Definition 7. I,V ,F : D → S × S denote the indexed sensitivity relations
defined by the following equations:

F(D) = {(s, s′) | s′ ∈ Stress(D, s)}
V(D) = {(s, s′) | s′ /∈ Stress(D, s) ∧ s′ ∈ Delay(D, s)}
I(D) = {(s, s′) | s′ /∈ Stress(D, s) ∧ s′ /∈ Delay(D, s)}

Remark:
{F(D),V(D), I(D)

}
partitions Dom(A)×Dom(A) for D = (A,M,M).

Example 6. Recall from Example 4 that front-end services chkout and price suf-
fer from the Button Problem in the example webshop system as modeled in
Fig. 4a. We shall apply two changes to alleviate this problem, but first, we show
that the deployment model in Fig. 4a indeed confirms these undesirable sensi-
tivities.

Let D denote the deployment model in Fig. 4a. Because services chkout and
price are deployed on the same machine (and because they receive no external
calls), their stress set under D is {chkout , price}. However, because chkout and
price both pull from service db, their delay set contains all services that stress db,
including service acc. Thus, acc ∈ Delay(D, chkout) and acc ∈ Delay(D, price):
according to the model high-priority chkout and price are both voluntarily sen-
sitive to low-priority acc. Intuitively, if service acc pulls intensely from service
db (increasing the stress of db), the rate at which db can process pulls by chkout
and price is negatively affected (increasing the delay of chkout).

The first change is the application of refactoring Split to divide the responsi-
bilities of existing service db over new services proddb and orderdb; let D̂ denote
the resulting deployment model in Fig. 4b (Example 2). Intuitively, this refac-
toring should make services chkout and price insensitive to button-presses on
service acc (because the only pulls they perform are directed to proddb, which
is architecturally independent of acc), but because proddb and orderdb are still
deployed on the same machine, the voluntary sensitivities actually remain: acc
can still stress orderdb, which subsequently affects the processing speed of proddb.

The second change is a redeployment that puts each of services proddb and
orderdb on its own machine; let ˆ̂

D denote the resulting deployment model in
Fig. 4c. A redeployment is not a refactoring, it does not change information

702 S.-S. Jongmans et al.

flows among services, and thus it is trivially behavior-preserving; it only changes
the service–machine allocation. By redeploying services according to ˆ̂

D, stress is
no longer shared between proddb and orderdb; as a result, services chkout and
price become insensitive to acc, solving the Button Problem. Reasoning with
sensitivities in this way thus provides a formal justification to refactor. ��

5 Implementation

Engine. We now explain how the formalization presented in the previous section
provides a rigorous foundation for the Elmo tool. To safeguard a tight correspon-
dence between the tool and its formalization, the lead developer of the tool is
closely involved in the formalization as well. Essentially, Elmo’s implementation
consists of two key components: data structures to store architecture models and
deployment models and a reasoning engine. The engine has two capabilities:

1. Computation of stress sets, delay sets, (in)sensitivities, and secondary perfor-
mance indicators (e.g., network depth)

2. Exploration of a system’s design space toward one or more insensitivity goals

These capabilities are invoked in Elmo’s two usage modes.

Interactive Mode. In interactive mode, after drawing an initial deployment model
of the system in Elmo, Capability 1 is invoked to get an overview of services that
potentially suffer from the Button Problem. The user can subsequently refactor
the model to evaluate and compare manually devised candidate solutions. Inter-
active mode is particularly suitable to get quick feedback on candidate solutions
(e.g., during live meetings with project members to explore the options), without
having to work out all details manually, which is laborious and error-prone. It is
therefore important that computation of performance indicators is fast. To give
an indication, the computation of stress sets, delay sets, and (in)sensitivities in
the model of the full e-commerce system (case study 1; Sect. 2), which consists
of 60 services with 125 calls, takes less than a second (on regular hardware).

Automatic Mode. In automatic mode, if service s suffers from the Button Prob-
lem (e.g., found using Capability 1), the user can declaratively formulate a solu-
tion to the problem as a set of target insensitivities from s to other services; then,
Capability 2 is invoked to let Elmo automatically look for series of refactorings
that achieve the specified insensitivity goals by exploring the design space.

The design space of a system is essentially a directed graph, where vertices are
deployment models, and edges are refactorings (from the core library; Sect. 3.3)
and redeployments that transform (the architecture model of) a “source” deploy-
ment model into (the architecture model of) a “target” deployment model. To
generate a system’s design space, starting from an initial deployment model,
refactorings are applied and sensitivities are computed for the resulting models
to check if the specified insensitivity goals have been achieved (using Capability
1). In this way, the entire design space is generated and exhaustively explored;

SOA and the Button Problem 703

solutions are reported as soon as they are found, so if a satisfactory one is dis-
covered early, the rest of the search may be user-aborted long before exhaustive
exploration is done (it can also be bounded to a fixed depth from the start). We
employ a breadth-first exploration policy, as it finds solutions of few refactorings
(generally more attractive for businesses) sooner than those of many refactorings
(generally more expensive). A similar level of automation to explore a system’s
design space is very difficult to achieve when quantitative models are used, as it
is unclear how to get new quantitative data to instantiate refactored models.

The design space generated from an initial deployment model D0 is finite:
there are finitely many services and calls in D0, there are only finitely many
ways in which refactorings create additional services and calls,3 and the number
of machines is bounded by the number of services. As a result, under our formal-
ization, the Button Problem is decidable in the sense that Elmo can exhaustively
explore the entire design space for solutions. Design spaces do tend to get very
large, though, so even if they can be explored in finite time in theory, it may
not always be feasible in practice. As a result, pending future optimizations (see
below), Elmo’s automatic mode is useful in two scenarios:

– Live meetings: A question that typically arises during discussions among
project members is whether no “easy solutions” (i.e., those that require few
refactorings) are overlooked. In this case, Elmo’s automatic mode can be effec-
tively used with an explicit depth bound (i.e., maximum number of refactor-
ings that candidate solutions may consist of), significantly reducing the design
space to explore. If an easy solution is subsequently found that was previously
overlooked, this is of course valuable information; moreover, if no new easy
solution is found, this is valuable information, too, as it gives the project team
confidence (and objective data) to convince executives that a “hard solution”
is fundamentally needed. To give an indication, it takes only ten minutes to
automatically explore the design space of the full e-commerce system (case
study 1; Sect. 2) up to depth 2.

– Off-line: In the absence of short deadlines, Elmo’s automatic mode can per-
fectly be run unrestricted, to fully explore the potentially huge design space.
A crucial observation is that the size of the design space is not a modeling
artifact, but an inherent characteristic of the problem. Without tool support,
SOA developers just have to plow through it by hand, which seems infeasible;
instead, only the more obvious directions are followed, based on experience
and best-practices, leaving a large part of the space unexplored and (poten-
tially better) solutions hidden. Our case studies confirm this (Sect. 2): for
both systems, Elmo found better solutions that SOA developers did not find.

We are working on a number of optimizations to reduce the design space
wherever possible and speed up the exploration: (1) model annotations to fur-

3 More precisely, the only services that create additional services or calls are Split,
AddQueue, and AddCache. The number of times a service can be split is bound
by the number of types, while the services and calls added through AddQueue and
AddCache carry annotations that inform Elmo to not refactor them any further.

704 S.-S. Jongmans et al.

ther constrain which candidate solutions are truly acceptable;4 (2) partial order
reduction to prune away commuting refactorings [20]; (3) parallelization.

6 Conclusion

Related Work. Other tools exist that aid in refactoring existing architectures.
These tools help to visualize architectures, detect code smells like dependency
cycles, or validate architectural rules (e.g. [4,6,11,21]). However, these tools
work at the implementation/code level and do not take deployment into account,
nor can they evaluate performance sensitivities like Elmo does. Moreover, a key
strength of Elmo is its rigorous foundation and formal correctness (i.e., the core
contribution of this paper); these other tools do not provide such guarantees.

Application performance monitoring tools (e.g. [2,7,8,18]) provide a quick
insight in interactions between services and aid in detecting performance prob-
lems. However, they can only do this when software is actually deployed; not
during design. These tools can identify bottlenecks, but they have only very lim-
ited support for finding solutions. Based on the formalization presented in this
paper, in contrast, Elmo can automatically compute series of refactorings.

UML component diagrams allow developers to document dependencies
between components/services. A key difference with our approach is that compo-
nent diagrams do not distinguish between pushes and pulls [14] (i.e., component
diagrams model dependencies between components, but they do not model the
direction and initiative of information flows that push and pull operations addi-
tionally convey); in our model, this is vital information to reason about refac-
torings and sensitivities. To provide such information in UML, complementary
behavioral diagrams (e.g., UML sequence diagrams) can be used, but then the
level of detail becomes too low for our purpose, while at the same time a mainte-
nance burden emerges. Also, mixing different types of diagrams is cumbersome.

Future Work. We are currently working along three axes: theory, implementa-
tion, and case studies. Along the theory axis, to better support situations where
the specified insensitivity goals are inconsistent (i.e., impossible to achieve), we
4 Elmo may find designs that solve the specified insensitivity goals, but that are

still unacceptable to SOA developers due to external constraints (e.g., the number
of machines exceeds the budget; some services should not be merged because it
requires reorganization of development teams). Instead of letting Elmo first explore
the entire design space and then filtering the unacceptable solutions, SOA developers
can specify additional model annotations upfront to constrain which refactorings
Elmo will try to apply; corners of unacceptable solutions in the design space are
skipped.

Specifically, in the initial deployment model, users can indicate that a service
must remain intact (i.e., it cannot be split, merged, or modified); that some services
cannot be merged; that some sets of types cannot be split; that a call must remain
intact (i.e., it cannot be flipped or replaced by a queue/cache); that some sets of
services must be collocated; that the number of machines must not exceed some
limit.

SOA and the Button Problem 705

are developing notions of Pareto efficiency of deployment models. The idea is to
devise formal machinery to compute Pareto frontiers: sets of deployment models
such that no deployment model in the set can be be further refactored to elimi-
nate an undesirable sensitivity without simultaneously (re)introducing one. We
are also considering to incorporate a form of simulation to provide quantitative
feedback on refactorings (e.g., [12]); this may be useful to analyze and reason
about, for instance, latency (currently not supported).

Along the implementation axis, we are working on the optimizations stated
in Sect. 5 (model annotations; partial order reduction; parallellization).

References

1. Akamai Technologies Inc.: Akamai Online Retail Performance Report | Akamai
(2017). Accessed 28 June 2019. https://www.akamai.com/uk/en/about/news/
press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-
report.jsp

2. AppDynamics LLC: Application Performance Monitoring and Management | App-
Dynamics (nd). Accessed 28 June 2019. https://www.appdynamics.com

3. Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009)

4. Bischofberger, W., Kühl, J., Löffler, S.: Sotograph – a pragmatic approach to source
code architecture conformance checking. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 1–9. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24769-2 1

5. Brebner, P.: Real-world performance modelling of enterprise service oriented archi-
tectures: delivering business value with complexity and constraints (abstracts
only). SIGMETRICS Perform. Eval. Rev. 39(3), 12 (2011)

6. Caracciolo, A., Lungu, M.F., Nierstrasz, O.: A unified approach to architecture
conformance checking. In: WICSA, pp. 41–50. IEEE Computer Society (2015)

7. Datadog Inc.: Modern monitoring and analytics | Datadog (nd). Accessed 28 June
2019. https://www.datadoghq.com

8. Dynatrace LLC: Software intelligence for the enterprise cloud | Dynatrace (nd).
Accessed 28 June 2019. https://www.dynatrace.com

9. van Eekelen, M., Jongmans, S.S., Lamers, A.: Non-Quantitative Modeling of
Service-Oriented Architectures, Refactorings, and Performance. Technical Report
TR-OU-INF-2017-02, Open University of the Netherlands (2017)

10. Elmo Demo (2018). Accessed 28 June 2019. https://youtu.be/Oi9kxqh GBs
11. Headway Software Technologies Ltd.: Structure101 Home – Structure101 (nd).

Accessed 28 June 2019. https://structure101.com
12. Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: A formal model of cloud-deployed

software and its application to workflow processing. In: SoftCOM, pp. 1–6. IEEE
(2017)

13. Juan Ferrer, A., et al.: OPTIMIS: a holistic approach to cloud service provisioning.
Future Gener. Comp. Syst. 28(1), 66–77 (2012)

14. Kobryn, C.: Modeling components and frameworks with UML. Commun. ACM
43(10), 31–38 (2000)

15. Kounev, S.: Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Trans. Softw.Eng. 32(7), 486–502 (2006)

https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.appdynamics.com
https://doi.org/10.1007/978-3-540-24769-2_1
https://www.datadoghq.com
https://www.dynatrace.com
https://youtu.be/Oi9kxqh_GBs
https://structure101.com

706 S.-S. Jongmans et al.

16. Lamers, A., van Eekelen, M., Jongmans, S.-S.: Improved architectures/
deployments with elmo. In: Liu, X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp.
419–424. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17642-6 36

17. Milner, R.: Communication and concurrency. PHI Series in computer science. Pren-
tice Hall, New Jersey (1989)

18. New Relic Inc.: New Relic | Deliver more perfect software (nd). Accessed 28 June
2019. https://www.newrelic.com

19. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.M.: Microser-
vices in practice, part 1: reality check and service design. IEEE Software 34(1),
91–98 (2017)

20. Peled, D.: Partial-order reduction. In: Clarke, E., Henzinger, T., Veith, H., Bloem,
R. (eds.) Handbook of Model Checking, pp. 173–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 6

21. SonarSource SA: Continuous Inspection | SonarQube (nd). Accessed 28 June 2019.
https://www.sonarqube.org

22. Zhu, L., Liu, Y., Bui, N.B., Gorton, I.: Revel8or: model driven capacity planning
tool suite. In: ICSE, pp. 797–800. IEEE Computer Society (2007)

https://doi.org/10.1007/978-3-030-17642-6_36
https://www.newrelic.com
https://doi.org/10.1007/978-3-319-10575-8_6
https://www.sonarqube.org

Controlling Large Boolean Networks with
Temporary and Permanent Perturbations

Cui Su1, Soumya Paul2, and Jun Pang1,2(B)

1 Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Esch-sur-Alzette, Luxembourg

jun.pang@uni.lu
2 Faculty of Science, Technology and Communication, University of Luxembourg,

Esch-sur-Alzette, Luxembourg

Abstract. A salient objective of studying gene regulatory networks
(GRNs) is to identify potential target genes whose perturbations would
lead to effective treatment of diseases. In this paper, we develop two con-
trol methods for GRNs in the context of asynchronous Boolean networks.
Our methods compute a minimal subset of nodes of a given Boolean net-
work, such that temporary or permanent perturbations of these nodes
drive the network from an initial state to a target steady state. The
main advantages of our methods include: (1) temporary and permanent
perturbations can be feasibly conducted with techniques for genetic mod-
ifications in biological experiments; and (2) the minimality of the iden-
tified control sets can reduce the cost of experiments to a great extent.
We apply our methods to several real-life biological networks in silico
to show their efficiency in terms of computation time and their efficacy
with respect to the number of nodes to be perturbed.

1 Introduction

Cellular reprogramming has opened up an unprecedented opportunity for patho-
logical studies and regenerative medicine. It can rejuvenate somatic cells to
pluripotent state, or even convert somatic cells directly to other differentiated
cells [1–3]. Yet the identification of potential target genes and reprogramming
paths remains a major hurdle in in vivo cellular reprogramming [4]. Combina-
torial complexity of potential drug targets and the high cost of experimental
tasks make an experimental approach [5] infeasible. This reinforces the need for
efficient control methods based on mathematical modelling.

Many control methods have been developed in recent years to solve the prob-
lem. However, most of them are not applicable to real-life biological networks
due to different reasons. First, biological networks have a specific control objec-
tive [5,6]: finding a set of nodes, such that the control of these nodes can drive
the system from a steady state to any other steady state. Biologically admissible
steady states are observable phenotypes [7] and only the control of these states
is meaningful. This rules out the methods based on classical controllability [8].

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 707–724, 2019.
https://doi.org/10.1007/978-3-030-30942-8_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_41&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_41

708 C. Su et al.

Second, some modelling frameworks are not suitable for biological networks. For
example, linear dynamical networks fail to capture the non-linearity of biological
networks, thus rendering control strategies for such networks inapplicable [8–10].
Lack of biological information prohibits the modelling of biological systems with
networks of ordinary differential equations (ODEs) [11]. This further limits the
application of control methods based on ODE networks [12,13]. Compared to
the above modelling frameworks, Boolean networks (BNs) are well suited to
model discrete and nonlinear dynamical biological systems. In BNs, genes are
modelled as binary variables, being either ‘expressed’ or ‘not expressed’ and acti-
vation/inhibition regulations between genes are described by Boolean functions.
The dynamics of a BN is determined by Boolean functions together with the
update mode, either synchronous or asynchronous. The steady states of biological
systems are described as attractors in BNs, to one of which the network eventu-
ally settles down. Recently, Kim et al. [14] and Zhao et al. [15] developed methods
to drive a synchronous BN towards a desired attractor. However, the synchronous
update mode is considered less realistic than the asynchronous update mode as
only the latter allows for different time-scales of biological processes [16]. For
asynchronous BNs, Zañudo et al. [6] developed a promising method to identify
attractors and drug targets based on stable motifs. However, this method does
not guarantee the minimality of perturbations.

Owing to various shortcomings of the existing control methods, we aim to
develop a minimal and realistic control strategy for the control of asynchronous
BNs. Given a BN, a source state and a target attractor, our idea is to identify
an exact minimal set C of nodes of the BN, such that by perturbing the nodes in
C, the dynamics of the BN is driven from the source state to the desired target
attractor. One key factor to make this strategy realistic is to adopt physically
admissible and experimentally feasible perturbations [17]. Rapid development
of biomolecular techniques enables us to perturb expressions of nodes for dif-
ferent classes of time periods (instantaneously, temporarily or permanently) in
both directions: from ‘expressed’ to ‘not expressed’ and/or from ‘not expressed’
to ‘expressed’ [18]. In [19], we developed such a method for perturbations that
are instantaneous and showed that it is well suited for certain biological net-
works [17]. In this work, we develop methods for identifying a minimal set C
of control nodes for asynchronous BNs whose perturbations can be long-term
(temporary) or even permanent. The application of control C reshapes the BN
to a new one, where the Boolean functions of the nodes in C are fixed to either
ON or OFF. Permanent control leads to a permanent shift of the dynamics,
whereas, for the temporary control, the perturbations of the identified set C of
nodes are maintained for sufficient time until the network reaches a state, from
which there only exist paths towards the target in the original BN.

We have implemented our temporary and permanent control methods and
evaluated them on a variety of real-life biological networks modelled as BNs.
We show that: (1) both temporary and permanent control sets can be efficiently
computed on BNs that model real-life GRNs; (2) our methods not only capture
the essential genes identified in the literature (e.g, see [20]), but also give other

Control of Large Boolean Networks 709

solutions for potential applications; (3) both methods can greatly reduce the
number of control nodes compared to the instantaneous control [19]. The control
nodes computed by the two methods form a relatively small set even for large-
scale networks. This agrees with the empirical findings that the control of a few
nodes is sufficient to control cell fate determination processes [21,22].

2 Preliminaries

In this section, we give preliminary notions of Boolean networks in Sects. 2.1,
2.2 and 2.3 and precisely formulate our control problems in Sect. 2.4.

2.1 Boolean Networks

Let [n] denote the set of positive integers {1, 2, . . . , n}. A Boolean network (BN)
describes elements of a dynamical system with binary-valued nodes and interac-
tions between elements with Boolean functions. It is formally defined as:

Definition 1 (Boolean networks). A Boolean network is a tuple BN = (x, f)
where x = {x1, x2, . . . , xn} such that each xi, i ∈ [n] is a Boolean variable and
f = {f1, f2, . . . , fn} is a set of Boolean functions over x.

A Boolean network BN = (x, f) has an associated directed graph GBN =
(V,E), where V = {v1, v2 . . . , vn} is the set of vertices or nodes and for every
i, j ∈ [n] there is a directed edge from vj to vi if and only if fi depends on xj .
For the rest of the exposition, we assume that an arbitrary but fixed network
BN = (x, f) of n variables is given to us. For all occurrences of xi and fi, we
assume xi and fi are elements of x and f resp.

A state s of BN is an element in {0, 1}n. Let S be the set of states of BN.
For any state s = (s1, s2, . . . , sn), and for every i ∈ [n], the value of si, often
denoted as s[i], represents the value that the variable xi takes when the BN ‘is in
state s’. For some i ∈ [n], suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) will
denote the value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming
distance between s and s′ will be denoted as hd(s, s′) and arg hd(s, s′) ⊆ [n]
will denote the set of indices in which s and s′ differ. It will be convenient to
view arg hd(s, s′) as a tuple of two disjoint sets (1, 0), where s′[i] = 1 if i ∈ 1

and s′[i] = 0 if i ∈ 0. For a state s and a subset S′ ⊆ S, the Hamming distance
between s and S′ is defined as the minimum of the Hamming distances between s
and all the states in S′, i.e. hd(s,S′) = mins′∈S′ hd(s, s′). Let arg hd(s,S′) denote
the set of tuples, such that (1, 0) ∈ arg hd(s,S′) if and only if 1 ∪ 0 is a set of
indices of the variables that realise the minimum Hamming distance.

2.2 Dynamics of Boolean Networks

We assume that the Boolean network evolves in discrete time steps. It starts
initially in a state s0 and its state changes in every time step according to the
update functions f . The updating may happen in various ways [23,24]. Every
such way of updating gives rise to a different dynamics for the network. In this
work, we shall be interested primarily in the asynchronous update mode.

710 C. Su et al.

Definition 2 (Asynchronous dynamics of Boolean networks). Suppose
s0 ∈ S is an initial state of BN. The asynchronous evolution of BN is a function
ξBN : N → ℘(S) such that ξBN(0) = {s0} and for every j ≥ 0, if s ∈ ξBN(j) then
s′ ∈ ξBN(j+1) is a possible next state of s iff either hd(s, s′) = 1 and s′[i] = fi(s)
where s′[i] = 1 − s[i] or hd(s, s′) = 0 and there exists i such that s′[i] = fi(s).

Note that the asynchronous dynamics is non-deterministic – the value of
exactly one variable is updated in a single time-step whose index is not known
in advance. Henceforth, when we talk about the dynamics of BN, we shall mean
the asynchronous dynamics as defined above. The dynamics of a Boolean network
can be represented as a state transition graph or a transition system (TS).

Definition 3 (Transition system of BN). The transition system of BN,
denoted as TSBN is a tuple (S,→BN), where the vertices are the set of states
S and for any two states s and s′ there is a directed edge from s to s′, denoted
s →BN s′ iff s′ is a possible next state of s according to the asynchronous evolu-
tion function ξBN of BN.

Fig. 1. The transition systems of BN.

Example 1. Consider a network BN = (x, f), where x = {x1, x2, x3}, f =
{f1, f2, f3}, and f1 = ((¬x3)∧x1)∨x2, f2 = ((¬x3)∧x2)∨ ((¬x3)∧x1), f3 = 0.
The transition system of the network TSBN is given in Fig. 1a.

Definition 4 (Control). A control C is a tuple (1, 0) where 1, 0 ⊆ [n], 1 and
0 are mutually disjoint (possibly empty) set of indices of variables of BN. The
size of control C is defined as size(C) = |1| + |0|. Given two states s, s′ ∈ S, let
Cs→s′

= (1, 0), where 1 = {i ∈ [n] | s′[i] = 1 = 1− s[i]} and 0 = {i ∈ [n] | s′[i] =
0 = 1 − s[i]}.

Intuitively, 1 and 0 represent the indices of variables of BN whose values are
held fixed to 1 and 0 respectively under the control C. For Cs→s′

, 1 ∪ 0 are

Control of Large Boolean Networks 711

the set of indices in which s and s′ differ, out of which 1 and 0 are the indices
which have a value 1 and 0 in s′, respectively. The application of a control C to
BN = (x, f) has the effect of reducing the state space of BN to those which have
the values of the variables in 1 and 0 set respectively to 1 and 0 and modifying
the update functions accordingly. This results in a new Boolean network derived
from BN defined as follows.

Definition 5 (BN under control). Let C = (1, 0) be a control. Then the
Boolean network BN under control C, denoted BN|C, is defined as a tuple BN|C =
(x̂, f̂) where the elements of x̂ and f̂ are given as, for all i ∈ [n]:

– x̂i = 1 if i ∈ 1, x̂i = 0 if i ∈ 0, and x̂i = xi otherwise.
– f̂i = 1 if i ∈ 1, f̂i = 0 if i ∈ 0, and f̂i = fi otherwise.

The state space of BN|C, denoted S|C is derived by fixing the values of the
variables in the set C to their respective values and is defined as S|C = {s ∈
S | s[i] = 1, i ∈ 1 and s[j] = 0, j ∈ 0}. Note that S|C ⊆ S. For any subset S′ of S
we let S′|C = S′ ∩S|C. The asynchronous dynamics and the transition system of
BN|C are defined similarly to Definitions 2 and 3 by replacing BN = (x, f) with
BN|C = (x̂, f̂). We omit the definitions to avoid duplications.

Definition 6 (Application and release of control). Let s ∈ S be a state
of BN and let C = (1, 0) be a control. The instantaneous application or 0-step
application of C to s results in a state s′ such that s′[i] = 1 for all i ∈ 1, s′[j] = 0
for all j ∈ 0 and s′[k] = s[k] otherwise. We will often denote this as s C∼ s′ and
denote s′ as C(s). The application of C to s for t ≥ 1 time steps results in a
sequence s0, s1, s2, . . . , st, where s0 = C(s) and for every k ∈ [t], sk ∈ ξBN|C(sk−1).
When t → ∞, we shall call it a permanent application of C to s or a permanent
control of s.

Suppose BN under control C is in state s ∈ S|C and has been evolving accord-
ing to ξBN|C . The release of control at s is performed instantaneously and it

restores the update dynamics to ξBN. We often denote it as s C−1

∼ s →BN . . .

Thus suppose BN starts evolving from an initial state s0 ∈ S and after t1
steps a control C is applied to it. Suppose the control lasts for t2 steps and then
it is released and then BN goes back to evolving according to its original update
dynamics. This will result in a sequence that can be represented as:

s0 →BN s1 →BN . . . →BN st1
︸ ︷︷ ︸

t1 steps

C∼ s′
0 →BN|C s′

1 →BN|C . . . →BN|C s′
t2

︸ ︷︷ ︸

t2 steps under control C

C−1∼ s′′
0 →BN s′′

1 →BN . . .

Intuitively, on the application of control C for t2 steps, the behaviour of BN
is given according to TSBN|C for t2 time steps. After that, when C is released,
the behaviour goes back to TSBN. The release of C does not change the value of
any variable, thus s′′

0 = s′
t2 .

Example 2. For Example 1, given a control C = (1, 0), where 1 = {2} and
0 = {3}, the transition system TSBN|C of BN|C is described in Fig. 1b.

712 C. Su et al.

2.3 Attractors and Basins

In what follows we shall use the generic notation TS to represent either the full
transition system TSBN of BN or the transition system TSBN|C of BN under a
control C. Similarly we let ‘→’ stand for either →BN or →BN|C . We define several
notions on TS below which can be interpreted both on TSBN and TSBN|C . The
state space, transitions etc. will correspond either to TSBN or TSBN|C (or both)
depending on the context.

A path ρ from a state s to a state s′ is a (possibly empty) sequence of
transitions from s to s′ in TS. Thus, ρ = s0 → s1 → . . . → sk, where s0 = s and
sk = s′. A path from a state s to a subset S′ of S is a path from s to any state
s′ ∈ S′. An infinite path ρ from s is an infinite sequence of transitions from s.
Let Path∞(s) denote the set of infinite paths from s. Let ρ = s0 → s1 → . . . be
an infinite path from s0. A state s ∈ S appears infinitely often in ρ if for every
i ≥ 0 there exits j ≥ i such that sj = s. s appears finitely often in ρ otherwise.

Definition 7 (Fairness). Let s0 ∈ S. An infinite path ρ = s0 → s1 → . . . is
said to be unfair if for every state s that occurs infinitely often in ρ, there exists
a possible next state s′ of s which occurs only finitely often in ρ. ρ is said to be
fair otherwise.

It is important to impose the restriction of fairness because otherwise, the
TSBN would have pseudo-attractors (defined shortly) which would not corre-
spond to any meaningful phenotypes of the GRN being modelled. Fairness
ensures that the attractors of TS are exactly the ones that are experimentally
observed. Henceforth, we shall assume that the evolution of BN is always fair,
and hence consider only fair paths. Therefore, let Path∞(s) denote the set of all
infinite fair paths from a state s ∈ S.

For any state s ∈ S, let preTS(s) = {s′ ∈ S | s′ → s} and let postTS(s) = {s′ ∈
S | s → s′} where →∈ {→BN,→BN|C} depending on the context. preTS(s) con-
tains all the states that can reach s by performing a single transition in TS and
postTS(s) contains all the states that can be reached from s by a single transition
in TS. preTS(s) and postTS(s) are often called the set of predecessors and succes-
sors of s. Note that, by definition, hd(s, preTS(s)) ≤ 1 and hd(s, postTS(s)) ≤ 1.
preTS and postTS can be lifted to a subset S′ of S as: preTS(S′) =

⋃
s∈S′ preTS(s)

and postTS(S′) =
⋃

s∈S′ postTS(s). We define prei+1
TS (S′) = preTS(preiTS(S

′)) and
posti+1

TS (S′) = postTS(postiTS(S
′)) where pre0TS(S

′) = post0TS(S
′) = S′. For a state

s ∈ S, reachTS(s) denotes the set of states s′ such that there is a path from s to
s′ in TS and can be defined as the fixpoint of the successor operation which is
often denoted as post∗TS. Thus, reachTS(s) = post∗TS(s).

Definition 8 (Attractor). An attractor A of TS is a minimal non-empty sub-
set of states of S such that for every s ∈ A, reachTS(s) = A.

Any state which is not part of an attractor is a transient state. An attractor
A of TS is said to be reachable from a state s if reachTS(s) ∩ A = ∅. Attractors
represent the stable behaviour of the BN according to the dynamics. The network

Control of Large Boolean Networks 713

starting at any initial state s0 ∈ S will eventually end up in one of the attractors
of TS and remain there forever unless perturbed.

Observation 1. Any attractor of TS is a bottom strongly connected component
of TS.

Let S′ be a subset of states of S. We define subsets of states of S called the
weak and strong basins of S′, denoted as basWTS(S

′) and basSTS(S
′), respectively.

Definition 9 (Basin). Let S′ ⊆ S.

– Weak basin: The weak basin of S′ with respect to TS, is defined as
basWTS(S

′) = {s ∈ S | reachTS(s) ∩ S′ = ∅} which equals the fixpoint of
the predecessor operation on S′ and is often denoted as pre∗

TS(S
′). Thus,

basWTS(S
′) = pre∗

TS(S
′). In other words, since all paths in Path∞(s) are fair,

basWTS(S
′) = {s ∈ S | ∃ρ = s0 → s1 → . . . ∈ Path∞(s),∃j ≥ 0, sj ∈ S′}

– Strong basin: The strong basin of S′ with respect to TS, is defined as

basSTS(S
′) = {s ∈ S | ∀ρ = s0 → s1 → . . . ∈ Path∞(s),∃j ≥ 0, sj ∈ S′}

We say that a path ρ = s0 → s1 → . . . eventually reaches S′ if there exits
j ≥ 0 such that sj ∈ S′. Intuitively, the weak basin of S′ consists of all states
from which there is at least one path to S′, whereas the strong basin of S′

consists of all states from which all paths eventually reach S′. Clearly thus,
basSTS(S

′) ⊆ basWTS(S
′). If S′ is an attractor A (say), basWTS(A) and basSTS(A) will

also be referred to as weak and strong basins of attractions with respect to A.
Thus the weak basin of attraction of A is the set of all states s from which there
is a path to A. It is possible that there are paths from s to some other attractor
A′ = A. However, the notion of a strong basin does not allow this. Thus, it is
easy to see that,

Observation 2. If s ∈ basSTS(A) then s /∈ basWTS(A
′) for any other attractor A′.

Therefore, basSTS(A) = basWTS(A) \ (
⋃

A′ bas
W
TS(A

′)) where the union is over all
attractors A′ = A of TS.

Note that if S′ is an attractor A, then if ρ eventually reaches A, it gets stuck
in A forever. That is, for every i ≥ 0, si ∈ A implies sj ∈ A for all j > i.
This follows directly from Definition 8. We need the notion of strong basin to
ensure that every fair sequence under a given update dynamics always reaches
the target attractor. The following observation will be crucial for the control
algorithms developed in this paper.

Observation 3. Let s ∈ S and S′ ⊆ S. Every path ρ ∈ Path∞(s)

1. possibly eventually reaches S′ if and only if s ∈ basWTS(S
′),

2. always eventually reaches S′ if and only if s ∈ basSTS(S
′).

714 C. Su et al.

Example 3. To continue with the example given in Example 1, TSBN has two
attractors A1 = {(110)} and A2 = {(000)} shown by dark grey rectangles in
Fig. 1a. The weak basin and the strong basin of A2 are shown by the dashed
and solid rectangles, respectively. The state s1 = {(011)} is in the weak basin
basWTS|BN(A2) but not in the strong basin basSTS|BN(A2) of A2 as there exist paths
from s1 to the other attractor A1. Starting from the state s1, BN can reach either
A1 or A2 eventually. The state s2 = {(001)} is in the strong basin basSTS|BN(A2)
of A2. Starting from s2, BN always eventually reaches A2.

2.4 The Control Problem

As described in the introduction (Sect. 1), the attractors of a Boolean network
represent the cellular phenotypes. Some of these attractors may be diseased,
weak or undesirable while others are healthy and desirable. Curing a disease is
thus, in effect, moving the dynamics of the network from an undesired ‘source’
attractor to a desired ‘target’ attractor.

This can be achieved by applying control (as defined in Sect. 2.2) to the
network. There can be various strategies of applying such a control. These can
be broadly classified based on the number of parameters of the network controlled
at the same time and the amount of time the control is applied. In terms of the
number of parameters controlled at the same time, we have: (1) simultaneous
control – the perturbation is applied to all the parameters at once; and (2)
sequential control – the perturbation is applied to the required parameters over
a sequence of steps. Based on the amount of time that the control is applied,
we have: (a) permanent control – the control is applied for all the following time
steps, i.e., the parameters are changed forever; and (b) temporary control – the
control is applied for a finite (possibly zero) number of steps and then removed.

In this work we shall be interested in simultaneous control that is applied both
temporarily and permanently. Moreover, we aim to compute the exact minimum
number of parameters needed to be controlled in each case. The control problems
that we shall deal with in this work are defined as follows.

Definition 10 (Control problems). Given a source state s ∈ S and an attrac-
tor A of TSBN of BN, a:

1. Permanent control: is a control C = (1, 0) such that the dynamics of BN
always eventually reaches A on the permanent application of C to s. (Here we
assume implicitly that A is also an attractor of the transition system under
control TSBN|C .)

2. Temporary control: is a control C = (1, 0) such that there exists a t0 ≥ 0
such that for all t ≥ t0, the dynamics of BN always eventually reaches A on
the application of C to s for t steps.

In addition, if in each case C is minimal, in the sense that, for every control C′

that achieves one of the above objectives, size(C) ≤ size(C′), we call C a minimal
permanent (resp. temporary) control. The control problems are then, given a
source state s ∈ S and an attractor A of TSBN of BN, find a minimal permanent
or temporary control.

Control of Large Boolean Networks 715

Note that the constraint of minimality in the above definition makes the
problems non-trivial. Otherwise, one can simply choose a control C such that
C(s) ∈ A in each case. In [19,25], we developed a method for the efficient min-
imal simultaneous control of Boolean networks, where given a source state s
and an attractor of TSBN of BN the control C is applied simultaneously and
instantaneously to s so that the dynamics of BN eventually reaches A and C is
minimal. Such a control is a special case of the temporary control defined above
with t = 0. Since the minimal simultaneous control problem of [19,25] is com-
putationally difficult (PSPACE-hard), the control problems that we study here,
defined above, are also computationally difficult (at least PSPACE-hard). Thus,
efficient algorithms to solve these problems are highly unlikely. However, we
showed in [19,25], that if the BNs are structurally well-behaved (e.g., the graph
of the BN has small strongly connected components (SCCs), with a small num-
ber of interdependencies between the SCCs etc.), we can have relatively efficient
methods to compute the attractors and basins of such BNs. Since it is known
that real-life BNs corresponding to GRNs are reasonably well-behaved, this led
us to develop efficient algorithms for computing the weak and strong basins of
desired target attractors of such BNs by decomposing the BNs based on the
SCCs of their graphs. The algorithms we develop here will crucially use the pro-
cedures developed in [19,25] for the computation of the weak and strong basins
of the target attractors, denoted as Comp WB(A) and Comp SB(A) [19,25],
respectively. These then applied to real-life networks can result in a significant
level of efficiency as will be demonstrated later.

3 Results

In this section, we develop algorithms to solve the control problems described
in Definition 10. These algorithms are based on the key observation made in
Observation 3. Indeed, given a source state s and a target attractor A of TSBN
of BN, if after the application of a control C to s, the resulting state C(s) lies
in the strong basin of A w.r.t. the transition system under control, TSBN|C , then
the dynamics will always eventually reach A. One needs to be careful though
as the attractors and their structure in TSBN|C might be different from TSBN.
However, we note that the application of C to TS does not create any additional
edges except for self loops.

Lemma 1. Let C be a control. If s →BN|C s′ is in TSBN|C then s = s′ implies
s →BN s′ is in TSBN.

3.1 Permanent Control

We now develop an algorithm to solve the problem of permanent control. For
the sake of simplicity, we use bas

S(W)
BN (.) and bas

S(W)
BN|C (.) to represent bas

S(W)
TSBN

(.)

and bas
S(W)
TSBN|C

(.), respectively. The following proposition will be useful.

716 C. Su et al.

Proposition 1. Let C be a control and A be an attractor of TSBN such that A is
also an attractor of TSBN|C . For any s ∈ S, if s ∈ basWBN|C(A) then s ∈ basWBN(A).

The converse of Proposition 1 may not hold as shown by the following example.

Example 4. Let C1 = {11, 01} with 11 = {3} and 01 = ∅ and C2 = {12, 02}
with 12 = ∅ and 02 = {1} be two controls of the BN of Example 1. The original
transition system TSBN and the two transition systems under control TSBN|C1
and TSBN|C2 are given in Fig. 1. The application of C1 fixes f3 to 1 and neither
of the attractors is preserved in TSBN|C1 . The application of C2 fixes f1 to 0. In
TSBN|C2 , the attractor A2 = {(000)} is the attractor of TSBN and TSBN|C2 . The
state s = {(111)} is in basWBN(A2) but not in basWBN|C2 (A2).

The intuition for the algorithm for the problem of permanent control that we
shall develop in this section is as follows. Suppose s ∈ S is an initial state and
A is the target attractor of TSBN that we want the dynamics of BN to always
eventually reach. The following is a straightforward corollary of Observation 3.

Corollary 1. A control C is a permanent control from s to A iff A is an attrac-
tor of TSBN|C and C(s) ∈ basSBN|C(A).

Thus, we want to find a control C such that the condition C(s) ∈ basSBN|C(A) is
satisfied. Now, since we want the control C to be minimal, we proceed as follows.
We start with a state s′ ∈ basWBN(A) that has the minimal Hamming distance with
s. We first check if A is an attractor of TSBN|

Cs→s′ since otherwise, Cs→s′
cannot

be a permanent control (by definition). If A is indeed an attractor of TSBN|
Cs→s′ ,

we check if s′ ∈ basSBN|
Cs→s′ (A). If so, we are done. Otherwise, we remove s′

from basWBN(A) and select a state s′′ from (basWBN(A) \ {s′}) having the minimal
Hamming distance with s. We repeat the same procedure this time with Cs→s′′

.
We iterate till we find a state s∗ ∈ basWBN(A) such that s∗ ∈ basSBN|

Cs→s∗ (A).
The procedure described above, in the worst case, explores all possible states

in basWTSBN
(A). By Proposition 1 we know that for any control C, basWBN|C(A) ⊆

basWBN(A). Thus, it is enough to explore only the states in basWBN(A) and it will
eventually find the required control. Cs→s∗

is then the required minimal perma-
nent control. Algorithm 1 describes this procedure in pseudo-code.

3.2 Temporary Control

The algorithm for computing a minimal temporary control is slightly more
involved than that for computing a minimal permanent control developed in
Sect. 3.1. We first prove the following proposition with the help of Lemma 1.

Proposition 2. Let A be an attractor of TSBN and C be any control.

1. For any state s ∈ basSBN(A), reachTSBN
(s) ⊆ basSBN(A).

2. For any state s ∈ (basSBN(A)|C), reachTSBN|C
(s) ⊆ (basSBN(A)|C).

Control of Large Boolean Networks 717

Algorithm 1. Minimal permanent control
1: procedure Comp Perm Control(G, f , s, A) % s: the source state; A: the target
2: WB :=Comp WB(A, f) % the weak basin of A in TSBN [19, 25]
3: isMin := false
4: while isMin = false and WB �= ∅ do
5: C ∈ arg hd(s,WB), s′ := C(s) % a possible minimal control from s to A
6: if {s′}|C = A|C then % A is preserved in TSBN|C
7: fC :=Comp Fn contr(f ,C) % f in BN|C (see Algorithm 2)
8: SBC :=Comp SB(A, fC) % the strong basin of A in TSBN|C [19, 25]
9: if s′ ∈ SBC then

10: isMin := true
11: if isMin = false then
12: WB := WB \ {s′}
13: return C

Algorithm 2. Helper functions

1: procedure Comp Fn contr(f ,C) %
C = (1, 0)

2: fC := f
3: for i ∈ 1 do
4: fC[i] := 1

5: for i ∈ 0 do
6: fC[i] := 0

7: return fC
8:
9:

10: procedureComp State contr(S,C)
11: S|C := S
12: for s ∈ S do
13: for i ∈ 1 do
14: if s[i] �= 1 then
15: S|C := S|C \ {s}
16: for j ∈ 0 do
17: if s[j] �= 0 then
18: S|C := S|C \ {s}
19: return SC

Using Observation 3 and Proposition 2, we can prove the following theorem.

Theorem 4. Let s ∈ S be a source state and A be the target attractor of TSBN.
A control C is a temporary control from s to A if and only if basSBN(A)|C = ∅
and C(s) ∈ basSBN|C(bas

S
BN(A)|C).

Theorem 4 forms the basis for our algorithm for computing the temporary
control C, given a source state s and a target attractor A. Intuitively, on the
application of C, we want the dynamics to move to a state C(s) which is in the
strong basin (w.r.t the restricted transition system TSBN|C) of the strong basin
(w.r.t the original transition system TSBN) of the target attractor A, restricted
to states in S|C. Then if we hold the control C for long enough, the dynamics
will eventually reach the strong basin of A in TSBN. By Proposition 2, we know
that once in the strong basin, the dynamics cannot escape it. This means that
finally when the control C is released, the dynamics is in the strong basin of A
and hence will eventually reach A which is the target.

How can we ensure that we indeed compute a temporary control C
that is minimal? Once again, we proceed as before. We start with a state
s′ ∈ basWBN(A) that has the minimal Hamming distance with s. We check if

718 C. Su et al.

Algorithm 3. Minimal temporary control
1: procedure Comp Temp Control(G, f , s, A) % s: the source state; A: the target
2: WB :=Comp WB(A, f) % the weak basin of A in TSBN

3: SB :=Comp SB(A, f) % the strong basin of A in TSBN

4: isMin := false
5: while isMin = false and WB �= ∅ do
6: C ∈ arg hd(s,WB), s′ = C(s) % a possible minimal control from s to A
7: if s′ ∈ SB then
8: isMin := true % instantaneous perturbation
9: else

10: fC :=Comp Fn contr(f ,C) % f in BN|C (see Algorithm 2)
11: SB|C :=Comp State contr(SB,C) % SB in TSBN|C (see Algorithm 2)
12: if SB|C �= ∅ then
13: basSBN|C(SB|C) :=Comp SB(SB|C, fC)
14: if s′ ∈ basSBN|C(SB|C) then
15: isMin := true
16: if isMin = false then
17: WB := WB \ {s′}
18: return C

s′ ∈ basSBN|
Cs→s′ (bas

S
BN(A)|Cs→s′). If so, we are done. Otherwise, we remove

s′ from basWBN(A) and select a state s′′ from (basWBN(A) \ {s′}) having the
minimal Hamming distance with s. We repeat the same procedure this time
with Cs→s′′

. We iterate till we find a state s∗ ∈ basWBN(A) such that s∗ ∈
basSBN|

Cs→s∗ (basSBN(A)|Cs→s∗). Once again, by Proposition 1 we know that for

any control C, basWBN|C(A) ⊆ basWBN(A). Thus, it is enough to explore only the
states in basWBN(A) and it will eventually find the required control. Cs→s∗

is then
the required minimal temporary control. Algorithm 3 describes this procedure
in pseudo-code.

Notice that the amount of time for the application of C depends on the
specific system and the detailed perturbations. Biologists can determine when
to release the control case by case based on experimental settings. As long as the
control is released in finite steps, holding it longer will not affect its effectiveness.

Constraints on the control sets. Constraints encoding practical requirements
can eliminate perturbations of certain nodes, for instance essential genes for cell
survival [26]. We implement the constraints by slightly modifying our algorithms
as follows. Let R1,R0 be two sets of indices of nodes, where the state of a node
with index i ∈ R1(R0) cannot be perturbed to 0 (1). The above constraints can
be realised by removing the states {s′ ∈ basWBN(A)| for i ∈ R1, s′[i] = 0 or for j ∈
R0, s′[j] = 1} from basWBN(A) before the main loop of Algorithms 1 and 3.

4 Case Studies

To demonstrate the efficacy and efficiency of our control methods, we apply our
minimal temporary and permanent controls (Algorithms 1 and 3) to 10 biological

Control of Large Boolean Networks 719

networks [20,27–34]. The results are compared with the minimal instantaneous
control method developed in [19]. These three algorithms are implemented as
part of the software ASSA-PBN [23]. All the experiments are performed on a
computer with a CPU of Intel Core i7 @3.1 GHz and 8 GB of DDR3 RAM. An
overview of the networks is given in Table 1.

Table 1. An overview of the networks and the evaluation results. I, T and P stand for
the instantaneous, temporary and permanent controls, respectively.

network # # #A range of |C| time (seconds)

nodes edges |CI| |CT| |CP| TI TT TP

myeloid 11 30 6 1–5 1–3 1–3 0.015 0.059 0.056

cardiac 15 39 6 1–9 1–4 1–4 0.233 0.885 0.842

ERBB 20 52 3 1–9 1–3 1–3 0.054 0.179 0.251

tumour 32 158 9 1–10 1–4 1–4 6.726 35.207 34.065

PC12 33 62 7 1–11 1–4 1–4 0.394 2.150 2.634

hematopoietic 33 88 5 1–13 1–3 1–3 1.749 11.356 16.080

MAPK r3 53 105 20 1–19 1–5 1–5 112.429 213.111 230.871

HGF 66 103 18 1–31 1–5 1–5 234.373 441.541 417.897

bortezomib 67 135 5 1–21 1–3 1–4 46.062 145.111 106.268

CD4+ 188 380 12 1–5 1–4 1–4 8536.420 15930.900 16007.500

Table 2. The number of perturbations computed for the cardiac network.

A1 A2 A3 A4 A5 A6

|CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP| |CI| |CT| |CP|
A1 − − − 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2

A2 2 1 1 − − − 4 2 3 1 1 1 1 1 1 2 2 2

A3 1 1 1 2 2 2 − − − 1 1 1 2 2 2 1 1 1

A4 4 2 2 1 1 1 3 1 2 − − − 2 2 2 1 1 1

A5 8 3 3 6 2 2 9 4 4 6 3 3 − − − 1 1 1

A6 8 4 4 7 3 3 6 2 2 4 2 2 1 1 1 − − −

Efficiency. We compute a minimal control C with the three methods for each
pair of source and target attractors. The total execution time is summarised in
the last three columns of Table 1. We do not give detailed time costs for each
pair due to the page limit. The temporary and permanent controls have similar
performance in terms of efficiency. Both of them are less efficient than the instan-
taneous control as it may take several iterations to compute a valid control set

720 C. Su et al.

Table 3. The control sets for the myeloid differentiation network computed by the
temporary and permanent controls. The sets in grey are only required by the temporary
control. Underlined genes are switched to OFF, otherwise to ON.

Megakaryocyte Erythrocyte Granulocyte Monocyte

− {EKLF} {C/EBPα, PU1, Gfi1} {EgrNab, C/EBPα, GATA1}
Megakaryocyte {Fli1} {C/EBPα, Gfi1,

GATA1}
{EgrNab, C/EBPα, PU1}

{EKLF} − {C/EBPα, PU1, Gfi1} {EgrNab, C/EBPα, GATA1}
Erythrocyte {Fli1} {C/EBPα, Gfi1,

GATA1}
{EgrNab, C/EBPα, PU1}

{GATA2, Fli1} {GATA2, EKLF}
−

{EgrNab}
{GATA1, Fli1} {GATA1, EKLF} {Gfi1}Granulocyte

{Fli1, PU1}
{GATA2, Fli1} {GATA2, EKLF} {PU1}

−{GATA1, Fli1} {GATA1, EKLF} {Gfi1},{cJun},{EgrNab}Monocyte
{Fli1, PU1}

(see Algorithms 1 and 3). Despite that, both methods are still very efficient. For
instance, for the CD4+ T-cell network, the computation time for each case is in
the range of (38–212), (84–581) and (63–718) s for the instantaneous, temporary
and permanent controls, respectively.

Efficacy. The number of perturbations are summarised in Table 1. By extending
the application time of control, the number of perturbations can be greatly
reduced, which in turn reduces the cost of biological experiments. Especially for
the model of bortezomib responses, the number of perturbations can be reduced
from 21 to 3 and 4 by the temporary and permanent controls, respectively.

Table 2 summarises the number of perturbations for the cardiac network.
The first column and the first row represent the source and target attractors,
respectively. For most cases, the temporary and permanent controls require the
same number of perturbations, while the temporary control can further reduce
it for a few cases (e.g., A2 → A3 and A4 → A3). In general, the instantaneous
control needs to control more nodes to guarantee the reachability.

We take the myeloid differentiation network as an example to compare our
results with the perturbations found in [20]. Four of the six attractors of this net-
work correspond to megakaryocytes, erythrocytes, granulocytes or monocytes.
Table 3 gives the minimal control sets computed by our temporary and perma-
nent controls for these four attractors. In general, our results are consistent with
the conclusions of [20].

1. Reprogramming of EKLF or Fli1 can achieve a conversion between erythro-
cytes and megakaryocytes [20].

2. Simultaneous perturbations of C/EBPα and PU1 can convert the network
from MegE lineage (megakaryocytes and erythrocytes) to GM lineage (gran-
ulocytes and monocytes) [20], but to reach a specific state (granulocyte or
monocyte), one more gene is required. Besides, our methods also identified
other paths to realise the reprogramming.

Control of Large Boolean Networks 721

3. We also spotted the pivotal role of GATA1 and GATA2 in the transdifferen-
tiation from GM lineage to MegE lineage [20]. However, the over-expression
of GATA2 can only be applied with temporary perturbations, since the per-
manent over-expression of GATA2 leads to absence of MegE lineage.

5 Discussion and Future Work

In this paper, we have developed the temporary and permanent control methods
to identify a minimal set of nodes, such that the temporary or permanent pertur-
bations of these nodes guide the network from a source state to a desired target
attractor. Together with the instantaneous control [19], we have been working on
bridging the gap between computational control methods and practical repro-
gramming of GRNs from three perspectives.

First, we have explored three kinds of perturbations: instantaneous, tempo-
rary and permanent perturbations. All of them are feasible to conduct in bio-
logical experiments. Besides that, each kind of perturbations has its own merits
and demerits. (1) Permanent perturbations have a permanent influence on the
dynamics of the system and thus are more invasive than instantaneous and tem-
porary perturbations. (2) Temporary and permanent perturbations alter the
dynamics of networks either for sufficient time or permanently, thus less num-
ber of perturbations are required to achieve the goal compared to instantaneous
perturbations. Indeed, there is no universal standard of good perturbations for
different biological networks. We provide control methods for different kinds
of perturbations, so that biologists can choose suitable strategies to deal with
different biological networks.

Second, considering the expensive cost and other difficulties in performing
biological experiments, practical constraints are encoded to make our control
strategies more realistic and applicable. Two problems commonly arise in bio-
logical experiments. One is that some genes are essential for cell survival and thus
cannot be turned off. The other is that some genes are harder or more expensive
to perturb. For instance, GATA1 and GATA2 are part of a family of transcrip-
tion factors that may have different functions but may have similar structural
features to be recognised by the ‘perturbation tool’. Hence, we adapt our meth-
ods to avoid (1) perturbing certain nodes from ‘expressed’ to ‘not expressed’
and/or (2) perturbing certain nodes from ‘not expressed’ to ‘expressed’.

Third, so far we have focused on identifying a minimal set of perturbations to
fulfil the control purpose with 100% success rate. Apart from that, given an upper
bound of perturbations, our methods can compute all the control sets within the
upper bound efficiently for different kinds of perturbations. Incorporated with
practical constraints, our methods can compute a rich set of restricted solutions,
which will be beneficial to biological applications.

Currently, we are working a sequential control method, where other attrac-
tors (observable biological phenotypes) can act as intermediates [35]. We want to
drive the network from a source state to a target attractor through intermediate
attractors by applying a sequence of instantaneous or temporary or permanent

722 C. Su et al.

perturbations. Such a sequential method can provide more potential reprogram-
ming solutions and may further reduce the number of required perturbations.
Other than that, we plan to extend our work to the control of probabilistic
Boolean networks (PBNs) [36,37] and explore if and how to adapt the instanta-
neous, temporary and permanent control strategies to such networks.

Acknowledgements. The work was partially supported by the research project SEC-
PBN funded by the University of Luxembourg and the ANR-FNR project AlgoReCell
(INTER/ANR/15/11191283). We also want to thank Löıc Paulevé for discussions.

References

1. Takahashi, K.: Cellular reprogramming. Cold Spring Harb. Perspect. Biol. 6(2),
a018606 (2014)

2. Sol, A.D., Buckley, N.: Concise review: a population shift view of cellular repro-
gramming. Stem Cells 32(6), 1367–1372 (2014)

3. Graf, T., Enver, T.: Forcing cells to change lineages. Nature 462(7273), 587–594
(2009)

4. Srivastava, D., DeWitt, N.: In vivo cellular reprogramming: the next generation.
Cell 166(6), 1386–1396 (2016)

5. Wang, L.Z., et al.: A geometrical approach to control and controllability of non-
linear dynamical networks. Nat. Commun. 7, 11323 (2016)

6. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLoS Comput. Biol. 11(4), e1004193 (2015)

7. Kauffman, S.A.: Homeostasis and differentiation in random genetic control net-
works. Nature 224, 177–178 (1969)

8. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature
473, 167–73 (2011)

9. Gao, J., Liu, Y.Y., D’Souza, R.M., Barabási, A.L.: Target control of complex net-
works. Nat. Commun. 5, 5415 (2014)

10. Czeizler, E., Gratie, C., Chiu, W.K., Kanhaiya, K., Petre, I.: Target controllability
of linear networks. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS,
vol. 9859, pp. 67–81. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45177-0 5

11. Bornholdt, S.: Less is more in modeling large genetic networks. Science 310(5747),
449–451 (2005)

12. Mochizuki, A., Fiedler, B., Kurosawa, G., Saito, D.: Dynamics and control at
feedback vertex sets. II: a faithful monitor to determine the diversity of molecular
activities in regulatory networks. J. Theor. Biol. 335, 130–146 (2013)

13. Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex networks
with nonlinear dynamics. Proc. Natl. Acad. Sci. 114(28), 7234–7239 (2017)

14. Kim, J., Park, S., Cho, K.: Discovery of a kernel for controlling biomolecular reg-
ulatory networks. Sci. Rep. 3, 2223 (2013)

15. Zhao, Y., Kim, J., Filippone, M.: Aggregation algorithm towards large-scale
Boolean network analysis. IEEE Trans. Autom. Control 58(8), 1976–1985 (2013)

16. Papin, J.A., Hunter, T., Palsson, B.O., Subramaniam, S.: Reconstruction of cellular
signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6(2),
99 (2005)

https://doi.org/10.1007/978-3-319-45177-0_5
https://doi.org/10.1007/978-3-319-45177-0_5

Control of Large Boolean Networks 723

17. Cornelius, S.P., Kath, W.L., Motter, A.E.: Realistic control of network dynamics.
Nat. Commun. 4, 1942 (2013)

18. Germini, D., Tsfasman, T., Zakharova, V.V., Sjakste, N., Lipinski, M., Vassetzky,
Y.: A comparison of techniques to evaluate the effectiveness of genome editing.
Trends Biotechnol. 36(2), 147–159 (2018)

19. Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards
the control of Boolean networks. In: Proceedings 9th ACM Conference on Bioin-
formatics, Computational Biology, and Health Informatics, pp. 11–20. ACM Press
(2018)

20. Krumsiek, J., Marr, C., Schroeder, T., Theis, F.J.: Hierarchical differentiation of
myeloid progenitors is encoded in the transcription factor network. PLOS one 6(8),
e22649 (2011)

21. Müller, F., Schuppert, A.: Few inputs can reprogram biological networks. Nature
478(7369), E4 (2011)

22. Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676
(2006)

23. Mizera, A., Pang, J., Su, C., Yuan, Q.: ASSA-PBN: a toolbox for probabilistic
Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(4), 1203–1216
(2018)

24. Zhu, P., Han, J.: Asynchronous stochastic Boolean networks as gene network mod-
els. J. Comput. Biol. 21(10), 771–783 (2014)

25. Paul, S., Su, C., Pang, J., Mizera, A.: An efficient approach towards the source-
target control of Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform.
(2019)

26. Zhang, R., Lin, Y.: Deg 5.0, a database of essential genes in both prokaryotes and
eukaryotes. Nucleic Acids Res. 37, D455–D458 (2008). (Database issue)

27. Herrmann, F., Groß, A., Zhou, D., Kestler, H.A., Kühl, M.: A Boolean model of the
cardiac gene regulatory network determining first and second heart field identity.
PLOS one 7(10), 1–10 (2012)

28. Sahin, O., et al.: Modeling ERBB receptor-regulated G1/S transition to find novel
targets for de novo trastuzumab resistance. BMC Syst. Biol. 3(1), 1 (2009)

29. Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.:
Mathematical modelling of molecular pathways enabling tumour cell invasion and
migration. PLoS Comput. Biol. 11(11), e1004571 (2015)

30. Offermann, B., et al.: Boolean modeling reveals the necessity of transcriptional
regulation for bistability in PC12 cell differentiation. Front. Genet. 7, 44 (2016)

31. Collombet, S., et al.: Logical modeling of lymphoid and myeloid cell specification
and transdifferentiation. Proc. Natl. Acad. Sci. 114(23), 5792–5799 (2017)

32. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thi-
effry, D.: Integrative modelling of the influence of MAPK network on cancer cell
fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)

33. Singh, A., Nascimento, J.M., Kowar, S., Busch, H., Boerries, M.: Boolean app-
roach to signalling pathway modelling in HGF-induced keratinocyte migration.
Bioinformatics 28(18), 495–501 (2012)

34. Conroy, B.D., et al.: Design, assessment, and in vivo evaluation of a computational
model illustrating the role of CAV1 in CD4+ T-lymphocytes. Front. Immunol. 5,
599 (2014)

35. Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential reprogramming of
Boolean networks made practical. In: Proceedings 17th International Conference
on Computational Methods in Systems Biology. LNCS, Springer-Verlag (2019)

724 C. Su et al.

36. Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling
and Control of Gene Regulatory Networks. SIAM Press, Philadelphia (2010)

37. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.:
Recent development and biomedical applications of probabilistic Boolean networks.
Cell Commun. Signal. 11, 46 (2013)

I-Day Presentations

Formal Methods Applicability on Space
Applications Specification and Implementation

Using MORA-TSP

Daniel Silveira1(&), Andreas Jung2, Marcel Verhoef2,
and Tiago Jorge1

1 GMV, Tres Cantos, Spain
{daniel.silveira,tiago.jorge}@gmv.com

2 ESA, Paris, France
{andreas.jung,marcel.verhoef}@esa.int

Abstract. The usage of formal methods in Model Driven Engineering
(MDE) has already been demonstrated with a significant boost in both pro-
ductivity and quality in the design and analysis of software and systems.
However, the integration of applicable tools and techniques for formal analysis
needs improvement in order to create a practical MDE environment for FM,
suitable for use in an industrial setting. This paper presents the European Space
Agency (ESA) MORA-TSP (Multicore implementation of the On-Board Soft-
ware Reference Architecture with Time and Space Partitioning capability) study.
MORA-TSP comprises to develop a MDE toolset suitable to apply FM for early
analysis, correctness and validation of the modeled software, in the context of
space flight software.

Keywords: Model Validation �Model transformation � FSM �MDE � OSRA �
TASTE � AIR

1 Introduction

ESA’s SAVOIR-FAIRE (SF) working group led an analysis of the issues faced by
onboard software (OBSW) developers now and in the future, resulting into a set of
requirements [1]. The intention of SF was that these requirements would be addressed
through the use of appropriate technologies, and the specification of an On-board Soft-
ware Reference Architecture (OSRA) with an accompanying development process [2].

OSRA applies the principles of MDE to address the user needs captured by
SAVOIR-FAIRE. Consequently, the OSRA specification is founded on the principles
of component-based software engineering (CBSE), where a software application
consists entirely of software entities called components.

All of the information relating to the available component and interface types, and
the way they are instantiated and assembled in a system, together with their non-
functional properties, is captured in a model. A developer uses model information to
generate documentation and to perform analysis on the system, including the validation
of various system properties, even before the functional software is complete.

© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 727–737, 2019.
https://doi.org/10.1007/978-3-030-30942-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_42&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_42

Similar to OSRA, TASTE [3] also follows CBSE and same principles, and while
OSRA focuses on Requirements/Architecture, TASTE supports the detailed design
process, also relying on formal languages for specification, and the synthesis down to
source code generation and full application build. The basic idea is that OSRA and
TASTE cover the entire software engineering process, fully model based, heavily
relying on model analysis, synthesis and automation in order to close the design loop as
early as possible. Recall that in particular in the space domain, the typically used
hardware is usually available very late (and also very short) in the development pro-
cess, the ability to start the validation and verification process well before the software
meets the hardware is critical for success.

OSRA and TASTE use techniques of model transformation, finite state machines
(FSM) and validation where the implemented infrastructure is suited to the introduction
of FM to execute the stated system correctness, analysis and validation. The OSRA and
TASTE is an intuitive toolchain bridges MDE with FM being capable to reduce the FM
problem of overcoming the usage of complex notations.

The OSRA and TASTE are independent initiatives developed and supported by
ESA and European industry, it is open source, uses open standards, has short time-to-
market. Furthermore, the benefits of the tools, especially TASTE have been used in
several activities [22], although Europe is not the dominant space market force, there is
an European consensus for an accepting and adopting the tools.

The ESA’s MORA TSP reference study has particular relevance for the space
industry because its objective was to demonstrate the feasibility and performance
evaluation of an end-to-end process, tools and building blocks from application level
specification using OSRA and later TASTE, down to representative implementation
running on the future space on-board computers board using Time and Space Parti-
tioning (TSP), also known as IMA [21], paradigm on multi-core processors, such as the
NGMP (LEON4-N2X, GR740). This process is achieved through the following
toolchain:

– OSRA with respective editor, detailed in Sect. 3.
– TASTE toolchain, detailed in Sect. 4.
– AIR [4] toolchain, detailed in Sect. 6.

Each element of the toolchain is available for download and further information can
be retrieved in the respective websites [23–26].

In Fig. 1 it is presented a data flow showing the MORA-TSP process:

– The user starts to define the software component models comprised by core OSRA
model related to space OBSW and external model containing additional information
such as the TSP data.

– Then a model transformation engine named to OSRA-to-TASTE automatically
validates and transforms the OSRA models into TASTE models (shown as AADL
and ASN1 blocks) and some source code.

– The TASTE buildsupport tool is invoked, transforms the TASTE models into
source code, makefiles and TSP configuration data.

– Then as last step the AIR configuration builds the source code using also the
respective configuration data and generates an executable.

728 D. Silveira et al.

2 MORA-TSP Suitability to Formal Methods

The relevance of MORA-TSP, is the provision of an easy to use and intuitive software
modelling tools (OSRA and TASTE) that provides the usage of several methodologies
that are capable of being improved through the application of FM. MORA-TSP is a full
model-based framework and using known open standards, naturally making a con-
sistent (properly integrated) and iterative adoption of FMs techniques into the
framework/workflow more practical and easy. The following three approaches are
identified: Model Transformation; Model Validation and FSM. These are detailed in
the following sections.

2.1 Model Transformation

OSRA and TASTE use OBSW component modelling with a domain-specific meta-
model, which allows the possibility to generate multiple outputs for different purposes
and analysis through model transformation. MORA-TSP uses model transformation
from OSRA to TASTE AADL models, models to source code, transformation within
TASTE models, and other.

OSRA uses Meta Object Facility Model to Text Transformation Language
(MOFM2T) [5] to express transformations. The OSRA component models are trans-
formed in source code, SAE standardized AADL language models [18] used by
TASTE and documentation. While TASTE uses its own “build support” tool capable of
transforming its own AADL models.

The usage of MOFM2T or build support is applicable to make model transfor-
mation and create new models with proper formal semantics, endowing OSRA/TASTE
modeling languages with a precise, executable behavior which can be subjected to
formal analysis and validation of the models. An example is the application tridi-
mensional classification [6], where the component model is transformed so it is pos-
sible to apply a formal verification of component model properties; also another

Fig. 1. MORA-TSP process showing the toolchain produced data inputs/outputs

Formal Methods Applicability on Space Applications 729

example is the formalization in Isabelle/HOL [7] of a component model, focusing on
the structure and lemmas to handle component structure. At the level of the transformed
TASTE AADL model, formal analysis of the schedulability is already feasible at an
early stage, and robustness of the design can be analysed by extending the AADL
model (adding error models for the sensors and actuators), such that they can be
analysed using COMPASS1 [15]. Also through model transformation it is possible to
generate FSMs.

2.2 Model Validation

OSRA, TASTE and AIR include a set of functionalities executing a set of checks
ensuring the correctness of the used models aiming the anticipation of possible errors
that could occur in later stages avoiding higher cost respective corrections.

Currently, these validations are implemented in typical imperative programming
languages (Java/Python) or through OCL that browse the model structure and
properties.

The existing implementations can be replaced with formal methodologies. An
example is the usage of the formal B-Method [8] capable of validation the correctness
of a component based system, further improved with a priori gluing algorithm which
helps in the integration of mismatching components and in the implementation of
missing functionalities of the requirements specifications of the software system.

In addition, another interesting example is using a divide & conquer validation
technique through component-based analysis and verification of formal requirements
specifications expressed through Software Cost Reduction models [9], the division
approach is through partitioning which is already applied in OSRA/TASTE models.

The replacement of the purpose built validations by application of more generic
formal techniques is part of the on-going research in the MORA-TSP study.

2.3 Component Behavior Definition with FSM

Each component at implementation model level in OSRA and each function compo-
nent at interface level in TASTE can have their functional behavior specified through
FSM. This feature was implemented within ESA’s VERICOCOS activity [10] using
TASTE OpenGEODE, an FSM editor using SDL (ITU-T Z.100 standard) language
with source code generation capability in C and Ada.

FSM are used to formally test communication protocols [11], it is also applicable
for formal verifications demonstrated in an automatic translation of the FSM into a
Timed Automaton specification being applied by UPPAAL model checker tool [12].
As the OSRA components are service based, with well-defined formal protocols
(specified in SDL and ASN.1 in TASTE), this provides a wide range of possible
consistency checks that can be performed, already at the model level. As an aside, it
also allows to generate fully consistent documentation from this single source, which is
typically a major (maintenance) concern in traditional software development.

1 The toolset can be found at http://www.compass-toolset.org.

730 D. Silveira et al.

http://www.compass-toolset.org

3 OSRA

OSRA is a single, commonly agreed reference framework for the (component-based)
definition of the OBSW of future ESA missions. OSRA comprises three layers: the
component layer, the interaction layer and the execution platform (see Fig. 2). In
addition, it provides a process that defines how these models can (or should) be
constructed. The application functions are components, which exist in the Component
Layer, along with the specification of the needed non-functional properties. The con-
tainers which envelope components, and the connectors which bind component
interfaces, exist at the Interaction Layer. Both of these layers are dependent on the
application function and rely on the underlying Execution Platform for application-
independent services.

The ESA’s COrDeT [14] activities implement the component model named “Space
Component Model” (SCM). It consists of a domain specific realized Ecore metamodel,
giving the advantage of keeping the metamodel simpler and its entities as close as
possible to the concepts of the component model. The implemented SCM metamodel
with associated editor (the OSRA editor) demonstrated the OSRA’s feasibility.

3.1 OSRA Process Description

OSRA lays its foundations in MDE centering on the use of models to increase the
abstraction level of design, while delegating a sizeable part of implementation to
automated code generation. The greater abstraction level of models permits to:

Focus on the essential parts of the solution design, without being distracted by
technology or implementation details that are not essential for the its understanding;
Express the design in a manner that is economical (with lower effort than traditional
approaches) yet precise enough to enable predictive analysis of the solution (e.g., in
terms of correctness, coherence,…), as well as code generation of part of the
implementation.

Fig. 2. OSRA layers.

Formal Methods Applicability on Space Applications 731

It is possible to split the OSRA software development process down into three basic
stages: Specification and design; Construction; and Integration.

The OSRA Reference Development Process overlays the classical V-cycle process.

– The specification and design phase corresponds: (i) architecture definition using
SCM; (ii) optional behavior modelling with dedicated models; (iii) detailed design;

– The construction phase corresponds to manual code development (after generation
of business code skeletons) and possibly to behavioral code automated generation,
and possibly the integration of existing (re-used) code artifacts.

– The integration corresponds to join the software components with architecture.

Verification and validation is included in each of the three stages.

3.2 The OSRA Specification/Architecture

The OSRA component model was designed to support (among others) the following:

– A specification of interfaces as first-class entities in a design step that precedes the
definition of components

– The definition of component types, whose concerns are exclusively their functional
relationship with the rest of the system

– The definition of component implementation, that comprises the implementation of
all functional services defined for a component type

– The definition of component instances, which represent the instantiation of a
component implementation, which is used for: (i) fulfilling the functional needs of a
component; (ii) augmenting the description of the component with the specification
of non-functional properties in the dimension of timing, space, concurrency and
QoS; (iii) deployment of the software system onto the hardware architecture.

– In the SCM, interfaces contain interface attributes (typed parameters exposed by the
component and accessible through that interface) and operations (services offered
by an interface implementer.

3.3 OSRA Editor

The OSRA editor is built on top of the SCM metamodel under the Eclipse eco-system.
The editor provides facilities to model everything that is considered belonging to
OSRA core model. Hence it supports the Design Views shown in Fig. 3.

Fig. 3. The OSRA editor showing OSRA workflow

732 D. Silveira et al.

An OSRA workflow support was implemented, it guides the user through all
implementation step, which are simplified thanks to a robust rationalization of the
number of graphical diagrams and tables. It also provides two alternative Eclipse
viewpoints, one for preliminary evaluation of the tools (advanced features are hidden)
and one (termed Expert) which provides all available features.

4 TASTE

TASTE2 is an open source development environment dedicated to embedded, real-time
systems and was created under the initiative of the ESA’s ASSERT activity. TASTE
relies on formal languages to create constituent models for all system aspects to build
“correct by construction” software, by exposing these models to rigorous analysis, and
by continuous integration and test to ensure that, the full path towards the actual
application can be supported from day one. This approach ensures that potential errors
are captured as early as possible and alleviates the user from tedious and error-prone
repetitive tasks that typically hinders the rapid evolution of the design and
implementation.

TASTE can be divided in three steps for the construction of the software.
The first step consists to generate the logical architecture of the software composed

of elements called “functions” which interface through a set of provided/required
interfaces. This step is done in the in interface view (IV) GUI being specified in AADL
language. The ASN.1 is used to provide a description of the data structures.

The second step is the “functions” behaviour description. From the IV, TASTE is
capable of generating the application skeleton, identifying where user defines the
“function” behaviour according to the interfaces instantiations and associated input.
The user can specify the behaviour programming in Ada and C language, or alterna-
tively using SDL FSM that is then converted to Ada or C (Fig. 4).

Fig. 4. TASTE IV - Interface view (left) and DV - Deployment view (right)

2 The entire toolset is available through https://taste.tools.

Formal Methods Applicability on Space Applications 733

https://taste.tools

Last step is deployment view, here the hardware platforms are bind to the IV
“functions”. This view is a hierarchy of “nodes” composed by “processors” which are
then composed by “partitions”, using the AADL as the underlying description
language.

The IV/DV represent hardware and software system specifications at a high-level.
Even if they describe system requirements, they do not bind both aspects (how the
software is executed, which resources are used, etc.). Combining these two aspects is
done with a specific tool called “build support” that transforms the IV and DV into a
concurrency view that describes resources usage and software/hardware association.
The concurrency view also performs scheduling analysis providing 2 tools by using
Cheddar [16] and MAST [17] via an exporting tool from AADL to MAST. Addi-
tionally it is also possible to perform a scheduling simulation function using Marzhin
[18].

5 Model Transformation OSRA to TASTE

TASTE includes four main layers: Application Layer, Glue Layer, Middleware Layer
and OS/BSP Layer. Component instances defined in the OSRA Editor are translated
into TASTE Functions, from those code skeletons can be generated automatically.
With the associated behavior defined, it makes the Application Layer. TASTE also
generates the glue code (i.e., Glue Layer) which adapts the application layer code to the
lower parts of the system. Besides the Application and Glue layers, TASTE includes:

– Middleware Layer (Ocarina and PolyORB-HI): It provides transparent distribution
of services for applications running on the same or different computer, and adapts
the glue code according to the selected target platform. Moving from one target to
another (simulator to target hardware) is nearly opaque from the point of view of the
user.

– OS/BSP: It is the target execution environment. TASTE supports a wide range of
run-times (i.e. Ada Ravenscar), operating systems (i.e. RTEMS) and simulators.
Note that these layers are fully automatically generated and configured through
models.

6 AIR

The growth in complexity of software systems functionalities associated with more
powerful on board computers (OBC), leads to a complex task for the system integrator.

The aviation industry set the need to create a concept to achieve an integrated
system architecture that preserves fault containment properties while creating a clear
separation between software modules that share the common hardware. This concept
uses time and space partitioning (TSP) to share the computing platform between
possibly multiple applications with different levels of criticality. A partition is an
allocation of application resources in terms of memory space, CPU time, I/O device
access, CPU privilege mode and communication via ports. ESA has already identified

734 D. Silveira et al.

the benefits of incorporating software TSP into the spacecraft avionics architecture to
manage the growth of mission functions implemented in the OBSW [19] namely:
reduced integration effort; resource savings; system fault containment; mixed critical-
ity; security [20].

AIR is an hypervisor based on TSP that allows a single computer to simultaneously
execute several independent Real Time Operating Systems (RTOS) partitions follow-
ing a preconfigured schedule. AIR architecture is composed of the following modules:

Partition Management Kernel (PMK): it holds the main functionality of the
hypervisor and implements the TSP; Partition Operating System (POS): it holds the
para-virtualized RTOS, it corresponds to the guest OS of TSP System Executive
Platform; LIBIOP: Integrated I/O into a single dedicated system partition, clearing the
need for kernel reconfiguration or reimplementation and the partition can be handled
the same way an application partition does.

In MORA-TSP, AIR is used as the TSP kernel with RTEMS 5 as the guest OS with
SMP feature enabled. A 4 core LEON4-N2X board is the target to demonstrate several
scheduling scenarios of partitions and tasks. One of the scenarios is presented in Fig. 5,
it exemplifies the multitude of scheduling options system designers have while using a
single multi-core on-board computer.

7 Conclusions

The MORA-TSP presents an end-to-end OBSW development in the space industry.
This process goes through a toolchain where conditions were set to apply formal
methods, by integrating languages to create well-defined models, which are exposed to
rigorous analysis and for the basis for consistent elaboration and synthesis, all the way
down to the executable.

The MORA-TSP toolchain uses Component Based Modelling approach taking all
advantages of MDE, it is achieved with OSRA, TASTE and AIR tools that provides
early application development.

The tools provide a development environment to employ formal methods to ensure
early error avoidance, complete software validation and analysis.

The following techniques used in the OSRA/TASTE/AIR allow FM applicability:

– Model Transformation to proper FM semantics leading the performance of formal
analysis and validation, such as the usage of tridimensional classification or the
usage of Isabelle/HOL formalization.

Fig. 5. MORA TSP scenario using TSP with AIR

Formal Methods Applicability on Space Applications 735

– Model Validation using methods of correctness of the model system or formal
requirement validation with the Software Cost Reduction models.

– Usage of FSM in component model behavior, where formal tests can be executed
with Timed Automatons and UPPAAL model checker. Also to improve software
and system analysis/quality with Abstract State Machine formal methods.

References

1. SAVOIR FAIRE Working Group: Space onboard software reference architecture. In:
Proceedings of the Data Systems in Aerospace Conference DASIA (2010)

2. Panunzio, M., Vardanega, T.: A component model for on-board software applications. In:
Institute of Electrical and Electronics Engineers (IEEE) (September 2010)

3. TASTE. http://download.tuxfamily.org/taste
4. Rufino, J., Craveiro, J., Schoofs, T., Tatibana, C., Windsor, J.: AIR technology: a step

towards IMA in space. In: DASIA (2009)
5. Object Management Group: MOF model to text transformation language (2008). https://

www.omg.org/spec/MOFM2T/About-MOFM2T/
6. Amrani, M., et al.: Formal verification techniques for model transformations: a tridimen-

sional classification. In: Journal of Object Technology - Published by AITO
7. de Boer, F.S., Bonsangue, M., Hallerstede, S., Leuschel, M.: FormalMethods for Components

and Objects. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-17071-3
8. Khan, A., Mottahir, A.M., Qayyum, N.-u., Khan, U.: Validation of component based software

development model using formal B-method. Int. J. Comput. Appl. 67, 24–39 (2013). https://
doi.org/10.5120/11423-6768

9. Desovski, D., Cukic, B.: A component-based approach to verification and validation of
formal software models. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) WADS 2006.
LNCS, vol. 4615, pp. 89–114. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74035-3_5

10. Alaña, E., et al.: Verification of computer-controlled systems. DASIA (2017)
11. Bosik, B.S., Uyar, M.: Finite state machine based formal methods in protocol conformance

testing. Comput. Netw. ISDN Syst. 22(1), 7–33 (1991)
12. Salem, P.: Practical programming, validation and verification with finite-state machines: a

library and its industrial application, pp. 51–60 (2016). https://doi.org/10.1145/2889160.
2889226

13. Riccobene, E., Scandurra, P.: Combining formal methods and MDE techniques for model-
driven system design and analysis (2019)

14. Rodriguez, A., et al.: The component layer of COrDeT on-board software architecture
(2012)

15. Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J.-P., Noll, T., Tonetta, S.: COMPASS 3.0.
In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 379–385. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_25

16. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real-time scheduling
framework. ACM SIGAda Ada Lett. 24(4), 1–8 (2004). ACM Press

17. Harbour, M.G., Garcia, J.G., Gutierrez, J.P., Moyano, J.D.: MAST: modeling and analysis
suite for real time applications. In: Proceedings 13th Euromicro Conference on Real-Time
Systems, pp. 13–15. IEEE (June 2001)

736 D. Silveira et al.

http://download.tuxfamily.org/taste
https://www.omg.org/spec/MOFM2T/About-MOFM2T/
https://www.omg.org/spec/MOFM2T/About-MOFM2T/
http://dx.doi.org/10.1007/978-3-642-17071-3
http://dx.doi.org/10.5120/11423-6768
http://dx.doi.org/10.5120/11423-6768
http://dx.doi.org/10.1007/978-3-540-74035-3_5
http://dx.doi.org/10.1007/978-3-540-74035-3_5
http://dx.doi.org/10.1145/2889160.2889226
http://dx.doi.org/10.1145/2889160.2889226
http://dx.doi.org/10.1007/978-3-030-17462-0_25

18. Dissaux, P., Marc, O.: Executable AADL real time simulation of AADL models. In: CEUR
Workshop Proceedings (2014)

19. Windsor, J., Hjortnaes, K.: Time and space partitioning in spacecraft avionics. In 2009
Third IEEE International Conference on Space Mission Challenges for Information
Technology. Institute of Electrical and Electronics Engineers (IEEE) (July 2009)

20. Gaska, T., Watkin, C., Chen, Y.: Integrated modular avionics - past, present, and future.
IEEE Aerosp. Electron. Syst. Mag. 30(9), 12–23 (2015)

21. ARINC Specification: 653-1, Avionics Application Standard Interface. Aeronautical Radio
Inc. Software, Annapolis (2003)

22. Perrotin, M., et al.: TASTE in action (2016)
23. OSRA - onboard software reference architecture. https://essr.esa.int/project/osra-onboard-

software-reference-architecture
24. TASTE. https://taste.tools/
25. AIR Git Repository. https://spass-git-ext.gmv.com/AIR/AIR
26. AIR. https://www.gmv.com/en/Products/air/

Formal Methods Applicability on Space Applications 737

https://essr.esa.int/project/osra-onboard-software-reference-architecture
https://essr.esa.int/project/osra-onboard-software-reference-architecture
https://taste.tools/
https://spass-git-ext.gmv.com/AIR/AIR
https://www.gmv.com/en/Products/air/

Industrial Application of Event-B to a Wayside
Train Monitoring System: Formal Conceptual

Data Analysis

Robert Eschbach(&)

ITK Engineering GmbH, Rülzheim, Germany
robert.eschbach@itk-engineering.de

Abstract. The experience gained in the application of Event-B to a subsystem
of a wayside train monitoring system (WTMS) will be presented in this paper.
The WTMS configuration management system (CMS) supports the creation and
management of configuration data for the WTMS. Consistency of system data is
one of the most important quality properties of a CMS since inconsistency may
lead to critical malfunctioning. Therefore, the development of the data handling
part of a CMS requires the use of high integrity methods in order to ensure the
highest quality. Event-B, with its set-theoretic basis for modelling, its approach
of refinement and the use of formal proof to ensure consistency of refinement
steps, is used in this study for the conceptual modelling of system data and
system operations. Due to the Agile-structured development process, the con-
ceptual model has been created in several iterations by a changing team of
developers. The challenge was to guarantee completeness and consistency of
this model and to keep it aligned with the goals of all relevant stakeholders. This
has been achieved by producing an incremental, refinement-based creation of a
formal conceptual model together with an appropriate formalization of the
conceptual data constraints. The relationship between the conceptual model and
the formal conceptual model has been realized by using an appropriate trace-
ability model. This paper describes how the application of Event-B can suc-
cessfully address these challenges.

Keywords: Formal conceptual data model � Formal verification � Refinement �
Event-B

1 Introduction

The purpose of a wayside train monitoring system (WTMS) is to detect early threats
that may lead to hazards and damages by monitoring trains and environmental con-
ditions [4]. Typical examples are the detection of hot box, brake-locking or load
displacements. A WTMS is a highly distributed system that, from a system data per-
spective, gathers, analyzes and exchanges different kinds of measurement and status
data. A central part of a WTMS is the configuration management system (CMS). It is
responsible for the correct data exchange between connected devices and control and
management service points.

© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 738–745, 2019.
https://doi.org/10.1007/978-3-030-30942-8_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_43&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_43

The goal of our project was the development of a server-based subsystem of the
CMS. A relevant part of its functionality can be compared to a ticket system with user
accounts, technical areas for discussions, technical experts assigned to these areas and
tickets with related workflows (see entity ticket of the CDM in Fig. 1). A data con-
figuration task can be mapped to one or more tickets and can be accomplished with the
aid of associated users and technical experts.

A conceptual data model (CDM) has been defined as an extended entity relation-
ship model with entities, relationships, data constraints and initial data requirements for
this ticket system. The CDM was the basis for discussions between stakeholders and
development team and has been aligned with stakeholder expectations and develop-
ment needs in regular meetings. The underlying Agile development process was
organized according to SCRUM. Due to SCRUM, the CDM has been created incre-
mentally in several iterations by a changing team of developers. The challenge was to
guarantee the overall completeness and consistency of this model and to keep it aligned
with stakeholder and development team goals.

This challenge was met through the use of an incremental refinement-based cre-
ation of a formal conceptual model (FCDM) together with an appropriate formalization
of the conceptual data constraints. The basic development principles are part of our
Smart Engineering approach (see [3]). Event-B (see [1, 2]) with its set-theoretic basis
for modelling, its approach of refinement and the use of formal proof ensuring con-
sistency of refinement steps has been used for the conceptual modelling of system data
and system operations (Fig. 2). Formal methods, especially Event-B have been applied
successfully in many safety-critical railway systems [6–9]. The success of Event-B and
the B method has even an influence on the definition of CENELEC standard EN50128
[10]. A state-of-the-art of methods and tools for the verification of interlocking systems
can be found in [11]. The relationship between the conceptual model and the formal
conceptual model has been realized by an appropriate traceability model. In the fol-
lowing it will be described how the application of Event-B can successfully address
these challenges.

Fig. 1. CDM entity ticket

Industrial Application of Event-B to a WTMS 739

2 Formal Conceptual Data Model of the Ticket System

2.1 CMS Architecture

The CMS can be used to create configuration data for the WTMS. On an abstract level
the CMS consist of data and operations related to this data (Fig. 3). CMS data can be
further divided into data for the ticket system and technical configuration data related to
the WTMS. The CDM and FCDM has been created for the ticket system.

2.2 Entity and Relationship Analysis

Entities and relationships of the ticket system and associated data constraints were
identified together with all stakeholders of the CMS. In the following we will focus on
a representative part of the CDM in order to illustrate our approach.

Central entity of the ticket system is a ticket. On the highest abstraction level, a ticket
has a name and a status. In subsequent refinement steps, further attributes can be added.
All entitieswill be specifiedwith invariants and initial data requirements.All of these have
unique identifiers in order to make these elements traceable. For example, permitted
ticket status transitions are specified in relation TicketStatusTransition (see Fig. 4).
There are two invariants [Inv-TicketStatusTransition-1] and [Inv-TicketStatusTransition-
2] and one initial data requirement [Initial-TicketStatusTransition-1].

Fig. 2. Screenshot Event-B, rodin

WTMS Ticket System

CMS

WTMS Data

CMS Data

CMS Opera ons

configura on

Fig. 3. Conceptual view

740 R. Eschbach

These and further entities and relations have been discussed and elaborated with all
stakeholders. The conceptual data model has been refined to a so-called logical data
model (LDM). The LDM has been aligned with the expectations of all stakeholders.
From the LDM a concrete SQL database scheme has been derived. The FCDM has
been built on top of this conceptual data model.

2.3 Formal Conceptual Data Model

The FCDM assigns to each entity of the CDM an finite set. For example, the set of
tickets is specified as

Ticket ⊆ 1‥MAX_TICKET

where MAX_TICKET denotes a constant specified as

MAX_TICKET ∈ ℕ ∧ MAX_TICKET > 0

Relationships of the CDM will be formalized as relations of the FCDM. For
example, the ticket status transition relation will be defined as

ticket_status_transition ⊆ Ticket_Status × Ticket_Status

with trace information [Inv-Ticket-1], [Inv-Ticket-3]. The relation will be initialized as

ticket_status_transition ≔ {new↦open, open↦pending, open↦on_hold,
open↦closed, open↦solved, pending↦open,
on_hold↦open, closed↦open}

with trace information [Initial-TicketStatusTransition-1]. Invariant [Inv-Ticket-2] is
formalized as

Fig. 4. Relation TicketStatusTransition

Industrial Application of Event-B to a WTMS 741

∀t·t∈Ticket ⇒ ticket_status_old(t)↦ticket_status(t) ∈ ticket_status_transition

Events for creating, modifying and deleting were defined or each entity and each
relation. For example, the event modify_ticket_status specifies the modification of a
ticket status (see Fig. 5).

A database trigger has been derived from event modify_ticket_status/grd2 (see
Fig. 6).

As soon as the trigger is created in the database, the SELECT-Statement will be
performed automatically before an update statement on table ticket will be exe-
cuted. The SELECT-Statement checks whether the corresponding status transition is
permitted using table ticket status transition. If the transition is not per-
mitted, an exception will be raised.

The FCDM consists of five refinement steps. Each refinement step adds new
variables, invariants and events and corresponds to a user story that must be imple-
mented in a sprint.

Fig. 5. Event modify_ticket_status

Fig. 6. Trigger derivation

742 R. Eschbach

3 Challenges and Solutions

This chapter presents the main challenges facing the development of CMS. Since a
CMS is responsible for correct data exchange, data integrity is very important. Other
challenges are related to faults. Any non-trivial system possesses faults. From an
engineering point of view, it is important to deal systematically with faults. At the
beginning of the system development, it is important to prevent faults. By deriving
checklists and database-specific information from our formal model, it was possible to
prevent faults related to data operations. Strategies for fault tolerance help to avoid
failures during system execution by means of error detection and recovery mechanisms.
Using database constraints and triggers based on our formal model as well as SQL
statements involved in transactions with roll-back mechanisms, a specific kind of fault
tolerance has been achieved. The underlying Agile development process leads to an
incremental development of the conceptual data model (CDM). Since developers may
change from increment to increment, keeping the CDM consistent and complete is a
big challenge. The chosen traceability model between the CDM and the formal model
helps to understand the impact of changes, for example, when new entities or rela-
tionships are modelled, or existing entities and relationships need to be adapted.

3.1 Data Integrity

Data integrity and especially data consistency of system data is one of the most
important quality properties of a CMS since inconsistency may lead to critical mal-
functioning. Therefore, the development of a CMS requires the use of high integrity
methods in order to ensure the highest quality. To this extent, the formal conceptual
data model (FCDM) has been constructed to be traceably correct in alignment with the
CDM, i.e. each modelling decision like the definition of constants, variables or
invariants of the FCDM can be traced back to relevant parts of the informal CDM.
Furthermore, each derived concrete database constraint and each derived trigger can be
traced back to the FCDM.

3.2 Fault Prevention

During system development, it is important to prevent as many faults as possible.
A fault may cause errors during system execution and may lead to critical situations.
Different techniques for fault prevention exist. For example, coding guidelines or
systematic code reviews may help software developers to prevent faults. In our project,
checklists and concrete SQL constraints and triggers based on the FCDM were
extracted and discussed with the developers before they started to implement the
corresponding data operations.

3.3 Fault Tolerance

Another important quality attribute required for the CMS is fault tolerance. Since each
non-trivial system has faults, it is very important to deal with faults systematically.
Fault tolerance covers different techniques for error detection as well as for system

Industrial Application of Event-B to a WTMS 743

recovery. A special way to recover a consistent system state in a CMS is to remove
inconsistent data and roll back to an earlier consistent and saved data restoration point.
In our project, interrelated database statements of a data operations are always part of a
transaction with associated rollback mechanisms. Whenever an exception occurs (for
example, by violating a unique or foreign key constraint), the database will roll back to
the last saved restoration point. The calling data operation will check whether the
execution of the transaction was successful or not and will trigger a warning in the
latter case.

3.4 Agile Development

Due to the Agile-structured development process, the conceptual model has been
created in several iterations by a changing team of developers. With each increment of
the model, ensuring consistency and completeness is a challenge. In our project,
increments have been mapped to Event-B refinement steps. According to [5, 8 and 12]
we have used Event-B in the inception and construction phases and passed the derived
database triggers to the developers. An extension or modification of the CDM will lead
to an appropriate adaption of the FCDM. Since each refinement step and invariant will
be formally verified, it becomes clear how to adapt the FCDM. When all proof obli-
gations have been verified, the FCDM is in a consistent state and can be used to derive
information for the CDM or the database. Each change of the CDM must be aligned
with stakeholders and the development team. Since the cause of the change can be
traced back to the FCDM, it is easy to understand the impact of a change and to provide
convincing arguments for the change within stakeholder and team discussions.

4 Conclusion

The knowledge gained in the application of Event-B to the configuration management
system of a wayside train monitoring system has been presented in this paper. The
configuration management system supports the creation and management of configu-
ration data for the wayside train monitoring system. The biggest challenges for system
development have been presented and show how the formal conceptual data model,
together with its precise traceability model, succeeds in rising to these challenges.
Requirements for data integrity, fault prevention and fault tolerance as well as iterative
and incremental characteristics of the Agile development process has led to these hard
challenges. All of these can be addressed using Smart Engineering principles [3] and
Event-B [1, 2] as formal technique. Especially the integration of formal specifications
and formal verification, as well as the refinement concept, lends Event-B to a practical
and powerful formal technique useful in industrial projects.

744 R. Eschbach

References

1. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

3. Smart Engineering – Effiziente Softwareentwicklung in der Bahntechnik, Robert Eschbach,
Harald Laub, Thomas Freissler, Tobias Hofbaur, ZEVrail, 2017 (Jahrgang 141), Ausgabe
11/12

4. Bracciali, A.: Wayside train monitoring systems: a state-of-the-art and running safety
implications. Int. J. Railw. Technol. 1(1), 231–247 (2012)

5. Edmunds, A., et al.: Using the Event-B formal method for disciplined agile delivery of
safety-critical systems. In: SOFTENG (2016)

6. Lecomte, T., Servat, T., Pouzancre, G.: Formal methods in safety-critical railway systems
(2007)

7. ter Beek, M.H., Fantechi, A., Ferrari, A., Gnesi, S., Scopigno, R.: Formal methods for the
railway sector. In: ERCIM News 2018(112) (2018)

8. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail approach.
In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol.
11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_15

9. ASTRail. http://www.astrail.eu/
10. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applications to

railway signaling. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for Industrial Critical
Systems, pp. 61–84. Wiley, Hoboken (2012)

11. Haxthausen, A.E., Peleska, J.: Model checking and model-based testing in the railway
domain. In: Drechsler, R., Kühne, U. (eds.) Formal Modeling and Verification of Cyber-
Physical Systems, pp. 82–121. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-
658-09994-7_4

12. Wolff, S.: Scrum goes formal: agile methods for safety-critical systems. In: 2012 First
International Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches (FormSERA), Zurich, pp. 23–29 (2012)

Industrial Application of Event-B to a WTMS 745

http://dx.doi.org/10.1007/978-3-030-18744-6_15
http://www.astrail.eu/
http://dx.doi.org/10.1007/978-3-658-09994-7_4
http://dx.doi.org/10.1007/978-3-658-09994-7_4

Property-Driven Software Analysis

(Extended Abstract)

Mathieu Comptier, David Déharbe(B), Paulin Fournier,
and Julien Molinero-Perez

CLEARSY Systems Engineering, Aix-en-Provence, France
david.deharbe@clearsy.com

Keywords: Formal methods · Formal proof · Software specification

Context. Software in industrial products, such as in the railway industry, con-
stantly evolves to meet new or changing requirements. For projects with a life-
time spanning decades (such as the control software for energy plants, for railway
lines, etc.), keeping track of the original design rationale through time is a sig-
nificant challenge. The software provider may eventually lose some technical
control over its product, which may then become unnecessarily complex. This
may hinder beneficial architectural changes, result in the integration of over-
protective measures and lead to increased costs. For safety critical systems, the
risk is that the software eventually degrades up to a point where safety is no
longer guaranteed in some corner cases.

Typically, for any requirement that is introduced or modified for a new ver-
sion of the software, the development follows all the activities in the V cycle,
from high-level requirements up to integration testing. Figure 1 zooms in on the
initial design activities of the V-cycle. These are precisely the activities that are
verified by property-driven software analysis: a systematic and complete analysis
approach to prove mathematically that a software implementation conforms to
a high-level (safety or functional) requirement. This activity detects errors early
in the V-cycle, before any testing needs to be conducted, resulting in increased
confidence in the design and offering the possibility to revert the loss of technical
control.

Technical Insights. A property-driven software analysis establishes a direct
and formal link between software source and the properties expected of the sys-
tem integrating the software. Any discrepancy introduced in the design phase
is detected, be it in the high-level algorithmic specification of the solution, or
in its implementation. Technically, the approach first identifies, in collabora-
tion with the customer, the key properties that must be preserved. These are
system invariant properties relating physical objects and logical (software) vari-
ables. The analysis then proceeds and naturally uncovers a modular and layered
vision of the software and of the represented entities. Each variable contributing
to the implementation of the requirement is identified, its role is expressed by

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 746–750, 2019.
https://doi.org/10.1007/978-3-030-30942-8_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_44&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_44

Property-Driven Software Analysis 747

Fig. 1. Position of the activity in the design process.

connecting properties relating it to the concrete environment elements interact-
ing with the software. The demonstration then consists in showing that (a) the
key properties derive from the set of connecting properties, (b) every action of
the software preserves the connecting properties, and (c) every evolution of the
physical elements preserves the connecting properties.

The analysis team requires as inputs the high-level requirements, usually
safety properties stemming from the analysis of the undesirable events and a
faithful representation of the code implementing the feature (the software spec-
ification, or a formal model of the code, if it exists, or the code itself). It is also
desirable that a product expert is available part-time for one-off discussions.

Although this approach can be conducted with pen and paper with good
results, we find it yields even greater benefits when the safety demonstration is
carried out with a tool able to support both formal modeling of the system and
mechanical verification of the demonstration. Indeed, using tools

1. guarantees that the safety demonstration is free from logical flaws;
2. uncovers all domain-specific hypotheses necessary to the demonstration;
3. requires expressing properties at the right level of detail and precision.

To formalize the system model and the safety demonstration, we have used
different tools in different projects: Event-B [1] support in Atelier [2], as well as
HLL [4]. We also found it beneficial to employ Pro-B [3] animation and verifi-
cation features to tune the system model. Nevertheless, the presented method
does not depend on this specific tooling. All that is needed is a formalism that
is expressive enough, with support for machine-controlled reasoning (i.e., inter-
active and automatic theorem proving).

748 M. Comptier et al.

The results of the analysis are eventually delivered as a series of documents
describing the scope of the study, listing all the hypotheses made upon the envi-
ronment of the studied feature, the key properties and the connection properties,
a natural language version of the demonstration that the code is safe with respect
to the key property, and, possibly, description of scenarios leading to unsafe sit-
uations. When formal models and proofs have been developed, these are also
part of the deliverables.

Example. We illustrate this approach using the safety critical software responsi-
ble for calculating the position of a train on a track. The outputs of the software
are two ordered positions pmin and pmax on the track; the key safety property
is: the physical train is totally included in the portion bounded by pmin and pmax.
Assume that this software computes the maximal and minimal positions (pmax

and pmin) as follows:

• pmax = pbeacon + Vmax · T where pbeacon is the position with respect to the
last detected beacon, Vmax is the maximal speed of the train, and T is the
time since the beacon was detected.

• pmin = pbeacon −R−Lg− err where R is the maximal movement backwards
of a train, Lg is the train length and err the localization error.

Note that the result depends on the position of the last activated beacon.
To ensure the key property we thus have to ensure that this position is correct
(up to the localization error). Moreover, all possible train movements must be
taken into account. We derive the following connecting properties:

1. A train detects a beacon activation only if its head is near the position (known
by the train) of the beacon;

2. The correction added to compute maximal and minimal position covers all
possible movements of the train.

Any implementation that ensures these two properties will ensure that the
key safety property is satisfied. Then to show that these two properties hold
in this particular setting, the proof will rely on several sub-properties that are
either hypotheses, or constraints, or exported constraints such as:

(a) The position of the beacon known by the train includes the correction due to
the distance between the position of the detector and the head of the train;

(b) A beacon is active only if it is located at the right position (i.e. if a beacon
is dragged by a train it can no longer be active);

(c) Beacon can be activated at most at a distance bounded by err;
(d) Trains speed is bounded by Vmax;
(e) Trains cannot go backward by a distance greater than R;
(f) T is an over approximation of the time elapsed since beacon activation;
(g) The real length of the train is smaller than Lg.

In summary, the initial high level requirement is first refined in two properties
that combine the key property with the design principles, based on beacon place-
ment and over approximation of the train movement. Next, the analysis yields
a set of simple properties sufficient to prove the initial requirement is met.

Property-Driven Software Analysis 749

Industrial Applications. This method is proposed when traditional verifica-
tion and validation activities are lacking, either when case-base analysis would
be incomplete for systems that contain too many states, or when defects are
detected too late in the development cycle. The method has been applied on a
SIL4 system for the railways, on a feature corresponding to over 100 pages of
software specification and a 12kloc implementation. It has also been applied to
an anti-theft device in the automotive domain, and to show compliance of smart
cards with the Common Criteria level 5+ specifications.

The approach is pragmatic, with a rapid delivery of concrete results. In the
traditional V-cycle, such results are eventually achieved by testing scenarios
if the corresponding scenarios were initially identified and selected. Property-
oriented analysis improves qualitatively (it is complete) and quantitatively (it
applies earlier). Having a property-oriented analysis of safety-critical software-
based systems presents a real gain both for the provider and for the operator
of that system. On the one hand, for the provider in charge of developing the
system, this method provides added robustness and reduces the risk of facing
problems during service. It ensures the sustainability of the knowledge of design
decisions, by facilitating skill transmission. Also the safety demonstration is an
important asset to obtain the certificate for the required safety level. On the
other hand, the operator is also liable for the product in service and, as such,
benefits from applying this approach, especially in case the product is part of a
larger, multi-supplier system where it plays the role of integrator.

Fig. 2. Synthesis of the process for property-oriented analysis

Synthesis. We have described an application of formal methods that has seen
increasing interest from different industrial partners to address the challenge of
verifying systematically safety-related product features implemented in software.
This rigorous approach follows the process presented in Fig. 2; it is driven by the
identification of properties relating software entities and physical elements from
the environment, which proves essential to establish key safety and functional
requirements. The study of the possible changes affecting these elements provides
a systematic and complete procedure to verify that these requirements are met,
in all possible situations. Our experience shows that formal methods equipped
with tool support, such as Event-B, can be used to support this analysis with
success and provide added guarantee and effectiveness to the methodology.

750 M. Comptier et al.

References

1. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Atelier, B.: CLEARSY Systems Engineering. http://atelierb.eu
3. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45236-2 46. https://www3.hhu.
de/stups/prob/

4. Ordioni, J., Breton, N., Colaço, J.L.: HLL vol 2.7 Modelling Language Specification.
Technical Report STF-16-01805, RATP, May 2018

http://atelierb.eu
https://doi.org/10.1007/978-3-540-45236-2_46
https://www3.hhu.de/stups/prob/
https://www3.hhu.de/stups/prob/

Practical Application of SPARK
to OpenUxAS

M. Anthony Aiello1, Claire Dross2, Patrick Rogers1, Laura Humphrey3(B),
and James Hamil4

1 AdaCore Technologies, Inc., New York, NY 10001, USA
2 AdaCore SAS, 75009 Paris, France

3 Air Force Research Laboratory, Dayton, OH 45433, USA
laura.humphrey@us.af.mil

4 LinQuest Corporation, Beavercreek, OH 45431, USA

Abstract. This paper presents initial, positive results from using
SPARK to prove critical properties of OpenUxAS, a service-oriented
software framework developed by AFRL for mission-level autonomy
for teams of cooperating unmanned vehicles. Given the intended use
of OpenUxAS, there are many safety and security implications; how-
ever, these considerations are unaddressed in the current implementa-
tion. AFRL is seeking to address these considerations through the use
of formal methods, including through the application of SPARK, a pro-
gramming language that includes a specification language and a toolset
for proving that programs satisfy their specifications. Using SPARK, we
reimplemented one of the core services in OpenUxAS and proved that
a critical part of its functionality satisfies its specification. This success-
ful application provides a foundation for further applications of formal
methods to OpenUxAS.

Keywords: OpenUxAS · SPARK · Formal methods · Autonomy

1 Introduction

This paper presents initial, positive results from using SPARK to prove critical
properties of OpenUxAS, a software framework for mission-level autonomy for
teams of cooperating unmanned vehicles.

Efficient and effective use of unmanned vehicles requires greater levels of
autonomy than employed today. Currently, command and control of a single
vehicle requires multiple human operators to perform lower-level tasks such as
path planning, piloting, sensor steering, and so forth. Automating these lower-
level tasks would ideally allow multiple vehicles to be managed by a single oper-
ator, increasing efficiency and allowing the operator to focus on tactical and

DISTRIBUTION STATEMENT A: Distribution unlimited; approved for public release;
case number 88ABW-2017-1985.

This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright
protection may apply 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 751–761, 2019.
https://doi.org/10.1007/978-3-030-30942-8_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_45&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_45

752 M. A. Aiello et al.

strategic aspects of the mission rather than low-level execution details. Toward
this end, additional automation could build off of these tasks to provide the
operator with a high-level interface to command and control multiple vehicles.
Additionally, communication channels between vehicles are often unreliable, so
services must function with only intermittent communication between vehicles.

The United States Air Force Research Laboratory (AFRL) has explored
solutions to this problem through the research and development of decentral-
ized cooperative control approaches [4]. AFRL has developed a service-oriented
architecture called Unmanned Systems Autonomy Services (UxAS) that pro-
vides services handling many of the low-level details necessary for decentralized
cooperative control and tasks1 implementing high-level command and control,
thus accelerating research and development in this area. (Although the main
focus of UxAS is aircraft, the ‘x’ in UxAS indicates support for other vehicles).

AFRL has created a public-release, open-source version of UxAS, called
OpenUxAS, and has made OpenUxAS2 and a compatible multi-vehicle simu-
lation environment (OpenAMASE3) available on github. UxAS is implemented
in C++ 11, but the messages used for communication between services are
described using AFRL’s language-neutral Lightweight Message Construction
Protocol (LMCP), allowing UxAS tasks and services to be written in other
languages. LMCP is also available on github4.

Given the intended use of UxAS, there are many safety and security implica-
tions. Because UxAS was developed initially to accelerate internal research and
development, these considerations are currently left unaddressed. However, as
interest in UxAS grows, both within AFRL and also in the broader community,
addressing the safety and security of UxAS becomes increasingly important.

The known limitations of testing [1], especially for autonomy, make the appli-
cation of formal methods to UxAS a priority for AFRL. Because UxAS was orig-
inally intended to facilitate research, the design and implementation of UxAS
does not always lend itself well to the application of formal methods. For exam-
ple, in addition to being implemented in C++, UxAS makes frequent use of
pointers and does not define application-specific ranges for numeric values.

AFRL and AdaCore have therefore collaborated to rewrite parts of
OpenUxAS in Ada 2012 and SPARK 2014 so that SPARK can prove critical
properties of core services. In this paper, we describe our implementation app-
roach, present initial results, and identify our next objectives.

1 For the remainder of the paper, we use “task” to refer to a component of a mission
in UxAS (see: [3]). When we refer to an Ada task, we will clearly indicate it as such.

2 https://github.com/afrl-rq/OpenUxAS.
3 https://github.com/afrl-rq/OpenAMASE.
4 https://github.com/afrl-rq/LmcpGen.

https://github.com/afrl-rq/OpenUxAS
https://github.com/afrl-rq/OpenAMASE
https://github.com/afrl-rq/LmcpGen

Practical Application of SPARK to OpenUxAS 753

2 Background

2.1 OpenUxAS

UxAS is designed to be highly extensible and configurable: depending on the
configuration of loaded services and tasks, which perform mission-specific activ-
ities such as area, line or point surveillance [3], UxAS can perform a variety
of missions, including decentralized surveillance [4] or ground-intruder isolation.
At the heart of UxAS is the task-assignment pipeline, which is implemented as
a set of cooperating services [5]. The role of the task-assignment pipeline is to
take tasks, with associated task orderings or dependencies, and distribute them
amongst eligible vehicles. The goal of the distribution is to be time-optimal: all
tasks should be completed by the eligible vehicles as quickly as possible. Services
and tasks communicate by exchanging messages, defined using LMCP, over the
message bus, which is implemented using ZeroMQ5.

For this work, we focus on the Automation Request Validator service, which
validates and serializes new Automation Request messages. Automation Request
messages describe missions by referencing tasks, eligible vehicles, and operating
regions by their IDs, which must have been previously defined by other received
messages. The service thus acts as a gatekeeper, performing two functions: (1)
ensure that the Automation Request can be carried out, by checking that the
ID of every vehicle, task and operating region referenced has previously been
defined; and then (2) ensure that only one resulting actionable request, in the
form of a Unique Automation Request message, is fed into the rest of the system
at a time. Our focus for the application of SPARK is on the first function.

2.2 SPARK

SPARK is both a programming language with a specification language and a
toolset that is supported by specific development and verification processes [2].
Here, we focus on the latest generation of SPARK, SPARK 2014, in which the
specification language and the programming language have been unified as a
subset of Ada 2012. SPARK excludes features not amenable to sound static ver-
ification, principally access types (pointers), function side effects, and exception
handling. Constraints on both program data and control can be specified using
type contracts (predicates and invariants) and function contracts (preconditions
and postconditions), respectively. The SPARK verification toolset can automat-
ically prove that an implementation conforms to its specification and is free from
run-time exceptions.

3 Approach

Our approach is to translate the Automation Request Validator service from
C++ to Ada and SPARK. We use Ada to implement the message-based commu-
nication classes above ZeroMQ the object-oriented class hierarchy for the service
5 http://zeromq.org.

http://zeromq.org

754 M. A. Aiello et al.

classes. Both Ada and SPARK are used to implement the concrete Automation
Request Validator service subclass. In particular, SPARK is used to implement
the critical functionality of the service, i.e., the part that validates the Automa-
tion Request messages.

We follow the C++ design closely so that any errors encountered will not be
due to a design change we introduced. Some changes are required for SPARK,
and are described below. As noted in Sect. 4.1, more substantial changes would
improve the quality of the code and reduce the effort required for proof.

3.1 Service Class Hierarchy

All services in UxAS inherit from a common abstract class named Service Base that
provides facilities for creating and configuring services. In particular, Service Base

creates a new service instance given only the name of the required service. This
dynamic creation is necessary because UxAS instances are configured using ser-
vice names listed in an XML configuration file and explains the use of pointers
to designate dynamically allocated services.

Service Base is a subclass of LMCP Object Network Client Base, the root abstract base
class for all LMCP network-oriented client subclasses. This class provides the
means for communicating LMCP messages over the network, and includes a
thread, implemented as an Ada task, that actively sends and receives the mes-
sages.

Rather than defining Ada bindings to the C++ code, we implemented these
classes in Ada because we want to be able to apply Ada features such as contracts
and, in the future, extend the scope of the SPARK analysis to a larger portion
of the code. To that end, although we follow the C++ design closely, we make
changes for SPARK when necessary. For example, all state-changing functions
in C++ are converted into procedures in Ada because SPARK does not allow
functions to have side-effects. Similarly, we use bounded data types in place of
unbounded types, e.g., String. We use a formally proven “dynamic bounded array”
abstract data type for several of these replacements and use contracts extensively
in the message serializer/deserializer class, requiring us to think through the
intended usage scenarios and providing checks at run-time for our understanding.

3.2 Properties of Interest

Although a high-level description of the Automation Request Validator service
exists on the OpenUxAS wiki6, we found that there was insufficient detail there
to identify meaningful properties. Instead, we examined the C++ code for the
Automation Request Validator service to identify intent based on the current
implementation. For the identification of intent, we restricted our focus to high-
level understanding of the code and comments, rather than focusing on the
details of the implementation.

6 https://github.com/afrl-rq/OpenUxAS/wiki/Core-Services-Description.

https://github.com/afrl-rq/OpenUxAS/wiki/Core-Services-Description

Practical Application of SPARK to OpenUxAS 755

The identified properties focus on the validation of specific, critical aspects
of Automation Requests. A request contains several pieces of data: a list of enti-
ties, a list of operating regions, and a list of tasks. For a request to be valid,
all these data should be checked to make sure that they have been previously
declared and configured appropriately. This is done in a C++ function named
isCheckAutomationRequestRequirements. This function takes an automation request and
checks whether it is valid or not. Additionally, if the request is invalid, it com-
putes and sends an error message to describe why the request was rejected. This
function is translated in SPARK as a procedure (because a function cannot have
side effects, including sending messages).

To describe the functional behavior of isCheckAutomationRequestRequirements, we have
introduced a SPARK function named Valid Automation Request that describes when
an automation request should be valid. This function does not care about error
messages; it simply describes validity in as concise a way as possible. Addi-
tionally, this function is specification-only, which means that it should not be
used in the final executable. To make sure that this restriction is enforced,
Valid Automation Request is annotated with the Ghost aspect (ghost code is removed by
the compiler when assertion checking is disabled). To ensure that the definition
stays in the specification part of the program, and is available for verification,
we have defined Valid Automation Request directly as an expression function:

function Va l i d Automat i on Reque s t
(Th i s : Con f i g u r a t i o n Da t a ;
Request : My UniqueAutomationRequest) return Boolean

i s
−− Check e n t i t i e s
(C h e c k F o r R e q u i r e d En t i t y C o n f i g u r a t i o n s
(. . .)

−− Check op e r a t i n g r e g i o n s
and then Check Fo r Requ i r ed Ope ra t i ng Reg i on And Keep in Keepou t Zone s
(Ope ra t i ng Reg i on ⇒ Get Ope r a t i ngReg i on F rom Or i g i n a lReque s t (Request) ,

Ope r a t i ng Reg i on s ⇒ This . Ava i l a b l e Op e r a t i n g Reg i o n s ,
Keep I n Zone s I d s ⇒ This . Ava i l a b l e K e e p I n Zon e s I d s ,
KeepOut Zones Ids ⇒ This . Ava i l a b l e Ke epOu t Zone s I d s)

−− Check t a s k s
and then Check Fo r Requ i r ed Task s And Task Requ i r ement s
(. . .)

with Ghost , Global ⇒ null ;

The three subproperties are translated in the same way. For example, here
is the function that checks the validity of operating regions:
function Check Fo r Requ i r ed Ope ra t i ng Reg i on And Keep in Keepou t Zone s

(Ope ra t i ng Reg i on : I n t 64 ;

Ope ra t i ng Reg i on s : Operat ing Reg ion Maps ;
Keep I n Zone s I d s : I n t 6 4 S e t ;
KeepOut Zones Ids : I n t 6 4 S e t) return Boolean

is

−− i f t h e r e i s an o p e r a t i n g r eg i on , i t s hou l d be l i s t e d i n Ope r a t i ng Reg i on s

(i f Ope ra t i ng Reg i on �= 0 then Conta in s (Ope ra t i ng Reg i on s , Ope ra t i ng Reg i on)

−− and a l l i t s a s s o c i a t e d keep i n a r e a s shou l d be i n Keep I n Zone s I d s

and then A l l E l em e n t s I n
(Element (Ope ra t i ng Reg i on s , Ope ra t i ng Reg i on) . KeepInAreas ,
Keep I n Zone s I d s)

756 M. A. Aiello et al.

−− and a l l i t s a s s o c i a t e d keepout a r e a s shou ld be i n KeepOut Zones Ids

and then A l l E l em e n t s I n
(Element (Ope ra t i ng Reg i on s , Ope ra t i ng Reg i on) . KeepOutAreas ,
KeepOut Zones Ids))

with Ghost ;

That is, the requested operating region should have been previously stored
in the operating-region map of the Automation Request Validator service, and
its keep-in/keep-out areas should all be stored in the their respective sets.

3.3 Ada-SPARK Boundaries

The concrete Automation Request Validator Service inherits from Service Base, which inherits
from LMCP Object Network Client Base. Both use constructs outside the SPARK subset,
primarily pointers. Moreover, the Automation Request Validator service directly
processes LMCP messages, which contain pointers and use container packages
that are not amenable to formal analysis.

While changes are therefore required to enable analysis with SPARK, we
avoid propagating these changes throughout the application and allow other
parts of the application to use the full expressivity of Ada, in particular retain-
ing the use of pointers. This approach promotes efficiency and stays as close as
possible to the C++ code. Because the SPARK restrictions are mostly localized
to the implementation of the Automation Request Validator service, this app-
roach also simplifies modifying the integration between SPARK and Ada, for
example if we change containers or take advantage of enhancements to SPARK.

The complexity of this approach lies in the interface between SPARK and
Ada. When a SPARK function is called by Ada to validate a message, we must
build a SPARK-compatible abstraction of the message. Rather than copying the
message, we preserve the Ada types (including pointers and standard containers)
and build abstractions on top of them so that they can be used in SPARK.
These abstractions handle objects (e.g., messages, tasks, etc.) as black boxes and
extract from them the required information in a SPARK-compatible way (e.g.,
translate standard containers to formal containers7 or dereference pointers).

For example, the received Automation Request message is a pointer to an
object of the Object inheritance class and is hidden from SPARK in a private
type, with functions for converting to and from the pointer type and dereferenc-
ing:
package av t a s . lmcp . o b j e c t . SPARK Boundary with SPARK Mode i s

pragma Annotate (GNATprove , Terminat ing , SPARK Boundary) ;

type My Object Any i s private ;
function Dere f (X : My Object Any) return Object ’ C l a s s with

Global ⇒ null , I n l i n e ;
function Wrap (X : Object Any) return My Object Any with

Global ⇒ null , I n l i n e ,
SPARK Mode ⇒ Off ;

7 In addition to standard containers defined by Ada in the form of generic packages,
SPARK includes a library of formal containers that have been designed specifically
to facilitate proof.

Practical Application of SPARK to OpenUxAS 757

function Unwrap (X : My Object Any) return Object Any with
Global ⇒ null , I n l i n e ,
SPARK Mode ⇒ Off ;

private
pragma SPARK Mode (Off) ;
type My Object Any i s new Object Any ;
(. . .)

end av t a s . lmcp . o b j e c t . SPARK Boundary ;

The SPARK code can dereference objects of type My Object Any using the Deref

function. The functions to construct/destruct the abstractions (Wrap and Unwrap)
are only accessible by the Ada code (they are marked SPARK Mode ⇒Off).

4 Results

We developed a complete demonstration of the reimplemented, proven Automa-
tion Request Validator service, which is available on github8. We adapted an
existing UxAS example that illustrates a UAV searching a waterway. The exam-
ple includes a UxAS instance and the OpenAMASE simulator running as sep-
arate programs and communicating using ZeroMQ. Rather than integrate the
Ada/SPARK into the C++ UxAS program, we run the service in a separate pro-
gram. Our service receives messages from ZeroMQ and processes the Automation
Request messages as if in the same UxAS instance as the C++ code.

Normally, a UxAS instance includes the Automation Request Validator ser-
vice, which in this case would conflict with the Ada version since both would
respond to Automation Request messages. Therefore, we disable the original
Automation Request Validator service in OpenUxAS by removing it from the
instance’s XML configuration file. The C++ instance still receives Automation
Request messages as they are injected but because none of its services pro-
cess them, the intended UAV never begins the search. However, the XML file
for the Ada version does include the Automation Request Validator service, so
an instance is created, which validates Automation Request messages and then
responds with Unique Automation Request messages. The UAV then performs
the expected search.

4.1 Verification Results

Our goal was to verify both that the code fulfills its specification and that no
errors can occur during its execution. We entirely achieved the first goal. We
mostly achieved the second goal, with two notable exceptions.

First, we did not attempt to verify correct usage of the bounded strings and
formal containers APIs. More precisely, we did not verify: the possible overflow
of the error message string that is generated in response to an invalid request;
the possible overflow of the data structures used to store messages and declared
objects; or the uniqueness of keys in data structures, which requires reasoning
about uniqueness of identifiers. These could be verified if we provided additional

8 https://github.com/AdaCore/OpenUxAS, in the ‘ada’ branch.

https://github.com/AdaCore/OpenUxAS

758 M. A. Aiello et al.

annotations and assumptions on inputs. We did not seek completeness because
we believe these properties are insufficiently interesting to pollute other verifi-
cation tasks with these concerns.

Second, the tool is unable to verify correctness of the part of the code in
which, in C++, a classwide task object is cast to a specific task type depending
on a string ID (its name). Ensuring the correctness of this code would require
verifying globally the complete type hierarchy for all tasks, to make sure that
each ID is never reused for a different task type. This problem may be seen as an
incentive to refactor the code to use Ada membership tests instead of comparing
string IDs, so that no such global invariant is required to ensure correctness.

During our process of reverse engineering the specifications from the C++
code base and comments, we found only one error: a nested loop was used to
find a match in two maps but both loops where iterating on the same map! We
corrected this bug when we found it but demonstrated that it would have been
detected by a formalization of the validity criteria.

Overall, the results we obtained using formal verification on the Automa-
tion Request Validator service are encouraging. However, the verification effort
required to achieve this goal was significant because of two key challenges.

First, there was no appropriate high-level functional specification of what the
service was supposed to do; we had to reverse engineer the specification from the
C++ code and comments. Our specifications were validated by stakeholders.

Second, the code was not designed to be easily verified using SPARK; we
had to abstract incompatible features, as detailed above. The abstractions could
have been avoided by a global redesign of the code to more systematically use
the formal containers and to eliminate pointers. Alternatively, the abstractions
could have been avoided by improving the support in SPARK for excluded Ada
features, such as pointers.

Because of these challenges, significant effort was required to define and
express appropriate specifications in SPARK. Furthermore, actually verifying
that the code conforms to its specification using the SPARK proof tool was
challenging, because: (1) the code contains several loops, each requiring the use
of a manually crafted loop invariant to act as a cut point for the tool; and (2)
even with the code annotated and all the invariants supplied, we ran into prov-
ability issues. Indeed, the tool was overwhelmed by the amount of information it
had to carry, mostly due to the number of different container instances employed.
As a result, we had to manually guide the proof tool to complete the proofs by
adding manual assertions in the code, sometimes at the expense of readability.

To help the provers, we primarily relied on two techniques.
First, we often restated the property we were trying to establish at several

points in the program using pragma Assert And Cut. These pragmas not only check
the property and add it to the context of subsequent checks like pragma Assert

but also use the expression provided as a cut point. After the cut, the provers
forget everything before the pragma and only remember the supplied property.
For example, the code that checks that entities are properly configured is 175
lines long and includes 14 if statements and five loops, some of which are nested.

Practical Application of SPARK to OpenUxAS 759

At the conclusion of this code, we state that the IsReady flag really is the result of
the expected computation using a pragma Assert And Cut:
pragma Asse r t And Cut

(I sReady = Ch e c k F o r R e q u i r e d En t i t y C o n f i g u r a t i o n s
(E n t i t y I d s ⇒ En t i t y I d s ,
C o n f i g u r a t i o n s ⇒ This . Con f i g s . A v a i l a b l e C o n f i g u r a t i o n E n t i t y I d s ,
S t a t e s ⇒ This . Con f i g s . A v a i l a b l e S t a t e E n t i t y I d s ,
P l a n n i n g S t a t e s ⇒ Ge t P l a n n i n g S t a t e s I d s (Request))) ;

Thus we verify the property and help the verification of the remaining checks
by forgetting the intermediate steps required by the computation up to that
point.

Second, we introduced lemmas for often-reused reasoning. For example, the
code sometimes performs computations that are hidden from the analysis, such
as sending messages to the outside world. While these computations modify
the internal state of the service, they do not modify the configuration data
such as the available entities. Unfortunately, the only mechanism provided by
SPARK to state that a part of an object is unchanged by a subprogram call is
Ada equality, which is fairly complex. Equality on an array, for instance, is the
equality of elements: two arrays can be equal even if they have different bounds.
As a result, proving that properties are preserved because two objects are equal
can be nontrivial. For example, consider the contract of Send Error Response, which
is used to send an error message if the request is invalid:
procedure Send E r r o r Re spon s e

(This : in out Au t oma t i o n Requ e s t Va l i d a t o r S e r v i c e ;
Request : My UniqueAutomationRequest ;
Rea sonFo rFa i l u r e : Bounded Dynamic St r ings . Sequence ;
ErrResponse ID : out I n t 6 4)

with Post ⇒ This . Conf ig s ’Old = This . Con f i g s
and Same Requests

(Model (Th i s . Reque s t s Wa i t i n g Fo r Ta sk s) ,
Model (Th i s . Reque s t s Wa i t i n g Fo r Ta sk s) ’Old)

and Same Requests
(Model (Th i s . Pend ing Reques t s) ,
Model (Th i s . Pend ing Reques t s) ’Old) ;

This contract states that both configuration data (This.Configs) and the request
queues are left unchanged by the procedures.9 When we call this procedure from
our SPARK code, we would like to be able to deduce that if all requests were valid
in the data configuration before the call, then they will be valid after the call.
Unfortunately, this reasoning involves complex computations, as it relies on Ada
equality for complicated data structures. Moreover, the validity of requests itself
contains several (nested) quantified expressions. To help with these proofs, we
introduced axioms in the form of ghost procedures with no effects; these axioms
are used as lemmas in proofs. The premises are stated using preconditions; the
conclusions are stated using postconditions. For example:

9 We do not use Ada equality on the request queues: the requests contain parts which
are hidden from SPARK, so SPARK does not know the meaning of equality for these
queues; this is not the case, however, for the data configuration where we took care
to only store SPARK-compatible information.

760 M. A. Aiello et al.

procedure P r o v e V a l i d i t y P r e s e r v e d
(Data1 , Data2 : Con f i g u r a t i o n Da t a ;
R : My UniqueAutomationRequest)

with
Ghost ,
Global ⇒ null ,
Pre ⇒ Data1 = Data2 ,
Post ⇒ Va l i d Automat i on Reque s t (Data1 , R) =

Va l i d Automat i on Reque s t (Data2 , R) ;

This lemma states that if two configurations are equal, a request will have
the same validity status in both. To use the lemma, we call it explicitly in the
code:
declare

ErrResponse ID : I n t 6 4 ;
Old Conf s : constant Con f i g u r a t i o n Da t a := This . Con f i g s with Ghost ;

begin
Send E r r o r Re spon s e (This , Request , Rea sonFo rFa i l u r e , Er rResponse ID) ;
P r o v e V a l i d i t y P r e s e r v e d (Old Confs , Th i s . Conf ig s , Request) ;

end ;

The use of both of these techniques made the proofs tractable without requir-
ing a major redesign of the program. However, these techniques are costly in
terms of lines of code. Check Automation Request Requirements is about 200 lines of C++.
Our verified version is approximately 410 lines long. Of these, the specification
and contract is 20 lines, but depends on 130 lines of expression functions that
help to express the property so that it is as readable as possible. The imple-
mentation contains roughly 45 lines of loop invariants and just over 100 lines
of ghost code, including regular Assert pragmas, Assert And Cut pragmas, and calls to
ghost lemmas with associated ghost state. The remainder – about 250 lines – is
the Ada code, which we translated as closely as possible from the C++ version.
In addition, we have some 50 lines of lemmas, most of which are automatically
verified by the tool and do not require additional annotation.

5 Conclusion

We applied SPARK to OpenUxAS, AFRL’s service-oriented architecture that
provides core services supporting cooperative control and high-level command
and control. In our application, we defined a partial specification for the Automa-
tion Request Validator service. We successfully proved that the implementation
of the procedure intended to perform request validation satisfies the specification
and additionally proved the absence of most run-time exceptions.

This work provides a foundation upon which we intend to build. In future
work, we intend to extend the application of SPARK and Ada to additional ser-
vices in UxAS and to investigate recently added support for ownership pointers
to help simplify the application of SPARK. Ultimately, our goal is to provide a
sufficient framework to enable us to formalize and prove interesting, application-
relevant composition properties across the architecture.

Practical Application of SPARK to OpenUxAS 761

References

1. Butler, R.W., Finelli, G.B.: The infeasibility of experimental quantification of
life-critical software reliability. SIGSOFT Softw. Eng. Notes 16(5), 66–76 (1991).
https://doi.org/10.1145/123041.123054

2. Dross, C., et al.: Climbing the software assurance ladder-practical formal verification
for reliable software (2018). https://www.adacore.com/uploads/techPapers/spark
avocs 2018.pdf

3. Kingston, D., Rasmussen, S., Humphrey, L.: Automated UAV tasks for search and
surveillance. In: 2016 IEEE Conference on Control Applications (CCA), pp. 1–8
(September 2016). https://doi.org/10.1109/CCA.2016.7587813

4. Kingston, D., Beard, R.W., Holt, R.S.: Decentralized perimeter surveillance using
a team of UAVs. IEEE Trans. Robot. 24(6), 1394–1404 (2008)

5. Rasmussen, S., Kingston, D., Humphrey, L.: A brief introduction to unmanned
systems autonomy services (UxAS), pp. 257–268 (June 2018). https://doi.org/10.
1109/ICUAS.2018.8453287

https://doi.org/10.1145/123041.123054
https://www.adacore.com/uploads/techPapers/spark_avocs_2018.pdf
https://www.adacore.com/uploads/techPapers/spark_avocs_2018.pdf
https://doi.org/10.1109/CCA.2016.7587813
https://doi.org/10.1109/ICUAS.2018.8453287
https://doi.org/10.1109/ICUAS.2018.8453287

Adopting Formal Methods in an
Industrial Setting: The Railways Case

Maurice H. ter Beek1(B) , Arne Borälv3,
Alessandro Fantechi1,2(B) , Alessio Ferrari1(B) , Stefania Gnesi1(B) ,

Christer Löfving3, and Franco Mazzanti1(B)

1 ISTI–CNR, Pisa, Italy
{terbeek,ferrari,gnesi,mazzanti}@isti.cnr.it

2 Università di Firenze, Florence, Italy
alessandro.fantechi@unifi.it
3 Trafikverket, Göteborg, Sweden

christer.lofving@trafikverket.se

Abstract. The railway sector has seen a large number of successful
applications of formal methods and tools. However, up-to-date, struc-
tured information about the industrial usage and needs related to for-
mal tools in railways is limited. Two Shift2Rail projects, X2Rail-2 and
ASTRail, have addressed this issue by performing a systematic search
over the state of the art of formal methods application in railways to
identify the best used practices. As part of the work of these projects,
questionnaires on formal methods and tools have been designed to gather
input and guidance on the adoption of formal methods in the railway
domain. Even though the questionnaires were developed independently
and distributed to different audiences, the responses show a certain con-
vergence in the replies to the questions common to both. In this paper,
we present a detailed report on such convergence, drawing some indi-
cations about methods and tools that are considered to constitute the
most fruitful approaches to industrial adoption.

1 Introduction

The benefits that can be expected from using formal methods depend on several
factors and can vary considerably depending on the scope and purpose, the
quality and maturity of the tools that are used, the knowledge of users of the
formal methods and tools, and so on.

Considering formal specification of requirements, formal methods provide a
better insight and understanding, compared to specifying requirements in natu-
ral language. Formal specifications may be processed automatically by software
tools, allowing the requirements to be debugged during development. Besides
such benefits, a formal specification can be used as basis to prove that a system
(model) satisfies its requirements using formal verification.

Formal verification enables exhaustive verification that critical properties
related to safety and security are satisfied, which traditional methods based
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 762–772, 2019.
https://doi.org/10.1007/978-3-030-30942-8_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_46&domain=pdf
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-0636-5663
http://orcid.org/0000-0002-0139-0421
http://orcid.org/0000-0003-4562-8777
https://doi.org/10.1007/978-3-030-30942-8_46

Adopting Formal Methods in an Industrial Setting 763

on test and simulation cannot. This makes it possible to accurately identify
meaningful errors, and to provide strong guarantees for correctness. In addition,
formal verification is often (but not always) automated which can reduce the
effort and time for proving the correctness of systems considerably. In the last
decade or two, formal verification has matured considerably, thanks to more
sophisticated algorithms for formal verification and more powerful computers.

The largest benefits can be expected from formal development , that is, inte-
grating formal methods in the development process, so that safer software can be
produced with lower costs. Formal development may replace existing processes,
but this requires a large commitment and investment, including a learning curve
to become proficient in a new process.

Successful applications of formal methods in industry (automotive, avionics,
etc.) have demonstrated these benefits to varying degree, and have shown that
the number of defects in the code can be significantly reduced [1,4,10,11]. How-
ever, formal methods do not pervade critical software industry, and this happens
also in the railway domain, despite several success stories [3,6,7] and even though
formal methods are highly recommended by the CENELEC standards [5].

The Shift2Rail Joint Undertaking (S2R JU) has identified the use of for-
mal methods as one of the key concepts to enable reducing the time it takes to
develop and deliver railway signalling systems, and to reduce high costs for pro-
curement, development and maintenance. Formal methods have been recognized
as needed to ensure correct behaviour, interoperability and safety, at the same
time reducing long-term life cycle costs. In this S2R JU initiative, two comple-
mentary projects, one proposed by the JU Members themselves, the other one as
a result of an open call, respectively X2Rail-21 and ASTRail2, have been funded
having as one of the objectives common to both, that is, to perform a search
over the state of the art of formal methods application in railways to identify the
best used practices. As part of the work of the two projects, questionnaires on
formal methods and tools have been designed to gather input and guidance on
the adoption of formal methods in the railway domain. The purpose was to vali-
date existing know-how and experience in the subject matter and to gain insight
into expectations by the railway industry regarding what formal methods can
and should bring. Even though the questionnaires were developed independently
and distributed to different audiences by the two projects, the responses show a
certain convergence in the replies to the questions common to both.

In this paper, we present a detailed report on such convergence, drawing
some indications about methods and tools that are considered to constitute the
most fruitful approaches to industrial adoption. Indeed, the main aim of the
questionnaires was, in both cases, to investigate:

– The most relevant functionality of formal methods applications among, e.g.,
formal verification, requirement traceability, test case generation and simula-
tion, etc.

1 https://projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-2.
2 http://www.astrail.eu.

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
http://www.astrail.eu

764 M. H. ter Beek et al.

– The system development phases that can benefit most from using formal
tools.

– The most important quality aspect of formal tools, such as maturity, easy to
learn, easy to integrate in a CENELEC process, etc.

This paper is organized as follows: the questionnaires are presented in Sect. 2.
The results of the questionnaires are shown in Sect. 3, after an elaboration
aimed to cumulate and harmonize the raw results of the different questionnaires.
Lessons learned and conclusions are summarized in Sect. 4.

2 Questionnaires

Three questionnaires were defined, two by the X2Rail-2 project [12] and one
by the ASTRail project [2,8]. In the following, we will distinguish them by the
names X2Rail2-a, X2Rail2-b and ASTRail.

The questionnaires were independently distributed to different audiences by
the two projects in order to gather feedback on the usage of formal methods in
the railway domain, both from academic and industrial stakeholders. Below we
summarize the main characteristics of the respondents.

X2Rail2-a:

– 17 out of 22 invited individuals answered the questionnaire.
– The respondents had on average 10 years of experience in railway signalling

and 9 years in formal methods.
– One third of the respondents were affiliated with a supplier company, one

third with a research institution, and one quarter were from an infrastructure
manager.

– Most respondents had experience from projects using formal methods, with
such projects delivering systems in revenue service or as pilots.

– The most common signalling subsystem type of such projects has been inter-
locking, followed by on-board software.

X2Rail2-b:

– 86 out of 500 invited individuals answered the questionnaire.
– The respondents had on average 20 years of experience in railway signalling.
– 38% of the respondents were affiliated with an infrastructure manager, 16%

with a supplier company, 28% with engineering firms, 5% with a research
institution, and 5% with safety assessment.

– More than half of the respondents were familiar with formal methods for
development of railway signalling systems (formal specification, formal veri-
fication, semi-formal methods).

– More than half of the respondents had used formal methods (directly or
indirectly).

Adopting Formal Methods in an Industrial Setting 765

ASTRail:

– The questionnaire was proposed to the participants of the RSSRail’17 con-
ference. The 44 respondents were balanced between academics (50%) and
practitioners (50%, of which 47.7% from railway companies and 2.3% from
aerospace and defense).

– A large percentage of respondents had several years of experience in railways
(68% more than 3 years and 39% more than 10 years) and in formal methods
(75% more than 3 years, 52% more than 10 years).

3 Cumulated Results of the Two Projects’ Questionnaires

In order to extend the validity of the results obtained by the different question-
naires, we considered the integration of their results, focusing on those questions
that are common, or similar, between them. Even in the case of the same or sim-
ilar questions, sometimes the questionnaires proposed a different set of closed
form replies: this required a harmonization effort which in some case has neces-
sarily reduced the information provided by one of the questionnaires.

Products. Both projects included questions on the type of railway signalling
systems to which formal methods were applied by respondents or their insti-
tution; however, X2Rail2-a also distinguished between equipments belonging to
ERTMS, CBTC or conventional signaling applications. Figure 1 shows a sum-
mary of the results expressed as the percentage of the respondents to ASTRail,
while for X2Rail2-a the percentages are given for each application category (mul-
tiple answers were allowed, so the sum is not 100).

Fig. 1. Usage of formal methods in the railway sector – type of products

766 M. H. ter Beek et al.

Phases. Another common question of ASTRail and X2Rail2-a regarded the
phases of the development process in which formal methods were applied. Unfor-
tunately, the two questionnaires proposed a different granularity in the definition
of the phases, and we were therefore unable to meaningfully synthesize the results
beyond the mere juxtaposition presented in Table 1, in which the location of the
entries hints at some rough correspondences between the two cases, and where
the numbers give the percentage of interested respondents for each questionnaire.

Table 1. Phases in the process in which formal methods are applied

Phase ASTRail X2Rail2-a

Specification 73.8

User requirements 6

Prototyping 13

System level user requirements 31

Software user requirements 69

System configuration 13

Design 63

Simulation 40.5

Model analysis 50.0

Formal verification 73.8

Design verification 50

Code generation 32.0

Coding 38

Testing 32.0

Code verification 25

Unit testing 25

Integration testing 13

Static analysis 7.1

Safety assessment 19

Other 2.4 13

Formal Tools. Tools based on formal methods, for short formal tools, have been
the key to success stories of industrial application of formal methods [9,11]. The
questionnaires therefore addressed the industrial diffusion of formal tools, with-
out providing any specific list of tools in advance, nor any predefined definition
of what constitutes a formal tool. ASTRail and X2Rail2-a differ for the clas-
sification of used tools (X2Rail2-b did not include a question asking for tool
identification):

Adopting Formal Methods in an Industrial Setting 767

– In X2Rail2-a there are separate questions related to formal verification, formal
specification and formal development.

– In ASTRail only the name of used tools where asked, irrespective of the phase
in which they were used.

To harmonize the results, we ignored the phase distinction made in
X2Rail2-a: we simply merged the three values given by respondents to X2Rail2-a
by assuming that who has indicated the use of a tool in a phase is one of those
that indicated the use of the same tool for another phase, that is, it is more
likely that someone adopting a tool for one phase has adopted the same tool
for another phase. Under this assumption, for each tool we took the maximum
of the numbers of users given for each phase. Moreover, to simplify the presen-
tation, we merged values related to tools that form the B ecosystem, merged
values referring to Petri Net tools and removed from X2Rail2-a the answers on
semi-formal tools (cf. next paragraph). We then ordered the tools in Fig. 2 by
the sum of the resulting ASTRail and X2Rail2-a values, removing all tools men-
tioned only once in one of the questionnaires, in order to contain the size of the
figure.3

Fig. 2. Tools cited in the questionnaires

We notice that the industrial perception of what constitutes a formal method
or a formal tool is rather liberal, including some tools and languages that may not
be considered ‘formal’ according to canonical definitions of formal methods. For
example, typical commercial model-based design tools like SCADE and Simulink
3 The list of tools gaining only one mention is: ABS, Astah, CADP, CNL, CryptoVerif,

Datalog, F∗, iUML-B, FDR4, Markov Chains, Maude, mCRL2, Moebius, MoMuT,
PRISM, ProVerif, QA, RAISE, RobustRails, SafeCap, SAL, SAT, SMT, TAMARIN,
UMC, UPPAAL, and XILINK.

768 M. H. ter Beek et al.

were cited among tools offering formal verification capabilities, and therefore in
this respect are considered formal. In line with [9], we extend this liberal notion
of formal tools to Rhapsody as well (in spite of what will be said later about
UML) since, although not offering formal verification, it provides simulation
and automatic test generation capabilities to support the design, construction
and analysis of systems. Moreover, such features are considered among the most
relevant ones requested from formal tools, as we will show later in Fig. 4. On
the other hand, respondents also listed generic names of verification techniques
(SAT, Monte Carlo simulation, etc.) rather than specific tools.

Semi-formal Tools. Semi-formal methods refer to formalisms and languages that
are not considered fully ‘formal’. Examples include UML and dialects thereof,
in which requirements are expressed using graphical diagrams. Although semi-
formal, such diagrams can convey the meaning of requirements more clearly than
natural language. Advocates consider the use of semi-formal methods worth-
while, for instance due to easier adoption during earlier phases such as when
defining and eliciting the user and system requirements. Using semi-formal meth-
ods simply defers the task of completing the semantics to a later stage. Semi-
formal tools were cited only in X2Rail2-a, whose results are reported in Fig. 3.

Fig. 3. Semi-formal tools

Figures 2 and 3 already show a convergence towards a limited set of tools.
This trend is even more marked if we cross these results with those coming from
other sources, that is, the systematic literature review conducted in the ASTRail
project, and the associated study of European industrial research projects related
to the application of formal methods in railway signalling [2,8].

Adopting Formal Methods in an Industrial Setting 769

Expectations on Tools. The respondents to all three questionnaires were asked,
according to their experience, what they considered to be the most relevant
functionalities that formal (or semi-formal) methods and tools should support.
Figure 4 depicts the compared results, which exhibit a substantial agreement:
verification is by far the functionality that is asked most from a formal tool.

Another question common to the three questionnaires concerns the most
relevant quality aspects that (semi-)formal tools should have in order to be
used in the railway industry. The results depicted in Fig. 5 show that maturity,
easy learning and easy integration in a CENELEC development process are the
qualities that scored highest. We note that ASTRail and X2Rail2-b show a more
substantial agreement, while X2Rail2-a scores differently some aspects (e.g., the
importance of the tools’ cost).

Fig. 4. Most relevant features

Fig. 5. Relevant quality aspects

770 M. H. ter Beek et al.

4 Conclusion

Formal methods have been largely applied to railway problems for more than
three decades. However, structured information is limited about their current
application in industry, and about the most relevant features that practition-
ers expect from tools supporting formal development. In this paper, we merge
the information elicited through three different questionnaires involving practi-
tioners and academics with experience in formal methods and railway systems.
The questionnaires were performed in the contexts of two ongoing Horizon 2020
research projects funded through the Shift2Rail initiative, namely ASTRail and
X2Rail-2. Both projects include tasks specifically dedicated to collect informa-
tion about the application of formal methods in railways. The results of the
questionnaires show the following:

1. Most of the applications of formal methods in industrial projects are focused
on interlocking systems.

2. Formal methods are mainly used for formal specification and formal verifica-
tion, mostly in the early development phases, as requirements and design.

3. The B-family is the dominant set of tools, followed by tools with simulation
capabilities such as SCADE and Simulink.

4. The most relevant functionalities are formal verification and support for for-
mal modelling, followed by traceability, simulation, test and code generation.

5. The most relevant quality features are related to the maturity, usability and
learnability of the tools.

This paper consolidates the body of knowledge in formal methods for railway sys-
tem development by confirming some trends (e.g., dominance of the B-method,
focus on early development phases) that are visible to the interested practition-
ers and academics, by means of an empirical inquiry. The conducted study has
also shown a certain gap in the industrial perception of what formal methods
and tools are, with respect to more canonical definitions of these terms.

There is an obvious threat to the validity of the conclusions of this work,
due to the possible low representativity of the replies to the questionnaires;
however, the questionnaires were by their nature targeted to a specific niche
of professionals, with a good coverage of the main stakeholders involved in the
design and production of railway signalling systems.

We are also aware of the limits of the proposed questionnaires, which aimed
mainly at a rapid collection of data, in the end providing only superficial data on
the quite diverse background and experience of the respondents. No definition
of formal methods, nor of formal (specification, development, verification) tools
was given in advance to the respondents. While this allowed to probe the rather
broad understanding of how formal methods are conceived in industry, at the
same time it has reduced the importance of the results of the questionnaires by
spreading the scores over a wide and variegated area of techniques and tools,
which has required weakening the canonical definitions of formal methods and
tools. The questionnaires also lacked a precise definition of terms that could
easily be given different meanings by the respondents (e.g., “maturity”, which

Adopting Formal Methods in an Industrial Setting 771

could mean that the tool has been around for a while, appears polished, or is
stable in the sense that it does not crash a lot).

Surely, more investigation is needed to refine the obtained results. An
extended format for the questionnaires addressing the above limits should be
prepared and proposed to a larger, more controlled, audience. Moreover, the lat-
est conclusions drawn from the integration of the three questionnaires, regarding
the most used tools and related expectations in terms of most relevant features
and relevant quality aspects, have triggered our interest in understanding to
what extent currently available tools, such as those cited in the questionnaires,
actually satisfy the expectations: a specific investigation among professionals in
this regard could form a solid base for subsequent research on the definition of
readily available development processes that integrate formal and semi-formal
tools, providing industry with clear paths to follow in different situations, with
minimum friction and maximum benefit. The recent overview of the status of
formal tools presented in [9] perfectly summarizes the current difficulties faced
by users of such tools. However, the authors also propose a number of directions
for improvement, both for the individual tool developer and for the academic
community as a whole.

Acknowledgements. This work has been partially funded by the ASTRail and the
X2Rail-2 projects. These projects received funding from the Shift2Rail Joint Under-
taking under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 777561 and No. 777465.

References

1. Ameur, Y.A., Boniol, F., Wiels, V.: Toward a wider use of formal methods for
aerospace systems design and verification. Int. J. Softw. Tools Technol. Transfer
12(1), 1–7 (2010)

2. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 2

3. Butler, M.J., et al.: Formal modelling techniques for efficient development of rail-
way control products. RSSRail. LNCS, vol. 10598, pp. 71–86. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68499-4 5

4. Davis, J.A., et al.: Study on the barriers to the industrial adoption of formal
methods. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS, vol. 8187, pp.
63–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41010-9 5

5. European Committee for Electrotechnical Standardization: CENELEC EN 50128 –
Railway applications - communication, signalling and processing systems - software
for railway control and protection systems (1 June 2011)

6. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05032-4 13

7. Fantechi, A., Ferrari, A., Gnesi, S.: Formal methods and safety certification: chal-
lenges in the railways domain. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 261–265. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3 18

https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-319-68499-4_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1007/978-3-319-47169-3_18
https://doi.org/10.1007/978-3-319-47169-3_18

772 M. H. ter Beek et al.

8. Ferrari, A., et al.: Survey on formal methods and tools in railways: The ASTRail
approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail
2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18744-6 15

9. Garavel, H., Mateescu, R.: Reflections on Bernhard Steffen’s physics of software
tools. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The
What, the How, and the Why Not?. LNCS, vol. 11200, pp. 186–207. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22348-9 12

10. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal veri-
fication in automotive industry: enablers and obstacles. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139–158. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6 14

11. Plat, N., van Katwijk, J., Toetenel, H.: Application and benefits of formal methods
in software development. Softw. Eng. J. 7(5), 335–346 (1992)

12. X2Rail-2 - Deliverable D5.1, Formal Methods (Taxonomy and Survey), Pro-
posed Methods and Applications (16 May 2018). https://projects.shift2rail.org/
download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8

https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-22348-9_12
https://doi.org/10.1007/978-3-030-03427-6_14
https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8
https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8

Author Index

Aichernig, Bernhard K. 651
Aiello, M. Anthony 751
Amram, Gal 83
Andronick, June 11
Appel, Andrew W. 573
Arusoaie, Andrei 502

Bacci, Giovanni 651
Baier, Christel 262
Bard, Joachim 38
Becker, Heiko 38
Beek, Maurice H. ter 762
Bendisposto, Jens 519
Beringer, Lennart 573
Blakqori, Genc 611
Bodeveix, Jean-Paul 45
Boer, Frank S. de 64
Bonakdarpour, Borzoo 406
Bonsangue, Marcello 64
Borälv, Arne 762
Boyer, Benoit 354
Brenas, Jon Haël 556
Brunel, Julien 45
Butterfield, Andrew 217, 235

Češka, Milan 101
Češka, Milan 101
Charguéraud, Arthur 484
Chemouil, David 45
Comptier, Mathieu 746
Cordwell, Katherine 138
Coughlin, Nicholas 539

D’Souza, Deepak 337
D’Souza, Meenakshi 337
Darulova, Eva 38
Déharbe, David 746
Deifel, Hans-Peter 280
Derrick, John 179
Doherty, Simon 179
Dongol, Brijesh 179
Dross, Claire 751

Dubrulle, Paul 389
Dunkelau, Jannik 519

Echahed, Rachid 556
Ehlers, Rüdiger 245
Eekelen, Marko van 689
Eichlseder, Maria 651
Eschbach, Robert 738
Evangelidis, Alexandros 425

Fantechi, Alessandro 762
Feliú, Marco A. 21
Ferrari, Alessio 762
Filali, Mamoun 45
Filaretti, Daniele 593
Filliâtre, Jean-Christophe 484
Fournier, Paulin 746

Gnesi, Stefania 762
Gomes, Artur Oliveira 217, 235
Guth, Dwight 593

Hähnle, Reiner 319
Hamil, James 751
Hensel, Christian 101
Humphrey, Laura 751

Irofti, Dina 389

Jantsch, Simon 262
Johansen, Christian 121
Johnson, Ralph 593
Johnson, Taylor T. 670
Jongmans, Sung-Shik 689
Jorge, Tiago 727
Jung, Andreas 727
Junges, Sebastian 101

Kasampalis, Theodoros 593
Katoen, Joost-Pieter 101
Klein, Joachim 262

Körner, Philipp 519
Krings, Sebastian 519
Krishnamurthi, Shriram 3
Kwiatkowska, Marta 298

Lamers, Arjan 689
Lang, Frédéric 196
Larsen, Kim G. 651
Le, Quang Loc 442
Leuschel, Michael 519
Liu, Yang 161
Löfving, Christer 762
Lourenço, Cláudio 484
Lucanu, Dorel 502
Lunel, Simon 354
Luteberget, Bjørnar 121

Manzanas Lopez, Diago 670
Maoz, Shahar 83
Marmsoler, Diego 611
Mateescu, Radu 196
Mazzanti, Franco 196, 762
Milius, Stefan 280
Mitsch, Stefan 138, 354
Molinero-Perez, Julien 746
Moore, Brandon 593
Moscato, Mariano M. 21
Müller, David 262
Muñoz, César A. 21
Murray, Toby 539
Musau, Patrick 670

Nelson, Tim 3
Nguyen, Luan Viet 670
Norman, Gethin 298

Ogawa, Mizuhito 465

Pai, Rekha 337
Pang, Jun 707
Parker, David 298, 425
Paul, Soumya 707
Pereira, Mário 484
Pham, Long H. 442
Phan, Quoc-Sang 442

Pistiner, Or 83
Platzer, André 138, 371

Rogers, Patrick 751
Roşu, Grigore 593

Sanán, David 161
Sánchez, César 406
Santos, Gabriel 298
Schellhorn, Gerhard 179
Schneider, Gerardo 406
Schröder, Lutz 280
Șerbănuță, Traian Florin 593
Șerbănuță, Virgil 593
Sheinvald, Sarai 633
Silveira, Daniel 727
Singh, Abhishek 337
Smith, Graeme 539
Sogokon, Andrew 138
Steffen, Martin 121
Steinhöfel, Dominic 319
Strecker, Martin 556
Stucki, Sandro 406
Su, Cui 707
Sun, Jun 442

Talpin, Jean-Pierre 354
Tan, Yong Kiam 138, 371
Tappler, Martin 651
Titolo, Laura 21
Tran, Hoang-Dung 670

Verhoef, Marcel 727
Vu, Anh V. 465

Wehrheim, Heike 179
Wißmann, Thorsten 280

Xiang, Weiming 670

Yang, Xiaodong 670

Zhang, Fuyuan 161
Zhang, Yi 593
Zhao, Yongwang 161

774 Author Index

	Preface
	Organization
	Formal Methods for Security Functionality and for Secure Functionality (Invited Presentation)
	Contents
	Invited Presentations
	The Human in Formal Methods
	1 Humans and Formal Methods
	2 User Experience
	3 Education
	3.1 A Design Recipe for Writing Specifications
	3.2 Tools

	4 Conclusion
	References

	Successes in Deployed Verified Software (and Insights on Key Social Factors)
	1 The Dream
	2 Successes in Deployed Verified Software
	3 Insights on Key Social Factors
	References

	Verification
	Provably Correct Floating-Point Implementation of a Point-in-Polygon Algorithm
	1 Introduction
	2 The Winding Number Algorithm
	3 Program Transformation to Avoid Unstable Tests
	4 Test-Stable Version of the Winding Number
	5 Verification Approach
	6 Related Work
	7 Conclusion
	References

	Formally Verified Roundoff Errors Using SMT-based Certificates and Subdivisions
	1 Introduction
	2 Extensions to FloVer
	3 Experiments
	References

	Mechanically Verifying the Fundamental Liveness Property of the Chord Protocol
	1 Introduction
	2 The Chord Protocol
	2.1 Network Structure
	2.1.1 Identifier Space
	2.1.2 Chord Network

	2.2 Chord Operations
	2.2.1 Formal Model
	2.2.2 Model-Specific State Variables
	2.2.3 Events

	2.3 Proof Engineering

	3 Chord Correctness
	3.1 Generic Properties
	3.2 Chord Properties
	3.2.1 Chord Invariants
	3.2.2 Always-True Properties

	4 Phase-Based Convergence Proof
	4.1 Reaching MS1: Rectifying and prdc in Members
	4.2 Reaching MS2: The First Successor Is a Member
	4.3 Reaching MS3: Stabilizing only Includes Members
	4.4 Reaching MS4: prdc Is the Inverse of bestSucc and the Rectifying and Stabilizing Sets of Each Node Are Empty
	4.5 Reaching MS5: The Tail of the Successor List of Each Node Is Equal to the Successor List of Its First Successor
	4.6 Reaching the Ideal State

	5 Related Work
	6 Conclusion
	References

	On the Nature of Symbolic Execution
	1 Introduction
	2 Basic Symbolic Execution
	3 Recursion
	4 Object Orientation
	5 Arrays, Multithreading, and Concurrent Objects
	6 Conclusion
	References

	Synthesis Techniques
	GR(1)*: GR(1) Specifications Extended with Existential Guarantees
	1 Introduction
	1.1 Example: Lift Specification
	1.2 Related Work

	2 Preliminaries
	2.1 Game Structures and Strategies
	2.2 Linear Temporal Logic and the GR(1) Fragment
	2.3 -calculus over Game Structures

	3 GR(1)*: Going Beyond LTL
	3.1 GR(1)* Formulas
	3.2 GR(1)* Winning Condition
	3.3 Inexpressibility of GR(1)* Winning Conditions in LTL

	4 Solving GR(1)* Games
	5 Strategy Construction
	5.1 Construction Discussion and Overview
	5.2 Detailed Construction

	6 Implementation and Preliminary Evaluation
	6.1 Setup
	6.2 Results

	7 Conclusion
	References

	Counterexample-Driven Synthesis for Probabilistic Program Sketches
	1 Introduction
	2 Preliminaries and Problem Statement
	3 CEGIS for Markov Chain Families
	3.1 Conflicts and Synthesiser
	3.2 Verifier

	4 Syntax-Guided Synthesis for Probabilistic Programs
	4.1 A Program Sketching Language
	4.2 A Program-Level Synthesiser
	4.3 A Program-Level Verifier

	5 Experimental Evaluation and Discussion
	References

	Synthesis of Railway Signaling Layout from Local Capacity Specifications
	1 Introduction
	2 Background
	2.1 Railway Signalling Layout Design

	3 Method
	3.1 Local Capacity Specifications
	3.2 Initial Design
	3.3 SAT-Based Dispatch Planning
	3.4 Numerical Optimization
	3.5 Discrete Event Simulation

	4 Local Optimizations and Interactive Improvement
	5 Conclusions, Related and Further Work
	5.1 Related Works
	5.2 Further Work

	References

	Pegasus: A Framework for Sound Continuous Invariant Generation
	1 Introduction
	2 Preliminaries
	3 Sound Invariant Checking and Generation
	3.1 Invariant Generation with Template Enumeration
	3.2 Soundness: Proof Assistants and Invariant Generation

	4 Invariant Generation Methods in Pegasus
	4.1 Exact Discrete Abstraction
	4.2 Targeted Qualitative Analysis
	4.3 Qualitative Analysis for Non-linear Systems
	4.4 General-Purpose Methods

	5 Strategies for Invariant Generation
	6 Evaluation
	7 Related Work
	8 Outlook and Challenges
	9 Conclusion
	References

	Concurrency
	A Parametric Rely-Guarantee Reasoning Framework for Concurrent Reactive Systems
	1 Introduction
	2 Motivation and Approach Overview
	3 PiCore: The Rely-guarantee Framework
	3.1 The Event Language
	3.2 Rely-Guarantee Proof System
	3.3 Invariant Verification

	4 Integrating Concrete Languages
	4.1 Rely-Guarantee Interface of PiCore Framework
	4.2 Integrating the IMP and CSimpl languages

	5 Concurrent Memory Management of Zephyr RTOS
	6 Evaluation and Conclusion
	References

	Verifying Correctness of Persistent Concurrent Data Structures
	1 Introduction
	2 A Persistent Queue
	3 Durable Linearizability
	4 An Operational Model for Durable Linearizability
	5 Correctness of the Persistent Queue
	5.1 Modelling the Persistent Queue
	5.2 Refinement-Based Verification
	5.3 Identification of Persistence Points
	5.4 Key Invariants and Abstraction Relation

	6 Conclusion
	References

	Compositional Verification of Concurrent Systems by Combining Bisimulations
	1 Introduction
	2 Background
	2.1 LTS Compositions and Reductions
	2.2 Temporal Logics
	2.3 Compositional Property-Dependent LTS Reductions

	3 Combining Bisimulations Compositionally
	3.1 The Lstrong(As) Fragments of L
	3.2 Applying Divbranching Bisimulation to Selected Components
	3.3 Identifying Strong Actions in Derived Operators

	4 Applications
	4.1 Trivial File Transfer Protocol
	4.2 Parallel Benchmark of the RERS 2018 Challenge

	5 Conclusion and Future Work
	References

	Model Checking Circus
	Towards a Model-Checker for Circus
	1 Introduction
	2 Circus Background
	3 Translating Circus to CSPM using Circus2CSP
	3.1 The Memory Model

	4 Upgrading the Memory Model
	4.1 Limitation 1: Z Types vs. CSPM Types
	4.2 Limitation 2: FDR Time/Space Explosion

	5 Experimental Results
	5.1 Haemodialysis (HD) Machine Experiments
	5.2 Ring-Buffer Experiments
	5.3 Compression Experiments

	6 Future Work
	7 Conclusions
	References

	Circus2CSP: A Tool for Model-Checking Circus Using FDR
	1 Introduction
	2 Circus2CSP: Requirements and Goals
	3 Experiments with Circus2CSP
	4 Conclusions
	References

	Model Checking
	How Hard Is Finding Shortest Counter-Example Lassos in Model Checking?
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Tightening Büchi Automata
	4 Component Lassos – Negative Result
	5 Component Lassos – Positive Result
	6 Conclusion
	References

	From LTL to Unambiguous Büchi Automata via Disambiguation of Alternating Automata
	1 Introduction
	2 Preliminaries
	3 Unambiguous VWAA
	4 Disambiguating VWAA
	5 Heuristics for Purely-Universal Formulas
	6 Implementation and Experiments
	7 Conclusion
	References

	Generic Partition Refinement and Weighted Tree Automata
	1 Introduction
	2 Theoretical Foundations
	3 Generic Partition Refinement
	3.1 Generic System Specification
	3.2 Refinement Interfaces
	3.3 Combining Refinement Interfaces
	3.4 Implementation Details

	4 Instances
	5 Weighted Tree Automata
	5.1 Cancellative Monoids
	5.2 Non-cancellative Monoids
	5.3 Evaluation and Benchmarking

	6 Conclusion and Future Work
	References

	Equilibria-Based Probabilistic Model Checking for Concurrent Stochastic Games
	1 Introduction
	2 Preliminaries
	3 Extending rPATL with Nash Formulae
	4 Model Checking CSGs Against Nash Formulae
	5 Implementation and Tool Support
	6 Case Studies and Experimental Results
	7 Conclusions
	References

	Analysis Techniques
	Abstract Execution
	1 Introduction
	2 Specifying Abstract Programs
	3 Abstract Execution Logic
	3.1 Principles of JavaDL
	3.2 Formalization of Abstract Execution
	3.3 Abstract Update Simplification

	4 Proving the Correctness of Refactoring Techniques
	5 Related Work
	6 Conclusion and Future Work
	References

	Static Analysis for Detecting High-Level Races in RTOS Kernels
	1 Introduction
	2 Overview
	3 Interrupt-Driven Programs with Callbacks
	4 High-Level Races
	5 High-Level Race Detection Using Disjoint Blocks
	6 Analyzing the P-RTOS Kernel
	7 TI-RTOS and FreeRTOS
	8 Experimental Evaluation
	9 Related Work
	10 Conclusion
	References

	Parallel Composition and Modular Verification of Computer Controlled Systems in Differential Dynamic Logic
	1 Introduction
	2 Differential Dynamic Logic
	3 Computer-Controlled Systems
	3.1 Modeling CCS
	3.2 Modular Verification of a CCS

	4 Parallel Composition
	4.1 Parallel Composition of Multi-choice Reactive Controllers
	4.2 Parallel Composition of Controllable Plants
	4.3 Parallel Composition of Multi-choice Reactive Controllers and Controllable Plants
	4.4 Parallel Composition of Multi Computer-Controlled Systems

	5 Related Work
	6 Conclusion
	References

	An Axiomatic Approach to Liveness for Differential Equations
	1 Introduction
	2 Background
	2.1 Syntax
	2.2 Semantics
	2.3 Proof Calculus

	3 Liveness via Box Refinements
	4 Liveness Without Domain Constraints
	4.1 Differential Variants
	4.2 Staging Sets

	5 Liveness with Domain Constraints
	5.1 Topological Proof Rules

	6 Related Work
	7 Conclusion
	References

	Local Consistency Check in Synchronous Dataflow Models
	1 Introduction
	2 Synchronous Dataflow Models
	3 A New Approach for Consistency Check
	4 Experimental Results
	4.1 Implementation in the SDF3 Open Source Tool
	4.2 Benchmark
	4.3 Results Obtained on the Experimental Setup

	5 Related Work
	6 Concluding Remarks
	References

	Gray-Box Monitoring of Hyperproperties
	1 Introduction
	2 Background
	2.1 LTL and HyperLTL
	2.2 Semantic Monitorability

	3 The Notion of Gray-Box Monitoring
	3.1 The Limitations of Monitoring Hyperproperties
	3.2 Gray-Box Monitoring. Sound and Perfect Monitors

	4 Monitoring Distributed Data Minimality
	4.1 DDM Preliminaries
	4.2 DDM as a Hyperproperty
	4.3 Properties of DDM
	4.4 Building a Gray-Box Monitor for DDM
	4.5 Proof-of-Concept Implementation

	5 Related Work
	6 Conclusions
	References

	Quantitative Verification of Numerical Stability for Kalman Filters
	1 Introduction
	2 Preliminaries
	2.1 The Kalman Filter
	2.2 Numerical Instability of the Kalman Filter
	2.3 The Carlson-Schmidt Square-Root Filter

	3 Quantitative Verification of Kalman Filters
	3.1 Constructing Probabilistic Models of Kalman Filter Execution
	3.2 Verification of Numerical Stability

	4 Tool Support: VerFilter
	5 Experimental Results
	5.1 Verification of Kalman Filter Implementations
	5.2 Scalability Analysis

	6 Conclusion
	References

	Concolic Testing Heap-Manipulating Programs
	1 Introduction
	2 Approach at a Glance
	3 Specification-Based Testing
	4 Concolic Execution
	5 Implementation and Experiments
	6 Related Work
	7 Conclusion
	References

	Specification Languages
	Formal Semantics Extraction from Natural Language Specifications for ARM
	1 Introduction
	2 Formal Semantics of ARM
	2.1 Natural Language Specification
	2.2 Operational Semantics
	2.3 Java Specification as Formal Semantics

	3 Syntax Normalisation
	4 Semantics Interpretation by Translation Rules
	4.1 NP-Phrases Extraction
	4.2 Instructions Selection Strategy
	4.3 Translation Rules Preparation
	4.4 A Comprehensive Example

	5 Detecting Modified Flags
	6 Conformance Testing
	7 The CORANA Tool
	7.1 CORANA Architecture
	7.2 Path Conditions Generation

	8 Experiments
	8.1 Semantics Extraction
	8.2 Dynamically Handling Jumps by CORANA

	9 Conclusion
	References

	GOSPEL—Providing OCaml with a Formal Specification Language
	1 Introduction
	2 An Overview of GOSPEL
	2.1 Basic Operations on a Mutable Queue
	2.2 Destructive and Nondestructive Operations
	2.3 Higher-Order Functions
	2.4 Ghost Variables
	2.5 Non-visible Side Effects

	3 Semantics
	3.1 General Form of GOSPEL Specifications
	3.2 Basics of Separation Logic
	3.3 Example Translations of Mutable Queue Specifications
	3.4 General Translation Scheme from GOSPEL to Separation Logic

	4 Implementation and Application
	5 Related Work
	6 Conclusion and Future Work
	References

	Unification in Matching Logic
	1 Introduction
	2 Preliminaries
	2.1 Syntactic Unification
	2.2 Matching Logic

	3 Syntactic Unification and Matching Logic
	3.1 Encoding Syntactic Unification in ML
	3.2 Unification Algorithms as Constraint Patterns Transformers
	3.3 Soundness and Completeness

	4 Generating Proofs
	5 Conclusions
	References

	Embedding High-Level Formal Specifications into Applications
	1 Introduction
	1.1 B, Event-B and ProB

	2 ProB 2.0
	3 Examples
	3.1 Real-Time Animation: Pac-Man
	3.2 Predicting the Future: Chess
	3.3 ProB as a Constraint Solver: PlüS
	3.4 Real Time Animation: ETCS Hybrid Level 3 Concept

	4 Discussion and Related Work
	4.1 Soundness of Approach
	4.2 Animation
	4.3 Visualisation
	4.4 Code Generation
	4.5 Other Approaches

	5 Conclusions
	References

	Reasoning Techniques
	Value-Dependent Information-Flow Security on Weak Memory Models
	1 Introduction
	2 Weak Memory Models
	3 Weak Memory Models and Security
	3.1 Value-Dependent Security and Reordering

	4 Formal Framework
	4.1 Assumptions and Guarantees
	4.2 Value-Dependent Security Levels
	4.3 Weak Memory Models

	5 The Logic
	5.1 Soundness
	5.2 Example Revisited
	5.3 A More Precise Logic

	6 Timing Sensitivity
	7 Conclusion
	References

	Reasoning Formally About Database Queries and Updates
	1 Introduction
	1.1 Context and Contributions
	1.2 Introductory Example

	2 Transformation Language
	2.1 Syntax
	2.2 Interpretations
	2.3 Operational Semantics

	3 Program Logic
	3.1 Hoare Triples: Definition
	3.2 Hoare Triples: Soundness
	3.3 Weakest Pre-conditions

	4 Guarded Fragment
	5 Conclusions
	References

	Abstraction and Subsumption in Modular Verification of C Programs
	1 Introduction
	2 Function Specifications in Verifiable C
	3 Subsumption of Function Specifications
	4 Definitions of Funspec Subtyping
	5 The Subsumption Rules
	6 Intersection Specifications
	7 Conclusion
	References

	Modelling Languages
	IELE: A Rigorously Designed Language and Tool Ecosystem for the Blockchain
	1 Introduction
	2 Background
	3 The IELE Language
	3.1 IELE Contracts
	3.2 IELE Functions
	3.3 IELE Instructions
	3.4 IELE Datatypes

	4 Formal IELE Language Definition in K
	4.1 IELE Formal Semantics Overview

	5 Formal Verifier of IELE Smart Contracts
	6 Conclusion
	References

	APML: An Architecture Proof Modeling Language
	1 Introduction
	2 Background
	2.1 Basic Mathematical Notations
	2.2 Architecture Model
	2.3 Composition
	2.4 Contracts
	2.5 Isabelle

	3 Running Example: A Reliable Adder
	4 Modeling Architecture Proofs
	4.1 Verifying Reliable Adder
	4.2 Soundness and Completeness

	5 From APML to Isabelle
	6 Modeling Architecture Proofs in FACTum Studio
	7 Case Study: Trainguard MT Control System
	8 Related Work
	9 Conclusion
	References

	Learning-Based Techniques and Applications
	Learning Deterministic Variable Automata over Infinite Alphabets
	1 Introduction
	2 Preliminaries
	3 A Canonical Form for DVFA
	3.1 Finding a Minimal Set of Variables

	4 A Learning Algorithm for DVFA
	5 Summary and Future Work
	References

	L*-Based Learning of Markov Decision Processes
	1 Introduction
	2 Preliminaries
	3 Exact Learning of MDPs
	4 Learning MDPs by Sampling
	4.1 Learner Implementation
	4.2 Teacher Implementation

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Star-Based Reachability Analysis of Deep Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Machine Learning Models and Symbolic Verification Problem
	2.2 Generalized Star Sets

	3 Star-Based Reachability Analysis of FNNs
	3.1 Exact and Complete Analysis
	3.2 Over-Approximate Analysis
	3.3 Reachability Algorithm for FNNs

	4 Evaluation
	4.1 Safety Verification for ACAS Xu DNNs
	4.2 Maximum Robustness Certification of Image Classification DNNs

	5 Conclusion and Future Work
	References

	Refactoring and Reprogramming
	SOA and the Button Problem
	1 Introduction
	2 Background
	3 Architectures and Refactorings
	3.1 Architecture Models
	3.2 Refactoring Framework
	3.3 Core Library of Refactorings

	4 Deployments and Sensitivities
	5 Implementation
	6 Conclusion
	References

	Controlling Large Boolean Networks with Temporary and Permanent Perturbations
	1 Introduction
	2 Preliminaries
	2.1 Boolean Networks
	2.2 Dynamics of Boolean Networks
	2.3 Attractors and Basins
	2.4 The Control Problem

	3 Results
	3.1 Permanent Control
	3.2 Temporary Control

	4 Case Studies
	5 Discussion and Future Work
	References

	I-Day Presentations
	Formal Methods Applicability on Space Applications Specification and Implementation Using MORA-TSP
	Abstract
	1 Introduction
	2 MORA-TSP Suitability to Formal Methods
	2.1 Model Transformation
	2.2 Model Validation
	2.3 Component Behavior Definition with FSM

	3 OSRA
	3.1 OSRA Process Description
	3.2 The OSRA Specification/Architecture
	3.3 OSRA Editor

	4 TASTE
	5 Model Transformation OSRA to TASTE
	6 AIR
	7 Conclusions

	Industrial Application of Event-B to a Wayside Train Monitoring System: Formal Conceptual Data Analysis
	Abstract
	1 Introduction
	2 Formal Conceptual Data Model of the Ticket System
	2.1 CMS Architecture
	2.2 Entity and Relationship Analysis
	2.3 Formal Conceptual Data Model

	3 Challenges and Solutions
	3.1 Data Integrity
	3.2 Fault Prevention
	3.3 Fault Tolerance
	3.4 Agile Development

	4 Conclusion
	References

	Property-Driven Software Analysis
	References

	Practical Application of SPARK to OpenUxAS
	1 Introduction
	2 Background
	2.1 OpenUxAS
	2.2 SPARK

	3 Approach
	3.1 Service Class Hierarchy
	3.2 Properties of Interest
	3.3 Ada-SPARK Boundaries

	4 Results
	4.1 Verification Results

	5 Conclusion
	References

	Adopting Formal Methods in an Industrial Setting: The Railways Case
	1 Introduction
	2 Questionnaires
	3 Cumulated Results of the Two Projects' Questionnaires
	4 Conclusion
	References

	Author Index

