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Abstract Crop plants play an outstanding function in providing food and energy to
humans. Rice (Oryza sativa L.) is one of the most important stable crops that have a
role in providing the main food to more than half of the world’s people. One of the
important factors in increasing yield in rice is the balanced nutrition or supply of the
required nutrients in the proper form and ratios. Chemical fertilizers are essential
components of modern agriculture by providing essential plant nutrients. However,
the overuse of these fertilizers causes serious environmental pollution. But threats
of plant pathogens on the attack and damages on the crop productivity cannot be
ruled out. Therefore, chemical-based pesticides are thought to be an effective and
trustworthy agricultural management measure for repressing pests. Nowadays, the
use of beneficial microorganisms and biological control agents are proved as good
as synthetic pure/chemicals for the increased plant growth and yield. The dimin-
ished utilization of chemical fertilizers for the management of plant pathogens is
considered as a secure and maintainable strategy for safe and rewarding agricultural
productivity. Based on research conducted until this moment, rice-associated bac-
teria are encouraging alternatives to chemical fertilizers in an eco-friendly manner.
In general, the application of plant growth-promoting bacteria (PGPB) could offer a
cheaper and cost-effective approach to overcome the environmental problems
caused by chemical fertilizers and their use in the form of biofertilizers and
biopesticides could decrease our reliance on synthetic agrochemicals. This chapter
highlights the importance of PGPB for enhancing sustainable rice production.
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13.1 Introduction

Cereals are the main source of nutrition for human beings in the world. Among the
cereals, rice (Oryza sativa L.) is of great importance. Rice is a staple food in food
diet over 40% of the world’s population, especially, in Asia (Naureen et al. 2009a).
Of the total energy produced by cereals per person per day, more of it is related to
rice. This has made rice as the most important food product in developing countries.
According to statistics, the world’s rice cultivation area in 2009 was 153 million
hectares, with a production of 585 million tons, which should increase to 800
million tons in 2025. In other words, in order to meet the food needs of this growing
population, an increase of 70% in rice production is needed over the next few years.
Rice is mostly produced in countries, whose population are growing rapidly and
often are limited in terms of land and resources. Therefore, given the limiting
factors of production (including decreasing the quality and quantity of agricultural
land, reducing water resources and labor shortage), the only rational solution is to
increase the yield of rice per unit area of land cultivation or use of high-yielding rice
varieties to meet the demand for rice demanded in 2025 (Mishra et al. 2006).
However, the use of these varieties requires extensive application of fertilizers such
as nitrogen (N) and phosphorus (P) (Hazell 2010). Some of the main constraints on
the growth of this crop can be inadequate fertilizer use, pest infestation, and
growing of low-yielding traditional varieties, and paucity of water (Datta et al.
2017). In general, one of the most important factors in increasing the rice yield is
the balanced nutrition or the supply of essential nutrients. Low-soil fertility is the
most important factor which not only seriously affects the rice production but also
reduces the quality of the rice (Vaid et al. 2014).

Chemical fertilizers are essential components of modern agriculture due to the
provision of essential plant elements. However, the excessive use of these chemical
fertilizers for greater production of crop plants including rice can cause unpre-
dictable environmental impacts including leaching and runoff of nutrients, espe-
cially N and P, leading to environmental degradation (deterioration in air and water
quality) (Gyaneshwar et al. 2002). In addition to essential nutrients, diseases are
also among the most significant limiting factors that affect rice production, causing
annual yield losses conservatively estimated at five percent (Song and Goodman
2001).

In agricultural systems, the utilization of plant growth-promoting bacteria
(PGPB) is of particular consequence in augmenting crop production and preserving
sustainable soil fertility (Bagyaraj and Balakrishna 2012). In the past decade, the
use of PGPB as a biofertilizer or biological control agent in agriculture has been
considered by many researchers. The growth of different crops by these bacteria has
been proved in greenhouse and field experiments. Most studies show that these
bacteria could have positive and economic effects on crop plants such as corn,
wheat, and rice (Freitas and Germida 1990; Cakmake¢1 et al. 2007; Etesami et al.
2013, 2014a, c, 2015; Ghorchiani et al. 2018; Etesami and Maheshwari 2018) by
mechanisms like increasing the availability of soil mineral elements (i.e., through
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solubilizing insoluble P compounds and potassium (K)-bearing minerals and
releasing P and K), producing plant growth-regulating hormones (i.e.,
indole-3-acetic acid, gibberellin, and cytokinin) and siderophores (increase in
availability of Fe, Zn, etc.), producing ACC (1-aminocyclopropane-1-carboxylate)
deaminase (decrease of stress ethylene), controlling pathogenic microorganisms
(Etesami et al. 2017; Etesami and Maheshwari 2018), and nitrogen fixation
(Bhattacharjee et al. 2008; Saharan and Nehra 2011).

It has been well proven that PGPB could increase plant growth and resistance to
environmental stresses (Fig. 13.1) such as salinity (Dimkpa et al. 2009;
Egamberdieva and Lugtenberg 2014; Paul and Lade 2014; Choudhary et al. 2016;
Qin et al. 2016), drought (Timmusk et al. 2013; Choudhary et al. 2016; Kaushal and
Wani 2016; Ngumbi and Kloepper 2016), heavy metal toxicity (Carmen and
Roberto 2011; Sessitsch et al. 2013; Ullah et al. 2015), nutritional imbalance
(Adesemoye and Kloepper 2009; Yang et al. 2009; Miransari 2013; Chakraborty
et al. 2015; Pii et al. 2015; Choudhary et al. 2016), and plant pathogens (bacterium,
virus, fungi, etc.) (Compant et al. 2005; Pal and Gardener 2006; Ryan et al. 2008)
via miscellaneous mechanisms usually more than one action mechanism (Etesami
and Maheshwari 2018). Despite these good reviews, there are a few review studies
on PGPB-mediated nutrient availability and biological control of fungal pathogens
in rice. Better understanding on interactions of rice with the plant-associated PGPB
enhanced nutrient acquisition and controlled fungal rice pathogens is needed for
increasing the efficiency of nutrient management and rice disease management in
soil and also for promoting eco-friendly low-input sustainable agriculture.
Therefore, the aim of this chapter was to reviews advances in research on PGPB

Environmental Stresses
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Fig. 13.1 Common abiotic and biotic stresses in agricultural environments alleviated by PGPR
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capable of increasing the availability of soil insoluble nutrients, their mechanism of
action, and their potential use for biofertilization of nutrients in rice and biological
control of fungal rice pathogens (Table 13.1).

13.2 Nitrogen-Fixing Bacteria (NFB) in Nitrogen
Nutrition

Nitrogen (N) is an important element in the plant and a component of chlorophyll
molecules and therefore plays an important role in photosynthesis and in the pro-
duction of proteins, nucleic acids, and coenzymes. Chemical N-fertilizers are one of
the most influential factors in the production and yield of rice. Without the addition
of chemical N-fertilizers, the yield of existing varieties is severely limited (Ladha
et al. 1997). The excessive use of the chemical fertilizers for greater production of
this crop has caused unpredictable environmental impacts. Currently, most of
the N-fertilizers are produced through the Haber—Bosch process at chemical fer-
tilizer factories. This process requires a large amount of energy (natural gas or oil),
all of which are nonrenewable sources. It also generates carbon dioxide (CO,),
which is a greenhouse gas. In developing countries, the cost of purchasing
N-fertilizers is usually higher than farmers’ income, which limits yield potential of
their crops. Approximately one-third of the applied N (urea-N or nitrate-N, which is
applied as fertilizer) is consumed by the plant; the rest of the N can enter as nitrate
form into underground waters and are a potential hazard to environmental health.
Excess N can also produce nitrous oxide (N,O), an effective greenhouse gas. In
addition, since rice grows in an environment susceptible to N loss, more than half
of the N-fertilizer used in the paddies is lost through denitrification, ammonia
volatilization, and leaching/runoff (Ladha et al. 1997).

In general, the agrosystems that require a lot of N-fertilizers are not sustainable
systems because they require the use of nonrenewable natural resources and can
endanger the health and the environment (Yanni and Dazzo 2010). Reducing the
amount of industrial N production for agricultural systems is one of the important
goals of agricultural researchers. In the case of sustainable rice production, an
important goal is to replace the industrial N fixation to biological N fixation (Yanni
et al. 2001). Two basic ways to solve the problem of N-fertilizer loss in paddy fields
can be proposed: One is the regulation of N application time based on rice needs,
which increases the efficiency of plant use of applied N and another way is to
increase the ability of the rice to biological nitrogen fixation. The second approach
is a long-term strategy, but it has multiple environmental benefits and also helps
low-income farmers. Additionally, farmers can easily adopt a variety of genotypes
with useful features rather than conducting soil and crop management operations
that are costly (Ladha et al. 1997).

Recent advances in understanding the legume-rhizobium—-symbiotic relation-
ships at the molecular level and the ability to introduce new genes into the rice
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genome by transformation have made it an excellent opportunity to study the ability
of N fixation in rice, although this has remained largely unfinished until now (Dawe
2000). There are such opportunities for cereals including rice. In general, the
strategies enabling rice to fix nitrogen are complex and have a long-term nature, but
if done, they can increase rice productivity, resource conservation, and environ-
mental security. In addition to the strategies mentioned above, it has been well
known that the use of nitrogen fixation technology can reduce the use of
N-fertilizers in agricultural land, which can be effective at reducing environmental
hazards. Biological nitrogen fixation in rice paddies has significantly contributed to
the sustainable yield of these systems. Studies show that biological nitrogen fixation
in rice paddies can produce up to 50 kg N per hectare (Elbeltagy et al. 2001). It has
been well known that nitrogen fixation through the bacteria associated with rice
(associative and free-living bacteria) has a high potential for supply of N for rice.
For example, in a study, Méder et al. (2011) observed an increase of 23% in rice
yield obtained upon rice inoculation with N,-fixing Pseudomonas sp. In another
study, the co-inoculation of N,-fixing bacteria (i.e., Brevundimonas diminuta PR7,
Anabaena oscillarioides CR3, and Ochrobactrum anthropi PR10) remarkably
augmented N, P, and K content and bettered rice yield by 21.2%, as compared to
the utilization of recommended quantity of N, P, and K fertilizers (Rana et al.
2015). Due to having a very close relationship with the plant, as compared to other
bacteria, endophytic bacteria can offer the fixed N to rice without its loss.

Endophyte bacteria seem to be more effective at supplying rice with N than other
bacteria. The bacteria isolated from the internal tissues of the plant or isolated from
the plants with sterilized surfaces that do not show any symptoms of the disease are
regarded as endophytic bacteria (Di Fiore and Del Gallo 1995). It is well docu-
mented that a significant diversity of endophytic bacteria such as Pantoea,
Burkholderia, Azospirillum, Herbaspirillum, Rhizobium, Methylobacterium, etc., is
naturally associated with rice (Carvalho et al. 2014; Mano and Morisaki 2008).
Diazotrophs that effectively colonized into rice roots can have a greater potential for
N fixation. It has been reported that the contribution of endorhizosphere bacteria to
N fixation is much more extensive than the contribution of rhizospheric bacteria
because there is no competition in the endorhizosphere with other rhizosphere
microorganisms, and carbon sources with low-pressure oxygen oscillations are
provided (James et al. 2002). Several endophytic N,-fixing bacteria have been
isolated from various rice species including the genera Klebsiella, Citrobacter,
Enterobacter, Bacillus, Alcaligenes, Azospirillum, Rhizobium, Sphingomonas,
Agrobacterium, Corynebacterium,  Herbaspirillum, Azoarcus,  Penibacillus,
Microbacterium, and Burkholderia (Reinhold-Hurek et al. 2007; Prayitno and Rolfe
2010; Yanni and Dazzo 2010; Gupta et al. 2012; Hongrittipun et al. 2014; Ji et al.
2014).

It has been found that the stimulation of growth of the crop plants (such as rice)
inoculated with N,-fixing bacteria may be due to other mechanisms like increasing
the availability of soil mineral elements, producing plant growth-regulating hor-
mones, siderophores, and ACC deaminase, and controlling pathogenic microor-
ganisms (Etesami et al. 2017; Etesami and Maheshwari 2018) other than nitrogen
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fixation (Bhattacharjee et al. 2008; Saharan and Nehra 2011). For example, pre-
vious studies have shown that nitrogen accumulation in inoculated non-leguminous
plants can be due to either biological N fixation (Elbeltagy et al. 2001; Oliveira
et al. 2002) or escalation in nitrogen uptake from soil (Prayitno et al. 1999; Yanni
et al. 1997). In another study, Etesami and Alikhani (2016a) showed that bacterial
IAA had considerable role in improving use efficiency of N and could increase N
content of rice. In other works, Estrada et al. (2013) showed that P-solubilizing
diazotrophic bacteria augmented nutrient uptake by rice plants. de Souza et al.
(2013) showed that the bacteria (e.g., Herbaspirillum sp., Burkholderia sp.,
Burkholderia sp., Pseudacidovorax sp., and Rhizobium sp.) unable to solubilize
phosphate in in vitro assay and reduce acetylene (low capacity to reduce acetylene)
increased levels of N, P, and K in rice shoots. These observations could indicate
that growth promotion mechanisms other than N, fixation such as IAA production
and improved nutrient uptake balance (de Souza et al. 2013; Ji et al. 2014). The
above studies show that if the purpose of rice inoculation with bacteria is to supply
nitrogen to the plant, it is better to use nitrogen-fixing bacteria that have other PGP
characteristics (such as IAA, ACC deaminase, siderophores, and phosphate solu-
bilization) as well.

13.3 Phosphate-Solubilizing Bacteria (PSB) in Phosphorus
Nutrition

After nitrogen (N), phosphorus (P), as a necessary nutrient and a macronutrient, is
the most restricting nutrient for the plant (Schachtman et al. 1998; Theodorou and
Plaxton 1993). Phosphorus plays several key roles in the plant, including partici-
pation in energy transfer reactions, photosynthesis, deformation of sugar into starch,
key enzymatic reactions in important metabolic and signaling pathways, and
transference of genetic characteristics in plants (Theodorou and Plaxton 1993).
There has been an enduring increment in the application of P fertilizers in rice
production (Syers et al. 2008) because it is one of the main restricting factors for
upland rice production in many regions of the world (Sahrawat et al. 2001). Since
water scarcity is becoming a major problem for agriculture, there is a pressing need
to cultivate aerobic rice. Aerobic rice requires the same amount of nutrients as
flooded rice, but there is a problem of P availability due to its rapid immobilization/
fixation with elements such as calcium (Ca®*), iron (Fe®*), and aluminum (AI**)
(Goldstein 1986; Othman and Panhwar 2014). The previous findings also suggest
that P deficiency in aerobic crops is quite common (Fageria 2001).

Phosphorus is the most sensitive nutrient to soil pH. The best pH for P uptake by
the plant is 6.5. In alkaline condition, P becomes insoluble by reacting with calcium
(Ca*"), whereas in acidic soils, it reacts with iron (Fe®*) and aluminum (AI’**) and
becomes unavailable to the plants. The amount of P absorbed by the plant in the soil
is controlled by several factors such as soil pH, calcium ion concentration, soil
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organic matter, clay type, and clay amount, root density and exudates, and soil
moisture and texture. In order to compensate for the shortage of P, large amounts of
P fertilizers are added to the soil annually. The excessive use of P fertilizers and the
subsequent accumulation of P in the soil, in addition to increasing costs, have a
negative effect on uptake of micronutrients and also contribute to environmental
pollution (e.g., eutrophication).

The majority of P fertilizers are adsorbed by solid particles and stored in a solid
phase of soil. Most of the P in the fertilizer, after entering the soil, gradually turns
into insoluble compounds and is stored as plant unavailable forms in the soil (Dey
1988). It has been reported that the P fertilizer use efficiency in calcareous and
alkaline soils does not exceed 20%. The P mobility in the soil is very low and
cannot respond to the rapid absorption of the plant. This leads to the emergence and
development of phosphate-depleted areas adjacent to the contact surface of roots
with soil. Under P-deficient conditions, by modifying root morphology, carbon
metabolism; membrane structure, exudation of organic acids, protons, and
enzymes; and association with mycorrhizal fungi, and harboring
phosphate-solubilizing microorganisms (PSM), some plants have been able to
somehow compensate for their lack of P (uptake of adequate P) (Begum and Islam
2005; Islam and Hossain 2012). Among these strategies, secretion of organic acids
and association of mycorrhizal fungi are very poor in rice under flooding conditions
(Begum et al. 2005; Islam and Hossain 2012). Therefore, the rice plants need an
auxiliary system that can easily go beyond these depleted areas and, by developing
a wide network around the root system, receive P from an exorbitant volume of
adjoining soil.

PGPB such as phosphate-solubilizing bacteria (PSB) are considered to be the
most effective plant assistants for the supply of P at the optimal level and seems to
be another manner for P nutrition in rice under P-insufficient tropical soils (Islam
and Hossain 2012). PSB have been able to dissolve insoluble phosphates through a
set of mechanisms such as production of low-molecular-weight organic acids (i.e.,
gluconic, oxalic, 2-ketogluconic, citric, succinic, lactic, and malic), inorganic acids,
siderophores, and exopolysaccharides (EPS), and secretion of hydrolytic enzymes
(e.g., phosphatases and phytases, which convert the organic forms of P into
P inorganic forms, and thereby increase plant growth under conditions of
P deficiency) (Khan et al. 2007, 2014; Sharma et al. 2013). PSB have the ability to
dissolve inorganic P in a range of 2542 pg P ml™' and organic P between 8 and
18 ug P ml ! (Guang-Can et al. 2008). Agrobacterium, Pseudomonas, Bacillus,
Rhizobium,  Flavobacterium, Acinetobacter, = Micrococcus,  Burkholderia,
Achromobacter, Erwinia, Pantoea, and Streptomyces are of the most important
bacterial genera of solubilizing insoluble phosphates (Khan et al. 2007, 2014;
Sharma et al. 2013).

In addition to improving soil P status, members of the bacterial genera such as
Burkholderia, Pseudomonas, Bacillus, Streptomyces, and Pantoea could also
suppress soil-borne pathogens (Islam and Hossain 2012; Rodriguez and Fraga
1999). PSB, which form less than one percent total bacterial populations in the soils
(Kucey 1983), have been isolated from approximately all agricultural soils (both
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fertile soils and P-deficient ones) (Oehl et al. 2001). Previous studies show that
rhizosphere and endorhiza of rice plants also harbor the bacteria with a good
potential for solubilizing insoluble phosphates such as Bacillus spp., Pantoea
agglomerans, Streptomyces anthocysnicus, Pseudomonas pieketti, P. aeroginosa,
Acinetobacter sp., Klebsiella sp., Acinetobacter sp., Enterobacter sp.,
Microbacterium sp., Pseudomonas sp., B. megaterium, B. firmus, Erwinia, Serratia,
and Staphylococcus epidermidis (Etesami et al. 2014a; Islam and Hossain 2012;
Naik et al. 2008; Panhwar et al. 201 1a; Sapsirisopa et al. 2009; Thakuria et al. 2004;
Zeng et al. 2012). Previous studies show that PSB alone or in combination with
varying doses of P fertilizers could also increase soil available P and P content in
the rice plant tissue (Duarah et al. 2011; Othman and Panhwar 2014; Panhwar et al.
2011a, b, 2013). There are reports that PSB also have the ability to increase the
efficiency of P fertilizer and diminish about 25-50% of the required P to plants
(Attia et al. 2009; Islam and Hossain 2012; Yildirim et al. 2011). In addition to
increasing the efficiency of P fertilizer, PSB also increased total N, K, Ca, S, P, Mg,
Fe, Mn, Zn, and Cu contents in plant tissues (Duarah et al. 2011; Gyaneshwar et al.
2002; Islam and Hossain 2012; Yildirim et al. 2011).

It is well known that PSB can increase plant seed germination (Duarah et al.
2011; Sapsirisopa et al. 2009), plant growth and development (i.e., augmented leaf
chlorophyll content, leaf area index, tiller numbers, plant height, photosynthesis
rate, root morphology, and plant biomass of aerobic rice genotypes) (Duarah et al.
2011; Panhwar et al. 2011a, b), and plant yield and quality (Islam and Hossain
2012), through other mechanisms such as phytohormone production, nitrogen
fixation, urease activity, siderophore production, ACC deaminase, and/or antago-
nisms against phytopathogens, in addition to by solubilizing insoluble phosphates
(Islam and Hossain 2012). In general, the above studies show that PSB have been
found to have the ability to solubilize P in soil and could reduce fertilizers inputs in
rice fields.

13.4 Plant Growth-Promoting Bacteria (PGPB)
in Micronutrient Nutrition

Similar to macronutrients, micronutrients are also required for optimum plant
growth. Micronutrient deficiencies are omnipresent (Das 2014). For example, 50%
of world cereal soils are deficient in zinc (Zn) and 30% of cultivated soils globally
are deficient in iron (Fe). Fe deficiency is common in upland, high pH, and aerobic
soil due to the low solubility of the oxidized ferric form in aerobic environments
(Das 2014; Samaranayake et al. 2012; Zuo and Zhang 2011). Rice is also sub-
stantially deficient in Fe (Bouis and Welch 2010). Toxicity of Fe is one of the major
constraints to lowland rice production (Das 2014). Manganese (Mn) deficiency is
also very common in upland rice (Das 2014). In general, micronutrients-deficient
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soils hamper the growth of many plants including staple foods such as wheat, rice,
corn and sugarcane (Kamran et al. 2017).

Use of micronutrients fertilizers may not be cost-effective in alleviating defi-
ciency of these nutrients and increasing yield of these crop plants. It has been
known that bacteria can cause a substantial increase in concentration of micronu-
trients in crop plants (Etesami and Maheshwari 2018) including in rice grains
(Méder et al. 2011; Pooniya et al. 2012) through various mechanisms such as
acidification, production of organic acids/organic anions in soil, which sequester the
cations of micronutrients and decrease the pH of the adjacent soil as well as chelate
micronutrients and enhance the solubility of these nutrients, and production of
siderophores, which mainly form the complexes with Fe(Ill) (Alexander 1977,
Etesami and Maheshwari 2018; Jones and Darrah 1994; Kamran et al. 2017;
Saravanan et al. 2007). For example, Zn-solubilizing bacteria such as Pseudomonas
fragi, Pantoea dispersa, Pantoea agglomerans, E. cloacae, and Rhizobium sp. are
potential alternatives for Zn supplementation and convert applied inorganic Zn to
available forms (Kamran et al. 2017). In a study, Vaid et al. (2014) showed that
Zn-solubilizing Burkholderia and Acinetobacter caused significant increase in
productive tillers per plant (15.1%), number of panicles per plant (13.3%), total Zn
uptake of rice (52.5%), the mean dry matter-yield per pot (12.9%), yield of straw
(12.4%), yield of grain (17.0%), and number of grains per panicle (12.8%) relative
to rice plants non-inoculated with the bacterial isolates in a Zn-deficient soil. It was
reported that this increment might be due to solubilization of insoluble soil Zn via
generating gluconic acid by these bacteria. In another study, co-inoculation of rice
with Providencia sp. PR3, Brevundimonas diminuta PR7, and Ochrobactrum
anthropi PR10 recorded an increment of 13-16% in Fe, Zn, Cu, and Mn concen-
trations, respectively, in rice grains (Rana et al. 2015). Adak et al. (2016) also
observed 13-46% enhancement of Fe and 15-41% enhancement of Zn in rice
grains through the use of cyanobacterial inoculants, under different modes of rice
cultivation. The above studies indicate the potential of the PGPB associated with
rice to be used as biofertilizer and overcome deficiency of micronutrients.

13.5 Silicate-Solubilizing Bacteria (SSB) in Silicon
Nutrition

Silicon (Si) is known as the second most copious element in soils (Epstein 1994).
Utilization of Si is known as an ecologically congenial and environmentally
friendly technique to augment plant growth, attenuate miscellaneous environmental
stresses (i.e., nutritional imbalance, salinity, drought, heavy metal toxicity, and
pathogens) in plants, and enhance the plant resistance to multiple stresses (Etesami
and Jeong 2018). Despite these benefits, Si is still not classified as an essential
element but considered as a beneficial element. This element is useful for some
plants such as monocotyledons and Poaceae species (Etesami and Jeong 2018;
Epstein 1999; Ma et al. 2007). Rice is one of the plants that accumulate this element



13 Plant Growth Promotion and Suppression of Fungal Pathogens ... 363

(a Si-accumulator/a siliceous plant-containing Si up to 10% in shoots on a dry
weight basis) and requires high Si content (a high Si-accumulating crop) (Ma and
Takahashi 2002). Rice is known that the escalation in its yield per unit area is
connected with Si depletion, which is a matter of concern (Savant et al. 1997). Due
to being removed from the soil to produce every 100 kg brown rice (about 20 kg/
hm? SiO,) (Ma and Takahashi 2002), being exported from fields by removing
straw residues with the harvest by farmers, and being connived the exogenous use
of Si in rice cultivation, plant accessible Si in paddy fields is usually low (Cuong
et al. 2017; Etesami and Jeong 2018; Ma and Takahashi 2002). This suggests that
Si may become a yield-limiting element for rice production and its exogenous
application may be necessary to Si-deficient paddy soil for an economic and sus-
tainable rice production system (both high rice yield and disease resistance)
(Bocharnikova et al. 2010; Ning et al. 2014). At the present time, Si-fertilizers are
exerted in many countries for augmenting rice yield (Guntzer et al. 2012). In
previous studies, the positive effects of Si on rice growth and yield have been
reported (Detmann et al. 2012; Gerami et al. 2013; Etesami and Jeong 2018;
Jawahar and Vaiyapuri 2013; Lavinsky et al. 2016; Liang et al. 1994; Pati et al.
2016; Prakash et al. 2011; Singh et al. 2005). For example, in a study, Cuong et al.
(2017) showed that application of Si in combination with the recommended dose of
N, P, and K fertilizers positively affected agronomic and yield-related traits, yield
and nutrient uptakes of rice. Si had also beneficial effects on disease resistance of
rice (i.e., brown spot caused by the fungus Bipolaris oryzae, rice blast caused by the
fungus Pyricularia grisea, and sheath blight caused by Rhizoctonia solani Kuhn,
which are becoming more severe on rice plants are grown in Si-depleted soils)
(Abed-Ashtiani et al. 2012; Ashtiani et al. 2012; Cacique et al. 2012; Dallagnol
et al. 2014; Fauteux et al. 2005; Hayasaka et al. 2005; Ning et al. 2014; Prabhu
et al. 2001; Rodrigues and Datnoff 2005; Sakr 2016; Song et al. 2016; Van
Bockhaven 2014) by various mechanisms such as maintaining mesophyll cells
relatively intact, increasing the thickness of silicon layer, enhancing physiological
or induced resistance to fungal colonization (Si acts as a modulator of host resis-
tance to pathogen), depositing in host cell walls and papillae sites, which is the first
physical barricade for fungal penetration (Ning et al. 2014), and accumulating
phenolics and phytoalexins as well as with the activation of some PR-genes
(Rodrigues and Datnoft 2005).

There are some bacteria like Bacillus globisporus, B. mucilaginosus, B. flexus, B.
megaterium, Burkholderia eburnean, and Pseudomonas fluorescens that can
mobilize K and Si from silicate minerals (i.e., feldspar, muscovite, and biotite)
(Kang et al. 2017; Naureen et al. 2015a; Sheng et al. 2008; Vasanthi et al. 2018;
Vijayapriya and Muthukkaruppan 2010) by various mechanisms such as producing
excess proton, organic ligands, organic acids (i.e., gluconic acid), hydroxyl anion,
extracellular EPS, and enzymes (Meena et al. 2014). Inoculation of rice with
silicate-solubilizing bacteria (SSB) also caused a significant increase in growth and
yield of this plant. In a study (Kang et al. 2017), when combined with silica
fertilization, soil inoculation with Burkholderia eburnean CS4-2 promoted all rice
growth attributes over those of the water-treated (control) and insoluble
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silica-fertilized plants. In addition to solubilizing Si, K, and P (e.g., by competing
with P fixation sites in soil and decreasing the availability of Fe and Mn in plants)
(Kannan and Raj 1998; Sahebi et al. 2015), SSB were also capable of controlling
the growth of fungal pathogens such as Magnaporthae grisae, Rhizoctonia solani,
Altarnaria alternata, and Macrophomina pheasolina (Naureen et al. 2015a). In
addition to the role of Si in increasing rice resistance to pathogens, SSB can
antagonize fungal pathogens by the production of hydrolytic enzymes, HCN (hy-
drogen cyanide), siderophores, and antibiotics (Hassan et al. 2010; Naureen et al.
2015b, 2009b). In a previous study (Vijayapriya and Muthukkaruppan 2010), B.
mucilaginosus, which was efficient in silicate solubilization, showed antagonistic
activity against Pyricularia oryzae. The above studies indicate the potential of SSB
to be used as biofertilizer for overcoming Si deficiency and as biocontrol agents for
controlling fungal rice pathogens.

13.6 Combined Use of PGPB and Chemical Fertilizers
for Rice Production

Application of biological fertilizers, in particular, GPGB, combined with the use of
fertilizers, is the most important integrated plant nutrition strategy for sustainable
agricultural management and increasing their production in a sustainable agricul-
tural system with sufficient input (Bagyaraj and Balakrishna 2012; Etesami and
Alikhani 2016b).

Beneficial effects of PGPB in increasing nutrient uptake by rice, including NPK
uptake, have been reported in previous studies (Adesemoye and Kloepper 2009;
Adesemoye et al. 2009; Biswas et al. 2000; Duarah et al. 2011; Etesami and
Alikhani 2016a; Vessey 2003). It has been reported that the PGPB can diminish the
exertion of chemical fertilizers without compromising with the growth and yield of
rice under nutrient-poor soil conditions (Etesami and Alikhani 2016a; Khan et al.
2017). In a study, Etesami and Alikhani (2016a) showed that co-inoculation with
endophytic  (Pseudomonas putida REN5) and rhizosphere (Pseudomonas
fluorescens REN1) bacteria can reduce application rates of N-fertilizer up to 25%
for rice plant. These researchers showed that the compound application of P. putida
RENS and P. fluorescens REN1 and nitrogen fertilizer levels (50, 75, and 100% of
the recommended N-fertilizer rate) compared to the application of these bacterial
isolates with minimum nitrogen fertilizer (25% of the recommended N-fertilizer
rate) and or control (25% of the recommended N-fertilizer rate) significantly
increased the rice growth indices. It was found that 75% of the recommended
fertilizer rate was the minimum level to diminish N-fertilizer. This indicates that
nitrogen plays a key role in the growth of the rice plant, and the plant’s yield
decreases without the presence of nitrogen. de Souza et al. (2013, 2016) showed
that rice plants inoculated with bacterial strains (Herbaspirillum sp. AGIS,
Herbaspirillum sp. AC32, Pseudacidovorax sp. AC32, Burkholderia sp. CA21,
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Azospirillum sp. UR51, and Rhizobium sp. URS1), which were isolated from rice
rhizosphere, with 50% of the recommended N-fertilizer rate achieved growth
indices (i.e., shoot length and dry matter, the number of panicles, and plant yields)
similar to those that received the full-fertilization dose without inoculation. Other
researchers also confirmed that single PGPR or combinations of PGPR promoted
the growth of rice, increased plant height, dry shoot matter, N, P, and K uptake and
grain production even when the recommended amount of nitrogen fertilizer was
reduced in half (Biswas et al. 2000; Duarah et al. 2011; Khorshidi et al. 2011;
Yanni and Dazzo 2010). In addition, rice plants inoculated with these bacterial
strains supplemented with 50% N fertilizer accumulated a higher amount of N and
P than those that received 100% of N fertilizer alone (de Souza et al. 2016). Khan
et al. (2017) also inoculated rice with Burkholderia sp. BRRh-4 and Pseudomonas
aeruginosa BRRh-5 along with 50% of recommended N, P, and K fertilizers. Both
bacterial strains generated equivalent or higher grain yield of rice relative to the
control—plants grown with full recommended—fertilizer doses. The above studies
show that PGPB can interact with rice plant under different nitrogen fertilizer levels,
but this interaction can be much more productive when plants are treated with low
levels of chemical N-fertilizers (de Souza et al. 2016).

Generally speaking, it is believed that PGPB are more effectual in augmenting
plant growth under restricting nutrient conditions. Besides, the colonization of the
plant root by PGPR might have been repressed by the augmenting levels of
nutrients (i.e., N) in the growth medium (Egamberdiyeva 2007; Shaharoona et al.
2008). It was also reported that these bacteria can be used as a supplement to
chemical fertilizers to reduce the use of fertilizers but cannot replace nitrogen
fertilizer in rice (Etesami and Alikhani 2016a). Generally speaking, the
PGPB-based inoculation technology should be consumed along with desired levels
of fertilization to achieve maximal benefits in terms of fertilizer savings, nutrient
uptake, and rice plant growth (de Souza et al. 2016).

13.7 Biological Control of Fungal Rice Pathogens

Pathogenic microorganisms affecting plant fitness are an outstanding and chronic
threat to food production and ecosystem steadfastness throughout the world
(Compant et al. 2005). Diseases of fungal, bacterial, viral origin, and damage
brought about by insects and nematodes can be led to a significant diminution in
crop production. Diseases are one of the most important limiting factors affecting
rice production, which reduces annual rice yield by about 5% (Song and Goodman
2001). More than 70% of the diseases caused by fungi, bacteria, viruses or
nematodes have been reported in rice (Manandhar et al. 1998). In other words, rice
is susceptible to diseases. Pathogenic fungi can reduce the quality and quantity of
rice grain production (Chaiharn et al. 2009) and affliction with these fungi are
among the most niggling of these diseases as it may result in remarkable crop yield
losses (Chaiharn et al. 2009; Suprapta 2012). In addition, the consumption of
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mycotoxins (e.g., aflatoxins, citrinin, ochratoxin A, fumonisins, and zearalenone)-
polluted rice can be hazardous to human beings (Almaguer et al. 2012; Ferre 2016).

To control fungal diseases, fungal pathogens-resistant rice cultivars and fungi-
cides are commonly used. But, due to the loss of resistance to pathogens, despite
the high variability of disease agents of the pathogen population, the useful life of
many pathogen-resistant cultivars is only several years. Use of fungicides is also
expensive and environmentally unfriendly and has led to risks to human health,
environmental pollution, residual toxicity, development of pesticide resistance, and
other beneficial organisms in the soil (Komarek et al. 2010; Suprapta 2012; Yoon
et al. 2013). These fungicides also reduced soil fertility and quality and damaged to
natural ecosystems (Chaiharn et al. 2009). Furthermore, there are a number of
painstaking diseases for which chemical solutions are few, unproductive, or
nonexistent (Gerhardson 2002). Biocontrol is thus being considered as an alter-
native or a supplemental way of diminishing the utilization of chemicals in agri-
cultural land (Compant et al. 2005, 2010; Etesami and Alikhani 2016b, 2016d;
Gerhardson 2002; Pal and Gardener 2006; Suprapta 2012; Welbaum et al. 2004).
Bacterial biocontrol agents can control plant pathogens including fungal pathogens
by various mechanisms (Fig. 13.2). Various suitable nutrient-rich niches on/or
inside roots attract a great diversity of microorganisms, including phytopathogens.
Competition for the nutrients (root exudates including organic acids, amino acids,
specific sugars, etc.) and niches is a underlying mechanism by which PGPB pre-
serve plants from phytopathogens (Compant et al. 2005).

Biocontrol PGPB are aggressive root colonizers and play an important role in the
biological control of plant diseases caused by soil-borne fungal pathogens
(Chaiharn et al. 2009). Another mechanism of biological control by PGPR is
production of allelochemicals like (i) iron(IlT)-chelating siderophores, which
deprive pathogenic fungi of Fe since the fungal siderophores have lower affinity to
Fe compared to bacterial siderophores (Loper and Henkels 1999; O’sullivan and
O’Gara 1992; Van Loon and Bakker 2005); (ii) production of antibiotics such as
amphisin, 2.4-diacetylphloroglucinol (DAPG), rhizoxin, oomycin A, phenazines,
tensin, pyoluteorin, pyrrolnitrin, tensin, tropolone, oligomycin A, kanosamine,
zwittermicin A, xanthobaccin, viscosinamide, and cyclic lipopeptides (Compant
et al. 2005; de Souza et al. 2003; Défago 1993; Hashidoko et al. 1999; Joseph et al.
2012; Kai et al. 2009; Kim et al. 1999; Nain et al. 2012; Nielsen et al. 2002; Pal and
Gardener 2006); (iii) biocidal volatiles like HCN and ammonia (NH3) (Blumer and
Haas 2000; Kai et al. 2009; Pal and Gardener 2006; Zou et al. 2007); (iv) lytic
enzymes (Chernin and Chet 2002; Sindhu and Dadarwal 2001) such as chitinase
(Ordentlich et al. 1988), which inhibits spore germination and germ-tube elongation
(Frankowski et al. 2001), laminarinase, which digests and lyses mycelia of some
fungi (Lim et al. 1991), B-1,3-glucanase, which lyses fungal cell walls of some
fungi (Fridlender et al. 1993; Singh et al. 1999), glucanases, cellulases, and
detoxification enzymes (Abbas-Zadeh et al. 2010; Fridlender et al. 1993; Kai et al.
2009; Nain et al. 2012; Pal and Gardener 2006; Sindhu and Dadarwal 2001; Zhao
et al. 2010). ISR (induced systemic resistance) is an consequential mechanism by
which PGPR in the rhizosphere prime the whole plant body for augmented defense
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against a scopious range of pathogens and insect herbivores (Compant et al. 2005;
Pal and Gardener 2006; Van Loon and Bakker 2005). Biocontrol PGPR, through
different mechanisms such as production of siderophores, lipopolysaccharides
(Leeman et al. 1995; Maurhofer et al. 1994; Meziane et al. 2005; Van Loon and
Bakker 2005; Van Loon et al. 1998; Van Wees et al. 1997), volatile organic
compounds (Ping and Boland 2004; Ryu et al. 2004), cyclic lipopeptides,
2,4-diacetylphloroglucinol, and homoserine lactones (Lugtenberg and Kamilova
2009), sensitize the plant immune system for enhanced defense without directly
activating overpriced defenses (Pieterse et al. 2014).

Biocontrol PGPR-mediated control of several bacterial, fungal, and viral plant
diseases in plants by this mechanism (ISR) has been reported (Leeman et al. 1995;
Pal and Gardener 2006; Park et al. 2009). It has been also known that the ISR
contains ethylene and jasmonate intracellular signaling, and these hormones stim-
ulate host plant defense responses against plant diseases (Glick 2012). Biocontrol
PGPR-mediated ISR also fortifies plant cell wall strength (Benhamou et al. 1996,
1998), alters host physiology and metabolic responses (Jeun et al. 2004; Park and
Kloepper 2000), and increases accumulation of compounds (i.e., phenylalanine
ammonia-lyase, peroxidase, phytoalexins, polyphenol oxidase, and/or chalcone
synthase) (Chen et al. 2000; Ongena et al. 2000) that augment synthesis of plant
defense chemicals upon challenge by plant pathogens (Compant et al. 2005; Nowak
and Shulaev 2003; Ramamoorthy et al. 2001). The total of these changes lead to
increased plant resistance to diseases. Generally speaking, the most effectual bio-
logical control agents (BCAs) studied to date appear to antagonize pathogens using
multitudinous mechanisms (Iavicoli et al. 2003; Pal and Gardener 2006).

The ability of biocontrol PGPR to lessen or prevent the deleterious effects of
certain fungal rice pathogens has been well documented (Amruta et al. 2018; Awla
et al. 2017; Chaiharn et al. 2009; Etesami and Alikhani 2016b, 2016d, 2018;
Velusamy and Gnanamanickam 2008; Verma et al. 2018).

Magnaporthe oryzae (anamorph Pyricularia oryzae), which causes diseases
generically called “blast disease” or “blight disease—the most destructive disease
of rice (Chaiharn et al. 2009; Dean et al. 2012) and attacks rice plants at all stages of
development and infects the aerial parts of the rice plant—including leaves, nodes,
stems, and panicles, bringing about annual losses of approximately 10-30% in
miscellaneous rice—producing regions (Law et al. 2017), Alternaria sp., which
cause leaf spots, Fusarium oxysporum, which cause root rot, Sclerotium sp., which
cause stem rot (Chaiharn et al. 2009), Bipolaris oryzae, which causes brown spot
disease, Rhizoctonia solani, which causes sheath blight disease, Curvularia oryzae,
which causes leaf spot disease, Gibberella fujikuroi, which causes bakanae disease
in rice seedlings, and Rhizoctonia oryzae-sativae, which causes aggregate sheath
blight disease, have been reported as the most consequential fungal pathogen
bringing about diseases in rice (Boukaew et al. 2013; Tamreihao et al. 2016). By a
combination of different modes of action such as hydrogen ions and gaseous
products including ethylene, HCN and NH3, and siderophore (hydroxamate type),
cell wall degrading enzymes (i.e., chitinase, protease, cellulase, B-1,3-glucanase,
B-1,4-glucanase, and lipase) and antibiotics, biocontrol PGPB (e.g., Streptomyces
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sp. S. globisporus, S. sindeneusis, S. flavotricini, S. philanthi, S. vinaceusdrappus,
S. corchorusii, Ochrobactrum anthropic, Bacillus sp., B. cereus, B. subtilis, B.
methylotrophicus, Enterobacter sp., Pseudomonas aeruginosa, and Pseudomonas
sp.) significantly inhibited the mycelia growth of these fungi (Awla et al. 2017,
Boukaew et al. 2013; Boukaew and Prasertsan 2014; Chaiharn et al. 2009; Khalil
et al. 2014; Li et al. 2011; Ningthoujam et al. 2009; Prapagdee et al. 2008; Shan
et al. 2013; Tamreihao et al. 2016; Tokpah et al. 2016; Zarandi et al. 2009).

In previous studies, Etesami and Alikhani (2016d), (2017), and Etesami et al.
(2014b) investigated the potential of antifungal activity of the bacterial isolates
isolated from rhizosphere and endorhiza of rice, oilseed rape (Brassica napus L.),
and berseem clover (Trifolium alexandrinum L.), respectively, against five rice
pathogenic fungi (Magnaporthe oryzae, M. salvinii, Fusarium verticillioides, F.
Sfujikuroi, and F. proliferum—the most important pathogenic fungi of rice in Iran)
under in vitro conditions. A considerable part of these isolates showed a good
percentage of mycelial growth inhibition against all the tested major rice fungal
pathogens in dual cultures on solid media (Fig. 13.3) (Etesami and Alikhani 2016d).

Bacillus species (Bacillus mojavensis, B. amyloliquefaciens, B. subtilis, and B.
cereus) were reported as the most propitious bacterial biocontrol agents in rhizo-
sphere and endorhiza of these plants (Etesami and Alikhani 2018). In addition,
endophytic bacterial isolates were more effective at mycelial growth inhibition than
rhizosphere bacterial isolates. Probably endophytic bacteria use mechanisms simi-
lar to PGPR to control plant fungal pathogens. Biocontrol activities of these

@ (©) (d)

Fig. 13.3 Dual culture assay for in vitro inhibition of mycelia of fungal rice pathogens by the
endophytic and rhizoshpere strains grown on PDA agar for 5 days. a endophytic strain B. subtilis
CEN3; b rhizosphere strain B. cereus CENs; ¢ endophytic isolate; d rhizosphere isolate; e and
f control (pathogen alone); g combination of endophytic and rhizosphere isolates with each other;
and h rhizosphere isolate resulted in no inhibition zones
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bacterial strains may be owing to the creation of antifungal metabolites, volatile
organic compounds (VOCs), siderophores, and cell wall degrading enzymes
(Etesami and Alikhani 2016c¢).

Among biocontrol bacteria, spore-forming Bacillus bacteria have properties that
make them more suitable for development as biocontrol agents, including high
resistance to stress, production of various secondary metabolites, induction of ISR
in order to reduce the severity of the disease caused by a wide range of pathogens,
stimulating plant growth, simplicity in cultivating and maintaining them, as well as
use of them as spores on plant or seed inoculation (Alina et al. 2015; Shafi et al.
2017). Besides, Streptomyces bacteria also appear to be auspicious biocontrol
agents against a wide range of phytopathogenic fungi due to generating various
bioactive compounds such as antibiotics (e.g., Blasticidin S, Kasugamycin,
Oligomycin A, geldanamycin, and nigericin) or antifungals which can inhibit or kill
the pathogen (Copping and Duke 2007; Gonzalez-Franco and Robles-Hernandez
2009; Law et al. 2017; Tapadar and Jha 2013; Trejo-Estrada et al. 1998; Yang et al.
2010), the release of extracellular lytic enzymes such as chitinases and glucanases,
which play consequential roles in ruination of fungal cell walls (El-Tarabily et al.
2000; Gonzélez-Franco and Robles-Hernandez 2009; Palaniyandi et al. 2013), and
their colonization ability, competitive traits, and survival in various types of soil
(ability to produce spores which allow them to survive longer and in various
extreme conditions) (Gonzalez-Franco and Robles-Hernandez 2009; Law et al.
2017; Ningthoujam et al. 2009). Under greenhouse conditions, Streptomyces could
result in up to 88.3% disease diminution of rice blast (Law et al. 2017).
Approximately, 75% commercially practicable antibiotics were derived from the
genus Streptomyces (Kashif et al. 2016). Besides, Streptomyces produces spores
that help dissemination and confer resistance to many hostile conditions
(Goodfellow and Williams 1983). The biocontrol bacteria not only prevent the
growth of pathogens, but also improve plant growth. These bacteria were also
positive for different PGP traits such as IAA, ACC deaminase, siderophores, and
phosphate solubilization, and could significantly enhance the growth and grain
yield production of the plants (Alina et al. 2015; Etesami and Alikhani 2016c, 2017,
Shafi et al. 2017; Tamreihao et al. 2016).

There are many studies that show bacterial biocontrol agents can be very
promising antagonist candidates against plant pathogens which can be developed
for sustainable plant diseases management. Despite these studies and the recent
interest in bioassays of plant diseases, it is difficult to find examples of commercial
use of biological control agents in controlling pathogens. This can be due to
inappropriate screening systems that are used. In general, biocontrol PGPB by
colonizing the root system of the plant prevent the establishment of harmful rhi-
zospheric microorganisms on the root of the plant. These rhizobacteria must
compete with indigenous microorganisms and effectively colonize the rhizosphere.
In other words, the biocontrol agents and PGPB are influenced by native microbial
communities. Generally, the antagonistic activity of biocontrol bacteria is tested
through in vitro inhibition of fungal pathogens in dual cultures on solid media and
then confirmed in bioassays on host plants. It has been reported that in vitro
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evaluations have some limitations (Compant et al. 2005). Many biological control
agents effectively control diseases in vitro conditions, but have not been successful
in field conditions. The ineffectiveness of biocontrol bacteria in the field is often
attributed to their inability to colonize the roots. Rhizosphere competence and
colonization are considered as an important factor in controlling fungal pathogens
by biocontrol bacteria because both organisms colonize the same ecology niche and
use the same nutrient (Compant et al. 2005). Factors such as temperature, soil
moisture, soil texture, and environmental stresses affect the survival and estab-
lishment of bacteria.

In general, in many studies, a single biological control agent is usually used to
control a pathogen under controlled and greenhouse conditions. This can sometimes
result in incompatible performance by the biological control agent under natural
conditions because a biological control agent cannot be active in all types of soil
environments/agricultural ecosystems (Raupach and Kloepper 1998) or against all
pathogens that attack the host plant (there is usually more than one pathogen in the
soil). Moreover, this may also be due to inadequate colonization, limited resistance
to changes in environmental conditions, and fluctuations in the production of
antifungal metabolites by this biological control agent (Dowling and O’Gara 1994).
Several solutions have been proposed to overcome these problems including the
combined use of two or more isolates in biological control (Raupach and Kloepper
1998). Mixtures of biological control agents with different plant colonization pat-
terns or a biological control agent with antifungal activities against several patho-
gens (formulation of a biocontrol isolate is simpler and cheaper than that of multiple
biocontrol isolates) can be useful for controlling the biological diversity of mis-
cellaneous pathogens via assorted mechanisms of repression of the disease. In
general, the use of a combination of bacterial antagonists for biological control of
pathogens can expand the range of antifungal activities (protection of the plant
against a wide range of fungal pathogens), increase the efficiency, sustainability,
and effect of biological control agents, and combine different characteristics without
applying genetic engineering. In addition, designing a combination of biocontrol
isolates and the use of multiple antifungal properties demonstrated by these isolates
can be useful in the sense that at least one of the biological control mechanisms
among these isolates may exist under unpredictable field conditions. In addition,
mixtures of biocontrol microorganisms can increase the genetic diversity of bio-
logical control systems that prolong the stay in the rhizosphere and use a spacious
range of biological control mechanisms.

A higher efficiency of several isolates from biocontrol agents against plant
pathogens has been reported in previous studies (Etesami and Alikhani 2016c;
Lucas et al. 2009; Schisler et al. 1997). In addition to controlling the disease, the
combination of biocontrol isolates has also increased plant growth in terms of
germination, plant height, and yield. It is noteworthy that the compatibility of
biocontrol isolates to be inoculated with each other on plant should be considered.
The incompatibility of inoculants (biocontrol isolates) can sometimes prevent the
growth of each other and target pathogens. Selection of effective biocontrol isolates
of bacteria is also very important for the control of pathogens in plants.
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The isolation of these bacteria from pathogens repulsive soils can increase the
chance of isolating effective isolates. In order to obtain effective isolates, biocontrol
bacteria should be isolated from the same environment that they are supposed to be
used in it. Formulations and application methods are often of great importance in
the effectiveness of biological control, which should pay attention to them. In
general, according to the studies conducted on biological control of fungal patho-
gens in rice, it can be concluded that Streptomyces and Bacillus bacteria may be
taken advantage of as a potential bioinoculant agent for biocontrol as well as rice
plant growth promoter.

13.8 Conclusions and Future Prospects

Reviews of literature clearly show that rhizosphere and endorhiza of rice harbor
bacteria with a potential in promoting rice growth and controlling fungal rice
pathogens. The co-inoculation of rice with the PGPB, as an attractive technique for
utilization in commercial inoculant formulations than sole-inoculation of these
bacteria, could allow declines in the prevalent high rates of fertilizer and the suc-
ceeding environmental problems without making compromise plant productivity
under in vitro and greenhouse conditions. One of the major challenges encountered
during the selection of biocontrol agents and biofertilizers is that biocontrol agents/
biofertilizers that appear efficacious based on in vitro and greenhouse experiments
might not be effective at controlling plant diseases and increasing rice growth and
yield under field conditions. This inefficiency of bacteria can be owing to the vari-
ations in environmental conditions in different locations. Therefore, the environ-
mental factors at the location where biocontrol agents/biofertilizers will be applied
should be taken into consideration during the selection of suitable biocontrol agents/
biofertilizers. Ideally, the biocontrol agents/biofertilizers should be isolated from and
applied to locations with similar environmental factors in order to achieve successful
biological control/biofertilizers. Besides, the formulation such as liquid, powder, or
granule and the method of use of biocontrol agents/biofertilizers such as seed
inoculation, soil inoculation, and vegetative part inoculation should be inspected as
they are consequential in specifying the outcomes of field experiments. In general,
before PGPB can be regarded for agricultural practices, further studies are essential
to evaluate the efficacy of PGPB on rice plants under field conditions where there are
a variety of constraints such as soil conditions (i.e., pH, soil nutrients status, nutrients
sorption capacity, organic matter, and moisture level of the soil, etc.), environmental
stresses, and types of autochthonous microorganisms that can affect the survival and
growth promotion activities of PGPB/biocontrol agents.
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