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Preface

The sustainable management of field crops is a concern to cultivate them eco-
nomically and eco-safe ways so as to reduce the abusive use of harmful agro-
chemical not only creating a ‘soil-security’ but also posing several health-related
issues in the human race. Although, much progress has been made in understanding
a technology-oriented sustainable agro-ecosystem, it is essential to involve the
frontiers of knowledge of PGPR’s roles to fill the gap between ever increasing
population and crop productivity.

In the recent scenario, field crops are geared up to feed the phenomenally
increasing population has largely become chemical based and input intensive. The
plateauing crop yields and falling inputs response have severely reduced the sus-
tainability of the crop ecosystem. In addition, there is a growing awareness to shift
from chemical to organic agriculture. This will partially reduce the pressure on the
chemicals demand to increase the credibility and sustainability to raise field crops
healthy.

The present book is an endeavor to provide voluminous information on the role of
PGPR in sustainable management of field crop production and enhancement of
productivity. The main focus lies on different portrayals meant to establish signifi-
cance of PGPR in minerals, nutrition and their assimilation, alleviation of abiotic
stress of drought and salinity, influence of info-chemicals, in sustainable manage-
ment of field crops. This not only ends with these crops but also expands horizons to
the other vegetable species such as tomato, pepper, melon, radish, lettuce, etc. The
plant–microbes relationships in soil-ecological system and their accurate benefits in
concern to raise the question on the safety of food production become imperative to
adapt biological fertilization strategy that may minimize the use of chemical inputs.

Plant growth-promoting microbes (PGPM) becomes an effective solution to the
problem of mercury toxicity from the contaminated agricultural lands. These
beneficial PGPR impose drought tolerance by the production of exopolysaccha-
rides, phytohormone, 1-aminocyclopropane-1-carboxylate (ACC) deaminase,
volatile compounds and by up- or downregulation of stress-responsive genes and by
altering root morphology during water scarcity. PGPR have abilities to induce
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defense against insect herbivore. Some beneficial microbes also induce systemic
resistance (ISR) against microbial pathogenic viruses, parasites, and herbivorous
insects and some display direct insect pathogenicity.

This book will be valuable not only for the scientific community but also to the
teachers, researchers, and students studying graduation and postgraduation in various
streams of Agriculture, Horticulture, Biotechnology, Microbiology, Phytopathology,
Agronomy, and Environmental Sciences.

We desire to acknowledge all the subject specialists, contributors, who were
quite cooperative to spare their cooperation and patience to make this book a
successful endeavor. Thanks are due to our research team members, who gener-
ously assisted in the compilation and completion of this task. We extend our sincere
thanks to Dr. (Mrs.) R. Valeria and her colleagues for their valuable support to
facilitate completion of this project. Support from MHRD-UGC BSR fellowship
(DKM) is duly acknowledged.

Haridwar, Uttarakhand, India Dinesh Kumar Maheshwari
Shrivardhan Dheeman
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Chapter 1
Plant Growth-Promoting Rhizobacteria
(PGPR) as Protagonists
of Ever-Sustained Agriculture:
An Introduction

Dinesh Kumar Maheshwari, Meenu Saraf and Shrivardhan Dheeman

Abstract The rhizosphere is a zone of soil surrounding to the plant roots, where
the biology and chemistry of the soil is influenced by root metabolites pumped into
the soil, called root exudates. The rhizosphere of ample quorum of microorganisms,
thus, regarded as an ecology. The beneficial bacteria in the rhizosphere are rec-
ognized as plant growth-promoting rhizobacteria (PGPR) that influence plant
growth and health promotion by several means of mechanisms. These can influence
plant traits under fluctuating environmental conditions and improve yield produc-
tivity in a sustainable way. The use of PGPR in field crops has attended by enor-
mous researches to enhance crop production and productivity in a sustainable
manner. The inoculation strategies such as co-inoculation of two or more beneficial
bacteria as bioinoculant apparently provided greater phytostimulation perhaps
because of the synergistic and multifarious effects due to co-occurrence and
co-interaction with field crops. PGPR are emerging tools of sustainable agriculture;
also providing strategic avenues to combat biotic and abiotic stresses of crops.
Further, this chapter introduces PGPR as a central candidate with multifaceted
mechanisms and influences on sustainable management of field crops.

Keywords Rhizosphere � PGPR � Biofilm � Bacterial diversity � Field crops
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1.1 Introduction

Environmental sustainability, specifically for sustainable agriculture must be free of
abusive use of chemical fertilizers spoiling biological diversity and soil fertility
simultaneously and had raised several concerns to find the alternatives, which are
natural in origin. Plants comprise an excellent ecosystem with microorganisms that
interact with different degrees under attraction towards secretions of diverse
metabolites called root exudates. Since Hiltner in 1904 has understood about
‘Rhizosphere’, i.e. the layer of soil influenced by roots is much richer in bacteria
than the surrounding bulk soil. The role of rhizosphere microbiology has been
established as an arena of sustained agriculture and economy as well. In this quest,
the search for desired beneficial microorganisms including bacteria, fungi, acti-
nobacteria, protozoa and algae are by far the most common. Each gram of soil
contains up to 10 billion bacterial counts, possibly due to their ability to grow
rapidly. Such bacteria are bound with the surface of soil particles and soil aggre-
gates; quite a good number of these interact with plant roots, hence rhizospheric in
nature. The interaction between bacteria and plant may be harmful or neutral and
sometimes proved beneficial to that of plants. Such benefits may occur either by
symbiotic, associative and free-living relationship with the roots of plants (Weller
and Thomashow 1994; Glick 1995; Maheshwari and Annapurna 2017) to provide
them a healthy status.

In a healthy plant, all the biochemical reactions are in a state of equilibrium. If
any deviation due to biotic or abiotic stresses comes in any way, it tends to disrupt
the metabolic processes making the plant unhealthy. Such plants overcome this
state of the affair by using various inputs in the form of biological ways either by
adding organic compost or by crop-rotation. There is another alternative in the form
of plant growth-promoting rhizobacteria, i.e. PGPR which outcompetes the stresses
affecting plant growth and development. These free-living or endophyte bacteria are
not only functional and diverse in habitat but also capable of supporting plant
growth and development.

In the recent scenario, cultivation of field crops are geared up to feed the phe-
nomenally increasing population which has largely become chemical based and
input intensive. This has accelerated the process of resource depletion and envi-
ronmental pollution. The plateau crop yields and falling input response have
severely reduced the sustainability of the crop ecosystem.

Microbial inoculants, which are naturally occurring beneficial microorganisms,
hold the promise because of self-replication, non-toxic inputs and increase the
productivity and protection for the benefits of the crop production. They make
important contributions to fertility and productivity both for plants and soil. Efforts
made during the past decade have generated awareness about the cheap input
amongst the growers. In addition, there is a growing concern to shift farming from
chemical to organic which, partially reduce the pressure on the chemicals demand,
increase the credibility and sustainability to raise healthy field crops.

2 D. K. Maheshwari et al.



1.2 Rhizosphere: A Home of PGPR

‘Rhizosphere’ denotes the area of intense microbiological activity that extends to
several millimetres from the root system of growing plant. In other words, the
rhizosphere is a hotspot of microbial interactions, as exudates released by plant
roots are the main food source for microorganisms and contribute as a driving force
to enhance their population density and activities (Raaijmakers et al. 2009).
Rhizosphere encompasses the millimeters of soil surrounding a plant root, where
complex biological and ecological processes occur (Bais et al. 2006). Soil which is
not a part of the rhizosphere and does not penetrate by plant roots is known as bulk
soil. Natural organic compounds and microbial populations are much lower in bulk
soil than in the rhizosphere (Stotsky et al. 2000). The above facts illustrate the
significance of plant growth-promoting rhizobacteria (PGPR) as a potential can-
didate to be used as beneficial bio-fertilizers having merit over conventional fer-
tilizers (Maheshwari et al. 2015). But, before providing their beneficial impact on
the plants living in rhizosphere, they must be colonized and should stay there for
long term, which is understood as root colonization. In some cases, associative
interactions between plant and bacteria are accomplished with the help of rhi-
zodeposits, which also pose growth-stimulating effects for microbial survival. As
symbiotic systems, associative interactions are of great interest because many crops
show an increase in yield after inoculation (Höflich et al. 1994). On the other hand,
rhizosphere is the infection court where soil-borne pathogens establish a parasitic
relationship with the plant. To infect root tissue, pathogens have to compete with
the member of the rhizosphere microbiome for available nutrients and micro-niche
(Chapelle et al. 2016). Soil can be considered as a microbial seed bank (Lennon and
Jones 2011). The carry-over effect on the assemblage of the ‘rhizomicrobes’, i.e. the
proliferation of microbes in, on or around the roots has important implications for
the co-evolution of plant–microorganism interactions in natural ecosystems. It
includes dispersal of microorganisms from a source of inoculum to the actively
growing root, multiplication or growth in the rhizosphere.

In fact, rhizosphere is responsible for the success of free-living bacteria which
requires a proper process for root colonization. Nowadays, there is a possibility to
manipulate these zones of root-colonization via ‘rhizosphere engineering’. This
process is quite important from different points of view in order to produce
bacterial-mediated growth-promoting substance to support crop yield and produc-
tivity. A successful root/rhizosphere colonizer exclusively means the existence of
features, which survive in fierce competition of the indigenous micro-flora in the
growth enhancement processes and in improving homeostatic mechanisms upon
stress challenges. The environmental homeostasis in the rhizosphere of crop plant
protect it against a broader range of pathogens. Also, as a consequence, the plant
switches on downstream signalling pathways and produces antimicrobial com-
pounds to kill the pathogen and maintain homeostasis (Thormar and Hilmarsson
2007). This is a very precisely controlled and complex process involves a number
of genes and signalling pathways (Zipfel 2009). It is this complexity of plant–

1 Plant Growth-Promoting Rhizobacteria (PGPR) … 3



pathogen interactions, which makes it very difficult to discern, due to which
anatomical features, metabolites and signalling pathways become activated. The
traditional, biochemical and genetic experimental methods are inadequate tools for
the task.

Rhizospheric competence is a pre-requisite for plant growth and development,
PGPR play a major role in two different ways, indirectly or directly, both share
support mechanisms to bring the sustainability for major crops. For this, the bac-
terial genera are used as inoculants for seed dressing and allow them to raise the
plants resulting in growth promotion and increased yield. Rhizospheric competence
affects positively on root and plant biology in relation to provisional nutrition,
growth promotion, development and health (Aragno 2005). Hence, to advance the
future of agriculture, in terms to find more precise bacteria, which can invade in the
rhizosphere of other plants too can be found by studying free-living association in
depth (Cook 2012).

1.3 PGPR and Rhizospheric Biofilm

The success of PGPR in agriculture has been sorted out if PGPR attributed effective
root colonization with the traits and subsequently able to form biofilms in the
rhizosphere, which assures their tenancy in a manner to establish a successful
relationship with the plant (Saleh-Lakha and Glick 2006). Rhizospheric ecology
comprised reciprocal influence of inter-alia plant–microbe interactions influenced
by its biotic and abiotic factors. Among the community of beneficial as well as
deleterious bacteria, PGPR plant growth-promoting bacteria were entirely
well-thought-out as beneficial bacteria and play a multifarious role in the envi-
ronment and agriculture and being an important germ-plasm. Plant-associated
bacteria generally interact with host tissue surfaces during pathogenesis and sym-
biosis, due to and in commensal relationships. The bacteria associated with plants
are aggressive to form increasingly revealing biofilm-type structures that vary from
small clusters of cells to extensive biofilms in nature. This implies that PGPR
competence strongly depends either on their abilities to take advantage of a specific
environment or their abilities to adapt according to changing conditions. PGPR may
be uniquely equipped to sense chemoattractants, e.g. rice exudates induce stronger
chemotactic responses of endophytic bacteria as compared to non-PGPR present in
the rice rhizosphere.

1.4 Rhizospheric Dynamics and Diversity

The rhizosphere harbours one of the most complex, diverse and active
plant-associated microbial communities. Although, selection for the rhizosphere
community is evident, the specific bacterial traits that make them able to colonize

4 D. K. Maheshwari et al.



this environment are still poorly understood (Lopes et al. 2016). But, there is a quest
that, is PGPR diversity quantifiable? Actually, to study microbial diversity, taxo-
nomic and functional diversity are major concerns where taxonomic diversity
integrates different aspects of diversity and provides a more complete picture with a
deeper understanding of microbial interactions in soil ecosystems (Torsvik et al.
2002). The use of molecular methods for the study of genetic diversity primarily,
the sensitive and accurate PCR-based genotyping methods enable differentiation
among closely related bacterial strains and the detection of higher bacterial diversity
(Doignon-Bourcier et al. 1999; Tan et al. 2001). Jha et al. (2010) reported that a
good diversity index should encompass both Dominance indices (Example,
Simpson Index) and Information indices (Example, Shannon-Wiener Index). To
comprehend such diversity, it is advantageous to investigate the combined uses of
species richness and diversity as well as to estimate the combinatorial effect of
species richness and diversity in order to understand their role and distribution in
their habitat. In another study focused on bacterial diversity that explored the
Himalayan region as well-known biodiversity hotspots and rich in ecological
diversity. However, it suffers from low agricultural productivity due to several
climatic and agricultural limits. The research reveals the diversity of Bacillus
population associated with Eleusine coracana (ragi). The study was carried out
using two universal primers derived from the highly conserved region of 16S rRNA
gene fD1 and rD1 for species identification. Overall, the site-specific diversity of
the bacterial strains using the Simpson and Shannon–Wiener Index had positive
correlation with the altitude gradient. Ragi, Eleusine coracana L., is one of the main
food grain crops now being commercially exploited (Dheeman et al. 2017).

Microbial diversity is puzzled with co-existence of species that remains func-
tional in their ecology and their degree of functionality has been studied under the
term of functional diversity (Torsvik and Øvreås 2002). The functional diversity of
species influences ecosystem dynamics, stability, productivity, nutrient balance and
other aspects of ecosystem functioning (Tilman 2001). Embedded microbial com-
munity belongings to rhizosphere possesses functional diversity, which ultimately
enhance agricultural production (Maheshwari 2014). Functional diversity in the
rhizosphere considered the mechanistic behaviour of microbial guilds, which ulti-
mately promotes the plant growth. It has multidimensional cloud of species trait and
each trait represents an individual or a species (Fig. 1.1), e.g. Phosphate-
Solubilizing Bacteria (PSB), whereas phosphate solubilization is a function of
rhizospheric microorganisms to alleviate the nutritional requirement in soil, and
further aid in plant growth promotion. The functionality of PGPR in agriculture is
increased with its diversity (Tilak et al. 2005). Such groups of selective individuals
are also considered as functionally diverse and are utilized to improve agricultural
production as cited by Maheshwari (2014).

The transfer of nutrients from plant roots in the rhizosphere controls plant–
microbe interactions and populations of bacteria have a functional role within
communities that permit their survival. The relationship between microorganisms
and plants confers the availability of nitrogen along with other nutritional
requirements, viz. phosphorus, zinc, potassium, etc. (Maheshwari 2011; Dhiman
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et al. 2019). Plant roots offer a niche to the proliferation of soil bacteria and sustain
their life under the influence of root exudates and lysates (Lugtenberg et al. 2002).
In the agro-ecosystem, several diverse genera of microorganisms are responsible for
multifarious metabolic functions and interfere in soil fertility, plant health, growth,
nutrient cycling, organic matter formation, decomposition and soil structure
maintenance (Kennedy 1999). Plant growth is a multi-complex phenomenon and
rhizobacteria acts as bio-stimulant, bio-fertilizer and plant-protective agent or
sometimes in bioremediation of pollutants.

A large and ever-increasing number of genera in the community of PGPR have
been discovered so far. These are different morphologically, however share nutri-
tional and ecological preferences including ecology of rhizospheric niches. These
were isolated from a varied range of habitats (from harsh to adaptive environments)
such as rhizospheric soil, cow and buffalo dung, root nodules of various
dicotyledonous plants and even from termitarium (Chauhan et al. 2016) and termite
gut (Fröhlich et al. 2007)

Rhizospheric bacteria are communities heavily influenced by soil texture and
rhizospheric ecosystem as illustrated in Fig. 1.2.

Fig. 1.1 A five-way Venn Set Diagram (VSD) showing multidimensional overlaps among 5 traits
of PGPR and elucidating commonness in Bacilli on trait level (Author’s Lab)
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1.5 PGPR and Field Crops

Various countries spend tens of billions of dollars in importing food as outdated
technologies, poor yields, shrinking farms and unreliable weather pattern inflict.
However, the use of PGPR not only saves the biodiversity and is too cheap for
farmers. Their wide contribution to growth and health promotion is now well
established. PGPR enhance plant growth by a wide variety of mechanisms like
biological nitrogen fixation, phytohormone production, phosphate solubilization,
siderophore production, 1-aminocyclopropane-1-carboxylate deaminase production
(ACC), exhibiting antifungal activity, production of volatile organic compounds
(VOCs) promoting beneficial plant–microbe symbiosis, interference with pathogen
toxin production, etc. (Ryu et al. 2003). Current advancements in the exploration of
rhizosphere diversity along with PGPR and their functional ability and mechanism
to facilitate plant growth promotion corroborated their application as a reliable
phenomenon in the management of sustainable agricultural system. Use of PGPR
strains have the potential to induce antioxidant enzymes, amino acids like proline
under salinity stress and could serve as a useful tool for alleviating salinity stress in
salt-sensitive plants (Patel and Saraf 2013).

Fig. 1.2 Bacterial community in rhizosphere showing their sole importance from A to D
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Monitoring soil microbial life and their influence on the tripartite interaction of
plant soil and microbes manage agricultural production. In understanding a
technology-oriented sustainable agro-ecosystem, significant progress have been
made, but it is essential to broaden the frontiers of knowledge of PGPR’s roles in
field crop and others to fulfill the gap between ever-increasing population and
productivity. More recently, drone technology is proved to be beneficial for the
spray of the plant protection agents, biostimulants, etc. In fact, precision monitoring
of interaction of beneficial microbe with soil and plant proved to be instrumental for
agriculture production (Baliyan et al. 2018). In addition, the chapters in the book
expand the frontiers of PGPR in the arena of field crops cultivation and productivity
enhancement of sustainable agriculture.

1.6 Conclusions

The plant growth-promoting rhizobacteria (PGPR) are emerging tool of sustainable
agriculture and a central candidate with multifaceted mechanisms and influences on
sustainable management of field crops. Further, a quantum and ample research is
needed under the consideration of plant–microbe interaction to augment sustainable
management of field crops.
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Chapter 2
Bacterial Mixtures, the Future
Generation of Inoculants for Sustainable
Crop Production

Yolanda Elizabeth Morales-García, Antonino Baez,
Verónica Quintero-Hernández, Dalia Molina-Romero,
América Paulina Rivera-Urbalejo, Laura Abisaí Pazos-Rojas
and Jesús Muñoz-Rojas

Abstract Plant growth-promoting bacteria (PGPB) have been extensively studied,
because of different mechanisms to perform phytostimulation, as well as the abil-
ities to colonize plants. The number of crop types and hectares of agricultural land,
where PGPR are applied is low compared with the total crops or farming area.
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However, the PGPB application in crop fields is increasingly becoming more
accepted due to the advantages to crops and environment such as the increment in
productivity, the diminution in the use of chemical fertilizers and toxic compounds
such as pesticides and herbicides. These traits make beneficial bacteria formulations
the ‘right choice’ in healthy agriculture since they are highly compatible with
sustainable crop production. The co-inoculation of plants with two or more bene-
ficial bacteria apparently provides greater phytostimulation than mono-inoculation,
perhaps because of the synergistic and multifarious effects occurring when two or
more microorganisms are co-interacting. There is a consensus that bacterial mix-
tures provide greater benefits to the plants, the number of formulations containing
more than three species of microorganisms in consortium is still limited. Therefore,
we believe that more research and investment is needed to design and formulate
multi-species inoculants containing compatible bacteria and other beneficial
microorganisms in order to be capable of coexisting both in the designed formu-
lation and associated with plants for sustainable benefits.

Keywords Bacterial inoculants � Bacterial desiccation � PGPB � Beneficial
bacteria

2.1 Introduction

Bacteria were the first colonizers of the planet and it is believed that they sustain life
on earth (Lin et al. 2014; Pace 1997; Strom 2008; Zavarzin 2008). Only around 1%
of bacterial diversity have been isolated (Amann et al. 1995; Curtis et al. 2002;
Prashar et al. 2014), and majority of them could be beneficial for agriculture
(Lugtenberg and Kamilova 2009; Mitter et al. 2017; Philippot et al. 2013),
biotechnology (Broadbent et al. 2003; Chemier et al. 2009; Zhang 2018), biome-
dicine (Morales-García et al. 2007), bioremediation (Böltner et al. 2008; Fernández
et al. 2012; Liu et al. 2017b), and other benefits.

Bacteria have the capability to interact with plants and increase their health and
growth. The plant growth-promoting bacteria (PGPB) have been isolated from
diverse plant sources and geographical places as given in Table 2.1. The source of
isolation could be from soils, rhizosphere, rhizoplane, root nodules, endophytic
zones and the epiphytic region of the plants (Ahmad et al. 2018; Cazorla et al. 2007;
Kumar et al. 2014; Molina-Romero et al. 2015; Morales-García et al. 2011;
Vandamme et al. 2002; War Nongkhla and Joshi 2014). Bacteria associated with
maize plants also have been isolated and some genera reported include
Azospirillum, Burkholderia, Bacillus, Rhizobium, Enterobacter, Klebsiella and
Arthrobacter (Table 2.2).

A heterogeneous group of bacteria may be associated with plants, but not all of
them have the capability to improve their growth. Therefore, rigorous studies
should be performed to test their beneficial traits and the mechanisms involved to
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unravel the hidden characters that how bacteria promote the plant growth
(Lugtenberg and Kamilova 2009; Molina-Romero et al. 2015).

Adhesion and colonization to the root zone are the first critical steps that bacteria
must overcome to the right integration on the plant–host so as to establish and
develop their beneficial functions (Albareda et al. 2006; Muñoz-Rojas and
Caballero-Mellado 2003). A number of reports have been published on the concept
of cellular adherence to the surface of maize seeds and colonizing the rhizosphere
(Table 2.3). Adhesion occurred in the range of 105–106 CFU/seed while rhizo-
sphere colonization was in the order of 103–108 CFU/gV [Colony Forming Units/
Vermiculite (g)], depending on different factors including bacterial species and
experimental conditions. To demonstrate the PGPB capabilities, bacteria have to be
bioprimed on seed surface or seed dressing and allow to grow them. The vegetative
and reproductives such as seed germination index, length and diameter of stems,

Table 2.1 Bacterial strains isolated from diverse environments and mechanisms involved in the
plant growth promotion

Isolated strain Mechanisms for
plant growth
promotion
implicated

Place of
isolation

Geographical
place for
isolation

References

Bacillus subtilis Q3
Paenibacillus
sp. Q6

Phosphate
solubilization

Cotton
rhizosphere

Bahawalpur and
Haroonabad
Punjab––
Pakistan

Ahmad et al.
(2018)

Enterobacter
sp. EP2a JN653461

Phosphate
solubilization,
BNF

Epiphytic
from
Houttuynia
cordata

India War Nongkhla
and Joshi (2014)

Gluconacetobacter
diazotrophicus
UAP-Cf05

BNF, IAA Coffea
Arabica
rhizosphere

Puebla––
México

Jimenez-Salgado
et al. (1997)

Azotobacter
sp. NAT 13

BNF Cotton
rhizosphere

Tolima––
Colombia

Guzmán et al.
(2012)

Pseudomonas
fluorescens
ABE66285

ACC deaminase,
Phosphate
solubilization

Larrea
tridentata
rhizosphere

Chile Jorquera et al.
(2012)

Burrkholderia
tuberum STM678T

ACC deaminase Legume
nodules

France Vandamme et al.
(2002),
Onofre-Lemus
et al. (2009)

Bacillus subtilis
PCL1605

Antifungal
activity

Rhizoplane
from
avocado

Malaga––Spain Cazorla et al.
(2007)

Klebsiella variicola
T29A

IAA Sugarcane
endophyte

Puebla-México Rosenblueth et al.
(2004)

Abbreviation meaning: BNF (Biological Nitrogen Fixation), IAA (Indol Acetic Acid), VOCs
(Volatile compounds), ACC (1-aminocyclopropane-1-carboxylate) deaminase
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number of leaves, height of stems, root and shoot length, fresh and dry weight of
plants along with important physico-chemical characters such as chlorophyll con-
tent, total nitrogen, percentage of nitrogen and others (Ahmad et al. 2018;
Molina-Romero et al. 2017d; Morales-García et al. 2011; Muñoz-Rojas and
Caballero-Mellado 2003). In one of the study, Bashan et al. (2017) stated that fresh
weight is less precise than the dry weight. The fresh weight is affected by numerous
environmental and other parameters including relative humidity, temperature, air,
soil environment, etc,. of the excised plant parts to interfere with excess moisture
present in washed roots and shoots, besides, the total time involved in collecting
and washing samples until weighing (Bashan et al. 2017). Therefore, differences in
appearance observed between inoculated plants and non-inoculated one represent a

Table 2.2 Bacterial strains isolated from maize and mechanisms involved in the plant growth
promotion

Isolated strain Mechanisms
involved in the
promotion of plant
growth

Localization
in the plant

Geographical place
for isolation

References

A. brasilense
UAP-154

IAA, siderophore
production

Maize
rhizosphere

Tlaxcala-México Dobbelaere et al.
(2001),
Tapia-Hernández
et al. (1990)

Arthrobacter
sp. V54 Bacillus
sp. V 39

Phosphate
solubilization,
BNF, Siderophore
production

Maize
rhizosphere

Ngaoundal,
Adamawa,
Cameroon

Tchakounté
Tchuisseu et al.
(2018)

Bacillus
methylotrophicus
M4-96

VOCs, Auxins Maize
rhizoplane

Morelia-Michoacán Pérez-Flores et al.
(2017)

Burkholderia
tropica MTo 293

VOCs, BNF,
Phosphate
solubilization and
siderophore
production

Maize stem
(Endophytic)

Oaxaca-México Tenorio-Salgado
et al. (2013)

Burkholderia
tropica MCu-831

FBN Maize
rhizoplane

Morelos-México Reis et al. (2004)

Burkholderia
unamae
MTl-641T

BNF, ACC
deaminase

Maize
rhizosphere

Morelos-México Caballero-Mellado
et al. (2004)

Enterobacter
sp. UAPSO3001

Unknown Maize
rhizosphere

Tlaxcala-México Morales-García
et al. (2011)

Klebsiella
spp. (Zea)

BNF Maize stem
(Endophytic)

USA Palus et al. (1996)

Rhizobium etli BNF Maize stem
(Endophytic)

Morelos-México Gutiérrez-Zamora
and
Martı  nez-Romero
(2001)

Abbreviation meaning: BNF (Biological Nitrogen Fixation), IAA (Indol Acetic Acid), VOCs (Volatile
compounds), ACC (1-aminocyclopropane-1-carboxylate) deaminase

14 Y. E. Morales-García et al.



good indicator for the capability of bacteria to promote the growth of plants
(Fig. 2.1) but decisive conclusion comes from data of dry weight increments
(Bashan et al. 2017; Molina-Romero et al. 2017b; Morales-García et al. 2011;
Muñoz-Rojas and Caballero-Mellado 2003).

Various workers have suggested the lab’s data do not coincide with field con-
ditions (Çakmakçi et al. 2006; Mehnaz et al. 2010; Shahzad et al. 2013). Even a few
have suggested to carry out experiments first, under well-controlled conditions at
the plant chamber, then under greenhouse conditions and later under field condi-
tions. Several research steps are involved to carry out in the three phases of
experiments prior to developing a commercial formulation delivered to the market
(Bashan et al. 2014). Numerous molecular mechanisms involved to participate and
to demonstrate the capability or ability of one strain to promote the plant growth
and health promotion (Lugtenberg and Kamilova 2009). The mechanisms could be
classified in a general form as direct and indirect mechanisms (Goswami et al. 2016;

Table 2.3 Bacteria quantity associated with seeds or rhizosphere of maize

Bacterial strain Cells number
adhered to seeds
(Log CFU/seed)

Cells number
colonizing the
rhizosphere of plants
Log CFU/gV

Variety of maize References

Azospirillum
brasilense Sp7

5.71 ± 0.41 6.10 ± 0.16 Blue maize
CAP15-1 TLAX

Molina-Romero
et al. (2017b)

Azospirillum
brasilense Sp7

6.95 ± 0.11 5.12 ± 1.40 Rojo-Criollo Morales-García
et al. (2013)

Pseudomonas
putida KT2440

7.50 ± 0.14 6.40 ± 0.2 Blue maize
CAP15-1 TLAX

Molina-Romero
et al. (2017b)

Pseudomonas
putida KT2440

7.61 ± 0.03 8.10 ± 0.18 Girona Ramos Martin
and
Muñoz-Rojas
(2006)

Pseudomonas
putida KT2440

7.02 ± 0.15 3.90 ± 0.81 Rojo-Criollo Unpublished
results

Sphingomonas
sp. OF178

6.55 ± 0.33 6.18 ± 0.71 Blue maize
CAP15-1 TLAX

Molina-Romero
et al. (2017b)

Sphingomonas
sp. OF178

6.87 ± 0.16 4.74 ± 0.40 Rojo-Criollo Morales-García
et al. (2013)

Acynetobacter
sp. EMM02

7.87 ± 0.20 6.70 ± 0.14 Blue maize
CAP15-1 TLAX

Molina-Romero
et al. (2017b)

Enterobacter
sp. UAPS03001

7.02 ± 0.30 9.26 ± 0.55 Rojo-Criollo (Morales-García
et al. 2011)

Enterobacter
sp. UAPS03001

7.23 ± 0.18 7.74 ± 0.25 Blue maize
CAP15-1 TLAX

Pazos-Rojas
et al. (2018)

Klebsiella
variicola T29A

6.69 ± 0.03 7.4 ± 0.35 Blue maize
CAP15-1 TLAX

Pazos-Rojas
et al. (2018)

Klebsiella
variicola T29A

7.85 ± 0.25 8.75 ± 0.31 White
autochthonous from
Papalotla-Tlaxcala,
México

Unpublished
results
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Jha and Saraf 2015; Molina-Romero et al. 2015; Paterson et al. 2017). Direct
mechanisms involve the bacterial contribution to the assimilation of diverse
nutrients or metabolites available for plants that have positive effects on their
growth. The indirect mechanisms contribute to the health support to the plants that
concomitantly enhance their growth and development. Among indirect mecha-
nisms, induced systemic resistance by beneficial bacteria, antimicrobial production,
etc., have been worked out.

2.2 Plant Growth Promotion by Direct Mechanisms

2.2.1 Biological Nitrogen Fixation

BNF refers to the ability of some bacteria to capture atmospheric nitrogen and
transform it to combined nitrogen, usually in the form of ammonium (NH4

+)
(Annan et al. 2012; Dixon and Kahn 2004; Santi et al. 2013). Fixed nitrogen could
be donated to the plants that in turn provide carbon source to bacteria. The inter-
action of different species of Rhizobium with legumes is one of the models more

Fig. 2.1 Bacterial mixture
(EMMIM-5) improving the
growth of maize plants (Blue
maize CAP15-1 TLAX) in
comparison with
non-inoculated plants
(control), 45 days after the
inoculation of germinated
seeds
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widely studied. The interaction of Rhizobium–legumes is highly specific and both
populations are favoured both for the plant and bacteria during relationships such as
mutualistic symbiosis (Simms and Taylor 2002). Although BNF is highly effective
in the interaction of rhizobia–legumes, this phenomenon has not been as significant
in non-legume plants except very few such as sugarcane inoculated with the
free-living bacterium Gluconacetobacter diazotrophicus (Muñoz-Rojas and
Caballero-Mellado 2003; Sevilla et al. 2001). However, some grasses showed high
levels of nitrogen obtained through the BNF process (Herridge et al. 2008). Further
investigations are yet to be carried on the bacteria with highly effective BNF
capability associated with non-legumes or performing genetic engineering of
non-legume plants to introduce genes related to nitrogen fixation (Saikia and Jain
2007). The free-living bacteria with potential to perform the BNF process include
Pseudomonas fluorescens, Beijerinckia sp., Azoarcus sp., Azotobacter sp.,
Burkholderia unamae, Gluconacetobacter diazotrophicus, Herbaspirillum sp.,
Azospirillum brasilense, Nostoc sp. and Rhizobium sp. (Caballero-Mellado et al.
2004; Defez et al. 2016; Fibach-Paldi et al. 2012; Gutiérrez-Zamora and
Martı  nez-Romero 2001; Guzmán et al. 2012; Kaschuk and Hungria 2017; Sevilla
et al. 2001).

2.2.2 Phytohormones Production

This is a widely distributed mechanism among plant-associated bacteria (Costacurta
and Vanderleyden 1995). Various groups of PGPR secrete gibberellins, auxins and
cytokinins, the known phytohormones that promote plant growth (Bottini et al.
2004; Costacurta and Vanderleyden 1995; Kang et al. 2014). Indole acetic acid
(IAA), an auxin molecule, is the most studied phytohormone wherein biosynthetic
pathway is well known in the genus Azospirillum (Cassán et al. 2014; Patten and
Glick 1996). IAA induces the elongation and division of root cells, included root
growth and has greater root surface enabling plants with higher nutrient absorption
and growth (Patten and Glick 2002). Gluconacetobacter diazotrophicus,
Azospirillum brasilense, Pseudomonas sp., Enterobacter cloacae, Klebsiella
variicola and Bacillus amyloliquefaciens have been reported as producers both
induced and constitutive IAA in vitro (Defez et al. 2016; Fuentes-Ramirez et al.
1993; Idris et al. 2007; Malik and Sindhu 2011; Patten and Glick 1996).

2.2.3 Phosphate Solubilization

A fundamental element of plant metabolism is phosphorus since it is an important
structural element in DNA, RNA, phospholipids and communication signals.
Although this component is abundant in the soil, but remains in unavailable form
hence cannot be taken up by the plants in most soil conditions. Only monobasic or
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dibasic form of P is soluble and hence bioavailable to the plants (Gyaneshwar et al.
2002). Certain bacterial and fungal genera have the capability to solubilize phos-
phate from soils and allow the phosphorus uptake by plants (Castagno et al. 2011;
Gyaneshwar et al. 2002; Kang et al. 2002). The ability of phosphate solubilization
in rhizobia has been previously reported (Pandey et al. 2005). However, various
free-living aerobic bacteria were reported later for phosphate solubilization (Khan
et al. 2007). Some PGPB solubilize phosphates from inorganic or organic com-
pounds; involving the use of nonspecific phosphatases, C-P lyases, phosphatases
and phytases (Lugtenberg and Kamilova 2009; Molina-Romero et al. 2015). On the
other hand, releasing organic acids by different bacteria may chelate phosphorus,
making it bioavailable to plants (Aeron et al. 2011; Vyas and Gulati 2009). Bacteria
with the ability to solubilize phosphates include Pseudomonas putida,
Bradyrhizobium japonicum, Enterobacter agglomerans and Rhizobium legumi-
nosarum (Molina-Romero et al. 2015, 2017b; Rodríguez et al. 2006). Besides
enzyme and organic acids of bacterial origin, other mechanisms of P solubilization
include inorganic acids produced by chemoautotrophs and the H+ pump observed
in Penicillium rugulosum (Khan et al. 2014).

2.2.4 ACC Deaminase Production

Under environmental conditions plants are exposed to adversities caused by abiotic
and biotic factors influencing their growth (Morgan and Drew 2006); the climate,
the amount of water available, solar radiation, attack by pathogens, pests and
animals, and others. Changes in these biotic or abiotic factors represent intense
stress on the plants which in turn trigger ethylene-mediated systemic defense
response causing excessive energy expenditure to the plants. Some PGPB produce
the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and improve the
growth of plants by decreasing ethylene levels (Bal et al. 2013; de Oliveira et al.
2006; Glick 2014; Glick et al. 2007). Following the discovery of the role of ACC
deaminase in plant growth promotion (Glick et al. 1998), rhizobacteria able to
synthesize ACC deaminase were reported by the pioneers in India (Aeron et al.
2017; Kumar et al. 2012; Maheshwari et al. 2015a). Kumar et al. (2012) reported
the role of Bacillus sp. in ACC deaminase synthesis and other rhizobacteria were
reported by Aeron et al. (2017). In the Indian research scenario, a beta class of
Proteobacteria first reported as rhizobia, was identified as Burkholderia sp., having
ACC deaminase activity (Pandey et al. 2005). The ACC deaminase enzyme breaks
the ethylene precursor avoiding its synthesis and also releasing ammonium that can
later be used by plants as a nitrogen source (Singh et al. 2015). Some PGPB with
the capability to produce ACC deaminase are Burkholderia unamae MTl-641,
Azospirillum lipoferum, Pseudomonas fluorescens TDK1, Enterobacter cloacae,
Bacillus sp. AR-ACC1, and Agromyces ANR-ACC2 (Esquivel-Cote et al. 2013;
Nadeem et al. 2007; Onofre-Lemus et al. 2009; Zahir et al. 2008). The ACC
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deaminase system can also be considered an indirect mechanism of plant growth
promotion since it blocks out an intensive defense response avoiding unnecessary
energy expenditure by plants.

2.3 Indirect Growth Promotion Mechanisms

Today, this kind of mechanisms are increasing in knowledge, especially the
elimination of microbial pathogens by ISR, which shows an interesting mechanism
to protect plants from being attacked by phytopathogens.

2.3.1 Antagonistic Mechanisms

Phytopathogenic microorganisms are major causal organisms of plant diseases and
crop losses. Various genera of PGPB are capable of eliminating those pathogens,
hence, they can be used as biocontrol agents (Beneduzi et al. 2012; Compant et al.
2005; Liu et al. 2017a). Inhibitory substances produce by PGPB with biocontrol
potential include siderophores, bacteriocins, broad-spectrum antibiotics, lytic
enzymes, lipopeptides and antifungal metabolites (Mohamed et al. 2017;
Molina-Romero et al. 2015; Morales-García et al. 2007; Sivasakthi et al. 2014).
There are several PGPB able to prevent the deleterious effects of phytopathogenic
organisms by producing inhibitory substances, e.g. Gluconacetobacter dia-
zotrophicus, Burkholderia tropica, Bacillus amyloliquefaciens, Pseudomonas
fluorescens, Lysinibacillus sphaericus, Bacillus subtilis, Bacillus altitudinis,
Azospirillum brasilense, Rhizobium etli, Rhizobium leguminosarum, Kosakonia
radicincitans (Bardin et al. 2004; Cawoy et al. 2015; Krishnan et al. 2007;
Lambrese et al. 2018; Naureen et al. 2017; Príncipe et al. 2018; Russo et al. 2008;
Saravanan et al. 2008; Sivasakthi et al. 2014; Tenorio-Salgado et al. 2013; Tortora
et al. 2011).

2.3.2 Induced Systemic Response (ISR)

The interaction of plants with pathogens or beneficial microorganisms triggers the
systemic response of plants (van Loon 2007). Systemic acquired resistance
(SAR) is triggered by pathogens while induced systemic resistance (ISR) is trig-
gered by non-pathogenic microorganisms (Pieterse et al. 2014; van Loon 2007).
SAR is a phenomenon where plants acquire an enhanced defensive response against
subsequent pathogen attack as a result of a primary, limited infection (van Loon
et al. 2006), this response is mediated by salicylic acid and it is quite aggressive for
plants causing necrosis in some cases (Pieterse et al. 2014; Ramamoorthy et al.
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2001). ISR is triggered by beneficial bacteria, it is mediated by ethylene and jas-
monate, and this response prevents the establishment of pathogens in the plant
(Pieterse et al. 2014; Su et al. 2017; van Loon 2007). Induced systemic resistance
(ISR) is the phenomenon to immunize the plants by PGPR against phytopathogens
and confer substantially enhanced levels of peroxidase (PO), polyphenol oxidase
(PPO), phenylalanine ammonia lyase (PAL), b−1, 3 glucanase and chitinase as a
part of the systemic response (Sharma et al. 2018). Field application of PGPB with
the ability to induce a systemic response in plants might prevent the attack of
pathogens resulting in an increase of the yield in different crop plants (Gkizi et al.
2016; Su et al. 2017). Not only PGPB but some other bacterial components are also
able to induce the ISR response, for example, flagella, lipopolysaccharides, side-
rophores and cyclic lipopeptides (Ramamoorthy et al. 2001). Some examples of
PGPB capable to trigger ISR are Pseudomonas fluorescens FB11, Bacillus altitu-
dinis, B. cereus, B. subtilis, B. amyloliquefaciens, B. pasteuri, B. pumila, B.
mycoide, B. sphaericus, Burkholderia phytofirmans, Rhizobium leguminosarum bv.
viceae FBG05, Pseudomonas putida 89B-27, Serratia marcescens and
Paenibacillus alvei K165, Rhodopseudomonas palustris (Bhattacharyya and Jha
2012; Elbadry et al. 2006; Gkizi et al. 2016; Kloepper et al. 2004; Su et al. 2017).

2.3.3 Volatile Organic Compounds Production

Volatile organic compounds (VOCs) are small and gaseous molecules produced by
bacteria, identified as proficient signal molecules functioning as chemical attractants
or repellents (Hernández-Calderón et al. 2018; Ortíz-Castro et al. 2009). VOCs
interact with plants in the soil and may promote plant growth by inducing the ISR,
suppressing phytopathogens, stimulating of photosynthesis and modulating phy-
tohormone signalling (Santoro et al. 2015; Sharifi and Ryu 2018). Some VOCs
identified include aldehydes, alcohols, ketones, indoles, terpenes, fatty acids and
jasmonate (Pieterse et al. 2014; van Loon 2007).

An alternative function of VOCs produced by the PGPB is to increase the
resistance of plants to abiotic stresses such as salinity, drought and heavy metals
(Farag et al. 2013). VOCs can act directly as (i) phytohormones, (ii) helping the
acquisition of iron, (iii) regulating the growth and morphogenesis of the plant and
(iv) exerting biocontrol of phytopathogens either by antibiosis or by triggering ISR
(Farag et al. 2013; Park et al. 2013; Zhang et al. 2009). Examples of bacteria that
produce VOCs are Bacillus subtillis SYST2, Bacillus subtilis GB03, Bacillus
amyloliquefaciens IN937a, Erwinia carotovora, P. polimyxa E681, Pseudomonas
fluorescens, Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71
(Cheng et al. 2017; Ortíz-Castro et al. 2009; Park et al. 2013; Rojas-Solís et al.
2018; Santoro et al. 2015; Tahir et al. 2017; Zhang et al. 2007, 2009). VOCs can be
exploited as an eco-friendly, cost-effective and sustainable strategy for agricultural
practices (Kanchiswamy et al. 2015).
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2.3.4 Elimination of Toxic Compounds for Plants

In modern agriculture, toxic compounds such as fungicides, pesticides and herbi-
cides have been excessively used on crop fields. The indiscriminate and excessive
applications of these compounds could have harmful effects for the development of
plants, animals and human being (Benbrook 2016; Donham 2016; Igbedioh 1991;
Park et al. 2015). These toxic compounds even modify the microbial diversity and
microbial activity (Chen et al. 2001; Johnsen et al. 2001; Smith et al. 2000); which
is fundamental for the proper development of plants (Berendsen et al. 2012). For
this reason, it is necessary to eliminate these toxic compounds from the soil to allow
the plants to grow in a sustainable manner an optimal growth of crop plants. There
are several bacteria having the ability to eliminate toxic compounds from the soil
while interacting with host plants. Among the most widely studied bacterial species
are Pseudomonas putida, Sphingomonas sp. OF178, Burkholderia unamae,
Burkholderia tropica, Bacillus subtillis, Pseudomonas rhizophila S211 etc.
(Ahemad and Khan 2012; Böltner et al. 2008; Caballero-Mellado et al. 2004, 2007;
Caballero et al. 2005; de Oliveira et al. 2006; Hassen et al. 2018). However, the
ability of these bacteria to eliminate pesticides present in agricultural soils are yet to
be elucidated.

Several published data related to PGPB stated that the actual mechanism com-
prising phytostimulation of PGPB neglected, and in some only the growth pro-
motion characteristics have been reported. In fact, the transcription level of key
genes involved in plant growth promotion or physiological characteristics such as
ability to fix nitrogen, solubilize phosphates or produce phytohormones have been
insignificantly tested in vitro (Ahmad et al. 2018; Caballero-Mellado et al. 2004;
Fibach-Paldi et al. 2012; Fuentes-Ramirez et al. 1993; Molina-Romero et al. 2017b;
Onofre-Lemus et al. 2009; Rosenblueth et al. 2004; Tenorio-Salgado et al. 2013).
There is limited information about the actual genes involved in the plant growth
promotion, making defective mutants and corroborating the lack of plant growth
promotion characteristics in PGPB (Rajput et al. 2015; Schneider et al. 1991;
Sevilla et al. 2001; Zhang et al. 2009). For example, the deletion of nifH gene in
Gluconacetobacter diazotrophicus makes this bacterium no longer able to fix
nitrogen both in vitro and in association with host plants, demonstrating that
aforesaid mechanism has been involved in the promotion of growth (Sevilla et al.
2001).

2.4 The State of the Art of PGPB Publications and Patent
Numbers

Literature on PGPB-type bacteria is broad, ranging from isolation, phenotypic,
biochemical and molecular characterization, ability to colonize the rhizosphere of
plants, plant growth promotion and studies of genes involved in plant–bacteria
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interaction (Huang et al. 2014; Lugtenberg and Kamilova 2009). Public databases
such as NCBI or Google Scholar show an increasing trend in the number of articles
published on issues related to the capacity of bacteria to promote plant growth. In
fact, there are around 2742 published works in PubMed database related to this field
up today (Table 2.3), but this data fluctuates according to the new publications that
are stored in the system. Interestingly, the number of patents is approximately
fivefold lower than that of published articles suggesting that very limited works
have ended up in a potential application. Therefore the number of patents is lower
than the number of publications and on the other hand, patent number continues to
increase (Fig. 2.2). This could be due to the urgent need for the implementation of
environmental-friendly technology provided to reduce the contamination of toxic
compounds used in intensive agriculture (Baez-Rogelio et al. 2017). Countries with
the major patent numbers related to the application of PGPB are USA, Germany,
Canada, United Kingdom and Spain (Fig. 2.3).

Fig. 2.2 Number of patents applied by year in the global world. All patents are related to the use
of PGPB as crop plants inoculants. Source data were acquired from two prestigious platforms of
patents search: Spacenet and Patent Inspiration
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2.5 Bacterial Inoculants for Agriculture

Non-pathogenic bacteria with growth-promoting capacity whose mechanisms of
phytostimulation are supported by molecular studies can be considered candidates
to formulate bacterial inoculants. The number of crop types and hectares of agri-
cultural land where PGPB are applied is quite low corresponded to that of the total
crops or farming area. This is perhaps because of lack of a culture of adopting
sustainable technologies, inconsistencies of yield production in yield and problems
of technology associated to massive inoculation (Bashan et al. 2014; Carolan 2009;
Cummings 2009). Azospirillum brasilense is one of the most studied bacteria
applied in agricultural crops, it has been used in various crops around the world
with successful results in more than 70% of cases in comparison to that obtained in
less reported in other PGPB (Dobbelaere et al. 2001; Fuentes-Ramirez and
Caballero-Mellado 2006; Okon and Labandera-Gonzalez 1994). Among the inoc-
ulants intended for sustainable crop production that are currently being marketed,
we can find mono-inoculants formulated with a single bacterium such as

Fig. 2.3 Analysis of the number of patents carried out by applicant country. All patents are
related to the use of PGPB as crop-plant inoculants. Source data were acquired from two presti-
gious platforms of patents search: Spacenet and Patent Inspiration
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Azospirillum brasilense, Azotobacter vinelandii, Rhizobium etli, or Bacillus
sp. (Baset Mia and Shamsuddin 2010; O’Callaghan 2016; Okon and
Labandera-Gonzalez 1994). Countries that are adopting the use of these bacteria on
crop fields are México, Argentina, USA, China, Belgium, Uruguay and to a certain
extent in India (Bashan et al. 2014; Dobbelaere et al. 2001; Molina-Romero et al.
2015; Shen 1997).

In India, the first study on legume-Rhizobium symbiosis was initiated by N.
V. Joshi in 1920, and commercial production began in 1956 (Barman et al. 2017;
Ghosh 2004; Majumdar 2015; Mazid and Khan 2014). The development of tech-
nology for inoculants production in India evolved through the nineteenth century
including some remarkable events: (A) the earliest documented production of
Rhizobium inoculant by M. R. Madhok in 1934. (B) The discovery of nitrogen
fixation by Blue-Green Algae (BGA) in a rice field and the report on the perfor-
mance of Azotobacter in rice soil by B. N. Uppal, both events in 1939. (C) First
commercial production of biofertilizer in 1956 by N. V. Joshi. (D) The study of
microbial phosphate solubilization by Sen and Pal in 1957. (E) The first work for
the quality standardization for legume inoculant in 1958. (F) Isolation of the first
non-symbiotic N-fixing organism Derxiagummosa by P. K. Dey and R.
Bhattacharyya in 1960. (G) Increment in the requirement of biofertilizers for soy-
bean mainly in Madhya Pradesh in 1964. (H) Projects set up by the Indian Council
of Agricultural Sciences (ICAR) in 1968, where Rhizobium study got priority.
(I) Use of Indian peat as carrier reported by V. Iswaram in 1969. (J) Use of coal as
an alternative carrier reported by J. N. Dube in 1975. (K) Indian standard specifi-
cation for Rhizobium in 1976. (L) Use of ISI mark for Rhizobium in 1977. (M) In
1979, a coordinated project for BNF in all India took place and the ISI standard-
ization was made for Azotobacter inoculant. (N) Setting up of National Project on
Development and use of Biofertilizers by Ministry of Agriculture, Government of
India, in 1983. (O) Five biofertilizers (containing: Rhizobium, Azotobacter,
Azospirillum, Phosphate Solubilizing Bacteria and mycorrhiza) were incorporated
in India’s Fertilizer Control Order (FCO) in 1985, and the First National
Productivity award on Biofertilizer was celebrated. (P) Setting up of National
Facility Centre for BGA at IARI in 1988. (Q) The NIKU (National Input Complete
and Utilization) Bio-Research Laboratory was established in 1997 at Pune. (R) The
Tenth Plan document (2002–2007) that emphasize the use of biofertilizers, bio-
control agents, organic manures, etc. with infrastructure support (Barman et al.
2017; Majumdar 2015).

Through the history of biofertilizers in India, some adversities have limited the
development of this important product (Ghosh 2004). Adoption of the technology
has not consistently grown over time and has slowed down in the late 1990s.
Although there have been more and more new entries in the market, the average
capacity of bigger producers has come down, characterizing the industry by many
small units. Lack or low diffusion of technology with the farmers and low partic-
ipation of the private sector in the commercialization of inoculants (below 50%)
such as problems in transportation and distribution represented the major problems
in rural areas (Mazid and Khan 2014). Despite adversities, India is one of the most
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important countries in biofertilizer production (Mahajan and Gupta 2009). The first
biofertilizer modern unit was started by the Gujarat State Fertilizer Company
(GSFC), Vadodara, in 1985 and many more followed thereafter. Today the number
of microbial inoculants manufactured in India has increased and products include
Rhizonick (Rhizobium), Azonik (Azotobacter chroococcum), Spironik
(Azospirillum brasilense), Phosphonive (Phosphate solubilizing bacteria),
Sulphonik (Sulphur-oxidizing bacteria and fungi), Niku-2000 (Decomposing cul-
ture), Trichonik (Trichoderma viridi), Vermiculture (mixed with N-fixing inoculant
and P solubilizers), Blue-Green Algae (BGA) (containing photosynthetic nitrogen
fixers), Vesicular arbuscular mycorrhiza (VAM), K-solubilizer (Frauteria auran-
tia), etc. (Barman et al. 2017; Majumdar 2015; Singh et al. 2014b). Agro Industries
Corporation has the maximum capacity to produce biofertilizers in India, followed
per State Agriculture Universities and the private sector (Singh et al. 2014b). Since
2016, Indian Government has been promoting biofertilizers development through
various schemes of National Mission of Sustainable Development (NMSA)/
Paramparagat Krishi Vikas Yojana, Rashtriya Krishi Vikas Yojana (RKVY) and
National Mission on Oilseeds and Oil Palm (NMOOP) and Indian Council of
Agricultural Sciences (ICAR) (http://pib.nic.in/newsite/PrintRelease.aspx?relid=
137762).

On the other hand, among the principal companies dedicated to produce and
commercialize biofertilizers in México are Biofabrica Siglo XXI, Biosustenta,
Fertilizantes Mexicanos, Biokrone. Biofabrica Siglo XXI developed products such
as Azofer, an inoculant formulated with Azospirillum brasilense; Rhizofer, for-
mulated with Rhizobium etli, etc. (http://www.biofabrica.com.mx/about.html).
Another Mexican company is Biosustenta, which is developing and producing
biological inputs of Ferbiliq inoculant, based on Azospirillum brasilense and
Glomus intraradices; Endomaz biofertilizers made from A. brasilense (http://
cosustenta.com/catalogo.html). Fertilizantes Mexicanos markets biofertilizers for-
mulated with nitrogen-fixing bacteria (Azoton AA Plus); ‘Biomatrix + powder’
formulated with nitrogen-fixing bacteria and phosphate solubilizers, other of its
products are Bioespiril L and Raizinn Biol (http://biofertilizantes.mx/index.html).
Similarly, Bio Organica Mexicana provides biofertilizers such as Ultralite AZO
(http://www.bio-organica.com.mx). All above-mentioned companies offer to the
farmers an ecological alternative to increase the production of their crops, for
impacting positively their economy, due to the investment of lower costs of these
products compared to chemical fertilizers. In Argentina, agrobiotechnology has
been developed for the past 50 years, using PGPR isolated from their soils for the
formulation of bacterial inoculants (Molina-Romero et al. 2015). These formula-
tions were developed to improve growth and increase the productivity of legumi-
nous plants and cereals of agricultural importance. Among the companies with
more experience in the production of microbial inoculants are NITRASOIL
ARGENTINA S.A. Co., which has developed an inoculant that contains bacteria of
the genus Azospirillum sp. strain AZ39, recommended by the INTA (National
Institute of Agricultural Technology) for being considered the best microbial
inoculant (http://www.nitrasoil.com.ar). The company Rizobacter Argentina S.A.
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Co. (http://www.rizobacter.com/argentina/) also has a variety of products whose
formulation is used in soybean, corn and wheat. The bacteria used for the formu-
lation of these inoculants are P. fluorescens, Bradyrhizobium sp., Mesorhizobium
ciceri, Sinorhizobium meliloti, Rhizobium leguminosarum biovar trifoli and
Bradyrhizobium japonicum. The firm Nitrasoil S. A., FPC Argentina S.A. (http://
www.fpcinoculantes.com.ar), Granaries and Elevadores Argentinos de Colon Soc.
Coop. Ltda (GEA) (http://geadecolon.com.ar) and bionet (http://www.bionetsrl.
com/inoculantes-bionet-soja-premium.php) are dedicated to the formulation and
commercialization of fertilizers and biological inoculants for the agricultural sector
(Molina-Romero et al. 2015).

Although the use of these formulations is still moderate today but, are
increasingly accepted by farmers, due to the improved growth of cultivars inocu-
lated with PGPB, their application have enhanced the crop productivity
(Lugtenberg and Kamilova 2009) decrease in the use of chemical fertilizers
(Dobbelaere et al. 2001) and potential to decrease in the use of toxic compounds
such as pesticides and herbicides (Myresiotis et al. 2012). Such characteristics make
these microorganisms the first choice for organic agriculture being highly com-
patible for sustainable practices.

2.6 Co-inoculation Versus Mono-inoculation

In fact, microbial co-inoculation is considered to be an innovative approach and had
been applied worldwide (Wang et al. 2018). Compared with mono-inoculation,
co-inoculation of microorganisms has apparently been more effective in stimulating
plant growth because of the synergistic effect that occurs when more than one
microorganisms are co-interacting with same or their diverse genera (Atieno et al.
2012; Barea et al. 2002; Zoppellari et al. 2014). For example, the co-inoculation of
lettuce with Bacillus sp. and Glomus intraradices make the use of water more
efficient under stress conditions (Vivas et al. 2003). Similarly, co-inoculation of pea
with Rhizobium spp. and Bacillus megaterium increased the biomass of roots and
aerial region, the percentage of nitrogen and productivity (Elkoca et al. 2007). The
consortium of P. aeruginosa KRP1 and B. licheniformis KRB1 were reported
suppressive for the fungal phytopathogens F. oxysporum and S. sclerotiorum
causing disease in Brassica campestris (Maheshwari et al. 2015b). Although, there
are promising results of co-inoculations,, formulations on the market containing
three or more species of microorganisms are limited. Research papers have shown
that the inoculation of sugar cane with a mixture of more than three bacteria
enhanced the production of sugarcane in soil characteristically having low to
medium-level and nitrogen fertilization (Table 2.4) (Molina-Romero et al. 2017b;
Morales-García et al. 2013; Oliveira et al. 2009).

The design, formulation and optimization of an effective mixture of bacteria to
be used as inoculants, is not so easy because, it requires microbe–microbe inter-
action, bacterial ability of adhesion to seeds and root colonization in plants
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(Baez-Rogelio et al. 2017; Singh et al. 2014a; Sundaramoorthy et al. 2012). In
addition, studies on the antagonistic relationships among the strains involved in a
mixture of bacteria should be conducted before design and application of a
multi-species inoculant. Some antagonistic effects also occur among bacteria when
associated with plants (Baez-Rogelio et al. 2017; Molina-Romero et al. 2017b;
Oliveira et al. 2009).

2.7 Steps in the Design of Mixed Inoculants and Some
Experiences of Inoculation

The design and formulation of multi-species inoculants represent furthered chal-
lenges since it requires additional assays to guarantee the coexisting of bacterial
strains when they are in the formulation and associated with the plants, to raise their
growth promotion (Baez-Rogelio et al. 2017; Molina-Romero et al. 2017b;
Morales-García et al. 2013; Wang et al. 2018). Due to the characteristics and
advantages of multi-inoculant preparations in comparison with conventional
mono-inoculants, the term second-generation inoculants has been assigned and
some multi-species formulations have been patented (Alatorre-Cruz et al. 2015;
Morales-García et al. 2013; Olovaldo et al. 2017).

There are different strategies to design a multi-species inoculant, but all of them
should overcome some general challenges in order to obtain the desired results.
Besides all experiments and challenges faced during the development of
mono-inoculants, five additional challenges should be sorted out during the design
of polymicrobial inoculants.

Table 2.4 Search of keywords related to plant growth-promoting bacteria and some beneficial
bacterial species. The search was made on 13 August 2018

Keywords searched Pub
Med-NCBI

Scholar
google

Patents searched in
Spacenet

Plant growth-promoting
bacteria

2742 1,070,000 560

Plant growth-promoting
rhizobacteria

845 46,900 83

Bacterial plant inoculants 331 36,800 32

Azospirillum brasilense 777 29,800 53

Gluconacetobacter
diazotrophicus

107 4270 7

Rhizobium etli 472 11,700 4

Herbaspirillum seropedicae 136 4450 5

Burkholderia unamae 16 454 1

Burkholderia tropica 24 2400 1

Pseudomonas fluorescens 5733 160,000 877
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(1) Carry out antagonism assays. Several articles about bacterial antagonism have
been published with the purpose to identify producer bacteria of inhibitory
substances (Beneduzi et al. 2012; Muñoz-Rojas et al. 2005; Tenorio-Salgado
et al. 2013). However, for the formulation of polymicrobial inoculants,
antagonism assays should be carried out with the purpose of identifying
compatible strains (Molina-Romero et al. 2017b). In this sense, the develop-
ment of a matrix of bacterial interaction is highly important (Table 2.5). The
methods used to perform the antagonism test for building the interaction matrix
are the double-layer agar and simultaneous inhibition methods (Molina-Romero
et al. 2017a). Both the methods provide complementary information. In the agar
double-layer assay, the first bacterium is grown alone on the first agar-media
layer, after this, the colony is removed and the remaining bacteria are killed
with chloroform vapours leaving all metabolites produced by the bacteria on
the first agar layer. The second bacterium is then incorporated into the second
layer of agar media before gelling point of agar, if the growth of second
bacterium is inhibited by metabolites produced by the first one, which means
that antagonistic metabolites were produced without the influence of the second
bacterium. In counterpart, during simultaneous inhibition method, both bacteria
are grown simultaneously on the same agar media competing for the same
space and nutrients. An observed inhibition could be the result of the bacterial
interaction. The major challenge is to find compatible strains, able to coexist not
only in the antagonism assays but also in other environmental conditions like
growing in liquid media, during the formulation, in adherence to seeds and
plant rhizosphere (Molina-Romero et al. 2017b). But, we recommend to test the
interaction at other environmental conditions until the definitive members of a

Table 2.5 Hypothetical antagonism assays using the double agar layer method

Bacterial strains explored as sensitive of inhibitory substances

BSEPIS A B C D E F G H I

A + + + + + + +

B +

C + + +

D + + +

E + +

F + + +

G +

H + +

I + +

BSEPIS means bacterial strains explored as a producer of inhibitory substances. In this
hypothetical example, strain A eliminates to almost all tested strains and strain B is sensitive to all
strain tested. Therefore, these strains cannot be used to design a bacterial mixture, because the first
could eliminate the others in a natural environment and the second could be eliminated by the other
strains. Examples of compatible strains to formulate a mixture could be E, G, H, F or I, C, E, G
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multispecies inoculant have been selected, because it will be necessary to
develop selective culture media for each member of the multi-species inoculant
before to be able to identify and quantify each bacteria interacting in the
consortium. All inoculants of second generation contain strains capable of
coexisting without antagonizing each other and inclusive with the ability to
inhibit the plant pathogens causing diseases (Alatorre-Cruz et al. 2015;
Baez-Rogelio et al. 2017; Molina-Romero et al. 2017b; Morales-García et al.
2013; Oliveira et al. 2009; Olovaldo et al. 2017).

(2) Bacterial tolerance to desiccation. Desiccation of organisms is defined as the
loss of intracellular water until the equilibrium with water is present in the
environment, extreme desiccation occurs at 30 °C and 50% of relative
humidity, during several days (Molina-Romero et al. 2017c; Pazos-Rojas et al.
2018). PGPB with the capability to tolerate extreme desiccation could be used
to formulate more stable inoculants and such bacteria once associated to seeds
can remain dormant but ready to colonize plant roots and rhizosphere when
favourable conditions of rehydration occur (Molina-Romero et al. 2017b;
Pazos-Rojas et al. 2018; Streeter 2003). Based on data of bacterial survival ratio
to air desiccation (BSRad), five levels of bacterial tolerance have been proposed
(Pazos-Rojas et al. 2018): highly tolerant bacteria (BSRad ˃ 80), tolerant
(60 < BSRad � 80), middle tolerant (40 < BSRad � 60), low tolerant
(20 < BSRad � 40) and very-low-tolerant (BSRad � 20). Highly tolerant
bacteria are desired for the formulation of bacterial inoculants of second gen-
eration, because they maintain their ability to promote plant growth even when
they experienced desiccation stress (Molina-Romero et al. 2017b; Pazos-Rojas
et al. 2018). Second-generation inoculants containing desiccation-tolerant
bacteria were observed more efficient in environments with low water avail-
ability (Alatorre-Cruz et al. 2015; Molina-Romero et al. 2017b; Pazos-Rojas
et al. 2018; Vilchez and Manzanera 2011).

(3) Choosing bacterial species for the mixture. Using the interaction matrix of
PGPB (Table 2.5) and the results of tolerance to desiccation, we can select the
appropriate compatible bacteria to formulate the inoculants of the second
generation. Bacterial mixture formulations theoretically could be more suc-
cessful than mono-inoculants (Baez-Rogelio et al. 2017). But even a careful
selection of compatible bacteria for the hypothetical formulation do not war-
ranty that selected bacteria will be compatible in association to plants or that
mixed bacteria will promote the plant growth. In fact, some bacterial mixtures
selected at this step could be ineffective to promote plant growth. Experiments
of population dynamics of bacteria associated to plants and effectivity studies of
these formulations should be carried out to verify the effectiveness of the
designed formulations.

(4) Looking for selective media for members of the consortia. A very critical step
for the design of bacterial inoculants of second generation is to confirm that
bacteria really coexist associated with plants. For this, we require effective
selective media to capture every single strain from a mixture discriminating the
growth of the other strains sampled from the same environment. Bacterial
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capability to growth on different conditions has been explored for each bacterial
strain from the mixture (Alatorre-Cruz et al. 2015; Molina-Romero et al. 2017b;
Morales-García et al. 2013), for example, use of different carbon and nitrogen
sources, tolerance to heavy metals, abilities to grow in microaerophilic
semi-solid media without nitrogen source (nitrogen fixation), resistance to
different antibiotics, tolerance to salinity, peculiar growth colonies on media,
etc. Culture media allow the monitoring of different inoculated strains both for
seed adhesion and for bacterial colonization studies (Molina-Romero et al.
2017b; Rodríguez-Andrade et al. 2015). However, the identity of isolated
bacteria should be corroborated using molecular tools, for example, by 16S
rDNA sequence or by the characteristic restriction pattern of the gene 16S
rDNA.

(5) Exploring multi-inoculation in different scenarios. In our experience, all bac-
teria selected for multispecies inoculants have shown the capability to adhere to
seeds and colonize the rhizosphere of plants suggesting its compatibility in
association to seeds or rhizosphere (Alatorre-Cruz et al. 2015; Molina-Romero
et al. 2017b; Morales-García et al. 2013). However, levels of colonization could
be different depending on plant species. For example, the formulation
EMMIM-1 which contains 6 bacterial species (Table 2.6), all of them are
capable to colonize maize in high numbers (Morales-García et al. 2013). Seed
inoculation of tomato and bean with EMMIM-1 formulation resulted in a dif-
ferent B. unamae MTl-641, a bacterium part of EMMIM-1 formulation was
able to colonize in high numbers the rhizosphere of tomato (Log CFU/gV
around 6.8 (± 0.35)) but the numbers observed for colonization of bean rhi-
zosphere (Log CFU/gV around 3.83 (± 0.33)) were lower than those for
tomato. Despite these differences, the inoculant multispecies EMMIM-1 was
able to increase the plant growth of both plant species suggesting that other
strains rather than B. unamae MTl-641 promote the growth in bean plants
(non-published results).

2.8 Comparing Plant Growth Promotion of Mono
and Multi-inoculation

Effects of the bacterial–mixture inoculation on the plant growth promotion should
be tested and compared against mono-inoculation. Inoculation of bacterial mixtures
had resulted in higher increments of the plant growth than mono-inoculants maybe
because there are synergic effects of bacteria.

In our laboratory, better growth-promoting effects were observed on plants
inoculated with the multi-species formulations compared with mono-inoculated or
non-inoculated plants (Figs. 2.1, 2.4, 2.5, 2.6, and 2.7) (Alatorre-Cruz et al. 2015;
Morales-García et al. 2013; Molina-Romero et al. 2017b). An additional feature of
multi-strain formulations compared to mono-species formulations is the higher
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Table 2.6 Mixed bacterial formulations for enhancement of plant growth

Bacterial species in the formulation Name of the
formulation

Plant model
explored

References

Gluconacetobacter diazotrophicus,
Herbaspirillum seropedicae, H.
rubrisubalbicans, A. Amazonense,
Burkholderia tropica

No name Sugarcane Oliveira et al.
(2009)

Acinetobacter sp. EMMS02, Azospirillum
brasilense Sp7, Pseudomonas putida
KT2440, Sphingomonas sp. OF178

EMMIM-5 Blue maize Molina-Romero
et al. (2017b)

Ensifer sp. NYM3, Acinetobacter sp. P16
Flavobacterium sp. KYM3

No name Cucumber Wang et al.
(2018)

Gluconacetobacter diazotrophicus PAl 5,
Burkholderia unamae MTl-641,
Sphingomonas sp. OF178, Pseudomonas
putida KT2440, Brdyrhizobium
sp. MS22, Azospirillum brasilense Sp7

EMMIM-1 Several maize
varieties, potato,
tomato, bean

Morales-García
et al. (2013)

Microbacterium sp. UAPS01200,
Microbacterium sp. UAPS01203,
Pseudomonas putida KT2440

EMMIM-JMAC Echinocactus
plathyacanthus

Alatorre-Cruz
et al. (2015)

Sphingomonas sp. OF178, Pseudomonas
putida KT2440, Gluconacetobacter
diazotrophicus PAl 5

EMMIM-2 Potato Olovaldo et al.
(2017)

Fig. 2.4 Comparison of plants of tomato inoculated with a multi-species formulation
(EMMIM-1) versus non-inoculated plants
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consistency of results obtained in the field crops. In fact, the bacteria of these
polymicrobial formulations exert synergic effects on the inoculated plants. Similar
results were obtained by a multi-species inoculant applied on corn and rice (Figs. 2.6
and 2.7). The multi-species inoculants containing plant growth-promoting bacteria
have been summarized in Table 2.5. Inoculation of bacterial formulations of the
second generation is in development, and we hope that in next few years an increased
number of new multispecies formulations will appear in the market (Baez-Rogelio
et al. 2017). The most advanced multispecies formulation in the context of tech-
nology transference in Mexico is the bacterial mixture named EMMIM-1, it is the
closest to appear in the market and experiences of inoculation in fields have
demonstrated its effectiveness and better positive results than mono-inoculants.
Currently, around 5000 ha of maize have been inoculated with EMMIM-1 in the
central region of Mexico, and other cultures also have been inoculated in minor
proportion.

Fig. 2.5 Bacterial mixture
(EMMIM-5) improving the
growth of maize plants (Blue
maize CAP15-1 TLAX) in
comparison with
mono-inoculated plants
(Azospirillum brasilense
Sp7), 45 days after the
inoculation of germinated
seeds

32 Y. E. Morales-García et al.



Fig. 2.6 Maize plants of Cacahuazintle, an autochthonous variety from Calpulalpan-Tlaxcala,
México, at 90 days of growth. Maize inoculated with the multispecies formulation EMMIM-1
(a) and not inoculated (b). The inoculated maize is greener, with higher height, thicker stems, and
larger adventitious roots and has less problem of herbs. Fertilization and form of tillage was the
same for both treatments

Fig. 2.7 Rice plants
inoculated with EMMIM-1
(right) compared to
non-inoculated plants (left).
Assays from Morelia,
Michoacán, México
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2.9 Conclusions

Plant growth-promoting bacteria have different mechanisms to perform phy-
tostimulation. Although the use of PGPR-type bacteria for inoculation of crop
plants has been moderated, their application is increasing over the time due to their
proved benefits on productivity and reducing the chemical fertilizer, pesticides and
herbicides inputs in soil. The co-inoculation of beneficial microorganisms on crop
plant is apparently more effective in stimulating plant growth than
mono-inoculation, perhaps because of the synergistic effect occurring when
microorganisms are co-interacting. Despite promising results of co-inoculation,
there are still few formulations containing more than three species of microor-
ganisms in consortium. Therefore, a new challenge is the design and formulation of
multi-species inoculants able to exercise a greater plant growth promotion in
comparison with those of mono-species inoculants. In our laboratory, we have
designed some polymicrobial formulations which are already patented. Due to the
characteristics and advantages that they have in relation to conventional inoculants,
they have been designated as the second-generation inoculants.
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Chapter 3
Does PGPR and Mycorrhizae Enhance
Nutrient Use Efficiency and Efficacy
in Relation to Crop Productivity?

Mahipal Choudhary, Vijay Singh Meena, Ram Prakash Yadav,
Manoj Parihar, Arunav Pattanayak, S. C. Panday, P. K. Mishra,
J. K. Bisht, M. R. Yadav, Mahaveer Nogia, S. K. Samal,
Prakash Chand Ghasal, Jairam Choudhary and Mukesh Choudhary

Abstract With the increasing world’s population, higher demand for sustainable
food production so as to meet the requirement. It has increased tremendously due to
excessive use of agrochemicals. Since, the imbalanced application of agrochemicals
in agricultural field leads to soil and environmental degradation. Nowadays, the
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scientific community has shifted their focus on alternative eco-friendly management
approach. The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae has
huge potential to substitute agrochemicals. These efficient eco-friendly microbes
have different plant growth-promoting (PGP) activities; hence PGPR and mycor-
rhizae are gaining importance for restoring soil sustainability and agricultural
productivity. Application of these efficient microbes in the soil–plant–environment
system will be suitable strategies for improving the soil and crop productivity.

Keywords PGPR � Biological nitrogen fixation � Siderophore � Agronomic
efficiency

3.1 Introduction

Nowadays, the sustainable crop production along with enhanced crop productivity
relics a key global challenge for different communities (i.e., policy makers, busi-
ness, and researchers) (Wezel et al. 2014). It is undoubtedly hard to believe that
food demand is going to be double in 2050 with the rapid population explosion
(Henry et al. 2018). It is also that, being fully dependent on artificial as well as
traditional inputs (Kumar et al. 2017). Application of efficient microbes for
multi-nutrient solubilization enhances the environmental sustainability (Choudhary
et al. 2018c). Among these microbes, the rhizobacteria and arbuscular mycorrhiza
(AM) has tremendous capabilities to be colonized in the rhizosphere and to enhance
plant growth, development. Apart from this, they could improve nutrient use effi-
ciency (NUE) by access to various nutrients from soil system (Meena et al. 2017).
The AM plays a role in nutrient supply and uptake in between fungi and roots and is
ubiquitous in nature (Smith and Read 2008). The sustainable crop productions
required need-based crop yield that can be achieved prepared via multi-resistance
and improve water use efficiency (WUE) in plants. AM is most heterogonous group
of soil microbes, ubiquitously form plant–fungal association with 80% of higher
plants (Giovannetti et al. 2006). Other than penetrating plant roots, AM fungal
hyphae also grow in soil as extraradical hyphae with higher absorptive surface
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increases nutrient acquisition. Besides better nutrient availability, AM fungi pro-
vides multi-resistance (Parihar and Rakshit 2016), soil nutrient loss reduction
(Parihar et al. 2019), improved soil aggregation (Borie et al. 2008), greater soil
carbon storage (Wang et al. 2016), and enhanced overall plant productivity.

Judicious application of organic and inorganic minerals improve soil sustain-
ability and crop productivity (Choudhary et al. 2018a), while the sole use of
minerals have an adverse effect on the crop growth and development as compared
to integrated manner. Imbalanced application of synthetic agrochemicals (mainly
fertilizers, pesticides, fungicide, and weedicides) leads to soil and environmental
degradation. In this article, the current status of NUE, mode of action of PGPRs and
AM fungi, their potential use and benefits for farmer community where they are
facing lots of problems related to the high cost of chemical fertilizer, pesticides, and
other growth substances highlighted. These factors adversely affected the soil and
environment, enhanced NUE through PGPRs and AM fungi, hence needed to
encourage farmers for adoption of such cost-effective, efficient, and sustainable
technologies for better crop growth and healthy environment.

3.2 Nutrient Use Efficiency (NUE)

It is a measure of nutrient uptake by crop/plants from the soil system as growth and
development per unit input (Ramesh et al. 2014). NUE is dynamic and complex
term and different scientific fraternities (agronomists, soil scientists, plant physi-
ologists, and agricultural economists) are measured in various ways depending
upon the perspective in which it is computed and considered. Conceptually, the
word “efficiency” implies the achievement of an envisioned outcome with a lowest
possible use of precious input (Fixen 2005). Therefore, NUW is considered an
intended output (economic crop yield) as the numerator and input (applied nutrient)
as the denominator. Thus, NUE is a simple measure of how beneficially plants use
the mineral nutrients available in the soil environment. The determination of NUE
is of great importance to differentiate plant species and their genotypes based on
their ability to utilize the applied nutrients for maximum production of economic
yield with minimum use of nutrient (Barbieri et al. 2008). Improved NUE can be
helpful for spreading out of crop production over marginal and degraded lands
which are potentially low with respect to nutrient availability so as to reduce
mineral fertilization (Dobermann and Cassman 2005). NUE of any crop plant is
product of (a) uptake efficiency (depends on ability of plant roots to acquire the
nutrient present in soil, their inflow–outflow rate into plant roots, nutrient influx
kinetics, and also related to the quantity of the subjected nutrient applied or present
in soil), (b) incorporation efficiency (largely depends on ability of plant to transports
the acquired nutrient to shoot and leaves, functions of shoot parameters), and
(c) utilization efficiency (remobilization of nutrient from different plant parts,
functions of whole plant (Wang et al. (2010). Fageria et al. (2008) outlined that
nutrient efficient plant are those which can produce more biomass with a defined
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amount of applied or absorbed nutrient over other similar growing environments.
Therefore, it is very clear from the above findings that NUE can be defined in many
ways depending on the perspective and is easily misunderstood and misrepresented.
The commonly used measure of NUE is discussed below as well as in Table 3.1.

Partial factor productivity (PFPN): It is the simplest measure to depict nutrient
use efficiency described as units of output (crop yield) per unit of input (nutrient
applied) (Mosier et al. 2004).

PFPN kg kgð Þ¼ CropYield ðkg)
Amount of Nutrient plant tissuse ðkg)

Agronomic efficiency (AEN): AEN is the most commonly used index, defined as
units increase in economic yield per unit inputs (Fageria et al. 2008). To calculate
AEN, one essentially needs data on yield from unfertilized plot (without nutrient
input). It is critically required to establish a plot with zero nutrient input on the farm
(Tilman et al. 2002).

AEN kg kgð Þ¼Yield of fertillized plot ðkg)� Yield of unfertillized plot ðkg)
Amount of nutrient applied ðkg)

Physiological Efficiency (PEN): Physiological growth in relation to the increase
in nutrient uptake by the crop. Like AEN and AREN, it requires knowledge of
without application of the nutrient.

Table 3.1 Commonly used NUE indices and their application

NUE
index

Questions addressed Typical use

PFPN How productive is the given cropping
system in comparison to its nutrient
input?

Using as a long-term indicator of NUE
trends at various scales

PNB How much of applied nutrient is being
taken out (Uptake efficiency) by the
crops in the system?

Also used as a long-term indicator of
trends of NUE and provides more
practical information when combined
with soil fertility dataset

AREN How much of the nutrient applied did
the plant take up (the ability of plants to
take up the applied nutrient from soil)?

Mostly used as an index of the potential
for nutrient loss from the cropping
system and to access the efficiency of
management practices towards NUE

IUE How the crop plants are able to
transform the acquired nutrients into
economic products?

Used to evaluate nutrient efficient and
inefficient genotypes in breeding
Programs

PEN What is the ability of the plant to
transform nutrients acquired from the
source into economic yield?

Research evaluating NUE among
cultivars and other cultural practices

Accepted and modified from Dobermann (2007) and Dobermann et al. (2005)
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PEN kg kgð Þ¼ BYf ðkg)� BYuf ðkg)
NUf ðkg)� NUuf ðkg)

where BYf = Biomass yield (grain + straw) in fertilized plot, BYuf = Biomass
yield (grain + straw) in unfertilized plot, NUf = Nutrient uptake in fertilized plot
and NUuf = Nutrient uptake in unfertilized plot.

Apparent Recovery Efficiency (AREN)-: It is one of the more complex forms of
NUE expressions, described by the difference in nutrient uptake (above-ground
biomass of crops) between the fertilized plot and that of unfertilized plot relative to
the quantity of input applied.

AREN %ð Þ¼NUf ðkg)� NUuf ðkg)
Amount applied ðkg) � 100

where NUf = nutrient uptake in grain plus straw of fertilized plot and
NUuf = nutrient uptake in grain plus straw of unfertilized plot.

Internal Utilization Efficiency (IEU): It is a simple indexing measure of quan-
tifying nutrient use efficiency based on crop yield and nutrient uptake. The value of
this index is depending upon agro-climatic conditions, crop cultivar, and level of
soil–plant management (Witt et al. 2005). Nutrient utilization efficiency is the cross
product of physiological efficiency and apparent recovery efficiency of nutrient
which is calculated by using the following equation:

IUE kgkg�1
� � ¼ PEN � AREN

where PEN is physiological efficiency and AREN is apparent recovery efficiency as
defined above.

Partial nutrient balance (PNB): It is the simplest form to characterize NUE of
crop production system. It is described as nutrient output in relation to nutrient
input (Lopez-Bellido and Lopez-Bellido 2001). Over the short term and on indi-
vidual farms, PNB can show substantial fluctuations due to cash flow and market
conditions, especially for P and K. Long-term assessment of PNB over several
years is, therefore, more useful (Table 3.2).

3.3 Current Scenario of NUE

Nowadays, an increase in global food demand *110% is expected by 2050
compared to 2005, requiring a tremendous increase in production (Tilman et al.
2011). Approaches considered economic, social, and environmental dimensions are
essential to sustainable agricultural systems and therefore provide an appropriate
context for specific NUE indicators. Global phosphorus consumption continuously
has been increased since 1960 (Fig. 3.1). Phosphorus is the second important
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primary nutrient element after nitrogen. Low P use efficiency (PUE) is a significant
challenge for agricultural production on P-deficient soil as well as in acidic and
calcareous soils (Shenoy and Kalagudi 2005). Acquisition of soil and fertilizer P by
crops depends on soil and plant properties.

On the other hand, K use efficiency is more limited than either N or P. This is
partly due to the environmentally benign nature of K where interest in efficiency
is driven primarily by agronomic or economic factors. In general, NUE of sulfur is
only 8–10% due to immobilization and leaching with water whereas in case of
micronutrients NUE is only 2–5% due to fixation in soil.

Table 3.2 Components of NUE and processes that influence genotypic differences in NUE in
plants

A. Nutrient acquisition

• 1. Nutrient availability from soil system to roots through diffusion and/or mass flow: soil
buffering power, nutrient density, bio–physico–chemical properties of element, tortuosity, soil
moisture content, bulk density, and soil temperature

• 2. Root morphological factors: number and length of roots, root hair density and its efficiency,
root forage area, and root density

• 3. Rhizosphere engineering

• 4. Physiological: root: shoot ratio, rhizosphere microorganisms dynamics (rhizobia,
azotobacter, mycorrhizal fungi), concentration of acquired nutrient, transpiration rate (water
Uptake), internal and outflow nutrient rates, nutrient movement within roots and shoots, affinity
to uptake (Km), threshold concentration (Cmin)

• 5. Biochemical: secretion of various enzymes (phosphatase), chelating compounds,
phytosiderophores, proton exudates, organic acid exudates

B. Nutrient movement in root

• 1. Transfer of acquired nutrient through endodermis and transport within the root

• 2. Compartmentalization/binding of absorbed nutrient within roots

• 3. Rate of nutrient release to root and shoot xylem

C. Nutrient accumulation and remobilization in shoot

• 1. Demand for given nutrient at the cellular level and their storage in vacuoles

• 2. Remobilization of stored nutrient from older to younger leaves and from vegetative to
reproductive tissues as and when needed

• 3. Dynamics of chelates during transportation of nutrient through the xylem

D. Nutrient utilization and growth

• 1. Nutrient metabolism at cellular level

• 2. Concentration of nutrient in supporting structure, particularly stem

• 3. Elemental substitution (such as Na for K, Fe for Mn etc.)

• 4. Biochemical processes and factors involved in metabolism (nitrate reductase for N-use
efficiency, glutamate dehydrogenase for N metabolism, peroxidase for Fe efficiency, pyruvate
kinase for K deficiency, metallothionein for metal toxicities, ascorbic acid oxidase for Cu,
carbonic anhydrase for Zn)

Modified from Baligar et al. (2001); Fageria and Baligar (2005)
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3.4 Why NUE Is Important for Agricultural System?

Nutrient deficiency is critically important and most yield-limiting constraints to
crop production in the agro-ecological (Fan et al. 2004). The adoption of intensive
chemical fertilizer led nutrient management during the past four to five decades
undoubtedly reported to increase global food production around four times but has
also increased chemical fertilizer consumption by fourfold which created implica-
tions for the environmental safety (Tilman et al. 2001). Overall, the contribution of
chemical fertilizers in raising crop yields is *40% in poor fertile soils when other
productions factors (genotypes, irrigation and plant protection measures) are at an
adequate level (Rahimizadeh et al. 2010). However, it is estimated that chemical
fertilizer inputs in modern agriculture share about 30% of the total cost of pro-
duction system (Richardson et al. 2011).

Ensuring food and fodder for human and livestock on sustainable systems
approach has significant challenges and is highly critical especially in thhhe
developing region of the world. Therefore, to combat this challenge, farmers are
forced to overuse agrochemicals that leads in the deteriorating soil and environment
(Foley et al. 2011). Long-term adoption of nutrient management practices domi-
nated by chemical fertilizers led to declining NUE making fertilizer consumption
uneconomical, imparting adverse effects on environment and groundwater quality
(Hungate et al. 2003). Furthermore, the ANR of inputs is quite low such as global

Fig. 3.1 Global phosphorus fertilizer consumption (International fertilizer industry association)
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cereals N recovery efficiency is *33%. Likewise, the global recovery efficiency of
PK is estimated less than 20% and 40%, respectively (Syers et al. 2008). Thus, it is
very clear that usually a large quantum of applied nutrient through the precious
inorganic fertilizers is lost from the soil–plant system or unavailable to crops. The
lower efficiency of applied fertilizer is attributed to leaching and runoff, gaseous
losses, fixation by soil, and use of inefficient nutrient absorbing/utilizing plant
species or cultivars (Yadav et al. 2017).

Eutrophication, a process of water enrichment with chemicals (NP) can cause
excessive algal growth of aquatic algal communities is another consequence
associated with lower NUE (Garnett et al. 2009). This can cause a shortage of
oxygen, and may produce substances, which are directly toxic to aquatic commu-
nities and indirectly to livestock and humans, is now big threat throughout the
world (Baligar et al. 2001). Further, ammonia emitted to the atmosphere through
volatilization losses from agricultural fields and other anthropogenic activities can
return back to earth surface as co-deposition with sulfur dioxide gas (Buresh et al.
2004). Aquatic and forests ecosystems of the world are more prone to N deposition
and excess enrichment of N can cause disruption in ecosystem functions and ser-
vices. Larger N deposition in ecosystems can also lead to global warming due to
larger emissions of nitrogen-based greenhouse gases, soil acidification due to
excessive aluminum dissolution and reduced carbon stocks in the soil (Galloway
et al. 2008). Nitrous oxide (N2O) generated as a product of denitrification process
considered as an important N based GHG gas which is responsible for around five
percent of the total global climate change (Shoji et al. 2001).

Inefficient and excessive use of N-based fertilizers leads in environmental
problems related due to associated large scale emission of NH3, N2, and N2O to the
atmosphere (Rockstorm et al. 2009). Further, improved NUE can play a great role
in extending the crop production over marginal and degraded lands, which
potentially low with respect to nutrient availability (Fig. 3.2).

3.5 What Are PGPR and Mycorrhizae?

PGPR is a group of rhizobacteria that inhabited in the rhizosphere, the term PGPR
refers to rhizobacteria that colonize in the rhizosphere (Vejan et al. 2016). Under the
PGPR, wide range of genera of bacterial species (Pseudomonas, Alcaligens,
Azospirillum, Arthrobacter, Burkholderia, Azotobacter, Bacillus, Klebsiella,
Serratia, Enterobacter) reported to improving growth and development (Saharan
and Nehra 2011). The example of various mechanisms involved in growth and
development by rhizobacteria has been reported by different researchers
(Table 3.3).

Mycorrhizae define a mutualistic symbiotic beneficial relationship between the
root of a plant (mainly woody plants) and a fungus that colonizes the plant root. In
many plants, mycorrhizae are fungi that grow inside the plant’s roots, or on the
surfaces of the roots (Smith and Read 2008).
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3.6 Mode of Action of Plant Growth-Promoting
Rhizobacteria (PGPR)

3.6.1 Direct Mechanism

The direct mechanism of efficient PGPR strain entails either providing the plant
with PGP traits that are synthesized by the bacterium. Biofertilizers contribute to
plant nutrition both by facilitating nutrient uptake and by enhancing mineral
availability by direct mechanisms, as fixing atmospheric nitrogen, solubilizing
mineral nutrients like phosphorus, potassium, etc., mineralizing organic com-
pounds, producing phytohormones and production of siderophores which seques-
tering micronutrient (Kaur et al. 2016).

3.6.2 Indirect Mechanism

The indirect mechanism of plant growth occurs has an insignificant role in plant
nutrient management practices. Infect, the PGPR prevent deleterious effects of one
or more phytopathogenic microbes (Kundan et al. 2015).

Fig. 3.2 Model for improved plant NUE with inoculants a total amount of fertilizer or manure
applied to plants, b 10–40% of the applied fertilizer or manure is taken up by plants, and c 60–90%
of the applied fertilizer or manure is lost
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Table 3.3 Different plant growth-promoting rhizobacteria (PGPR) tested for various crop types

PGPRs Host crop Results of the addition
of bacteria to crops

References

Achromobacter
xylosoxidans

Vigna radiata Influence plant
homeostasis

Ma et al. (2009)

Azorhizobium Nitrogen fixation Sabry et al. (1997)

Azospirillum – Nitrogen fixation Sahoo et al. (2014)

Acinetobacter spp. – IAA, phosphate
solubilization,
siderophores

Rokhbakhsh-Zamin
et al. (2011)

Bacillus sp. PSB10 – IAA, siderophores,
HCN, ammonia

Wani and Khan
(2010)

Bacillus – Potassium
solubilization

Han et al. (2006)

Enterobacter
sakazaki 8MR5

– Inoculation increased
growth parameters

Babalola et al.
(2003)

Rhizobium
Pseudomonas

Medicago sativa,
Trigonella foenum-
graecum, Trigonella
sp., Trifolium sp.,
Vigna radiata

Biological nitrogen
fixation

Maheshwari et al.
(2010), Choudhary
et al. (2017a)

P. fluorescens C7 Arabidopsis thaliana
plants

The ironpyoverdin
synthesized, it
increased the iron level
inside the plants and
improved their growth

Vansuyt et al.
(2007)

Xanthomonas
sp. RJ3,
Pseudomonas
sp. RJ10, Bacillus
RJ31, Azomonas
sp. RJ4

Brassica napus Stimulated plant
growth and increased
cadmium accumulation

Sheng and Xia
(2006)

Rahnella aquatilis – Phosphate
solubilization, IAA,
ACC Deaminase

Mehnaz et al. (2010)

Bradyrhizobium
MRM6

Vigna radiate
Soybean, wheat

When
herbicide-tolerant
Rhizobium strain
MRP1 was used with
herbicide, it increased
the growth parameters
at all tested
concentrations of
herbicides
(quizalafop-p-ethyl and
clodinafop)

Ahemad and Khan
(2012a)

(continued)
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Table 3.3 (continued)

PGPRs Host crop Results of the addition
of bacteria to crops

References

Pseudomonas
sp. PS1

Vigna radiate Significantly increased
plant dry weight,
nodule numbers, total
chlorophyll content,
leghaemoglobin, root
N, shoot N, root P,
shoot P, seed yield, and
seed protein

Ahemad and Khan
(2012b)

Pseudomonas
aeruginosa

Cicer arietinum Positively stimulate
potassium and
phosphorus uptake

Ahemad and Kibret
(2014)

Pseudomonas
cepacia

Cucumis sativus Prevent pathogens in
Pythium ultimum

Montano et al.
(2014)

Gossypium hirsutum Help fight the
Rhizoctonia solani
virus

Pseudomonas
fluorescens

Triticum aestivum
Hordeum vulgare

Help prevent Fusarium
culmorum

Santoro et al. (2016)

Pennisetum glaucum Significant increase in
plant height, ear
length, yield

Arora (2003)

Camellia sinensis Increased NUE (+7%);
nitrogen (+52%);
phosphorus (+67%);
potassium (+18%)

Thomas et al. (2010)

Pseudomonas sp. – Phosphate
solubilization, IAA,
siderophore, HCN,
biocontrol potentials

Tank and Saraf
(2009)

Bradyrhizobium
sp. 750
Pseudomonas sp.,
Ochrobactrum cytisi

Lupinus luteus Increased both biomass
and nitrogen content,
accumulation of metals
(phytostabilization
potential)

Dary et al. (2010)

AM Fungi (Coccus
DIM7, streptococcus
PIM6) and PSB
(Bacillus sp. PIS7)

Zea mays Rock phosphate
mineralization in soil
and improved all
growth parameters
including shoot (56%),
root yield (52%),
height (41%), N
(80%), and P (91%)
uptake by the maize
plants as compared to
control

Wahid et al. (2016)

(continued)
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Table 3.3 (continued)

PGPRs Host crop Results of the addition
of bacteria to crops

References

Pseudomonas sp.
Paenibacillus
Polymyxa

Piper nigrum Zea
mays

Significantly increased
soil enzyme activities,
total productivity, and
nutrient uptake.
Significantly increased
the biomass of plants
and elicited induced
systemic resistance
against bacterial spot
pathogen
Xanthomonas
axonopodis pv.
Vesicatoria untreated
plants.

Sharma et al. (2011)

Pseudomonas and
Azospirillum

Piper nigrum Phosphate
solubilization and
increases the
availability of
phosphorus

Ramachandran et al.
(2007)

Azotobacter
chroococcum

Brassica juncia Stimulated plant
growth

Orlandini et al.
(2014)

Triticuma estivum Phosphate
solubilization

Bhattacharyya and
Jha (2012)

Fagopyrum
esculentum

Biological nitrogen
fixation

Azospirillum
brasilense

Festuca arundinacea Increases biomass and
increase plant tolerance
to polycyclic aromatic
hydrocarbons

Orlandini et al.
(2014)

Saccharum
officinarum

Alter plant root
architecture by
increasing the
formation of lateral and
adventitious roots and
root hairs

Camellia sinensis Increased NUE
(+13%); nitrogen
(+65%); phosphorus
(+25%); potassium
(+14%)

Thomas et al. (2010)

AM fungi,
Azospirillum,
Pseudomomas sp.

Pinus sabiniana,
Solanum
lycopersicum,
Lactuca sativa,
Triticum aestivum,
Zea mays

Roots stimulate root
colonization, limits soil
salinity stress, and
affects plant yield,

Kohler et al. (2010),

(continued)
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Table 3.3 (continued)

PGPRs Host crop Results of the addition
of bacteria to crops

References

Acinetobacter sp. Oryza sativa Significantly increased
the growth and yield
parameters of rice as
well as also increases
the solubility of Zn
from source of zinc
such as ZnO and
ZnCO3 with
inoculation

Gandhi and
Muralidharan
(2016)

Bacillus sp. Glycine max Phosphate
solubilization and
increases the
availability of
phosphorus

Wahyudi et al.
(2011)

Bacillus polymyxa Lycopersicon
esculentum

Proline accumulation
improved the
physiological and
biochemical
parameters of plants

Shintu and Jayaram
(2015)

Bacillus subtilis Brassica juncia Facilitate Nickel
accumulation,

Prathap and
Ranjitha (2015),
Oyedele et al.
(2014)

Hordeum vulgare Prevent powdery
mildew

Gossypium hirsutum Prevent from
Meloidogyne incognita
and M. arenaria

Bacillus subtilis
Pseudomonas
aeruginosa

Solanum
lycopersicum,
Abelmoschus
esculentus,
Amaranthus

Dry biomass increased
31% for tomato, 36%
for okra 83% for
African spinach

Adesemoye et al.
(2008)

PSB (P. fluorescens
BAM-4 and B.
cepacia BAM-12
and AM fungus (G.
etunicatum)

Triticum aestivum Significantly improved
the plant growth and
nutrient uptake and
showed a significant
increase in grain yield
of wheat with the
increases the
availability of P from
insoluble P sources.

Minaxi et al. (2013)

Azotobacter and
Bacillus

Wheat inoculation
increased its seeds
yield of 30 and 43%,
respectively. This
increase due to the
production of certain

Kloepper et al.
(1991)

(continued)
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3.7 Mode of Action by Mycorrhizae

AM fungi are obligate biotrophs depends on the plant for their carbon nutrition with
the exchange of different nutrients (Ortas and Rafique 2017), have the ability to
improve the availability of nutrients for plants growth and development (Teotia
et al. 2017). The greater nutrient acquisitions by mycorrhizae inoculated plants are
possibly due to (i) AM fungi-mediated nutrient mobilization and acquisition and
(ii) transfer of nutrients from fungal hyphae to plant roots. Mycorrhizal pathways of
nutrient uptake in plants root are rapid transit and well-regulated system. AM fungi
form a large web of extraradical mycelium (ERM) which can explore a huge
volume of soil beyond the nutrient depletion zone and facilitate uptake of inac-
cessible and mineral bound nutrients. Several studies revealed that mycorrhiza
could be engaged in organic matter decomposition and relocate nutrients to host
plants (Reynolds et al. 2005). Other than organic matter, AM fungi as alone or in
alliance with other microbes are also take part in nutrient mobilization by mineral
weathering. Some reports suggest that mycorrhizae produces low molecular organic
compounds which solubilize rock bounds nutrients and enhance their absorption
(Smith and Read 2008) as well as fungal ability to reduce different nutrient losses
(runoff, leaching and volatilization) from the soil system (Parihar et al. 2019).

3.8 Mechanism of PGPR for Increasing Bioavailability
of Nutrients and Crop Productivity

3.8.1 Nitrogen Fixation

Nitrogen (N) is one of the most important nutrients from plant nutrition and pro-
ductivity point of view. Despite large reservoir of nitrogen in atmosphere, plants are
unable to take it directly due to the high energy requirement to break the triple bond

Table 3.3 (continued)

PGPRs Host crop Results of the addition
of bacteria to crops

References

growth hormones such
as IAA

Enterobacter strain
CIK-521R and
Klebsiella strain
CIK-518

Zea mays Higher tolerance to Cd
and thus could be
deployed to manage
Cd-contaminated soil.
Both of the strains
could be effective
inoculants to get higher
maize production in
normal as well as in
Cd-contaminated soils.

Ahmad et al. (2016)
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of nitrogen. Plants avail it through biological N2 fixation (BNF) by changing
nitrogen to ammonia by the help of N-fixing microbes with involvement of nitro-
genase (Kim and Rees 1994). Two types of BNF are found in nature depending on
types of microorganism involved, first, symbiotic nitrogen fixation, in which plant
and microbes in symbiotic relationship and fix nitrogen (Ahemad and Khan 2012a),
second, associative and nonassociative, non-symbiotic nitrogen fixation, which
involves free-living microbes (Choudhary et al. 2017b). Hence, symbiotic
N-fixation plays a major role in N nutrition of plant (Fig. 3.3). At the beginning of
the process legume plant secret a specific flavonoid compound and rhizobium
specific to that compound attracted towards the plant root. The bacteria attach
firmly themselves to the root hair that involves lectin fibrils of the host plant. The
host plant then senses the nod factor secreted by rhizobium leading to colonized
root hairs to curl.

3.8.2 Phosphorus Solubilization and Mineralization

Phosphorus (P) is next to nitrogen among the essential nutrients that limit crop
growth (Tak et al. 2012) and is present in huge amount in the soil in form of both
inorganic and organic P. Besides its abundance in soil, it remains in insoluble form,
thus its availability to plant is limited. The plant can absorb P in two of its soluble
forms {monobasic (H2PO4

−) and diabasic (H2PO4
2−) ions}. The insoluble P

remains in form of inorganic mineral, e.g., apatite and organic P, largely as inositol
phosphate (Glick 2012). In the soil environment a considerable number of bene-
ficial microbes are capable of releasing unavailable soil through P-solubilization
(Bhattacharyya and Jha 2012). These groups of microbes are termed as

Fig. 3.3 Schematic representation of various mechanisms involved in plant promotion by PGPR
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P-solubilizing microbes (PSM). Many efficient bacteria (Azotobacter, Bacillus,
Enterobacter, Beijerinckia, Burkholderia, Erwinia, Microbacterium, Pseudomonas,
Flavobacterium, Rhizobium and Serratia), fungi, Actinobacteria, and algae show
P-solubilization (Fig. 3.4). The major soluble form of inorganic phosphate is
H2PO4

- , which found its existence at lower pH.
The existence of each category of the enzyme depends upon soil pH condition.

Acid phosphatases are prevalent in acid soils, whereas, alkaline phosphatases are
abundantly found in neutral and alkaline soils (Renella et al. 2006). Another
enzyme involved in the process of organic P mineralization that is produced by
PSM is phytase.

3.8.3 Potassium Solubilization

Potassium (K) is the third major essential plant nutrient affecting plant growth. Soil
contains a large amount of K than any other nutrient, but its phytoavailability is
limited. Potassium is present in four different forms in the soil such as mineral K,
non-exchangeable K, exchangeable K, and solution K. In general, 90–98% of soil K
remains in form of mineral K, hence, remains unavailable to plant (Sparks and
Huang 1985). Among these microbes, the frequently studied by the researcher are K
solubilizing bacteria (KSB), namely, B. mucilaginosus, B. edaphicus and
B.circulanscan are effective in K solubilization (Meena et al. 2014, 2016). The
major mechanisms involved are (i) lowering of pH; (ii) chelation of the cations
bound to K; (iii) acidolysis (Meena et al. 2014; Maurya et al. 2014).

Fig. 3.4 Schematic
representation of numerous
organic acids released by
PSM
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3.8.4 Siderophore Production

Iron (Fe) is an important essential micronutrient as it acts as a cofactor of many
enzymes and is required in many physiological processes of plants such as N2

fixation, photosynthesis, respiration. However, in aerobic environment, it occurs
principally in the form of Fe3+ and is very likely to form insoluble hydroxides and
oxyhydroxides, thus making it unavailable to both plants and microbes (Rajkumar
et al. 2010). Microbes and plants acquire Fe through production of low molecular
mass chelators termed as siderophore. In bacteria, synthesis of siderophores is
induced by the low level of Fe3+. Siderophore released by microbes form complex
with iron (Fe3+), further this complex is reduced to Fe2+ on bacterial membrane.

3.8.5 Plant Hormone Production

Plant growth is strongly influenced by the phytohormones through their various
activities. Microbes also produce plant hormones; thus, affect plant growth through
modulating the phytohormone level. Plant growth promotion by PGPR occurs
through bacterial synthesis of hormones like indole-3-acetic acid (IAA), cytokinin,
and gibberellins (GA) and breakdown of plant produced. Auxins in plant promote
plant growth through their function such as cell division, extension, and differen-
tiation. Microbial produced IAA change plant auxin pool, thus promote plant
growth by interfering with above physiological processes.

3.8.6 Alleviate Abiotic Stress

Abiotic stresses are major sources of crop yield reduction. Extensive study has been
done regarding the mechanisms of alleviating abiotic stresses in plants by PGPR
Moreover, PGPR also promote plant growth when it is used as biofertilizers
(Vessey 2003).

3.9 Mechanism of Mycorrhizae for Increasing
Bioavailability of Nutrients and Crop Productivity

Like PGPR, mycorrhiza also enhances plan growth through various mechanisms.
Between the two common types of mycorrhizae (AM and ECM) found in nature,
AM are probably the dominant fungi that are commonly found in agricultural soils
(Willis et al. 2013). These fungi form haustoria-like structure called arbuscule by
penetrating into root cortical cells; the arbuscular function as a mediator for the
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interchange of metabolites in between fungus and host cytoplasm. The proliferated
hypae of mycorrhizal increases the access of roots to a greater soil volume that
facilitates host plant to acquire more nutrients than by non-mycorrhizal plants (Guo
et al. 2010). Mycorrhizae can enhance the phytoavailability of slowly diffusing ions
like phosphate (McArther and Knowles 1993). In addition to improving P nutrition,
AM fungi are also capable of increasing availability of nutrients like N, K, Mg, Cu,
and Zn, specifically where they exist in less soluble forms in soil (Meding and
Zasoski 2008). The mycorrhizal mycelium also contributes to forms stable soil
aggregates (Singh 2012) (Table 3.4).

Table 3.4 Function of mycorrhizae in promotion of plant growth under stress conditions

Mycorrhizae Type of
stress

Stress alleviation and plant growth
promotion trait

References

Glomus
fasciculatum and G.
macrocarpum

Semi-arid
wasteland

Mycorrhizae decreased the alkalinity of
rhizosphere and high concentration of P,
K, Cu, and Zn was observed in inoculated
plants

Giri et al.
(2005)

Glomus spp. Heavy
metal

Plant height, basal diameter, seedling
biomass, and superoxide-dismutase
activity was more in mycorrhizal plants.
Significant high lead concentration was
observed in mycorrhizal plants roots

Zhang et al.
(2010)

Glomus mosseae,
Glomus
intraradices

Heavy
metal

AM fungus increased the infection of
sunflower root and also increased the
pollution tolerance and yield of sunflower
in a degraded soil

Adewole et al.
(2010)

Glomus
intraradices

Water
stress

Mycorrhizae protected the plant from
drought. Higher leaf water potential was
recorded in inoculated plants and kept the
plant protected against oxidative stress

Porcel and
Ruiz-Lozano
(2004)

Glumos
intraradices

Water
stress

Drought caused a negative impact on
sorghum length, shoot dry matter, 1000
kernel weight and yield. Mycorrhizae
inoculation dilutes the negative impact of
stress and enhanced yield. Grain yield
increased 17.5% due to inoculation
compared to drought

Alizadeh et al.
(2011)

Glomus mosseae Salinity
stress

Plant salt tolerance increased in
mycorrhizal plants mainly due to elevated
levels of superoxide-dismutase, catalase,
ascorbate peroxidase, and peroxidase
which degraded reactive oxygen species
and alleviated membrane damage

He et al.
(2007)

Glomus etunicatum Salinity
Stress

Mycorrhizal inoculated plants grow better
in saline conditions than uninoculated
plants. Fresh and dry weight, root
colonization, and proline contents were
more in salt pretreated fungus that than
non-salt-pretreated fungus

Sharifi et al.
(2007)
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3.10 Future Perspective

In the current scenario, due to abundant use of synthetic chemicals on crops, the
sustainability of agriculture systems has distorted; the cost of cultivation has
increased at a high rate; the income of farmers stagnated; and the provision of food
security and safety has become a frightening challenge (Panday et al. 2018).
Imbalanced application of agrochemicals leads to soil degradation (Choudhary et al.
2018b). For these reasons, PGPR that make use of microbes to improve soil sus-
tainability has been recognized (Suhag 2016). PGPR add nutrients through the
natural processes of N-fixation, nutrient solubilization, and PGP traits.

3.11 Conclusions

To know about the role of NUE by efficient PGPR aims to increase food security,
and sustainable plant productivity, while maintaining environmental quality.
However, to achieve this, basic and strategic studies must be undertaken to improve
our knowledge of microbial interactions in the rhizosphere. Considering the good
impact of PGPR exerts a positive influence on crop productivity and ecosystem
functioning, encouragement should be given to its implementation in sustainable
agriculture.
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Chapter 4
In Sustainable Agriculture: Assessment
of Plant Growth Promoting
Rhizobacteria in Cucurbitaceous
Vegetable Crops

Musa Seymen, Ertan Sait Kurtar, Atilla Dursun and Önder Türkmen

Abstract One of the most important vegetable families commonly grown in
around of the world is Cucurbitaceae for economic value, nutrition, consumer’s
preference, general adaptability and extent of cultivation. Plant growth promoting
rhizobacteria (PGPR) mostly associated with the plant rhizosphere have been
established as beneficial for plant growth, yield and crop quality. They are
important to promote the circulation of plant nutrients and reduce the need for
chemical fertilizers and interest in eco-friendly, sustainable and organic agricultural
practices as well. Use of PGPR’s containing beneficial microorganisms in lieu of
inorganic chemicals are positively known to affect plant growth and may help to
sustain environmental health and soil productivity, even in biotic and abiotic stress
conditions. PGPR’s also have potential bio-control agents against to a wide range of
bacterial and fungal pathogens in agriculture. The effects of PGPR’s on physio-
logical mechanisms, plant growth, yield and yield components, uptake of mineral
elements and contents, biotic and abiotic stress conditions in Cucurbits vegetables
and future perspectives have been discussed in the review.
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4.1 Introduction

Cucurbitaceae is the largest family of summer vegetable group with about 125
genera and 960 species (Rahmatullah 2012). Cucurbitaceae family has economi-
cally important species grown all over the world such as watermelon (Citrullus
lanatus), melon (Cucumis melo), cucumber (Cucumis sativus), summer squash
(Cucurbita pepo L.), winter squash (Cucurbita maxima Duch.) and pumpkin
(Cucurbita moschata Duch.), besides, bitter gourd (Momordica charantia L.), ridge
gourd (Luffa actangua L. Roxb), and snake gourd (Trichosanthes anguina) are the
members of family as a minor group. Watermelons, melons, cucumber, and squa-
shes are used either fresh or cooked for consumption, while mature seeds of some
species are used directly or indirectly in human nutrition. Cucurbitaceae family has
an important share (about 25%) in world vegetable production with a total 255
million tons (117 million tons of watermelon, 80 million tons of cucumber, 31
million tons of melon and 26 million tons of pumpkin) production value (FAO
2016). 1.1 billion tons of vegetables are nearly produced in the world.

The cultivation techniques of vegetable species are more difficult than many
herbal products due to higher water content, sensitive root, and morphological
structure. Thus, vegetables are more affected by biotic and abiotic stress conditions.
For these reasons, it is known that chemical pesticide and fertilizers are widely used
in vegetable production at a high rate. Chemical fertilization, which has been
unconsciously made in agriculture for many years, causes the accumulation of toxic
substances, the depletion of organic carbon, the degradation of microflora and
fauna, and consequently the reduction of soil fertility (Sairam and Reddy 2013). On
the other hand, pesticides used for plant disease and pest control have negative
effects on human health and ecology, along with, enhanced the systematic resis-
tance of pest.

In countries with low-income levels, the use of pesticides is limited due to high
pesticide prices it is, therefore, control of pest and diseases is a big problem
(Dardanelli et al. 2010). Otherwise, it has become a necessity to increase the
productivity in the unit area to meet the nutritional needs of the growing world
population. To increase efficiency 1- better agricultural land management, 2- use of
more chemicals, including fertilizers, 3- use of pesticides and herbicides with safely
and effectively, 4- more agricultural mechanization, 5- widespread use of transgenic
crops, and 6- use of plant growth promoting rhizobacteria (PGPR) (Glick 2014)
have been examined by various workers.

PGPRs are important microorganisms to increase productivity in the sense of
sustainability and ecological practices in agriculture and to reduce the use of
chemical fertilizers and pesticides. Rhizobacteria positively interacts with plant
roots and play an important role in the growth of the plants (Agrawal et al. 2014).
Bacteria enhance the circulation of nutrients and provide limited use of chemical
nutrients (Dursun et al. 2010; Seymen et al. 2013a, b). PGPRs greatly affect soil
properties and play an important role in crop production in inefficient and
poor-quality soils (Gouda et al. 2018). The use of PGPR has become an important
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application for an increase in soil quality and yield in many parts of the world
(Gabriela et al. 2015).

Beneficial, bacteria are also used as symbiotic (Rhizobium, Bradyrhizobium,
Mesorhizobium) and non-symbiotic (Pseudomonas, Bacillus, Klebsiella,
Azotobacter, Acotobacter, Azospirillum, Azomonas) agents to increase in plant
growth (Saharan and Nehra 2011) in biotic stress conditions such as herbicides
(Ahemad and Khan 2010), insecticides (Ahemad and Khan 2011), fungicides
(El-Sharkawy et al. 2015; García-Gutiérrez et al. 2012; Salman et al. 2017) as well
as abiotic stress conditions such as drought (El-Meihy 2016; Kang et al. 2014;
Wang et al. 2012), salinity (Yıldırım et al. 2006), heavy metal (Tóth et al. 2013),
soil alkalinity (Esitken et al. 2016; Ipek et al. 2014, 2017), low temperature
(Selvakumar et al. 2008) and groundwater.

In this review, the effects of PGPR applications as plant growth regulators were
evaluated in order to the agricultural sustainability and eco-friendly production in
the Cucurbitaceae family, which contains the most cultivated vegetable species in
the world. Likewise, the recent studies have been collected and future perspectives
have also been discussed.

4.2 What Are the PGPR’s?

The plants have been in constant cross-talk with the microorganisms (bacteria and
fungi) found in the soil during development and growth periods. The microor-
ganisms the plant species, provides important benefits to plant development through
different mechanisms. PGPR’s are able to colonize root surface, survive, repro-
ducible and compete with other organisms throughout the development process in
the plant besides, having positive effects on plant growth (Kloepper 1994). If the
bacteria show a positive effect on plant development about 2–5% when inoculated
into another soil flora, it is evaluated as PGPR (Kloepper and Schroth 1978).
PGPR’s can penetrate different parts of the plant such as stomata, lenticels, nodules,
wounds, and cracks (Fig. 4.1).

The most important features of PGPR’s are the fixation of free N in the atmo-
sphere, solubilize organic phosphorus, production of some secondary metabolites
(plant hormone, siderophore and antibiotics etc.), increase in the systemic resis-
tance, competition of nutrient and colonization and suppress disease factor (İmriz
et al. 2014). PGPR’s are evaluated into two groups as directly and indirectly,
according to their action mechanism (Gouda et al. 2018; Gupta et al. 2015)
(Fig. 4.2).
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4.2.1 Direct Mechanisms

PGPR’s promote plant growth directly by providing nutrients to plants, N fixation,
mineralization of organic compounds, resolution of mineral nutrients, and phyto-
hormone production (Bhardwaj et al. 2014). These mechanisms vary according to
the plant species, but different bacteria may show different effects in the rhizo-
sphere. In this case, determination of PGPR strains is one of the most important
issues in terms of plant species.

4.2.1.1 Nitrogen Fixation

Nitrogen (N2) is one of the essential nutrients for plant growth and yield (Gupta
et al. 2015; İmriz et al. 2014). It is the basic component of nitrogen nucleotides,

Fig. 4.1 The penetration ways of PGPR’s in pumpkin plant (Cucurbita pepo L.)
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membrane lipids and amino acids (Marschner 1995). Biological nitrogen fixation is
the use of fixed nitrogen, which accounts for about two-thirds of the world’s
atmosphere (Shridhar 2012). The most studied N fixative PGPR’s are Rhizobium
sp., Azoarcus sp., Pantoea agglomerans, Beijerinckia sp. and Klebsiella pneumo-
niae (Ahemad and Kibret 2014). Rhizobacteria have positive effects on nodule
production when they are applied as a mixture. Inoculation of PGPRs to plants or
growing areas provides the nitrogen requirement of the soil and plant, as well as to
prevent disease and to promote plant development (Damam et al. 2016).

4.2.1.2 Phosphate Solubilization

Phosphorus plays an important role in plant development for almost all metabolic
processes such as energy transfer, signaling between plant receptors, respiration,
macromolecular biosynthesis, and photosynthesis (Anand et al. 2016). However,
95–99% of the phosphorus is immobilized or precipitated, and is difficult to be
taken up by plants. Plants can only utilize phosphorus from the soil as monobasic
(H2PO4) and dibasic (HPO4–2) forms (Bhattacharyya and Jha 2012; Gouda et al.
2018). One of the most important features of PGPRs is to solubilize insoluble
phosphorus through the low molecular weight organic acids they synthesize
(Bahadır et al. 2018; Sharma et al. 2013) of bacterial origin.

Fig. 4.2 The action mechanisms of PGPR’s
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The most common of these organic acids which can solubilize the phosphorus
produced by PGPR’s, which contribute to the formation of organic acids in the soil,
are lactic acid, gluconic acid, acetic acid, formic acid, oxalic acid, tartaric acid,
fumaric acid, and succinic acid. Most common genera such as Bacillus polymyxa,
B. megatarium, B. circulans, B. subtilis, B. firmus, Pseudomonas striata,
P. rathonia, Rhizobium leguminosarum and R. meliloti are PGPR bacteria that can
phosphorylate by producing organic acid (İmriz et al. 2014). Studies have shown
that such bacteria increase phosphorus solubility when applied alone or as a mixture
(consortia) (Zaidi et al. 2009).

4.2.1.3 Potassium Solubilization

Potassium is the third important plant nutrient element require for plant growth. The
soluble potassium concentration in the soil is usually very low, and more than about
90% of potassium is in the silicates and rock form (Parmar and Sindhu 2013). In
addition, irregular and unbalanced potassium fertilization has negative effect on
plant development. Potassium deficiency causes slow root development of the
plant, negatively affecting on plant growth, and causes small seed formation and
loss of yield.

To ensure healthy plant development, it is necessary to find an alternative
endemic source of potassium that provides potassium source from the soil (Kumar
and Dubey 2012). Rhizobacterium which promotes plant development helps to
dissolve potassium rocks by organic acid production and release and transform
them into a useful form for plants (Han and Lee 2006).

Bacterium species such as Acidothiobacillus sp., Ferrooxidans sp., B. edaphicus,
Pseudomonas sp., B. mucilaginosus, Burkholderia sp. and Paenibacillus
sp. showed significant effects on potassium solubility (Liu et al. 2012). Therefore,
the use of PGPRs in integrated nutrient management has an important role in the
restriction of chemicals (Gupta et al. 2015; Setiawati and Mutmainnah 2016) led to
sustainable agricultural production.

4.2.1.4 Phytohormone Production

In plant growth, some phytohormones such as indole-3-acetic acid (IAA), cytokinin
and gibberellins have important role in the root development, expansion of root
surface area, seed germination, chlorophyll accumulation, leaf growth, seed ger-
mination, dormancy, initiation of enzyme function, senescence of leaves and fruits
etc. (İmriz et al. 2014; Sureshbabu et al. 2016). It is well known that PGPR’s have
important role in the synthesis of these phytohormones (Gouda et al. 2018). It was
determined that 80% of the microorganisms isolated from the soil could synthesize
IAA (Patten and Glick 2002). Indole-pyruvic acid and indole-3-acetic aldehyde
mediated IAA synthesis were determined in Erwinia herbicola, in some saprophytic
Pseudomonas and Agrobacterium species, Bardyrhizobium, Rhizobium,
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Azospirillum, Klebsiella, and Enterobacter. In addition, tryptophan-derived IAA
was found in Cyanobacterium, while tryptophan-independent IAA production
demonstrated in Azospirila and cyanobacteria (Ahemad and Kibret 2014).

4.2.2 Indirect Mechanisms

PGPRs produce repressive substances to prevent or mitigate the harmful effects of
phytopathogens on plants and increase in natural resistance (Singh and Jha 2015).
This mechanism can also be described as a process that helps plants to actively
grow under environmental stress (abiotic stress) or to protect plants from infections
(biotic stress) (Akhgar et al. 2014).

4.2.2.1 Stress Management

Stress is one of the most important factors that imparts negative effects on plant
growth (Foyer et al. 2016). In all stress conditions, reactive oxygen species
(ROS) such as H2O2, O2- and OH- are increased. Producing excessive ROS in
plants causes oxidative damage to plants by oxidizing photosynthetic pigments,
membrane lipids, proteins, and nucleic acids (Gouda et al. 2018). Plants accumulate
metabolites to avoid stress such as poly-sugars, proline, glycine-betaine, abscisic
acid, and upregulation in the synthesis of enzymatic and non-enzymatic antioxi-
dants, as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase
(APX), glutathione reductase, ascorbic acid, a- tocopherol, and glutathione (Agami
et al. 2016). Under abiotic stress conditions that occur in different environmental
conditions, PGPR applications provide positive effects on plant growth by pro-
viding metabolite balance in plants. Beneficial effects of PGPR’s have also been
observed in abiotic stress conditions, as for drought (El-Meihy 2016; Kang et al.
2014; Wang et al. 2012), salinity (Yıldırım et al. 2006), heavy metal (Tóth et al.
2013), soil alkalinity (Esitken et al. 2016; Ipek et al. 2014, 2017), low temperature,
etc. (Selvakumar et al. 2008).

Different pathogens such as bacteria, viruses, nematodes, fungi, insects, and
viroids are important biotic factors agricultural production and adversely affected on
plant growth (Haggag et al. 2015). Various genera of PGPR such as B. amyloliq-
uefaciens strain HYD-B17, P. polymyxa strain B2, B3, B4, B. licheniformis strain
HYTAPB18, P. favisporus strain BKB30, B. thuringiensis strain HYDGRFB19 and
B. subtilis strain RMPB44 gave positive response against to biotic agents (Gouda
et al. 2018).
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4.2.2.2 Disease Resistance Antibiosis

The use of PGPRs against plant pathogens in agriculture means the application and
restriction of the use of agricultural chemicals. Bacillus spp. and Pseudomonas
sp. microorganisms prevent pathogen damage by releasing antibiotics (Gouda et al.
2018).

The effects of microorganisms that produce antibiotics are the most studied
topics in recent years. Some antifungal antibiotics (phenazines,
phenazine-1-carboxylic acid, phenazine-1-carboxamide, pyrrolnitrin, pyoluteorin,
2,4 diacetyl phloroglucinol, rhamnolipids, oomycin A, cepaciamide A, ecomycins,
viscosinamide, butyrolactones, N-butylbenzene sulfonamide, pyocyanin) and bac-
terial antibiotics (pseudomonic acid andazomycin), antitumor antibiotics
(FR901463 and cepafungins) and antiviral antibiotics (Karalicine) are mostly pro-
duced by Pseudomonas species (Ramadan et al. 2016). Alcohols, aldehydes,
ketones, sulfides and hydrogen cyanide are called volatile antibiotics, whereas,
polyketides, cyclic lipopeptides, amino polyols, phenylpyrrole, and heterocyclic
nitrogenous compounds are non-volatile antibiotics in nature (Fouzia et al. 2015).

4.2.2.3 Induced Systemic Resistance

When the plants are exposed to attack by pathogens, PGPRs are used to stimulate
their defense mechanisms (Pieterse et al. 2009). This mechanism called Induced
Systemic Resistance (ISR) provides resistance to pathogens the plant is exposed in
future (Van Loon 2007). Gram-positive (B. pumilus), Gram-negative
(P. fluorescens, P. putida, P. aeruginosa), and enterobacteria (Serratia marce-
sens, S. plymuthica) provide resistance in ISR mechanism (Jourdan et al. 2009).

4.2.2.4 Production of Protective Enzymes

Ethylene is a very important plant signal hormone that shows a rapid increase in
abiotic and biotic stress conditions, which play a regulatory role in seed germina-
tion, root growth, root nodulation, flowering and fruit ripening (İmriz et al. 2014).
1-aminocyclopropane-1-carboxylate (ACC) deaminase, also produced by PGPRs,
promotes plant growth and development by regulating ethylene production in the
plant (Yang et al. 2009). After the ethylene signal ACC is synthesized in the plant,
it is taken up by the bacteria from the plant roots and hydrolyzed to the enzyme and
2-oxobutanoate. Thus, the level of ACC concentration in the plant is reduced and
excessive ethylene formation is prevented and finally plant growth is promoted
(Ahemad and Kibret 2014). In recent studies, ACC-deaminase activity has been
determined in many bacterial strains belonging to the genus Acinetobacter,
Achromobacter, Agrobacterium, Alcalienes, Azospirillum, Bacillus, Burkholderia,
Enterobacter, Pseudomonas, Ralstonia and Rhizobium (Shaharoona et al. 2006;
Zahir et al. 2009).
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4.2.2.5 Production of Volatile Organic Compounds (VOCs)

VOCs increase in plant growth, providing systemic resistance to plants against
phytopathogens by reducing the effects of fungal pathogens, bacteria and nematodes
(Reza et al. 2016). Some bacterial species such as in Pseudomonas, Bacillus,
Arthrobacter, Stenotrophomonas and Serratia induce plant growth promoting
VOCs. 2, 3-Butanediol and acetone produced by Bacillus spp. stimulate plant
growth by suppressing fungal development (Santoro et al. 2016). VOCs obtained
directly or indirectly from PGPRs have positive effects on disease resistance, abiotic
stress tolerance and plant biomass (Gouda et al. 2018).

However, the quantity and identity of the VOCs emitted vary among species, some
soil microorganisms produced benzene, cyclohexane, methyl, 2,6,10-trimethyl, 2-
(benzyloxy) ethanamine, dodecane, decane, 1-(N-phenylcarbamyl)- 2- mor-
pholinocyclohexene, 1-chlorooctadecane, benzene (1-methylnonadecyl), tetrade-
cane, 11-decyldocosane and dotriacontane having common characteristics of VOCs
(Kanchiswamy et al. 2015).

4.3 The Effects of PGPR’s on Growth and Yield
in Cucurbits

Although the functions of PGPRs have not yet been fully described, but have lots of
unique advantages on plant production and agricultural systems. Many studies have
been conducted on the effects of PGPR’s in cucurbit crops and it has been exactly
revealed that PGPRs have positive effects on seed and seedling quality, plant
growth, yield components, etc. But, a majority of field research examined under
controlled conditions is scarce. Besides, the effectiveness of PGPR’s depends on
plant genotype, rhizobacteria strain, inoculation doses and ecology in relation to the
plant growth and yield components.

4.3.1 Seed and Seedling Quality

As in all plants, a healthy seed germinates to produce seedling of plant production
in cucurbit crops. It is well known that some soil-borne fungal diseases caused by
Fusarium spp., Didymella spp. and Phytophthora spp. caused poor seedling growth
and seedling loss at the beginning, thus, yield and quality are significantly reduced
in Cucurbits. Seed and seedling applications of root-colonizing rhizobacteria are
used for both controlling plant disease and also promote seedling growth without
using any chemical preparation in watermelon, melon, cucumber, and squash. In
this regard, PGPRs are known as eco-friendly practices in today’s agriculture.
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PGPR’s can be applied to the seeds by seed soaking, alginate-encapsulation and
seed coating (Bashan 1998; Reed and Glick 2005). The rhizobacteria are applied to
seedlings by “roots dipped” or foliar spraying methods. Seeds were inoculated
some PGPR strains and the symptoms of Fusarium spp., Didymella bryoniae and
Myrothecium were significantly reduced, thus the seed germination and seedling
vigor reported to increase in watermelon (Lokesh et al. 2007). The plants raised by
seed treatments of some isolates (GBO3 and INR7) were effective on
Colletotrichum orbiculare, P. syringae pv. lachrymans and Erwinia tracheiphila in
C. sativus L. under greenhouse conditions (Raupach and Kloepper 1998). PGPR
treatments provide considerable growth of seedling, stem diameter, leaf number,
cotyledon diameter, shoot and root weight were significantly increased with treat-
ments of B. pumilus and Alcaligenes piechaudii in cucumber (Kidoglu et al. 2007;
Yıldırım et al. 2015). Similarly, Kokalis-Burelle et al. (2003) reported that PGPR’s
increased seedling quality (shoot weight, shoot length, and stem diameter) in
muskmelon and watermelon. Azotobacter chroococcum, B. megaterium, and B.
mucilaginosus generated germination and growth rate, the biomass of shoots, the
number of lateral roots, and the hair root area in cucumber seedlings (Sokolova
et al. 2011).

Root length was significantly increased in cucumber seedlings by bacterial
inoculation under in vitro conditions (Utkhede and Koch 1999). Gigaspora mar-
garita, B. subtilis, Thermomonospora sp. and Thermoactinomyces sp. considerably
interrupted damping-off in 2–3 weeks old cucumber seedlings (Kabayashi 1989).

Coinoculation of seeds with soaking methods A. brasilense strains enhanced
germination value, vigor index and the endogenous IAA content in cucumber seed
and seedlings (Mangmang et al. 2015). The high germination vigor and emergence
rate have been associated with phytohormones, (IAA and GA) synthesized by
PGPR’s (Kang et al. 2015).

4.3.2 Plant Growth and Yield

PGPR’s promote plant growth and yield by involvement of different mechanism
such as biological nitrogen fixation, phosphate solubilization, siderophores and
exopolysaccharides production, phyto stimulation by IAA and GA production,
bio-control for plant diseases, supply of some mineral elements and production of
antibiotic in Cucurbit crops (Noumavo et al. 2016; Vikram et al. 2007).
Phytohormones produced by some PGPR’s are recognized as unique signaling
substances for plant growth and strongly enhance to root growth, root surface area,
and branching and plant habitus (Cassán et al. 2009; Levanony and Bashan 1989;
Vessey 2003). In addition, recent studies stated that few proteins responsible for
growth and photosynthesis activated by root inoculation of some PGPR’s (Yaoyao
et al. 2017).

In watermelon, continuous cropping system resulted to low yield and poor
quality due to high incidence of soil-borne diseases (especially Fusarium
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oxysporum f. sp. niveum) and limited plant growth (Adhikari et al. 2017; Ling et al.
2014). These handicaps were effectively eliminated by application of bio-organic
fertilizers and functional microbes’ combination (Zhao et al. 2018). Likewise,
Fusarium wilt was considerably reduced by using organic fertilizer Paenibacillus
polymyxa SQR-21 based (Ling et al. 2012). In a greenhouse experiment,
P. polymyxa and Sinomonas atrocyanea enhanced total chlorophyll content, plant
height, fresh weight and dry weight of three watermelon varieties (Adhikari et al.
2017). Earlier, the positive effects of PGPR treatments on shoot weight, shoot
length and stem diameter were reported in muskmelon and watermelon transplant
(Kokalis-Burelle et al. 2003).

The beneficial effects of rhizobacteria on cucumber growth and yield have been
also observed by various researchers (Kang et al. 2014; Sturz et al. 2000). The
application of Pantoea agglomerans FF increased in fruit number and fruit weight
per plant, plant length, fruit width, fruit length and dry matter. The highest average
fruit weight was obtained from Bacillus megatorium-GC subgroup A. MFD-2 in
cucumber (Dursun et al. 2010). The combination of biogas slurry and P. fluorescens
resulted in higher shoot fresh weight, shoot dry weight, root fresh weight, root dry
weight and total yield (Ahamd et al. 2015). When the PGPR or compost tea was
used as a bio-fertilizer, yield and quality were significantly increased under the
sandy soil (Abou-El-Hassan et al. 2014). Farrag et al. (2015) reported that the
inoculation of Azospirillum and Trichoderma promote vegetative growth, leaves
dry matter percentage, early emergence and number of female flowers, and total
yield (cv. hybrid Prince). Diverse genera such as Rhodobacter sphaeroides,
Lactobacillus plantarum, and Saccharomyces cerevisiae have substantial increase
in the shoot length, root length, shoot fresh weight, shoot dry weight, and
chlorophyll content, via secretion of optimum IAA and/or organic acids and low
ABA level in cucumber (Kang et al. 2015). Pseudomonas putida strain P13 and
Pantoea agglomerans strain P5 have positive effects on cucumber yield and yield
components (Isfahani and Besharati 2012). R. sphaeroides, L. plantarum, and S.
cerevisiae increased in the quantities of amino acids perhaps responsible for pho-
tosynthesis and nitrogen fixation in cucumber (Kang et al. 2010; Kang et al. 2014;
Kang et al. 2015). Earlier, Rhizobacteria strain FE-43 and N-17/3 inoculations had
shown the positive effects on yield and yield components (Seymen et al. 2010). In
soilless culture, Utkhede and Koch (1999) reported that the strains BACT-0 of B.
subtilis and P. aphanidermatum promote growth affected by fruit yield, and fruit
number in commercial greenhouse conditions. Furthermore, root volume and plant
growth increased in by using AMF and charcoal compost (Kabayashi 1989).

In Cucumis melo L., G. mossae and B. cepacia either separately or in combi-
nation enhance the growth and yield (Zulkarami et al. 2012). As an eco-friendly
application, the bio-fertilizers were found to be effective on growth and yield in
soilless squash production (Dasgan et al. 2010). The application of G. intraradices
improved growth and yield in Zucchini squash (C. pepo L.) (Colla et al. 2008). The
combination of Azotobacter chroococum and mineral N-fertilizer was found to be a
profitable practice in sandy soil (Refai et al. 2010). Bio-fertilizer Halex-2 signifi-
cantly enhanced fruit yield due to female flower formation at a higher rate
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(Abd-El-Fattah and Sorial 2000). Root and shoot dry weight, number of leaves,
shoot length, stem diameter and number of ramifications significantly increased by
application of three nitrogen (N) sources and PGPR in squash (Tchiaze et al. 2016).

4.3.3 Fruit Quality

The majority of the researches on PGPR application concentrated on plant growth
and yield, but the knowledge about fruit quality parameters is still not sufficient and
need to investigate in Cucurbit crops.

According to the findings of Dursun et al. (2010), PGPR’s (Pantoea agglom-
erans, Acinetobacter baumannii, and B. megaterium) increased mineral contents
(N, P, Mg, Ca, Na, K, Cu, Mn, Fe, and Zn) and dry matter in fruits, but TSSC (Total
Soluble Solid Content) were not changed in cucumber. Likewise, FE-43 and N-17/3
PGPR strains had positive effects on water-soluble dry matter and pH content in
cucumber fruit (Seymen et al. 2010). Soluble sugar, amino acids, and soluble
proteins were considerably enhanced by the inoculation of G. versiforme, G.
mosseae, and G. intraradices (Lu et al. 2006). Biogas slurry + P. fluorescens and
some PGPR treatments produced high-quality cucumber fruits (Ahamd et al. 2015;
Elwan and Abd 2015). Several other studies of plant growth and productivity have
been sumarised-up in the Table 4.1 which illustrate the significanc of PGPRs in
enahncement of yield and yield components of cucurbit crops.

4.4 The Role of PGPR’s on the Uptake of Mineral
Elements in Cucurbits

Rhizobacteria promotes plant growth by increasing the supply or availability of
primary nutrients to the host plant (Isfahani and Besharati 2012: Seymen et al.
2014, 2015a). PGPR’s, chemical or organic substances fertilizers either separately
or combination with different doses are used for mineral resources in Cucurbit
crops. The efficiency of PGPR’s on mineral elements uptake and availability
depended on many factors such as bacterial strains, application doses, plant species
and soil fertility status.

In C. sativus L., the rock materials (K and P) and bacterial strains (B. mega-
terium var. phosphaticum and B. mucilaginosus) consistently increased in avail-
ability and uptake of minerals (Han and Lee 2006). Foliar spraying of rhizobacteria
had positive effects on N, P and K percentages in cucumber leaves (Farrag et al
2015). R. sphaeroides, L. plantarum, and S. cerevisiae reported IAA-producing
microorganisms and enhanced mineral nutrient uptake by plant roots such as
potassium, magnesium, phosphate, and calcium (Kang et al. 2015; Nimnoi et al.
2014). Furthermore, some bacteria (L. plantarum and S. cerevisiae) produce
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Table 4.1 The effects of PGPR’s on plant growth, yield and yield components of cucurbit crops

Species PGPR’s Comments References

G. versiforme, G. mosseae
and
G. intraradices

Soluble sugar, Amino acids,
Soluble proteins

Lu et al. (2006)

N-52/1, N-17/3, FE-43,
F-21/3, 637 Ca, MfdCa1

Yield, Fruit per plant, Fruit
weights, Dry matter pH
content

Seymen et al.
(2010)

Burkholderia
sp. KCTC11096BP

Shoot length, Shoot fresh
weight, Shoot dry weight,
Root fresh weight, Root dry
weight, Chlorophyll (SPAD)

Kang et al.
(2010)

P. putida strain P1 3,
Pantoea agglomerans
strain P5

Yield, Length of plant,
Chlorophyll content Shoots
dry weight, Fresh weight, Dry
weight, Fresh weight

Isfahani and
Besharati (2012)

B.s subtilis BA-142, B.
megaeorium-GC subgroup
A. MFD-2, A. baumannii
CD-1 P. agglomerans FF

Fruit number, Fruit weight,
Plant length, Fruit width, Fruit
length, Dry matter pH

Dursun et al.
(2010)

Cucumber B. pumilis, Alcaligenes
piechaudii

Seedling growth and quality Yıldırım et al.
(2015)

P. fluorescens Growth, Yield, Fruit quality,
Shoot fresh weight, Shoot dry
weight, Root fresh weight,
Root dry weight

Ahamd et al.
(2015)

Azospirillum
Trichoderma

Growth, Leaves dry matter Farrag et al.
(2015)Number of female, Fruit

length, Fruit diameter, Early
and total yield

B. megaterium var.
phosphaticum
B. mucilaginosus

Plant growth, Dry weight Han and Lee
(2006)

Rhodobacter sphaeroides,
Lactobacillus plantarum,
Saccharomyces cerevisiae

Amino acids, Shoot length,
Root length, Fresh weight, Dry
weight, Chlorophyll (SPAD)

Kang et al.
(2015)

P. fluorescens DF57 Root dry weight, Root length Ravnskov and
Jakobsen (1999)

Watermelon Paenibacillus polymyxa
(SN-22), Sinomonas
atrocyanea (NSB-27)

Total chlorophyll content,
Plant height, Total fresh
weight, Total dry weight

Adhikari et al.
(2017)

Watermelon
and Melon

B. subtilis
amyloliquefaciens B.
subtilis
B. pumilus

Shoot weight, Shoot length
Stem diameter

Kokalis-Burelle
et al. (2003)

A. chroococum strains (5
mutants and wild-type
strain)

Stem length,
Flowering,
Fruits,
Early and total yield

Refai et al.
(2010)

(continued)
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organic acids and increase in the availability of mineral elements, mainly phos-
phorus (Wang et al. 2014).

In Cucurbita pepo L., the treatments of rhizobacteria significantly reduced P-
and N-fertilizer without any reduction in squash yield (Moussa 2006; Elwan and
Abd 2015), importantly for sustainable plant production. The combinations of
PGPR and different N sources (NO3

-, NH4
+ , and NO3NH4) reported as efficient

bio-fertilizers to significantly improve the minerals uptake in squash (Tchiaze et al.
2016). G. intraradices caused higher K and lower Na concentration in leaf tissue in
squash (Colla et al. 2008).

4.5 Abiotic Stress Conditions and PGPR’s in Cucurbits

The soil has a complex and dynamic system that promote plant growth. Some stress
factors should be carefully examined in order to maintain plant growth in soil,
regularly (Nadeem et al. 2014). While the most important abiotic factors affecting
on plant growth are drought, salinity, and heavy metal stresses, some stress ele-
ments such as high temperature, soil alkalinity, high groundwater and low tem-
perature also have negative effects on plant growth. In sustainable agriculture,
abiotic stress factors are considered to be the main causes of yield loss. On the other
hand, the effect of stress factors leads to yield losses of up to 50–82%, varying with
soil structure, plant species and varieties (Christensen et al. 2007).

These stresses include plant growth hormone and nutritional imbalance among
general effects, physiological disorders such as epinasty, abscess and aging, and
predisposition to diseases (El-Iklil et al. 2000; Zhu et al. 1997). Drought and
salinity stress directly affect plant growth, leading to increase in ethylene release in
the plant and limitation of root and shoot development (Glick et al. 2007). Drought
and salinity are typically encountered in arid and semi-arid regions of the world and
effective about 7.6 million km2 areas.

Table 4.1 (continued)

Species PGPR’s Comments References

Squash B. subtilis, B.
amyloliquefaciens, B.
pumilus,
B. licheniformis, S.
cerevisiae

Root dry weight, Shoot dry
weight, Total plant dry weight,
Number of leaves, Shoot
length, Stem diameter,
Number of ramifications

Tchiaze et al.
(2016)

Paenibacillus polymyxa
B. megaterium

Early fruit yield, Total yield,
Good quality of fruits

Moussa (2006)

A. brasilense AC1
B. subtilis AC2

Fruit yield
Fruit weight
Growth

Elwan and Abd
(2015)
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Agricultural areas used in the world are affected by drought stress (26%),
mineral material stress (20%), cold and frost stress (15%) and other stress factors
(29%) (Kalefetoğlu and Ekmekçi 2005). Unfortunately, it is also estimated that this
area will be doubled and water resources will decrease by 30% up to 2050
(Falkenmark 2013). For this reason, some solutions are being searched to increase
in plant development and productivity in stress conditions for sustainability of
agriculture. It is known that rhizobacteria (PGPR), which support plant growth
under stress conditions, play an important role in the growth and metabolism of
plants (Kang et al. 2014). PGPR’s produce induced systemic tolerance for the
development of plants under abiotic stress conditions via generating physical and
chemical changes in plants (Yang et al. 2009). It has also been reported that
PGPR’s are more effective against to abiotic stress when applied in combination
with mycorrhiza (Mayak et al. 2004).

4.5.1 Drought Stress

Drought is examined under four main headings; meteorological, agricultural,
hydrological and socioeconomic drought. Droughts begin as meteorological,
develop as agricultural and hydrological and become visible as socio-economical
(Örs and Ekinci 2015). In particular, drought stress is an important factor that
negatively effects on agricultural productivity in arid and semi-arid regions and
limited plant growth (Seymen et al. 2016; Yavuz et al. 2015a; Yavuz et al. 2015b).
Ethylene, which released in arid conditions from plant tissue, has the property of
restricting plant growth, inhibiting photosynthesis and changing chlorophyll con-
tent. Some chemicals such as amino ethoxy vinyl glycine (AVG), cobalt ion (Co2+)
and silver ion (Ag+) can be applied to decrease the ethylene level and to protect
against stress. However, these chemicals are not preferred because they are both
expensive and adversely affect human health (Mckeon et al. 1995).

Besides, these types of chemicals are not recommended because they have a
permanent effect on the soil and they will cause environmental pollution and other
stress factors in the future. As an alternative method, eco-friendly production
techniques and practices should be developed to ensure sustainability in agriculture.
While plants have developed some specific mechanisms to combat such stress
conditions, it is known that some useful microorganisms in root regions play an
important role in reducing stress intensity (Nadeem et al. 2014). It is possible to
explain the mechanisms by which PGPRs develop against abiotic stress factors; 1-
produces some phytohormones such as ABA, GA and IAA, 2- reduce the level of
ethylene in the roots with ACC deaminase, 3- creates systemic resistance with
bacterial compounds, 4- enhance bacterial exopolysaccharides (Kim et al. 2013;
Timmusk et al. 2014; Yang et al. 2009). In sustainable agriculture, PGPR’s, an
environmentally friendly practice, have been realized to promote plant development
with nodules formed in the root zone of the plant in case of drought stress
(El-Meihy 2016; Wang et al. 2012).
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Cucumber, melon, watermelon, and squash need a lot of water in economic
cultivation for both open field and protected cultivation. The drought stress during
the cultivation season causes great yield loss in an economic sense. In particular,
melon, watermelon, and squash are grown in open field conditions. These species
have medium root structure and they are moderate resistant vegetable species to
drought stress. In fact, some species and varieties are grown by limited irrigation in
arid and semi-arid regions with their deep root structure (Sensoy et al. 2007; Yavuz
et al. 2015a; Yavuz et al. 2015b). However, PGPR applications have an important
role in the cultivation of Cucurbit species due to increasing in the agricultural land
affected by drought and correspondingly more economical use of irrigation water to
improve plant development and productivity.

In a study, the effects of B. cereus AR 156, B. subtilis Sin 21 and Serratia
sp. XY 21 bacterial strains were investigated in cucumber. As a result of the study,
the bacterial strains increased the electrical conductivity and the root ratio by 40%
and 50%, respectively. In addition, PGPR inoculations decreased the effects of
drought stress by increased MDA, SOD, proline, and ascorbate peroxidase contents
(Wang et al. 2012). Likewise, the effectiveness of Burkholdera cepacia SE4,
Promicromonospora sp. SE188 and A. colcoaceticus SE370 were examined and
used for reducing the effects of drought and salinity stress, consequently, bacteria
strains increased in biomass and chlorophyll contents in drought stress conditions.
PGPR practices have led to increases in water potential by reducing the electrolytic
exudation. In addition to reducing oxidative stress, PGPR applications have also
affected on phosphorus and potassium uptake, positively. It has also been reported
that PGPR practices increase productivity in stress conditions and PGPR’s are an
important application for sustainable agriculture (Kang et al. 2014). In squash (C.
pepo L.), A. chroococcum ML1, B. circulans ML2, B. megaterium ML3 and
P. fluorescence ML4 enhance the plant growth and produce a higher yield in
drought stress. Bacteria have reduced the effect of drought stress by causing enzyme
activities, IAA, and GA3 increases. It is clarified that the abscisic acid secreted
under stress conditions was found to be less in bacterial applications. Researchers
have reported that PGPR inoculations constitute better results on plant growth and
yield than that of humic acid and chemical fertilizer applications (El-Meihy 2016)
(Table 4.2).

4.5.2 Salinity Stress

There are about 1.5 billion hectares of agricultural land in the world, and 77 million
hectares (5%) of this area are considered as inefficient agricultural land due to the
high salt content (Abdel Latef and Chaoxing 2011). Besides, 20% of world agri-
cultural land is negatively affected by salinity due to the using salty irrigation water
(Wu et al. 2010). The salinity problem is increasing in regularly all over the world.
When soil salinity increases, osmotic stress is triggered in the plant. Thus, the high
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concentration of Na+ and Cl− in the soil causes nutrient imbalance, which reduces
nutrient uptake and ion toxicity (Daei et al. 2009).

Soil salinity induces drought stress, ion toxicity, ion imbalance and degradation
of soil structure and pH, hereby, inhibit plant growth (Gopal et al. 2012). While
some plants try to counter the stress with the mechanisms of genetic structure in
order to sustain its development in saline soil, some sensitive species are adversely
affected. Some of the plant growth promoting rhizobacteria and fungi in the rhi-
zosphere are reducing plant pathogens or affecting the production of phytohor-
mones, increasing in plant nutrient uptake from the soil and increasing in plant
growth, indirectly (Grichko and Glick 2001). Many studies have reported that
PGPR’s have positive effects on plant growth under salt stress conditions (Kang
et al. 2014; Palacio-Rodríguez et al. 2017; Yıldırım et al. 2006).

Cucumber, melon, watermelon, and squash are economically important species
of the Cucurbitaceae family and known as sensitive or moderately susceptible
species to salinity (Francois 1985). Today, cucumber, melon, watermelon, and

Table 4.2 The effects of PGPRs on the mineral elements uptake of cucurbit crops

Species PGPR’s Comments References

N-52/1, N-17/3, FE-43, F-21/3, 637 Ca,
MfdCa1

N, P, K, Mg, Ca, Na,
Cu, Fe, S and B

Seymen et al.
(2015b)

B.subtilis BA-142, B. megaeorium-GC
subgroup A. MFD-2, A. baumannii
CD-1
Pantoea agglomerans FF

N, P, Mg, Ca, Na, K,
Cu, Mn, Fe, and Zn

Dursun et al.
(2010)

P. fluorescens N, P, and K Ahamd et al.
(2015)

Cucumber Azospirillum
Trichoderma

N, P, and K Farrag et al.
(2015)

B. megaterium var. phosphaticum
B. mucilaginosus

N, P, and K Han and Lee
(2006)

Rhodobacter sphaeroides,
Lactobacillus plantarum,
Saccharomyces cerevisiae

Ca, Mg, P, and K Kang et al.
(2015)

A. brasilense Fe Pii et al.
(2015), (2016)

P. fluorescens DF57 P Ravnskov and
Jakobsen
(1999)

B. subtilis, B. amyloliquefaciens, B.
pumilus,
B. licheniformis, Saccharomyces
cerevisiae

N, P, K and Mn Tchiaze et al.
(2016)

Squash Paenibacillus polymyxa
B. megaterium

N, P, and K Moussa (2006)

A. brasilense AC1
B. subtilis AC2

N and P Elwan and
Abd (2015)
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pumpkin irrigated with drip irrigation system for both open field and protected
areas. The results of salinity of the irrigation waters, salinity increases in agricul-
tural areas day by day and the cultivation of cucumber, melon, watermelon, and
squash is negatively affected. For this reason, PGPR practices have been important
in the cultivation of cucumber, melon, watermelon, and pumpkin in salty soils.

Some PGPR inoculation (Burkholdera cepacia SE4, Promicromonospora
sp. SE188 and Acinetobacter colcoaceticus SE370) produced the higher yield under
drought and salty soil conditions in cucumber (Kang et al. 2014). In squash,
AgBlend, SoilBuilder, Yield Shield, Plant Shield, Inoculoid, and Equity bacterial
strains considerably increased in plant fresh weight under salt stress compared to
control lots. On the other hand, bacterial applications showed positive effects on
potassium uptake. In 100 mM salt application, SoilBuilder, Yield Shield, and
Equity bacteria inoculations increased in sodium concentration while other appli-
cations reduced. The most important effect of the bacteria is to increase in the K+/
Na+ ratio which is an important parameter for plant development. Researchers have
reported that bacterial applications have positive effects on plant growth and are
feasible under salt stress conditions (Yıldırım et al. 2006). In another study con-
ducted in watermelon and cucumber under salt stress conditions, from the 38
isolates, Bacillus sp. (LBEndo1) and Pseudomonas lini (KBEcto4) strains have
shown important results on stimulation of root and shoot growth. It was determined
that the bacteria increased in IAA and phosphorus uptake. Palacio-Rodríguez et al.
(2017) demonstrated that the bacteria provide tolerance to salt stress and promote
plant growth (Table 4.3).

4.5.3 Heavy Metals Stress

Some nutrient sources are needed for plant development at microelement level.
However, when it is above the desired levels, it causes a toxic effect on the plant
and limited the plant growth. Besides, mineral toxicity like the other stress factors
has a negative effect on growth and economic yield of plants economically by
accelerating the synthesis of ethylene (Safronova et al. 2006).

Fields contaminated with mineral toxicity is increasing in as a result of misap-
plications on fertilization made by human beings or in naturally. Agriculture is
restricted in such areas and the consumption of crops yielded these areas also
negatively affects human health. Accumulation of heavy metals such as Cd, Cr, and
Pb in the human body leads to serious systemic health problems (Oliver 1997). One
of the most important factors of heavy metal accumulation in the soil is the irri-
gation with dirty waste city or industrial water, because of these reasons, Cd, Zn,
Cr, Ni, Pb, and Mn accumulate in the surface soil (Sharma et al. 2007). Many
strategies have been conducted to counteract toxic substances in the soil in order to
make the reclamation of agricultural areas. The use of microorganisms to increase
in plant productivity and resistance to heavy metal pollution in the soil is one of
these strategies (Gopal et al. 2012). Although heavy metal stress is not a very
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common problem in today’s vegetable industry (Savvas et al. 2010), approximately
7% of cadmium was determined in eggplant fruits in Japan (Arao et al. 2008). This
level is highly over the limits established by the international health organization

Table 4.3 Effect of different PGPR’s on cucurbit species in abiotic stress conditions

Plant species PGPR Comments
(enhancements)

References

Cucumber
(in drought stress)

B. cereus AR 156
B. subtilis Sin 21
Serratia sp. XY 21

40% electrical
conductivity
50% root
Prolin content
Ascorbate
peroksidaz
MDA
SOD

Wang et al. (2012)

Cucumber
(in Al stress)

A. chroococcum
B. megaterium

Shoot dry weight
Root dry weight
Root/shoot ratio
Chlorophyll
content
Fe, Mn, Zn and
Mg uptake

Tóth et al. (2013)

Cucumber
(in drought and
salinity stress)

Burkholdera cepacia
SE4
Promicromonospora
sp. SE188
A. colcoaceticus
SE370

Shoot dry weigh
Chlorophyll
content
K and P uptake
Salicylic acid
Gibberellin

Kang et al. (2014)

Squash
(in salinity stress)

AgBlend
SoilBuilder
Yield Shield
Plant Shield
Inoculoid
Equity

Biomas
K uptake
K+/Na+

Yıldırım et al. (2006)

Squash
(in drought stress)

A. chroococcum
ML1
B. circulans ML2
B. megaterium ML3
P. fluorescence ML4

Plant growth
Enzyme activity
IAA
GA3

Higher yield
Low Abscisic acid

El-Meihy (2016)

Cucumber
and
Watermelon
(in salinity stress)

Bacillus
sp. (LBEndo1)
P. lini. (KBEcto4)

Plant growth
IAA
P uptake

Palacio-Rodríguez
et al. (2017)

Squash
(in cold stress)

S. marcescens SRM Shoot and root
length
Shoot and root dry
weight
N, P, K uptake

Selvakumar et al.
(2008)
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(Savvas et al. 2010). It is inevitable that these kinds of problems increase with the
use of non-agricultural wastewater for plant production areas where water-scarce.
Cucurbitaceae family vegetables are not so much affected by heavy metal toxicity
by reason of the rootstocks used with some grafting techniques (Savvas et al. 2010).
Although the grafting technique is widely used in watermelon cultivation, it is not
preferred much in cucumber, melon and zucchini species; therefore, cucurbit pro-
duction areas are in danger of being faced with heavy metal toxicity. To overcome
this problem, it is important to develop PGPRs that reduce the efficacy of heavy
metal toxicity and promote plant growth in such soil.

A. chroococcum and B. megaterium bacteria used against aluminum (Al) stress
decreased Al contents in cucumber leaves. It has also been reported that bacteria
inoculations reduced the negative effects of Al on the roots and caused to higher
chlorophyll content in shoots. Al applications have been shown to reduce the root/
shoot rate while bacterial applications have removed this negative effect. The use of
biological fertilizers instead of chemical fertilizers has emerged as an alternative
way. Biological fertilizers also positively affected on plant growth in the case of
heavy metal stress. However, researchers think that the interaction of these bacteria
with other bacteria and their effects may be different in the main growing sites of the
plant under heavy metal stress conditions (Tóth et al. 2013) (Table 4.3).

4.6 Biotic Stress Conditions and PGPR’s in Cucurbits

Since the beginning of agriculture, synthetic pesticides have been widely used for
plant diseases and pests. The pesticides have caused adverse effects on human
health and the environment as well as the systemic resistance of the pests. In
addition, countries with low-income levels have limited use due to high pesticide
prices (Dardanelli et al. 2010). PGPR’s have been used as an alternative to
chemicals against soil-borne diseases through human health and environmentalist
approaches in sustainable agriculture (Kloepper et al. 1993). When PGPR’s were
started to be used in agriculture, they decreased in plant growth and productivity as
well as the effect of diseases and pests (Gerhardson 2002; Reddy 2016).

In general, bacteria used as biopesticides belong to the Agrobacterium, Bacillus
and Pseudomonas (Fravel 2005). In insect control, Bacillus thuringiensis constitute
70% of the used bacteria (Sanchis and Bourguet 2008). Bacillus such as B. subtilis,
B. licheniformis, and B. pumilus represent approximately half of the bacterial
biocontrol agents present in the market (Ongena and Jacques 2007).

Many soil pathogens are one of the most important factors limiting productivity.
Soil pathogens are more dangerous than other diseases and pests, and their control
is more difficult. These pathogens can cause serious damage in different parts of the
world. For example, fungal and bacterial pathogens caused yield losses of 7–15% in
products such as wheat, soybean, corn, which are the most cultivated in the world
between 2001 and 2003 (Oerke 2005). It is very difficult to predict the yield losses
because of the difficulty of diagnosing the pathogen (Dardanelli et al. 2010).
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PGPR’s penetrate the rhizosphere of plants, and they destroy the negative effects
of nematodes. PGPR-nematode interactions have been studied to control nema-
todes. It is important to select bacteria that reduce or eliminate the effect of
nematodes in plants (Reddy 2016). Beneficial bacteria are reduced to nematode
populations by colonizing the plant’s rhizosphere.

Agrobacterium, Alcaligenes, Bacillus, Clostridium, Desulfovibrio,
Pseudomonas, Serratia and Streptomyces are the important bacteria that reduce or
eliminate the population of nematode (Reddy 2016). PGPR’s also provide systemic
resistance to nematode pests. Although the use of PGPR against nematodes is
limited, successful results have been obtained from studies on the patato cystic
nematode (Sikora 1992).

The use of PGPR against to insects has been a subject of limited study. Bacterial
pathogens of insects and the majority of related taxa are found in the Bacillaceae,
Pseudomonadaceae, Enterobacteriaceae, Streptococcaceae and Micrococcaceae
families (Reddy 2016). Most of these bacteria are toxic and very few have a lethal
effect, and often expose insects to environmental stress and slow their growth and
development.

Cucurbitaceae is a large family that is consumed as vegetables and has economic
importance in the world. Ecological and biotic factors caused the biggest yield losses in
cucurbit crops. In cucurbit production, pests and diseases are the preliminary important
factors which have negative effects on productivity. In squash Didymella bryoniae
(Black Rot), Meloidogyne javanica, and Root Rot/Wilt, Macrophomina phaseolina,
Fusarium oxysporum, F. solani (Root-Knot Nematode), in cucumber, Pythium
sp. (Damping-Off), Colletotrichum orbiculare, C. lagenarium (Anthracnose), F.
oxysporum f. sp. cucumerinum (FusariumWilt), Erwinia Tracheiphila (BacterialWilt),
P. syringae pv. Lachrymans (Angular Leaf Spot), Cucumber Mosaic Virus (CMV),
Meloidogyne spp. (Root-Knot Nematodes), Acalymma vittatum; Spotted Cucumber
Beetle, Diabrotica undecimpunctata (Striped Cucumber Beetle), in watermelon F.
oxysporum f. sp. niveum (Fusarium Wilt), Watermelon Mosaic Virus, Meloidogyne
javanica and Wilt, Fusarium solani Disease Complex (Root-Knot Nematode), in
melon Fusarium oxysporum f. sp.melonis (FusariumWilt) are the important pests and
diseases (Reddy 2016). The successful reports have been reported in cucumber
(Pseudomonas spp., Bacillus spp., Flavomonas oryzihabitans, S. marcescens,
Klebsiella pneumonia, Stenotrophomonas maltophilia, Flavomonas oryzihabitans), in
watermelon (Pseudomonas spp., P. polymyxa, and Trichoderma harzianum), in melon
(Pseudomonas spp. and Bacillus spp.) and in squash (Bacillus spp.) (Table 4.4).

4.7 The Future Perspectives of PGPR’s in Cucurbits

In today’s agricultural perspective, increasing the productivity of the unit area as
well as cultivating healthy crop is one of the most important issues. For this reason,
PGPR’s applications are a current and important issue and are the priority areas in
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Table 4.4 Effect of different PGPRs on cucurbit species in biotic stress conditions

Plant species PGPR Diseases References

Cucumber P. WB1, Wb15, Wb52 Pythium ultinum
Rhizoctonia solani

Arndt et al.
(1998)

Cucumber B. subtilis,
P. fluorescens,
A. chroococcum sp.

Cucumber mosaic
cucumovirus

El-Borollosy and
Oraby (2012)

Cucumber B. pumilus INR-7
Flavomonas oryzihabitans
INR-5

Diabrotica
undecimpunctata
howardi Barber

Zehnder et al.
(1997)

Cucumber B. subtilis,
B. amyloliquefaciens,
P. aeruginosa,

Pythium
aphanidermatum

Elazzazy et al.
(2012)

Cucumber B. polymixa,
P. fluorescens,

Squash mosaic virus Firmansyah
(2017)

Cucumber P. putida BTP1, M3 P. aphanidermatum Ongena et al.
(2000)

Cucumber P. putida strain 18/1 K,
S. marcescens strain 62

F. oxysporum f.
sp. cucumerinum

Gül et al. (2013)

Cucumber A. brasilense SBR,
A. chroococcum ZCR,
Klebsiella pneumoneae KPR,

F. oxysporum f.
sp. lycopersici,
R. solani,
Pythium sp.,

Hassouna et al.
(1998)

Cucumber New strains of
P. stutzeri,
B. subtilis,
Stenotrophomonas maltophilia,
B. amyloliquefaciens.

P. crown Islam et al.
(2016)

Cucumber S. marcescens (90-166),
P. fluorescens (89B61)

Colletotrichum
orbiculare

Jeun et al. (2004)

Cucumber P. fluorescens (isolate 9A-14),
Pseudomonas sp. (isolate
8D-45),
B. subtilis (isolate 8B-1).

P. ultimum Khabbaz and
Abbasi (2013)

Cucumber P. putida strain 89B-61,
S. marcesens strain 90-166, F.
oryzihabitans strain INR-5,
B. pumilis strain INR-7.

Erwinia tracheiphila Zehnder et al.
(2001)

Cucumber P. putida 89B-27
S. marcescens 90-166

F. oxysporum f.
sp. cucumerinum

Liu et al. (1995)

Cucumber P. fluorescens
P. corrugata
S. plymuthica

P. aphanidermatum McCullagh et al.
(1996)

Cucumber P. fluorescens,
B. subtilis,
Rhizobium sp.,
Trichoderma harzianum
T. viride

F. oxysporum f.
sp. cucumerinum

El-Sharkawy
et al. (2015)

(continued)
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new agricultural research which are increasing our knowledge of plant-bacterial
interactions that take place in the root zone of the plant will allow us to develop
molecular and biotechnological approaches to achieve integrated management of
microorganisms in the soil (Gouda et al. 2018). PGPR’s are also utilized as an
important key factor for agricultural sustainability and eco-friendly vegetable pro-
duction, worldwide. In this sense, PGPR’s, PGPR strains and their combinations
(multi-strain or combined inoculants) with or without commercial fertilizers have
shown great advantages for both farmers and researchers. In spite of PGPR’s have

Table 4.4 (continued)

Plant species PGPR Diseases References

Cucumber B. pumilus INR7,
B. subtilis GB03,
Curtobacterium flaccumfaciens
ME1

Colletotrichum
orbiculare, P. syringae
pv. lachrymans,
Erwinia tracheiphila

Raupach and
Kloepper (1998)

Cucumber B. subtilis B4 Colletotrichum
orbiculare

Park et al. (2013)

Watermelon P. aeruginosa 231-1 Didymella bryoniae Nga et al. (2010)

Watermelon P. aeruginosa 231-1 F. oxysporum f.
sp. niveum
Didymella bryoniae

Nga et al. (2013)

Watermelon P. fluorescens F. oxysporum f.
sp. niveum

Salman et al.
(2017)

Watermelon P. polymyxa
Trichoderma harzianum

F. oxysporum f.
sp. niveum.

Wu et al. (2009)

Watermelon P. fluorescens WR8-3, WR9-11
P. putida WR9-16

Didymella byroniae Lee et al. (2001)

Melon P. fluorescens C. mosaic virus Al-ani and
Adhab (2012)

Melon Pseudomonas spp.
Bacillus spp.

Powdery mildew García-Gutiérrez
et al. (2009)

Melon B. subtilis UMAF6614,
UMAF6639
B. cereus UMAF8564,
P. fluorescens strains,
UMAF6031, UMAF6033

Powdery mildew García-Gutiérrez
et al. (2012)

Melon Bacillus sp. RAB9 Acidovorax citrulli Medeiros et al.
(2009)

Squash B. macauensis (SE52, SE76,
INR7, IN937a, and IN937b)

P. capsici Zhang et al.
(2010)

Squash B. IN937b P. capsici Mo (2013)

Pumpkin B. subtilis,
B. pumilus,

Watermelon mosaic
potyvirus

Elbeshehy et al.
(2015)

Watermelon
and Melon

C. flaccumfaciens,
Microbacterium oxydans,
P. oryzihabitans, P. fluorescens

A. citrulli Horuz and Aysan
(2016)
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multi-way advantages, their performances are not clear under open field conditions.
Because of numerous researches about PGPR’s were examined under laboratory or
controlled greenhouse. Hence, PGPR’s should be experienced in large areas with
multiple effects to determine the compatibility and interaction among the PGPR’s,
plants and the other microbial organisms. Thus, appropriate combinations and
multiple applications of PGPR’s will be clarified and recommended for local pro-
duction in larger areas. Because of, appropriate PGPR strain for each different
production area and extreme conditions should be determined due to complex
environmental interaction. Additionally, it will become more important in the
context of global climate change.

The cost of PGPR’s in larger areas is the other important point for widespread
applications. Within sustainable agriculture and eco-friendly production, PGPR’s
should be available easily and cheaply. Molecular biology and biotechnology may
be a solution to generating low-priced and specialized PGPR strains with a different
formulation. Nevertheless, in environmentalist approach, transgenic technology has
a series problem such as bio-safety and phytotoxicity.

In respect to Cucurbit crops, application methods of PGPRs (such as seeds,
roots, leaves), application periods (such as seedlings, flowering) and put on the
market are important issues. PGPRs, which give positive results in many studies,
have not been actualized on as bio-fertilizer. A number of studies have been con-
ducted on the effects of PGPRs on plant growth, flowering, and fruit quality. When
the studies are examined, most of the works about yield and quality are concen-
trated on cucumber and squash in cucurbit crops. Limited works have been realized
on the other important cucurbits such as melon and watermelon. It is important to
conduct PGPR studies on these species which are widely cultivated on open field
conditions in the world.

A number of studies have been conducted on the effects of PGPRs on nitrogen
and phosphorus uptake from soil. However, there is not much work on potassium
uptake and mechanisms in the soil. It is obviously sad that this nutrient element
which is important for plant development will be subject to the future-day’s
research. Investigation of the effects of PGPRs on nutrient uptake in watermelon
and melon is one of the important issues.

Understanding the mechanisms of abiotic stresses expressed by multiple genes
and causing adverse effects on plants is an important issue. Molecular and
biotechnological approaches have been included in current work in order to reveal
the genetic structure of these mechanisms. It will be possible to develop more
effective PGPR’s for abiotic stress conditions in future studies by the introduction
of genetic expressions of bacteria. Limited works have been conducted on PGPR
application in cucumber, watermelon, and squash, on the other hand, there is not
any study in melon. Moreover, determination of bacteria that increase in plant
growth against salt stress is an important topic for cucurbit species grown under
protected areas. In addition, studies on other abiotic stress conditions are very
limited, and it is thought that working with other stresses will be increased in day by
day. When PGPR’s were started to be used in agriculture, they increased in plant
growth and productivity while decreased in the effect of diseases and pests
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(Gerhardson 2002; Reddy 2016). In cucurbits, there has been a lot of work on this
subject, especially in the cucumber.

Cucurbits are more susceptible to phytopathogens than many plant species due
to having more sensitive root structure and grown under optimal conditions where
diseases and pests develop. Apart from fungal pathogens, insect damage is one of
the other important points should be worked on.

4.8 Conclusion

The most important factors affecting on agricultural cultivation is ecological con-
ditions. To feed the population of the world, the effects of bacteria on increasing in
plant growth and yield, and also the relationship between bacteria and plants should
be examined. The yield of the plants should be increased in the feeding of the
population. Biotic and abiotic agricultural areas are getting an increase in the world
and chemical fertilizers applied the area may cause economically important prob-
lems in agriculture area and health problems in the world. Because of the reason,
uses of PGPR’s containing beneficial microorganisms instead of inorganic chem-
icals are positively known to effect on plant growth in terms of supplying of plant
nutrients and may help to sustain human and environmental health and soil pro-
ductivity. A number of inoculated bacterial species mostly associated with the plant
rhizosphere in laboratory conditions have been tested and determined to be bene-
ficial for plant growth, yield and crop quality so far. But, it is necessary to know
PGPR’s effects on field conditions.

The effects of PGPR’s on yield, plant growth, quality, uptake of mineral ele-
ments, biotic and abiotic stresses in Cucurbits especially cucumber and squash have
been studied so far. However, not much is known about promoting effects of
PGPR’s on yield, growth and nutrient contents of melon and watermelon vegetable
species. The species should be evaluated in terms of effecting of PGPR’s.

Nowadays, biotic and abiotic stress conditions in agricultural area have restricted
the agricultural management. While there are adequate studies on biotic stress
conditions, there is limited study on abiotic stress conditions in cucurbits.
Especially, it is very important to know the effects of PGPR’s on arid and salinity
soil conditions.
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Chapter 5
Harnessing Beneficial Bacillus
in Productivity Improvement of Food
Security Crops of Himalayan
Agro-Climatic Zones

Shrivardhan Dheeman, Dinesh Kumar Maheshwari,
Ramesh Chand Dubey, Sandeep Kumar, Nitin Baliyan
and Sandhya Dhiman

Abstract Food security is a burning problem before scientists, which mainly
concern with the scarcity and accessible food for all. Scientists are ever-involved to
find-out the solutions to overcome on these hurdles, majorly by boosting soil
fertility. Over the last 20 to 30 years, the role of soil microbiome in the improve-
ment of soil fertility and crop productivity by involving role of the microbial life
has been emerged sustain and facilitated soil nutrients availability to the plants. The
microbial life as the great engines enriching soil and helping to facilitate the
breakdown of organic matter, that can be recycled into new life, if only they could
be unlocked from that organic matter and also, from the mineral matter. The
microbes, especially endospore forming Bacilli are incredibly important in the
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rhizosphere. Bacillus is a versatile candidate providing its services in plant growth
and health promotion tirelessly. This aerobic microorganism is powered with super
abilities to produce endospore resting fruiting bodies, whenever it feels unhappy
under adversity. Bacillus is also known for its several characteristics, to help crop
plants by virtue of producing metabolites similar to plant in the form of phyto-
hormones. Besides, it is able to mineralize rocks and minerals into bio-available
form and can metabolize organic matter into much simpler forms. Plant pumps huge
amount of sugar and other organic matter in the soil through roots, which attract
bacteria to fasten their growth on spent of these supplements. In addition, Bacillus
is known to produce sort of secretions of which assist in root colonization due to
rhizo-competence on root surface and sometimes invade in root cells. In this
chapter, we have reviewed the benefits of Bacillus species to the food security crops
in term of raising productivity and yield.

Keywords Bacillus � Food security � Eleusine coracona � Amaranth � Buckwheat

5.1 Introduction

Mankind is practicing agriculture since time immemorial for their survival and
proliferation on earth. However, due to ever increasing population and depleting
amount of food raised an alarming situation. This situation can be revised looking in
thorough history of agricultural revolutions. Presently, the agricultural fields being
fertilized abundantly with pesticides and agrochemicals that were began in nine-
teenth and twentieth centuries. Initially, the application of agrochemical had shown
quantum jump in crop productivity but later, with the rapid technological evolution
and un-precedent application of increased dose of fertilizers declined in fertility
indices of soil. This not only increased the soil toxicity, but also increased the
financial un-sustainability of farmers especially in Asia. Hence, application of
chemicals is no more a solution for sustainable crop production. It is accounted that
around 870 million populations are under hunger-stricken slab due to severe
scarcities of accessible food and FAO in 2012 putted several reports addressed the
need to increase the agriculture production by 60% to plateauing food production
corresponding to population blast, which is roughly estimated to reach about 9
billion by 2050.

In the present scenario, farmers have blind reliance on the use of chemical
fertilizers and pesticides, which not only depleting nutrition index in crops but also
affecting microscopic life of soil. Across the globe, governments are now dis-
couraging farmers for the use the chemical fertilizers and pesticides in agriculture
production. To sort this matter, farmers have to raise trend of organic crop pro-
duction and their alternatives specifically, the use of beneficial microorganisms.
Actually, earlier, it was not believed that microbial lives in the soil can naturally
regulates the ecology of soil and provide plenty and sustained nutrients for crop
health and growth. But, now at this diaspora, to obviate these problems, it has
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become an indispensable need to administer such methods of farming which are
ecologically compatible, holistic and organic in nature. Sustainable approaches in
agricultural sector are of utmost importance to improve the food security and
nutrition problem around the globe (Arora 2018).

Looking to the history, the very first microbe as the fertilizer was symbiotic
nitrogen fixing strain of rhizobia that was patented in the year 1896 under the brand
name “Nitragin” for 17 different leguminous plants. Evolution in the knowledge
about the role of microbes in agriculture resulted over 2000 tons of rhizobia based
inoculants production in the recent scenario which is increasing exponentially and
regressed in market size to be reached around 13.25% (annual growth rate) by the
year 2020. On the other hand, the microbe-based inoculants are lower in cost,
protect indigenous flora and fauna and other natural resources, have less or no
harmful byproducts, improve soil organic matter and above all, maintain sustain-
ability of ecosystems (Arora 2018). At present we know that biological alternatives
are the only ways to save planet Earth from the abusive chemical fertilizers entering
in our food chain and causing serious health hazards to mankind.

Food security and climate change are emerging issues all over the world and
consequently resulting serious influence on crop production in general and pressure
for higher production of major cereal crops in particular (Asseng et al. 2013;
Springmann et al. 2016). The major crops such as rice, wheat, and maize are
cultivating to mitigate food demand since a decade besides, over-looked cultivation
of other crops such as millets bearing rich amount of nutrients, i.e. essential amino
acids, vitamins, minerals etc. is an another cause of nutrient deficiency and mal-
nutrition especially in children (Gundersen and Ziliak 2015).

Cultivation of major crops due to their high demand (domestic as well as
industrial) and good economic value, the other nutritional crops has attracted less
attention after evergreen revolution (Swaminathan et al. 1998). The marginalized
and poor farmers of India, particularly in remote area(s) of hill districts lies in the
provinces of Kumaun and Garhwal of Indian Himalaya are deprived of procuring
better seeds and practices for raising the crop yield.

In the geographical point of view, the mighty Himalaya is a scenic beauty of
diverse ecosystems and eco-regions, including different forest types and
eco-agriculture regions at distinct elevation bands. Majorly, the Himalayan sub-
tropical covers approximately 3,000 km pine forests. Moreover, it expenses into
broadleaf forests covering an area of 38,000 km2. It is also coincide with Western
Himalaya covering subalpine conifer forests and appear as temperate forests. The
temperate forests in the eastern Himalayas also include broadleaf forests, subalpine
conifer forests, Northern Triangle temperate forests, and Northeastern Himalayan
subalpine conifer forests. Thus, Himalaya itself enunciates its wealth in biodiversity
to emerge as hotspots on the world’s chart and offer a haven for endemic plants and
animals. On the other hand, The Himalayan terrains also have significant
agro-climatic zone suitable for the cultivation of range of crops and cultivars in
relatively less area available for the cultivation of agricultural crops.
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Biogeography of Uttarakhand Hills in India differs from plain especially to the
concern of topography, elevation, geographical features, diversity of habitats for
flora and fauna, ethnic diversity, land use system and socio-economic conditions.
Mehta et al. (2010) stated the productivity of cereals, oilseed crop, millets and
vegetables is major hindrance in the food security of the region. Bungla et al.
(2012) stated, among the diverse food and staple crops grown in Uttarakhand region
Mandua (local name) or Ragi (commercial name) may act as an alternative of
wheat. Mehta et al. (2010) underpin several non-conventional but ethnic crops in
food security. According to National Food Security Mission (NFSM 2012) and
clause of Food Security Bill (NFSB 2013), several native crops of Himalayan
provinces comes under food security and, therefore, essential to be considered for
increase their production and productivity using microbial life back into course of
fertilization and plant growth improvement.

To mitigate the hurdles of productivity with the benign use of microbes in
general and aerobic endospore forming Bacillus in particular improvements in soil
nutritional indices and soil fertility is needed, thereby stated that there are certain
crops which are nutritionally rich but neglected by the farmers. Such crops are
defined as “Underutilized crops” which include grain amaranth, barley, ragi, sor-
ghum, buckwheat, barnyard millet, etc., growing in agricultural belts of mighty
Himalaya covering the Garhwal ranges of Himalaya. This review is focused to
assign the introduction to inoculants of crops, economic importance, productivity
status, and current advancement of use of Bacillus for raising these valuable crops
in a package. These further extend the horizons to address the hurdles of cultivating
“Food Security” on higher altitude of agricultural lands. The review is outlined to
explore the current prospects and scenario of using beneficial soil inhabiting
“Bacilli” to the food security crops for enhancement of production enhancement.

5.2 Need of Crop Productivity Improvement

As earlier, the sound problems of agriculture in the means yet to meet the chal-
lenges of food requirements of the burgeoning population and plateauing produc-
tivity of agricultural lands persuade via adopting “Ever-sustained Green
Revolution”. The major crop such as rice and wheat were largely and adaptively
cultivated on the call of green revolution (Swaminathan 2006) but now, found no
more sustainable to mitigate food demand and affordable agriculture, besides hitting
back the fertility of soil. Since, these crops are staple food, scientists coming across
the world have paid ultimate attention to enhance the production of rice and wheat.
Magkos et al. (2003) stated that most of these crops possess less amounts of
essential nutrients such as amino acids, vitamins, minerals, etc., thus do not meet
out the complete nutrition requirement for a healthy life.

On the other hand, Blum and Bartha (1980) mentioned that the chemicals such as
pesticides and fertilizers got accumulated in the ecosystem and consequently enter in
the food chain, when used in high doses in order to raise disease free crops.
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The pesticides once escaped in the environment influence soil and climatic factors
according to their half-life, amounts applied and physicochemical reactions with the
existing minerals of the soil (Navarro et al. 2007). Pesticide residues have been
detected from various leafy vegetables including spinach, fenugreek, mustard and
cabbage (*21.5 ppm), tomato (*17.5 ppm), cauliflower (*1.70 ppm), etc., which
unfortunately are above the maximum acceptable daily intake (ADI) as prescribed
by WHO in India (Bakore et al. 2002). The subsequent investigation revealed the
presence of significant amounts of pesticide residues in the ground water resources
and trophic levels at a magnitude (Maloney 2001). Chauhan and Singhal (2006)
examined these residual chemicals and reported mutations in chromosomes of
humans, animals and thereby inducing carcinoma of lung and liver. The harmful
effect of such chemicals in ground water, and agricultural products have been dis-
cussed in various studies elaborating agriculture-environment relationship (Eser and
Geçit 2010; Meena et al. 2016a, b; Chandra et al. 2018). Majorly, under-utilized
crops including amaranth (Amaranthus hypochondriacus), barley (Hordeum vul-
gare), buckwheat (Fagopyrum esculentum), finger millet (Eleusine coracana), and
barnyard millet (Echinochloa frumentacea) enriched with plenty essential nutrients
so as to complete a balanced food and can be used to accomplish the escalating food
requirement (Mayes et al. 2011).

5.2.1 Solution(s) for Enhancement of Crop Productivity

The harmful effect of agrochemicals as a concern among the scientific community
and also provoked to search other avenue so as to earn better productivity. One of
the eco-friendly and cost effective approaches is the use of beneficial group of
bacteria such as plant growth promoting rhizobacteria (PGPR) as a bio-fertilizer and
biocontrol agents to reduce crop losses and enhance crop productivity and soil
fertility. Along with plant growth promotion they reforest eroded areas, restored the
contaminated sites and thereby cause positive effect on degraded ecosystem (Gupta
et al. 2015). These PGPR seemed as successful bacteria in getting established in soil
ecosystem due to their high adaptability in a wide variety of environments, faster
growth rate and biochemical versatility to metabolize a wide range of natural and
xenobiotic compounds. Several worker have earlier studied that in the rhizosphere
ecology, plant growth promoting rhizobacteria (PGPR) enhance plant growth by a
wide variety of functions like biological nitrogen fixation, phytohormone produc-
tion, phosphate solubilization, siderophore production, 1-Aminocyclopropane-
1-carboxylate deaminase production (ACC), exhibiting antifungal activity due to
the secretion of chitinolytic enzymes and production of volatile organic compounds
(VOCs), promoting beneficial plant-microbe symbiosis, interference with pathogen
toxin production, etc. (Nelson 2004; Babalola 2010; Bhattacharya and Jha 2012;
Kundan et al. 2015; Prasad et al. 2015; Maheshwari 2010, 2011a, b, c, 2015;
Goswami et al. 2016). Successful studies using PGPR on the growth enhancement
of various crops have been achieved in laboratory and field conditions (Gray and
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Smith. 2005; Agarwal et al. 2017). In the recent scenario, harnessing the benefits of
PGPR exhibited quite interesting to unlock new horizons of sustainable agriculture
(Maheshwari et al. 2013).

To overcome these situations, there is a need to develop eco-friendly and
cost-effective microbial inoculants which may be withstand in the extreme envi-
ronmental conditions of Himalayas. In Himalayan hills, soil temperature remains
low (6–25 °C), during different cropping seasons. Few other stresses such as
water-deficit and salinity stress also impose serious impact on morphology and
physiology of plants in the mighty Himalaya. PGPB are known to improve crop
health even at low soil temperature (Mishra et al. 2012) and the survival of the
endospore forming Bacilli at different temperatures makes them suitable candidates
for enhancement of vegetative and reproductive plant growth even in adverse
conditions of Himalayan hills. Various workers across the globe stated that these
bacteria are well known for their beneficial effect on different host plant (Schroth
and Kloepper 1978; Glick 1995; Gray and Smith 2005; Yadav et al. 2014;
Maheshwari et al. 2015a, b; Agarwal et al. 2017; Gouda et al. 2017).

As stated, PGPR ameliorate plant health and productivity by enhancing
the nutrient status of soil and host plants subsequently (Dey et al. 2004). The
bioavailability of nutrients, their increased uptake may significantly enhance the
nutrient use efficiency of plants. Increased solubilization of nutrients (macro and
micro) by PGPBs enhanced their uptake and accumulation in grain amaranth
(Parmar and Patel 2009). Nutrient availability has been influenced by solubilization,
chelation and oxidation–reduction reaction in soil (de Santiago et al. 2011).

The plant growth significantly influenced by the micronutrients along with the
macronutrients supported metabolic and enzymatic activities in plant. Application
of PGPR has been reported as an effective approach under field conditions in the
management of plant diseases (Siddiqui and Akhtar 2009; Beneduzi et al. 2012;
Kumar et al. 2012a, b). PGPR such as Bacillus, has been reported for crop pro-
duction of few food security crops such as Eleusine coracana, Fagopyrum escu-
lentum Moench. (Agarwal et al. 2017), Amaranthus hypocondriacus (Pandey et al.
2018).

5.3 Food Security Crops

Cultivation of food security crops offering a solution to maintain a sustainable
production of indigenous crops that are overlooked in recent scenario or suffering
with productivity loss. Most of the nutritional crop varieties are not been cultivated
widely in entire globe and thus, meets shortage of access to the consumers, and
hence been considering under food security. It is an urgency to mitigate the health
problems of human race with organic crop production and improve financial state of
farmers especially in developing countries of Asia to revitalize agricultural sus-
tainability. Few of them are below:
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5.3.1 Buckwheat (Fagopyrum esculemtum Moench)

Buckwheat belongs to the dicot family Polygonaceae also known as ‘Japanese
buckwheat’ and ‘silverhull buckwheat’. It is widely cultivated in the Himalayas as
staple grain crop. Buckwheat is not related to wheat, despite of its name. The name
‘buckwheat’ or ‘beech wheat’ understands its triangular seeds shape. It is a trans-
lation of Middle Dutch boecweite. Beside this, buckwheat is also related to knot-
weed, sorrel, and rhubarb. The seeds of buckwheat and its floor are consumed due
to its richness with carbohydrates, protein and fiber, therefore, it is also referred to
as a pseudocereal.

Buckwheat contains 9–13% crude fat and 2–2.7% ash (Thakur et al. 2016),
57.9–103.4 mg/g N methionine content, 62.2–79.2 mg/g tryptophan etc. (Dogra
2010). It can be cultivated in moist soil to semi-dry soil as its branching root system
has profused penetration power to reaches deeply into the soil (Stone 1906). It
produces white and pink flowers as per plant variety (Li and Zhang 2001).
Buckwheat plant has more complete adaptations of environment due to their ability
of producing suckers (vegetative growth) but, sometimes reduce productivity
(Stone 1906). The seed hull density is less than that of water, making the hull easy
to remove (Li and Zhang 2001).

5.3.1.1 Economic and Nutritional Importance

The buckwheat is a short-term crop having importance due to nutritional profile that
contains high amount of protein, amino acids vitamins, starch, minerals, dietary
fiber and a plenty source of gluten-free diet for celiac disease patients, Sedej et al.
(2011), Wronkowska et al. (2010). It is sometimes also used as silage or manure..

Buckwheat is a trustworthy cover crop during summer as it quickly establishes
defence mechanisms to cope temperature changes (Björk et al. 2008). The har-
vesting period is observed from 10–12 weeks especially at high latitude to grow it
up to 30–50 inches (75–125 cm) tall.

Being an important functional food, cultivated various polyphenols (Luthar
1992), proteins with high biological value and balanced amino acid composition
(Eggum et al. 1980, Ikeda et al. 1986, Kayashita et al. 1999, Liu et al. 2001 and
Tomotake et al. 2000), relatively high fiber content (Bonafaccia et al. 2003 and
Steadman et al. 2001), retrograded starch in groat products (Skrabanja and Kreft
1998; Skrabanja et al. 2001; Kreft and Skrabanja 2002), high contents of available
zinc, copper, and manganese (Ikeda et al. 1990, Ikeda and Yamaguchi 1993 and
Ikeda and Yamashita 1994) and dietary selenium (Stibilj et al. 2004) proved its
significance in modern world.

On the other hand, it also contains some anti-nutritional factors. Allergenic
reactions occurred due to ingesting buckwheat and its products or by exposure to
buckwheat dust. The hypersensitive symptoms involve asthma and asthmatic
attacks, urticaria, and gastrointestinal disorders (Li and Zhang 2001 and Wieslander
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and Norback 2001). As buckwheat does not contain gluten, it is a common sup-
plement for patients with coeliac disease. Buckwheat intolerance is rare among
patients with gluten intolerance alone, but more common in those with coeliac
disease combined with other food allergies. Allergic reactions are caused by
ingestion of allergenic buckwheat proteins (Wieslander and Norback 2001).
Ingestion of the entire plant can cause serious photosensitization. Phototoxity of
fagopyrin is connected with sensitivity to ultraviolet rays (Li & Zhang 2001).
Polyphenols in buckwheat may also inhibit the action of certain enzymes (Eggum
et al. 1980).

Basically, flour and groats dishes are generally used to prepare from buckwheat
seeds. The buckwheat noodles are more often popular in Asian countries like China
and Japan. The buckwheat is rich with plenty amount of rutin as one of the
important cause for the desired production. The tartary buckwheat (Fagopyrum
tataricum Gaertn.) is another variety which has higher amount of rutin than other
variety of buckwheat (Suzuki et al. 2002). Few other commercially important
products are prepared by buckwheat includes floral honey (Nagai et al. 2011), green
tea (Paradkar and Irudayaraj 2002), buckwheat sprouts, vinegar, beer, and spirit
irrespective to use as vegetable in some Asian countries such as India, Pakistan,
China, and Japan.

In summarizing as nutritious crop, it consists of 25% starch, 75% amylose and
amylopectin. It is riched with crude proteins of 18% and the high concentration of
all essential amino acids especially lysine, threonine, tryptophan, and the
sulfur-containing amino acids. Minerals like iron, zinc, selenium are importantly
found in seeds additionally it has antioxidants properties with due to rutin average
10–200 ppm and fagopyrin range 0.4–0.6 mg/g of flour. Aromatic compound like
salicylaldehyde has also identified as a characteristic component of buckwheat
aroma.

On Hindu fasting days in northern states of India people eat items made of
buckwheat flour except eating cereals such as wheat or rice being prohibited. Since,
buckwheat is not a cereal, it is considered acceptable for consumption. Buckwheat
(Kuttu/Ugal) is an important crop and is commonly cultivated for international
trade. Alike, consumption increase the economic value in India and requisite the
increase production and productivity. This crop is extensively grown in hilly region
of Uttarakhand, especially in province of Garhwal in India. Taking into consider-
ation of such properties present research has foremost emphasizes to develop some
bioinoculant, could be used organically grown buckwheat crop having significant in
productivity and production.

5.3.1.2 Productivity Enhancement: Status of Use of PGPR

Buckwheat is widely cultivated in several Asian countries in certain European
countries. Therefore, buckwheat emerged as important food crop but, productivity
observed declined sharply in the twentieth century especially in hilly regions of
India beside, its popularity as vegetable and pseudocereals. It is also noted that
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people colonized in hilly regions with the adoption of fertilizer in farming expe-
rienced decreased in net productivity of other staples also. Irrespective to this, when
this is compared with the other cereals, seed yield of F. esculentum is often rela-
tively low without adding fertilizers (Dogra 2010). Low productivity is mainly due
to abortive fertilization and several other physiological factors such as
self-incompatibility based dimorphic heterostylism, underdeveloped female repro-
ductive organs, and kernel development in the early stage of embryo development
(Kumar et al. 2002). The fungal diseases in the buckwheat are also observed as
detrimental factor for productivity loss beside, buckwheat itself has significant
metabolite with the ability of biocontrol of fungal pathogens. However, not
reviewed extensively after Sidorova (1963).

If the crop becomes susceptible, the standing crop suffers from 50% loss due to
infection of fungal pathogens, Fusarium oxysporum and Rhizoctonia solani causing
wilting and root rot diseases respectively (Nyvall 1989; Huang et al. 2015). To
combat these pathogens in an eco-friendly manner beneficial Bacillus spp. of native
soil was devised to mitigate the harmful effect of both the pathogens (Agarwal et al.
2017). Biocontrol agents in carrier-based inoculant (vermiculite) were observed
suitable in enhancing the yield (Table 5.1; Fig. 5.1).

5.3.2 Ragi (Eleusine coracana)

Eleusine coracana L. (Moench.) (Commercial name: Ragi; Common/local name:
Mandua) belongs to family Poaceae. Ragi is a significant food crop and world-wide
known with several names (Table 5.2). Ragi (Finger millet) is important as food
grain and source of straw. It is very nutritious abundant protein, minerals, fibers,

Table 5.1 Effect of PGPR and fungal pathogens on plant growth promoting parameters of
Fagopyrum esculentum (60 DAS) (Adopted from Agarwal et al. 2017)

Treatment Seed
Germination
(%)

Length (cm) Fresh wt. (mg) Dry wt. (mg) Disease
Index
(DI)

Root Shoot Root Shoot Root Shoot

B. pumilus
MSUA3

93.5 4.550** 13.480** 0.258** 2.087** 0.034** 0.212** 0

R. solani + B.
pumilus MSUA3

72.0 3.897** 11.206** 0.216** 1.947** 0.028** 0.182** 20.0

F.
oxysporum + B.
pumilus MSUA3

61.7 2.583** 7.917** 0.194** 1.413** 0.019** 0.136** 20.0

F. oxysporum 10 1.140** 3.820** 0.044** 0.867** 0.003** 0.017** 90.0

R. solani 12 1.118** 3.112** 0.054** 0.756** 0.004** 0.014** 90.0

Control 65.0 2.613 10.153 0.192 1.890 0.023 0.165

Values are mean of ten replicates; Analysis of Variance (ANOVA): a = significant at 0.01 level of lowest standard
deviation (LSD) as compared to control; ** = Significant at 0.01 level of LSD as compared to control; * = Significant
at 0.05 level of LSD as compared to control; ns = Not Significant at 0.05 level of LSD as compared to control. None of
the value in ANOVA were observed significant at 0.01 level (a), at 0.05 level (*) and not significant (ns)
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and vitamins along with 8–10 time more carbohydrate than in rice and wheat.
Finger millet’s has slower digestibility and regarded as storage food. It has unique
malting properties so why it is used in variety of food processing like brewing
porridge, bread, biscuits, and pudding production.

Among the diverse food and staple crops in Uttarakhand, Himalayan region, the
crop is grown for alternative of wheat, locally called Mandua or Ragi (commercial
name) and is widely grown in Himalayan region to south coastal region of India. It
is invariably adaptable to costal land and higher elevations of Himalaya up to 2,300
m above mean sea level (MSL).

Fig. 5.1 Yield and biocontrol parameters of Fagopyrum esculetnum at harvesting (Abbreviation:
GY = Grain yield, BY = Biological yield, HI = Harvest Index; error bar on column represented
standard deviation at 0.5%) (Adopted from Agarwal et al. 2017)

Table 5.2 Common name of Ragi in different of the globe

Countries/Languages Common name

UK Finger millet, African millet, Ragi, Koracan

France Eleusine cultivee, Coracan, Koracan

Germany Fingerhirshe

India Ragi (Kannada, Telugu), Manduva (North India), Nachani (Marathi)

Kenya Wimbi, Ugimbi

Nepal Koddo

Sri Lanka Kurakkan

Zimbabwe Rapoko, Zviyo, Njera, Poho
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5.3.2.1 Economic and Nutritional Importance

Finger millet (Eleusine coracana L.) is an important millet crop cultivated exten-
sively in Asia and Africa and produced as low as ranked sixth after wheat, rice,
maize, sorghum, and bajra in India. Anatomically small round-shaped seed are
coated with hull. The naked seed has brick red-colored seed coat. It is used as
complete meal for chapati and biscuits preparation. As stated earlier it is rich in
nutrition with high calcium (344 mg/100 g), phytates (0.48%), polyphenols
(0.61%), trypsin and dietary fibers (Brajdes and Vizireanu 2012). The entire seed is
edible with its seed coat as rich source of phytochemicals, dietary fiber and
polyphenols (0.2–3.0%) (Hadimani and Malleshi 1993; Ramachandra et al. 1977).
Earlier Bravo (1998) has reported that phytates, polyphenols, and tannins pro-
vides antioxidant activity as a factor to affect health, aging, and metabolism of
consumers (Bravo 1998). As per above, it is submitted as same that it is beneficial
as antidiabetic, antioxidant and hypocholesterolaemic (Devi et al. 2014). The
mixture of benzoic acid and cinnamic acid derivatives as millet polyphenols exhibit
enzymatic activities and anti-cataractogenic properties. Finger millet consumption
as regular in snacks helps to control diabetes (Devi et al. 2014).

Probably tradition of ragi’s cultivation first reached in the south coastal regions
of India and subsequently in Himalayan regions which is a hotspot of diversity and
distribution (Hilu and Wet De 1976). It (Chandra et al. 2016).

Among the food grain (Maize, Jower, Ragi, Bajra, Small Millets and Barley) its
cultivation decreased from 45.9 million hectares in 1970–71 to 24.1 million hec-
tares in 2014–15 and ranked among food security crop as millet crops in the world.
Food grain production is increased from 50.83 million tonnes in 2015–16. It is
expected to attain higher by 1.14 million tonnes over the production of 252.02
million tonnes during 2018–19 (Economic Survey 2018–19).

5.3.2.2 Productivity Enhancement: Status of Use of PGPR

This crop has low productivity in Himalayan range for fulfillment of food demand
in sub-terrain of mountains and Indo-Gangetic population. Thus, it is essential to
elicit this hurdle and boost up the production of E. coracana using Bacillus as
beneficial PGPR and enhance the productivity in term of grain yield, biological
yield, and harvest index.

Accordingly, soil and climatic condition of Himalayan region as well as in south
India, Ragi is season bound crop and the best season for sowing is December–
January and June–July. Ragi is adapted to a wide range of environmental adver-
sities, tolerance to a significant level of salinity, relatively resistant to water (Dida
et al. 2007). It is a stable diet in many villages across south India, especially in north
Karnataka besides Maharashtra and North West zones of Tamil Nadu, India.

Several workers have reported use of diverse Bacillus for productivity
enhancement of other millet crop belong to family Poeacae such as, Pennisetum
glaucum (Pearl millet) (Raj et al. 2003) and Setaria italica (foxtail millet)

5 Harnessing Beneficial Bacillus in Productivity Improvement … 115



(Khatri et al. 2016). Veer and Goel (2015) have reported increase in plant growth
parameters including fresh/dry weight and length of root/shoot but, available lit-
erature exhibited the limited information on its cultivation during this era of food
security to raise crop productivity using microbial inoculant. However, few pub-
lications reported yield improvement using chemical fertilizers as an alternative
way to raise crop productivity (Raman et al. 2004; Rangaraj et al. 2007; Bama and
Ramakrishnan 2010).

From the author’s lab Bacillus pumilus MSTA8, Bacillus amyloliquefaciens
MSTD26 and their consortia (MSTA8 + MSTD26) increased vegetative parame-
ters such as plant length, fresh weight and dry weight with respect to controls.
Effects of bioinoculant formulation on harvesting parameters and yield of ragi were
recorded higher to that of non-bacterized seeds. During our investigations, an
increase in seed yield by 37.87% with 16.45 harvest index over control at 120 DAS
was reported (Table 5.3).

5.3.3 Amaranth (Amaranthus hypochondriacus)

Among the different underutilized crops grain amaranth (Amaranthus hypochon-
driacus) is one of the important nutritionally rich pseudocereals crop which belongs
to the order Caryophillales, Sub-family Amaranthoideae, family Amaranthaceae,
Amicarelli and Camaggio (2012), Østerberg et al. (2017), Niranjana and Kumar
(2017). The genus Amaranthus embraces approximately 60 species and most of
them are weeds. Among all, widespread species are A. hypochondriacus, A.

Table 5.3 Yield parameters of E. coracana at harvesting (120 DAS). (Unpublished data)

Treatment 1000
seeds
weight
(gm.)

Shelling
percentage

Grain
yield
(Kg/
hectare)

Biological
yield (Kg/
hectare)

Harvest
Index
(%)

% Grain
yield rise
over
control

T1 1.520 ns 34.36 ns 1074 ns 8430 ns 12.74 ns 8.19 ns

T2 2.056** 49.55** 1481** 10740** 13.78** 33.42**

T3 2.096* 50.22* 1511* 9510* 15.88* 34.74*

T4 1.710* 35.22* 1083* 8540* 12.68* 8.95*

T5 2.124** 51.14** 1522** 10870** 14.00** 35.21**

T6 2.187* 52.35* 1587* 9646* 16.45* 37.87*

Control 1.300 37.82 986 7972 12.36

Abbreviations: T1 = MSTA8 bacterized seed; T2 = MSTD26 bacterized seed;
T3 = MSTA8 + MSTD26 bacterized seed; T4 = bioinoculant of MSTA8; T5 = bioinoculant of
MSTD26; T6 = bioinoculant of consortia of MSTA8 and MSTD26; C = Control (non-bacterized
seed). Values are mean of ten replicates; Analysis of Variance (ANOVA): a = significant at 0.01
level of lowest standard deviation (LSD) as compared to control;** = Significant at 0.01 level of
LSD as compared to control; * = Significant at 0.05 level of LSD as compared to control; ns = Not
Significant at 0.05 level of LSD as compared to control
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cruentus, A. spinosus, A. hybridus, A. tricolor, etc. Amaranth plant has an outward
appearance which is having branched inflorescence bearing thousands of minute
flowers to set seeds with variable colors for instance cream, golden, pink, and black.
Different species of amaranth are used either as leafy vegetable, grain, animal feed,
or as ornamentals in different countries. The seeds of amaranth are lenticular and
relatively small (Pandey et al. 2013). Grain amaranth is grown worldwide in many
countries including Africa, Argentina, China, India, Pakistan, Peru, and USA.
However, much variation in the productivity is recorded among the major countries
growing amaranth (Chan et al. 2016).

5.3.3.1 Economic Importance

Amaranthus hypochondriacus has gained maximum attention due to its high
nutritive value as reported by Raina and Dutta (1992). A very high content of
carbohydrates (62–67.9%), fiber (4.9–5%), fat (6.1–7.3%), and protein (15–16.6%)
was observed in this crop. Dodok et al. (1997) observed higher (5.95 g/16 gN)
lysine content in the amaranth grain in comparison to wheat flour (2.9 g/16 gN).
Gorinstein et al. (2002) acquainted grain amaranth as a substitute of conventional
cereals due to the presence of high essential and other nutrients. Amino acids
(Lysine 5.95%, Histidine 2.5–3%, Tryptophan 0.9–1.8% etc.) in the seeds of
amaranth were reported by Písaříková et al. (2005) and Mlakar et al. (2009). Thus,
the protein and high essential amino acid contents found in this crop proved to be
useful to lessen the scarcity of nutritionally rich food to human beings (De La Rosa
et al. 2009; Barrio and Añón 2010). Due to the high nutritive value, nurturing of
this nutritive crop suggested to improve food security and to augment farm incomes
(Mburu et al. 2012). Sanz-Penella et al. (2013) noted the nutritive value of ama-
ranth seeds as prosperous resource of macro and micronutrients such as iron, cal-
cium, magnesium, zinc, as well as vitamins including riboflavin, ascorbic acid,
niacin and thiamine. The amaranth is rich in protein, essential amino acids, vita-
mins, micronutrients and useful as a medicinal plant to cure various diseases.
Recently, Perales-Sánchez et al. (2014) reviewed the antioxidant, anti-allergic
properties, plasma cholesterol level decreasing and immunomodulatory abilities of
grain amaranth. Several studies have put forward to advocate the quality of ama-
ranth proteins comparable to the optimum protein reference pattern in human diet,
and almost reaching the requirements according to the norms given by FAO/WHO
(Rastogi and Shukla 2013; Shevkani et al. 2014a, b). Amaranth has high medicinal
value, provides vitamin C, purifies blood, soothes cough, and improves general
health (Miraj 2016; Shirani et al. 2017). Additionally, being a gluten-free grain, it is
suitable for diets of celiac disease patients (Lamacchia et al. 2014; Taylor and
Awika 2017). Different compounds such as alkaloids, triterpanoids, anthocyanins,
and amaranthine (Castrillón-Arbeláez and Frier 2016; Shirani et al. 2017) are
responsible for its beneficial effects. Globulins, albumins, and glutelins are the
proteins present in the amaranth seeds with essential amino acids which are defi-
cient in traditional cereals and legumes (Awasthi et al. 2011; Jimenez-Aguilar and
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Grusak 2017). Lysine-Methionine richness dwelling gene (AmA1) was reported
from Amaranthus which was successfully used in the development of genetically
modified sweet potatoes for enhanced protein quality with balanced amino acid
composition.

5.3.3.2 Productivity Enhancement: Status of Use of PGPR

In India, it is cultivated in different regions of Uttarakhand, Himachal Pradesh, and
southern parts of Kerala and Tamil Nadu. In most of the areas it is grown as
traditional crop but has gained recognition among the farmers in past few decades.
Its low cultivation cost, short growth cycle and good adaptability to varied
agro-climatic conditions proved its suitability among the farmers. Amaranth seeds
are recommended as a health food for feeding children to increase their immunity
(Kanensi et al. 2013; Dhangrah et al. 2015). It has significant influence to overcome
various ailments/diseases including malnutrition. Amaranth has been called as poor
farmer’s crop but now attracted attention worldwide due to its high protein and
amino acid contents in comparison to maize and wheat (Das 2015).

In India, amaranth is used as an important ingredient in the meal of the people
from the entire Himalayan region, and to some extent in the states of Gujarat,
Maharashtra, Karnataka, and Eastern parts of Uttar Pradesh. In northern parts, it is
regarded as “Holy food” and consumed during ritual fasts where the other cereals
and pulses are restricted.

In Uttarakhand, the crop is mostly cultivated in hilly areas. However, its culti-
vation area (6072 ha) is much lower in comparison to rice (2,73,686 ha), wheat
(3,79,196 ha) and maize (28,283 ha) (https://www.agriculture.uk.gov.in). Other
than the less market value and low consumption, frequent attack of fungal diseases,
pests and insects are responsible for its lower productivity (Kagali et al. 2013;
Awurum and Uchegbu. 2013). Since, organic farming in agriculture policy rec-
ommends not to use harmful chemicals for raising crop productivity further, due to
their toxicity besides deleterious to beneficial microorganisms, undesirable to soil
and environment (Glenn et al. 2013; Meena et al. 2016a, b; Mallick et al. 2018).
Hence, disease containment through an eco-friendly biocontrol approach, using
natural antagonistic microflora, is becoming an inevitable component in the man-
agement strategy of plant diseases.

Among the major insects, Spodoptera litura, Helicoverpa armigera, Hymenia
recurvalis, Sylepta derogate, Hypoxilus nubilosus, Epilachnae laterii, etc., were
found most harmful (Sharma 2009; Aderolu et al. 2013). Prior to this study, the
lepidopteran insects were reported to cause significant damage in amaranth crop
and further two groups of lepidopterans reported to affect and reduce maximum
productivity in several countries (Clarke-Harris et al. 2004). The first group of the
lepidopteran includes the leafwebbers or webworms which folds their larvae in
order to produce web or glue on amaranth leaves and feed within the leaves (Storer
et al. 2010) whereas, Udea ferrugalis, Pterolophia basalis, Herpetogrammabi
punctalis and Achyrarantalis considered the second lepidopteran group, belongs to
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the family Crambidae reported as the infrequent pests of amaranth (Othim et al.
2018). Their larvae feed on amaranth but unlike webworms they do not glue or fold
amaranth leaves. Aderolu et al. (2013) and Mureithi et al. (2017) reported
Spodoptera litura and Spodoptera furgiperda as the major representative of the
lepidopteran’s group. On the other hand, the great loss in the crop productivity was
observed by James et al. (2010) due the frequent attack of other insects. García et al.
(2011) reported 92% damage to the A. hypochondriacus due to attack of borers and
45% decline was due to white grubs thus; the overall yield was reduced by the other
general insects of foliage and soil.

In the accompaniment with insects, different microorganisms, for instance,
various fungi have been reported to influence amaranth productivity by causing
extensive damage to the crop through tissue discoloration, decay of stems and
branches of mature plants. Since decades, Rhizoctonia solani has been reported as
an eminent causal agent of amaranth (Kamala et al. 1996) and exhibited huge
number of symptoms such as light and dark brown spots in stem, necrotic lesions,
blister like lesions on the leaves and sheaths. Smitha (2000) observed leaf blight
symptoms on the foliage of amaranth with small irregular whitish cream spots on
leaves, which enlarged under high humidity. Several other fungi such as F. oxys-
porum, F. subglutinans, F. sambucinum, Alternaria solani, Alternaria tenuissima,
etc., were reported as the major pathogens of amaranth (Blodgett et al. 2004).
Recently, various workers observed foliar blight disease in amaranth caused by R.
solani owing to diminished productivity of amaranth in our country (Nair and
Anith. 2009).

On the other hand, some other fungi were described as a factor behind the
diminished productivity of amaranth. For instance, Pythium myrlotylum accounted
for causing damping off in different amaranth species including A. hypochondriacus
(Sealy et al. 1988). Mihail and Champaco (1993) observed death and decay of A.
hypochondriacus and A. hybridus due to the infection of M. phaseolina causing
green black spots on stems. It was stated that severe pre and post emergence of
damping off caused by P. aphanidermatum in A. hypochondriacus and A. hybridus
were most common and prevalent diseases affects seed germination and seedling
survival. Discoloration of branches, stems, and root collars due to Fusarium
oxysporum, Fusarium subqlultinans, A. tenuissima were observed antecedently by
Blodgett et al. (1998). Further, Blodgett and Swart (2002) noticed dark brown to
black, necrotic lesions on the leaves of A. hybridus accounted Alternaria tenuissima
as causative agent. Subsequently, Mandal and Das (2002) observed severe damage
as a result of leaf spot disease caused by A. amaranthi. It was noted that phytotoxin
produced by the F. oxysporum, toxic to the seedling and callus growth and thereby
caused stem decay and root rot of amaranth (Chen and Swart 2001). Further,
Priyadarsini (2003) stated that the symptoms of leaf blight disease of amaranth
began as small irregular whitish cream spots on the foliage that enlarged under high
humidity. In the later stage, the spots became translucent with irregular brown
margins and shot hole was observed in severely infected leaves which finally led to
defoliation. On the other hand, Talukder et al. (2012) described defoliation and
withering of whole plant of red amaranth due to white rust caused by Albugo
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occidenta. The agrochemicals were used to restrain these pests and fungi with
instant effect, however, their arbitrary use has caused a lot of side effects on human
beings (Lawrence et al. 2004, Chaturvedi et al. 2013), soil and environment (Aktar
et al. 2009; Tiryaki and Temur 2010) and animals (Odukkathil and Vasudevan.
2013).

5.4 Bacillus: The Protagonist of Crop Productivity

Specially aerobic endospore-forming bacteria Bacillus (AEFB’B) remain viable in
drastic environmental conditions due to dormant body (endospore) which, in
favorable condition become viable and showed their finest rhizospheric competence
rhizosphere (Kadyan et al. 2013). There are several free-living, associative and
symbiotic bacterial genera effectively involved in plant growth promotion. The
other important and widely accepted genera are Acetobacter, Acidovorax,
Azorhizobium, Azotobacter, Azospirillum, Beijrenckia, Bradyrhizobium,
Burkholderia, Ensifer, Enterobacter, Erwinia, Mesorhizobium, Paenibacillus,
Pseudomonas, Rhizobium, Serratia, etc., have been exploited for growth promotion
and suppression of crop diseases (Maheshwari 2016). Bacillus such as Bacillus
subtilis, B. licheniformis, B. polymyxa, B. pumilus, B. amyloliquifaciens, etc., are
closely related species having biocontrol potential against different fungal patho-
gens including Fusarium oxysporum, Rhizoctonia solani, Sclerotium rolfsii,
Macrophomina phaseolina (Dubey and Gupta 2012; Agarwal et al. 2017). Bacillus
spp. aggressively colonizes the root system, and exhibited biocontrol and plant
growth promoting properties.

Among the PGPR, Bacillus genera has predictably immense potential applica-
tion in term of functionality to raise productivity of crop under field trials
(Maheshwari et al. 2013). On the other hand, many regions of Uttarakhand state in
India are becoming food insecure today with net sown area, per capita food
availability and across to food especially in the hilly districts have been declined.
The availability of pulses and cereals has significantly narrowed (Chopra and Pasi
2002). A large number of crops have been introduced in this region by early settlers
or civilians those who created a huge diversity of crop for human consumption. In
Garhwal Himalaya, average 78–85% population solely depends upon agriculture
for their livelihood and 80% of area consists of hills, whereas, remain plain is
maximum urban. So, the cereals, pulses, oil-seeds crops and millets grown have low
productivity (NFSM 2012). In fact, agricultural production is also affected with
climatic and seasonal changes, as in monsoon, flood and landslide are common in
Himalaya and in winter snow fall proved deleterious one for various crops (Sharma
and Ambili 2009).

Among all endospore-forming Bacillus spp. offer several advantages in com-
parison to that of other beneficial bacteria. These Bacilli tolerate adverse conditions
including cold temperature and low pH and other abiotic stresses exist in of the
high-altitude regions. Diversified populations of aerobic endospore forming species
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of Bacillus occur in soil, and agricultural fields contributed to crop productivity
(Dheeman et al. 2017; Agarwal et al. 2017). Physiological traits, such as multi-
layered cell wall, stress resistant endospores formation, secretion of peptide or
non-peptide secondary metabolites and extracellular enzymes are ubiquitous to
these Bacilli make them most suitable to restore benefits to the plants in adverse
environmental conditions for extended periods of time. Exploiting these abilities,
the bacteria exert and inhabit diverse niches in agro-ecosystems and compete with
other microorganisms during plant-microbe interactions. The colonization niches
for the bacteria being reproducibly stable are also likely to be used in precision
management of agro-ecosystems (Timmusk et al. 2014).

Numerous Bacillus species express in promotion of plant growth and suppress
soil-borne plant pathogens by three ecological pathways viz., providing nutrients
for plant growth promotion (Chauhan et al. 2017), antagonism against fungi, and
bacteria, and stimulation of host defence mechanisms (Sharma et al. 2018).
Recently, a number of Bacillus species have been developed commercially as plant
growth promoters and biocontrol agents for their use in agriculture (Muis and
Quimio 2016).

Drastic changes in Himalayan region are a problem to sustain crop productivity.
The more frequent and intensity of climate cannot be ruled out. Hence, there is
always a necessity to overcome these abiotic factors using a technology that address
issues of farmers in general and seed industry in particular. One of the possibilities
is by using the cold tolerant microbes endowed with the ability to synthesize several
cryoprotectant compounds for instance, glycine betaine, glycerol, mannitol, sor-
bitol, glucose, and fructose to overcome the ill effects of cold temperature induced
stress (Angelidis and Smith. 2003). Cold tolerant PGPB were suggested as growth
promoter because of their ability to solubilize nutrients which enhanced their
bioavailability to the plants (Katiyar and Goel. 2003; Trivedi and Sa. 2008). Rinu
and Pandey (2009) conducted field based experiment to evaluate the growth pro-
motion abilities of Bacillus for cultivars, i.e., lentil at Himalayan terrain under cold
conditions. An increase in protein concentration and yield improvement was
reported due to the effect posed by combination of PGPB. Plant growth promoting
abilities of Bacillus megaterium isolated from the cold region of Himalayan terrains
was found pragmatic in the form of bioformulation (Trivedi and Pandey. 2008).
Kumar et al. (2013) conducted green-house experiment at 20–25 °C by inoculating
phytase producing psychrotolerant Bacillus sp. in solubilization of phosphorus in
the soil. A significant enhancement in biomass of Brassica juncea was reported in
such condition. Sati et al. (2013) advocated the use of psychrotolerant PGPBs for
the growth promotion and productivity enhancement of crops especially in the low
temperature environments. Growth promotion of Cicer arietinum (L.), Vigna
mungo (L.) Hepper, Vigna radiata (L.) Wilczek, Cajanus cajan (L.) Mill sp. and
Eleusine coracona (L.) Gaertn. at 28 °C was due to the increased uptake of N and P
by psychrotolerant Pseudomonas jesenii strain MP1 (Kumar et al. 2014). Kaur et al.
(2015) observed increased seedling parameters of i.e. lentil with increase in pro-
ductivity by the inoculation of psychrotolerant Rhizobium and other PGPRs
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Several other workers have also observed biocontrol activities of Bacillus
spp. against many common fungal phytopathogens (Kadaikunnan et al. 2015;
Zohora et al. 2016; Abdallah et al. 2018). Diverse populations provide better
resources for the improvement of plant growth promotion and biocontrol abilities,
as different strains possess varied mode of action and survival in extreme envi-
ronmental conditions. Since, climatic conditions may affect their potential, it is
imperative to isolate native Bacilli strains from the soils having PGP activity that
could influence the crop.

Bacillus spp. considered as the safe microorganisms that hold remarkable abil-
ities for synthesizing a vast array of beneficial substances for the suppression of
pathogens (Stein 2005). Majority of antifungal metabolites produced by Bacillus
spp. could be peptides (Bacillomycin, Iturins, Mycosubtilin, Fengycin, Surfactins,
etc.) or non-peptides (Zwittermicin A, Kanosamine, etc.) (Fernando et al. 2005).
Largely these are secretary compounds released by PGPBs in soil or any other
habitant (Podile and Kishore 2007).

Bacillus species such as B. amyloliquifaciens, B. subtilis, B. cereus, B. pumilus,
B. mycoides and B. sphaericus have been reported to elicit significant reduction in
the severity of various diseases of diversified host (Kloepper et al. 2004; Choudhary
et al. 2008). Shanmugam et al. (2013) evaluated chitinase producing B. subtilis for
disease management of ginger because of reduction in the incidence of rhizome rot
caused by F. oxysporum and F. solani. Tan et al. (2013) observed B. amy-
loliquifaciens as antagonist toward Ralstonia solanacearum. Consortium of
P. aeruginosa KRP1 and B. licheniformis KRB1 were reported suppressive for the
fungal phytopathogens F. oxysporum and S. sclerotiorum causing disease in
Brassica campestris (Maheshwari et al. 2015a, b). Pane and Zaccardelli (2015)
reported suppression of early blight disease of Solanum lycopersicum L. caused by
Alternaria alternata by Bacillus spp. Bacillus subtilis treated seeds of Solanum
lycopersicum showed suppression of R. solani with 80% reduction in disease
incidence (Zohora et al. 2016). Recently, Rais et al. (2018) evaluated Bacillus
spp. for blast disease suppression on rice crop. Bacillus subtilis XF-1 also reported
to inhibit the growth of Plasmodiophora brassicae causing infection in cruciferous
crops (Liu et al. 2018).

This implies that PGPBs competence strongly enhanced quality enhancement
and crop growth. Supanjani et al. (2006) applied Bacillus megaterium var. phos-
phaticum and Bacillus mucilaginosus in nutrient limited stressed soil where the
strains increased bioavailability of minerals, their uptake and subsequently
enhanced growth of pepper and cucumber. Hafeez et al. (2006) suggested Bacillus
pumilus as a bioinoculant to promote the crop yield in wheat. Beneduzi et al. (2008)
reported Bacillus isolate SVPR30 as an efficient bioinoculant for growth
enhancement of the rice. Furthermore, Singh et al. (2008) reported increase in the
dry weight of root with the Bacillus bacterization of seeds of Pinus roxburghii in
Himalayan terrains. On the other hand, Zongzheng et al. (2010) evaluated growth
promoter effect of Bacillus subtilis SY1. A significant increase in seedling
parameters such as sprout tendency, germination percentage, sprout index and vigor
index were observed. Bacillus isolates exhibited seedling length, fresh weight and
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dry weight in cow pea (Thomas et al. 2010). Agrawal and Agrawal (2013) reported
growth promotion of tomato by PGP Bacillus sp. Mehta et al. (2015) supported the
fact of planting value parameter enhancement by the treatment of P-solubilizing
Bacillus circulans CB7 on the growth enhancement of tomato. Significant increase
in early vegetative plant growth parameters along with increase in nitrogen,
potassium, and phosphorus was observed.

5.5 Bacillus: In Action as PGPR

5.5.1 Bacillus as Mineral Solubilizers

Evidences of phosphorus solubilizing microorganism (PSM) were dates back to
1903 (Wani et al. 2008). Khan et al. (2010) stated that efficiency of P fertilizer
throughout the world is around 10–25% and bio-available P in soil reaching the
level of 1.0 mg kg–1 soil (Goldstein 1994). Further, several contributions were
made to establish the concept of phosphorus (P) solubilization as major
growth-limiting factor for the plants (Richardson 2001; Ezawa et al. 2002; Saharan
and Nehra 2011; Pingale and Virkar 2013). He et al. (2004) observed heterotrophic
microorganisms secreted organic acids responsible for inorganic P solubilization
into phosphatic minerals and/or chelate cationic partners. An advance finding in the
same manner on the metabolic processes that diverse group from autotrophs to
heterotrophs and diazotrophs to phototrophs have been reported to secrete enzyme
phosphatases (Gupta et al. 2007). The production of microbial metabolites resulted
in decrease in soil pH, probably played a major role in P solubilization (Chen et al.
2010). Yadav and Verma (2012) applied P as fertilizer which become immobile
pools via precipitation in soils. It has also been noted that PGPR as PSB inoculants
enhances the nutritional uptake of plant and influence growth factors under stressed
conditions (Nadeem et al. 2014a, b). In addition, Nenwani et al. (2010) proposed
proton extrusion and organic acid production as a microbial processes/mechanisms
for phosphate solubilization.

In between lot of concept notes were postulated on P-solubilizing microorgan-
isms. Dubey et al. (2014) reported that the Bacillus subtilis BSK17 solubilized
inorganic phosphate in soil resulting its easy uptake and enhanced yield of the Cicer
arietinum. Inoculation of the Bacilli compensated the nutrient deficiency and
improved the overall plant growth and development (Schoebitz et al. 2013;
Sandilya et al. 2018). Due to the treatment of B. thuringiensis, an 11% increase in
phosphorus availability in soil and 34% in wheat plant occurred (Delfim et al.
2018).

Organic phosphate being another form of phosphate in soil constitutes 30–50%
of total phosphorus available amounts in soil. It was stated that organic phosphorus
is largely in the form of inositol phosphate (soil phytate), the most stable form of
organic phosphate synthesised by microorganisms and plants (Dalai 1977).
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Myo-, scyllo-, chiro- and neo-inositol phosphates were widely spread phytases, of
which most myo-inositol has been reported as most common and distributed in
various plant tissues. Phytase produced by microorganisms able to change-over soil
phytate into phosphate for the plant’s uptake (Patel and Kanungo 2010). Earlier,
Idriss et al. (2002) reported B. amyloliquefaciens in the degradation of extracellular
phytate (myo-inositol hexaklsphosphate). Inoculation of the culture filtrate of these
Bacilli containing phytase at enhanced root weight, shoot weight and root length of
maize. Various studies on enhancement of plant growth by the phytase producing
Bacillus strains have been described by researchers (Kumar et al. 2012a, b; Balaban
et al. 2016).

5.5.2 Bacillus as Iron Scavengers

Iron is the fourth most essential element of the earth’s crust (Pasek and Lauretta
2005). dates back in 1952, “Neilands” isolating and purifying siderophores in
crystalline form and honored as the “Father of ferruginous facts”. The term side-
rophore stands for “iron carriers” or “iron bearers” in Greek.

Iron has been proved essential nutrient for virtually all microorganisms to
control enzymatic reactions as necessary cofactor. More than 500 siderophores have
been reported (Boukhalfa and Crumbliss 2002; Hider and Kong 2010). Kraemer
(2004) stated most, but not all, siderophores are hexadentate ligands forming 1:1
complexes with Fe3+. Miethke and Marahiel (2007) observed carboxylate side-
rophore produced by fungi in acidic environment has low capacity to form stable
Fe2+ complexes. Also, Miethke and Marahiel (2007) examined siderophore com-
plexes varies based on their structure and ligand type varies their stability of Fe3+

influence pH and affect chelation efficiency thereby. On the other hand, Raymond
et al. (2003) observed higher affinity for Fe3+ in catecholates siderophore.

Earlier, Liles et al. (2000) discovered Legionella pneumophila produced a
non-classical siderophore, legiobactin, conserved among the members of
legionellae. Like other PGPR, rhizobia utilize a large spectrum of these molecule to
overcome iron starvation (Plessner et al.1993) and produce strain specific side-
rophores (Arora et al.2001; Deshwal et al. 2003). Sharma and Johri (2003) char-
acterized bacterial siderophores of low-molecular-weight with high Fe3+ chelating
affinities meant for easy transport across the membrane. Further, their role to inhibit
the growth of plant pathogens was also reported by siderophore producing
microorganism. Siderophore production has been reported in Pseudomonads
spp. (Haas and Défago 2005), Bradyrhizobium (Deshwal et al. 2003), Rhizobia
(Arora et al. 2001). Pandey et al. (2005) have been reported bacteria produce
hydroxamate-type and catecholate-types siderophores invariably and observed that
Pseudomonas aeruginosa GRC1, excel in PGP traits and also have prolific pro-
duction ability of hydroxamate siderophore in iron-deficient conditions. The puri-
fied siderophore appeared to be of pyoverdin type with typical amino acid
composition. On the other hand, siderophore production by root nodulating rhizobia
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(Carson et al. 1992; Arora et al. 2001). Various strains of PGPR have been reported
to produce a wide range of siderophores such as rhizobactin, citrate, hydroxymate,
catechol, anthranalate under low iron (deficient) conditions (Guerinot et al.1990;
Sridevi and Mallaiah 2008).

5.5.3 Bacillus as Plant Growth Regulators

Several decades before, the term “Auxin” was introduced into the identification of
scientific community (Went and Thimann 1937). IAA significantly influenced plant
growth and development (Went and Thimann 1937). Several workers observed
mechanism of plant hormones secreted by PGPR in plant growth and development
(Kumar et al. 2009; Maheshwari et al. 2012; Reetha et al. 2014). The indole acetic
acid (IAA) enhance root proliferation and increase nutrient uptake by involvement
of most common IAA biosynthesis by Indole-3-Acetamide (IAM) and
Indole-3-Pyruvate (IPyA) (Barazani and Friedman 1999). Representatives of B.
subtilis and B. amyloliquefaciens group secreted IAA-like substance in reasonable
amount when fed with tryptophan (Idris et al. 2007). Lambrecht et al. (2000)
studied the involvement of IAM pathway in plant gall size, whereas the IPyA
pathway determined epiphytic fitness in plants. On the other hand, Ali et al. (2009)
reported auxin-producing rhizobacteria exert positive effect in Triticum aestivum.
Whereas, Grunewald et al. (2009) explained auxin responses during
microbe-induced de novo organ formation which modify their host’s auxin trans-
port. Hussain and Hasnain (2009) examined rhizobacterial extract of B. subtilis
BC1 and P. aeruginosa E2 strain in enhancement of cell division, fresh weight and
cotyledons size in cucumber. Morrone et al. (2009) demonstrated that B. japonicum
encodes separate diterpenoid from plant and fungi ent-copalyl diphosphate and ent-
kaurene involved in biosynthesis of gibberellin. Earlier, Bottini et al. (2004)
reviewed the involvement of gibberellins-mediated symbiotic and soil-endophytic
microorganisms in PGP activities. Cytokinin is dominantly produced by rhi-
zobacteria (Arkhipova et al. 2007). On the other hand, Liu et al. (2013) observed
cytokinin producing PGPR inoculation in seedlings alleviated drought stress in arid
environments.

5.5.4 Bacillus in Stress Management

Certain enzyme containing microbes have dual role to be played in plant–bacteria
interactional studies. The mechanism of PGP involve 1-aminocyclopropane-
1-carboxylate deaminase (ACCD) production. PGPRs played significant role in the
regulation of the plant hormone, ethylene, thus influence the growth and devel-
opment of plants (Davies 2010). Belimov et al. (2009) demonstrated
bacteria-mediated ACCD in alleviation of stress-induced ethylene-mediated adverse
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impact in plants, abiotic and biotic factors. Accelerated ethylene production under
high and chilling temperatures has been reported by researchers in both plants and
rhizospheric microbial species (Wright and Osborne 1974). Penrose and Glick
(2003) proposed the standard methodology to characterize rhizospheric bacteria for
the production of ACC-deaminase in vitro. Thereafter, several advancement were
made in of rhizosphere microbiology, especially to establish the characteristically
ACCD active in PGPRs. A psychrotolerant ACCD producing bacterium P. putida
UW4 reported to promote plant growth at low temperature under salt stress con-
ditions in canola (Cheng et al. 2007). PGPR containing ACCD boost plant growth
particularly under stressed conditions due to regulation of accelerated ethylene
production in response to a multitude of stresses such as salinity, temperature, and
drought (Marshall et al. 2012), water logging, pathogenicity (Lulai and Suttle
2004), and contamination (Arteca and Arteca 2007). Various workers observed
PGPR having ACCD caused marked improvement in root growth and biomass
production under stressed conditions (Belimov et al. 2001, 2005; Safronova et al.
2006; Zahir et al. 2009; Nadeem et al. 2014a, b). The decreased ACC level resulted
in low endogenous ethylene concentration reduced the harmful effects of
stress-induced ethylene so as to allow plants to develop a better root system. PGPR
containing ACCD mitigates the ACC-imposed effect in the similar way as did the
chemical inhibitor such as carbon-di-oxide (Shaharoona et al. 2007; Nadeem et al.
2010).

5.5.5 Bacillus in Biocontrol of Phytopathogens

Among diverse group of microorganisms, about 350 bacterial species studied to
date, are important producers of volatile substances (Wenke et al. 2010).
Beauchamp and Drury (1991) reported that rhizobia are relatively less efficient in
HCN production than that of other rhizosphere bacteria but its production is
common by fluorescent group of pseudomonads (Sacherer et al. 1994; Bagnasco
et al. 1998; Rodrı  guez and Fraga 1999; Siddiqui et al. 2006; Ahmad et al. 2008).
Cyanide as one among secondary metabolite produced from glycine by HCN
synthase reported by Castric and Deal (1994). Secondary volatile metabolite pro-
duced by majority of gram-negative bacteria have deleterious effect on growth of
phytopathogens (Knowles and Bunch 1986). Cyanides play important role in the
suppression of root rot in tobacco caused by Thilaviopsis basicola (Ahl et al. 1986).
HCN inhibits the enzyme Cytochrome C oxidase and other metalloenzymes
(Voisard et al. 1989) of the pathogens thus helps plants against the attack soil-borne
diseases (Blumer and Haas 2000). Long back, Glick et al. (1998) observed that
certain bacteria along with fungi were also reported that inhibits by the action of
HCN because HCN negative microorganisms do not resist the HCN activity. The
volatile cyanogens production in liquid cultures proved inhibitory to various fungal
genera (O’Sullivan and O’Gara 1992; Dowling and O’Gara 1994). Haas and
Défago (2005) elaborated understanding of action of HCN in plant disease control.
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Kremer and Souissi (2001) demonstrated that the production of HCN by rhi-
zobacteria was similar to its exogenous concentrations, inhibiting the seedling
growth, suggesting that HCN produced in rhizosphere of proved potential and
environmentally compatible mechanism for biocontrol. Dubey et al. (2014) found
plant growth-spromoting Bacillus subtilis BSK17 strain able to produce HCN and
other inhibitory metabolites to act against Fusarium oxysporum.

5.6 Biofilm Formation by Bacilli

The root exudation process includes the secretion of ions, free oxygen and water,
enzymes, mucilage, and a universal array of carbon-containing primary and sec-
ondary metabolites helps in maintaining rhizospheric ecology. In rhizosphere
microbes in root-association forms biofilms, basically depends on the availability of
root exudates nutritional factor to favor cell aggregation (Seneviratne et al. 2011).
Biofilm formation is central factor triggering root colonization (Ortíz-Castro et al.
2009; Bais et al. 2006). Chemotaxis behaviors of rhizobacteria (in particular flag-
ellated bacteria) for root exudates have also been observed (Tan et al. 2013; Yuan
et al. 2015;). Root exudates are less diverse but often compose a larger proportion
of the exudates by mass. They include low-molecular weight compounds such as
amino acids, organic acids, sugars, phenolics secretion of low- and high-molecular
weight root exudates into the soil changes its environment. The polysaccharides,
mucilage, and proteins are comes under the category of high-molecular root exu-
dates. Mucilages are released from the root cap, these are primary cell between
epidermal and sloughed root cap (including root hairs). Few rhizobacteria also
produce microbial mucilages. Further, autolysis of root cells is another reason for
the production of lysates as root exudates in the soil. Collectively, lysate, plant and
microbial mucilages associate organic and mineral matter (Rovira 1969).

A marked concept about root exudates was put forwarded by Bais et al. (2004)
that plant root cells has functional way to secrete chemicals which also includes
activity and turnover of microbes and thus, influence nutrient availability (Leff et al.
2015) in the rhizosphere (Magiorakos et al. 2012). On the other hand, chemicals
and polysaccharides secretions of root cells are responsible for initial attachment of
other low-molecular organic compounds such as ethylene, sugars, amino acids,
vitamins, polysaccharides, and enzymes present in soil. Hence, these nutritional
resources influence microbial population structure and play a vital role in niche
stabilization and rhizospheric homeostasis. During microbial interactions, the root
cells release exudates either passively (diffusates) and actively (secretions).
Whereas, the low-molecular weight organic compounds released in a passive
process along with their own steep concentration-gradient that usually exists
between the cytoplasm of intact cells and the external solution (Kuzyakov 2002).

Exopolysaccharide (EPS) of bacterial origin modulate the chemical and physical
properties of biofilms on abiotic surfaces (Friedman and Kolter 2004). The bacterial
EPS production merit as important factor for effective colonization on root surfaces.
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More than 90% of the EPS volume consists of water (Schmitt & Flemming 1999)
and proteins and polysaccharides which enhance bacterial adhesion (Sutherland
2001) while lipopolysaccharides (Prakash et al. 2003), uronic acids (Kavita et al.
2014) and biosurfactants (Banat et al. 2010) depress bacterial adhesion. Sutherland
(2001) noted that structure of the EPS has a marked effect on the biofilm formation.
Biofilm EPS is not generally uniform but vary spatially and temporally. Honma
et al. (2007) described the inhibitory role of glycosylated surface-glycoprotein in
Tannerella forsythia biofilms. Li et al. (2008) stated that EPS play vital role in the
biofilm formation and structure of membrane-aerated biofilms (MABs). Production
of a novel glucose, galactose, and mannose-rich polymer that contributes to cell–
cell interactions necessary for pellicle and biofilm formation and its stability
(Armitano et al. 2014).

Several workers have studied the role of biofilms in various systems of indus-
trial, ecological and environmental backgrounds. However, two major tools in the
past few decades have emerged to enhance our understanding of biofilm and its
accomplishment. Foremost is the use of scanning electron microscopy (SEM) to
elucidate ultrastructure of biofilm (West et al. 2014), and second, exploration of the
genes governs metabolite production that involve in cell adhesion and biofilm
formation (Mielich-Süss and Lopez 2015).

Although, Bacillus and Paenibacillus species among Bacilli showed pragmatic
biofilm formation (Branda et al. 2006; Bais et al. 2004). But, B. subtilis forms
adhering biofilms on inert surfaces under the control of a variety of transcription
factors (Cho et al. 2003; Kinsinger et al. 2003; Bais et al. 2004). Zeriouh et al.
(2014) reported that the surfactin production by Bacillus subtilis not only necessary
for biofilm formation but also exhibits antimicrobial activities. The antimicrobial
activity of surfactin seems to be responsible for the inhibition of several phy-
topathogens. The role of biofilm in biocontrol initiation has also been highlighted
by Haggag and Timmusk (2008) who observed the biofilm-forming P. polymyxa in
controlling crown root rot disease caused by Aspergillus niger and suggested that
the superior biofilm former offers significantly better disease protection.

Biofilms hold tremendous practical significance, exhibiting both beneficial and
detrimental activities (Zhang et al. 2003; Ribeiro et al. 2015). The in vitro pro-
duction of biofilm formation of PGPR gave better crop yields through a range of
plant growth mechanisms bio fertilizers through improved N2 fixation and by
solubilization of micro- and macronutrient and their uptake. Further, enhanced
growth observed due to the production of beneficial metabolites. Their performance
during host-plant bacteria relationship exhibited significant and sustainable
enhancement of productivity and yield both in green houses and field practices.
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5.7 Conclusion

Scientists in general and biologists in particular focus their attention for sustainable
crop production because, food security as a challenge of now cope food security
problems. Different species of Bacillus are really versatile with that rendered
enhancement of plant growth and health promotion powered with super abilities to
produce resting fruiting bodies in the form of endospores. During adverse situa-
tions, several characteristics these organisms and because of provide all benefits to
the productivity enhancement in field crops. Thus, assistance of such group of
bacteria is fitted for luxuriant growth and food production enhancement. However,
a proper evaluation be made about their pathogenicity before releasing for com-
mercial practices.
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Chapter 6
Utilization of Endophytic Bacteria
Isolated from Legume Root Nodules
for Plant Growth Promotion

Winston Franz Ríos-Ruiz, Renzo Alfredo Valdez-Nuñez,
Eulogio J. Bedmar and Antonio Castellano-Hinojosa

Abstract For decades, rhizobia were described as the single inhabitant of legume
nodules. However, other bacteria, which are not typical rhizobia, are often found
within nodules and suggested to affect the behaviour and fitness of the host plant.
Here, we highlight their diversity, role in the promotion of legumes growth and in the
recuperation of degraded soils. Studies have shown the capacity of Non-Nodular
Endophytic Bacteria (NNEB) to stimulate plant growth by direct mechanisms
including production of phytohormones such as auxins, facilitation of acquisition of
plant resources/nutrients that plants lack such as fixed nitrogen, iron, phosphorous,
besides, production of the enzyme 1-aminocyclopropane-1-carboxylate (ACC
deaminase) involved in reduction of plant ethylene, etc. Among the indirect mech-
anisms, those associated to the enhancement of plant growth are production of
siderophores, antibiotics and lytic enzymes. Finally, we described greenhouse and
field experiments that successfully used NNEB to both increase the growth and yield
of legumes and to recover degraded soils.

Keywords Legume � Plant-growth promotion � Nodule � Endophytic bacteria �
Soil
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6.1 The Bacteria Inside the Legume Root Nodules

Legumes (family Fabaceae or Leguminosae) constitute the third largest family of
angiosperms plants with a critical importance in human and animal feeding as well
as for benefits of agricultural systems. Leguminous and actinorhizal plants are
unique among the living beings because they have the characteristic to establish N2-
fixing symbiosis with soil bacteria, collectively known as rhizobia; as a conse-
quence of the plant-bacteria interaction, roots, and occasionally stems, nodules are
formed where N2-fixation occurs (Gresshoff and Ferguson 2017; Lace and Ott
2018). Briefly, nodulation is a complex and specific molecular ‘conversation’
between the host legume and the rhizobia where the former produce flavonoids in
their radical exudates which are detected by rhizobia (Hayashi et al. 2014). Then,
flavonoids induce a cascade of nodulation genes in the rhizobia that start the
synthesis of nodulation factors, the formation of an infection thread to deliver
rhizobia within the epidermal cells of the plant host and, finally the transformation
of vegetative rhizobial cells into specialized, N2-fixing bacteroids (Oldroyd and
Downie 2008; Downie 2014).

6.2 The Diversity of Nodule-Forming Rhizobial Bacteria

The rhizobia are a polyphyletic group of bacteria which, in addition to their sym-
biotic N2-fixing lifestyle with legumes, are also able to colonize plant roots and
even to maintain an endophytic role in non-legume plants (Bhattacharjee et al.
2008; Poole et al. 2018; Schneijderberg et al. 2018). Classical nodule-forming, N2-
fixing, symbiotic rhizobia belong to the Alphaproteobacteria and
Betaproteobacteria classes, albeit members of the Gammaproteobacteria and
Actinobacteria have been also reported as symbiotic bacteria (Martínez-Hidalgo
and Hirsch 2017 and references therein). Currently, classical rhizobia include the
genera Rhizobium, Ensifer (formerly Sinorhizobium), Neorhizobium,
Pararhizobium and Allorhizobium within the family Rhizobiaceae, and genera
Mesorhizobium, Bradyrhizobium and Azorhizobium of the Phyllobacteriaceae,
Nitrobacteriaceae (Bradyrhizobiaceae) and Hyphomicrobiaceae families, respec-
tively. Comprehensive reviews on the current classification of bacteria able to
establish N2-fixing legume symbioses, including both classical and non-classical
rhizobia, have been published (Mousavi et al. 2015; Peix et al. 2015; Shamsheldin
et al. 2017; Martínez-Hidalgo and Hirsch 2017; Velázquez et al. 2017).

The ability for nodulation of non-classical rhizobia, those which do not belong to
the above-mentioned genera, has been related to their coexistence with classical
symbiotic rhizobia leading to horizontal transfer of nodulation genes
(Martínez-Hidalgo and Hirsch 2017). This attribute constitutes the main driver of
evolution for the acquisition of new symbiotic abilities for bacteria residing within
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the nodule (Estrela et al. 2016; Zgadzaj et al. 2016). A list of valid species of
rhizobia is constantly updated and recorded in the list of Prokaryotic names with
standing in nomenclature (https://www.bacterio.cict.fr).

6.3 Non-nodulating Bacteria from Legume Root Nodules

In the interior of the legume nodules, in addition to the symbiotic rhizobia, the
presence of a vast diversity of bacteria unable to form nodules by themselves has
been reported (Peix et al. 2015; Aeron et al. 2015; Martínez-Hidalgo and Hirsch
2017; Velázquez et al. 2017). There are several denominations for bacteria that
co-exist with symbiotic rhizobia; they have been called non-rhizobial bacteria
(Tariq et al. 2012; Dhole et al. 2016), non-rhizobial endophytes (De Meyer et al.
2015), nodule endophytes (Velázquez et al. 2013), bacteria associated with the
nodule (Rajendran et al. 2012), and non-symbiotic bacteria with disinfected nodules
(Da Costa et al. 2013). In this review, we will refer to them as Non-Nodular
Endophytic Bacteria (NNEB).

The first report published on the presence of bacteria different from the classic
rhizobia recovered from the interior of healthy nodules is more than 100 years old
(Beijerinck and Van Delden 1902) and was associated to Agrobacterium
radiobacter isolated from root nodules of Trifolium plants. These results did not go
unnoticed by Philipson and Blair (1957) who, in addition to Rhizobium, reported
the presence of Aerobacter, Bacillus and Flavobacterium from the interior of
Trifolium plant nodules. For a long time, based on the morphocolonial character-
istics and biochemical tests as well as on the absence of nodulation traits after
reinfection tests with the original host, many authors underestimated the presence of
endophytic bacteria different to those of classical rhizobia (Fred et al. 1932; Vincent
1970; Somasegaran and Hoben 1994). Even, they were catalogued as ‘contami-
nants’ by Somasegaran and Hoben (1994). For many years, endophytic bacteria
were discarded based mainly on two tests: the absorption capacity of Congo Red
when they grow in Petri plates containing yeast extract mannitol medium, and the
colour change of bromocresol purple indicator on Petri plates containing peptone
glucose agar (Martínez-Hidalgo and Hirsch 2017). Nowadays it is well stablished
that nodule disinfection is required for the correct isolation of NNEB. There are
several methodologies to confirm the efficiency of surface-sterilized nodules:
(a) incubation of disinfected nodules on plates containing YEM medium (Tariq
et al. 2012); (b) plating aliquots of the rinsing water after the disinfection process in
growth media (Bai et al. 2002; Leite et al. 2017); (c) rolling the surface-sterilized
nodules on plates containing growth media (De Meyer et al. 2015).

In any case, the appearance of bacterial growth invalidates the experiment and
bacteria grown in the planes can be associated to external contamination coming from
the outer surface of the nodule (Bai et al. 2002). About a hundred of different genera
considered NNEB have been isolated from root legumes worldwide, of which 29.7%
belong to the Alfaproteobacteria, 20.8% to the Actinobacteria, 18.8% to the
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Gammaproteobacteria, 14.9% to the Betaproteobacteria, 9.9% to the Bacilli and 5.9%
to other classes Table 6.1. The greatest presence of some groups inside the nodule is
unknown, though believed to be associated with the genotype of the host plant (De
Meyer et al. 2015; Leite et al. 2017; Trabelsi et al. 2017). Soil physicochemical
characteristics also influence structure and composition of NNEB; De Meyer et al.
(2015) showed that genera Paenibacillus, Kocuria and Leifsonia were dominant in
legumes grown in extensive moors, tracts of sandy heath and wetlands, Bosea,
Moraxella and Microbacterium were in dune ecoregions and Brevibacterium,
Mycobacterium and Micromonospora were more abundant in sandy soils. Moreover,
the diversity of NNEB within nodules from Vigna unguiculata growing in different
types of soil was dependent on the soil pH (Leite et al. 2017).

6.4 Role of Non-nodulating Endophytic Bacteria
in the Promotion of Legumes Growth

More than 30% of the NNEB and symbiotic bacteria present in leguminous nodules
are potential Plant Growth Promoting Bacteria (PGPB) (Trabelsi et al. 2017 and
references therein). It is also known that the endophytic microbiome promotes plant
growth and health and that this beneficial effect is mediated by secondary
metabolites (Brader et al. 2014). NNEB aids in plant-growth promotion by several
mechanisms such as N2-fixation, inorganic phosphate solubilization, release of
siderophores, production of phytohormones, biocontrol activity, etc. A list of
NNEB with PGPB properties is presented in Table 6.2.

Many NNEB are N2-fixers capable of converting atmospheric dinitrogen (N2)
into ammonium (NH4

+) without causing morphological changes in roots but
increasing the growth and yield of the plants (Hayat et al. 2010) Table 6.2. NNEB
also improves the availability of P, with the concomitant increase in the yield and
nutritional efficiency of the plants, even under effective biological N2-fixation
conditions (Santoyo et al. 2016) Table 6.2. Siderophores act as iron scavenging
molecules and create nutrient-limiting conditions for phytopathogenic microor-
ganisms (Berg et al. 2005) Table 6.2. Iron is considered an important cofactor for
enzymes involved in many biochemical pathways such as photosynthesis in plants
and nitrogen fixation in bacteria. In this sense, Khandelwal et al. (2002) reported
that the production of siderophores by NNEB improve the symbiosis through the
increase of ferric ion necessary for an efficient nitrogenase activity. Microbial
production of phytohormones such as auxins, and auxin-like compounds, is known
to trigger cell elongation, division and differentiation in plants (Santoyo et al. 2016).
They also play an important role in the ontogeny of the nodules in the
legume-rhizobium symbiosis and many studies indicate that changes in the content
of indole acetic acid (IAA), or in its balance with cytokinins, are a prerequisite for
the organogenesis of the nodule (Downie 2014).

The hormone ethylene produced within the plant endosphere has a major con-
sequence on the bacterial microbiota residing within. NNEB with
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Table 6.1 Non-nodular endophytic bacteria (NNEB) isolated from the interior of worldwide
grown legume nodules

Host legume NNEB—Origin (Reference)

Caesalpinioideae Acacia salicina, A. stenophylla, A. ehrenbergiana,
A. nilotica, A. seyal, A. tortilis, A. laeta.

Acinetobacter haemolyticus, Ancylobacter sp.,
Arthrobacter sp., Bacillus fusiformis, B. senegalensis,
Brevibacillus brevis, Caulobacter vibriodes,
Chitinophaga sancti, Comamonas testosteroni,
Enterobacter sp., Herbaspirillum frisingense, Kaistia sp.,
Microbacterium flavescens, Mycobacterium
frederiksbergensis, Paenibacillus agarexedens,
P. amylolyticus, P. glycanilyticus, P. pabuli,
Pseudomonas fluorescens, P. putida, Rhizobium
radiobacter, Roseateles depolymerans,
Stenotrophomonas maltophilia, Variovorax paradoxus—
Australia (Hoque et al. 2011); Advenella kashmirensis,
Agrobacterium tumefasciens, Brevibacillus nitrificans,
Microbacterium oxydans, Ochrobactrum anthropi,
O. intermedium, Paenibacillus glycanilyticus, P. humicus,
Pseudomonas aeruginosa, Rhizobium sp.,
Stenotrophomonas maltophila—Algeria (Boukhatem
et al. 2016)

Enterolobium saman Shinella sp.—Philippines (Bautista et al. 2017)

Leucaena leucocephala Ensifer morelense-México (Wang et al. 2002)

Mimosa pudica Pantoea agglomerans—Phillipines (Bautista et al. 2017)

Neptunia natans Labrys neptuniae—Taiwan (Chou et al. 2007)

Prosopis farcta Paenibacillus prosopidis—Tunisia (Valverde et al. 2010)

Papilionioideae Adesmia emarginata Labrys methylaminiphilus sp.—Chile (Gerding et al.
2017)

Aeschynomene sensitiva Pseudomonas moselli, Rhizobium rhizogenes—
Phillipines (Bautista et al. 2017)

Alysicarpus spp. Stenotrophomonas sp.—Phillipines (Bautista et al. 2017)

Arachis duranensis Agrobacterium sp., Burkholderia cepacea,
Herbaspirillum frisingense, Rhizobium mesosinicum,
R. multihospitium—China (Chen et al. 2014)

Arachis hypogaea Enterobacter spp., Klebsiella spp., Pseudomonas spp.—
Argentina (Ibáñez et al. 2009); Chryseobacterium
indologenes, Enterobacter cloacae, E. ludwiigii,
Klebsiella pneumoniae, Pseudomonas aeruginosa—India
(Dhole et al. 2016)

Argyrolobium uniflorum Agromyces sp., Phyllobacterium sp.—Tunisia (Zakhia
et al. 2006)

Aspalathus abietina Burkholderia aspalathi—South Africa (Mavengere et al.
2014)

Astragalus gombiformis, As. algerianus, As. armatus,
As. chrysopterus.

Bosea sp., Inquilinus sp., Mycobacterium
frederiksbergense, Phyllobacterium sp., Sphyngomonas
sp.—Tunisia (Zakhia et al. 2006); Nocardioides astragali
—China
(Xu et al. 2018)

Calicotome villosa Bacillus circulans, Inquilinus sp., Phyllobacterium sp.,
Sphingomonas sp.—Tunisia (Zakhia et al. 2006)

Calopogonium mucunoides Enterobacter cloacae, Herbaspirillum putei—Phillipine
(Bautista et al. 2017)

Cicer arietinum Ochrobactrum ciceri—Pakistan (Imran et al. 2010);
Agrobacterium tumefasciens—Tunisia (Säidï et al. 2011);
Paenibacillus endophyticus—Spain (Carro et al. 2013);
Bacillus subtilis—India (Saini et al. 2015); Enterobacter
sp.—India (Koli and Swarnalakshmi 2017)

(continued)
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Table 6.1 (continued)

Host legume NNEB—Origin (Reference)

Colutea arborescens L. Buttiauxella sp.—Belgium (De Meyer et al. 2015)

Crotalaria incana, C. spinosa Agrobacterium radiobacter, Bacillus simplex,
Burkholderia sp., Cronobacter dublinensi Enterobacter
cancerogenus, E. cloacae, Pantoea agglomerans,
Rhizobium lusitanum—Ethiopia (Aserse et al. 2013)

Cytisus scoparius (L.) Link Bacillus sp., Caulobacter sp., Kocuria sp., Leifsonia sp.,
Microbacterium sp., Paenibacillus sp., Paracoccus sp.,
Phyllobacterium sp., Rhodococcus sp., Sphingomonas
sp., Streptomyces sp.—Belgium (De Meyer et al. 2015)

Papilionioideae Dalbergia spp. Burkholderia caribensis, Phyllobacterium sp., Ralstonia
picketti—Madagascar (Rasolomampianina et al. 2005)

Dipogon lignosus Burkholderia dipogonis—New Zealand and Western
Australia (Sheu et al. 2015)

Erythrina brucei Agrobacterium radiobacter, Rahnella aquatilis,
Rhizobium sp., Variovorax paradoxus—Ethiopia (Aserse
et al. 2013)

Glycine max Bacillus subtilis—Canada (Bai et al. 2002); Acinetobacter
sp., Agrobacterium sp., Bacillus sp., Burkholderia sp.,
Pantoea sp., Serratia sp.—China (Li et al. 2008);
Diaphorobacter ruginosibacter—China (Wei et al. 2015);
Acinetobacter sp., Bacillus sp., Enterobacter sp.,
Ochrobactrum sp., Pseudomonas sp.—China (Zhao et al.
2017); Acinetobacter calcoaceticus, Burkholderia
cepacia, Enterobacter cloacae, Ochrobactrum anthropi,
Pantoea agglomerans, Proteus mirabilis, Pseudomonas
spp.—United States of America (Tokgöz 2018)

Hedysarum carnosum Pseudomonas sp.—Tunisia (Zakhia et al. 2006)

Indigofera amorphoide, I. arrecta Enterobacter sp., Paenibacillus sonchi, Planomicrobium
glaciei, Rhizobium leguminosarum—Ethiopia (Aserse
et al. 2013)

Lathyrus latifolius L., L. numidicus, L. pratensis L.,
L. silvestris L.

Phyllobacterium sp.—Tunisia (Zakhia et al. 2006); Bosea
lathyri—Belgium (De Meyer et al. 2012); Bacillus sp.,
Enterobacter sp., Erwinia sp., Microbacterium sp.,
Paenibacillus sp., Pantoea sp., Promicromonospora sp.,
Pseudomonas sp., Staphylococcus sp., Streptomyces sp.—
Belgium (De Meyer et al. 2015)

Lespedeza sp. Arthrobacter nitroguaiacolicus, Bacillus megaterium,
Burkholderia phenazinium, B. phytofirmans,
B. caledonica, B. semidinicola, B. glathei, B. sordidicola,
Dyella koreensis, D. marensis, D. japonica,
Methylobacterium fujisawaense, Microbacterium
ginsengisoli, Staphylococcus warneri—Korea
(Palaniappan et al. 2010; Subramanian et al. 2015)

Lotus argenteus Paenibacillus sp., Sphingomonas sp.—Tunisia (Zakhia
et al. 2006)

Lotus corniculatus Phyllobacterium loti—Uruguay (Sánchez et al. 2014);
Actinoplanes sp., Ancylobacter sp., Arthrobacter sp.,
Bacillus sp., Corynebacterium sp., Inquilinus sp.,
Mycobacterium sp., Oerskovia sp., Phyllobacterium sp.,
Staphylococcus sp., Xanthomonas sp.—Belgium (De
Meyer et al. 2015)

Lotus pedunculatus Acinetobacter sp., Aeromicrobium sp., Bacillus sp.,
Chryseobacterium sp., Curtobacterium sp., Paenibacillus
sp., Pantoea sp., Plantibacter sp., Pseudomonas sp.,
Sphingomonas sp., Staphylococcus sp.—Belgium (De
Meyer et al. 2015)

Lupinus albus Cohnella lupini—Spain (Flores-Félix et al. 2014);
Paenibacillus lupini—Spain (Carro et al. 2014)

Lupinus angustifolius Micromonospora lupini, M. saelisecensis—Spain
(Trujillo et al. 2007)

(continued)
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Table 6.1 (continued)

Host legume NNEB—Origin (Reference)

Lupinus polyphyllus Bosea lupini—Belgium (De Meyer et al. 2012a);
Arthrobacter sp., Bacillus sp., Brevibacillus sp., Cohnella
sp., Enhydrobacter sp., Kocuria sp., Lysinibacillus sp.,
Microbacterium sp., Microbispora sp., Roseateles sp.,
Staphylococcus sp.—Belgium (De Meyer et al. 2015).

Macroptilium lathyroides Pleomorphomonas oryzae, Rhizobium rizogenes—
Phillipines (Bautista et al. 2017)

Papilionioideae Medicago falcata L., M. lupulina L., M. polymorpha. Bacillus sp., Corynebacterium sp., Massilia sp.,
Microbacterium sp., Moraxella sp., Pantoea sp.,
Paracoccus sp., Pseudomonas sp., Staphylococcus sp.—
Belgium (De Meyer et al. 2015); Pseudomonas
brassicacearum—China (Kong et al. 2017); Bacillus
megaterium—Spain (Chinnaswamy et al. 2018)

Medicago hispida Kaistia sp., Pseudomonas sp, Achromobacter sp.,
Stenotrophomonas sp., Xanthomonas sp., Duganella sp,
Rheinheimera sp.—Peru (Arone et al. 2014)

Medicago sativa Endobacter medicaginis- Spain (Ramírez-Bahena et al.
2013); Micromonospora spp. (Martínez-Hidalgo et al.
2014); Paenibacillus medicaginis—Taiwan (Lai et al.
2015); Streptomyces sp., Variovorax sp.—Belgium (De
Meyer et al. 2015); Pseudomonas sp., Variovorax sp.—
New Zealand (Wigley et al. 2015); Bacillus sp.,
Novosphingobium sp., Methylibium sp., Mycobacterium
sp., Shinella sp.—New Zealand (Wigley et al. 2017).

Medicago truncatula Ornithinicoccus sp., Pseudomonas sp.—Tunisia (Zakhia
et al. 2006)

Melilotus albusMedicus.,M. altissimus Thuillier.,M.
indicus (L.) Allioni; Melilotus officinalis (L.) Pallas

Agrobacterium sp.—China (Kan et al. 2007); Bacillus sp.,
Brevibacterium., Lysinibacillus sp., Microbacterium sp.,
Moraxella sp., Paenibacillus sp., Pantoea sp.,
Phyllobacterium sp., Pseudomonas sp.,
Sphaerisporangium sp., Streptomyces sp.—Belgium (De
Meyer et al. 2015).

Ononis vaginalis, O. natrix, O. repens L. Bosea sp., Microbacterium sp., Rhodopseudomonas sp.—
Tunisia (Zakhia et al. 2006); Bacillus sp.,
Promicromonospora sp., Streptomyces sp.—Belgium (De
Meyer et al. 2015)

Ornithopus perpusillus L. Bacilllus sp., Herbaspirillum sp., Leifsonia sp.,
Microbacterium sp., Micromonospora sp., Paenibacillus
sp., Sphingomonas sp.—Belgium (De Meyer et al. 2015)

Oxytropis ochrocephala Acinetobacter bouvetti., A. junii., Bacillus
amyloliquefasciens., B. aryabhattai., B. litoralis., B.
infantis., B. psychrosaccharolyticus., B.safensis., B.
simplex., B. subtilis., Brevibacterium frigoritolerans.,
Cohnella ferri., Erwinia piriflorinigrans., Leclercia
adecarboxilata., Microvirga aerophila., Mycobacterium
monacense., Paenibacillus sepulcri., P. costaneae.,
Paracoccus chinensis., Phyllobacterium trifolii.,
P. bourgognense., Pseudomonas baetica., P. salomonii.,
P. frederiksbergensis., Sphingomonas
astaxanthinifaciens., Sporosarcina termotolerans.,
Staphylococcus epidermidis—China (Xu et al. 2014);
Bacillus radicibacter—China (Wei et al. 2015)

Oxytropis triphylla Bosea vestrisii—Russian federation (Safronova et al.
2017); Phyllobacterium zundukense (Safronova et al.
2018b)

Oxytropis popoviana Bradyrhizobium sp.—Russian federation (Safronova et al.
2018a)

Phaseolus coccineus Cohnella phaseoli—Spain (García-Fraile et al. 2008)

(continued)
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Table 6.1 (continued)

Host legume NNEB—Origin (Reference)

Phaseolus vulgaris Agrobacterium sp.—Tunisia (Mhamdi et al. 2005);
Agrobacterium tumefasciens—Tunisia (Säidï et al. 2011);
Achromobacter sp., Enterobacter sp., Serratia
proteamaculans, S. liquefaciens, Pseudomonas sp.,
Pantoea sp.—Ethiopia (Aserse et al. 2013);
Herbaspirillum lusitanum—Spain (Valverde et al. 2013);
Phyllobacterium endophyticum—Spain (Flores-Félix
et al. 2013); Fontibacillus phaseoli—Spain (Flores-Félix
et al. 2014); Acinetobacter sp., Enterobacter sp., Delftia
sp., Klebsiella sp., Pseudomonas sp., Providencia sp.,
Rhizobium sp.—Kenya (Wekesa et al. 2017); Rhizobium
hidalgonense—México (Yan et al. 2017b); Bacillus
megaterium, Paenibacillus polimixa—Kenya (Korir et al.
2017)

Papilionioideae Periandra mediterranea Paenibacillus periandrae—Brazil (Menéndez et al. 2016)

Pisum sativum Micromonospora pisi—Spain (García et al. 2010);
Ochrobactrum sp., Enterobacter sp.—Pakistan (Tariq
et al. 2014); Micromonospora aurantiaca., M.
carbonacea.,M. chalcea.,M. chokoriensis.,M. coxiensis.,
M. halophytica., M. humi., M. krabiensis., M. lupini., M.
marina., M. matsumotoense., M. mirobrigensis., M.
purpureochromogenes., M. rifamycinica., M.
saelicesensis, M. siamensis—Spain (Carro et al. 2012);
Micromonospora noduli, M. ureilytica, M. vinacea—
Spain (Carro et al. 2016); Micromonospora luteifusca—
Spain (Carro et al. 2016); Micromonospora phytophila,
M. luteiviridis—Spain (Carro et al. 2018).

Pterocarpus indicus Labrys neptuniae, Rhizobium rhizogenes—Phillipines
(Bautista et al. 2017)

Pueraria candollei Rhizobium puerariae—Taiwan (Boonsnongcheep et al.
2016)

Pueraria lobata Devosia yakushimensis—Japan (Bautista et al. 2010)

Pueraria thunbergiana Bacillus thuringiensis, Enterobacter asburiae, Serratia
marcesens—India (Selvakumar et al. 2008)

Retama raetam Bosea sp., Microbacterium flavescens, M. barkeri,
Ochrobactrum sp., Paracraurococcus sp., Starkeya
novella—Tunisia (Zakhia et al. 2006)

Robinia pseudoacacia Bosea robiniae- Belgium (De Meyer et al. 2012a),
Tardiphaga robiniae—Belgium (De Meyer et al. 2012b);
Paenibacillus enshidis—China (Yin et al. 2015);
Arthrobacter sp., Chryseobacterium sp., Leifsonia sp.,
Pantoea sp., Rahnella sp., Stenotrophomonas sp.,
Xanthomonas sp.—Belgium (De Meyer et al. 2015);
Mitsuaria noduli—China (Fan et al. 2017);
Herbaspirillum robiniae—China (Fan et al. 2018).

Scorpiurus muricatus Phyllobacterium endophyticum, P. ifriqiyense;
Pseudomona sp., Rhizobium vignae, R. radiobacter, R.
leguminosarum, Starkeya sp.—Algeria (Bouchiba et al.
2017)

Sesbania cannabina Agrobacterium deltaense—China (Yan et al. 2017a)

Sphaerophysa salsula Paracoccus sphaerophysae—China (Deng et al. 2011)

Sophora alopecuroides Bacillus cereus—China (Zhao et al. 2011)

Sulla capitata, S.pallida Arthrobacter sp., Neorhizobium galegae,
Phyllobacterium sp., Pseudomona fluorescens, Rhizobium
nepotum, Sinorhizobium sp., Variovorax sp.—
Tunisia-Algeria (Beghalem et al. 2017)

Trifolium pratense Agrobacterium rhizogenes, Bacillus brevis, B. insolitus,
B. megaterium, B. subtilis, Bordetella avium,
Curtobacterium luteum, C. citreum, C, flaccumfaciens,
Mesorhizobium loti, Phyllobacterium myrsinacearum,
Pseudomonas corrugata, P. fragi, Rhizobium
leguminosarum—Canada (Sturz et al. 1997);
Xanthomonas sp.—Belgium (De Meyer et al. 2015)
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1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) Table 6.2 are
involved in reduction of ethylene levels by cleaving ACC into alpha-ketobutyrate
and ammonium (Shah et al. 1998). This activity is also related with the tolerance to
various types of stress such as flooding, drought, salinity, wilting and organic
contamination (Glick 2014). It is likely that NNEB with ACC deaminase activity
plays an important role in the microaerophilic metabolism of the nodule by
reducing the level of ethylene and thus leading to a better ontogeny and organo-
genesis (Murset et al. 2012). Biocontrol is the process of suppressing pathogenic
living organisms by using other living organisms. Antagonism and antibiosis, and
production of hydrogen cyanide, exopolysaccharides and lytic enzymes (cellulase,
pectinase and chitinase) are main mechanisms involved in biocontrol activity
(Hayat et al. 2010; Bhattacharyya and Jha 2012; Bulgarelli et al. 2013; Santoyo
et al. 2016). Methodologies to evaluate PGPB traits have been reported by Arora
et al. (2001) and Castellano-Hinojosa and Bedmar (2017).

Table 6.1 (continued)

Host legume NNEB—Origin (Reference)

Trifolium arvense L., T. dubium Sihthorp., T.
hybridum L., T. repens L.

Arthrobacter sp., Bacillus sp., Corynebacterium sp.,
Dyadobacter sp., Microbacterium sp., Novosphingobium
sp., Paenibacillus sp., Pantoea sp., Pseudomonas sp.,
Streptomyces sp.—Belgium (De Meyer et al. 2015)

Trigonella foenum-graecum Exiguobacterium sp.—India (Rajendran et al. 2012).

Vavilovia formosa Bosea vaviloviae—Russian Federation (Safronova et al.
2015a); Tardiphaga sp.—Armenia (Safronova et al.
2015b)

Vicia faba Agrobacterium sp.—China (Kan et al. 2007);
Agrobacterium tumefasciens, Shinella sp.—Tunisia (Säidï
et al. 2011); Bacillus sp., Clostridium sp., Desulfovibrio
sp., Desulfatimicrobium sp., Methylobacter sp.,
Phyllobacterium sp., Rhizobium sp., Sphingomonas sp.,
Streptomyces sp.—Tunisisa (Trabelsi et al. 2017);
Pseudomonas brenneri, Ps. fluorescens, Ps.
frederikbergensis, Ps. fragi., Ps. putida, Ps. rhodesiae,
Ps. yamanorum—Tunisia (Bahroun et al. 2018)

Vicia alpestris Microvirga ossetica—Russian federation (Safronova et al.
2017)

Vicia cracca (L.)., V. hirsuta (L.) S.F. Gray., V.
Lathyroides., V. sativa (L.)., V. sepium (L.)., V.
tetrasperma (L.) Schereber

Agrobacterium sp.—China (Kan et al. 2007);
Arthrobacter sp., Bacillus sp., Curtobacterium sp.,
Exigobacterium sp., Kocuria sp., Leifsonia sp.,
Lysinibacillus sp., Paenibacillus sp., Pantoea sp.,
Pseudomonas sp., Staphylococcus sp., Stenotrophomonas
sp.—Belgium (De Meyer et al. 2015)

Vigna radiata Agrobacterium tumefasciens, Bacillus subtilis, B. simplex
—Pakistan (Tariq et al. 2012); Paenibacillus spp.,
Klebsiella spp., Ensifer spp., Agrobacterium spp.,
Blastobacter spp., Dyadobacter spp., Chitinophaga spp.
—India (Pandya et al. 2015); Pseudomonas sp.—Pakistan
(Noreen et al. 2015); Chryseobacterium indologenes—
India (Dhole et al. 2017)

Vigna unguiculata Bacillus sp., Brevibacillus sp., Paenibacillus sp.,
Enterobacter sp.—Brazil (Da Costa et al. 2013);
Acinetobacter sp., Chitinophaga sp., Dyella sp.,
Herbaspirillum sp., Novosphingobium sp., Pseudomonas
sp., Stenotrophomonas sp.—Brazil (Castro et al. 2017);
Enterobacter sp., Chryseobacterium sp.,
Sphingobacterium sp.—Brazil (Leite et al. 2017)

Wisteria sinensis (Sims) Sweet Bacillus sp.—Belgium (De Meyer et al. 2015)
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Table 6.2 Direct and indirect mechanisms of plant growth promotion in non-nodular endophytic
bacteria (NNEB)

PGPB trait NNEB strain References

Direct mechanism

N2 fixation Burkholderia sp. CCBAU
15508, Pantoea
sp. CCBAU 15488,
Serratia sp. CCBAU
15465

Li et al. (2008)

Bacillus cereus MQ23 Zhao et al. (2011)

Enterobacter sp. MSP10 Tariq et al. (2014)

Bacillus megaterium
LNL6

Subramanian et al.
(2015)

Enterobacter sp. A3CK Ghosh et al.
(2015)

Enterobacter ludwigii
ABG6

Dhole et al.
(2016)

Acinetobacter
calcoaceticus DD161,
Bacillus cereus DD176,
Bacillus
amyloliquefasciens
DD222, Enterobacter
cloacae DD198,
Pseudomonas putida
DD201

Zhao et al. (2017)

Phosphate solubilization Serratia sp. CCBAU
15465

Li et al. (2008)

Serratia marcesens KR-4 Selvakumar et al.
2008

Microbacterium
ginsengisoli BLN6

Palaniappan et al.
(2010)

Exiguobacterium
sp. M2N2c

Rajendran et al.
(2012)

Bacillus subtilis M6 Tariq et al. (2012)

Bacillus UFPI CB1-8 Da Costa et al.
(2013)

Burkholderia sp. CSR2,
Enterobacter
cancerogenus CIR17C,
Paenibacillus sonchi
IAR22, Pantoea
sp. HBR8, Rahnella
aquatilis ERR5,
Rhizobium
leguminosarum IAR30,
R. phaseoli ERR17, R.
lusitanum CPSR4B,

Aserse et al.
(2013)
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Table 6.2 (continued)

PGPB trait NNEB strain References

Serratia proteamaculans
HBR15

Pseudomonas
sp. NCHA35

Ibáñez et al.
(2014)

Ochrobactrum sp. MSP9 Tariq et al. (2014)

Enterobacter sp. A3CK Ghosh et al.
(2015)

Bacillus megaterium
LNL6

Subramanian et al.
(2015)

Paenibacillus sp. M15 Pandya et al.
(2015)

Bacillus subtilis CNE215 Saini et al. (2015)

Klebsiella pneumoniae
AG4

Dhole et al.
(2016)

Enterobacter sp. NAB69 Koli and
Swarnalakshmi
(2017)

Bacillus megaterium
NMp082

Chinnaswamy
et al. (2018)

ACC deaminase activity Burkholderia sp. CCBAU
15508, Pantoea
sp. CCBAU 15488;

Li et al. (2008)

Bacillus thuringiensis
KR-1, Serratia marcesens
KR-4

Selvakumar et al.
(2008)

Microbacterium
ginsengisoli BLN6

Palaniappan et al.
(2010)

Bacillus cereus MQ23 Zhao et al. (2011)

Exiguobacterium
sp. M2N2c

Rajendran et al.
(2012)

Bacillus subtilis M2 Tariq et al. (2012)

Enterobacter sp. CIR19 Aserse et al.
(2013)

Paenibacillus UFPI
CB7-8

Da Costa et al.
(2013)

Micromonospora
saelicesensis AL16

Martínez-Hidalgo
et al. (2014)

Ochrobactrum sp. MSP9 Tariq et al. (2014)

Enterobacter sp. A3CK Ghosh et al.
(2015)

Paenibacillus sp. M10 Pandya et al.
(2015)

Bacillus megaterium
LNL6

Subramanian et al.
(2015)
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Table 6.2 (continued)

PGPB trait NNEB strain References

Enterobacter ludwigii
ABG6

Dhole et al.
(2016)

Bacillus subtilisEB10 Egamberdieva
et al. (2017)

Pseudomonas
brassicacearum Zy-2-1

Kong et al. (2017)

Pseudomonas putida
DD201.

Zhao et al. (2017)

Ammonia Production Enterobacter asburiae
KR-3

Selvakumar et al.
(2008)

Bacillus subtilis CNE215 Saini et al. (2015)

Siderophore production Microbacterium
ginsengisoli BLN6

Palaniappan et al.
(2010)

Bacillus megaterium
LNL6

Subramanian et al.
(2015)

Enterobacter sp. A3CK Ghosh et al.
(2015)

Chryseobacterium
indologenes AM2,
Enterobacter cloacae
ACP3, Pseudomonas
aeruginosa ABG5

Dhole et al.
(2016)

Pseudomonas
brassicacearum Zy-2-1

Kong et al. (2017)

Bacillus megaterium
NMp082

Chinnaswamy
et al. (2018)

Microbacterium
ginsengisoli BLN6

Palaniappan et al.
(2010)

Bacillus cereus MQ23 Zhao et al. (2011)

Exiguobacterium
sp. M2N2c

Rajendran et al.
(2012)

Burkholderia sp. CIR1,
Cronobacter dublinensis
CIR9B, Enterobacter
cancerogenus CIR17C,
Panteoa agglomerans
CSR8A, Pseudomonas
sp. HBR44, Serratia
proteamaculans HBR15

Aserse et al.
(2013)

Pseudomonas
sp. NCHA35, NVAM24,
Klebsiella sp. TT001

Ibáñez et al.
(2014)

Enterobacter sp. A3CK Ghosh et al.
(2015)

Bacillus anthracis M1 Pandya et al.
(2015)
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Table 6.2 (continued)

PGPB trait NNEB strain References

Pseudomonas aeruginosa
ABG5

Dhole et al.
(2016)

Pseudomonas
brassicacearum Zy-2-1

Kong et al. (2017)

Acinetobacter
calcoaceticus DD161

Zhao et al. (2017)

Pseudomonas
yamanorum B12, Ps.
fluorescens B8P,
Rahnella aquatilis B16C,

Bahroun et al.
(2018)

Bacillus megaterium
NMp082

Chinnaswamy
et al. (2018)

Root colonization and biofilm production Agrobacterium
tumefasciens M5,
Bacillus simplex,
B. subtilis M2, M6

Tariq et al. (2012)

Ochrobactrum sp. MSP9 Tariq et al. (2014)

Indirect mecanisms

Extracellular
enzymatic
activity

Protease, lipase y
celulase

Paenibacillus sonchi
IAR22; Rahnella
aquatilis ERR5;
Pseudomonas
sp. HBR44; Serratia
sp. HBR25; Burkholderia
sp. CSR2; Serratia
liquefaciens HBR16B;
Variovorax paradoxus
CIR11Bs.

Aserse et al.
(2013)

Pectinase, celulase,
xilanase, caseinase,
gelatinase, amilase y
lipase, alkaline
phosphatase

Micromonospora
saelicesensis AL16,
ALFb1, ALF7,
M. chokoriensisAL20,
M. echinospora ALFb4,
M. aurantica ALFb5,
M. lupini ALFpr18C

Martínez-Hidalgo
et al. (2014)

Pectinase, quitinase Bacillus sp. M11, M17,
Paenibacillus sp. M15

Pandya et al.
(2015)

Lipase, protease,
celulase y quitinase

Bacillus cereus EB2,
B. subtilis EB10

Egamberdieva
et al. (2017)

Antifungic
activity

HCN production Bacillus thuringiensis
KR-1

Selvakumar et al.
(2008)

Rahnella aquatilis B16C Bahroun et al.
(2018)

(continued)
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6.5 Utilization of Non-nodulating Endophytic Bacteria
for Plant Inoculation

Although agricultural production heavily depends on the use of synthetic fertilizers
to provide essential plant nutrients (e.g. as nitrogen, phosphorus and potassium), the
overuse of fertilizers is causing unexpected environmental problems (Erisman et al.
2015). In this sense, the use of efficient inoculants based on PGPB, by decreasing
the use of chemical fertilizers, is a vital strategy for sustainable agricultural man-
agement and mitigation of environmental impacts (Bulgarelli et al. 2013; Santoyo
et al. 2016; Erisman et al. 2015). The success of NNEB as inoculants for agri-
cultural crops is dependent of various factors such as their ability to: colonize plant
roots where co-exist microbial competition and survival in the soil (Alquéres et al.
2013; Beauregard et al. 2013); increase the production of plant exudates which
interfere with the plant-bacteria interaction (Carvalhais et al. 2013); improve soil
health which is highly dependent of management practices, etc. (Hayat et al. 2010).

Examples of NNEB used as inoculants for different plant species, including
cereal and legumes, under greenhouse and field experiments have been reported
(Lugtenberg and Kamilova 2009; Compant et al. 2010; Hayat et al. 2010;
Bhattacharyya and Jha 2012; Gamalero and Glick 2011; Souza et al. 2015; Santoyo

Table 6.2 (continued)

PGPB trait NNEB strain References

Fusarium oxysporum,
Magnaporthe grisea,
Botrytis cinerea,
Alternaria alternata

Bacillus cereus MQ23 Zhao et al. (2011)

Alternaria burnsii Exiguobacterium
sp. M2N2c

Rajendran et al.
(2012)

Macrophomina
phaseolina

Bacillus sp. M11, M17 y
Paenibacillus sp. M15

Pandya et al.
(2015)

Macrophomina
phaseolina, Rhizoctonia
solanii, Fusarium
solanii, F. oxysporum

Pseudomonas
sp. NAFP-4, NAFP-7,
NAFP-27

Noreen et al.
(2015)

Phytophthora sojae Acinetobacter
calcoaceticus DD161

Zhao et al. (2017)

Fusarium solanii Bacillus subtilis EB10 Egamberdieva
et al. (2017)

Rahnella aquatilis B16C Bahroun et al.
(2018)

Sclerotinia sp., Botrytis
sp.

Bacillus megaterium
NMp082

Chinnaswamy
et al. (2018)

Nematicidal
activity

Meloydogine javanica Pseudomonas
sp. NAFP-12 to NAFP-32

Noreen et al.
(2015)
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et al. 2016 and references therein). The effect of NNEB on growth promotion has
been widely demonstrated in oilseed legumes, such as soybean (Li et al. 2008; Bisht
and Mishra 2013; Zhao et al. 2017) and peanut (Ibáñez et al. 2009; Dhole et al.
2016), as well as grain legumes such as lentil (Bisht and Mishra 2013), chickpea
(Egamberdieva et al. 2017; Koli and Swarnalakshmi 2017), cowpea (Da Costa et al.
2013) and mung bean (Noreen et al. 2015) Table 6.3. Forage legumes such as
clover (Sturz et al. 1997) and alfalfa (Martínez-Hidalgo et al. 2014; Chinnaswamy
et al. 2018) showed a grow-positive effect after inoculation with NNEB Table 6.3.
A list of NNEB and their effects of plant growth promotion after single inoculation
is shown in Table 6.3.

Nevertheless, utilization of NNEB in plant inoculation experiments has been
mostly confined to greenhouse assays and in vitro screenings. Assessment of the
feasibility of beneficial bacteria under field conditions is difficult since the response
of microorganisms differs from laboratory to greenhouse and field conditions (Glick
2012). Inoculation methods are essential for the success of NNEB as biofertilizers
and several studies show the differences found in relation with the method used
(Herrmann and Lesueur 2013; Schoebitz et al. 2013; Bashan et al. 2014). A study
aimed to test the NNEB revealed that genera Azospirillum, Bacillus, Pseudomonas,
Azotobacter, Serratia, Rhanella and Herbaspirillum are associated with yield
promotion in cereal and other crops (Szilagyi-Zecchin et al. 2014).

Because the ancestral relationship between legumes and rhizobia, it is assumed
that the bacterial partners are not pathogenic for their cognate plants, and legumes are
used without any prejudice for human and animal feeding. In this sense,
co-inoculation of NNEB with rhizobial species is a common practice aimed to
increase crops productivity due to their positive effect related with the increase in root
development and nodule biomass (Korir et al. 2017). Bacillus and Paenibacillus
promoted plant growth when used together with Rhizobium in chickpea plants and
co-inoculation of P-solubilizing NNEB and Rhizobium stimulated plant growth more
than their separate inoculation (Souza et al. 2015). Bai et al. (2002) also reported that
co-inoculation of soybeans with Bacillus and Bradyrhizobium increased nodulation,
plant growth, nitrogen content and the yield of the grain harvest. Results by Tariq et al.
(2012) showed that co-inoculation of crop specific rhizobia together with NNEB
improve nodulation and grain yield of Vigna radiata plants using strains of Bacillus
subtilis, Bacillus simplex and Agrobacterium tumefaciens.

Nevertheless, NNEB strains do not necessarily increase the efficiency of the
rhizobia among different leguminous plants (Camacho et al. 2001). Thus, the dif-
ferent responses to co-inoculation underscore the need to describe appropriate
rhizobia-NNEB combinations to enhance growth of legumes under particular
environmental conditions and soil types, but co-inoculation, frequently, increases
growth and yield, compared to single plant inoculation (Araújo et al. 2009). In some
cases, however, inoculation with NNEB had a negative effect on growth and yield
parameters. Whereas inoculation with many Agrobacterium strains reduced the
nodulation of Rhizobium gallicum in common beans, nodulation of alfalfa plants by
Ensifer meliloti was not affected (Mrabet et al. 2006). Table 6.4 shows the effects of
co-inoculation with NNEB and rhizobia under greenhouse conditions.
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Table 6.3 Growth promotion effects of single inoculation of non-nodular endophytic bacteria
(NNEB) under greenhouse conditions

Host Type of effect NNEB References

Trifolium
pratense, Red
trebol

Increase plant height (1.6%), Shoot
length (45.8%), Plant dry weight
(57.6%), Shoot dry weight (35.3%),
and Root dry weight (112%).

Curtobacterium
luteum

Sturz et al. (1997)

Glycine max,
Soybean

Increase shoot lenght (11.2%) Serratia
sp. CCBAU 15460

Li et al. (2008)

Shoot fresh weight (4.3%) Bacillus
sp. CCBAU 15518

Arachys
hypogaea,
peanut

Increase shoot fresh weight (52.9%) Klebsiella
sp. (NTI31,
TT001)

Ibáñez et al.
(2009)

Increase shoot dry weight (58.6%) Pseudomonas
sp. (NCHA33,
NCHA35,
NVAM24)

Increase shoot dry weight (48.6%) Enterobacter
sp. (NMAN11,
NONC13)

Sophora
alopecuroides

Shoot lenght (34.8%), Root lenght
(8.9%), shoot Fresh Weight (53.6%),
Shoot Dry Weight (116.7%) and Root
Dry Weight (73.4%)

Bacillus cereus
MQ23

Zhao et al. (2011)

Trigonella
foenum-
graecum

Increase in shoot and root lenght,
chlorophyll content, Nodule number
per plant and Nodule Dry Weight.

Exiguobacterium
sp. M2N2c

Rajendran et al.
(2012)

Vigna
unguiculata,
cowpea

Shoot dry weight (166.7%), Root dry
weight (109.2%), plant dry weight
(149.4%) and accumulation nitrogen
in the shoot (350%)

Paenibacillus
UFPI B3-9

Da Costa et al.
(2013)

Glycine max,
Soybean

Increase root dry weight (7.5%),
Shoot dry weight (32.5%); Increase
root lenght (11.6%), shoot lenght
(13.9%) and root fresh weight (7.8%)

B. thuringiensis
VL572.1, VL4C

Bisht and Mishra
(2013)

Lens
culinaris,
Lentil

Increase root lenght (8.1%), shoot
lenght (25.4%), root dry weight
(46.5%) and shoot dry weight
(42.1%)

B. thuringiensis
VLG15

Macrotyloma
uniflorum

Increase root lenght (20.0%), shoot
lenght (40.6%), root dry weight
(53.0%) and shoot dry weight
(85.0%)

B. thuringiensis
VL4C

Vigna
umbellata,
Ricebean

Increase root lenght (9.7%), shoot
lenght (13.9%) and shoot dry weight
(35.8%)

B. thuringiensis
VL4C
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Table 6.3 (continued)

Host Type of effect NNEB References

Medicago
sativa,
Lucerne

Shoot to root ratio (75.7%) Micromonospora
saelicesensisALF7

Martínez-Hidalgo
et al. (2014)

Shoot Dry Weight (30.0%), Shoot
Carbon (26.2%), Shoot Nitrogen
(101%), shoot P (37.7%) and
shoot K (41.9%)

Micromonospora
aurantiaca ALFr5

Root Dry Weight (22.5%) Micromonospora
aurantiaca ALFb5

Vigna
radiata,
mung bean

Increase in seddling Vigour Index and
Plant Lenght

Bacillus safensis
M11

Pandya et al.
(2015)

Vigna
radiata,
mung bean

Increase Shoot length (14.0%), Shoot
weight (51.3%)

Pseudomonas
sp. NAFP-19

Noreen et al.
(2015)

Increase root lenght (24.2%), Root
weight (65.4%)

Pseudomonas
sp. NAFP-32

Arachis
hypogaea,
peanut

Increase germination (38.5%), Shoot
fresh weight (45.8%), dry biomass
(68.54%)

Chryseobacterium
indologenes AM2

Dhole et al.
(2016)

Increase germination (38.5%), Root
lenght (116.6%), nodules per plant
(87.4%)

Enterobacter
cloacae ACP3

Shoot lenght (48.1%) Klebsiella
pneumoniae AG4

Increase chlorophyll content (16.1%) Pseudomonas
aeruginosa ABG5

Adesmia
emarginata

Increase plant height (28.1%) Labrys sp. AG-45 Gerding et al.
(2017)Increase root dry weight (9.8%),

shoot dry weight (38.1%)
Labrys sp. AG-49

Adesmia
tenella

Increase root dry weight (171.4%),
shoot dry weight (62.5%)

Cicer
arietinum,
Chickpea

Increase in shoot lenght (3.6%), root
dry weight (40.0%), shoot dry weight
(20.0%)

B. subtilis NUU4 Egamberdieva
et al. (2017)

Cicer
arietinum,
Chickpea

Increase in shoot dry weight
(40.63%), root dry weight (45.09%)

Enterobacter
sp. NAB69

Koli and
Swarnalakshmi
(2017)

Glycine max,
Soybean

Increase Shoot lenght (19.2%), root
lenght (38.3%), Fresh weight per
plant (36.5%) and chlorophyll content
(36.7%)

Bacillus cereus
DD176

Zhao et al. (2017)

Vicia faba,
fababean

Increase shoot/root lenght and weight Rahnella aquatilis
B16C

Bahroun et al.
(2018)

Medicago
sativa,
Lucerne

Increase shoot weight (68.3%), root
weight (62.2%)

Bacillus
megaterium
NMp082

Chinnaswamy
et al. (2018)

M.
polymorpha

Increase shoot weight (100.0%), root
weight (89.2%)

M. lupulina Increase shoot weight (89.2%), root
weight (60.0%)

M. truncatula Increase shoot weight (125.0%), root
weight (66.7%)
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Table 6.4 Growth promotion effect of co-inoculation with non-nodular endophytic bacteria
(NNEB) and rhizobia under greenhouse conditions

NNEB rhizobia Host legume Growth promotion
effect

References

Curtobacterium
luteum

Rhizobium
leguminosarum
bv. trifolii

Trifolium
pratense, red
trebol

Increase shoot height
(cm) (60.7%) and
root lenght
(cm) (97.8%),

Sturz et al. (1997)

Bordetella avium Root dry weight (g/
plant) (442.9%)

Phyllobacterium
myrsinacearum

Increase shoot dry
weight
(cm) (47.9%), total
plant weight (g/plant)
(118.7%), shoot dry
weight (g/plant)
(107.7%).

Bacillus insolitus Increase Number
nodule (442.9%)

Streptomyces
lydicus

Rhizobium sp. Pisum
sativum, pea

Increase shoot lenght
(83.85), root lenght
(78.4%), shoot dry
weight (61.0%) and
number nodules
(297.5%)

Tokala et al.
(2002)

Bacillus
thuringiensis
NEB17

Bradyrhizobium
japonicum 532C

Glycine max,
soybean

Increase nodule
numbers and nodule
dry weight

Bai et al. (2002)

Bacillus
sp. CCBAU
15518

Bradyrhizobium
japonicum B15

Glycine max,
soybean

Increase shoot lenght
(cm) (11.0%), Fresh
weight (g/plant)
(18.3%) and nodule
numbers (15.2%)

Li et al. (2008)

Klebsiella
sp. (NTI31,
TT001)

Bradyrhizobium
sp. SEMIA6144

Arachys
hypogaea,
peanut

Increase number
nodules (43.9%)
Shoot dry weight
(17.1%)

Ibáñez et al.
(2009)

Pseudomonas
sp. (NCHA33,
NCHA35,
NVAM24)

Increase number
nodules (10.3%),
Shoot dry weight
(14.3%)

Enterobacter
(NMAN11,
NONC13)

Increase number
nodules (79.9%),
shoot dry weight
(12.4%)

Bacillus
thuringiensis
KR1

Bradyrhizobium
japonicum SB1

Glycine max,
soybean

Increase in root fresh
weight (22.2%), root
dry weight (40%),
root lenght (35.9%),
nodule number
(73.3%), shoot fresh
weight (12.5%) and
shoot dry weight
(12%)

Mishra et al.
(2009)
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Table 6.4 (continued)

NNEB rhizobia Host legume Growth promotion
effect

References

Bacillus cereus
MQ23

Mesorhizobium
sp. MQ23II

Sophora
alopecuroides

Increase in shoot
lenght (21.3%), root
lenght (19.5%), shoot
fresh weight (84.9%),
shoot dry weight
(33.7%), root dry
weight (21.4%),
number nodules
(85.8%)

Zhao et al. (2011)

Exiguobacterium
sp. M2N2c

Sinorhizobium
meliloti

Trigonella
foenum-
graecum

Increase in shoot and
root lenght,
chlorophyll content,
nodule number per
plant and nodule dry
weight

Rajendran et al.
(2012)

Bacillus subtilis
M6

Bradyrhizobium
sp. MN-S

Vigna
radiata,
mung bean

Increase nodule
number per plant
(78.5%), Nodule dry
weight per plant
(127.4%) and total
plant dry weight
(35.6%)

Tariq et al. (2012)

Micromonospora
aurantiaca
(ALFb5)

Ensifer meliloti
1021

Medicago
sativa,
Lucerne

Shoot to root ratio
(54.2%), shoot dry
weight (26.0%), shoot
carbon (23.7%), shoot
nitrogen (24.9%),
shoot K (35.0%).
increase nodulation
(107.1%)

Martínez-Hidalgo
et al. (2014)

Klebsiella
sp. TT001

Bradyrhizobium
sp.
SEMIA6144

Arachys
hypogaea,
peanut

Increase Root dry
weight (38.2%),
Nodule number per
plant (23.2%)

Ibáñez et al.
(2014)

Enterobacter
sp. NMAN11

Increase dry weight
(4.7%)

Bacillus
megaterium
LNL6

Bradyrhizobium
japonicum
MN110

Glycine max,
soybean

Shoot lenght (43.9%),
Root lenght (33.8%),
Dry Weight (51.0%)

Subramanian et al.
(2015)

Bacillus safensis
M11

Ensifer
adhaerens M8

Vigna
radiata,
mung bean

Increase in seddling
Vigor Index and Plant
Lenght

Pandya et al.
(2015)

Pseudomonas
sp. NAFP-32

Rhizobium
sp. NFB109

Increase shoot lenght
(5.3%), shoot weight
(24.4%), root weight
(22.5%), number
nodules per plant
(8.3%)

Noreen et al.
(2015)
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Despite the potential to improve plant growth, the use of NNEB as biofertilizers
is not widespread, with the exception of Azospirillum which is used for a variety of
crops in Europe, South America and Africa (Dobbelaere et al. 1999). The most
challenging aspect that limits commercialization of NNEB is the inconsistency in
the response to inoculation depending of the plant variety and field location
(Bulgarelli et al. 2013; Souza et al. 2015; Santoyo et al. 2016).

Table 6.4 (continued)

NNEB rhizobia Host legume Growth promotion
effect

References

B. subtilis NUU4 Mesorhizobium
ciceri IC53

Cicer
arietinum

Increase in shoot
Lenght (35.0%),
nodule number
(141.7%), Root Dry
Weight (20.8%),
Shoot Dry Weight
(24.3%)

Egamberdieva
et al. (2017)

B. megaterium
HK6

Rhizobium sp.
IITA-PAU 987

Phaseolus
vulgaris

Increase in nodule
fresh weight (25.0%),
Fixation Biological
nitrogen (42.1%), N
derived from
atmosphere (31.1%)

Korir et al. (2017)

Paenibacillus
polimixa HK1

Rhizobium sp.
IITA-PAU 983

Increase in Shoot dry
weight (39.1%), root
dry weight (52.3%)

Bacillus
megaterium
NMp082

Ensifer medicae Medicago
sativa,
Lucerne

Increase shoot weight
(28.2%), root weight
(66.1%), number
nodules (53.4%)

Chinnaswamy
et al. (2018)

M.
polymorpha

Increase shoot weight
(71.1%), root weight
(196.7%), number
nodules (71.1%)

M. lupulina Increase shoot weight
(45.1%), root weight
(76.5%), number
nodule (81.3%)

M. truncatula Increase shoot weight
(43.9%), root weight
(37.9%), number
nodule (81.5%)
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6.6 Utilization of Endophytic Bacteria in the Recuperation
of Degraded Soils

The increase of the global human population demands greater extensions of arable
land to cover the production of food, fodder, fibre and biomass which, in turn, is
causing biotic and abiotic stresses to the soil (Dubey et al. 2017). About 30% of the
global soil area is degraded or contaminated due to anthropogenic activities
(Abhilash et al. 2013). Soil degradation implies reduction and even loss of its
physicochemical and biological characteristics, poor agricultural practices and the
use of xenobiotic contaminants being the most common cause of the loss of soil
quality (Schloter et al. 2018). Among the cultural practices that generate soil
degradation are the burning of the vegetation cover, deforestation and monoculture
farming, leading to a loss of organic matter by reducing the soil microbial activity
and biomass (Kaschuk et al. 2010). Many soils are contaminated with heavy metals
and chemical organic compounds that prevent soil utilization for agricultural
practices (Dubey et al. 2017 and references therein). NNEB is being used as a
biotechnological tool for the recovery of degraded soils and of those contaminated
with xenobiotic compounds (Barac et al. 2004; Brader et al. 2014; Bao et al. 2015;
Fernández-González et al. 2017; Kong et al. 2017; Pawlik et al. 2017; Dubey et al.
2017; Imran et al. 2017).

In association with NNEB, legumes manage to tolerate high concentrations of
heavy metals, improving the phytoremediation process, preventing the entry of
heavy metal into the food chain (Kong et al. 2017) and restoring soil fertility by
increasing the nitrogen content of the soil (Dary et al. 2010). In legumes inoculated
with NNEB, a hyperaccumulation of heavy metals has been observed due to the
production of siderophores, biosurfactants and acid phosphatases produced by
NNEB (Ray et al. 2017). Excessive use of xenobiotics in agriculture, such as
pesticides and chemical fertilizers, results in severe soil contamination (Dubey et al.
2017). Phytoremediation using NNEB is a low-cost technology that can be applied
to the restoration of contaminated soils (Ahemad and Khan 2011; Tétard-Jones and
Edwards 2016). The recovery of degraded soils can be facilitated by using
microorganisms that increase the vegetation cover. Several studies have shown that
NNEB has a critical role in the restoration of marginal, degraded and contaminated
soils in the prevention of soil erosion and in the afterwards reforestation events
(Bashan and de-Bashan 2010). In this sense, soils contaminated with hydrocarbons
were successfully recovered using Lotus corniculatus and Oenothera biennis plants
inoculated with Rhizobium-, Pseudomonas-, Stenotrophomonas- and Rhodococcus-
NNEB (Pawlik et al. 2017). Germaine et al. (2006) showed that the inoculation of
Pisum sativum with Pseudomonas putida VM1450 diminished the content of the
herbicide 2, 4-D in the soil and prevented its accumulation in the aerial part of the
plant. Similarly, Wani and Khan (2010) showed that treatment with Bacillus
sp. PSB10 of Cicer arietinum seeds mitigated the toxic effects of the hexavalent
chromium present in contaminated soils. Moreover, inoculation of Cytisus striatus
with Rhodococcus erythropolis ET54b and Sphingomonas sp. D4 resulted in a
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better dissipation of hexachlorocyclohexane contaminated soils as compared to the
control treatment (Becerra-Castro et al. 2013). Inoculation of legumes with their
specific microsymbiont together with an NNEB is also a common practice. Kong
et al. (2017) showed that the co-inoculation of Sinorhizobium meliloti and
Pseudomonas brassicacearum Zy-2-1 improved the growth of Medicago lupulina
in the presence of toxic Cu2+ concentrations, and Chinnaswamy et al. (2018)
reported that the co-inoculation of Medicago polymorpha, M. lupulina, M. trun-
catula and M. sativa with Ensifer medicae and Bacillus megaterium NMp082
increased nodulation and plant growth in salty soils. Based on the influence on the
physical, chemical and microbiological properties of a soil contaminated with
heavy metals, inoculation with NNEB resulted in the improvement of the ecosys-
tem services such as nutrient cycling, microbial biomass and basal soil respiration
(Burges 2017). There are still few greenhouse studies, and even less field experi-
ments, directed to demonstrate the ability of NNEB isolated from root nodules of
legumes in the recovery of degraded soils; the aforementioned background, how-
ever, allows us to infer they have an excellent potential to improve soil health.

6.7 Conclusions and Perspectives

The presence of symbiosis specific N2-fixing nodule bacteria in legume roots is
known since the seventeenth century, albeit it was at the end of the 19th century
when Hellriegel and Wilfarth showed that the legume nodules were responsible for
nitrogen fixation. In 1888, Beijerinck isolated bacterial cells from nodules of Vicia
faba that were called Bacillus redicicola and later renamed Rhizobium legumi-
nosarum by Frank in 1889 (revised in Leigh 2004). Since then, the bacteria
nodulating legumes, best known as rhizobia, were studied, and all other morpho-
logically different cells were discarded as contaminants. In the last 20 years,
however, evidence accumulated to demonstrate the existence in the nodule interior
of other non-nodulating bacteria which are recognized as nodule endophytes. Using
confocal microscopy, NNEB have been shown to reach the inner of nodules
together with the rhizobia (Pandya et al. 2015) and that accession and accommo-
dation within the nodule is regulated genetically by the host plant (Zgadzaj et al.
2016). Thus, the legume nodule is a complex ecological niche whose microbiome is
made up of rhizobia, responsible for nodule formation, and by other bacterial
endophytes, named here as NNEB, whose function is poorly known.

The NNEB inside the nodules are analyzed using culture-dependent (culturomic)
methods aimed to the obtaining of bacterial species whose plant growth promotion
abilities and biocontrol activities could be studied to allow selection of rhizobia and
NNEB for the formulation of biofertilizers. The metagenomic techniques, on the
other hand, are of valuable interest not only in the sequencing of the 16S rRNA core
genes, but also in that of the nodulation genes which will make it possible to define
which bacterium was involved in nodule formation and what are the NNEB. Like
rhizospheric bacteria, NNEB have direct and indirect mechanisms of plant growth
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promotion, and their utilization, whether alone or in co-inoculation with rhizobia,
could constitute an ecological and healthy alternative to synthetic fertilizers for
legume and non-legume plants.

Most of the research on the mechanisms of plant growth promotion has been
done in rhizosphere bacteria, and it is generally assumed that similar mechanisms
occur in NNEB. However, the environment in the rhizosphere is quite different to
that in the nodule interior, so that differences in the biotic and abiotic stresses
outside and outside the nodule (soil type, temperature, pH, oxygen concentration,
nutrient availability, etc.) could affect the survival and lifestyle of NNEB. Thus, it is
likely that new mechanism of plant growth promotion could be found in NNEB that
are unknown in rhizobacteria. Despite several genes have been sequenced that
provide some clues on the endophytic lifestyle, the question about what turns a
rhizobacteria into a bacterial endophyte is not answered yet, and identification of
undiscovered genes involved in endophytism has not been pursued systematically.
All this designed to engineer NNEB with improved plant-probiotic capabilities and
their use as biofertilizers to increase plant growth and development and to recover
degraded soils.
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Chapter 7
Plant–Microbes Relationships in Soil
Ecological System and Benefits
Accruable to Food Health

Lateef Bamidele Taiwo, Adedayo Omowumi Oyedele,
Bukola Victoria Ailenokhuoria and Oladapo Titus Okareh

Abstract The excessive use of chemicals in agricultural production gives rise to
various issues such as unanticipated environmental impacts, soil biological degra-
dation as well as water contamination. This in many instances has led to eutrophi-
cation as well as human health hazards. The concern has raised the question on the
safety of food products obtained from this conventional method. It has, therefore,
become imperative to adopt biological fertilization strategy that may minimize the
use of these inputs. Exploiting the relationships among plants and rhizospheric soil
microbes is a rational option. Such interactions are the major factors that determine
the health of a plant, plants’ yield, and fertility of the soil. The Plant Growth
Promoting Rhizobacteria (PGPR) are being used as bio-inoculants for the provision
of nutrients, plant growth promotion and to combat plant diseases. The PGPR
includes 72 bacterial genera including Agrobacterium, Azotobacter, Azospirillum,
Bacillus, Burkholderia, Erwinia, Flavobacterium, Micrococcus, Pseudomonas,
Serratia, etc. With the use of these genera, the chemical inputs, and agrochemicals
are bound to be reduced in order to sustain benefits to human health. The application
of effective PGPR in inoculant technology, therefore, is considered as a vital
approach for sustainable soil management and solving environmental issues.
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7.1 Introduction

Globally, the significance of sustainable agricultural production cannot be
overemphasized, in order to achieve food security for a growing populace.
Chemical fertilizers which have become an integral part of present-day agriculture
are being used extensively to supply essential plants nutrients in agricultural pro-
duction. Indiscriminate application of these fertilizers used in the bid to improve
crop production has led to soil ecological disturbances such as a reduction in soil
biota, nutrient imbalances in plants, increased plants’ vulnerability to pests and
diseases, reduced nodulation in leguminous plants, plant–mycorrhizal relationships
as well as constituting environmental hazards. In addition, the gradual decrease in
the population of soil microbes that are beneficial has been linked to the indis-
criminate use of chemical fertilizers. The overdependence on chemical fertilizers
and its excessive use have also brought about other environmental related issues
including degradation of soil and its components, eutrophication caused by
excessive runoff of the nutrients into water bodies and also several health issues in
humans arising from the consumption of plants having residual chemicals.

7.2 Biological Degradation of Soil

This has been defined as the impairment or elimination of soil microbial population
which brings about alterations in biogeochemical processing within the associated
ecosystem (Sims 2018). One of the sources of pollutants is the agrochemicals which
have shown an imbalance in some of the ecological processes disruption due to the
introduction of these chemicals. Aside from polluting the soil environment, it also
leads to a reduction in soil fertility. Annual bush fire especially within the savanna
ecology for game hunting in the zone also destroyed the ecological biodiversity,
depletes the accumulating soil organic matter that has seriously affected the soil
macro and microflora and fauna. Soil degradation also manifests by a decrease in
the organic matter, as well as the total and available nitrogen and phosphorus forms.

More sustainable alternatives are being exploited in the form of use of plant
growth promoting bacteria (PGPR) to boost crop production, maintaining the fer-
tility of soils, as well as decreasing the overdependence on chemical fertilizers.
Thus, PGPRs are seen as promising alternatives because of their unique charac-
teristics. Due to the distinctive characteristics of microbes to be able to display
several spontaneous biosynthetic activities in response to particular environmental
and growth conditions, they have been considered suitable for providing solutions
to challenging issues related to life sciences and other aspects. Some soil microbes
especially in the rhizosphere, have been shown to secrete plant beneficial sub-
stances that enhance crop production such as growth promoters, siderophores,
antibiotics, and assisting in the uptake of essential plant nutrients such as phos-
phorus, potassium and zinc among several others. Plant-microbe interrelationship
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within the rhizosphere is the basis for plant well-being, production, as well as the
fertility of soils.

In cropping systems, the continuous application of chemical fertilizers decreases
the fertility status of soils and also has health implications in humans. Therefore, the
integration of PGPR inoculants with chemical fertilizers is a necessity in cropping
systems so as to reduce the use of chemicals but at the same time increase pro-
ductivity. Several authors have proposed an integrated approach in fertilizer tech-
nology, which will involve the use of PGPR-based inoculation alongside the right
and required levels of chemical fertilizer, this will not only reduce the high usage
and overdependence on chemical fertilizers but will also contribute to improved
plant growth. Kumar et al. (2009) reported a research carried out using effective
plant growth promoting bacteria with a reduction in the amount of chemical fer-
tilizer applied, as an approach for reducing the environmental issues that arise as a
result of excessive input of chemical fertilizers while at the same time improving
crop production.

7.3 Plant Growth Promoting Rhizobacteria (PGPR)

Different authors have provided various but similar definitions of PGPR.
Maheshwari et al. (2010) defined PGPR as the bacteria which through diverse
mechanisms can enhance plant growth, reduce plants’ susceptibility to disease as
well as confer on the plants, a form of defense from abiotic stresses. Grover et al.
(2011) noted that PGPRs belong to a beneficial and diverse group of microbes
domiciled within the root environment including the rhizosphere and rhizoplane.
Ahemad and Kibret (2014) described PGPR as the soil bacteria present within or
associated with root surfaces, which synthesize a wide range of regulatory chem-
icals within the rhizosphere environment thereby directly or indirectly enhancing
the growth and development of plants.

The PGPR includes the extracellular PGPR and the intracellular PGPR. The
extracellular PGPR could inhabit the rhizosphere surrounding including the rhi-
zosphere itself, root surfaces and even within cellular spaces of root tissues,
examples of extracellular PGPR includes Arthrobacter, Azospirillum, Bacillus,
Burkholderia and, Pseudomonas (Gray and Smith 2005). Frankia species and the
endophytes which include rhizospheric bacteria belonging to the Rhizobiaceae
family are examples of intracellular PGPR (Aeron et al. 2014).

7.4 Mechanisms of Action of PGPR

A key attribute of PGPR is the possession of some traits and the mechanisms for
influencing plant growth. These traits include nitrogen fixation, nutrient solubi-
lization, phytohormone, and antibiotics production among several others. These
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bacterial species enhance plant growth via various systematic ways which include
the production of plant hormones (e.g., Indole acetic acid (IAA) and Gibberellin),
solubilization of major nutrients (e.g., phosphorus and potassium) and micronu-
trients such as zinc and also siderophore synthesis. Rocheli de Souza et al. (2015)
also stated that PGPR has several mechanisms through which they incite plant
growth, these involve genomic processes to make nutrients available for plant use,
such as biological nitrogen fixation and solubilization of complex forms of phos-
phorus, regulation of ACC deaminase to reduce plant stress, as well as production
of beneficial compounds that contribute to plant growth, and these include side-
rophores and phytohormones and several other plant stimulating mechanisms. In
addition, Kumar et al. (2012), also listed some ways through which this set of
microbes stimulates the growth of plants; these include nutrient availability through
biological nitrogen fixation and phosphate solubilization, release of plant beneficial
metabolites such as phytohormone, siderophore, 1-Aminocyclopropane-1- car-
boxylate deaminase and volatile organic compounds (VOCs), bio-control activity
such as antifungal activity, defense mechanisms such as disrupting the production
of toxic substances disease-causing organisms, stimulation of systemic resistance,
rhizosphere engineering, intrusion of sensing signals and prevention of the estab-
lishment of biofilm as well as enhancing beneficial plant-microbe symbioses.

Although various researchers have proposed some of the mechanisms of action
of PGPR for plant growth promotion, the exact mechanisms are complex and not
entirely unraveled. Different species and different strains of bacteria enhance the
growth of plants through any of the mechanisms and some strains have also been
seen to show multiple mechanisms of plant growth. Earlier researchers have also
reported some of the mechanisms to include cytokinins and ethylene production
(Glick 1995), non-symbiotic biological nitrogen fixation by free-living bacteria
(Boddey and Dobereiner 1995), as well as cyanide production (Flaishman et al.
1996).

Biological nitrogen fixation, solubilization of minerals, resource acquisition,
regulation of plant hormone levels, phytohormone productions, synthesis of vita-
mins, siderophores, enzymes and stimulation of systemic resistance are categorized
as direct mechanisms of plant growth promoting activities. These plant growth
promoting bacteria reduce plant development impeding impacts caused by various
disease-causing organisms through bio-control activities such as antibiotic secre-
tion, chelation of Fe, production of extracellular enzymes which break down the
cell walls of fungi and competition for niches within the rhizosphere, these activities
are however categorized as indirect methods.

7.4.1 Biological Nitrogen Fixation

A major plant beneficial mechanism that can occur either through symbiotic or
asymbiotic association with rhizospheric soil bacteria is through biological nitrogen
fixation (BNF). The process of BNF usually occurs through the conversion of
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unreactive atmospheric nitrogen through the action of nitrogenase enzyme by
bacteria to ammonium (NH3) which is a form that can be utilized by plants
(Bhattacharjee et al. 2008).

7.4.2 Nutrient Solubilization/Availability

The soil is a sink of nutrients from which plants acquire nutrients needed for their
growth. A wide range of soil microbes including the major groups plays major roles
in the solubilization process depending on the soil environment. Therefore, PGPR is
a major source of these microorganisms that accelerate the solubilization process.
Solubilization of calcium phosphate is an example, which leads to the release of
phosphorus, a vital nutrient required for plant growth but exists in insoluble and
inaccessible forms in the soil; as a result, it is the second major chemical fertilizer
being applied for crop production. Available P exists in the soil majorly as insoluble
organic and inorganic compounds in complex forms.

Plant Growth Promoting Rhizobacteria can solubilize complex soil nutrients by
secreting organic acids, sugar acids and carbon dioxide, resulting in a reduced soil
pH making it a suitable condition for the solubilization of inorganic compounds.
Several phosphate solubilizing soil bacteria including both aerobic and anaerobic
strains have been isolated and identified around the rhizosphere and its vicinity.
Earlier reports have shown the ability of some isolated and characterized rhizo-
spheric bacteria such as Agrobacterium, Bacillus, Burkholderia, Erwinia
Pseudomonas and Rhizobium, to solubilize complex forms of phosphate such as
tricalcium phosphate, dicalcium phosphate, hydroxyapatite and rock phosphate
(Hayat et al. 2010). PGPR/plant–root relationship is fundamental in the availability
and uptake of phosphorus, especially in low phosphorus soils.

A large percentage of soil potassium which is the third major essential macronutrient
is present as complex insoluble forms such as silicate minerals, hence the amount of
potassium accessible to plant are usually inadequate. Therefore, the discovery of other
easily accessible and/or readily available sources of soil potassium is crucial for sus-
tainable cropping. Potassium solubilizing bacteria can solubilize complex potassium
compounds by the synthesis of organic acids. Several rhizospheric bacteria such
as Acidothiobacillus sp., Bacillus sp., Pseudomonas sp., Burkholderia sp.
and Paenibacillus sp. are effective soil Potassium solubilizers (Liu et al. 2012).

Other essential soil minerals are the micronutrients, required for plant nutrition
although, in very small quantities. While the requirement of these micronutrients is
usually in minute quantities, the absence or shortage of one or more of these in the
soil may lead to critical issues that may hamper the totality of plant growth in
addition to making the macronutrients available as well as accessible for plant use,
PGPRs also enhance the availability of soil micronutrients, thereby making them
available for plant use. Abaid-Ullah et al. (2011) reported the effectiveness of PGPR
in enhancing the availability of soil macronutrients (phosphorus and potassium), as
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well as some micronutrients Fe, Zn, and silicate) for plant uptake. Biological plant
promoting technology provides a cheaper and eco-friendly alternative, coupled with
its ability to carry out soil nutrient bioavailability can, therefore, be a valuable tool
in solving micronutrient deficiency-related issues. Aside from the macro- and
micronutrients, Plant growth promoting regulators and hormones play crucial roles
in plant development. Plant hormones also referred to as phytohormones have been
defined as a class of organic substances that are produced during plant metabolism
(Shi et al. 2017). Quite a large amount of plant metabolic processes such as nutrient
uptake, spatial differences in cellular processes, cell elongation, embryo formation
and development and many more biological cellular processes necessary for plant
growth are modulated by these phytohormones (Sauer et al. 2013). Phytohormones
are classified into five main groups which are: auxins (e.g. indole acetic
(IAA) acid), cytokinins, ethylene, gibberellic acid and abscisic acid which report-
edly have evident physiological impacts on plant growth when present even at very
little concentrations (Shi et al. 2017). Generally, plant hormones are produced by
microorganisms as secondary metabolites, which though are not the basis for plant
survival but are an integral part of a number of plant metabolic processes which
includes competition and defense mechanisms vital for proper plant growth and
development. Several rhizosphere bacteria are able to synthesize the five classes of
phytohormones, and this has been validated through various laboratory studies,
while majority of soil microorganisms can synthesize auxin as well as ethylene, the
production of gibberellic acid has however been noted to be limited to a minute
category of bacterial and fungal strains (Hedden and Thomas 2012).

Several beneficial bacteria secrete the auxin phytohormone, i.e., IAA which is of
great physiological importance in the interrelationship between plant and bacteria.
Rhizospheric bacteria have been reported to secrete more auxin-related compounds
compared to bulk soil-associated bacteria. In a study carried out by Taiwo et al.
(2017), different Plant growth promoting microorganisms isolated from rhizosphere
of Zea mays were reported to be positive for the production of some plant growth
promoting hormones such as IAA, gibberellin and cytokinin and the most
promising among the isolates were identified as Pseudomonas putida, Klebsiella
varricola, and Bacillus thuringiensis which produced 2.693, 19.697, and
15.091 mg/l of gibberellic acid; 0.152, 0.348, and 0.132 mg/l of IAA and 5.066,
1.804, and 2.410 mg/l of cytokinin, respectively.

Other studies have shown the production of these phytohormones by different
rhizosphere associated bacterial strains of different crops in different countries
dating back to several decades and up till now. Among other plant enhancement
traits possessed by PGPR, their capability to secrete plant growth hormones in
addition to their nutrient solubilizing ability as well as other plant enhancement
beneficial substances synthesis such as siderophores and, cyanogens makes them
the most suitable group of microorganisms to be considered in crop production.

Another important metabolite produced by PGPR is siderophore, which are
extracellular iron transport agents that solubilize and sequester iron which avail-
ability to plant is inhibited by its chemical oxidation to highly insoluble ferric salts
(Buyer and Sikora 1990). These siderophores play critical roles in the composition
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and structure of soil microbiota, in bio-control of soil-borne plant disease-causing
organisms and in enhancing growth and grain yield (Sahu and Sindhu 2011).

Ethylene which is a stress hormone is an important growth hormone that can be
produced aggressively by plants under stress conditions, however, its uncontrolled
production can affect plant root and hence the plant aging process. Plant Growth
Promoting Rhizobacteria modulates ethylene production in plants by secreting a
deaminase enzyme known as 1-aminocyclopropane-1-carboxylate (ACC).

7.4.3 Induced Systemic Resistance (ISR)

This is a mechanism by which some PGPR enhance the protection of plants against
pests and diseases. Prathab and Ranjitha (2015) defined ISR as a physiological state
by which the defensive ability induced as a reaction to a specific environmental
stimulus is enhanced, The authors further stated that PGPRs through this mecha-
nism bring about resistance against several environmental stressors. Induced
System Resistance is not targeted against specific pathogens and a diverse range of
soil microbes are able to help plants to be defensive against a broad range of
pathogens (Kamal and Yogendra 2014).

As stated earlier, the plant growth promoting bacteria protects plants against
pathogens through direct or indirect mechanism. Induced systemic resistance is an
indirect method of plant protection mechanisms as against secretion of several
antagonistic metabolites like siderophores, bacteriocins, and antibiotics which are
direct methods of plant protection (Amar et al. 2013).

7.4.4 Production of Disease Resistance Antibiotics

Bio-control activities through the production of various antibiotic substances are an
indirect way by which PGPR promotes plant growth. Many of these rhizobacteria,
like Bacillus spp. and Pseudomonas sp. inhibit pathogens by producing antibiotics
which are extracellular metabolites capable of inhibiting plant pathogens even at
low concentrations. A large percentage of Pseudomonas species and Bacillus sp.
secretes a wide range of both antifungal and antibacterial metabolites (Chauhan
et al. 2016). Antimicrobial metabolites produced by Pseudomonas include
phenazines, sulfonamide, pyocyanin and pseudomonic acid and azomycin
(Ramadan et al. 2016) while Bacillus sp. produce metabolites such as polymyxin,
circulin and colistin (Maksimov et al. 2011). In addition to siderophore and
antibiotics secretion, the majority of bacteria also produce at least one bactericidal
activity with some having a broad inhibition spectrum.
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7.4.5 Production of Protective Enzymes

As indicated earlier, one of the mechanisms by which Plant Growth Promoting
Rhizobacteria promote plant growth is by the secretion of bio-control compounds
that acts against plant pathogens. The ability of the majority of PGPR to release cell
wall lysing enzymes is one of the devices employed by this set of microbes to
control soil-borne pathogens. Chitinase, cellulase, and protease are examples of the
cell wall degrading enzymes secreted by PGPR, which through their actions sup-
press the growth of pathogenic fungi by degrading their cell wall. For instance,
chitinase degrades chitin, the major component of the fungal cell wall (Goswami
et al. 2016). Their cell wall degrading ability are highly effective such that they can
inhibit a wide spectrum of fungi pathogens even Phytophthora capsici and
Rhizoctonia solani, which are considered to be the utmost disastrous plant patho-
gens worldwide e (Islam et al. 2016). A range of microorganisms including both
Gram-positive and Gram-negative bacteria such as Bacillus species (e.g.,
B. licheniformis, B. cereus, B. subtilis and B. thuringiensis), Serratia marcescens,
Enterobacter agglomerans, Pseudomonas aeruginosa, and P. fluorescens have
chitinolytic activities which makes them to be considered as potential bio-control
agents (Sadfi et al. 2001).

7.4.6 Exopolysaccharide Production

Exopolysaccharides (EPSs) are produced by a diverse group of bacteria as well as
algae and plants. They have been defined as high molecular weight, biodegradable
polymers formed of monosaccharide residues and their derivatives (Sanlibaba and
Çakmak 2016). Exopolysaccharides play several major roles that are directly
involved in plant development, these include the maintenance of water potential,
soil particles aggregation, facilitating plant root-rhizobacteria interrelationship,
sustenance of plants when exposed to pathogens or under stress conditions (salinity,
drought, or waterlogging) (Pawar et al. 2013).

7.5 Factors Affecting the Efficiency of PGPR

The success and efficiency of PGPR as effective inoculants is determined by a
number of factors and these range from the soil environment, including the soil
status, interactions with plant roots and effects of root secretions as well as the
capability of the PGPR itself to colonize and establish itself in the rhizosphere. In
determining the suitability of bacterial strains to be classified as PGPR, the bacterial
strains should have the ability to exhibit at least two of three key traits which are the
ability to establish and colonize the soil ecosystem in aggressive manner, enhance
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plant growth and exhibition of biological control activities (Vessey 2003). It is,
however, noteworthy to state that though inoculating plants with PGPR may
temporarily promote the rhizosphere microbial population, sustaining a dense
population of the microbes in the rhizosphere for a long time is fundamental in
achieving the effectiveness of PGPR in the rhizosphere. Various biotic and abiotic
factors including the soil type, pH and microflora have a large impact on PGPR
efficiency. Soil health is also an important factor affecting the inoculation efficiency
and is determined by several characteristics such as the type of soil, nutrient
reservoir, concentrations of toxic metals, soil moisture, microbial composition, and
soil perturbations resulting from management activities (Rocheli de Souza et al.
2015). Zahir et al. (2004) noted that the modification of the rhizosphere increases
the production and health of the plant by supplementing/replacing the resident
microflora with beneficial microorganisms. Roots exudates have also been stated to
play a central role in the success and effectiveness of PGPR as inoculants. The plant
roots produce quite a limitless variety of compounds in reaction to the prevailing
factors in their habitat which includes both the biotic and abiotic factors; this action
consequently affects the plant-bacteria interaction.

7.6 Effect of PGPR on Major Crops

Maheshwari et al. (2012) highlighted some ways PGPR technology can contribute
to the achievement of agricultural sustainability and these include reducing the dose
of chemical fertilizers usage, hence a reduction in production cost and environ-
mental hazards, improved soil fertility through growth enhancement activities that
promote sustainable crop production and soil ecology management. Several reports
have documented that most of the PGPR strains isolated from rhizospheric soils of
several crops in different locations significantly increased plant growth parameters
and biomass of various agricultural crops like maize (Gholami et al. 2009), wheat
(Cakmakci et al. 2014) and legumes such as common beans, runner beans and
beans and soybean (Stefan et al. 2013; Korir et al. 2017). Ashrafuzzaman et al.
(2009) reported that most of the PGPR isolates have a significant effect on the
emergence, growth parameters and biomass production of rice seedlings.
Çakmakçia et al. (2014) showed the effect of PGPR on yield of two cereal crops
(spring wheat and barley) under both greenhouse conditions and field studies and
noted that they significantly affected their yield, yield components and quality
parameters and concluded that this satisfied the nitrogen requirements of the crops
under greenhouse and field conditions even irrespective of land elevation above sea
levels.

Under field conditions, Zahir et al. (1998) carried out biological growth pro-
moting studies on maize seeds with a combination of four isolates (two Azotobacter
spp. and two Pseudomonas spp.) after NPK fertilizer application and observed that
collective inoculation of the isolates considerably increased grain yield by 19.8%,
cob weight, cob length, 1000 grain weight, plant height, nitrogen content in the
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straw and grain by 21.3%, 20.6%, 9.6%, 8.5%, 18% and 19.8% respectively
compared to the un-inoculated control plants. Other reports on maize inoculation
were documented by Vedder-Weiss et al. (1999) who showed that maize seed
inoculated with Azospirillum spp. at a concentration of 106 cfu/ml enhanced fresh
root and shoot weight of seedlings while Stancheva et al. (1992) showed that maize
seeds inoculated with Azospirillum brasilense strain 1774 in a blend with
100 kg N/ha fertilizer gave the same result as 200 kg N/ha of non-inoculated
plants.

7.7 Influence of PGPR on Soil Respiration

Plant Growth Promoting Rhizobacteria (PGPR) influence some soil microbial
activities which include soil respiration. Findings indicate that soil inoculation
using some PGPR increased soil respiration by (18%) when compared to the control
(Taiwo et al. 2018) as shown in Fig. 7.1. Increasing microbial numbers through
inoculation with appropriate and N2 fixing microbes that are infective and effective
in nodulation might lead to an increase in nodulation activities on the rhizoplane.
The production of exudates, infection threads arising from plant-microbe interaction
and presence of molybdenum (Mo) nitrogenase enzymes could be responsible for
the increase in activities of nodulating bacteria and hence improvement in nodu-
lation of cowpea by about 70% as shown in Table 7.1.

7.8 Safety Regulation Considerations

The usage of a wide range of synthetic products including chemical fertilizers,
pesticides and growth regulators which are currently being employed for agricul-
tural production calls for public health concerns as they have been implicated to

Fig. 7.1 CO2 efflux
evaluation (million/g) in the
screenhouse soil
(Post-Harvest Analysis)
(Taiwo et al. 2018)
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pose threats to human health and the environment. Owing to the volatile nature of
the composition of these products, they cause contamination of groundwater, are
taken up by plants and subsequently transferred to the food chain thereby causing
public health hazards.

In the search for a more viable biotechnological approach to overcoming the
challenges mentioned above, the use of biological growth promoting technique has
been explored. These are known to be exogenous bacteria employed in agricultural
production to generate a positive impact on the agrobiology of plants. Compared to
chemical products, Plant Growth Promoting Rhizobacteria are also effective, but
environmentally safe and non-toxic to naturally occurring microorganisms. Up till
recently, the focus of inoculant technology was more on the use of nitrogen-fixing
bacteria such as Rhizobium, Azospirillum, Azotobacter, however with the recent
advances in inoculant technology, there has been a remarkable expansion in the
range of microorganisms that are used and this includes a wider range of rhizo-
sphere associated bacteria and fungi. The use of a wide variety of bacteria in
inoculant technology has brought about safety concerns thereby necessitating the
need for biosafety considerations in the formulation of microbial inoculants. Quite a
number of common microbes associated with the environment are opportunistic
pathogens, therefore having a knowledge that most PGPR used for inoculant
technology originates from the environment, detailed screening and analysis should
be carried out in the selection of novel bacterial for their eventual usage as
microbial inoculants (Selvakumar et al. 2014).

Plant and human pathogenic rhizobacteria and the likes cannot be considered for
application in the field; therefore, safe PGPR should be given utmost priority. In
earlier research carried out by Taiwo et al. (2017), some PGPR such as
Chryseobacterium spp., K. pneumonia, P. vulgaris, B. cereus, P. monteilli, E.
asburiae, and Myroides odoratimimus isolated were eliminated from further study
due to their known human pathogenic characteristics. Safety consideration in the
formulation and use of PGPR is of paramount importance, not only for human
safety and not to impart toxicity to mammals but also to protect the environment.
As earlier stated, some of the microbial strains may be opportunistic pathogens with
the possibility of causing health hazards to humans, animals or plants, therefore,
urgent attention should be given to the establishment of holistic procedures that take

Table 7.1 Effect of
treatments on the number of
nodules of cowpea on the
field (Taiwo et al. 2018)

Treatments Number of nodules

Control 6.0e

Biofertilizer 8.0d

Biofertilizer + Biochar 10.0a

Biochar 9.3b

SSP 8.7c

Insecticide 9.0b

Values followed by different letters are significantly different
from each other (p � 0.05)
SSP = Single Super Phosphate applied at a rate of 60 kg P2O5/ha
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into consideration the predictability, effectiveness, consistency, and especially the
biosafety of PGPR for human and animal health and the environment (Vílchez et al.
2015). Important and imperative efforts are required in the field of microbial
technology. The scientists are to be aware of the advances in biosafety, to enable
them to make up-to-date decisions in their work routine.

7.9 Conclusion

All the beneficial traits of PGPR such as nitrogen fixation, phosphorus and
potassium solubilization, micronutrient availability and bio-control activities
through various defense mechanisms are key important traits in the formulation of
effective bio-fertilizers. Plant Growth Promoting Rhizobacteria when exploited as
bio-fertilizers can enhance plant growth, increase grain yield, lower malnutrition
rates, ameliorate degraded land, improve soil fertility and reduce over-dependence
on chemical fertilizers. The characteristics of PGPR besides economical and
eco-friendly attributes can also represent a natural and inexpensive alternative that
can mitigate the hazards related to the continuous use of chemical fertilizers.
Current practices in agriculture are tilting toward focusing on the reduction of
chemical fertilizers and pesticides input; therefore, the exploitation of PGPR
inoculants as bio-inoculants offers a promising alternative for more sustainable
agriculture.
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Chapter 8
The Role of Rhizobacterial Volatile
Organic Compounds in a Second Green
Revolution—The Story so Far

Darren Heenan-Daly, Siva L. S. Velivelli
and Barbara Doyle Prestwich

Abstract The role of microbial-emitted volatiles (mVOCs) also termed ‘info-
chemicals’ in agriculture is an emerging area of research with many perceived
attributes including but not limited to the alleviation of abiotic and biotic stress
factors. Several reports in the literature to date have demonstrated the potential of
these mVOCs in plant growth-promotion and disease-suppression, albeit mainly
under artificial conditions. The mVOCs are low molecular mass compounds with a
high vapour pressure and low boiling point and through diffusion can affect a
response over a long distance both above and below ground. They belong to many
different classes of chemicals that include terpenes, alcohols, alkenes and ketones
amongst others. This review examines recent literature in this area and cites
examples of mVOCs, or more particularly; bacterial-derived volatile compounds
hereby referred to as ‘BVCs’, that have plant growth promoting and biocontrol
effects. The multifaceted role of BVCs can be viewed as an integral part of a second
green revolution in agriculture where alternative environmentally-friendly solutions
are being sought for crop protection and bio-stimulation. Their ability to modulate
plant photosynthetic and ISR pathways may provide the agricultural sector with
more sustainable solutions for increased crop protection and production in the face
of increasing climate and population changes.
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8.1 Introduction

The plant rhizosphere is a highly competitive environment with plants releasing as
much as 40% of their photosynthetic carbon through their roots with these secreted
nutrients enabling the creation of a ‘hot-spot’ of microbial activity (including rhi-
zobacterial activity) (Kai et al. 2016). Rhizobacteria enhance plant growth through a
number of different mechanisms, some known, others as yet unknown (Velivelli
et al. 2015). Over the past four decades these microbes have been commonly
referred to as ‘Plant Growth-Promoting Rhizobacteria’ (PGPR) (Kloepper and
Schroth 1978; Ryu et al. 2005a). Different mechanisms are involved in the
enhancement of plant growth by rhizobacteria. Some of these mechanisms are
termed direct, others indirect. Examples of direct mechanisms can include the
biosynthesis of chemicals analogous to plant hormones involved in the plant growth
process such as indole-3-acetic acid (Shao et al. 2015). The optimisation of plant
nutrient-uptake is also facilitated through phosphorus solubilisation (Oteino et al.
2015), nitrogen fixation (Singh 2014) and/or by modulating the levels of ethylene in
the plant through the activity of enzymes such as aminocyclopropane-1-carboxylic
acid (ACC) deaminase (Glick 2014). Indirect mechanisms include the synthesis of
non-volatile antibiotics such as pyoluterin, surfactin and fengycin (Dimkić et al.
2017); competition for nutrients mediated by siderophore production for enhanced
iron-uptake from soil (Ahmed and Holmström 2014); the secretion of lytic enzymes
(e.g. chitinase, b-1,3-glucanase) and the modulation of plant immunity via acti-
vation of the induced systemic resistance (ISR) pathway (Compant et al. 2005;
Lugtenberg and Kamilova 2009; Velivelli et al. 2015; Tahir et al. 2017a) Fig. 8.1.
In recent years, there has been increased interest in the effects of rhizobacterial
volatiles on plants (Weisskopf et al. 2016). The metabolic activity of the soil
microbiota involves the synthesis of a broad variety of infochemicals, of which
volatile organic compounds (VOCs) comprise a large proportion (Kanchiswamy
et al. 2015; Velivelli et al. 2015). VOCs are characterised as having a relatively low
molecular weight (<300 Da), a low boiling point and high vapour pressure
(Vespermann et al. 2007; Velivelli et al. 2014). Microbial-emitted volatiles
(mVOCs) belong to a number of different chemical classes including, but not
limited to; alcohols, ketones, alkenes and terpenes (Schulz-Bohm 2017) and to date
bacteria have been found to produce over 1000 VOCs (Sharifi and Ryu 2018a). The
profile of VOCs emitted depends to a large extent on the external environment, be
that soil properties or media components (Fincheira and Quiroz 2018).
Infochemicals are of great importance, because volatiles can facilitate both the intra
and inter-kingdom interaction between many organisms including plants and
microbes (Farag et al. 2017). Due to their capacity to disperse in the atmosphere and
to circulate through permeable soil structures, volatiles can exert their effects on
plants above and below ground (Sharifi and Ryu 2018a). There are two types of
VOCs—organic (e.g. 2,3-butanediol) and inorganic (e.g. HCN, CO2). The complex
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blends of VOCs that rhizobacteria are capable of generating have been the focus of
numerous studies over the past decade (Yuan et al. 2017; Song and Ryu 2018; Tahir
et al. 2017b; Blom et al. 2011a) These VOC blends can have beneficial or detri-
mental effects on the growth of plants, fungi and other associated organisms within
the environment of the respective VOC-emitter (Effmert et al. 2012) Table 8.1.
Exposure to BVCs can enhance plant growth under certain conditions, but can
induce phytotoxic effects in others (Rath et al. 2018). Different blends of volatiles
have been implicated in seed germination, flowering time and number, and in fruit
and seed production (Sharifi and Ryu 2018a). A variety of chemical signalling
molecules are produced by both rhizobacteria and plants when grown together,
demonstrating that active communication exists between these kingdoms during
plant development (Leach et al. 2017; Farag et al. 2017). For example,
microbe-derived compounds are detected by plants, which can then adapt their
defence and growth responses to specific types of microorganism. Furthermore, for
the exploitation of BVCs in agronomical contexts, we need to determine both their
activity and validity-for-use in the field (Rosier et al. 2018). Therefore, it is essential
to have a comprehensive understanding of the biocontrol mechanisms of these
agents so as to facilitate efficient and effective agronomic application.

Fig. 8.1 Representation of interactions of bacterial volatile organic compounds (VOCs) on plants
(reproduced with permission from Velivelli et al. 2014)
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Table 8.1 List of some of volatile-mediated effects of bacteria on plants, fungi and nematodes

Bacteria Volatile metabolites Functions References

B. subtilis GB03, 2,3-butanediol Growth
promotion
and ISR

Ryu et al. (2003,
2004); Song et al.
(2019)

B. amyloliquefaciens
IN937a
P. chlororaphis O6

2,3-butanediol Protection
against
drought
stress

Cho et al. (2008)

B. subtilis FB17 Acetoin Induced
systemic
resistance
(ISR)

Rudrappa et al.
(2010)

B. megaterium
XTBG34

2-pentylfuran Growth
promotion

Zou et al. (2010)

A. agilis UMCV2 Dimethylhexadecylamine Growth
Promotion

Velázquez-Becerra
et al. (2011)

P. polymyxa E681 Tridecane Induced
systemic
resistance
(ISR)

Lee et al. (2012)

B. ambifaria Dimethyl disulphide,
Acetophenone, 3-hexanone and
2,5-dimethyl pyrazine

Growth
promotion

Groenhagen et al.
(2013)

P. vulgaris JBLS202 Indole Growth
promotion

Yu and Lee (2013)

S. plymuthica
HRO-C48

Dimethyl disulphide Fungal
growth
inhibition

Muller et al. (2009)

Bacillus sp. Acetoin Fungal
pathogen
inhibition

Arrebola et al.
(2010)

Flavobacterium
sp. GSE09
Lysobacter
enzymogenes ISE13

2,4-di-tert-butylphenol Fungal
growth
inhibition

Sang et al. (2011)

P. polymyxa BMP-11 1-octen-3-ol,benzothiazole and
citronellol

Fungal
growth
inhibition

Zhao et al. (2011)

X. campestris pv.
vesicatoria 85-10

Decan-2-one Fungal
growth
inhibition

Weise et al. (2012)

B. ambifaria Dimethyl disulphide,
2-nonanone,
1-phenyl-1,2-propanedione,
2-undecanone, dimethyl
trisulfide, 4-octanone,
S-methylmethanethiosulphonate
and acetophenone

Fungal
growth
inhibition

Groenhagen et al.
(2013)

(continued)
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8.2 Rhizobacterial Volatiles and Plant Growth

The direct physical interaction between rhizobacteria and their respective plant host
underpins most PGPR-plant interactions. However, an emerging field over the past
number of years has examined the long-distance relationships which plants and
rhizobacteria can achieve via the medium of VOCs (Velivelli et al. 2014). The first
observation of this phenomenon was by Choong-Min Ryu and co-workers and this
has led to the opening of many new avenues in the field of plant–microbe inter-
actions. Where physical contact with the plant is not possible, certain rhizobacteria
rely on the production of BVCs, a classic example being the volatile alcohol,
2,3-butanediol or more specifically its stereoisomer ‘2R, 3R- butanediol’ to stim-
ulate plant development or activate ISR (Ryu et al. 2003, 2004; Lee et al. 2012;
Fincheira and Quiroz 2018) Fig. 8.1. The identification of various plant growth
promoting infochemicals and the determination of their structures and their asso-
ciated functions have been ground-breaking moments in the study of plant-microbe
interactions and pinning down the roles of VOCs in the intricate signalling systems
between plants and rhizobacteria has been the key area of interest among a number
of research groups (Bailly and Weisskopf 2017; Sharifi and Ryu 2018a).

Table 8.1 (continued)

Bacteria Volatile metabolites Functions References

A. agilis UMCV2 Dimethylhexadecylamine Fungal
growth
inhibition

Velázquez-Becerra
et al. (2013)

B. atrophaeus
CAB-1

O-anisaldehyde Fungal
growth
inhibition

Zhang et al. (2013)

B. megaterium
YMF3.25

Benzeneacetaldehyde,
2-nonanone, decanal,
2-undecanone and dimethyl
disulphide

Nematicidal
activity

Huang et al. (2010)

Streptomyces spp., Caryolan-1-ol Fungal
growth
inhibition

Cho et al. (2017)

P. flourescens SS101 13-Tetradecadien-1-ol Plant growth
promotion

Park et al. (2015)

B. subtilis SYST2 Albuterol 1,3-propanediol Plant growth
promotion
and ISR

Tahir et al. (2017a,
b)

B. amyloliquifaciens
FZB42,
B. artrophaeus
LSSC22

1,2-Benzisothiazol-3(2 H)-one,
Benzaldehyde, 1,3-butadiene

Bacterial
growth/
motility
inhibition
and ISR

Tahir et al. (2017c)

S. odorifera 4Rx13 Carbon dioxide Growth
promotion

Kai and Piechulla
(2009)
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Nevertheless, the contribution of rhizobacterial VOCs to plant development and the
importance of these compounds in agricultural systems are still topics of significant
debate and speculation. In addition, only a handful of VOCs that are secreted by
rhizobacteria have been identified to date. Therefore, a comprehensive under-
standing of the biological and ecological functions of BVCs—let alone a full
understanding of their potential uses—has yet to be achieved.

However, according to Fincheira and Quiroz (2018), mVOCs can influence plant
growth in at least four ways: 1. Modulation of nutrients; 2. Alteration of hormone
levels; 3. Influencing plant metabolism and 4. Changing sugar concentrations.

Most importantly, future studies will need to address the types of responses and
signalling cascades that are induced in plants by BVCs. Research focusing on the
effects of plant exposure to different BVCs has uncovered a wide range of effects,
including significant plant growth, the induction of ISR and even plant phytotox-
icity. In particular, 2,3-butanediol (Ryu et al. 2003, 2004) dimethylhexadecylamine
(Velázquez-Becerra et al. 2011), 2-pentylfuran (Zou et al. 2010), indole (Blom et al.
2011a; Yu and Lee 2013; Fincheira and Quiroz 2018) and dimethyl disulphide
(DMDS) (Groenhagen et al. 2013), are amongst some of the infochemicals that
have been shown to increase plant growth, whereas negative effects are at least in
part due to the presence of high levels of hydrogen cyanide (HCN) (Blom et al.
2011b), DMDS and ammonia (Kai et al. 2010; Weise et al. 2013). To determine the
extent to which BVCs stimulate plant growth, Choong-Min Ryu and co-workers
used two-compartment Petri dishes, hereby by referred to as ‘I-plates’, to physically
separate Arabidopsis thaliana from rhizobacteria under laboratory conditions. In
this way, the dispersal of non-volatile metabolites through the medium was pre-
vented, allowing for only the exchange of volatile organic compounds.

The researchers observed that plant growth was most strongly stimulated by the
bacterial strains Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937a.
When the volatiles produced by these two strains were examined, it was found that
these bacteria produced the compounds 3-hydroxy-2-butanone (acetoin) and 2,
3-butanediol, which were not detected in bacterial strains that were unable to induce
volatile-mediated plant growth. The exogenous application of these two compounds
in pure solutions induced similar effects in a dose-dependent manner, and Bacillus
spp. mutants defective in 2,3-butanediol and acetoin synthesis showed no plant
growth-promotion, which confirmed the role of these compounds in mediating plant
growth. A set of hormonal mutant A. thaliana lines impaired in specific regulatory
pathways was then tested to identify the signalling networks necessary for these
growth-promoting activities. It was found that exposure to volatiles from the
B. subtilis GB03 strain did not promote growth in cytokinin receptor-deficient
(cre1) or cytokinin/ethylene-insensitive (ein2) mutants. On the other hand, the
B. subtilis GB03 volatiles did promote growth in ethylene-insensitive (etr1),
auxin-transporter-deficient/ethylene-insensitive (eir1), gibberellic acid-insensitive
(gai2), and brassinosteroid-insensitive (cbb1) mutants, suggesting that the promo-
tion of growth elicited by GB03 VOCs is mediated by the cytokinin-signalling
pathway (Ryu et al. 2003). Further experiments demonstrated that disease
severity caused by the necrotrophic bacterial pathogen Erwinia carotovora
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subsp. carotovora was significantly decreased when A. thaliana seedlings were
exposed to VOCs produced by B. subtilis GB03 and B. amyloliquefaciens IN937a.
This phenomenon, called ‘induced systemic resistance’ (ISR), occurred in as little
as 4 days. The exogenous application of pure 2,3-butanediol induced similar effects
in a dose-dependent manner. Seedlings exposed to Bacillus mutants defective in
2,3-butanediol synthesis showed no disease protection, which confirmed the
priming activity of this compound in ISR-induction. A set of mutant A. thaliana
lines impaired in specific regulatory pathways, including a jasmonic acid (JA)-
insensitive (coi1), an ethylene-insensitive (ein2), a salicylic acid (SA)-degrading
line (NahG), and a line that is SA-insensitive or non-expressor of
pathogenesis-related (PR) genes (npr1), was then tested to identify the signalling
networks necessary for ISR. Pre-exposure to VOCs from B. subtilis GB03 did not
trigger ISR in the ethylene-insensitive line (ein2) and did not show pathogen
resistance. In addition, to further test whether these VOCs induced known sig-
nalling pathways in A. thaliana, transgenic plants with b-glucuronidase (GUS)
fusions to Pr-1a (a gene activated by SA), Pdf1.2 (a gene activated by JA and
ethylene), and Jin14 (a gene activated by JA) were exposed to VOCs released by B.
subtilis GB03 (Ryu et al. 2004). Of these lines, the JA/ethylene-activated Pdf1.2-
GUS line showed increased GUS activity compared with untreated control plants.

The plants carrying an ectopic copy of the JA-activated Jin14 gene were unaf-
fected by B. subtilis GB03 VOCs; thus, ethylene signalling may be required for the
activation of ISR in A. thaliana, independently of the SA and JA signalling path-
ways. Surprisingly, the VOCs of B. amyloliquefaciens IN937a functioned inde-
pendently of all of the signaling pathways, indicating that some VOCs utilised
alternative pathways to trigger ISR (Ryu et al. 2004), and are still not known.
Meanwhile, a proteomics study revealed that ethylene biosynthetic enzymes were
significantly up-regulated in A. thaliana plants exposed to B. subtilis GB03 VOCs,
and a transcriptomic analysis showed the up-regulation of genes related to ethylene
biosynthesis (SAM-2, ACS4, ACS12 and ACO2) as well as ethylene response genes
(ERF1, CHIB and GST1) following exposure to B. subtilis GB03 VOCs (Kwon
et al. 2010; Velivelli et al. 2015). It was demonstrated that the long-chain volatiles
produced by Paenibacillus polymyxa E681 stimulated plant growth in A. thaliana
and induced systemic resistance against Pseudomonas syringae pv. maculicola
ES4326 (Lee et al. 2012; Velivelli et al. 2014).

A set of hormonal mutant A. thaliana lines impaired in specific regulatory
pathways was tested to identify the signalling networks necessary for plant growth
promoting activities. Lee et al. (2012) found that exposure to volatiles from
P. polymyxa E681 did not promote growth in cytokinin/ethylene-insensitive (ein2)
mutants. On the other hand, the P. polymyxa E681 volatiles did promote growth in
jasmonic acid-insensitive line (coi1), a salicyclic acid-degrading line (NahG), and
gibberellic acid-insensitive line (gai2) mutants, indicating that cytokinin/ethylene
signalling is essential for the promotion of plant growth in response to P. polymyxa
E681 volatiles. Further experiments demonstrated that the severity of the disease
caused by the hemibiotrophic bacterial pathogen Pseudomonas syringae pv. mac-
ulicola ES4326 was significantly decreased where A. thaliana seedlings were
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pre-exposed to VOCs produced by P. polymyxa E681. In addition, to further test
whether P. polymyxa E681 VOCs induced known signalling pathways in A.
thaliana, transgenic plants with b-glucuronidase (GUS) fusions to Pr-1a (a gene
activated by SA), and Pdf1.2 (a gene activated by JA and ethylene), were exposed
to VOCs released by P. polymyxa E681. Of these lines, the SA-activated Pr-1a-
GUS line showed increased GUS activity compared with untreated control plants;
thus indicating SA signalling may be required for the activation of ISR. A further
transcriptomic study of A. thaliana exposed to VOCs from P. polymyxa E681
followed by pathogen challenge revealed the induction of salicylic acid (SA),
jasmonic acid (JA) and ethylene (ET) signalling marker genes, PR1, ChiB, and
VSP2, respectively. When the volatiles produced by P. polymyxa E681 were
examined, it was found that this rhizobacteria produced the long-chain volatile
compound tridecane. The exogenous application of pure tridecane induced PR1 and
VSP2 in a dose-dependent manner after pathogen challenge; thus indicating that
SA/ET signalling is essential for the activation of ISR in response to tridecane. The
researchers performed additional tests to demonstrate whether the observed growth
promotion of A. thaliana when exposed to P. polymyxa E681 was correlated to
carbon dioxide (CO2). Plant growth was still enhanced when exposed to barium
hydroxide (Ba(OH)2) which traps CO2, indicating that some other unknown VOCs
are involved in the promotion of growth (Lee et al. 2012; Jeong et al. 2019).

In addition to the impact of BVCs, it has been speculated that increased plant
growth could be due to the increase in CO2 concentrations that is seen to rise when
using the sealed petri dish method. Based on co-cultivation studies involving
Arabidopsis and Serratia odorifera in a closed system, it was observed that growth
promotion was closely linked to carbon dioxide enrichment. In particular, the
growth of A. thaliana was stimulated in a closed system, where carbon dioxide was
the dominant component of the volatile mixture (390–3000 ppm). By contrast, in
an open system under ambient carbon dioxide concentrations, volatiles with neg-
ative effects on plant growth became dominant. It is possible that activation of the
tricarboxylic acid cycle (TCA) triggers the emission of carbon dioxide, although
this molecule does not accumulate to higher-than-ambient concentrations in an
open system (Kai and Piechulla 2009). Similarly, the growth of Physcomitrella
patens (moss) was stimulated in a closed system in which carbon dioxide was the
dominant component of an S. odorifera-derived volatile mixture, growth of this
moss was inhibited in an open system due to the negative influence of volatiles (Kai
and Piechulla 2010). At most, high levels of carbon dioxide have been observed to
increase plant biomass by as much as 25%, although this was primarily the result of
increased starch accumulation rather than biomass expansion. However, it is likely
that volatiles are present at much higher concentrations in closed systems than in
any found under natural circumstances (Van der Kooij et al. 1999; Ward and Strain
1999; Blom et al. 2011a).

In another study, C16 hexadecane, a long-chain hydrocarbon emitted by
P. polymyxa E681, also protected Arabidopsis plants from infection by the
necrotrophic pathogen Pectobacterium carotovorum and the hemibiotrophic
pathogen Pseudomonas syringae pv. maculicola ES4326 (Park et al. 2013). Certain
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volatiles produced by rhizobacteria regulate plant auxin homeostasis, and can
promote growth in Arabidopsis. Genes for auxin biosynthesis were up-regulated
when aerial parts of the plant were exposed to B. subtilis GB03. As observed in a
transgenic (DR5:auxin-responsive reporter) Arabidopsis line expressing a DR5::
GUS fusion, exposure to B. subtilis GB03 volatiles induced a decrease in auxin
accumulation in leaves and an increase in roots, indicative of basipetal auxin
transport activation. The decrease in auxin accumulation in leaves resulted in
enhanced leaf cell elongation, whereas the increase in auxin accumulation in roots
led to the development of lateral roots. Thus, despite the fact that auxin is not
produced by B. subtilis GB03, auxin signalling must be present in the root archi-
tecture response elicited by one or more BVC produced by B. subtilis GB03. Auxin
accumulation to the sites of synthesis was impeded by the application of the auxin
transport inhibitor 1-napthylphthalamic acid (NPA), which prevented the B. subtilis
GB03-induced reduction in shoot auxin levels and the associated growth promo-
tion. Moreover, modifications in cell wall-loosening were observed during tran-
scriptional analysis, which might explain the accelerated cell expansion and leaf
growth associated with exposure to B. subtilis GB03 volatiles (Zhang et al. 2007).
Further experiments revealed that exposure to B. subtilis GB03 volatiles caused
Arabidopsis to increase both its photosynthetic activity and chlorophyll content.

Exposure to BVCs also enhanced endogenous sugar accumulation and also led
to the partial suppression of sugar sensing in plants. In contrast to wild-type plants,
enhanced photosynthetic capacity (that was not additionally increased by exposure
to B. subtilis GB03) was observed in the two glucose-insensitive Arabidopsis
mutants, gin1 and gin2, which lack hexokinase-dependent sugar signalling.
Photosynthesis is promoted by BVCs through repression of the
hexokinase-dependent sugar signalling pathway. Exposure to B. subtilis GB03
causes an overlap in sugar/ABA sensing in plants, as ABA-synthetic transcripts,
ABA-responsive genes and ABA levels in leaves become reduced. Furthermore, the
increase in photosynthetic efficiency and chlorophyll content induced by B. subtilis
GB03 can be abolished by exogenous ABA treatment. Therefore, to enhance
photosynthesis, some modulate endogenous sugar/ABA signalling and use soil
symbionts as regulators of energy procurement by plants (Zhang et al. 2008b).
Common photosynthetic markers, which are enhanced by high carbon dioxide
levels, include increase of photosynthetic efficiency, chlorophyll content, and sugar
accumulation (Kai and Piechulla 2009). Indeed, Arabidopsis exhibited enhanced
photosynthetic capacity (e.g. chlorophyll content) and iron accumulation following
protracted exposure to B. subtilis GB03 (Xie et al. 2009). Under normal growth
conditions, B. subtilis GB03 volatiles triggered a rise in the mRNA levels of
Fe-deficiency-induced transcription factor 1 (FIT1), as well as two of its down-
stream targets, ferric reductase FRO2 and the iron transporter gene IRT1. However,
in Arabidopsis fit1-2 knockout mutants, volatile-induced increases in iron assimi-
lation and photosynthetic efficiency are impaired, suggesting that volatile-induced
iron assimilation is mediated by FIT1 (Zhang et al. 2009). To stimulate iron
assimilation, Sinorhizobium meliloti VOCs induced acidification of the Medicago
truncatula rhizosphere, which triggers enhanced photosynthetic activity (e.g.
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chlorophyll content), an indicator of nutritional Fe status in plants (Carmen
Orozco-Mosqueda et al. 2013). B. subtilis GB03 volatiles enhance salt tolerance
through the sodium transporter HKT1, which is down-regulated in roots and
up-regulated in shoots, resulting in a plant-wide reduction in Na+ accumulation
versus control plants not exposed to GB03 volatiles (Zhang et al. 2008a). It was
demonstrated that tolerance to abiotic stress could be induced in Arabidopsis by
Pseudomonas chlororaphis O6 and the results suggested that this phenomenon was
largely due to production of the volatile compound 2,3-butanediol.
A P. chlororaphis O6 mutant defective in 2,3-butanediol production showed no
drought resistance upon bacterial colonisation, which confirmed the role of this
compound in induction of drought tolerance.

Interestingly, it was shown that 2,3-butanediol produced by this rhizobacterium
facilitated both stomatal closure and drought tolerance through an ABA-1- and
OST-1 kinase-dependent manner. A set of mutant A. thaliana lines impaired in
specific regulatory pathways, including a mutant with reduced ABA synthesis
(aba1) and a mutant deficient in the protein kinase mediating stomatal regulation in
response to drought (ost-1) showed no drought tolerance upon P. chlororaphis O6
root colonisation. When drought-stressed plants were exposed to 2,3-butanediol,
the plants accumulated greater levels of SA than unexposed plants, indicating that
the SA signalling pathways are involved in P. chlororaphis O6-induced drought
tolerance (Cho et al. 2008). Arbidopsis plants treated with Bacillus subtilis FB17
significantly reduced the severity of the disease caused by the hemibiotrophic
bacterial pathogen Pseudomonas syringae pv. tomato DC3000. This phenomenon,
called ‘induced systemic resistance’ (ISR), also occurred when Arabidopsis plants
were exposed to acetoin. B. subtilis FB17 mutants defective in acetoin biosynthesis
showed reduced disease protection, and this result confirmed the priming activity of
this compound in ISR. A set of mutant A. thaliana lines impaired in specific
regulatory pathways, including a jasmonic acid (JA) mutant (jar1-1), an ethylene
mutant (etr1-3), a salicylic acid (SA) deficient mutant (NahG), and a line that is
SA-insensitive or non-expressor of pathogenesis-related (PR) genes (npr1-1), was
then tested to identify the signalling networks necessary for ISR. Of these lines,
treatment with B. subtilis FB17 and acetoin did not trigger ISR in the etr1-3, NahG
and npr1-1 lines and did not show the pathogen resistance against Pseudomonas
syringae pv. tomato DC3000; thus indicating that ISR elicitation is mediated via
NPR1 and SA/ET signalling pathways to activate ISR in Arabidopsis independently
of JA signalling pathway (Rudrappa et al. 2010).

In species such as B. subtilis, 2,3-butanediol synthesis is mediated by the
transformation of pyruvate into acetocholate by the enzyme ‘acetocholate synthase’.
Following this, acetocholate decarboxylase converts alpha-acetocholate into acetoin
which is subsequently converted to 2,3-butanediol via catalysis mediated by the
acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH) (Nicholson 2008).

The conversion of glucose into 2,3-butanediol and acetoin occurs under hypoxic
conditions and serves as an electron sink for the generation of NAD+ when aerobic
respiration is restricted. Furthermore, low partial oxygen pressure (as generally
exists in soil surrounding roots) induces the bacterial acetoin pathway that controls
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the production of 2,3-butanediol. Consequently, it is likely that 2,3-butanediol and/
or other biologically active molecules are produced by certain root-colonising
rhizobacteria at concentrations appropriate to elicit plant reactions (Ryu et al. 2003,
2004). The Methyl Red Voges Proskauer (MR-VP) medium is generally used to
determine the ability of bacteria to ferment 2,3-butanediol (Nicholson 2008). As a
by-product of the fermentation pathway employed by some rhizobacteria to avoid
acidification, the biosynthesis of 2,3-butanediol is often induced on low pH
Murashige and Skoog (MS) medium containing sucrose (Ryu et al. 2003). The
growth of Penicillium spp. was suppressed both in vitro and in vivo by volatiles
released by Bacillus spp., and citrus fruit inoculated with Penicillium crustosum
showed reduced disease incidence and severity due to the presence of acetoin.
Furthermore, it was observed that longer exposure times led to stronger
volatile-mediated antifungal effects; this was attributed to the extended incubation
period within the closed system, leading to the restriction of oxygen over time
(Arrebola et al. 2010).

On the other hand, it was also demonstrated that the acetoin pathway is optimal
in the lifecycle of the necrotrophic bacterial pathogen Pectobacterium carotovorum
subsp. carotovorum WPP14. Mutants defective in the 2,3-butanediol pathway were
unable to alkalinise growth media and also showed reduced virulence on potato
tubers (Marquez-Villavicencio et al. 2011). Furthermore, the capacity of Bacillus
megaterium XTBG34 to promote growth in A. thaliana was validated by Zou and
Co-workers. In particular, a number of compounds produced by this organism,
including 2-pentylfuran, were identified by GC/MS analysis, and they showed that
plant growth was significantly enhanced by 2-pentylfuran in a dose-dependent
manner. The lowest dose at which this compound could enhance plant growth was
0.1 µg, and maximum growth was achieved with 10 µg; by contrast, doses greater
than 10 µg inhibited growth (Zou et al. 2010). Santoro and Co-workers examined
the effects of BVCs on growth promotion and the enhanced biosynthesis of
essential oils (EO), such as pulegone and menthone in Mentha piperita (pepper-
mint). The results of this study indicated that BVCs exhibit species-specific effects
on plants. BVCs not only trigger secondary metabolite production but also impact
pathway flux during certain stages of monoterpene metabolism (Santoro et al.
2011). It was demonstrated that volatiles released by Proteus vulgaris JBLS202
stimulate growth in Chinese cabbage and GC/MS analysis showed that indole was
the primary headspace volatile compound produced by this bacteria. They showed
that plant growth was significantly enhanced by indole in a dose-dependent manner.
When plants were exposed to 0.63 µg of synthetic indole, growth was significantly
enhanced. Indole and its derivatives are known to be involved in the auxin sig-
nalling pathway (Yu and Lee 2013).

Blom and colleagues analysed the effects of different bacterial strains cultured on
four distinct media on the growth of A. thaliana. Of the bacterial strains tested, one
strain promoted growth on all four media tested. GC/MS analysis revealed the
presence of a range of compounds, including indole, 1-hexanol and pentadecane, and
they showed that plant growth was affected in a concentration-dependent manner by
these compounds. Indole promoted growth at low concentrations but showed lethal
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effects when used at high concentrations. Furthermore, when 1-hexanol was applied
in moderate amounts, it showed weak growth promotion, and pentadecane promoted
growth when applied at high concentrations (Blom et al. 2011a).

In another study, rhizobacterial strains were isolated from the rhizosphere of
lemon plants (Citrus aurantifolia) and then analysed to determine whether their
VOCs had an effect on the development of A. thaliana roots. Using a simple
experimental system involving I-plates, the authors observed several morphological
changes in root architecture due to VOCs. It is interesting to note that some rhi-
zobacterial strains stimulated primary root growth and lateral root development.
Several compounds were detected by GC/MS, including aldehydes, ketones and
alcohols. However, short-chain alcohols, such as 2,3-butanediol and acetoin were
not identified in this study, indicating that other VOCs can also trigger plant growth
(Gutiérrez-Luna et al. 2010). Exposure to A. thaliana plants with Bacillus mega-
terium UMCV1 modified the architecture of the root system in this plant. In par-
ticular, the authors observed an inhibition of primary root growth as well as
increases in lateral root number, lateral root growth, and root hair length, and they
found that reduced cell elongation and cell proliferation in the root meristem was
the cause of the inhibition of primary root growth. The analysis of Arabidopsis
mutant lines defective in either ethylene (etr1 and ein2) or auxin (aux1-7, axr4,
eir1) signalling revealed that, modifications in root architecture caused by B.
megaterium UMCV1 may involve either auxin- or ethylene-independent mecha-
nisms. Furthermore, transgenic Arabidopsis line expressing a DR5:uidA (a reporter
line for auxin and ethylene-inducible gene expression) GUS fusion showed reduced
expression in root tips (López-Bucio et al. 2007).

Velázquez-Becerra and Co-workers tested the effects of Arthrobacter agilis
UMCV2 volatiles on alfalfa (Medicago sativa), and they found that A. agilis
volatiles decreased taproot growth and increased lateral root formation, indicating
that the BVCs emitted by this bacterium play an important role in root develop-
ment. Analysis of BVCs produced by this organism revealed a range of compounds,
at least one of which, N-N-dimethyl-hexadecanamine, may act as a
growth-promoting trigger, affecting root development in Medicago sativa in a
dose-dependent manner (Velázquez-Becerra et al. 2011).

A study by Tahir and colleagues determined the effect of BVCs from Bacillus
subtilis SYST2 on tomato was examined. Two compounds, albuterol and
1,3-propanediol were identified as having a positive effect on plant growth with
observed increases in auxin and cytokinin in the plant tissues and noticeable increases
in expansin gene transcripts. Variations in VOC concentrations and/or plant exposure
times can dictate whether an inoculation has positive or negative effects on primary
root growth and/or lateral root formation (Tahir et al. 2017b). Arabidopsis plants
exposed to Burkholderia ambifaria volatiles show enhanced biomass, greater numbers
of secondary roots and shorter main roots. Analysis of the VOCs produced by this
bacterium revealed a range of compounds, including dimethyl disulphide (DMDS),
acetophenone and 3-hexanone, 4-methyl-2-pentanone, 4-octanone, and 2,5-dimethyl
pyrazine. These compounds were shown to affect plant growth in a concentration-
dependent manner, and indeed, treatment with very high amounts could inhibit plant

202 D. Heenan-Daly et al.



growth. Plants showed greater biomass when exposed to some concentrations of
dimethyl disulphide (DMDS), acetophenone and 3-hexanone. By contrast, high
concentrations of 4-methyl-2-pentanone and 4-octanone were lethal to the plants.
Finally, 2,5-dimethyl pyrazine promoted growth at lower concentrations, whereas
higher concentrations were deleterious to Arabidopsis plants (Groenhagen et al. 2013).

Many studies have shown that BVC interact with the host root system and in
addition to its role as a structural support for the plant, it is also crucial for the
acquisition of water and nutrients from the soil. From an ecological perspective,
BVC-mediated alterations in the root system proteome and root architecture may
have beneficial effects through increasing bacterial root colonisation and optimising
symbiotic interactions (Yaoyao et al. 2017). These symbiotic relationships mediate
biochemical interactions which stimulate root growth and development which leads
to enhanced levels of bioavailable nutrients for the plant (Velivelli et al. 2015;
Hérnandez-Calderón et al. 2018). In reciprocation, PGPR gain access to richer
sources of nutrition and carbon through root exudates produced by a healthy plant
host (Gutiérrez-Luna et al. 2010; Velivelli et al. 2015).

8.3 Inhibitory Effects of Rhizobacterial Volatiles on Plants

In addition to promoting plant growth, it has been demonstrated that certain BVC
have negative effects on plants such as A. thaliana (Vespermann et al. 2007). One
of the most important sources of nitrogen is ammonia, although this compound has
recently been shown to play a number of other biological roles. When S. odorifera
4Rx13 is grown on a peptone-rich medium, it produces high levels of ammonia, and
when this plant was exposed to A. thaliana plants in an I-plate, the bacterium
caused the neighbouring plant medium to become alkalinised, leading to reduced
plant growth (Weise et al. 2013). Under conditions of low oxygen, such as in a
closed system, the production of HCN by some Pseudomonas sp. is enhanced
(Athukorala et al. 2010). Deleterious effects were observed when A. thaliana was
exposed to HCN, with a four-fold reduction in growth following exposure to
1 µmol HCN (Blom et al. 2011b). In has also been shown that rhizobacterial
volatile compounds such as ammonia and DMDS have negative effects in higher
concentrations on A. thaliana growth (Kai et al. 2010).

8.4 Effect of Rhizobacterial Volatiles on Fungi
and Other Organisms

For truly sustainable agriculture, the strategies we employ to combat plant diseases
must become more environmentally-friendly with lower inputs of synthetic
chemicals. The use of beneficial microbes as a biological input to sustainable
agricultural systems offers an alternative, and potentially more environmentally
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stable approach, to conventional agri-chemical-based solutions for the suppression
of plant pathogens and the treatment of plant diseases in an integrated pest man-
agement system (Velivelli et al. 2015). Despite their powerful antifungal activities,
non-volatile antibiotics are unable to spread over long distances, making them only
effective at preventing infection by pathogenic microbes/fungi when applied
directly to plant roots. The ability of BVC to suppress the growth and proliferation
of plant pathogens has attracted ample attention with regard to biological appli-
cations and rhizobacterial VOCs have displayed antagonistic activity against
pathogenic fungi, which may classify them as novel antibiotic compounds
(Velivelli et al. 2015). The best known example of one such inorganic volatile
metabolite is hydrogen cyanide (HCN).

Hydrogen cyanide (HCN) is a secondary metabolite produced by some
gram-negative Pseudomonas spp. upon the hydrolysis of glycine by HCN synthase.
Pseudomonas fluorescens CHA0 was shown to inhibit the development of
Thielaviopsis basicola, which causes black root rot in tobacco plants, through the
production of HCN (Bailly and Weisskopf 2017). The biocontrol potential of these
antibiotics has been experimentally validated through the use of mutant rhizobac-
terial strains with altered antibiotic production. A hydrogen cyanide negative
mutant (hcn), P. fluorescens CHA0 strain was no longer able to protect tobacco
against black root rot (Voisard et al. 1989; Blumer and Haas 2000). A more recent
study (Rijavec and Lapanje 2016) proposed that the main contribution of HCN to
biocontrol is more indirect and is related to the sequestration of metals and the
associated beneficial increase of nutrients to the plant and rhizobacteria.

The volatile inorganic compound ammonia, which is released by the rhizobac-
teria Enterobacter cloacae, suppressed the growth of Pythium ultimum in
dual-culture assays, thus describing its possible role in the biological control of
Pythium pre-emergence damping-off (Howell et al. 1988). In addition to HCN and
ammonia, the antifungal nature of the organic volatiles has been demonstrated in
several experiments. Pseudomonas spp. isolated from canola and soybean plants
were reported to produce volatile antibiotics including; n-decanal, nonanal,
2-ethyl-1-hexanol, benzothiazole and dimethyl trisulfide, that inhibit the fungal
pathogen Sclerotinia sclerotiorum in I-plate assays (Fernando et al. 2005).
Furthermore, the growth of S. sclerotiorum was also suppressed in antifungal
bioassays performed in sealed plates containing pure synthetic volatiles such as
furfural, benzaldehyde, 1-octanol, 1-octen-3-ol, 3,7-dimethyl-1-ol, 6-octadien-3-ol,
2-ethyl-1-hexanol (Liu et al. 2009).

The growth of Fusarium oxysporum f. sp. cubense was suppressed in a divided
plate assay by BVC produced by Bacillus amyloliquefaciens NJN-6. The volatile
organic compounds emitted by this organism were diverse and included; benzoth-
iazole, phenol, 2,3,6-trimethyl-phenol, 2-ethyl-1-hexanol, 2-undecanol, 2-nonanone,
2-decanone, nonanal, naphthalene, naphthalene, 2-methyl and naphthalene 1-methyl.
The application of pure, synthetic volatiles in the same bioassay revealed strong
antifungal activities against F. oxysporum f. sp. cubense (Yuan et al. 2012).

Jasmonic acid BVC produced by B. subtilis significantly inhibited the spore
germination of B. cinerea in an I-plate assay. An analysis of VOCs revealed a range
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of compounds, such 4-Hydroxybenzaldehyde, 2-nonanone, Ammonium acetate,
1,2,4,5-Tetramethyl-pyrazine, 9-Methyl-nonadecane, 2,6,11,15-Tetramethyl-
hexadecane, 2,6,10,15-Trimethyl-tetradecane and 8-Hexyl-pentadecane; however,
the authors did not evaluate the antagonistic potential of these compounds against
Botrytis cinerea (Chen et al. 2008). The BVC 2-nonanone showed an inhibitory
effect towards B. cinerea fungal decay of strawberries in closed containers, thus
suggesting its potential role in reducing post-harvest diseases of agricultural
products, an area in which there is a significant increase in research activity
worldwide (Almenar et al. 2007; Sharifi and Ryu 2018b).

The growth of the soil-borne pathogenic fungi Rhizoctonia solani was strongly
inhibited in an I plate assay by BVC emitted by a number of common soil bacterial
genera such as Bacillus spp., Pseudomonas spp., Serratia spp., and
Stenotrophomonas spp. Further molecular analysis revealed a wide array of com-
pounds including: b-phenylethanol, trans-9-hexadecene-1-ol, undecene, undecadi-
ene, dodecanal, benzylnitrile, benzyloxybenzonitrile, and dimethyl trisulfide (Kai
et al. 2007). Dimethyl disulphide was shown to inhibit the growth of Fusarium
culmorum in a dual-culture assay and this inhibitory effect on mycelial growth was
observed to occur in a dose-dependent manner; less obvious effects were also
observed with the use of pure 1-undecene (Kai et al. 2009). Antifungal volatile
metabolites produced by A. agilis UMCV2 inhibited the growth of B. cinerea on
sealed plates. The volatile organic compound, dimethylhexadecylamine (DMHDA),
which is released by the rhizobacteria A. agilis, inhibited the growth of both B.
cinerea and P. cinnamomi in dual-culture assays when provided to the culture
medium at low concentrations (Velázquez-Becerra et al. 2013). It has been
demonstrated that BVC produced by Streptomyces plantesis F-1 could inhibit the
growth of R. solani, B. cinerea and S. sclerotiorum. Exposure to S. plantesis F-1
BVC significantly reduced the incidence and severity of leaf blight/seedling blight
caused by R. solani, leaf blight of oilseed rape caused by S. sclerotiorum and fruit
rot of strawberry caused by B. cinerea; thus indicating its possible role as a bio-
fumigant in the biological control of fungal diseases. The analysis of volatile
organic compounds from this organism revealed diverse compounds, including but
not limited to phenylethyl alcohol, phenol, 2,5-bis(1,1-dimethylethyl)-, (+)-
epi-bicyclesesquiphellandrene and cyclohexane carboxylic acid; however, the
potential role of these compounds remains to be investigated. As suggested by the
complex nature of BVC, significant growth inhibition may require the synergistic
activity of multiple compounds or the activity of extremely potent infochemicals
normally present at low concentrations (Wan et al. 2008). It has been demonstrated
that the volatile metabolites produced by fungistatic soils suppress the growth of
Paecilomyces lilacinus, Pochonia chlamydosporia and Clonostachys rosea. In
particular, VOCs produced by fungistatic soils, including trimethylamine, ben-
zaldehyde, and N,N-dimethyloctylamine elicit strong antifungal activity in a sealed
petri plate assay containing known amounts of fungal spore suspension, autoclaved
soil and/or pure synthetic compounds (Chuankun et al. 2004).

In an I plate assay, the volatile organic compound, O-anisaldehyde, which is
released by Bacillus atrophaeus CAB-1 inhibited the growth of B. cinerea; thus
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suggesting its possible role in soil fungistatis and the subject of further study (Zhang
et al. 2013). The pathogenic activity of various fungal pathogens was suppressed by
volatiles emitted by P. polymyxa strain BMP-11. The mycelial growth of various
fungal pathogens, including R. solani, was suppressed in sealed Petri dish anti-
fungal bioassays involving pure, synthetic volatiles such as 1-octen-3-ol, ben-
zothiazole and citronellol; mycelial morphological deformities were also observed
(Zhao et al. 2011). Antifungal metabolites produced by B. subtilis inhibited the
growth of two strains of R. solani in sealed I plate assays. Interestingly, these two
fungal strains reacted differently to exposure to the B. subtilis BVC mixtures,
indicating that BVC-mediated interactions between bacteria and fungi can be
species/genus specific. Therefore, it is possible that complex volatile mixtures may
trigger significantly different responses in different fungi, which may for example
be due to differentially conserved molecular activities of fungi for detoxifying
metabolites.

Fungal growth modifications due to BVC exposure are not uncommon and
indeed are closely linked to growth medium and inoculum dose, and in soil, volatile
emissions have been linked to nutrient availability, pH, temperature and oxygen
availability (Schulz-Bohm 2017). Rhizobacterial strains emit volatiles that can have
distinct effects on fungi or inhibit different fungal types to varying degrees. This
could be due to the fact that different BVC blends are released by various rhi-
zobacteria, and inhibitory effects may be induced due to the synergistic effects of
several compounds within those respective blends (Velivelli et al. 2015). For
example, the fungistatic BVC emitted by Bacillus cereus were shown to more
strongly repress a Trichoderma viride strain than a Gelasinospora cerealis strain.
Similarly, the BVC released by a strain of Aerobacter aerogenes were not as
effective against F. oxysporum f. sp. conglutinans as they were against T. viride and
Penicillium sp. (Fiddaman and Rossall 1994).

Using an I plate assay, it was shown that exposure to Burkholderia ambifaria
VOCs reduced the growth of fungi, and this inhibitory effect was observed to be
stronger against Alterneria alternata than it was for R. solani. In particular, the
growth of A. alternata and R. solani was decreased by higher doses of dimethyl
trisulphide, 2-nonanone, 1-phenyl-1,2-propanedione, and 2-undecanone. Moreover,
R. solani was also suppressed by acetophenone, phenylpropan-1-one, DMDS,
4-octanone and S-methyl methanthiosulphonate. The growth of Fusarium solani
was not reduced by any of the volatiles tested, indicating that fungi react to BVCs
differently (Groenhagen et al. 2013; Velivelli et al. 2015).

Bacterial volatile patterns can also be affected by growth media. For example,
BVC emission profiles differed based on whether the media (nutrient broth) they
were grown on contained glucose. The growth of R. solani on nutrient broth
(NB) was more strongly suppressed by the volatiles produced from Xanthomonas
campestris pv. vesicatoria 85-10 when the latter was grown on NB than when it
was grown on nutrient broth with glucose (NBG). A. nidulans and F. solani
exhibited similar growth patterns. The inhibition of A. nidulans was stronger when
X. campestris pv. vesicatoria 85-10 was grown on NB than when it was grown on
NBG. When X. campestris pv. vesicatoria 85-10 was grown on NB, the growth of
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A. nidulans and F. solani was inhibited by 85% and 14%, respectively, whereas
growth inhibition on NBG was only 11% and 3.5%, respectively. The BVCs of X.
campestris pv. vesicatoria 85-10 showed only weak effects on F. solani, indicating
species-specific activity. These results demonstrate that when grown on
glucose-containing media, X. campestris pv. vesicatoria 85-10 BVCs have only a
weak effect on fungi, indicating that nutrient levels influence growth inhibition.
There are several potential explanations for the observed reduction in growth
suppression by X. campestris pv. vesicatoria when grown on NBG: (1) growth on
NB media stimulates the production of a larger amount of suppressive volatiles;
(2) the production of suppressive volatiles relies on peptone-rich NB media; (3) the
production of suppressive volatiles is restricted by glucose through a mechanism
such as catabolite repression; or (4) there is a delay in the production of suppressive
volatiles on NBG media (Weise et al. 2012). Fiddaman and Rossall (1994)
observed that B. subtilis only produced suppressive BVCs in the presence of
D-glucose, and not L-glucose (Fiddaman and Rossall 1994). Previously, Fiddaman
and Rossall (1993) had assumed that agar containing high levels of glucose, i.e.
PDA (potato dextrose agar) and SGA (Sabouraud’s glucose agar) with B. subtilis
would stimulate significant antifungal activity in vitro. By contrast, limited or no
in vitro antifungal activity was produced by agar containing little or no glucose
(VJA (V8 juice agar), NA (nutrient agar) or 10% TSA (tryptic soy agar) (Fiddaman
and Rossall 1993).

Serratia plymuthica strains emitting DMDS as the primary headspace BVC,
were seen to inhibit the growth of Agrobacterium tumefaciens and Agrobacterium
vitis strains in dual-culture assays. When Solanum lycopersicum plants were
inoculated with S. plymuthica, it inhibited the growth of Agrobacterium, and
resulted in the emission of DMDS by the S. lycopersicum plants (Dandurishvili
et al. 2011). It was demonstrated that S. plymuthica HRO-C48 inhibited the growth
of R. solani using I plates (Kai et al. 2007). When oilseed rape cv. Talent was
treated with S. plymuthica HRO-C48, disease severity of Verticillium dahlia was
significantly reduced. This strain also produces DMDS and is registered and dis-
tributed by RhizoStar®, E-nema GmbH Raisdorf, Germany (Müller et al. 2009).
This strain was shown to suppress V. dahliae in strawberry and R. solani in lettuce
(Kurze et al. 2001; Grosch et al. 2005). The development of DMDS has been
targeted as a possible alternative to the fumigant methyl bromide. DMDS was
observed to supress phytopathogenic nematodes and fungi in the soil, offering
strong evidence for the effect of DMDS against plant-pathogenic fungi (Fritsch
2005) and nematodes (Coosemans 2005). Based on these findings, rhizobacteria
that produce DMDS can be classified as natural fumigants and this biocontrol
capacity is closely associated with VOC production. Therefore, antifungal VOCs
should be considered as significant tools for the control of plant pathogens, in
addition to more conventional agrichemicals. At present, Paladin®, a new and
effective soil fumigant based on DMDS, had already been registered in the
USA, (http://www.arkema.com/en/media/news/news-details/Arkema-receives-U.S.
-registration-for-Paladin-soil-fumigant-00001/) and the development of new soil
fumigants based on dimethyl disulphide (DMDS) is progressing in Europe.
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The growth of F. oxysporum was suppressed in an I-plate assay by the BVCs
produced by endophytic bacteria. A range of compounds was observed during the
analysis of these volatiles, such as 2-pentanone 3-methyl, methanethiol and
3-undecene. However, the authors did not evaluate the antifungal properties of the
individual compounds on F. oxysporum (Ting et al. 2011). It has been demonstrated
that the volatile metabolites produced by endophytic Burkholderia tropics strains
inhibited the growth of four phytopathogenic fungi: Colletotrichum gloeospori-
oides, Fusarium culmorum, F. oxysporum and Sclerotium rolfsii. Further analysis
revealed the existence of numerous compounds, including a-pinene, ocimene,
limonene and fencona, indicating that these compounds may also play important
antifungal roles (Tenorio-Salgado et al. 2013). Considering the effects of BVC on
the development of fungi and plants, an obvious question is whether these effects
extend to animals living within the soil as well.

In an I-plate assay, volatiles released by Bacillus megaterium YMF3.25 were
shown to inhibit the hatching of nematode eggs and reduce nematode infections.
GC-MS analysis revealed a variety of compounds, such as benzeneacetaldehyde,
2-nonanone, decanal, 2-undecanone and DMDS that exhibited strong nematicidal
activities against both juveniles and eggs. Additional research will be required to
create integrated management systems for lowering root-knot nematode inocula and
enhancing crop yields in the field, perhaps by improving bacterial formulation.
(Huang et al. 2010).

An analysis of Lysinibacillus mangiferahumi BVCs showed nematicidal activity
against the root-knot nematode Meloidogyne incognita. Volatile analysis revealed
the presence of numerous compounds, including 2-octanol, cyclohexene,
3-chloro-4-fluorobenzaldehyde, dibutyl phthalate, 2-nitro-2-chloropropane, dime-
thachlore, and DMDS. When nematodes were exposed to these pure volatiles in a
three-compartment Petri dish assay, the compounds showed growth-inhibitory
effects towards nematodes (Yang et al. 2012). Similarly, BVCs produced by soil
bacteria showed nematicidal activity against Panagrellus redivivus and
Bursaphelenchus xylophilus in three-compartment Petri dish bioassays. Further
analysis revealed significant difference in the nematicidal activity of the VOCs,
indicating that VOC-mediated interactions between bacteria and nematodes can be
species-specific/isolate-specific. Numerous distinct volatiles were identified,
including phenol, octanol, benzaldehyde, benzene, acetaldehyde, decanal,
2-nonanone, 2-decanone, cyclohexene, and dimethyl disulphide. Finally, exposure
to pure synthetic VOCs using the same bioassay revealed growth-inhibitory
activities against both B. xylophilus and P. redivivus (Gu et al. 2007).

In a recent study by Cho et al. (2017) it was observed that a novel antifungal
volatile, caryolan-1-ol, produced by Streptomyces spp., was effective at inhibiting
the growth of the fungal pathogen B. cinerea. By using a homozygous profiling
(HOP) assay in Saccharomyces cerevisiae, in which both copies of non-essential
genes are deleted, it was determined that caryolan-1-ol most likely inhibits fungal
growth by targeting membrane lipid processes and intracellular transport systems in
fungi (Cho et al. 2017)
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For many bacterial phytopathogens an integral component of their ability to
infect susceptible plant hosts is the capacity to be motile, in order to actively seek
out sites of colonisation and subsequent infection. To this end, Tahir and colleagues
investigated the potential of BVCs from six Bacillus spp., to inhibit the motility of
the bacterial phytopathogen Ralstonia solanacaerum (Rsc) TBBS1, the causative
agent of bacterial wilt disease in tobacco. They observed a particularly strong
inhibitive effect of BVCs from two strains; Bacillus amyloliquefaciens FZB42 and
Bacillus artrophaeus LSSC22. Three BVCs; 1,2-benzisothiazol-3(2 H)-one,
Benzaldehyde and 1,3-butadiene all negatively influenced cell viability, colony
size, motility and chemotaxis. Transcriptomic investigation of this activity identi-
fied alterations in the expression of pathogenesis-related genes such as PhcA
which is a global regulator of virulence factors in Rsc, as well as genes involved in
type III and IV secretion systems, production of extracellular polysaccharides and
chemotaxis. Defence genes in tobacco were also up-regulated with over-expression
of the proteins EDS1 and NPR1 suggesting the activation of the SA pathway in the
ISR response to Rsc-challenge (Tahir et al. 2017c). Interestingly, in a separate study
by Tahir and colleagues it was observed that the BVCs produced by Rsc could not
elicit a significant plant growth promoting effect. However they did inhibit the
growth-promoting potential of B. subtilis SYST2 BVCs when plants were exposed
to BVCs emitted by both SYST2 and Rsc. Co-culture of both bacteria together
revealed that they inhibited the growth of one another, but the effect of inhibition by
Rsc of SYST2 was not as great as SYST2 versus Rsc (Tahir et al. 2017c)

8.5 Species-Specific Rhizobacterial Volatiles

The qualitative and quantitative complexity of the VOC profiles of various rhi-
zobacteria can vary significantly. For example, common rhizobacterial strains such
as B. subtilis GB03 and B. amyloliquefaciens IN937a, release a mixture of volatile
compounds (e.g. 2,3-butanediol and acetoin) that promote growth in Arabidopsis
thaliana, whereas other rhizobacterial strains that do not promote growth via VOCs
produce different mixtures of compounds, indicating that synthesis of VOCs is a
strain-specific phenomenon. Studies have shown that whereas some compounds are
isolate-specific, others are produced by more than one type of bacteria (Ryu et al.
2003; Kai et al. 2007). Furthermore, BVC profiles may be affected by growth phase
and environmental conditions. For example, different qualitative and quantitative
VOC profiles are generated by growth on nutrient broths with and without glucose
in Stenotrophomonas rhizophila P69. In particular, the production of dimethyl
pyrazine and beta-phenylethanol occurs under both growth conditions, whereas
trimethyl pyrazine, tetramethyl-pyrazine and beta-phenylethyl acetate are produced
when glucose is absent from the growth medium (Kai et al. 2009).

The effect of different bacterial strains cultured on four distinct types of media on
the growth of A. thaliana were analysed by Blom and Co-workers. They found that
more nutrient-rich media Luria-Bertani (LB) caused plant death, whereas all other
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media tested—including two less nutrient-rich media, Murashige and Skoog
(MS) and the soil mimicking Angle medium—promoted growth (Blom et al.
2011a). MS and LB have significantly different compositions; MS is a mineral
medium that contains sugar as a carbon (C) source and has low pH and agar
concentrations, whereas LB is a nutrient-rich medium containing hydrolysed pro-
teins with relatively high pH and agar concentrations. Therefore, it is perhaps
unsurprising that the same bacteria cultured on these two media types can emit
different types of BVCs that elicit different plant responses. Furthermore, these two
media types also affect the growth kinetics (maximal volatile production, which is
assumed to take place during the stationary phase of bacterial growth) of bacterial
strain on these two media, with LB supporting faster growth than MS (Bailly and
Weisskopf 2012). The primary factors that determine the qualitative and quanti-
tative distribution of compounds in highly complex mixtures are the metabolic
abilities of the bacterial species, as well as the nutrients available in the specific
growth conditions. Indeed, differences in the types of BVCs produced by patho-
genic and non-pathogenic mycobacteria grown on different types of media have
been observed; furthermore, variations were sometimes observed, not only between
different media but also within individual analyses (Nawrath et al. 2012). However,
it is important to note that results obtained under artificial conditions may not
accurately reflect natural conditions and an in-depth understanding of this area of
plant-microbe research cannot be acquired solely from in vitro experiments of
VOC-mediated interactions between all organisms involved in these interactions.
Results obtained in controlled, artificial environments may not, and indeed most
likely do not, represent interactions which would be observed in the field (Velivelli
et al. 2015).

This issue of the interpretation of results from field versus lab is relevant for
metabolic experiments utilising artificial growth media and nutrient sources and
also for interactions where BVCs are outside of a detectable range. Such concen-
trations of BVCs observed under in vitro conditions are unlikely to be naturally
present in the soil. Nevertheless, in vitro experiments contribute greatly to our
understanding of the molecular interplay between bacterial volatiles and other
organisms. This can give an insight as to what may be observed within these
complex relationships in the field (Ryu et al. 2003; Blom et al. 2011a; Effmert et al.
2012; Park et al. 2015; Besset-Manzoni et al. 2017; Brilli et al. 2019; Song et al.
2019). Furthermore, not all plant species respond similarly to the same group of
volatiles produced by a given bacterial strain, which could be due to several rea-
sons: (1) fundamental differences in the pathways used by plants to respond to
BVCs (2) differences in reactive sites and (3) differences in the capacity to meta-
bolise volatiles (Santoro et al. 2011). The volatiles produced by a given bacterial
strain elicited different responses in different fungi; in other words, differences exist
in the interactions between different fungi and bacteria. For example, although
Arabidopsis growth was significantly promoted by DMDS; the responses of dif-
ferent fungal species to this compound varied considerably: the growth of R. solani
was suppressed, whereas A. alternata and F. solani were unaffected (Groenhagen
et al. 2013). Therefore, it is necessary to employ a number of different approaches
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and to test bacteria under distinct growth conditions to determine comprehensive
bacterial emission patterns (Farag et al. 2017).

8.6 Analytical Approaches to Identify VOCs

The capture of VOCs which are emitted as a result of microbial metabolic activity is
the first and most crucial step in the analysis of biological VOCs, and research in
this area of ‘separation science’ has advanced significantly in the last half a century
(Velivelli et al. 2015). SPME-GC/MS and PTR-MS are just two of the numerous
approaches designed for the capture and subsequent identification of volatiles.
Although each approach has its own advantages, no single method is currently
capable of completely surveying bacterial-produced volatile profiles, either in terms
of quantity or quality. To successfully identify volatiles, a number of sampling
techniques are generally employed, such as purge and trap, solid phase microex-
traction (SPME) followed by Gas chromatography/Mass spectrometry (GC/MS)
identification. The purge-and-trap method involves passing a given volume of
purified air over the sample, collecting it onto an absorbent filter and then either
directly releasing it using an organic solvent to rinse the filter or transferring it
straight to the GC/MS (Ryu et al. 2003, 2004; Yuan et al. 2012). Solid phase
microextraction (SPME) has become the method of choice for the extraction of
bacterial volatiles in recent years because it minimises preparation time and has
greater sensitivity than other extraction techniques.

The process of SPME for the analysis of bacterial volatiles is relatively fast and
can be conducted under low oxygen conditions. Although SPME has many
advantages over other methods, it is necessary to carefully consider the particular
fibre coatings used in each experiment, as they can either absorb or exclude specific
analytes based on polarity or size, leading to reduced sensitivity. For instance,
non-polar metabolites are absorbed by Polydimethylsiloxane (PDMS) fibre,
whereas short-chain polar compounds are absorbed by divinylbenzene/carboxen/
PDMS (DCP) fibre. With respect to rhizobacterial volatiles, the best recovery is
offered by DCP fibre, as it absorbs polar low molecular weight volatiles (Farag et al.
2006). Yuan and Co-workers tested three different fibres from Supelco—PDMS,
7 µm, stable flex DCP, 50/30 µm, and polydimethylsiloxane/divinylbenzene
(PDMS-DVB, 65 µm)—and they found that DCP fibre performed best (Yuan
et al. 2012). The volatile extraction methods discussed above are often used in
combination with other analytical techniques, such as GC/MS. Considering its
effectiveness for both separation and identification, GC/MS is the foremost method
for the detection of bacterial volatiles. GC-MS can be used to separate, identify and
quantify the volatiles present in a given sample. However, this technique has one
significant drawback; namely, it does not allow for the identification of new
compounds. Furthermore it can be difficult to obtain quantitative results using
SPME, as volatile compounds compete for binding sites within the SPME fibre.
Small bacterial molecules are characterised by high polarity and a strong tendency
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to co-elute. As a result, overlapping MS spectra can be produced, limiting the
precision of volatile detection and adversely affecting the process of matching peak
quality against database entries.

The identification of existing volatiles is carried out using software programs and
libraries of different mass spectra such as NIST/or reference standards.
Nevertheless, as similar mass spectra can be produced by related compounds,
particular care must be taken in performing these analyses (Kai et al. 2009).
A recently developed technique with the advantage of real-time analysis without
requiring sample preparation is PTR-MS. In proton transfer reaction-mass spec-
trometry (PTR-MS), the headspace air is drawn directly into the instrument, where
interactions occur between protonated water (H3O

+) and any molecules with a
proton affinity greater than that of water. Next, a quadruple mass spectrometer in
mass-to-charge (m/z) ratio is used to mass analyse and identify the resulting pro-
tonated organic molecules. Although PTR-MS cannot accurately detect the indi-
vidual volatiles produced, it is advantageous because it ensures real-time emission
observation.

In addition, PTR-MS cannot be used to distinguish between analytes of the same
mass because it employs single reagent ions (Spinelli et al. 2012). PTR-MS was
used to determine the volatile profiles of various bacteria and infected plants, and it
allowed for the observation of pathogenic emissions in real time (Spinelli et al.
2011). Several researchers have analysed the volatiles emitted by bacteria, and a
comparison of these signature compounds indicates that GC/MS analysis can be
used to distinguish between different bacterial species. Indeed, the VOC-profile data
obtained from GC/MS could be harnessed to develop so-called ‘electronic-nose’
(e-nose) sensor technology for the detection of different bacterial species, or they
may be useful for real-time disease monitoring in agricultural settings and
post-harvest monitoring where e-nose technology could detect ring and brown rot in
commercial potato storage with a detection efficiency of 90% of samples (Biondi
et al. 2014). Currently, the identification of bacterial species, including phy-
topathogenic bacterial isolates, is achieved through ‘classical’ molecular techniques
such as polymerase chain reaction followed by dideoxy sequencing of 16S rRNA
and these methods, although reliable, are expensive (Velivelli et al. 2015). The
efficacy of e-nose technology has been demonstrated for the detection of a single
phytopathogen within a wider microbial community; using a metal-oxide-based
semiconductor sensor the pathogen that causes fire blight (E. amylovora)—could be
differentiated based on volatile mixes alone from other bacteria (Spinelli et al.
2012). However, this technique has one significant drawback; it does not identify
and quantify each compound; rather, it uses metal-oxide semiconductor sensors to
characterise an aroma based on the signature profile that is generated.

The e-nose distinguishes between Botrytis- and Sclerotinia-induced rots on both
green and yellow kiwifruits. In addition, it was successfully used to detect
asymptomatic apple and pear plants that had been infected with Erwinia amylovora.
More research is needed before e-nose applications in open fields becomes standard
practice (Spinelli et al. 2010). In 2015, Cernava et al. described a novel assay for the
detection of bacterial volatiles from lichen-associated bacteria using headspace
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analysis and indicator assays (for HCN production) followed by the determination
of the effect of the VOCs on the growth of E. coli and B. cinerea. The initial test
was combined with a qPCR-based quantification assay (Cernava et al. 2015).

8.7 Discussion and Conclusive Remarks

Research into volatile-mediated plant–bacteria interactions is relatively new, and
this field has the potential to yield significant agricultural applications, particularly
in the context of growth promotion and induced systemic resistance (ISR) (Liu and
Brettell 2019; Romera et al. 2019). This niche of plant-bacteria research is still
emerging and at present, the biological effects of BVCs have only been assessed in
a relatively small cohort of plant species with Arabidopsis thaliana being one of the
main candidates, along with more economically relevant plants such as Capsicum
annum and Nicotiana tabacum (Choi et al. 2014; Kim et al. 2015). How these
bacterial volatiles will affect the growth and disease-suppression in other major
crops remains to be seen. In general, I plates are used to perform experiments on the
effects of bacterial volatiles on plants and fungi. This setup allows for the exchange
of volatile compounds while preventing non-volatile metabolites from dispersing
throughout the respective growth media. However, following identification of the
bio-active compounds, further in vitro laboratory tests should be conducted under
conditions that are either in, or similar to, field conditions (e.g. nutrient media that
closely resembles soil environment), as opposed to the highly artificial Petri dishes
used in the majority of existing studies (Choi et al. 2014; Brilli et al. 2019; Song
et al. 2019).

To gain a comprehensive understanding of the role of BVCs, it is necessary to
study mutant strains that do not produce such compounds. Adverse effects from
chemical treatments and difficulties in establishing optimal treatment concentrations
restrict the use of chemicals for growth promotion and resistance induction in
plants. Therefore, future research programs should focus on measuring VOC levels
produced by rhizobacteria in soil ecosystems (Ryu et al. 2005b; Sharifi and Ryu
2018a). An understanding of the relevant signalling pathways and the extent to
which they resemble plant responses to pathogens, and whether the physiological
and molecular plant responses vary between bacterial species is crucial to aid our
understanding and will determine future technology transfer in this area (Velivelli
et al. 2015). In addition, genetically altering rhizobacterial strains to produce greater
amounts of volatiles that promote plant growth or that induce systemic resistance
may represent promising avenues of future research. However, the use of GM
organisms is becoming increasingly controversial in terms of human health and the
environment. Phytopathogenic fungi—which are responsible for the majority of
economically important crop diseases—are inhibited by BVCs, indicating that
BVCs have the potential for use in agriculture as biological control agents.
However, research on the effects of bacterial volatiles is still in the early stages
(Sharifi and Ryu 2016).
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In particular, it has yet to be determined whether the effects of volatiles are
limited to specific plant tissues or if they affect plant development in general. Also,
an understanding (positive or negative) of the impact of bacterial volatiles on plant
metabolism is essential. Furthermore, it will be necessary to address whether effects
observed in the laboratory transfer to the field (Velivelli et al. 2015). An alternative
strategy that may prove beneficial for agriculture is the application of bio-active but
affordable compounds, such as 2,3-butanediol, to aerial plant components to
stimulate growth and ISR. Additional limitations on the use of rhizobacteria
volatiles such as 2,3-butanediol and acetoin include the fact that they evaporate very
quickly following application in the open field, however solutions are being
developed to tackle this problem such as the use of microcapsules to slowly release
BVCs to the environment (Song and Ryu 2013; Sharifi and Ryu 2018b).
Nevertheless, significant positive effects for BVCs have been comprehensively
analysed under growth-chamber, greenhouse and open-field conditions (Velivelli
et al. 2015; Choi et al. 2014). For example, pathogen growth in A. thaliana by
Pseudomonas syringae was found to be considerably suppressed by the direct
application of acetoin to roots under growth-chamber conditions (Rudrappa et al.
2010). Under greenhouse conditions, the soil-drench application of volatile
metabolites, such as DMDS (released by B. cereus C1L), inhibited the activities of
Botrytis cinerea and Cochliobolus heterostrophus against tobacco and corn plants,
respectively (Huang et al. 2012). Pre-treatment of cucumber plants with 3-pentanol
and 2-butanone showed protective benefits against the biotrophic bacterial pathogen
P. syringae in open-field trials. (Song and Ryu 2013; Velivelli et al. 2015).
Notwithstanding the challenges of transitioning from laboratory to field with respect
to the application of mVOCs (Bailly and Weisskopf 2017) the studies conducted to
date should lead to new discoveries regarding the use of VOCs to control microbial
pathogens under open-field conditions and can be expected to act as big players in
any second green revolution.
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Chapter 9
Potential of PGPR in Improvement
of Environmental-Friendly Vegetable
Production

Haluk Caglar Kaymak

Abstract Plant growth promoting rhizobacteria (PGPR) can directly cause
enhanced plant growth, early seed emergence or improvement in crop yields by
supplying biologically fixed nitrogen and increasing minerals uptake, producing
and secreting plant growth regulators and other beneficial substances. Also, PGPR
indirectly influences the plant growth promotion by suppressing of pest and dis-
eases in vegetables. Hence, replacement of chemical fertilizers and pesticides is
required because of the adverse effect of these chemicals and their residues seri-
ously pollute the environment, impart and also threaten the health of human and
animals. Thus, people are focused on healthy products not only for growing veg-
etables but also for all agricultural products. In recent years because of increasing
food-borne illnesses, the importance and potential of PGPR is hereby discussed for
improvement of sustainable environment-friendly vegetable production for healthy
human nutrition with special reference selected vegetable species, such as tomato,
pepper, melon, radish and lettuce.

Keywords Plant growth promoting rhizobacteria � Vegetables � Sustainable
production

9.1 Introduction

Although at least 10,000 plant species are used as vegetables worldwide, only 50 or
so are considered of great economic and commercial importance (Decoteau 2000).
These 50 species are vital for healthy diets and essential for human health, hence are
not a luxury (Palada et al. 2006). Also, the widely used definition of the term
vegetable is: herbaceous edible plants, or edible, usually succulent part of a plant
that is eaten whole or in part such as roots, leaves or fruits, raw or cooked. In fact,
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all over the world over 1150 million tons of vegetables are produced annually.
China produces over 50% of the world vegetable production. The United States of
America, India and Turkey are the other important vegetable producer countries in
the world. The production of tomato, potato, garlic, onion and watermelon
accounted for over 60% of the total world vegetable production. In addition, tomato
is one of the major vegetable produced and consumed throughout the globe. With
worldwide production reaching near 170 million tons, tomato is the seventh most
important crop species after maize, rice, wheat, potatoes, soybeans and cassava
(Bergougnoux 2014; FAOSTAT 2016).

When farmers began to produce or cultivate vegetables, soil fertility be taken
into consideration for selected vegetable crops, disease prevention, precisely,
“damping off” control and pest management. Although the global nitrogen cycle
pollutes groundwater and increases the risk of chemicals, the excessive use of
chemical fertilizers affects the soil health, soil physicochemical characteristics and
also pollutes the ecosystem in addition to the degradation in natural resources and
high cost. It is now an established fact that high-input farming practices achieving
high yields have created environmental problems (Şahin et al. 2004; Nosheen and
Bano 2014). Phosphorous (P), next to nitrogen, is one of the major and key
nutrients limiting plant growth (Kumar and Narula 1999; Sundara et al. 2002;
Podile and Kishore 2006). The sustainable, environmental-friendly and
cost-effective measures, such as PGPR, can replace chemical fertilizers (Nosheen
and Bano 2014) and pesticides that cause environmental pollution and degradation
(Robacer, et al. 2016), resulting in contamination of the vegetables with toxic
pesticides, fungicides, herbicides and insecticides residues. Eventually, the growers
had to turn to new methods of alternative fertilization, especially biological new
sources, so as to meet out the requirement of minerals besides, assisting in diseases
suppression so as not to harm the environment and do not leave any toxin behind.
Recently, consumers have focused on healthy products because of increasing
food-borne illnesses. This pressure has led to these new quests mentioned by
producers. Also, the excessive usage of chemical fertilizers and pesticides not only
affect the soil properties and residues in vegetables such as nitrate accumulation but
also pollute the environment in addition to the depleting resources and high cost.
Therefore, efforts are being made to replace chemical fertilizers and pesticides with
organically, environmental-friendly and cost-effective resources such as plant
growth promoting rhizobacteria (PGPR). It is known that biological control of plant
diseases has gained importance for healthy production of vegetables and other crops
in recent years.

Rhizosphere, a hotspot of microbial diversity which houses a wide range of soil
bacteria, belongs to the different group and with diverse properties influence the
growth and health of plants directly or indirectly (Gowtham et al. 2017). Long back,
pioneer work of Kloepper and Schroth (1978) stated that microbial communities
exert beneficial for plant growth, yield, crop quality and plant health which have
been called “plant growth promoting rhizobacteria (PGPR)” including numerous
species of the genera Acinetobacter, Aeromonas, Alcaligenes, Arthrobacter,
Azospirillium, Azotobacter, Azoarcus, Bacillus, Beijerinckia, Burkholderia,
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Clostridium, Enterobacter, Erwinia, Flavobacterium, Gluconacetobacter,
Klebsiella, Pseudomonas, Serratia, Rhizobium and so on (Kaymak 2010). PGPR
plays an important role in plant growth by one or more mechanisms in direct plant
growth promotion such as nitrogen fixation, phosphate solubilization, early seedling
emergence, secreting of plant growth regulators and indirect plant growth promo-
tion such as suppression of pest and disease (Tailor and Joshi 2014). In other words,
Tenuta (2004) reported that PGPR improves plant health that can occur through
three ways, namely: (a) decrease development of pest/disease (bioprotectant), (b) by
secreting phytohormones (biostimulant) and (c) due to increasing availability of
nutrients for plants (biofertilizer). For example, phosphate solubilizing bacteria
(PSB) secretes organic acids and enzyme phosphatases, and converts the insoluble
phosphates into soluble inorganic phosphates through the process of acidification,
chelation, exchange reactions and production of organic acids (Whitelaw 2000;
Gyaneshwar et al. 2002; Rodriguez et al. 2004; Chung et al. 2005; Hameeda et al.
2008). Generally, rhizobacteria has positive effects in occupying the ecological
niche in order to provide compounds beneficial to the plants.

The use of plant–PGPR interactions for various crops is important and is useful
not only for the enhancement of crop production but also for restoration of envi-
ronment (Vessey 2003). Most of the free-living rhizobacteria confer protection
against plant diseases via induced systemic resistance and promote growth and
yield of numerous agronomically and ecologically important plant species,
including vegetables. Therefore, the importance and potential of PGPR is discussed
for improvement of environment-friendly vegetable production for human nutrition
with special references to utilization of vegetable species such as tomato, pepper,
melon, radish and lettuce.

9.2 Potential of PGPR in Some Selected Vegetable Crops

The potential of PGPR for environment-friendly vegetable production and healthy
human nutrition in some selected vegetable species is discussed below.

9.2.1 Tomato (Lycopersicon esculentum Mill.)

Tomato, Lycopersicon esculentum Mill., is an annual shrubby member of
Solanaceae family but it is a herbaceous perennial in a protected environment. The
tropical coastal areas of Ecuador, Peru or Bolivia and portions of Northern Chile are
considered originating areas and also native to tropical America. It was introduced
to Central America and Mexico and also used by the Aztec and Toltec people, and
seeds of tomato were taken back to Italy by the returning explorers as early as in the
year 1554, and the plant quickly found favor in the warm Mediterranean climate.
From there, tomatoes moved to Northern Europe and throughout the world. It was
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considered poisonous in early times because of the toxic alkaloid tomatine. After
finding out its non-toxic nature, tomato cultivation was spread worldwide
(Decoteau 2000; Peralta and Spooner 2007; Welbaum 2015). Today, tomato is not
only produced for fresh market but also used widely in the food processing
industry. Besides, a source of nutrients such as lycopene, b-carotene and vitamin C,
its production and consumption are increasing in various countries (Bergougnoux
2014). It is an important crop for both the greenhouse and field vegetable growers
throughout the world with a production area nearly 5 million ha and over 170
million metric tons of total production produced by China, India, USA and Turkey
(FAOSTAT 2018).

Tomato is a warm season vegetable and injured by light frosts. The nitrogen is
important for vegetative growth with a form of NH3

+. Phosphorus is also important
for plant development and flowering (Decoteau 2000; Welbaum 2015). On the
other hand, numerous diseases adversely affect the crop production, and many
bacterial, fungal and virus diseases attack tomato. Bacterial speck, bacterial soft rot,
bacterial wilt, syringae leaf spot and so on are the most important bacterial diseases.
In addition, some important fungal diseases of tomato are early blight, black leaf
mold, powdery mildew, Fusarium wilt and Verticillium wilt. A large number of
viruses such as cucumber mosaic, tobacco mosaic, tobacco leaf curl virus and
tobacco ring spot also cause deleterious disease-causing entities.

The direct and indirect effects of PGPR have a great potential for improving
growth and yield of tomato under different environmental conditions. Protection of
vegetables against different plant diseases is quite important for
environmental-friendly production. As mentioned before, Fusarium wilt caused by
Fusarium oxysporum f. sp. lycopersici (Sacc.) W.C. Snyder & H.N. Hans, is
common and important disease for tomato. Recently, Boukerma et al. (2017)
reported that Pseudomonas fluorescens PF15 and Pseudomonas putida PP27
showed a significant protection against Fusarium wilt in tomato. Similarly, Fatima
and Anjum (2017) observed that Pseudomonas aeruginosa PM12 has a great
potential against Fusarium wilt in tomato, and act as a biocontrol agent that pro-
vides a complementary tactic for sustainable integrated pest management. Pastor
et al. (2016) reported that inoculation of tomato seeds with P. putida strain PCI2
increases the resistance of plants to root rot caused by F. oxysporum and that
P. putida PCI2 produces compounds such as 1-aminocyclopropane-1-carboxylic
acid (ACC) deaminase, involved at different levels in increasing resistance. More
recently, Bacillus amyloliquefaciens SN16-1 promotes plant growth and has great
potential as a biocontrol of F. oxysporum f. sp. lycopersici in tomato (Wan et al.
2018). Another important disease of tomato is bacterial wilt caused by Ralstonia
solanacearum that infects roots and multiplies in xylem vessels. Bacterial wilt
results in huge economic losses each year in many tropical and subtropical areas
because an effective control measures yet not been developed (Peng et al. 2017).
According to Peng et al. (2017) report, the combination of saisentong (N,
N-methylene-bis-(2-amino-5-sulfhydryl-1,3,4-thiadiazole) copper) and Bacillus
subtilis B-001 effectively controls tomato bacterial wilt. On the other hand, B.
amyloliquefaciens SQY 162 efficiently colonized the tomato rhizosphere, which
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directly suppressed R. solanacearum by secreting antibiotic surfactin in the tomato
rhizosphere soil. Li et al. (2017) reported that B. amyloliquefaciens strain SQRT3
reduced tomato bacterial wilt by 68% and its biocontrol efficiency suppressed R.
solanacearum populations in the rhizosphere soil significantly.

PGPR is being explored to harness their traits against Meloidogyne incognita
causing root-knot in tomato. Sharma and Sharma (2017) reported that
Pseudomonas jessenii strain R62 and Pseudomonas synxantha strain R81 reduced
nematode infection in tomato under glasshouse conditions. Also, P. putida,
P. fluorescens, Serratia marcescens, B. amyloliquefaciens, B. subtilis and Bacillus
cereus reduced galling and egg masses on the roots by root-knot nematodes in
tomato crops and increased yield (Almaghrabi et al. 2013).

Most of the vegetables are exposed to many abiotic stresses such as salinity and
drought. The high level of salinity limited the crop productivity by influencing seed
germination, growth, flowering and fruit setting not only in tomatoes but also in
most of the vegetables that change according to the developing stages. PGPR can
mitigate the adverse effect of salinity in tomato. For example, Bacillus megaterium
strain A12 and P. putida strain A20 increased shoot length of tomato plants and dry
biomass grown under varying salinity stress (100 and 200 mM NaCl). Further, B.
megaterium strain A12 reduced endogenous ethylene production and increased
water use efficacy better than P. putida strain A20 under field conditions (Aslam
et al. 2018). In addition, Shen et al. (2012) suggested that Erwinia persicinus RA2
and Bacillus pumilus WP8 proved promising PGPR strains which are suited for
application in salt marsh planting. Calvo-Polanco et al. (2016) reported that inoc-
ulation of Variovorax paradoxus 5C-2 and arbuscular mycorrhizal fungus
Rhizophagus irregularis has a great potential in order to improve plant yield under
conditions of drought stress.

It is well known that PGPR improves plant growth and yield via producing
phytohormones and increases the availability of nutrients. There are many resear-
ches about the direct effect of PGPR in vegetable crops. Esquivel-Cote and
Ramírez-Gama (2015) observed that Azospirillum lipoferum AZm5 proved useful
for increasing N uptake in N-deficient soil by production of cytokinins, increase in
ACC deaminase activity in tomato. Similarly, Azospirillum brasilense Sp7-S and A.
brasilense Sp245 strongly enhanced root and shoot growth, seed germination index
and vigor of tomato (Mangmang et al. 2015) Also, B. fortis IAGS162 and B.
subtilis IAGS174 increased shoot length, root length, total biomass, total chloro-
phyll, carotenoid and sugar concentrations in tested tomato varieties under green-
house conditions (Akram et al 2015). B. circulans CB7 increased seed germination,
shoot length, root length, shoot dry weight and root dry weight, nitrogen, potassium
and phosphorus content of shoot biomass in tomato (Mehta et al. 2015). IAA
producing P. putida FA-8, FA-56 and FA-60 also increased the plant height, stem
diameter, dry biomass and fruit yield of tomato (Hernández-Montiel et al. 2017).
Similarly, phosphate solubilizing P. putida PCI2 exhibited a clear
growth-promoting effect on shoot growth of tomato in the presence of L-tryptophan
(Pastor et al. 2014). On the other hand, a commercial product, Bioroot®, containing
B. subtilis, P. fluorescens, Trichoderma harzianum, yeast, algae and Nocardia
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improved the leaf area, shoot dry weight, root dry weight, volume of roots and root
forks compared with the control, and also recommended as an alternative to tomato
seedling growers’ dependence on synthetic agrochemicals (Brutti et al. 2015).
Earlier, Lee et al. (2008) have reported that Rhodopseudomonas sp. KL9 acts as an
eco-friendly biofertilizer for cultivation of tomato and other lycopene-containing
vegetable crops. Burkholderia sp. 7016 also enhanced the tomato yield and sig-
nificantly promoted activities of soil urease, phosphatase, sucrase and catalase and
can be used as a biofertilizer (Gao et al. 2015). Tripti et al. (2017) reported
Burkholderia sp. L2 as inoculum which can tremendously enhance the productivity
of tomato, soil fertility, and can also act as a sustainable substitute for chemical
fertilizers. Various examples about the improving plant growth and yield of tomato
by PGPR are given in Table 9.1.

Table 9.1 Examples of promoting effect of PGPR in tomato (Lycopersicon esculentum Mill.)

PGPR Promoting effect References

Rhodopseudomonas KL9 Seed germination, total length and dry
mass of germinated seedling

Koh and Song
(2007)

Mixture of Pseudomonas
putida and Trichoderma
atroviride (fungi)

Fresh weight, shoot and roots of
seedlings

Gravel et al.
(2007)

Bacillus subtilis BS13 Yield per plant, marketable yield, fruit
weight, length and quality

Mena-Violante
and
Olalde-Portugal
(2007)

Pseudomonas putida,
Azotobacter chroococcum,
Azosprillum lipoferum

Lycopene and antioxidant activity,
shoot and fruit potassium content

Ordookhani et al.
(2010)

Pseudomonas sp. RFNB3,
Serratia sp. RFNB14

Early growth, root and shoot length,
seedling vigor and dry biomass

Islam et al.
(2013)

Pseudomonas putida UW4 Shoot length, shoot fresh and dry
mass, and the chlorophyll
concentration of tomato seedlings
under salinity stress

Yan et al. (2014)

Bacillus amyloliquefaciens Fruit yield suppression of Fusarium
oxysporum f. sp lycopersici

Patakioutas et al.
(2015)

Bacillus pumilus Seedling growth Anith et al.
(2015)

Herbaspirillum seropedicae Fruit biomass, nitrate uptake and
nitrate reductase activity

Olivares et al.
(2015)

Pseudomonas spp., Bacillus
sp.

Seed germination, time of germination
seedling growth

Widnyana and
Javandira (2016)

Bacillus amyloliquefaciens
IN937a Bacillus pumilus T4

N and P uptake Fan et al. 2017
(2017)
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9.2.2 Pepper (Capsicum annuum L.)

Pepper (Capsicum annuum L.) is an economically important genus of family
Solanaceae It is a warm season, frost-sensitive crop that requires somewhat similar
conditions as tomato and eggplant, that is, higher temperature requirement and
commercially cultivated around the world due to its better adaptation to different
agro-climatic regions. This crop is native to the Americas, and likely domesticated
from central to southern Mexico. The other major species of pepper are Capsicum
frutescens, Capsicum chinense, Capsicum baccatum and Capsicum pubescens.
Although there are many commercial names of peppers, cultivars can be classified
into two main types: mild or sweet fleshed fruit and hot or pungent fleshed fruit. It
is a good source of vitamin A and C, in addition to potassium, phosphorus, calcium
and iron, and can also be processed by canning or drying. It is an important crop for
both the greenhouse and field vegetable growers worldwide. The total world pro-
duction of fresh peppers including chillies was 34 million metric tons in 2 million
ha production area (Decoteau 2000; Welbaum 2015; FAOSTAT 2018).

Fertilizer requirement of peppers is not as much as tomatoes. Fertilization is
performed according to the soil and foliar testing results, and nitrogen is often
applied prior to transplanting and again at first bloom. Phosphorus is often applied
as fertigation because of limited solubility of phosphorus at transplanting to
improve early growth (Welbaum 2015).

Peppers are also affected by serious phytopathogenic diseases. During pepper
cultivation in greenhouses and fields, bacterial spot, bacterial soft rot, gray leaf spot,
Phytophthora blight, wet rot and virus diseases such as tobacco mosaic virus are
few examples among these diseases. Also, aphids make serious damages on pepper
plants and reduced plant growth and yield (Herman et al. 2008; Mardani-Talaee
et al. 2017).

Although chemical control method is common for disease control approaches to
protect pepper plants from various diseases, but chemical control method accu-
mulates residual pesticides in the ecosystem, pollutes the natural environment and
causes human toxicity. Therefore, eco-friendly farming methods, such as crop
rotation, and use of biological control agent are essential for sustainable agricultural
development (Jung et al. 2015). Biological control agents in the form of PGPR can
also be used to inhibit pathogens-causing diseases. Hahm et al. (2012) reported that
Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans
KUDC1065 are capable of eliciting induced systemic resistance (ISR) in pepper
against bacterial spot disease. PGPR mixtures have a potential as biological control
agent on pepper under greenhouse and field conditions. In addition, three bio-
products, Bacillus vallismortis EXTN-1, Bacillus sp. and Paenibacillus sp. (ESSC)
and B. subtilis (MFMF) are examined in greenhouse to reduce bacterial wilt,
Fusarium wilt and foot rot. Thus, ESSC and MFMF reduced disease severity under
greenhouse conditions and EXTN-1 provided a mean level of disease reduction
under field conditions (Thanh et al. 2009). Infection of pathogenic fungi
Rhizoctonia solani causes disease and decree in the yield of pepper. B. subtilis
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SL-44 elicited strong inhibitory effect on R. solani and enhanced the biomass and
length of pepper seedlings (Huang et al. 2017). On the other hand, Kluyvera cry-
ocrescens KUDC1771 and Brevibacterium iodinum KUDC1716 have the ability of
phosphate solubilization and production of phytohormones; B. iodinum
KUDC1716 significantly decreased gray leaf spot disease in pepper hence, used as
a potential agent for biological control (Son et al. 2014). In addition, Sang and Kim
(2012) reported that Phytophthora blight of pepper caused by Phytophthora capsici
is the most destructive disease in the commercial production of pepper. The bio-
control agent Pseudomonas corrugata CCR80 and Chryseobacterium indologenes
ISE14 played a significant role in the suppression of Phytophthora blight of pepper.
Similarly, Xu and Kim (2016) reported that Paenibacillus polymyxa SC0921
induced a defensive response against Phytophthora blight and promotes growth in
pepper plants (Xu and Kim 2016).

The green peach aphid, Myzus persicae, is a polyphagous aphid that caused
chlorosis in several vegetable plants. In one of the studies, B. subtilis and B.
amyloliquefaciens proven useful in Myzus persicae management for pepper plants
grown in locations having consistently high aphid pressure (Herman et al. 2008).
Mardani-Talaee et al. (2017) investigated that the effect of zinc sulfate and ver-
micompost (30%) along with B. subtilis, P. fluorescens, Glomus intraradices, and
combined effect of G. intraradices with B. subtilis, and P. fluorescens against
biological parameters of Myzus persicae, and concluded that the best plant growth
was attained due to application of zinc sulfate and B. subtilis.

The PGPR can directly cause modifications on plant metabolism such as N
fixation, phosphate (P) solubilization, Fe sequestration, and cytokinin, gibberellin,
indoleacetic acid, ethylene production and so on (Lucas et al. 2014). For example,
inoculation with Bacillus spp. M9 and B. cereus K46 positively affected the per-
formance of the photosynthetic mechanism in pepper plants. However, plants
inoculated with Bacillus spp. M9 showed better performance in all vegetative plant
growth characteristics in sustainable agriculture programs (Samaniego-Gámez et al.
(2016). Similarly, Bacillus licheniformis increased the height of plants, leaf area
and had less disease that of non-treated plants, and hence, it could be used as a
biofertilizer or biocontrol agent in greenhouses (Garcia et al. 2004). Reduction of
inorganic fertilizer application up to 25% with P. putida increased the growth and
productivity of King Pakal hybrid habanero pepper (Chiquito-Contreras et al. 2017;
Pastor-Bueis et al. 2017). During a field experiment, it is observed that the Bacillus
siamensis that fertilized with decreased mineral N (80%) produced significantly
better pepper yields. In addition, Supanjani et al. (2006) reported that phosphate and
potassium solubilizing bacteria B. megaterium var. phosphaticum provides a sus-
tainable alternative to the use of synthetic fertilizers for hot pepper production in
soil with low fertility.

PGPR has potential to alleviate some stress factors such as salt and drought
stress in different crops including pepper. The inoculation of pepper plants with
Microbacterium oleivorans KNUC7074, B. iodinum KNUC7183 and Rhizobium
massiliae KNUC7586 can alleviate the destructive effects of salt stress on plant
growth (Hahm et al. 2017). Drought stress is also one of the important affecting
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factors for pepper plant, and auxin and ACC deaminase producing B. licheniformis
K11 reduces drought stress in pepper in drought-affected regions without the need
for overusing agrochemicals and chemical fertilizer (Lim and Kim 2013). Similarly,
Burkholderia seminalis and arbuscular mycorrhizal fungi, Rhizophagus intrar-
adices and Rhizophagus fasciculatum increase biomass, root length, shoot length
and chlorophyll content of pepper plants under drought stress conditions
(Tallapragada et al. 2016). Examples about direct and indirect effect of PGPR on
pepper are given in Table 9.2.

9.2.3 Eggplant (Solanum melongena L.)

There are more than 1000 species of eggplant (Solanum melongena L.); however, a
few of them are produced commercially as vegetable for human nutrition. Total
world production of eggplant is over 45 million metric tons with an average yield of
10 tons/acre (Welbaum 2015). Production of eggplant is limited in a few region of
world because it is a traditional vegetable crop in tropical, subtropical and

Table 9.2 Examples of promoting effect of PGPR in pepper (Capsicum annuum L.)

PGPR Promoting effect References

Formulation LS255 (Bacillus
subtilis GBO3 + Bacillus
subtilis IN937b), Formulation
LS256 (Bacillus subtilis
GBO3 + Bacillus pumilis INR7)

Yield of extra-large tomato fruit
and total yield

Kokalis–Burelle
et al. (2002)

Bacillus subtilis Suppressing of Phytophthora
blight

Lee et al. (2008)

Bacillus aryabhattai RS341
Brevibacterium epidermidis
RS15 Micrococcus yunnanensis

Growth promotion under salt
stress

Siddikee et al.
(2012)

Pseudomonas corrugata CCR80
Chryseobacterium indologenes
ISE14

Suppressing of Phytophthora
blight

Sang and Kim
(2012)

Pseudomonas sp. RFNB3
Serratia sp. RFNB14
Novosphingobium sp. RFNB21

Solubilizing tri-calcium
phosphate and zinc oxide,
nitrogen fixation, chlorophyll
content, macro- and
micro-nutrient nutrient uptake

Islam et al. (2013)

Bacillus sp. Root and fruit weights and total
yield

Hernandez-Castillo
et al. (2014)

Bacillus amyloliquefaciens,
Bacillus subtilis

Suppressing of Fusarium wilt Wu et al. (2015)

Chryseobacterium sp. ISE14 Phosphate-solubilizing
suppressing of Phytophthora
blight

Sang et al. (2018)
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Mediterranean countries (Abd El-Azeem et al. 2012) but is an important vegetable
in China, India, Turkey and Egypt. Fertilization is important in production of
eggplant because of its fairly high nutrient requirement. Eggplants have better
drought tolerance than other crops of the family and generally quite sensitive to
salinity (Welbaum 2015).

The effect of PGPR in raising high yielding eggplant is insufficient when
compared to that of pepper and tomato. PGPRs are focused as suppressive agent to
pathogens and tolerate salt stress. For example, Xanthobacter autotrophicus BM13,
Enterobacter aerogenes BM10 and Bacillus brevis FK2 from the salt-affected
maize kidney bean reduced the negative effects of salinity while E. aerogenes was
capable of promoting eggplant growth and yield when compared to an uninoculated
control (Abd El-Azeem et al. 2012). Similarly, inoculating with Pseudomonas
sp. DW1 increased shoot Ca2+ of eggplant compared to the non-inoculating egg-
plant plants under salinity. It is interesting to note that the salinity decreased
superoxide dismutase activities, and increased peroxidase activities. Numerous
soil-borne organisms are harmful to the crop.

R. solanacearum (Smith) Yabuuchi is an important soil-borne bacterial plant
pathogen causing bacterial wilt. The talc formulation of two species of
Pseudomonas (RBh41 and RBh42) completely suppressed the disease incidence of
eggplant wilt up to 36 days of inoculation under greenhouse conditions. Also,
Pseudomonas mallei (RBG4, ET17) and one Bacillus spp. RCh6 reduced eggplant
wilt incidence by 83% compared to control (Ramesh and Phadke 2012). Ramesh
et al. (2009) reported that Pseudomonas EB9 and EB67; Enterobacter EB44 and
EB89 and Bacillus EC4 and EC13 reduced the wilt incidence by more than 70%.
Similarly, F. oxysporum f. sp. melongenae (Fomg) caused the most destructive
disease in eggplant (Solanum melongena L.). Various strains of Pseudomonas and
B. cereus significantly reduced disease and induced resistance to that of Fusarium
wilt of eggplant (Altinok et al. 2013). Yıldız et al. (2012) reported that Bacillus and
Pseudomonas species showing good performance were tested against F. oxysporum
f. sp. melongenae for the antagonistic activities in eggplant.

9.2.4 Melon (Cucumis melo L.)

Melon (Cucumis melo L.), belongs to the family Cucurbitaceae and is an important
vegetable, widely grown in the world with a production of about 27 million mt. The
crop is mainly cultivated in China, Iran, Turkey, Egypt and United States
(Welbaum 2015; Sharma et al. 2017). It is originated from Iran (Decoteau 2000)
with rich genetic diversity (Balkaya and Karaağaç 2006). The economically
important groups of melons are Cantaloupensis and Indorous. A number of disease
such as Fusarium wilt, powdery mildew, downy mildew, bacterial wilt and bacterial
blotch seriously affect melons in conventional production.

Fertilizer requirements of melons are moderate compared with other vegetable
species due to development of extensive root systems to uptake need-based water
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and available nutrients (Welbaum 2015). Nitrogen and phosphorus are essential key
nutrients for adequate growth and yield for melon. Welbaum (2015) suggested that
nitrogen applied in two side-dressing or through fertigation must be low during
flowering to promote fruit set. The phosphorus must be banded lightly but pro-
ducers should be careful for alkaline mineral soils because of chemically tie up
phosphorus, unavailable to the plants.

Available literature revealed that PGPRs are inadequate for melons and more
work is necessary to carry out eco-friendly melon production. The effects of PGPR
on melons reveal their suppressive effect on some plant diseases and plant growth
promotion. For example, B. subtilis UMAF6639 was able to induce systemic
resistance (ISR) in melon and provide additional protection against powdery mil-
dew because of producing lipopeptides by activation of jasmonate- and salicylic
acid-dependent defense responses (García-Gutiérrez et al. 2013). Further,
García-Gutiérrez et al. (2012) observed that B. subtilis UMAF6614, UMAF6639
and cereus UMAF8564, and P. fluorescens strains, UMAF6031 and UMAF6033
provide protection for melon against powdery mildew and angular leaf spot.
Bacillus sp. RAB9 and B. lentimorbus MEN2 can be used as biocontrol agent for
both melon seedlings and for preventing against bacterial blotch (Medeiros et al.
2009). Suppression of various soil-borne disease caused by F. oxysporum and R.
solani also occurred due to appreciation of B. subtilis (Singh et al. 2017).
Preventing plants against fungal and bacterial diseases yet to explore require new,
safer and effective formula as an alternative to chemical pesticides for growing
melon and other vegetable production.

The early vegetative and reproductive plant, parameters such as plant height,
root dry weight, nitrogen and sodium concentrations in foliage and fruit weight of
melons increased when B. cereus (N198) and P. fluorescens applied under green-
house conditions (Rodriguez Mendoza et al. 2013). Strains of B. subtilis
UMAF6614 and UMAF6639, B. cereus UMAF8564, and P. fluorescens strains,
UMAF6031 and UMAF6033 promote plant growth and increase fresh weight up to
30% of melon seedlings as stated by García-Gutiérrez et al. (2012). Lee et al. (2015)
suggested that Enterococcus faecium LKE12 promotes plant growth by producing
GAs and IAA. Application of its cell-free culture extract proved to enhance plant
growth. The root fresh/dry weight, shoot dry weight, plant height, foliar area, fruit
yield and quality increased when B. subtilis LAL-36, BEB-23, BEB22 and BEB-13
applied and finally concluded that B. subtilis has potential to obtain high-quality
melon fruits with increased profits (Abraham-Juárez et al. 2018). Researches clearly
showed that PGPR has a great potential not only to improve yield and quality of
melons but also suppressive to different diseases.

9.2.5 Cucumber (Cucumis sativus L.)

Cucumber (Cucumis sativus L.) belongs to the family Cucurbitaceae and is an
important crop for both greenhouse and field growers throughout the world. It is
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cultivated in a production area near 2 million ha with average 37–40 million mt.
total production. The centre of origin of cucumber is believed to be India and also
cultivated in the ancient Egypt. Cultivation of cucumber spread to China and
Greece from India about 2000 years ago before Italy, France and other European
countries and USA (Welbaum 2015).

Cucumber is a good source of vitamin A, vitamin C, potassium and poor source
of protein, carbohydrates and fats; however, it is highly sensitive to environmental
conditions (Radhakrishnan and Lee 2013; Welbaum 2015). Cucumbers are warm
season, cold-sensitive crop and require warm soil temperatures both for germina-
tion, early harvest and high yield (Decoteau 2000). Cucumbers respond to high
levels of fertilizer, and nitrogen is the key nutrient for successful cucumber pro-
duction. In fact, from seedling to the maturity, the crop experiences several influ-
ences of bacterial and fungal community able to cause diseases like downy mildew,
powdery mildew, damping-off, angular leaf spot, bacterial wilt, Fusarium wilt, and
so on (Folman et al. 2003), and can be given as examples for important fungal and
bacterial diseases of cucumber.

Pesticides are generally the first choice for the control of the diseases for growers
in conventional cucumber production, and gained importance at suppressing of
cucumber pathogens because of ISR by triggered preinoculating with PGPR (Van
Loon et al. 1998). Jeun et al. (2004, 2007) inoculation with S. marcescens and
P. fluorescens induced systemic protection of cucumber plants against the
anthracnose pathogen, Colletotrichum orbiculare. The application of B. subtilis
strain B4 combined with acibenzolar-S-methyl resulted in promotion of plant
growth and systemic resistance against anthracnose infection (Park et al. 2013).
Recently, Akköprü and Özaktan (2018) reported that P. putida AA11/1 signifi-
cantly reduced average severity of angular leaf spot in disease-sensitive cultivar.
The plant defense enzymes stimulated in cucumber roots colonized due to
P. corrugata and P. aureofaciens, thus reduced Pythium aphanidermatum (Chen
et al. 2000). Utkhede et al. (1999) reported that B. subtilis BACT-0 increased shoot
growth and weight of cucumber plants in terms of fruit yield, and fruit number
under greenhouse conditions. According to Ongena et al. (2000) positive effects of
P. putida BTP1 and its sid− mutant M3 inhibited P. aphanidermatum by eliciting
phytoalexins systemically. Du et al. (2016) showed that P. polymyxa NSY50
influenced amino acid metabolism to increase biomass of the plant and regulate
jasmonic acid pathway that trigger resistance against F. oxysporum f. sp. cuc-
umerinum. The plant defense-related enzymes such as peroxidase and polyphenol
oxidase were significantly increased in seed treated with B. subtilis B579 against F.
oxysporum f. sp. cucumerinum in cucumber plants (Chen et al. 2010).

Organic farming is a technique designed to produce healthy food for human
nutrition, therefore biofertilization with PGPR has attained importance. Kang et al.
(2010) reported an environment-friendly alternative of chemical fertilizers in the
agriculture industry as beneficial bacteria such as Burkholderia sp. KCTC 11096BP
if applied. The growth attributes of cucumber such as shoot fresh weight and
biomass, chlorophyll contents, soluble sugar contents and crude protein content
were promoted. Similarly, other genera, namely Rhodobacter sphaeroides,
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Lactobacillus plantarum and Saccharomyces cerevisiae, induced the shoot length,
root length, shoot fresh weight, shoot dry weight, chlorophyll contents and total
amino acids via secretion of IAA and/or organic acids. In addition, R. sphaeroides
increased the calcium, potassium, magnesium and phosphate contents involved to
regulate the mineral content in cucumber (Kang et al. 2015). The elemental
nutrients were increased due to application of PGPR (Orhan et al. 2006; Kaymak
et al. 2013). Pii et al. (2015) observed the presence of A. brasilense in soil, which
facilitate a rapid and faster recovery of cucumber plants from iron deficiency
symptoms by increasing chlorophyll content, biomass and iron content of cucumber
leaves.

Almost majority of vegetables including cucumber are exposed to many stresses
including both biotic and abiotic stresses such as attach of pathogens, low tem-
perature and soil salinity. Diverse bacterial genera such as B. cepacia SE4,
Promicromonospora sp. SE188 and A. calcoaceticus SE370 not only reduced
sodium ion concentration but also increased potassium and phosphorus contents. In
such cases, the increased biomass and chlorophyll contents of cucumber under
salinity and drought stress have also been observed (Kang et al. 2014). It was
reported that auxin-producing K. planticola strain TSKhA 91 exhibited protective
effect on development of cucumber increased seed germination and root formation
under conditions of low temperature (Blinkov et al. 2014).

9.2.6 Watermelon [Citrullus lanatus (Thunb.) Matssumura
and Nakai]

Similar to melon, watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai)
belongs to the family Cucurbitaceae. The origin of watermelon is unclear but it was
known that its cultivation started in Nile valley before 2000 BC. It is the most
common cucurbit cultivated in many regions of the world. It has over 3,500,000 ha
production area with approximately 117 million mt production. It is generally
grown for the sweet juicy fruit pericarp tissue and used fresh as a dessert fruit and
fruit salads. Watermelon consists mostly of water and contain rich source of vita-
mins, minerals lycopene and soluble sugars. The crop is of warm season,
frost-sensitive that requires up to 4 months of frost-free weather. Fertilizer
requirements are moderate because watermelons tend to develop extensive root
systems in the upper profile of the soil for available nutrients. Cultivators prefer
direct-seeded production in warm regions but transplanting is more useful in
temperate regions (Decoteau 2000; Zohary et al. 2012; Welbaum 2015; FAOSTAT
2018).

The most common diseases of watermelon are bacterial wilt, Fusarium wilt, leaf
spot, anthracnose, alternaria leaf blight, downy and powdery mildew. Bacterial fruit
blotch is known as a serious disease to watermelon growers in the world. Both
P. polymyxa (SN-22) and Sinomonas atrocyanea (NSB27) showed inhibitory effect
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on bacterial fruit blotch resulting in increase in growth parameters of watermelon
under greenhouse conditions (Adhikari et al. 2017). Strains of B. subtilis GBO3, B.
amyloliquefaciens IN937, B. pumilus INR7 and SE34 reduced angular leaf spot
lesions and gummy stem blight and exhibit an increased shoot weight seedlings
growth and health (Kokalis-Burelle et al. 2003). Nga et al. (2010) reported that
gummy stem blight, caused by Didymella bryoniae (Auersw.) Rehm., can be
checked by P. aeruginosa 231–1 by antibiosis and induced resistance under
greenhouse and field conditions. Recently, Yaoyao et al. (2017) recommended that
P. polymyxa (SQR-21) is not only PGPR but also an effective biocontrol agent
against Fusarium wilt. Kokalis-Burelle (2004) examined few strains of PGPR
reduced angular leaf spot lesions caused by P. syringae pv. lachrymans, and
gummy stem blight, caused by D. bryoniae resulted in formulation of a product
(Bio yield (TM)).

9.2.7 Lettuce (Lactuca sativa L.)

Lettuce (Lactuca sativa L.) has four morphological forms: crisphead, butterhead,
romaine or cos, and loose leaf is a member of family Asteraceae. It is a major world
salad crop (Jeffrey 2007; Welbaum 2015), and is a source of vitamins and nutrients
required for human health (Chamangasht et al. 2012). The crop is best in cool
growing environments and can be grown in temperate regions and requires a well
fertilized soil for high yield because of a weak, shallow root system (Decoteau
2000). Lettuce’s nutritional requirements are fulfilled during 3–4 weeks before
harvest. Nitrogen is the most important fertilizer because of the plant’s limited root
system for rapid and continuous growth (Swaider et al. 1992). On the other hand,
lettuce mosaic virus, turnip mosaic virus, bottom root, lettuce drop, downy mildew,
bacterial leaf spot, varnish spot verticillium wilt and so on are some of the most
important diseases that adversely affected the lettuce growth and quality.

There are a lot of agricultural practices applied for increasing yield components
of lettuce. One of them is application of PGPR for promoting growth and
environment-friendly and sustainable production of lettuce. In one of the first
reports, phosphate-solubilizing Rhizobium leguminosarum bv. phaseoli strains P31
and R1, Serratia sp. strain 22b, Pseudomonas sp. strain 24 and Rhizopus sp. strain
68 showed their PGP potential on lettuce and R. leguminosarum bv. phaseoli
induced the growth of lettuce maximally under field conditions (Chabot et al.
1996). According to Flores-Félix et al. (2013), microbial bioinoculants are an
effective way for sustainable and environment-friendly agriculture due to their
reduction of the use of chemical fertilizers and declared that R. leguminosarum
PEPV16 actively colonizes the rhizosphere of lettuce resulting in increase in plant
growth as well as N and P contents in lettuce. Similarly, Chamangasht et al. (2012)
reported that species of Azotobacter, Azospirillum and Pseudomonas strain 187
proved effective on the enhancement of vegetative characters of lettuce. Among
these genera, Azospirillum spp. was most effective in increasing plant height and
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yield due to its salt stress management (Fasciglione et al. 2012). In fact, Azospirillum-
inoculated lettuce seeds yield a higher number of superior quality lettuce than
non-inoculated controls grown under NaCl stress. A field-trial was undertaken to
compare the effect of inorganic fertilizer. A PGPR, Pseudomonas mendocina, alone
or in combination with inorganic fertilizer, on plant growth and nutrient uptake in
lettuce exhibited a significant effect of PGPR bacteria on the dehydrogenase and
phosphatase activities (Kohler et al. 2006). Hoffmann-Hergarten et al. (1998)
demonstrated that Pseudomonas sp. W34 and B. cereus S18 inhibited M. incognita
on lettuce and seed treatment by significant reductions in root galling resulting in
enhanced seedling biomass, besides having a suppressive effect on pathogen
Fusarium sp. for biological control in lettuce (Sottero et al. 2006).

9.2.8 Spinach (Spinacia oleracea L.)

Similar to other foliage vegetable crops, spinach (Spinacia oleracea L.) belongs to
the Chenopodiaceae family and the group of leafy vegetables contains important
minerals and vitamins, has good cooking adaptability, and hence consumer demand
increases annually (Nishihara et al. 2001). This vegetable is consumed steamed,
fried or even raw at the early growth stages (Krężel and Kołota 2014). Spinach is
produced in all regions of the world, and it has over 900,000 ha production area
with approximately 26 million mt agricultural field. China alone produced over
90% of total world production (FAOSTAT 2018). It is produced by direct-seeded
method. The optimum seed germination occurs at about 15–21 °C. Spinach plants
are sensitive to acidity because of this reason: rainy regions are not suitable for
spinach production because of low soil pH (Vural et al. 2000; Welbaum 2015).

Nitrogen is the key nutrient for spinach, and easily accumulates in the form of
nitrate which is harmful for human health. N2-fixing plant growth promoting rhi-
zobacteria has a great potential for eco-friendly and healthy production of spinach.
N2-fixing, phytohormone producing and P-solubilizing bacterial species B. cereus
RC18, B. licheniformis RC08, B. megaterium RC07, B. subtilis RC11, Bacillus
OSU-142, Bacillus M-13, P. putida RC06, P. polymyxa RC05 and RC14 increased
spinach shoot fresh weight, leaf area and plant height (Çakmakçı et al. 2007). Hou
and Oluranti (2013) reported that P. putida NWU12, P. fluorescence NWU65,
P. fluvialis NWU37 and Ewingella americana NWU59 are all positive for
ammonia, catalase, hydrogen cyanide and phosphate solubilization, thus helpful in
increasing plant heights. Although growth of spinach was not promoted when only
the organic materials were applied, multiple applications with fluorescent
Pseudomonas strains and organic materials proved better for promoting the growth
because fluorescent Pseudomonas strains aggressively colonized the roots when the
organic materials were applied (Urashima et al. 2005). Interestingly,
Jiménez-Gómez et al. (2018) reported Rhizobium laguerreae as an excellent plant
probiotic, in increasing yield and quality of spinach.
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9.2.9 Radish (Raphanus sativus L.)

Radish, Raphanus sativus L., is cultivated in three distinct types: spring or summer,
daikon and winter. It is a member of Brassicaceae family, known as a cool season
vegetable because it does not grow well in hot and dry weather, and considered
hardy in cold temperatures. An optimal fertilization with N (100 kg h−1) and P
(80 kg h−1) is sufficient to promote growth and yield of this salt-sensitive crop. The
plant suffers from various diseases, such as rhizoctonia root rot, Fusarial wilt, black
spot, powdery mildew and downy mildew. However, the most important physio-
logical factor limited radish growth and yields are day length and vernalization.
Especially in long days, most of the radish cultivars bear flowers without forming a
root. In other words, radish cultivars have a facultative vernalization response
because cold exposure is not required for flowering, but flowering will occur more
rapidly after cold treatment. In contrast, radish cultivars have an obligate require-
ment for cold treatment and do not flower without prior cold exposure (Kaymak and
Güvenç 2010).

Nitrate accumulation and heavy metal toxicity are major problems in production
of most of the vegetables including radish. Heavy metals such as cadmium, nickel
and lead contamination are ubiquitous and cause toxicity to radish. According to
Ahmad et al. (2018), application of compost and PGPR ameliorates Pb toxicity in
radish. Bacillus sp. CIK-512 and compost synergy improved growth and physiol-
ogy of radish in contaminated soil, possibly by antioxidant activities and reduction
in lead accumulation in shoot. Similarly, use of both PGPR Bacillus sp. CIK-516
and Stenotrophomonas sp. CIK-517Y improved the growth of radish under four
different levels of Ni contamination. The plant growth, dry biomass, chlorophyll
and nitrogen contents were significantly reduced in the plant due to exposure of Ni,
but Bacillus sp. CIK-516 and Stenotrophomonas sp. CIK-517Y overcame the
negative effects of Ni stress on radish by improving the overall growth parameters
(Akhtar et al. 2018).

Bio-priming with PGPR genera (Agrobacterium rubi strain A 16, Burkholderia
gladii strain BA 7, P. putida strain BA 8, B. subtilis strain BA 142 and B.
megaterium strain M 3) significantly improved the percentage of seed germination
of radish under saline conditions (Kaymak et al. 2009). Hong and Lee (2017)
reported that Arthrobacter scleromae SYE-3, an isolate from local plants grown in
saline soil, evidenced in enhancing yield in salinized environments. On the other
hand, the evidence of gibberellin (GA) production by PGPR is rare (Vessey 2003).
The new isolate Leifsonia soli sp. SE134 significantly promoted the growth of
cucumber, tomato and radish due to significant GA production capacity (Kang et al.
2014).

It is known that PGPR commonly use to suppress the plant diseases. In this crop,
seed and pre-plant applications of cell suspension of P. fluorescens Pf 9A-14,
Pseudomonas sp. Psp. 8D-45 and B. subtilis Bs 8B-1 suppressed rhizoctonia
damping-off of radish (Khabbaz et al. 2015). Long back, De Boer et al. (2003)
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observed that combination of P. putida strains WCS358 and RE8 leads to more
effective and more reliable biocontrol of Fusarium wilt in radish.

9.2.10 Cabbage (Brassicae oleraceae var. capitata L.,)
and Chinese Cabbage (Brassica campestris L.
subsp. pekinensis)

Cruciferous crops, such as broccoli, cabbage, cauliflower, are important vegetable
crops and widely grown in different regions of world with a production of cabbages
and other brassicas including cauliflowers and broccoli 96 million mt. in
3,816,000 ha production area (FAOSTAT 2018). Different fungi, harmful bacteria,
pest and pathogens cause various seed and soil-borne disease. Xanthomonas cam-
pestris pv. campestris (Xcc) causes black rot disease in cabbage. The most significant
bacteria Bacillus velezensis AP218 significantly reduced disease incidence and dis-
ease severity and exhibited biocontrol of black rot of cabbage under field and
greenhouse conditions (Liu et al 2016a). Application of the P. fluorescens as seed
treatment significantly reduced black rot of cabbage under greenhouse conditions
(Umesha and Roohie 2017). Different species of Bacillus, namely B. cereus, B.
subtilis and B. amyloliquefaciens treatments efficiently suppressed the cabbage aphid
(Brevicoryne brassicae) field populations in varying magnitudes (Gadhave et al.
2016). Samancioglu et al. (2016a) reported that B. pumilus TV-67C strains increase
drought stress tolerance in cabbage seedlings by accelerating the accumulation of
inherent levels of superoxide dismutase, catalase and peroxidase, amino acid and
hormone production. In addition, combined effect of B. megaterium TV6D and
Pantoea agglomerans RK-92 + Brevibacillus choshiensis TV-53D mitigates drought
stress tolerance in cabbage plants by accumulating antioxidant enzymes, osmolytes,
hormone production and decreased electrolyte leakage in treated plants under
water-deficit conditions (Samancioglu et al. 2016b). Yildirim et al. (2015, 2016)
observed that seed and seedling inoculation with P. polymyxa RC14 increased shoot
fresh and dry weight, root fresh and dry weight, macro- and micro-nutrient content of
leaf and root of cabbage seedlings, yield and yield parameters as well as chlorophyll
reading value and stomatal conductance versus controls. Turan et al. (2014) showed
that treatments with B. megaterium TV-91C, Pantoea agglomerans RK-92 and B.
subtilis TV-17C improved seedling growth and quality in cabbages.

Different strains of Bacillus velezensis AP136, AP188, AP213, AP218, AP295
and AP305 reduced the number of foliar lesions of black rot; other bacilli such as
Bacillus safensis AP7 and Bacillus altitudinis AP18 increased shoot fresh and dry
weight, root fresh and dry weight of Chinese cabbage (Liu et al 2016b). Shrestha
et al. (2009) reported that Lactobacillus, Lactococcus and Paenibacillus spp. can be
further developed as a stable biological control agent to manage soft rot caused by
Pectobacterium carotovorum subsp. carotovorum, which greatly affect the Chinese
cabbage production worldwide.
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9.2.11 Broccoli and Cauliflower (Brassica oleracea L. var.
italica Plenck and Brassica oleracea var botrytis L.)

Broccoli (Brassica oleracea L. var. italica Plenck) belongs to the Brassicaceae
family member, and is spread in the Mediterranean region (Decoteau 2000). This
crop is an important vegetable because of its high selling price and its vitamin-rich,
high fibers and low calorie properties (El-Nemr et al. 2011). In other words,
broccoli is a low sodium food and is fat and cholesterol free, high in vitamin C and
a good source of folate (Decoteau 2000). USA is the world’s largest producer of
broccoli in 60,000 ha (Welbaum 2015). Heads of broccoli are sold fresh and boiled
or steamed for eating, and also uncooked broccoli is eaten in salads without
cooking. Broccoli is also processed by freezing and dried (Welbaum 2015). There
are many diseases such as black rot, blackleg, downey mildew, bacterial leaf spot,
Verticillium wilt, Fusarium wilt, which adversely affect broccoli (Decoteau 2000;
Rimmer et al. 2007; Welbaum 2015).

Available literature revealed that different groups of PGPR have a great potential
for improving growth and yield of broccoli under different environment conditions.
More recently, Altuntaş (2018) reported that B. subtilis strain QST 713 increased
the yield, plant growth parameters and nutrient uptake of broccoli and ascorbic acid
contents. Both Gram-negative and Gram-positive bacteria such as B. cereus,
Brevibacillus reuszeri and Rhizobium rubi inoculations with manure increased
yield, plant weight, head diameter, chlorophyll content, nitrogen, potassium, cal-
cium, phosphorus, magnesium and iron content of broccoli (Yildirim et al. 2011).
Further, P. fluorescens have great potential in enhancing the growth, phosphatase
activity, chlorophyll content, nutrient uptake and yield of broccoli when combined
with 80 kg ha−1 superphosphate (Tanwar et al. 2014).

Among vegetable crops, cauliflower (Brassica oleracea var. botrytis L.) is one
of the most important winter vegetable crops (Devi et al. 2017). It is a cool season,
frost-tolerant crop widely adapted and grown in both temperate and subtropical
regions. It is a low calorie crop but a good source of vitamin C (Decoteau 2000;
Welbaum 2015). Sold fresh and boiled, baked or steamed and is also processed by
freezing and drying. In Asian countries like China and India, it is produced on large
scale and about 70% of its total world production occurs in Asia. Cauliflower shares
most of the same insect pest and disease similar to that of broccoli. The crop
suffered from black rot, black leg, alternaria leaf spot, bacterial leaf spot, soft rot
verticillium wilt and Fusarium wilt at various stages of development (Decoteau
2000; Rimmer et al. 2007; Welbaum 2015).

Cauliflower requires high nitrogen as nutrient, and thus deficiency of nitrogen
causes low yield, delayed maturation and low productivity. Its requirements are also
high for boron and molybdenum (Swaider et al. 1992; Welbaum 2015). The N2-
fixing PGPR has a great importance for this reason in healthy crop production.
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Khan et al. (2018) reported that nitrogen-fixing by rhizobacteria has a great
potential to improve the yield of economic plants like cauliflower. Bhardwaj et al.
(2017) observed that Bacillus sp. SB11 has tremendous potential to be used as a
biofertilizer/bioprotectant for growth promotion and natural protection of cauli-
flower under low hill conditions of Himachal Pradesh in India. Further, B. pumilus
with inorganic P-source have been used to enhance growth, yield and quality of
cauliflower under mid hill conditions (Dipta et al. 2017). The use of PGPR isolates
as biofertilizers proved beneficial for cauliflower cultivation because of the
enhanced growth occurred mainly due to bacteria-mediated IAA production and
phosphorus solubilization (Kushwaha et al. 2013). Similarly, the role of Bacillus
spp. MK5 with N and P as biofertilizer established their nature as beneficial bacteria
for cauliflower cultivation as evidenced by induced IAA production and phos-
phorus solubilization (Kaushal et al. 2011). The application of Bacillus spp. MK5

combined with recommended dose of 75% NP fertilizers significantly and increased
the cauliflower yield (Kaushal et al. 2013). In addition, Ekinci et al. (2014) reported
that B. megaterium TV-3D, TV-91C, TV-87A and KBA-10, P. agglomerans
RK-92 and B. subtilis TV-17C increased fresh shoot weight, dry shoot weight, root
diameter, root length, fresh root weight, dry root weight, plant height, stem
diameter, leaf area and chlorophyll contents of cauliflower transplants. In addition,
combined application of fertilizers, manures and PGPR is not only a cost-effective
nutrient module but also helps in getting higher yield and quality with 25% net
saving of fertilizers, as reported by Thakur et al. (2018).

9.2.12 Mint (Mentha sps)

Mentha sps (Mint) belong to the family Lamiaceae aromatic. It is one of the most
important essential oils crops with a specific flavor, and the crop is perennial. Its
leaves are picked, dried and used until needed (Abbas 2009). It is also cultivated
worldwide for production of essential oils (Lawrence 2007). Besides its dry usage,
fresh leaves are also utilized as a leafy vegetable in Turkey and in some
Middle-East countries (Kaymak et al. 2013). Total world production of mint or
peppermint (Mentha � piperita) was 106,252 mt. in 3390 ha production area
(FAOSTAT 2018).

Various groups of PGPR induced growth and reproduction in medicinal and
aromatic plants Kaymak et al. (2013) reported that P. putida biotype B C3/101,
P. polymyxa RC105 and urea treatments induced growth, which resulted in sig-
nificant increase in total fresh and dry yields of mint compared with the control.
Although yield obtained due to treated plant by bacterial inoculation was lower than
urea treatment, but it was more than that of control. Both P. putida biotype B C3/
101 and P. polymyxa RC105 have the potential to increase the yield, growth and

9 Potential of PGPR in Improvement of Environmental-Friendly … 239



mineral composition of leaves. In addition, B. subtilis GB03, P. fluorescens
WCS417r and P. putida SJ04 increased shoot and root biomass, leaf area, node
number, trichome and stomatal density. There were marked qualitative and quan-
titative changes in monoterpene content of M. piperita (Cappellari et al. 2015).
Similarly, P. fluorescens WCS417r, B. subtilis GB03 and P. putida SJ04 enhanced
synthesis of phenolic compounds in leaves of M. piperita and have the potential to
improve the productivity (Cappellari et al. 2017). Santoro et al. (2011) reported that
volatile organic compounds of P. fluorescens, B. subtilis and A. brasilense, besides
inducing biosynthesis of secondary metabolites, affect pathway flux or specific
steps of monoterpene metabolism in M. piperita. The bacterial volatile organic
compounds are rich source for new natural compounds that may increase crop
productivity and essential oils yield of this economically important plant species.
Inoculated with the native P. putida strains showed increased shoot fresh weight
and root dry weight of M. piperita (peppermint) because indigenous bacteria which
are generally more effective in terms of their acclimitization and adaptation to the
environment have a competitive advantage over non-native strains (Santoro et al.
2015; Aeron et al. 2010).

Wide range of PGPR group of bacteria pumilus STR, Halomonas desiderata
STR8 and Exiguobacterium oxidotolerans STR36 reduced the negative effects of
salinity while cultivating M. arvensis, and application of Halomonas desiderata
STR8 in sodic soil increased herb yield and oil content of M. arvensis under salt
stress (Bharti et al. 2014). Ebstam and Nadia (2013) reported that the maximum
values of growth parameters of M. viridis L. (plant height, number of branches,
plant fresh and dry weight) as well as volatile oil percentage occurred in plants
treated with B. subtilis and P. fluorescence as individual and consortia as well,
which also showed biocontrol phenomenon against Rhizoctonia solani.

9.3 Conclusion and Future Prospects

Numerous plant growth promoting rhizobacteria (PGPR) have been examined
under laboratory, greenhouse and field conditions for vegetable production. PGPR
has a great potential for increasing yield, reducing of fertilizer requirement and
synthetic pesticides. In the last few years, PGPR studies focused on the biocontrol
of destructive diseases of vegetables such as Fusarium wilt and bacterial wilt in
tomatoes, Phytophthora blight in peppers, Fusarium wilt in melons and angular leaf
spot in cucumber. Similar to oil seed, pulses and maize, researches about the effects
of PGPR on growth and yield of vegetables are also continuing.

PGPR replaces the chemical fertilizers and pesticides by reducing pollution, save
the resources and cut down the high production cost. Evolvement of
environment-friendly and cost-effective strategies with PGPR is still to be contin-
ued for the commercialization of PGPR for healthy production of vegetables. In
other words, the chemical inputs are being used to increase yields, suppress
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pathogens and pests but their excessive, uncontrolled and unconscious use over the
years resulted in an accumulation of toxic chemical resides in the crop production
areas. To overcome this adverse affects, an effective and sustainable alternative
method is the application of PGPR in all stages of crop production.
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Chapter 10
Problem of Mercury Toxicity in Crop
Plants: Can Plant Growth Promoting
Microbes (PGPM) Be an Effective
Solution?

Swapnil Sapre, Reena Deshmukh, Iti Gontia-Mishra
and Sharad Tiwari

Abstract Mercury is ranked as the most toxic heavy metals. It enters into the
environment due to some natural processes and anthropogenic activities. It has a
property of bioaccumulation into the food chain through uptake by crop plants from
the contaminated agricultural lands, leading to detrimental impact on human health.
Mercury has the toxic effect on plants as it disturbs many biological processes,
including photosynthesis, respiration, transpiration, cell division and so on.
Phytoremediation involves several plant species which have the ability to accu-
mulate or degrade contaminants, including heavy metals. Another important strat-
egy is the utilization of transgenic plants transformed with bacterial mer genes to
increase phytoremediation of mercury. The mercury-resistant plant growth pro-
moting microbes (PGPM) enhance plant growth under mercury stress as well as
increase the mercury uptake by plants. This chapter summarizes the present
understanding toward the mercury toxicity and their molecular responses in plants.
It also illustrates the plethora of mechanism adapted by PGPM for plant growth
promotion and detoxification of mercury. It also highlights the paradigms for
synergistic use of PGPM for improved phytoremediation of mercury from agri-
cultural lands.
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promotion � PGPM-assisted phytoremediation

10.1 Introduction

The contamination of heavy metals in soil by various activities is a major envi-
ronmental concern. The highly toxic heavy metals such as arsenic (As), lead (Pb),
cadmium (Cd) and mercury (Hg) can enter the food chain through uptake by crop
plants from the contaminated agricultural lands, leading to detrimental impact on
human health (Puglisi et al. 2012). Among the heavy metals, mercury is ranked as
the most toxic one and it is present in the environment due to some natural pro-
cesses and anthropogenic activities. The anthropogenic activities which introduce
mercury into the environment are production chemicals (paints, paper and pulp,
disinfectants, microbicidal agents, agrochemicals, etc.), use of fossil-fuels in power
plants and industrial waste incineration and disposal (Frossard et al. 2017). Mercury
is mostly present in the environment in elemental form (Hg0), which is readily
oxidized to the ionic form, Hg2+ (Selin 2009). The ionic form of mercury (Hg2+)
makes complexes with many inorganic compounds to produce HgS, ClHg2, Hg2Cl2
or other organomercurial compounds such as CH3–Hg (Tiwari and Lata 2018). The
agricultural soil has the ionic form (Hg2+) in majority, through adsorption onto
sulfides, clay particles and organic matters (Azevedo and Rodriguez 2012;
Gontia-Mishra et al. 2016; Beckers and Rinklebe 2017). Interestingly, mercury is a
bioaccumulative toxin as it remains in the environment for longer periods
(Schroeder and Munthe 1998). Plants growing under mercury contamination are
severely affected during all stages of their development. It is observed that plants
exhibit poor germination, impaired photosynthesis, compromised biomass, and so
on, under mercury stress (Patra and Sharma 2000). It is highly phytotoxic to plant
cells, leading to various physiological abnormalities. At cellular level, mercury
interferes with the proper water uptake (stomata closure), functioning of mito-
chondria and generates oxidative stress leading to lipid peroxidation, enzyme
inactivation and DNA and membrane damage (Chen et al. 2014).

Hence, it is apparently the need of the hour to select an appropriate methodology
for mercury remediation from the environment. There are physiochemical methods,
including precipitation, conventional coagulation, adsorption, ion exchange, and so
on, and biological methods (bioremediation and phytoremediation) for removal of
this hazardous metal from the environment (Dash and Das 2012). The physio-
chemical methods have a very high operational cost, as well as are not suitable for
large areas; therefore, the focus is rapidly shifting toward the cost-effective and
eco-friendly biological alternatives for remediation of mercury (Oves et al. 2013).
In this context, the use of plant growth promoting microbes (PGPM) for remedi-
ation of mercury contaminated site is an attractive and economical option. There are
several reports which advocate the role of plant growth promoting rhizobacteria
(PGPR) and fungi in enhancement of plant growth and endurance under heavy
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metal stress condition (Arshad et al. 2007; Gontia-Mishra et al. 2016; Pietro-Souza
et al. 2017). They also possess the ability to biotransform toxic ions to non-toxic
forms. This chapter summarizes the present understanding toward the mercury
toxicity and their molecular responses in plants. It also highlights the paradigms for
synergistic use of PGPM for improved phytoremediation of mercury from agri-
cultural lands.

10.2 Mercury Pollution in Agricultural Lands

There are various sources of mercury pollution to the environment. These sources
are natural as well as due to human activities. The natural activities include ubiq-
uitous breaking of mercury-containing rocks in the outer layer of the earth. The
volcanic explosion and geothermal activity can contribute to the mercury pollution
to some extent (AMAP/UNEP 2013). This kind of pollution depends on several
factors, like presence of mercury containing rocks and period of geothermal
activities (Ferrara 1998, 2000; Pirrone et al. 2001). Global mercury emissions are
approximately 80–600 ton/year to the environment from such natural activities
(Mason et al. 2012).

Since ancient times, mercury is being used for several purposes, like explosives,
preservatives and treatments of various skin diseases (Azevedo and Rodriguez
2012). Anthropogenic activities are the major sources for mercury pollution in the
soil and water. These activities include mining, coal burning, cement production,
mercury containing pesticides and disposal of mercury containing waste in the
environment (AMAP/UNEP 2013; Mason et al. 2012). Electricity generation by
burning of coal and dependence of several industries on coal energy emit huge
amounts of mercury to the atmosphere.

Some frequently used materials, like batteries, fluorescent lamps and medical
instruments such as leftover thermometers and sphygmomanometer, also contribute
to Hg emissions. Mercury is also used by dentists as dental amalgams and in
various devices like barometers, manometers, float valves, mercury switches,
mercury relays and various research activities. Although these devices are useful in
weather stations, airports and air fields, wind tunnels and engine manufacturing, as
well as in installations offshore or on ships, they also contribute to release of
mercury in the atmosphere (Hutchison 2003). Mercury pollution also emerges from
agricultural practices, like use of pesticides and fertilizers (Hseu et al. 2010). It was
conventionally used in the form of fungicide or pesticide in agriculture. The amount
of mercury present in the soil and its uptake by plants rely on various factors, like
pH of soil, species of plant, presence of microorganisms, type of mercury ion and so
on. It was observed that the mercury uptake can be minimized using high soil pH
and/or high amount of lime and salts (Patra and Sharma 2000; Patra et al. 2004). It
has been reported that mercury accumulation is much more persistent in soil as
compared to aquatic and other biomes (Padmavathiamma and Li 2007; Tangahu
et al. 2011).
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10.3 Mercury Toxicity in Plants and Their Molecular
Responses

The organic form of mercury severely affects plants as they are more toxic than
inorganic (Hg2+) counterparts (Patra and Sharma 2000). Mercury has its toxic effect
on most of the crop species, beyond the tolerance limit. It tends to amass in the
roots; hence the phytotoxic symptoms are also noticed in roots (Chen et al. 2014).
The excess mercury in the soil is taken up by plants, causing disturbance and
malfunction to many of the biological processes, including photosynthesis, respi-
ration, transpiration and cell division (Fig. 10.1). The plausible mechanism of
mercury toxicity is its ability to react with the sulfydryl (SH) groups of proteins and
enzymes; similarly, it has high affinity for the phosphate groups of lipids,
energy-rich molecules like ATPs and nucleotides. It is also noted that it also sub-
stitutes the essential ions such as Mg2+ ion in chlorophyll (Azevedo and Rodriguez
2012). Mercury also messes up with the aqua-porins (water channels), causing
impaired transpiration and subsequent water uptake via vascular tissues (Zhou et al.
2008). It deliberately disrupts the plant antioxidant defense enzymes, especially
glutathione reductase (GR), superoxide dismutase (SOD), catalase and ascorbate
peroxidase (APX). Besides, it also affects the other antioxidant entities such as
glutathione (GSH) and non-protein thiols (Israr et al. 2006; Zhou et al. 2008).

The plants can tolerate the effect of mercury toxicity to some extent by the
interplay of various physiological and molecular mechanisms. First, when plants
come into contact with mercury ions, they prohibit or reduce the uptake of mercury
into the roots by either complexing them to cell wall or root exudates; if it enters the
root cell, the metal ion is restricted to the apoplasts. But if still the mercury ions
gain entry into the plant cell, they are countered by detoxification through com-
partmentalization into vacuoles or complexation with amino acids, organic acids,
chelation by phytochelatins (PC) and metallothioneins (MT). Further, some
non-enzyme antioxidants such as a-tocopherol and GSH also aid in combating
mercury toxicity (Kalaivanan and Ganeshamurthy 2016). These processes mostly

Fig. 10.1 Effects of mercury toxicity on plants
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put a check on translocation of mercury ions to the leaf tissues and thereby
shielding the photosynthesis from detrimental effect of mercury (Rascio and
Navari-Izzo 2011). Finally, plants resort the mercury toxicity by induction of ox-
idative stress enzymes such as SOD, APX, catalase, glyoxalase and GR. They also
trigger the stress-responsive proteins and hormones. Various signaling cascades are
stimulated by encountering heavy metal ions, namely calcium-dependent signaling
and mitogen-activated protein kinase (MAPK) signaling (Tiwari and Lata 2018).
Recently, it was observed that mercury toxicity activates the biosynthesis of aro-
matic amino acids (tryptophan and phenylalanine), calcium accumulation and also
stimulates MAPK in rice (Chen et al. 2014).

10.4 Phytoremediation

As already discussed, the physical and chemical methods of remediation of heavy
metals are costly and time-consuming. The focus has shifted to phytoremediation.
Phytoremediation is a process utilizing plants to eliminate, detoxify, volatilization
or reduce the concentration of environmental contaminants, including heavy metals
(Wood et al. 2016). In contrast, this technology is widely accepted as it is an
economical, efficient and environment-friendly way to remove metals from con-
taminated soils. Phytoremediation, in general, involves several plant species with
the ability to accumulate or degrade contaminants and in turn the biomass generated
through this process can be used for other purposes. Phytoremediation occurs by the
use of one or all the following mechanisms, such as phytoextraction, rhizofiltration,
phytodegradation and phytovolatilization. In the context of mercury contamination,
phytovolatilization is of great importance because Hg2+ ion is taken from soil and
volatilizes it to non-toxic Hg0 form from the foliage into the atmosphere (Kumar
et al. 2017). Phytoremediation is adopted by using hyperaccumulator plants which
have capacity to take up exceedingly enormous amounts of heavy metals from the
soil in comparison to other plants (non-hyperaccumulators). Additionally, in
hyperaccumulators the heavy metal ions are translocated to the shoots, and inter-
estingly, no visible signs of phytotoxicity are observed in hyperaccumulators
(Rascio and Navari-Izzo 2011).

In general, plants belonging to the family Brassicaceae (Thlaspi and Alyssum,
Brassica, Noccaea), Crassulaceae (Sedum alfredii) and Pteridaceae (Pteris vittata)
have been reported as proficient heavy metal hyperaccumulators (Reeves and Baker
2000). However, the reports for mercury hyperaccumulators are scanty and include
plant species Brassica juncea, Polypogon monospeliensis and Pteris vittata (Su
et al. 2007). Similarly, plants Lindernia crustacea, Paspalum conjugatum and
Cyperus kyllingia have been used for potential phytoextraction of mercury for
contaminated sites. It was also noted that these plant species efficiently take up and
translocate mercury from roots to shoots (Muddarisna et al. 2013). In another study,
Medicago sativa and Dittrichia viscosa were found suitable plants for phytore-
mediation of the site contaminated with mercury (Shehu et al. 2014). Hence, there is
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an ever-increasing demand to search new mercury hyperaccumulators plant for their
utilization in phytoremediation.

10.5 Plant Growth Promoting Rhizobacteria/Microbes
(PGPR/PGPM)-Assisted Phytoremediation

PGPR are a dynamic group of bacteria which are associated with the roots or
present in vicinity of roots, that is, in the rhizosphere and tend to benefit plants
through plethora of mechanisms (Gontia-Mishra et al. 2017a). Microbes are well
known to take part in the biogeochemical cycling of toxic metals and also in
remediating heavy metals from the contaminated sites. The phytoremediation of
heavy metals mostly relies on the availability of metal ions. The interference of
heavy metal-resistant PGPR addresses this problem by increasing the bioavail-
ability of metal ion by modifying the soil texture and properties (Mishra et al.
2017). PGPR play a major role in plant growth promotions as well as bestow with
the ability to reduce the noxious effect of heavy metals on plants. PGPR are also
equipped to detoxify the heavy metals. There are ample of reports which advocate
that the use of PGPM proposes a better strategy by improving the phytoextraction
and phytoremediation of heavy metals, particularly mercury from soil (Glick 2010;
Quiñones et al. 2013; Gontia-Mishra et al. 2016; Ashraf et al. 2017; Etesami 2018).
The comparative account of mercury detoxification via phytoremediation and
PGPM-assisted phytoremediation is represented in Fig. 10.2.

10.5.1 Detoxification of Mercury via Mer Operon

With special context to bioremediation of mercury, PGPM can facilitate the process
by direct interaction with the metal ion, through volatilization (reduction of Hg2+ to
Hg0), transformation and rhizodegradation (Gadd 2010). There are many studies
which provide the details of mercury-resistant PGPR (Ruiz-Diez et al. 2012;
Quiñones et al. 2013; Gontia-Mishra et al. 2016). These mercury-resistant bacteria
have evolved numerous ways to combat the mercury toxicity, namely through
volatilization, exopolysaccharide (EPS) sequestration, metal complexation and
enzymatic detoxification (Dash and Das 2012). Mercury-resistant bacteria are also
known to produce thiol compounds which have high affinity for Hg2+ ions, further
lowering the metal toxicity. Another important mechanism adapted by bacteria to
alleviate metal toxicity is bioaccumulation. Bioaccumulation is largely carried out
by biosorption, which depends on various processes such as complexation (sulfur,
phosphate and bicarbonate groups of cell wall), chelation (siderophore and PC), ion
exchange and entrapment in intracellular spaces (Mishra et al. 2017).

Furthermore, many mercury-resistant bacteria also harbor mercury resistance
genes, that is, the mer operon, either on plasmid or in the chromosome, transposons
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or integrons for reduction from Hg2+ to Hg0, the less reactive form (Mathema et al.
2011; Dash et al. 2017a). This is the most efficient mechanism of mercury detox-
ification widespread in the Gram-positive and Gram-negative bacteria
(Chatziefthimiou et al. 2007). The mer operon consists of a series of operator,
promoter, regulator genes and the functional genes. The functional genes comprise
merP, merT, merD, merA, merF, merC and occasionally merB. Each gene codes for
a functional protein participate in a specific way to detoxify mercury. The detox-
ification of mercury is generally achieved by the uptake and transport of Hg2+ by
the periplasmic protein MerP, a mercuric ion transport protein MerF and the inner
membrane protein MerT (Powlowski and Sahlman 1999; Mathew et al. 2015).
Further, the final process of reduction of Hg2+ to volatile metallic mercury is carried
out by mercuric ion reductase encoded by the most important merA gene

Fig. 10.2 The comparative account of mercury detoxification via phytoremediation and
PGPM-assisted phytoremediation
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(Ní Chadhain et al. 2006; Dash et al. 2017a). Moreover, some bacteria also possess
merB gene coding for organomercurial lyase (Reniero et al. 1995) which aid in
cleavage of Hg2+ from organomercurial compounds. The mer operon is positively
regulated by regulator protein merR in the presence of Hg2+ in the surroundings
(Huang et al. 2002).

10.5.2 Bioremediation of Mercury by PGPR Using Different
Strategies

PGPR which do not possess the mercury resistance via mer genes can also posi-
tively modulate plant growth under mercury stress by diverse mechanisms, which
in turn aid in improved uptake and assimilation of mercury in roots and shoots.
These mechanisms include: (a) better nutrient uptake by action of N2 fixation, P, K,
Zn solubilization; (b) by producing plant growth regulators, that is phytohormones
[indole acetic acid (IAA), cytokinin and gibberellic acid]; (c) production of metal
chelating compounds, for example, siderophores, PC, EPS; (d) production of
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase; (e) production of
organic acids; (f) protection of plants from deleterious plant pathogens (Jha et al.
2012). The use of various mercury-resistant PGPR for alleviating mercury stress
and their positive impact on host plants is shown in Table 10.1.

10.5.2.1 Rhizobia–Legume Interaction in Mercury Bioremediation

The most important symbiotic interaction between rhizobia and legume which offer
nutrients, especially nitrogen to plants, has been extensively exploited to improve
the phytoremediation of mercury (Nonnoi et al. 2012; Lebrazi and Fikri-Benbrahim
2018). It is a well-known fact that rhizobia enter the roots of legumes to develop
root nodules, where atmospheric N2 is fixed to ammonia, which is assimilated by
the plants. The nitrogen is the major nutrient element for plant growth, and legume–
rhizobia interaction enhances plant productivity; hence rhizobia has been recog-
nized as an important plant growth promoter (Teng et al. 2015). Recently, it is noted
that many species of rhizobia have mercury resistance which promotes them to be
used as excellent candidates for rehabilitating contaminated soils (Ruiz-Diez et al.
2012). Besides, the rhizobia–legume partnership also enhances soil fertility, pro-
motes plant growth and provides ecological benefits. A recent study reports the
isolation of mercury-resistant rhizobial strains Ensifer medicae and Rhizobium
leguminosarum bv. trifolii from the root nodules of Medicago spp. and Trifolium
spp. plants growing in Hg-contaminated soils. In addition to nitrogen fixation, these
isolates also exhibited other plant growth promotion traits such as phosphate sol-
ubilization and siderophore production, which assists in increasing the bioavail-
ability of metal ion in the soil through modulation of soil pH (Nonnoi et al. 2012).
Similarly, mercury-resistant rhizobial strains R. leguminosarum, Rhizobium
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radiobacter, E. medicae and Bradyrhizobium canariense were isolated from the
root nodules of leguminous plants Medicago, Trifolium, Vicia, Lupinus, Phaseolus
and Retama growing in the mercury-contaminated areas of Spain (Ruiz-Diez et al.
2012). The mercury-resistant B. canariense was used in interaction with Lupinus
albus for phytoremediation of mercury from the contaminated soils (Quiñones et al.
2013). Another advantage with rhizobia–legume system is that it is a stable asso-
ciation over other free-living PGPR; hence it will definitely improve the perfor-
mance of host plants under heavy metal stress (Li et al. 2012). Thus, it can be
suggested that rhizobia-assisted phytoremediation is a feasible option to revitalize
mercury-contaminated soils.

10.5.2.2 Production of Phytohormones

Phytohormones mainly comprise auxin, cytokinin (CK), gibberellic acid (GA),
abscisic acid and ethylene. These phytohormones are the key players in metal stress
mitigation (Bücker-Neto et al. 2017). Almost 80% of PGPR isolated from the rhi-
zosphere are capable of producing IAA, which has selective impact of the root
growth and development (Patten and Glick 2002). The phytohormone IAA is mostly
associated with cell division and differentiation, formation of vascular bundles and
also plays a vital role in nodule formation (Gopalakrishnan et al. 2015). Plants with
better root system have greater access to the nutrient and heavy metal uptake further
results in improved phytoremediation (Ma et al. 2016). PGPR bear the ability to
produce IAA and, therefore, enhance the root surface area of plant for better
adsorption of heavy metals from the soil (Etesami 2018). Additionally, IAA is also
implicated with diverse metabolic processes in plants, namely, stimulation of plant
defense system and function as a cell–cell signaling molecule (Spaepen et al. 2007;
Ma et al. 2018). Krishnamurthy and Rathinasabapathi (2013) have revealed an
affirmative role of auxin transport through AUX1 on tolerance of plant to heavy metal
stress via ROS-mediated signaling. In a study, Halobacillus sp. and Halomonas
sp. produced IAA and indole butyric acid (IBA) and subsequently increased the root
length and root dry weight of Sesuvium portulacastrum under mercury stress (Desale
et al. 2014). In a similar study, consortium of mercury-resistant PGPR (IAA pro-
ducing) Bacillus sp. and Enterobacter cloacae were inoculated with chickpea and
showed improved growth of plant under mercury stress (Amin and Latif 2017). In a
recent report, inoculation of mercury-resistant IAA producing fungi Aspergillus
sp. and Massariosphaeria sp. was beneficial to host plants Polygonum acuminatum
and Aeschynomene fluminensis in providing defense against the adverse effects of
mercury (Pietro-Souza et al. 2017). These studies provide evidences that
mercury-tolerant PGPR which produce IAA have capability to positively modulate
plant growth under stressful conditions (Table 10.1). The role of other phytohor-
mones such as CK, GA and salicylic acid (SA) is not known in mercury stress. In
contrast, the involvement of CK, GA and SA is largely recognized in alleviating
other heavy metals such as Mn, As and Cd (Gangwar et al. 2010; Zhu et al. 2012;
Gondor et al. 2016).
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10.5.2.3 Production of Organic Acids

The PGPR are extensively documented for increasing the bioavailability of
essential nutrients such as P, K and Zn (Gontia-Mishra et al. 2017a). The chemical
forms P and Zn applied as superphosphates and zinc sulfate, respectively, are
readily converted into insoluble forms and are inaccessible for plant uptake
(Richardson 2001; Gontia-Mishra et al. 2017b). The phosphate solubilizing bacteria
(PSB) and zinc solubilizing bacteria (ZSB) render the insoluble phosphates and zinc
into soluble form through the process of acidification (release of organic acids),
chelation and exchange reactions (Kim et al. 1998; Kamran et al. 2017). The most
important mechanism of P and Zn solubilization is through the action of organic
acids. Several workers provided evidences that low molecular weight organic acids
like gluconic acid, 2-ketogluconic acid, 5-ketogluconic acid pentanoic acids citric
acid, lactic acid, succinic acid and propionic acid are produced during P and Zn
solubilization (Chen et al. 2006; Saravanan et al. 2007). These organic acids lower
the pH of soil and help in solubilization of P and Zn. The organic acids, such as
citrate, malate, oxalate, malonate, tend to form strong bonds with heavy metal ions
through metal chelation with carboxyl groups and these complexes are less toxic to
plants than the free metal ions (Kavita et al. 2008; Osmolovskaya et al. 2018).
Another important fact is that the organic acids produced by microbes have greater
affinity for chelating heavy metals than essential nutrients (Gadd 2010). The organic
acids also lower the pH of soil; hence they also help in solubilization of heavy
metals and increase the mobilization of heavy metals in rhizosphere for uptake by
the plants (Etesami 2018). There are reports on P and Zn solubilization by several
mercury-resistant PGPR that can aid in alleviation of mercury stress (Gupta et al.
2005; Nonnoi et al. 2012; Desale et al. 2014; Gontia-Mishra et al. 2016).
Consequently, organic acids producing PGPM can indirectly contribute to miti-
gation of heavy metal stress in plant.

10.5.2.4 Action of ACC Deaminase Enzyme

Ethylene is produced in plants subjected to variety of abiotic and biotic stresses
encompassing exposure to salt, drought, flooding, heavy metals, organic and inor-
ganic chemicals, attack of nematodes, phytopathogens and so on. (Gontia-Mishra
et al. 2014). Hence the ethylene produced during such stress conditions is termed as
“stress ethylene” (Glick 2014). Consequently, elevated levels of ethylene can impair
root growth; overall plant growth is retarded and induction of senescence occurs in
plants (Han et al. 2015). Interestingly, it is noted that 1-aminocyclopropane-
1-carboxylic acid (ACC) works as precursor for ethylene biosynthesis. Moreover,
several PGPR have potential to substantially lower the ethylene concentration in
plants. This is attributed to the enzyme ACC deaminase (present in PGPR), which
catalyzes the conversion of ACC to ammonia and a-ketobutyrate, and subsequently
reduced ethylene concentration in stressed plants (Glick et al. 1999). Various
researchers have documented the application of ACC deaminase producing PGPR
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for improvement of plant growth under heavy metal stress (Ma et al. 2015; Han et al.
2015; Rizvi and Khan 2017). In context to mercury stress, Gontia-Mishra et al.
(2016) have reported the application of mercury resistance PGPR with ACC
deaminase activity for combating the effect on mercury in wheat plants.

10.5.2.5 Production of Siderophore, EPS, PC and MT

Iron is a vital nutrient for microorganisms. Fe3+ ion usually makes complex insol-
uble with hydroxide and oxyhydroxide under aerobic conditions and renders it
unavailable to microbial uptake (Storey et al. 2006). Mostly, bacteria acquire iron by
the secretion of low-molecular weight ferric-ion-specific chelating agents known as
siderophores (Neilands 1995). Siderophores are produced by PGPR, both symbiotic
and free-living bacteria and fungi, growing under low iron concentrations.
Moreover, siderophore has registered a remarkable role in detoxification of various
heavy metals (Nonnoi et al. 2012; Hesse et al. 2018). Nevertheless, the undeniable
function of siderophore is iron acquisition, but they can bind with other heavy metals
like Al, Cd, Cu, Pb, Hg and Zn (Neubauer et al. 2000; Braud et al. 2009). It is also
noted that besides iron, other metals can stimulate siderophore production (Hesse
et al. 2018). The siderophore–metal complex can increase the soluble metal con-
centration for uptake by plants (Schalk et al. 2011). The siderophore-producing
PGPR provide dual benefit to plants under metal stress first, by improving iron
availability, and secondly, by lowering the free metal ion concentration in the rhi-
zosphere (as siderophore forms complex with heavy metals) (Dimkpa et al. 2008).
Additionally, siderophores have also displayed an efficient role in biological control
against phytopathogens (Kloepper et al. 1980). The siderophore-producing PGPM
has canonical function to promote the plant growth via iron acquisition and for
control of plant diseases but their use in PGPR-assisted phytoremediation has gained
much attention (Rajkumar et al. 2010). A large number of mercury-resistant PGPR
and endophytic fungi have been reported to increase the survival and growth of
plants in mercury-contaminated soils by ameliorating the metal toxicity (Gupta et al.
2005; Nonnoi et al. 2012; Gontia-Mishra et al. 2016; Pietro-Souza et al. 2017).

Many PGPR have the unique ability to produce exopolysaccharide (EPS)/ex-
tracellular polymeric substances. The EPS has multifarious function in bacterial
cells ranging from quorum-sensing signals, biofilm formation, development, sur-
vival and host colonization (Nocelli et al. 2016). The EPS largely constitutes high
molecular weight macromolecules like polysaccharide along with smaller propor-
tions of protein, lipids and uronic acid (Gupta and Diwan 2017). EPS shields the
bacterial cells against various environmental stresses, such as heavy metal toxicity,
drought and salinity. They have several anionic functional groups (e.g., sulfhydryl,
carboxyl, hydroxyl, sulfonate, amine and amide), which binds with metal ions and
decreases their mobility in the soils and their accessibility for plants (Rajkumar
et al. 2012). In fact, S. meliloti produces two kinds of EPS: succinoglycan and
galactoglucan that are associated with developing symbiotic relation with host
plants. In a study, wild-type and mutant S. meliloti (deficient in EPS I and EPS II
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synthesis) was treated with different concentrations of mercury. The mutant strains
could not withstand mercury toxicity; hence it could be proposed that EPS pro-
duction plays a pivotal role in combating mercury toxicity (Nocelli et al. 2016).
EPS secretion is an extensively recognized phenomenon for plant growth promo-
tion. The PGPR which are capable of EPS secretion has been widely known to
decrease mercury toxicity during their interaction with host plants (Gontia-Mishra
et al. 2016; Hindersah et al. 2018).

Recent studies investigating the role of PGPM in heavy metal uptake by plants
have demonstrated that microbial PC and MT have the ability to chelate heavy
metals. PC is produced by arbuscular mycorrhizal fungi as well as by plants in
response to heavy metal stress (Miransari 2011). However, rhizobacteria do not
produce PC; hence phytochelatein synthase gene from Schizosaccharomyces pombe
(yeast) was transformed to Pseudomonas putida, which is induced by several heavy
metals such as Cu, Cd, Pb and Hg and this recombinant bacteria improved ger-
mination and plant growth in wheat under multiple metal stress condition (Yong
et al. 2014). These microbial PCs are cysteine-rich peptides which bind to heavy
metals with great affinity and enhance phytoremediation of heavy metals by plants
(Kang et al. 2007). In order to sequester, heavy metals such as Cd, Zn, Hg, Cu and
Ag PGPR and mycorrhizal fungi produce MT and are also cysteine-rich polypep-
tides that bind to heavy metals (Ullah et al. 2015). A recent study reported the
characterization of MT genes, from the ectomycorrhizal fungus Laccaria bicolor
under heavy metal stress (Reddy et al. 2014). Thus, it could be predicted that PGPR
and symbiotic fungi has capability to produce PC and MT, and can enhance metal
tolerance in host plants. The role of different bacterial species as potential biore-
mediation candidates to control mercury pollution and their mode of action for
detoxification of mercury are listed in Table 10.2.

10.6 Transgenic Plants Overexpressing Mer Genes

Phytoremediation through naturally occurring plants capable of alleviating heavy
metal stress can be difficult to manage and achieve, except for hyperaccumulators.
Usually, such plants fail to survive in diverse environment or even if they survive,
they fail to alleviate the heavy metal stress, either due to change in soil type or due
to excessively high concentration of phytotoxic compounds (Doty 2008).
Therefore, development of transgenic has recently been employed in several
important plant species, particularly those capable of growing in diverse climatic
conditions. Transgenic technology for improving or inducing the phytoremediation
uses the genes responsible for either metabolizing phytotoxic compounds or uptake
or their translocation (Kawahigashi et al. 2002; Lee et al. 2003; Chowdhury et al.
2015). There have been three basic strategies used to develop transgenic plants for
phytoremediation to extract genes, viz., from bacteria or non-plant sources, or
transforming with genes derived from different plant species or overexpressing of
detoxification genes in the same plant species (Maestri and Marmiroli 2011).
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Phytoremediation of toxic metals like mercury offers an economic and
non-accumulative mode of remediation. With increasing mercury pollutions,
transgenics have been widely developed for phytoremediation of mercury toxicity.
Most of the transgenics designed for mercurial phytoremediation introgress two
major classes of bacteria-derived genes merA and merB (Rugh et al. 1996; Meagher
and Heaton 2005). These transformants are achieved via nuclear or chloroplast
genome transfer of mer genes. According to the latest reports, mercuric reductase is
the only class of enzyme known to metabolize phytotoxic Hg2+ ions. The merA
gene product, a chief enzyme of mer operon, codes for mercuric reductase enzyme
responsible for conversion of Hg2+ to elemental Hg0.

A similar activity has been initially reported to be associated with the plasmids
of few bacteria (Clark et al. 1977; Schottel 1978). However, presence of merA genes
is observed within the conjugative plasmids and their presence in diverse taxonomic
subgroups indicate a possible horizontal transfer (Møller et al. 2014). The detoxi-
fication efficiency of merA genes varies between genera of bacteria which could
probably be correlated with the wide sequence variations within the merA
sequences (Dash et al. 2017a). Within different bacterial genomes, a 431 bp region
is known to be conserved which can be effectively exploited to develop molecular
markers (Sotero-Martins et al. 2008).

Volatilization of Hg2+ ions through merA genes essentially requires the forma-
tion of merA-NADPH-Flavo redox complex (Dash et al. 2017a), where the NADPH
probably acts as an electron donor. The Hg poisoning is usually observed in
chloroplast, due to which transformants with chloroplast genome transfer are
favored. As the expression of merA requires NADPH, the gene is predicted to
function efficiently in chloroplast as it has abundant NADPH (Ruiz and Daniell
2009).

To obtain higher volatilization efficiency, plants with higher biomass is usually
preferred with intense root system for translocation or uptake of Hg2+ ions.
Therefore, few forest tree species, capable of transformation, have been exploited to
develop merA transgenics which can be utilized for large-scale in situ phytore-
mediation of mercury-polluted soils. The merA gene-transformed yellow poplar
plantlets were capable of surviving in media containing normal toxic concentration
of mercury (Rugh et al. 1998). Similarly, transgenic eastern cottonwood trees
expressing merA9 and merA18 genes could metabolize 25 µM Hg2+ ions. However,
wild-type plantlets were killed at this high mercury concentration (Che et al. 2003).
Further transgenic studies have demonstrated a successful generation of tobacco
transformants via nuclear genome, expressing merA gene derived from E. coli,
metabolizing Hg2+ ions. These tobacco transgenics were tolerant to higher levels of
mercury concentrations of 80–140 µM Hg2+ ions which are approximately five to
seven times more than the normal levels (Haque et al. 2010). Such transformation
has also been applied to rice, where transgenic rice produced through particle gun
bombardment harboring merA gene resistant to 250 lM of HgCl2 (Heaton et al.
2003).

Usually the broad-spectrum mercury tolerance is achieved through the com-
pound integration of merA and merB gene products. Nonetheless, the reduction of

10 Problem of Mercury Toxicity in Crop Plants … 269



Hg2+ ions is accomplished by MerA enzyme, presence of additional merB facili-
tates the breakdown of organomercurial compounds like methylmercury chloride,
ethylmercury chloride, and so on (Chien et al. 2010). The merB codes for
organomercurial lyase, an enzyme that hydrolyzes the breakdown of C–Hg bond
followed by reduction of Hg2+ ions with merA (Weiss et al. 1977; Nascimento and
Chartone-Souza 2003; Lafrance-Vanasse et al. 2009). In addition to merB gene,
merG gene is also associated with broad-spectrum mercury tolerance, located
between merA and merB in a mer operon (Kiyono and Pan-Hou 1999). The model
plant A. thaliana introgressed with merB could survive at varying concentrations of
monomethylmercuric chloride and phenylmercuric acetate (PMA). The growth of
control plants was severely hampered in the presence of Hg at same concentration
(Bizily et al. 1999).

Improved detoxification of inorganic and organomercurial can be accomplished
using an integrated mer gene complex, merA and merB. A nuclear genome inte-
grated merAB complex was first introduced in A. thaliana which could survive at
5 lM PMA and 10 lM CH3Hg. This resistance is a fivefold increase in tolerance to
organic Hg in comparison to the plant expressing only merB genes (Bizily et al.
2000). The transgenic populus species have been successfully developed,
expressing both the genes. The transformants could tolerate 50 and 2 µM of
HgCl2 and CH3HgCl, respectively (Im Choi et al. 2007). A merAB complexed
system when transformed to chloroplast genome in tobacco, demonstrated an
enhanced uptake of inorganic and organomercurial compounds with simultaneous
rapid Hg volatilization (Ruiz et al. 2003; Hussein et al. 2007).

Grasses have also been utilized to develop mer gene transgenics as they often act
as natural pollutant remediators. Their transformation with mer genes can improve
their phytoremediation capabilities (Czakó et al. 2005). Spartina alterniflora has
been successfully transformed with merAB system which enhanced their resistance
to PMA and HgCl2 (Czako et al. 2006). These bacterial-derived mer genes func-
tions sufficiently well in plants; however, they have to be modified with an addi-
tional requirement of plant promoters. Using genetic engineering to modify plant
genome incorporating mercury-resistant genes can potentially help in reducing
heavy metal pollution. However, such techniques may or may not offer complete
and stable inheritance. Hence, few other alternative modes of phytoremediation
should also be simultaneously employed.

10.7 Concluding Remarks and Future Strategy

The contamination of mercury in agriculture land is widespread. As stated, mercury
can induce noxious effects on plant growth and development. Hence, it is the need
of the hour to quest for the effectual solution to overcome the problem of mercury
contamination Phytoremediation is one of the effective, environment-friendly and
comparatively cheaper than the conventional strategies for remediation of mercury.
The application of PGPM has attained ample attention to mitigate various
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environmental stresses, especially heavy metals. The PGPM have been proficiently
associated with plant growth promotion and simultaneously aid in combating
mercury toxicity by varied mechanisms such as directly by utilization of mer
operon and indirectly by production of siderphores, organic acids, PC, MT, phy-
tohormones and ACC deaminase. Hence, in recent years, there is a profound
upgradation in the role of PGPM from “nutrient provider” to “stress alleviator”. In
this respect, PGPM-assisted phytoremediation has been proved to be better solution
and even stimulates the proficiency of mercury detoxification. In the parallel,
several transgenic plants overexpressing mer genes from microbial origins have
been developed. The transgenic plants overexpressing mer genes either individually
or along with mercury-resistant PGPM could be used as integrative approach for
phytoremediation of mercury-contaminated sites. In the present scenario, serious
and constant efforts are to be made to increase the number and diversity of effective
and competitive mercury resistance PGPM from the mercury-contaminated sites
and investigating their role in phytoremediation of mercury with a suitable host
plant. Despite several findings, studies are still needed to explore the underlying
molecular aspects of interplay between plant-PGPM in soil, which can hasten the
phytoremediation process of under mercury stress. In this context, researchers
should investigate and develop an efficient technology using the consortia of
mercury-resistant PGPM for preservation and protection of environment against
mercury contamination.
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Chapter 11
Regulatory Role of Rhizobacteria
to Induce Drought and Salt Stress
Tolerance in Plants

Humaira Yasmin, Asia Nosheen, Rabia Naz, Rumana Keyani
and Seemab Anjum

Abstract This chapter summarizes the role of rhizosphere dwelling beneficial
bacteria for the induction of tolerance against drought and salt stresses in plants.
A vast proportion of world’s agricultural land is rendered less productive or
completely unproductive due to different factors including water scarcity and
salinity. Drought can be due to insufficient rainfall, dry spells or changes in rainfall
patterns whereas salinity is because of excessive amount of salts in soil or water.
This salinity can be primary (arise due to natural phenomena) or it can be secondary
(anthropogenic in origin). Plants respond to drought and salinity via morphological,
physiological and biochemical mechanisms. To overcome devastating effects of
these stresses in plants, different strategies developed along with the traditional
agricultural practices. An emerging strategy to overcome drought and salinity is the
use of plant growth-promoting rhizobacteria (PGPR), which enable plants to
combat these stresses by various direct and indirect mechanisms. Rhizobacteria are
under extensive research for their beneficial effects, uncomplicated and
cost-effective application methods and their environment-friendly behaviors. Now
also serve as best alternatives to chemical and traditional methods so as to over-
come to tolerate and ameliorate harmful effects in plants.
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11.1 Introduction

Plants are the creatures of prime importance to Earth, as all other organisms are
directly or indirectly dependent on them. Most plants are well adapted to their
environment but there exists a huge range of biotic and abiotic stress factors that are
strong enough to breach the protective barriers of plants to cause diseases and other
adverse conditions in plants. The major biotic stresses for plants include bacteria,
viruses, fungi, nematodes, insects, weeds, etc. whereas major abiotic stresses which
are also equally or in some cases, more devastating for plants include drought,
salinity, water logging, flooding, heat, cold, frost, heavy metal toxicity, etc. All
these stress factors contribute to plant growth reduction and huge yield losses
worldwide. When a plant faces abiotic stress, it also becomes vulnerable to other
abiotic stresses. Abiotic stresses are a great threat to food security due to continuous
climate changes and worsening of natural environment by human activities.

Abiotic stresses faced by the largest proportion of plants are drought and salinity.
Drought refers to low water availability to plants to carry out their normal physi-
ological processes. Drought is a result of change in rainfall patterns, less rainfalls,
extreme high or low temperatures, faster evaporation rates than water replenishing
to soils and saline conditions, etc. Salinity is a consequence of deposition of oceanic
salts through rain and winds, inadequate agricultural practices, use of saline water
for irrigation, insufficient rainfall, elevated evaporation rates, weathering of rocks.
In a broader context, water stress is referred to both drought and salinity.

Plants respond to abiotic stresses by altering their functioning on different levels
and also by exploiting mechanisms to avoid them. These responses are multiplexed
and potent with the involvement of various changes on physiological, morpho-
logical, molecular and biochemical levels to ensure the maintenance of normal
functions and survival. Plant responses can be reversible or irreversible. The type of
plant responses to stress also depends on the intensity and time of exposure to
stress.

Classical breeding methods helped to induce tolerance in plants against abiotic
stresses, but the success rate is not satisfactory owing to various reasons such as
inefficient criteria for selection, complex quantitative traits and less genetic vari-
ability in plants under stress. Genetic engineering has proved to be a valuable
advancement in developing stress-tolerant plant varieties. An emerging research
area to induce tolerance in plants against these stresses is the use of microorganisms
specifically bacteria. Various bacterial strains are under extensive research for their
potential to make plants resistant to stresses and to enable plants to survive and
produce good yield if they encounter stress.

Bacteria are the most common microorganisms present in soil, the possible
reason for their great numbers is their rapid growth rates and ability to exploit vast
range of materials as carbon or nitrogen sources. Mostly bacteria remain bound to
soil particles, a large number of bacteria are closely associated with plant roots.
Plant rhizosphere dwelling bacteria that exert positive effects on plants are known
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as plant growth-promoting rhizobacteria (PGPR). PGPR opened an infinitely broad
new chapter about plant stress tolerance.

The criteria for soil bacteria to be called as PGPR are that they strictly colonize
plants roots, they must be able to sustain themselves and reproduce in the
microenvironment close to root surfaces and compete with the other soil-dwelling
microbes for resources and they must promote plant growth either directly or
indirectly.

PGPR are well studied for their abilities to increase seed viability and germi-
nation rates, enhancement of root proliferation, increased nutrient uptake and use of
versatile mechanisms to help plants to survive abiotic and biotic stresses. PGPR
have many advantages over classical methods for induction of stress tolerance such
as they can be applied easily and by using a number of techniques at any stage of
plant life, they are non-pollutants for the environment and do not accumulate in soil,
water or on crops, etc. Implementation of PGPR on large scale of crops is an
agreeable idea to make crops stress resistant.

11.2 Drought Stress: A Global Problem

Drought stress or water stress is defined as the condition in which the availability of
water supply is short as compared to its demand (Wrathall et al. 2018). Recently,
Nawrotzki and Bakhtsiyarava (2017) reported that the effects of drought stress
which operate in the form of water scarcity change in rainfall dry spell, etc., on
agricultural crops leads to the increased migration of communities. Various factors
are responsible for an increase in water crisis problem, among those, climate change
is the major water limiting factor which is produced due to increased level of
atmospheric carbon dioxide, increase in temperature, decrease in rainfall, extreme
environmental events, and population growth (Torres and Henry 2016).

According to estimation (United Nations FAO 2013), it was reported that about
one-third of the world population is living in the water-scarce areas. The climate
change will further increase the water shortage intensity in subtropical areas of Asia
and Africa. Further it was reported that by 2035, the glaciers of the Himalayas
which are feeding largest rivers of Asia such as Indus, Yangtze, Ganges, Salween,
Brahmaputra, Mekong, Yellow, etc., may vanish due to increase in temperature and
about 1.8 million people will live in the regions or countries which are suffering
from water scarcity. Drought has severely affected the Central Asian countries
and they are using the water resources by treaties or by bargaining (Athar and
Ashraf 2009).

About 60% of the world is composed of arid and semi-arid regions. The water
shortage severely affects the crops yield specifically in Asian countries (Swain et al.
2017). Drought is considered as a major global limiting factor of crop productivity,
which hinders the growth of the plants and leads toward yield losses (Zhang et al.
2018). For example, wheat is considered as the major food in many countries of the
world. It provides 20% of the daily calories and also acts as a source of protein for
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4.5 billion peoples of the world (Shiferaw et al. 2013). It has been reported that the
yield of wheat has been decreased by 4.1–6.4% for every 1 °C increase in tem-
perature due to the global climate change (Liu et al. 2016). To meet the
ever-increasing population needs the consumption of wheat is expected to rise in
the next 40 years (Weigand 2011) and by 2050, the wheat production yet to
increase 858 million tons to fulfil the predicted global food demand (Alexandratos
and Bruinsma 2012).

11.3 Responses of Crops/Plants to Drought Stress

Drought stress may become worse if the control measures are not taken into con-
sideration. It is one of the major environmental factors, which restrain the plant
growth and yield (Butt et al. 2017). The water availability reduced to the plants,
hence hindering the growth, development, efficiency, and water relations to several
terrestrial plants. The maximum yield losses occur in the crops, which are prone to
drought stress. In fact, under drought stress, plants tend to increase their immune
response by osmoregulation in the tissues, activation of antioxidant defense system
and modulation in hormonal balance (Butt et al. 2017).

The survival of the plants during the early growth stages is quite critical in
drought stress areas. However, plants have adapted an array of physiological,
morphological, and biochemical strategies to endure the drought stress condition
(Basu et al. 2016). There are two major mechanisms by which plants survive under
drought stress (i) either by escape from drought or (ii) they must avoid the stress.
The prompt maturity and early completion of the life cycle is the phenological
phenomenon, which is categorized under drought escape strategy. While to avoid
the detrimental effects of drought by maintaining a higher level of water potential is
the drought avoidance mechanism of the plants (Athar and Ashraf 2009). Peng and
Ismail (2004) reported that dense and deep root system, increased stomatal con-
ductance, increased root penetration ability, avoidance of rolling of leaves,
increased water potential during pre-dawn, and greater cuticular resistance in order
to reduce or prevent the water loss are some of the characteristics which plants
adapt to avoid drought stress conditions.

Under natural dry conditions, a plant tends to mature early and produce seeds
before the onset of the dry season. For example, Escholtzia californica (California
poppy) completes its life cycle earlier before the start of the drought stress. Some
xerophyte plants such as Agave deserti store water in their stem, leaves, and buds to
survive in water stress conditions (Athar and Ashraf 2009). Some plants are
characterized as having a deep root system (such as Cicer arietinum L., Vigna
aconitifolia, Brassica campestris, etc.), which provides drought tolerance (Kumar
2005).
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11.4 Plant Adaptations to Drought Stress

Plants have developed various mechanisms to maintain their vigor during different
levels of water scarcity. Plants respond to drought stress of different intensities
through a range of changes from morphological to molecular levels.

11.4.1 Root Morphology

Drought stress is firstly perceived by the roots wherein, shoot growth is signifi-
cantly reduced. Primary roots are not affected but the lateral roots show a reduction
in growth due to the suppression of lateral root meristems (Chen et al. 2012). It was
reported that plant microRNA miR393 played a significant role in the root-mediated
adaptations caused by reduction of auxin signaling under drought stress (Chen et al.
2012). The small roots in addition to lateral roots are also considered an adaptive
response of the plants to absorb more water by increasing the surface area.
Similarly, the presence of suberized exodermis, reduction in the number of cortical
layers and rhizodermis are the adaptive strategies under drought stress conditions.
On the other hand, drought stress, i.e., hydrotropism which is increased by the
degradation of columella cells of roots and amyloplast. Hormonal cross-talk is
another adaptive strategy to modify root architecture under drought stress condition.
(Blilou et al. 2005).

11.4.2 Photosynthesis and Gaseous Exchange

Due to metabolic impairment, stomatal closure and leaf area reduction occur, the rate
of photosynthesis decreased under drought stress (Basu et al. 2016). Photosynthesis
is also reduced because the intercellular carbon dioxide concentration decreases
resulting in the reduction of the components of electron transporter (ET). The
reduction in ET leads toward the decreased concentration of molecular oxygen
corresponded to the production of reactive oxygen species (ROS). Reactive oxygen
species cause damage to photosynthetic apparatus and other macromolecules
(Demmig-Adams and Adams 2006). Various photosynthetic pigment such as xan-
thophyll, light-harvesting complexes from the reaction centers and thermal dissi-
pation of light energy causes some of the adaptive responses of the plants to drought
stress. Further, the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)
activity and regeneration of ribulose-1,5-bisphosphate adversely affect the photo-
synthetic biochemical efficacy. (Lawlor 2002; Chaves et al. 2009).
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11.4.3 Transpiration and Stomatal Conductance

Due to drought, stomatal closure in the leaves is the prompt response which reduced
the loss of water, uptake of nutrients, etc., which modulate the metabolic pathways
(Xiong and Zhu 2002). The phenomena of leaf shedding, decrease in the number of
leaves, leaf size, and branching as well as xeromorphic characteristics reduce the
rate of transpiration under drought stress. Sclerophylly is among one of the adap-
tations of the plants under drought, where the plants do not suffer from wilting and
permanent damage due to the formation of hard leaves and resume their activity
under normal conditions (De Micco and Aronne 2009).

Reduction in the size and number of stomata is another adaptation of plants for
survival under drought stress. Reduction in the surface of chloroplast and a decrease
in stomatal conductance due to the reduced expression of aquaporin genes leads to
stress avoidance (Tosens et al. 2012). Chloroplast differentiation and mesophyll
modulation affect the light availability, developmental stage of leaf, and ultimately
photosynthesis (Tosens et al. 2012). These adaptations reduce the damaging effects
of drought stress on plants and improve water-use efficiency to ultimately increase
yield (Blum 2005).

11.4.4 Regulation of Phytohormones

Plants contains ethylene (ET), abscisic acid (ABA), gibberellic acid (GA), cytokinin
(CK), and auxin, which are meant for the regulation of physiology of plants.
(Wilkinson et al. 2012). When plants face the harsh condition of drought stress,
ABA is synthesized in the roots and its translocation is carried out to the leaves,
where it causes stomatal closure and reduction in plant growth (Wilkinson and
Davies 2010). The ABA signaling genes such as DSM2, OsNAP, and OsNAC5
improved the yield of the crops under drought stress conditions (Du et al. 2010;
Chen et al. 2014; Liang et al. 2014). If drought occurs at the reproductive stage of
plant, ABA-induced senescence and stomatal closure due to the unintended
reduction in carbon supply occur. Thus, it seems a great challenge towards the
ABA-induced drought adaptation for better growth and yield (Ji et al. 2011).
Similarly, another adaptive trait is the increased endogenous production of CK
through the expression of CK biosynthetic gene isopentenyltransferase (IPT) which
delays the senescence and death of premature leaves (Peleg et al. 2011).

Interestingly, auxins negatively regulate the drought adaptation in the plants.
Upregulation of a gene that encodes late embryogenesis abundant (LEA) proteins
resulted in a decrease of auxin contents under drought stress (Zhang et al. 2009). It
has also been reported that auxins negatively regulate the DRO1gene (DEEPER
ROOTING 1), which controls the root growth. Increased expression of DRO1gene
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results in the phenomenon of drought avoidance in shallow rooting in rice cultivars
resulting improved the yield under drought (Uga et al. 2013).

Ethylene has also been reported as a negative regulator of the response to
drought stress. Ethylene responses under drought caused overall effect on root
growth, leaf expansion, photosynthesis, grain development, and leaf senescence
(Fukao et al. 2006; Perata and Voesenek 2007). Ethylene enhanced the abortion of
embryo and grain and directly affects the crop yield, a rapid reduction in the level of
GA occurred due to drought stress which acts as positive regulator of plants
adaptation to stress (Wang et al. 2008). Along with these, other less explored
hormones such as jasmonic acid (JA), brassinosteroids, strigolactone, and salicylic
acid (SA) have also been reported to provide adaptation to the plants under drought
stress. Thus, hormones interact with each other and modulate each other’s
biosynthesis and responses, therefore, the drought stress responses are regulated by
a balance among the phytohormones which promote and those that inhibit the traits.

11.4.5 Osmotic Adjustment

The phenomenon of Osmotic adjustment (OA) is the mechanism, which helps in the
maintaining of cell turgor during which the solutes are accumulated in the drying
cell under reduced water potential (Chaves and Oliveira 2004). During drought
stress conditions, the leaf water volume, stomatal conductance, photosynthesis, and
plant growth are observed to be maintained by osmotic adjustment (Chaves and
Oliveira 2004). The cell enlargement is believed to be inhibited due to osmotic
adjustment during drought stress (Serraj and Sinclair 2002). Compatible solutes
(i.e., proline, glycine betaine, etc.) are accumulated by OA and help the plant to
cope with the detrimental effects of drought stress (Ashraf and Foolad 2007). Some
enzymes like pyrroline-5-carboxylate reductase, betaine aldehyde dehydrogenase
and ornithine d-aminotransferase have been reported to play an important role in
osmotic adjustment under drought stress.

11.5 Combat Drought Stress

Drought stress caused adverse impacts on the growth and output of the crops. Plants
also have natural mechanisms to adapt under drought stress conditions, however,
the tolerance mechanisms partially regulated by a variety of measures such as the
use of plant mineral nutrients, plant growth regulators, genetic modifications,
developing tolerant plant genotypes, compatible solutes, seed treatments, etc.
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11.5.1 Role of Plant Growth-Promoting Rhizobacteria
(PGPR)

Various authors have investigated the role of PGPR and other microorganisms in
relation to drought tolerance. PGPR inoculation to crop plants is also an important
strategy to enhance plant growth and yield under water scarcity conditions.
The PGPR can increase plant growth by regulating the nutritional and hormonal
balance to solubilizing nutrients and provide plant growth regulators under stress
conditions. The plant–microbe interaction is very important to regulate plant growth
and provide protection against drought stress (Dar et al. 2018). Application of plant
growth-promoting rhizobacteria for plant growth and drought stress tolerance is an
environment friendly, sustainable and cost-effective approach as compared to other
measures.

PGPR are the group of bacteria that have the capability to colonize the root
system of plants and improve the growth and yield of plants. A wide range of
bacteria actinobacteria, fungi, etc., belong to this category. A total of 2–5% of soil
microorganisms have PGPR properties (Saharan and Nehra 2011). Various genera
play a significant role to improve drought stress tolerance of crop plants.

11.5.2 Engineering Plants for Drought Tolerance

Another strategy to combat with drought stress is the engineering of
drought-tolerant crop plants, which involves the manipulation of functional and
regulatory genes in plants which are not drought stress tolerant (Butt et al. 2017).
Due to complete availability of the genome sequence, Arabidopsis is considered as
a model plant to study the drought tolerance mechanism. For the identification of
the target gene, the microarray gene expression technique is used. In alfalfa
(Medicago tranculata), the engineered gene APETALAL2 transcription factor
induces drought tolerance through the process of wax production (Zhang et al.
2005). Insertion of Mannitol dehydrogenase (MtlD) gene in wheat improved the
drought tolerance capability (Abebe et al. 2003). Similarly, in tobacco, the drought
tolerance is enhanced by the overexpression of inositol Methyl Transferase gene
(IMTI) gene isolated from the ice plants (Sheveleva et al. 1997).

11.5.3 Molecular and Functional Genomics Approaches

Though, conventional breeding methods have been used for a long time for drought
tolerance. Recently, encroachments in genomics and molecular breeding techniques
have a prominent role in the development of drought-tolerant cultivars (Kumar
et al. 2014). Several genes that show response to the drought have been identified
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(Yadav 2010; Todaka et al. 2015; Ali et al. 2017; Kaur and Asthir 2017). The
drought tolerance mechanism at molecular level involves the regulation of gene
expression and the identification of transcription factors. It has been reported that
transcription factors (DREB2A and DREB2B) are involved in the expression of
different genes that confer drought tolerance to plants (Ali et al. 2017). Aquaporins
can be an important target for the development of plant genotypes, which are
drought tolerant because aquaporins play an important role in the regulation of
plant–water relations (Afzal et al. 2016). Kaur and Asthir (2017) observed that
ABA-responsive elements-binding proteins respond at both levels, i.e., transcrip-
tional level and posttranscriptional level and also important role in determining the
capabilities of drought tolerance in plant.

11.5.4 Selection and Breeding Strategies

In order to develop plant genotypes tolerant to drought stress, different approaches
such as conventional, omic-based, molecular proved to be successful (Maqbool
et al. 2017). Conventional breeding techniques have been adopted to produce crop
varieties with improved growth and yield under drought stress (Ahmad et al. 2014).
In plant breeding techniques, drought tolerance is induced in crop plants by
manipulating the genetic make of the crops to attain desired characteristics
(Maqbool et al. 2017). However, in order to screen traits that are associated with
drought tolerance, marker-assisted selection proved to be a better option rather than
classical breeding technique (Ahmad et al. 2014). Segregation mapping and
quantitative trait loci (QTL) analysis are the molecular basis of drought tolerance
and QTL is important for the marker-assisted selection of plants with desired traits
(Ali et al. 2017).

11.5.5 Application of Compatible Solutes

Compatible solutes such as proline, glycine betaine, organic acids, soluble sugars,
trehalose, sugar, alcohols, etc., played important roles by providing protection
against the detrimental consequences of osmotic stress on the macromolecules,
membranes, and enzymes (Kiani et al. 2007). Proline, sugar alcohols and soluble
sugars served as cryo-protectants and osmoregulators in plants and help in the
scavenging of ROS under drought stress (Ruelland et al. 2009; Van den Ende and
Valluru 2009). Application of glycine betaine exogenously played essential roles in
modulating the osmotic adjustment, antioxidant activities, and detoxification of
ROS (Farooq et al. 2008).
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11.6 Growth Promotion Mechanisms of PGPR

Numerous studies have reported the mechanisms of growth promotion and drought
tolerance of plants mediated by PGPR.

11.6.1 Direct Mechanisms

PGPR increase the drought tolerance ability of plants by directly enhancing the
availability of nutrients to them in order to stabilize the structures of their bio-
molecules and to maintain their biomass production.

11.6.1.1 Nitrogen Fixation

Nitrogen is the most important nutrient, essential for plant growth, development,
and productivity. It is a fundamental part of essential biomolecules such as nucleic
acids and proteins. In the process of biological nitrogen fixation, the unavailable
form of nitrogen is converted into ammonia or nitrate ions which can be readily
taken up by the plants for growth promotion process. PGPR group of bacterial
genera carry out the process of biological nitrogen fixation (Kim and Rees 1994).
Both symbiotic and non-symbiotic or free-living microorganisms including few
endophytes fix nitrogen that benefits both plant—soil microorganisms.
(Bhattacharyya and Jha 2012).

11.6.1.2 Phosphorus Solubilization

Phosphorus (organic and inorganic forms) is among the main macronutrient nec-
essary for plant growth and development. It is present in unavailable or insoluble
form in soil but made available with the help of Phosphobacteria solubilized the soil
inhibited P which produces phosphatase enzyme This enzyme efficiently hydrolyze
the organic phosphate into a soluble form (Nosheen et al. 2018). Few low molecular
weight organic acids also released by phosphate solubilizing bacteria. These
compounds utilize their carboxyl and hydroxyl groups for the chelation of cations,
which are bounded to the phosphate and convert the insoluble phosphorus into
soluble form (Patel and Minocheherhomji 2018).

11.6.1.3 Potassium Solubilization

Potassium also is an important macronutrient, required for plant growth, development,
and metabolic processes. It is usually absorbed as cationic form. The imbalanced use
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of chemical fertilizers leads to the deficiency of potassium in the soil hence, hinders
the plant growth and development (Sindhu et al. 2014). Therefore, it is pertinent to
have alternative sources for the provision and uptake of potassium. The soil
microorganisms have essential roles to recycle natural potassium resources. These
microorganisms are called as potassium solubilizing rhizobacteria which provide
potassium to the plants (Basak and Biswas 2010).

Recent investigations have shown that organic exudates of some bacteria play a
key role in releasing otherwise unavailable K from K-bearing minerals.
K-solubilization could be attributed to excreting organic acids, which either directly
dissolves rock K or chelate silicon ions to bring K into solution (Prajapati et al.
2013).

Some bacteria produce organic exudates that exert central effects in the release of
unavailable potassium from potassium-containing minerals. These organic acids
may directly dissolve potassium in rocks or may cause chelation of silicon ions to
cause release of potassium (Prajapati et al. 2013). Wheat inoculation with Bacillus
sp. or Pseudomonas sp. cause a prominent elevation in the uptake of potassium,
magnesium, and calcium from calcareous soil without supplementation with fer-
tilizer (Öğüt et al. 2011).

11.6.1.4 Zinc Solubilization

Zinc is an imperious micronutrient, essential for the optimum growth of plants
(Goteti et al. 2013). There are two types of zinc fertilizers based on their different
solubilization properties, i.e., zinc sulfate and zinc oxide. Zinc sulfate is considered
as highly soluble in water as compared to zinc oxide but it can go back to insoluble
form (Hafeez et al. 2013). The application of zinc-solubilizing bacteria plays an
important role and carries out conversion of insoluble form of zinc to soluble form
using several mechanisms such as proton extrusion, excretion of organic acids,
chelating agents, and gluconic acids production (Goteti et al. 2013).Different
diverse genera, namely, Pseudomonas sp., E. cloacae and Pantoea agglomerans
showed increased zinc contents in shoot and roots of inoculated plants (Kamran
et al. 2017). A recent study indicated that ZnSB2 strain increased the zinc solubi-
lization in the soil and can serve as a potential zinc solubilizer to reduce the need of
application of chemical zinc fertilizers (Dinesh et al. 2018).

11.6.1.5 Phytohormones Production

Phytohormones are molecules, which play an important role in plant growth and
development. Various group of hormones, viz., gibberellins, auxins
(Indole-3-Acetic Acid/IAA), abscisic acid, cytokinins, and ethylene are the major
plant hormones (Egamberdieva 2013). Glick and Pasternak (2003) reported that
PGPR play an important role in the growth and division of plant cells and provide
tolerance against the environmental stresses through the biosynthesis of
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phytohormones. Inoculation of PGPR to the plant species produce phytohormone,
which increases the lateral roots and root hairs, thus increasing the water and
nutrient uptake efficiency (Dimkpa et al. 2009) and provide tolerance to
water-deficit conditions. Han et al. (2018) reported that bacterial strains such as
Streptomyces sundarbansensis and rochei improved growth and development of
plants through the production of IAA. Cytokinins, which are considered as purine
derivative compounds, are involved in the cell division and differentiation process
during growth and development. Recently, Bacillus megaterium has been reported
to play an important role in the growth promotion by the production of cytokinin
(Numan et al. 2018).

11.6.2 Indirect Mechanisms

PGPR exerts beneficial effects on plants against abiotic stresses by acting indirectly
such as by enhancement of the activity of ROS-scavenging enzymes and water-use
efficiency. PGPR are also known to produce enzymes and other molecules such as
exopolysaccharides against phytopathogens. Role of PGPR in the induction of
systemic resistance in plants is also well elaborated.

11.6.2.1 Stress Management

Any factor that causes a negative impact on plant growth and development is called
as stress (Foyer et al. 2016). During stressed conditions many harmful molecules
are formed which are called as reactive oxygen species (ROS), i.e., H2O2, OH, O

2−

and free radicals which damage the photosynthetic machinery, proteins, membranes
and nucleic acids (Ramegowda and Kumar 2015). The role of PGPR in stress
management is imperative as reported by several authors. The mitigation of stress
by the inoculation of plants with PGPR in leaf water potential under stress condition
has been improved (Ahmad et al. 2013a; Naveed et al. 2014). Various studies
suggested the role of PGPR to mitigate drought stress in soybean, wheat, chickpea
etc. (Ngumbi and Kloepper 2016). Habib et al. (2016) reported the salt stress
tolerance in Abelmoschus esculentus (okra) by inoculation of PGPR which
improved the water-use efficiency and activity of ROS-scavenging enzymes.

11.6.2.2 Biocontrol Agents

Use of microorganisms as antagonists against the plant pathogens is called as
biocontrol and it is considered safe as compared to synthetic chemical pesticides.
Various genera including Bacillus, Pseudomonas sp. etc. produce antibiotics which
play an important role in inhibiting the phytopathogens (Ulloa-Ogaz et al. 2015).
A variety of antifungal and antiviral metabolites such as phenazines,
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phenazine-1-carboxamide, pyoluteorin, cepaciamide A, 2,4 diacetylphloroglucinol,
and azomycin, pseudomonic acid, karalicine, etc., have been produced by
Pseudomonas species (Ramadan et al. 2016). Bacillus also reported to produce a
large variety of antibiotics such as bacillomycin, iturins, and surfactin and can be
used as biocontrol agents (Wang et al. 2015).

Bacillus pumilus and Pseudomonas sp. isolates from maize and rice rhizosphere
respectively, growing in water-stressed areas increased the production of ABA in
maize plants in combination with addition of l-tryptophan under drought stress
(Yasmin et al. 2017). Pseudomonas sp. and Proteus sp. isolates from maize and rice
rhizosphere, respectively, grown in water-deficient conditions elevated the con-
centrations of indole 3-acetic acid and gibberellic acid in maize plants under
drought along with l-tryptophan addition. B. pumilus produced the most satisfactory
results for helping maize plants against drought stress (Yasmin et al. 2017).

Glucanase-producing Bacillus amyloliquefaciens and Bacillus subtilis success-
fully inhibited important fungal pathogens of sugarcane including Fusarium monil-
iforme and Colletotrichum falcatum in addition to suppression of other damaging
fungal plant pathogens such as Fusarium oxysporum, Rhizoctonia solani and
Macrophomina phaseolina. These glucanase-producing plant growth-promoting
bacteria also increased the activities of antioxidant enzymes (Zia et al. 2018).

Treatment of rice plants with Bacillus sp. strains KFP-5, KFP-7, KFP-17
markedly elevated the activities of rice antioxidant enzymes against Pyricularia
oryzae infection and reduced the incidence of blast disease (Rais et al. 2017).

11.6.2.3 Protective Enzymes

It has been reported that PGPR produce enzymes such as chitinase, b-1,3-glucanase,
ACC-deaminase, etc., which induce lysis of the cell wall of pathogens (Goswami
et al. 2016). The release of protective enzymes by the PGPR improve plant growth by
controlling the phytopathogenic agents (Meena et al. 2016). The most catastrophic
pathogens (Rhizoctonia solani and Phytophthora capsice) in the world can be con-
trolled and their growth can be inhibited by PGPR (Islam et al. 2016). Fluorescent
Pseudomonas isolate GRC3 is reported to efficiently suppress the growth of fungal
phytopathogens Phytophthora capsici and Rhizoctonia solani by producing anti-
fungal enzymes, i.e., b-1,3-glucanase and chitinase along with antifungal metabolites
of nonenzymatic nature (Arora et al. 2007).

PGPR strains Sinorhizobium meliloti RMP1 and Pseudomonas aeruginosa
GRC2 successfully enhanced the yield from Brassica juncea plant. Both strains
were tolerant to urea and diammonium phosphate (DAP) and colonized the plant
rhizosphere successfully. Low concentrations of urea and DAP were beneficial for
PGPR strains (Maheshwari et al. 2010). It was accessed that plant growth and yield
parameters were increased when the strains were co-inoculated. Variants of
Sinorhizobium meliloti RMP1 and Pseudomonas aeruginosa GRC2 that were
not tolerant to urea and DAP showed less growth in presence of urea and DAP.
Both strains exhibited urease activities (Maheshwari et al. 2010). Ramadan et al.
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(2016) reported that Sinorhizobium fredii and P. fluorescens release chitinase and
b-glucanases which can inhibit Fusarium oxysporum and Fusarium udum wilt.
Fusarium oxysporum responsible for wilt and Rhizoctonia solani causing root rot of
Fagopyrum esculentum were antagonized by biocontrol agent Bacillus pumilus
MSUA3 by employing the activities of chitinolytic enzymes and surfactin which is a
heat-stable antibiotic (Agarwal et al. 2017).

11.6.2.4 Exopolysaccharide Production

Exopolysaccharides (EPSs) are biosynthesized by plants, algae, and bacteria. These
are high molecular weight biodegradable polymers which are formed by the resi-
dues of monosaccharides and their derivatives (Sanalibaba and Çakmak 2016). The
EPSs play an important role in aggregating soil particles, maintaining water
potential, sustaining the host under stress conditions, maintaining the contact
between rhizobacteria and roots of host plant (Pawar et al. 2017).

EPS producing PGPR strains are well elaborated for their potential to reduce
salinity stress in plants. EPS produced by PGPR can bind to the cations in soil
including sodium ions, as a result, the amount of salts present in the soil becomes
restricted for uptake by plant. In this way, the salt stress on a plant can be reduced.
EPS-producing PGPR alleviated salt stress and promoted the growth of maize and
soybean. The PGPR such as Rhizobium sp., Azotobacter, Enterobacter cloacae,
Bacillus, Agrobacterium sp., Xanthomonas sp., etc., produce EPSs and play a
substantial role in improving the soil fertility and taking part in sustainable agri-
culture (Mahmood et al. 2016).

11.6.2.5 Siderophore Production

Majority of siderophores are produced under iron-limiting conditions by microor-
ganisms to enhance the capacity of iron uptake. These are small organic molecules,
which extract the iron metal ions (Saha et al. 2016). Pseudomonas putida uses the
siderophores which are produced by other microbes and augment the amount of
iron available in the natural habitat (Rathore 2014). PGPR are increased iron uptake
capacity of plants, where the availability of iron is low. Hence, production of
siderophores is an important mechanism used by PGPR to enhance growth and
development of plants and induce stress tolerance under nonavailability of iron in
their soil environment.

11.6.2.6 Hydrogen Cyanide (HCN) Production

HCN is a secondary metabolite produced by PGPR and overpowers the harmful
pathogens development. An enzyme called HCN synthase (associated with the rhi-
zobacterial plasma membrane) is responsible for the synthesis of HCN from glycine.
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Many bacteria are capable of producing HCN such as Pseudomonas, Alcaligenes,
Rhizobium, Bacillus, and Aeromonas (Ahmad et al. 2008). HCN produced by PGPR
is reported to increase the availability of phosphates to plants (Rijavec and Lapanje
2016). HCN-producing PGPR can be utilized as biopesticides/weedicides to elimi-
nate weeds from vicinity of a crop (Kamei et al. 2014).

11.6.2.7 Induced Systemic Resistance (ISR)

Induced systemic resistance (ISR) is the state of enhanced defensive capacity of the
plant under environmental stress. PGPR have the capability to induce systemic
resistance in plants under stress conditions (Prathap and Kumari 2015). When
pathogen invades a plant, specific signals are produced through vascular system, as a
result of these signals, enzymes such as polyphenol oxidase (PPO), catalase (CAT),
chitinase, b-1,3-glucanase, ascorbate peroxidase (APX), phenylalanine ammonia-lyase
(PAL), superoxide dismutase (SOD), and peroxidase are produced which provide
tolerance to the plants against the stress. The ISR helps the plant to combat various
diseases and it is not specific against a particular pathogen (Kamal et al. 2014).

PGPR consortium consisting of Pseudomonas putida CRN-09 and Bacillus
subtilis CRN-16 increased the seed germination rate of Vigna radiata and also
boosted the levels of antioxidants, i.e., peroxidase (PO), polyphenol oxidase (PPO),
phenylalanine ammonia-lyase (PAL), b-1,3-glucanase, and chitinase for the
induction of systemic resistance in Vigna radiata against pathogen Macrophomina
phaseolina (Sharma et al. 2018). Majority of PGPR induces ISR in plants and
revolutionized the research in agriculture sector (Gouda et al. 2017).

11.7 Improvements in Physiological and Morphological
Processes

PGPR positively improves the physiology and morphology of plants to eliminate
the deleterious effects of stresses such as changes in root and shoot growth patterns,
modification of plant water contents and hormones concentrations and osmolytes
production.

11.7.1 Enhanced Root Architecture for Stimulating
Water Uptake

It has been seen through different studies that PGPR-treated plants exhibited
improved root growth along with changes in root architecture (Kloepper et al. 2004;
Ngumbi 2011; Yasmin et al. 2017). Further studies suggested that alterations in
roots induced by bacteria lead to overall increase in root surface area that directly
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improved nutrients and water uptake (Somers et al. 2004; Timmusk et al. 2014). For
maize study, in growth chamber tests, the seeds were treated with strain Alcaligenes
faecalis (AF3) (Naseem and Bano 2014). Planting after 3 weeks, an increase in root
length by 10% was observed in PGPR-treated plants than non-inoculated control
plants under drought stress (Table 11.1). PGPR-treated plants can tolerate drought
stress, due to developed root system that allows increased water uptake. Significant
increase in root biomass of in Mazurka and Kaleo cultivars appeared when maize
plants were inoculated with Burkholderia phytofirmans strain PsJN (Naveed et al.
2014). Similarly, when inoculated by Enterobacter sp. strain, an increase in root
length was observed in Mazurka and Kaleo cultivars, under drought stress.

Under drought stress, maize plants have enhanced root length, when inoculated
with PGPR isolate 9K (Yasmin et al. 2013). Similar effects were also observed in
wheat under drought stress when treated with thuringiensis AZP2. Longer root hairs
and intense growth of lateral roots were visible in wheat root inoculated with BT.
The alteration in root architecture also helps the plants to tolerate drought stress
(Timmusk et al. 2014) (Table 11.1) enhancement and alteration of root parameters.
Yet, numerous studies are required for better understanding of the direct signaling
between drought tolerance and bacterial-induced root architecture. More elaborated
studies are required to trace the ideal root traits that could provide tolerance against
drought stress.

11.7.2 Shoot Length

Shoot growth is one so as of the major responses to drought stress, that benefits
plants by reducing the available leaf area to decrease the evaporative loss of limited
water reserves (Sinclair and Muchow 2001; Wang and Yamauchi 2006; Neumann
2008; Skirycz and Inzé 2010). However, essential solutes are diverted from plant
growth requirements to stress-related housekeeping functions such as osmotic
adjustment as a result of resisted shoot growth. To tolerate drought stress, inhibition
of shoot growth is considered a classical adaptive response (Neumann 1995, 2008;
Achard et al. 2006). The limited yield potential of a plant declines severely because
of drought tolerance but increase the chances of plants survival (Sinclair and
Muchow 2001; Neumann 2008; Claeys and Inzé 2013). Therefore, when plants are
exposed to moderate stress and inhibition of shoot growth appears as a
counter-response, Hence, in such examples, plant survival is not a question but the
main concern is about limited yield production of plants under drought stress paired
with reduction in shoot growth.

This advantageous strategy could be in the improvement in crop varieties that
sustain an ability to maintain near to normal shoot growth during drought stress
(Neumann 2008). PGPR-treated plants showed prominently increased shoot
growth. Because plants under drought stress are capable to maintain near to normal
shoot growth, resulting in increasing crop productivity. A study demonstrated that
corn plants had improved shoot growth when inoculated with Bacillus
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Table 11.1 PGPR in Mitigation of Drought Stress

Plant Means of applying drought PGPR References

Arabidopsis
thaliana

Drought induction by
removing the covers of
culture dishes for 3 days

Paenibacillus polymyxa Timmusk and
Wagner (1999)

thaliana Drought induction by
terminating irrigation.
Drought started with the
emergence of first two true
leaves

Phyllobacterium
brassicacearum

Bresson et al.
(2013)

thaliana Drought-induced when
plants were 30 days old by
stopping irrigation until
symptoms of temporary
wilting were visually
observed (ca. water was with
held after 10 days)

Azospirillum brasilense Cohen et al.
(2015)

Capsicum
annuum

Progressive drought by
suppressing water supply for
15 d. Drought introduced
after 5 d of transplantation

Bacillus licheniformis Lim and Kim
(2013)

Cucumis
sativa

Drought applied by stopping
irrigation for 13 days.
Drought started after 15 days
of transplanting 15 days old
cucumber seedlings

Bacillus cereus, B. subtilis,
Serratia sp.

Wang et al.
(2012)

Helianthus
annuus

Drought applied by watering
with polyethylene glycol
(PEG) 6000 at a
concentration sufficient to
produce w a = 2.03 MPa

Achromobacter
xylosoxidans Bacillus
pumilus

Castillo et al.
(2013)

Hyoscyamus
niger

Continuous drought by
restraining irrigation for
60 days. Drought introduced
when plants were 45 days
old

Pseudomonas putida
Pseudomonas fluorescens

Ghorbanpour
et al. (2013)

Pisum
sativum

Drought induced by stopping
watering when plants were at
the stage of vegetative
growth (ca. 3 weeks after
germination) or at flowering
stage (ca. 7 weeks after
germination) or at the pod
formation stage (ca.8 weeks
after germination). Plants
were re-watered when
symptoms of wilting were
visualized

Pseudomonas spp. Arshad et al.
(2008)

(continued)
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Table 11.1 (continued)

Plant Means of applying drought PGPR References

lycopersicum
annuum

Induction of drought by
stopping irrigation after 2
weeks of seeds
transplantation. Plants were
re-watered after 7 or 12 days

Achromobacter piechaudii Mayak et al.
(2004b)

tuberosum Drought application by
watering plants with 10%
PEG. Drought started after
2 weeks of inoculation of
plants with PGPR

Bacillus pumilus Bacillus
firmus

Gururani et al.
(2013)

Sorghum
bicolor

Continuous drought by
withholding irrigation for 5
days. Drought started when
plants were 27 days

Bacillus sp. Grover et al.
(2014)

aestivum Application of drought by
stopping water supply for 6
days or 12, 18, and 24 days.
Drought started after 50 days
of planting. Drought had
three intensities: control,
moderate and high drought.
After drought stress,
irrigation was restored

Azospirillum lipoferum A.
lipoferum A. lipoferum

Arzanesh et al.
(2011)

aestivum Continued drought by
withholding irrigation for 4,
5, or 7 days. Drought was
introduced when plants were
12 days

Bacillus amyloliquefaciens,
Azospirillum brasilense

Kasim et al.
(2013)

aestivum Progressive drought by
withholding irrigation for
10 days (growing plants in
sand soil) or 14 days
(growing plants in sand soil
added with 10% greenhouse
soil). Drought introduced
after 10 days of seed
germination

Bacillus thuringiensis,
Paenibacillus polymyxa B

Timmusk et al.
(2014)

Vigna radiata Progressive drought by 6 d of
withholding water. Drought
was introduced when plants
were 30 days old

Pseudomonas fluorescens
strain Bacillus subtilis

Saravanakumar
et al. (2011)

Vigna radiata Drought applied by
withholding watering 10
days after planting

Pseudomonas aeruginosa
strain

Sarma and
Saikia (2014)

Zea mays Progressive drought by
stopping irrigation for
6 days. Drought introduced
after 21 days of seed
germination

Pseudomonas entomophila,
P. stutzeri, P. putida,
P. syringae, P. monteilli

Sandhya et al.
(2010)

(continued)
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Table 11.1 (continued)

Plant Means of applying drought PGPR References

Z. mays Drought induced at the
vegetative stage by
conserving the moisture
content of the soil at
15 ± 1%

Azospirillum lipoferum
strain

Bano et al.
(2013)

Z. mays Drought introduced by
withholding watering for 6
days after 7 days of
germination

PGPR Yasmin et al.
(2013)

Z. mays Progressive drought
introduced after 1 week of
seed germination by stopping
irrigation for 10 days

Proteus penneri strain,
Pseudomonas aeruginosa,
Alcaligenes faecalis

Naseem and
Bano, (2014)

Z. mays Progressive drought
introduced when plants were
45 days old by withholding
watering and observing for
wilting signs

Burkholderia phytofirmans,
Enterobacter sp.

Naveed et al.
(2014)

Z. mays Introduction of continuous
drought when plants were 21
d old by stopping irrigation
for 6 days

Bacillus amyloliquefaciens,
B. licheniformis, B.
thuringiensis, Paenibacillus
favisporus, B. subtilis

Vardharajula
et al. (2011)

Z. mays Drought introduced when
plants reached the 4 leaves
stage by withholding
watering for 10 days

Burkholderia sp. strain Fan et al.
(2015)

Z. mays Induction of drought by
terminating watering for
7 days when plants reached
the 4 leaves stage

Pseudomonas sp. Bacillus
pumilus Proteus sp.
Pseudomonas sp. Bacillus
cereus

Yasmin et al.
(2017)

C. arietinum Plants were subjected to
drought stress after
well-watering till 1 month,
and then by withholding
water for 1, 3, and 7 days.
Plants were re-watered for
recovery for 3 days

Pseudomonas putida Tiwari et al.
(2016)

Oryza sativa Drought stress applied by
withholding water at the
panicle initiation stage of
reproduction for 15 days

Pseudomonas fluorescens Saakre et al.
(2017)

Z. mays Drought stress introduced by
stopping water after 14 days
of planting

Pseudomonas putida SkZ et al.
(2018)
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sp. (Vardharajula et al. 2011). All plants inoculated with Bacillus sp. under stress
conditions showed relatively higher shoot growth and dry biomass as compared to
non-inoculated plants. PGPR-treated wheat plants confirmed their potential in
enhancement of plant performance by showing higher biomass (Timmusk et al.
2014). Likewise, under drought stress pepper plants were inoculated with Bacillus
licheniformis K11 increased shoot length biomass, etc. (Lim and Kim 2013).

Improved plant growth and increment in shoot growth during drought stress
have been reported in several other crops treated with PGPR in sorghum (Sorghum
bicolor L.) (Grover et al. 2014), mung bean (Vigna radiata L.) (Sarma and Saikia
2014), wheat (Triticum aestivum) (Arzanesh et al. 2011; Kasim et al. 2013), sun-
flower (Helianthus annuus L.) (Castillo et al. 2013), green gram (Vigna radiata L.)
(Saravanakumar et al. 2011) and maize (Zea mays) (Sandhya et al. 2010; Naseem
and Bano 2014; Naveed et al. 2014; Yasmin et al. 2017) Given in Table 11.1.

11.7.3 Relative Water Content (RWC)

One of the major criteria to measure plant water status called relative waste content
(RWC) In such cases, leaf tissues exhibited limited cell expansion as a result of a
decrease in RWC that occur due to loss of turgor, leading to a decline in plants
growth (Ashraf 2010; Lu et al. 2010; Castillo et al. 2013). On the other hand, the
high RWC was observed in species that were better adapted to dry environments
(Jarvis and Jarvis 1963). Therefore, an important drought tolerance enhancement
strategy could be the increment in RWC.

For instance, Bacillus sp. strain 129 KB-treated sorghum, showed an increase in
sorghum (Grover et al. 2014) and maize (Sandhya et al. 2010; Vardharajula et al.
2011; Bano et al. 2013; Naveed et al. 2014; Naseem and Bano 2014, Yasmin et al.
2017). In fact, oxidative and osmotic stresses caused by drought stress can be
reverted back to higher RWC, contributing to greater productivity of. Maize plants
treated with brasilense BR11005 sp. showed high RWC as a result of bacterial
mediated abscisic acid (ABA) that in return induced closing of stomata and mitigate
drought stress (Casanovas et al. 2002). Alterations of the sensitivity of physio-
logical processes such as stomatal closure may be the reason for increase in RWC.
In light of contrasting views, it is yet to investigate the mechanism involved in
bacterial-induced drought tolerance.

11.7.4 Role of Phytohormones

Another mechanism used by rhizobacteria to impart drought tolerance in plants is
alteration in their phytohormones contents. Indole-3-acetic acid (IAA), Cytokinins
(CK), abscisic acid (ABA), and ethylene (ET) have been reported to be involved in
ensuring plant tolerance to drought stress.

298 H. Yasmin et al.



11.7.4.1 Indole-3-Acetic Acid (IAA)

PGPR synthesizes indole-3-acetic acid (IAA), is adsorbed on the root surface or
seeds. Some of the newly synthesized IAA is taken up by the plant from root
exudates, which facilitate plant cell proliferation and elongation in combination
with the endogenous nature of plant IAA. Meanwhile, IAA stimulates the activity
of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase to convert S-
adenosyl methionine (SAM) into ACC (Naveed et al. 2014). A bacterial cell sur-
viving under drought stress conditions also needs to cope up with the osmotic
stress, bacteria help to tolerate osmotic stress generated by drought conditions in
plants (Boiero et al. 2007).

Second most important function of bacterial IAA is its involvement in altering
the root architecture in terms of root area and tips extension, which help associated
host plants to assimilate nutrients from soil more efficiently underwater limiting
conditions (Mantelin and Touraine 2004). Plants inoculated with IAA-producing
bacteria showed more tolerance to drought stress (Yasmin et al. 2017, Marulanda
et al. 2009). The volatile organic compounds were observed to enhance the pro-
duction of IAA by upregulating IAA regulating transcripts (Zhang et al. 2007).
Higher production of IAA was observed in lipoferum due to upregulation of
indole-3-pyruvate decarboxylase gene. Re-inoculation studies showed that
strain-induced morphological changes in coleoptile xylem of wheat seedlings
grown under osmotic stress conditions (Pereyra et al. 2012).

11.7.4.2 Gibberellins

Several types of GAs secreted in diverse genera of PGPR Pseudomonas putida H-
2-3 induces physiological alterations and cause better growth of soybean under
drought stress conditions by secretion of gibberellins (GAs) (Sang-Mo et al. 2014).
Cohen et al. (2009) found that PGPR strains producing ABA and gibberellic acid
(GA) remediated the consequences of drought stress in maize plants.

11.7.4.3 Abscisic Acid (ABA)

ABA has been considered as stress hormone as its secretion is stimulated by stress
signals under drought stress conditions. Yamaguchi et al. (1994) found that ABA is
involved in stomatal regulation to prevent water loss under drought stress condi-
tions. Azospirillum brasilense (Sp245) treated Arabidopsis spp. accumulated higher
levels of ABA as compared to non- treated plants (Cohen et al. 2008). Bresson et al.
(2013) found that Arabidopsis plants inoculated with Phyllobacterium brassi-
cacearum strain STM196. showed a reduction in transpiration and osmotic tolerance
by producing higher contents of ABA. On the other hand, cytokinin-producing
Bacillus subtilis ameliorate the growth retarding effects of drought stress on
Platycladus orientalis seedlings (Liu et al. 2013).
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11.7.4.4 Ethylene (ET)

Ethylene usually regulates the growth and functions of plants through various
mechanisms. Physiological indicators induced by ethylene aid in shoot and root
growth differentiation, release of dormancy, adventitious root formation, induction
of flowering and increased femaleness in dioecious plants, leaf and fruit abscission,
fruit ripening, and flower and leaf senescence (Davies 2013). It also helps in
overabundance of ethylene which leads to abnormal growth of roots, imparting a
visible dent on plant growth and development. Both biotic and abiotic stresses
accelerated ethylene production in plant roots. The increase in ethylene concen-
trations has inhibitory effects on root growth crucial to regulate production in the
vicinity of plant roots for normal growth and development (Naveed et al. 2014).

11.7.4.5 Influence of 1-Aminocyclopropane-1-Carboxylate
(ACC) Deaminase

The enzyme ACC deaminase metabolizes ACC into ammonia and a-ketobutyrate
and checks ethylene production, which inhibits plant growth (Glick 2007). The
plants treated with bacteria having ACC deaminase may have comparatively
increased root growth due to decreased ethylene production and can resist various
stresses more effectively (Glick 2007).

The uptake and hydrolysis of ACC by microorganisms lessen the levels of ACC
outside the plant. On the other side, the equilibrium between the external and
internal ACC levels is continued through the diffusion of more ACC into the
rhizosphere (Shaharoona et al. 2006a). Microbial communities of soil having ACC
deaminase activity increased biosynthesis of ACC than the plant needs and stim-
ulate exudation of ACC from roots provide microorganisms with a unique nitrogen
source (ACC), and hence, the growth of ACC deaminase containing microbes is
accelerated in the close vicinities of plant roots in comparison to the other soil
microorganisms Not only the ACC levels decreased within the plant but also
inhibits the biosynthesis of the stress hormone ethylene (Shaharoona et al. 2006b).
A plant inoculated with ACC deaminase containing bacteria exhibited more root
growth. In various studies, inoculation with ACC deaminase containing PGPR has
been unequivocally shown to modify the endogenous levels of ethylene, which
results in changes in plant growth (Shaharoona et al. 2006a, b; Madhaiyan et al.
2006; Shahzad et al. 2013)

A considerable increase in fresh and dry biomass of pepper and tomato was
observed when treated with ACC producing Achromobacter piechaudii (ARV8)
against water-deficit conditions (Mayak et al. 2004b). Lim and Kim (2013)
observed that ACC deaminase-producing licheniformis K11 impart significant
increase in drought tolerance of pepper plant. Similarly, ACC deaminase producing
Pseudomonas sp. treated P. pea showed significant root elongation which subse-
quently enhanced uptake of nutrients and water under water scarcity conditions
(Zahir et al. 2008). A significant decrease in transcription of stress-responsive genes
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and upregulation of genes related to cell division was observed in ACC deaminase
producing strain Enterobacter cloacae UW4 treated canola plants (Hontzeas
et al. 2004)

11.7.5 Effect of Osmolytes and Secondary Metabolites

The great concern lies in of osmoregulation in plants under drought stress condi-
tions by the production and accumulation of certain secondary metabolites. The
most commonly acclimated osmolytes in water-stressed plants and bacteria includes
proline, trehalose, and glycine betaine (Kaushal and Wani 2016; Chen et al. 2007;
Rodriguez et al. 2009).

11.7.5.1 Amino Acids

Rhizobacteria induce drought tolerance to the plants. The quantity of amino acids
sorghum, pepper and wheat have been observed to get increased underwater deficit
conditions due to protein breakdown in response to fluctuation in osmotic pressure
(Zhu 2002; Yadav et al. 2005; Kaushal and Wani 2016) as stated below.

11.7.5.2 Proline

Accumulation of proline is a common metabolic response of higher plants to
drought and salinity stress (Rhodes et al. 1999; Yasmin et al. 2017). Drought-
affected cellular machinery responds by proline accumulation via osmoregulation,
ROS-scavenging mechanisms, and stabilization of cytoplasmic organelles.
Generally, proline protects plants from stress through different means such as
detoxification of reactive oxygen species, contribution toward osmotic adjustment,
stabilization of native structures of enzymes, proteins, and membranes (Binzel et al.
1987; Kaushal and Wani 2016).

Under water-limiting conditions bacteria produce osmolytes in soil, which are
readily taken up by the plants (Kaushal and Wani 2016; Yasmin et al. 2017). PGPR
Bacillus subtilis, Pseudomonas sp. isolated from water-deficient habitats showed
more proline production in inoculated maize plants as compared to un-inoculated
plants (Yasmin et al. 2017). Long back, Yoshiba et al. (1997) showed significant
upregulation in proline synthesis gene P5CS and downregulate the proline meta-
bolism gene ProDH. Moreover, transgenic thaliana plants with ProBA genes from
Bacillus subtilis produced higher amount of proline (Chen et al. 2007).

A significant higher accumulation of osmolytes proline, sugars, and free amino
acids in Bacillus sp. treated maize plants produced higher biomass, improved rel-
ative water content, and overall plant health status under drought stress condition
(Vardharajula et al. 2011). Ansary et al. (2012) observed significant increase in
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accumulation of proline in P. fluorescens inoculated maize plants. On the other
hand, lipoferum showed increase in soluble sugars and free amino acids during
drought stress (Qudsaia et al. 2013).

11.7.5.3 Glycine Betaine (GlyBet)

Salt stress leads to water stress because of excess solute concentration. GlyBet
amount elevates in both saline and drought conditions. It is a quaternary ammonium
compound with osmoprotecting functions, protects the plants by stabilization of
both the highly ordered quaternary structure of membranes and proteins. Excess
ions may disturb the proper structures and functions of enzymes and other proteins,
so GlyBet acts as molecular chaperons and helps in refolding of enzymes and in
regaining of proteins functions. This metabolite is synthesized via two-step oxi-
dation (Chen and Murata 2008). Pseudomonas pseudoalcaligenes inoculation in
rice plants stimulated the synthesis and accumulation of GlyBet (Jha et al. 2011).
According to Zhang et al. (2010) volatile organic compounds produced by subtilis
GB03 induced systemic drought tolerance in Arabidopsis plants. But, xipotl mutant
of Arabidopsis showed less accumulation of choline with reduced drought tolerance
when treated with GB03.

11.7.6 Antioxidants Defense

Reactive oxygen species (ROS) are generated at a low level in the organelles
chloroplast, mitochondria, etc., under normal growth conditions. However, when
the plants encounter any of the abiotic stresses, the dramatic acclimation of ROS
level is observed (Sheteawi 2007). During the stress conditions, CO2 uptake is
reduced due to the stress-induced stomatal closure and reduction in leaf area. This
indirectly favors the photorespiration in plants. Photorespiration is responsible for
the overproduction of H2O2 in the peroxisomes. Moreover, the level of H2O2 or
singlet oxygen is upregulated by over reduction in the photosynthetic electron
transport chain (ETC) (Rejeb et al. 2014).

Fortunately, plants possess the defense mechanism that is activated upon the
upregulation of ROS than the optimal level and scavenge the activated oxygen
species (AOS) (Das and Roychoudhury 2014). The defense response is actually the
generation of antioxidant enzymes. There are different antioxidant enzymes like
catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glu-
tathione peroxidase (GPX) and ascorbate peroxidase (APX) (Cho and Park 2000).
The protective response also involves some other defense enzymes such as
polyphenol oxidase (PPO), peroxidase (PO), phenylalanine ammonia-lyase (PAL),
and tyrosine ammonia-lyase (TAL) (Valifard et al. 2015). These enzymes not only
have antioxidant capacity but also have role in defense against pathogens attack in a
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variety of crops. Apart from their other normal functions, these enzymes are also
involved in the formation of defense barrier for reinforcement of cellular structures
(Gao et al. 2008).

Plants have to regularize the production and scavenging of ROS to prevent
themselves from cell injury and for normal functions under drought stress condi-
tions. A visible decrease in antioxidant enzymes activity of plants has been
observed under water-stressed condition (Yasmin et al. 2017). However, PGPR
inoculation showed significant positive effects on ROS-scavenging enzyme
machinery to mitigate the adverse effects of drought stress (Bindu et al. 2018).
Vardharajula et al. (2011) and Yasmin et al. (2017) observed that Bacillus
sp. treated maize plants showed obvious reduction in ROS accumulation and
decrease in the activities of ROS-scavenging enzymes.

11.8 Salt Stress/Salinity

Soil salinity is a threat and is defined as excessive salt accumulation in the soil
causing plant growth inhibition that ultimately leads to plant death. On a world
scale, salt is the most toxic substance among other substances that restricts plant
growth. that significantly reduces crop yield (Qadir et al. 2014). Salinity poses an
increasing threat to agriculture (Gunes et al. 2007). Among multiple sources of salt
stress, the combined effect of irrigation with poor drainage is a common and most
serious threat, as it causes losses to the productivity of agricultural land.

In comparison to primary salt stress in the seashore, the reason for this secondary
salinization is simple, i.e., salts remain in the soil after water evaporates and
adversely affect crop growth and yield (Ghassemi et al. 1995). The stresses caused
by excessive salt accumulation in the soil are twofold; First, most of the salt ions
causing toxicity to plant cells when exposed to high salt concentrations internally or
externally. Characteristically, NaCl comprises of majority of the salts. Na+ ions are
toxic to most of the plants, and growth of some plants is also inhibited by excessive
Cl− ion accumulations. Second, salt stress causes a decrease in osmotic potential of
the soil leading to osmotic stress (Gilroy et al. 2014; Roy et al. 2014). The
objectives are to understand the control of ion homeostasis and osmotic regulation,
and to use the knowledge to engineer crop plants with enhanced salt tolerance.

Among various abiotic stresses, salt stress is one of the major limiting factors in
crop productivity, particularly in arid and semiarid areas. It has been stated that
about 7% of the total land and 20% of the total arable lands are affected by salt
stress (Zhu 2001; Shrivastava and Kumar 2015). Soil reclamation is essential as the
cultivable lands are being greatly affected by salinity (Gunes et al. 2005). Salt
stress/salinity is a complex trait to study as it hinders designing and interpreting the
experiments but current OMICS-driven research has made it comparatively easier
to study (Negrão et al. 2017). Plant growth could be recovered when salt stress is
relieved but the plants primarily respond to salinity by reducing the leaf surface area
followed by cessation of expansion as the stress intensifies (Parida and Das 2005).
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Salinity causes ionic and osmotic stress that ultimately leads to oxidative stress
(secondary stress) affecting different metabolic processes that include protein syn-
thesis, photosynthesis and lipid metabolisms (Jampeetong and Brix 2009).

Salt stress is one of the major issues affecting agricultural lands worldwide. Food
and Agriculture Organization (FAO) states that about 397 million hectares (ha) of
land has been salinized globally. It also stated that out of 230 million ha of irrigated
land, 45 million ha (19.5%) have been affected by salinity and in 1500 million
hectares of dryland cultivation, 32 million ha (2.1%) have been under salt stress.

Secondary salinization, which is the result of mismanaged irrigation, is also a
vital issue with regards to the world’s food production. Though irrigation accounts
for 17% of the world’s cultivable land, it provides over 30% of its agricultural
yields (Pitman and Läuchli 2002). Salt stress is a pervasive issue in irrigated regions
of dry and hot territories, especially in countries of Africa and Asia like India,
Egypt, and Iran. According to estimates, 33% of irrigated land is salt-affected in
which 20% is due to secondary salinization (Shrivastava and Kumar 2015). About
75% of secondary salinization in dry, subhumid, arid, and semiarid regions occurs
in the Asian-Pacific region; during the mid-1980s, about 50% (30 million ha) of
irrigated land damaged by salinization was found in Pakistan, India, and China
(Pitman and Läuchli 2002).

11.9 Effects of Salinity in Pakistan

In Pakistan, salinity is among the most serious abiotic stresses. It is increasing day
by day affecting both quality and quantity of crops. The major cause of salinity is
due to imbalance of entrance and exit of salt in the soil. Every year, around 120
million tons of salt is added to the land from canal and brackish water and from this
only one-fifth of this salt can go to the seawater. Remaining salt leaches in the soil
and causes reduction in growth of plants (Elnaggar and Noller 2009). About 2.5
million hectares of irrigated land is being adversely affected by severe saline
conditions in Pakistan. Out of this, 18% of this land is affected in Sindh while
NWFP and Punjab contribute 2% and 3%, respectively. Areas affected by moderate
saline conditions are 10%, 4%, and 2% in Sindh, Punjab, and NWFP, respectively
(Ali et al. 2005).

Crop yield losses in Pakistan are estimated to reach to feared amount of Rs.
880 million ($ 28.5 million) this year due to water logging and salt stress, while
total economic loss is around $ 300 million. As for as wheat is concerned, the yield
losses in moderate saline areas are about 65% (El-Hendawy et al. 2005). Yield
losses in important crops due to salt stress are given in Table 11.2.

Other than crop yields, salinity also affects photosynthesis, ion regulation, and
water relations. It also affects plant physiology at adult plant stages as well as at
cellular levels through ionic and osmotic stress (Parida et al. 2004). It has been
observed that various physiological processes that are severely affected by salt
stress include mineral distribution, plant growth inhibition, membrane instability
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as a result of calcium displacement by sodium, membrane permeability, and
drastic reduction in rate of photosynthesis and Na+ and K+ discrimination (Shafi
et al. 2010).

11.10 Strategies Used to Overcome Salinity

Supply of sufficient water along with proper drainage and irrigation management
are also good but comparatively expensive practices to control salinity problem
(Cominelli et al. 2013; Mwadzingeni et al. 2016).

The most significant step to control salinity issue is developing salt-tolerant plant
varieties. Improvements in the field of genetic engineering have greatly reduced the
risk of salinity by the production of salt-tolerant plants. However, the progress in
this field is still slow because of the contradiction in views among plant physiol-
ogists, plant breeders, and plant molecular biologists (Munns 2002; Blum 2014;
Flowers 2004; Ashraf et al. 2008; Hasegawa et al. 2000; Mittler and Blumwald
2010; Hasegawa 2013; Munns and Gilliham 2015; Yeo 1998; Zhang et al. 2014).
But still several salt-tolerant plants have been developed through genetic engi-
neering technique (Zhang et al. 2001; Zhu 2001).

Forests are the environmental buffers which keep the soil in place, deforestation
leads to soil erosion and ultimately increase the risk of salinity and water logging so
planting more trees to renovate the custom of the green revolution is the need of the
hour. Acid rain also causes leaching of important nutrients from the soil such as
calcium and potassium. To reduce the risk of acid rain, use of biofilters in industries
is emphasized so that soil could be protected from grave problem of salinity and soil
erosion.

In irrigated soil, reclamation of soil involves the replacement of sodium ions
with calcium ions. The released sodium ions are finally percolated out of the root
zone by using excess water which is later carried out of the fields in the drainage
water. Because of continuous process of evaporation, salt concentration increases in
the top soil surface which is then scraped and transported out of the field. Pre
sowing irrigation with good quality water is a good strategy to remove salt from the
soil surface. This ensures better seed germination and establishment of seedling.

Mulching (a practice that uses crop residue, straw) reduces water loss from the
top soil causing reduction in uptake of salts. Reduced evaporation also improves

Table 11.2 Yield losses of different crops caused by salinity

Crop Yield loss (%) References

Wheat 60–65 El-Hendawy et al. (2005)

Rice 30–50 Joseph and Mohanan (2013)

Sugarcane 40–50 Rao and Shaw (1985)

Pepper 8–15 Navarro et al. (2002); Chartzoulakis and Klapaki 2000)
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water-use efficiency. As a result, lesser salts are accumulated. Mixing organic
matter with crop residues or green-manure crops also improves soil surface, supply
structure, and improves water infiltration which prevents adverse effects of salinity.
Halophytes being native flora of saline environment complete their life in salinity
which also plays a positive role in reduction of salt stress.

11.11 Concerns with Strategies

Currently, numerous crop improvement approaches are being used against salt
stress. In the past, selection breeding using the mechanism of stress tolerance has
led to smaller crop improvements. For example, salt stress causes 40–70% reduc-
tion in yield and crop yield improvement is only 5–20% through conventional or
molecular breeding techniques (Ashraf et al. 2012; Ashraf and Foolad 2013; Munns
et al. 2012; Negrão et al. 2011, 2017). There are several transgenic approaches
available (more than three thousand reports of improved salt tolerance in wheat,
rice, maize, sorghum, canola, etc.) but unfortunately none is being used by farmers.

Salinity has been reported as one of the major limiting factors in crop produc-
tivity in Pakistan. In the past, several agricultural regions have significantly lost
their productivity due to soil stress. The saline conditions are found in various parts
of the country but the most affected lands as mentioned earlier are found in Sindh,
Punjab and few areas of Khyber Pakhtunkhwa. Farmers do not pay proper attention
to salinity. It indicates that farmers did not adopt any consistent strategy to fight
against this serious issue. No significant pattern in farmers’ response toward salinity
has been noticed. Farmers were just preferring to buy lands with minimal soil
salinity and increasing production of existing agricultural lands. Instead of adopting
strategies to get rid of salinity, farmers were demanding larger government actions
to install a proper drainage system for successful reclamation. Suggestions of
farmers for land reclamation (Tanwir et al. 2003) are included in Table 11.3.

The above table suggests that farmers were unable to form any opinion which is
quite alarming. Salt stress has emerged as a serious issue that not only causes a loss
in crop productivity but also puts far-reaching impacts on the livelihood strategies
of small farmers. The problem has been intensified to such an extent that it has
made it very difficult for the farmers to fight against the severity of the problem.
A joint step by government, NGOs, and the farmers is promptly required to control
the alarming situation (Tanwir et al. 2003).

Table 11.3 Farmers’
suggestions for reclamation of
land

Suggestions Percentage, n = 150

Laying of tile drain 19.8

Installation of tube well 21.5

Cleaning of drainage 11.2

Tile drain, tube well and cleaning 9.1

No opinion 38.4
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11.12 PGPR-Mediated Amelioration of Salt Stress

Over the past century, large volumes of publications have appeared on the bene-
ficial interactions between microbes and plants. Microbial communities dwelling in
the nutrient-enriched plant rhizosphere play an essential role in plant functioning by
influencing their growth, physiology, and other developmental processes (Mendes
et al. 2013). PGPRs residing as free-living in the rhizosphere and carry out useful
activities for plants. Few bacteria are facultative endophytes invading the host plant
tissues to mutually establish a beneficial interaction. Most of the PGPR inhabit the
roots by colonization and proliferate in rhizodermal spaces and root hairs, while few
species reside without any physical contact with roots (Gray and Smith 2005). Both
rhizospheric, as well as endophytic bacteria, promote plant growth through various
direct as well as indirect mechanisms. In such mechanisms, bacteria directly
enhance the plant growth efficiently by improving plant nutrition through phyto-
hormone production and solubilizing several important minerals (Chauhan et al.
2016; Vaishnav et al. 2016; Maheshwari et al. 2014).

For regulation and rhizospheric signal communication, root secretions play the
most important role and are involved in the plant–microbe interaction. In the field of
agriculture, the main focus is to remove the unadorned stress conditions and
adverse outcomes, through exogenous application of inoculum of these microbial
organisms (Shrivastava and Kumar 2015). Before introducing commercially, the
PGPR that are isolated from the rhizospheric soil are screened in vitro for testing the
characteristics of PGP and some other valuable effects in field trails and greenhouse
experiments. Plant growth is promoted by PGPR through the vast chain of signaling
and mechanisms like efficient uptake of nutrients by fixing nitrogen biologically,
iron chelation and solubilization of phosphorus as well as pathogen control through
competition for survival and antagonistic relationships (Compant et al. 2005;
Steenhoudt and Vanderleyden 2000; Maheshwari 2010; Beneduzi et al. 2012;
Sharma et al. 2013; Jin et al. 2013; Chowdhury et al. 2015; Kuan et al. 2016), soil
decontamination by degrading several organic contaminants and reduction of heavy
metals from the soil, and assistance in phytoremediation (Nie et al. 2011; Divya and
Kumar 2011; Janssen et al. 2015).

PGPR inoculation is known to induce the abiotic stress regulatory mechanisms
through direct and indirect systemic induced resistance pathways (Yang et al. 2009;
Maheshwari 2010). The mechanism involved in the elevation of salt stress, main-
tenance of ion homeostasis, improvement of photosynthesis and water plant rela-
tions. A complex channel of plant–microbe interaction and cascade of signaling
mechanism is implemented in the removal of salinity stress (Smith et al. 2017). The
plant growth promotion by the application of different salt-resistant PGPR genera
including Bacillus, Serratia, Pseudomonas, Rhizobium, Azospirillum and
Acetobacter under salt stress conditions is given in Table 11.4.
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Table 11.4 Plant growth-promoting rhizobacteria mediating salt tolerance in plants

Plant PGPR specie Effects References

Glycine max Rhizobium Increased nodulation Ma et al. (2002)

Zea mays Azospirillum Obstructed Na+ uptake,
increased uptake of K+

and Ca2+, and increased
nitrogenase and nitrate
reductase activity

Hamdia et al.
(2004)

Lycopersicon
esculentum

Achromobacter
piechaudii

Reduced ethylene and
improved plant growth

Mayak et al.
(2004a)

Triticum aestivum Aeromonas hydrophila/
Caviae, Bacillus
insolitus, Bacillus sp.

Exopolysaccharide
production

Ashraf et al.
(2004)

Triticum aestivum Azospirillum Improved water relations
and yield

Creus et al.
(2004)

Vitis vinifera Burkholderia
phytofirmans

Increased chilling
resistance

Barka et al.
(2006)

Arachis hypogea Pseudomonas
fluorescens

Increased ACC deaminase
activity

Saravanakumar
and
Samiyappan
(2007)

Zea mays Pseudomonas syringae,
Pseudomonas
fluorescens, Enterobacter
aerogenes

ACC deaminase activity
increased

Nadeem et al.
(2007)

Arabidopsis
thaliana

Bacillus subtilis Regulation of
tissue-specific sodium
transporter HKT1

Zhang et al.
(2008)

Zea mays Rhizobium,
Pseudomonas

Electrolyte leakage
decreased, increase in
proline, relative water
content and K uptake

Bano and
Fatima (2009)

Lactuca sativa cv.
Tafalla

Pseudomonas mendocina ACC deaminase activity,
improved nutrient uptake

Kohler et al.
(2009)

Gossypium
hirsutum

Pseudomonas putida
Rs-198

Increased K+, Mg2+, and
Ca2+ absorption, decrease
Na2+ uptake from soil

Yao et al.
(2010)

Zea mays Bacillus megaterium Upregulated expression of
ZmPIP two isoforms

Marulanda et al.
(2010)

Oryza sativa Pseudomonas
pseudoalcaligenes,
Bacillus pumilus

Increased glycine betaine
concentration

Jha et al. (2011)

Zea mays Micrococcus luteus Increased IAA and HCN
production

Raza and Faisal
(2013)

Fragaria ananassa Kocuria
erythromyxa (EY43),
Bacillus atrophaeus
(EY6), Staphylococcus
kloosii (EY37)

Increased yield and
nutrient uptake

Karlidag et al.
(2013)

(continued)
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Table 11.4 (continued)

Plant PGPR specie Effects References

Triticum aestivum Pseudomonas putida,
Pseudomonas
fluorescens, Serratia
ficaria, Enterobacter
cloacae

Increased germination
percentage, rate and
index, enhanced nutrient
status

Nadeem et al.
(2013)

Oryza sativa Pseudomonas
pseudoalcaligenes,
Bacillus Pumilus,

Increased antioxidants,
plant growth, and nutrient
uptake

Jha and
Subramanian
(2013)

Vigna radiata Rhizobium and
Pseudomonas

IAA production and ACC
deaminase activity

Ahmad et al.
(2013b)

Solanum
lycopersicum

Pseudomonas putida
(UW4)

Increased shoot growth
and expression of Toc-
GTPase

Yan et al.
(2014)

Hordeum vulgare
and Avena sativa

Acinetobacter sp.,
Pseudomonas sp.

Improved IAA and ACC
deaminase production

Chang et al.
(2014)

Oryza sativa (GJ-
17)

Bacillus pumilus,
Pseudomonas
pseudoalcaligenes

Decreased superoxide
dismutase and lipid
peroxidation activity

Jha and
Subramanian
(2014)

Solanum
lycopersicum
‘Micro tom’

Streptomyces sp. strain
PGPA39

Enhanced IAA
production, ACC
deaminase activity,
phosphate solubilization

Palaniyandi
et al. (2014)

Glycine max Pseudomonas simiae
(AU)

Upregulating the
expression of storage
vegetative proteins,
RuBisCO large unit
proteins. Increased
chlorophyll and proline
contents and decreased
root NaCl accumulation

Vaishnav et al.
(2015)

Abelmoschus
esculentus

Enterobacter
sp. (UPMR18)

Improved antioxidant
activities, upregulation of
ROS specific pathway
genes

Habib et al.
(2016)

Triticum aestivum Dietzia natronolimnaea Protection by modulating
the expression of
stress-responsive genes

Bharti et al.
(2016)

Zea mays Bacillus
amyloliquefaciens
(SQR9)

Improved photosynthesis
and nutrient uptake

Chen et al.
(2016)

Glycine max Bacillus thuringiensis
(NEB17)

Upregulation of the
expression of
RuBisCo-oxygenase, PEP
carboxylase, proteins and
pyruvate kinase,
antioxidants,
photosystems I and II,
Glutathione-S transferase
and isocitrate lyase.

Subramanian
et al. (2016)

(continued)
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11.12.1 PGPR-Mediated Induced Systemic Tolerance

It is important to develop the knowledge about the vibrant functions of PGPR by
using different standardized techniques and understanding the basic mechanisms
and functions of PGPR regarding the conductance of stomata, transport of ions,
phytohormonal status, antioxidant enzymes, carbohydrate metabolism, and proteins
signal transduction. On improvement of salt stress different PGPR traits have
been reported, e.g., ACC deaminase, phosphate, and potassium solubilization,
exopolysaccharides, volatiles, and IAA production, etc. In this context, Dodd and
Pérez-Alfocea (2012) reported that the hormonal root to shoot signaling in plants is
altered by different rhizospheric microbes. Secretion of flavonoids by bean plants
stimulated by IAA-producing PGPR regulates the nutrient uptake, nitrogen fixation
and reduces unfavorable results of salt stress. The ACC-deaminase (ACC-D), is
produced by PGPR that reduces the ethylene level under salt stress conditions
through hydrolysis of ethylene precursor ACC (Choudhary et al. 2015).

Further, during saline conditions reduction of the chelation of excessive Na+

and decrease in its bioavailability to the plants is maintained by the microbial
secreted exopolysaccharides (EPSs) (Choudhary et al. 2015). PGPR increase the

Table 11.4 (continued)

Plant PGPR specie Effects References

Capsicum annum Microbacterium
oleivorans (KNUC7074),
Brevibacterium iodinum
(KNUC7183), Rhizobium
massiliae (KNUC7586)

Greater plant height, fresh
and dry weight, enhanced
chlorophyll content

Hahm et al.
(2017)

Triticum aestivum Arthrobacter
protophormiae (SA3),
Dietzia natronolimnaea
(STR1)

Enhanced photosynthetic
efficiency

Barnawal et al.
(2017)

Panax ginseng Paenibacillus
yonginensis (DCY84T)

Induction of the
defense-related systems,
for instance,
ROS-scavenging
enzymes, ion transport,
proline content,
biosynthetic ABA genes,
total sugars and induction
of genes involved
proliferation of root hairs

Sukweenadhi
et al. (2018)

Lolium perenne M30-35 strain (novel
bacterium)

Improved chlorophyll
contents, shoot fresh and
dry weights, root activity,
root volume, soluble
sugar, catalase activity,
and proline content

He et al. (2018)
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bioavailability of nutrients like phosphorus, potassium, zinc, and iron through
secretion of different enzymes in soil for enhanced nutrients uptake by plants. In the
past few years, the volatile organic compounds produced by specific bacterial
strains were proved as advanced way of communal signaling between plants and
PGPR, enhancing the plant growth through regulation of different biological pro-
cesses including nutrient uptake, osmoprotectant biosynthesis, ion balance and
distribution of hormones (Liu and Zhang 2015).

11.13 Mechanisms of PGPR for Salinity Stress Tolerance

Mechanisms employed by microbes which help in the improvement of plant growth
and reduction of negative effects of salt stress are given below:

11.13.1 Osmotic Balance

Osmotic stress affects the plant growth that is partially recovered by osmolytes
accumulation during salt stress. Salt ions gathering around the root creates water
stress which results in an osmotic imbalance in plants. Photosynthetic structures and
osmotic balance are dire to the salt stress so their maintenance proved crucial for the
removal of unsafe effects of salinity on plant growth (Iqbal et al. 2014). PGPR not
only improve plant–water relations through accumulation of osmolytes in the plants
but enhanced synthesis of proline in the under abiotic stress through application of
Burkholderia, Arthrobacterand Bacillus (Choudhary 2012). Vardharajula et al.
(2011) reported the higher proportion of proline in the salt-stressed plants inoculated
with Bacillus sp. Kumari et al. (2015) further confirmed that roots maintain osmotic
balance because of accumulation of higher proline content, resulting in enhanced
water uptake into the roots. Increased proline, as well as water content, was observed
in the Z. mays inoculated with Rhizobium and Pseudomonas strains (Bano and Fatima
2009). Osmotic potential, antioxidants, relative water content, proline and endoge-
nous phytohormones ABA and salicylic acid (SA) were found to be increased in H.
annus due to PGPR under salt stress (Naz and Bano 2013; Naz and Bano 2015). The
relation between accumulated proline and pyrroline-5-carboxylate synthase (P5CS)
gene expression has been determined by the PGPR applications. The bacterial
applications resulted in free proline accumulation in plant roots by upregulating P5CS
gene expression (Kumari et al. 2015). In addition to proline, total soluble sugars
increased in PGPR inoculated salt-stressed plants (Shukla et al. 2012).

Under salinity, water conductance from soil to the plant through roots is
maintained by the rhizobacteria (Marulanda et al. 2007). During salt stress, cur-
tailment of the relative water content indicated water stress. Bacterial
exopolysaccharides play a primary role in providing resistance to the plants against
drought stress in addition to other activities (Vardharajula et al. 2009).
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Inoculation with Pseudomonas putida sp. GAP-P45 in sunflower increased the
rate of survival as well as its biomass and root adherence to the soil under water
scarcity (Sandhya, et al. 2009). Earlier, Mhadhbi et al. (2004) reported
Sinorhizobium medicae, Mesorhizobium mediterraneum, and Mesorhizobium ciceri
potential to cope with salt stress and provide tolerance to the plants in salinity
through increasing POD enzyme activity. Lactuca sativa seedlings were exposed to
drought stress at different levels after being inoculated with P. mendocina, showed
an increase in photosynthetic activity, biomass content and relative water content
occurred due to increase in peroxidase (POD) and catalase (CAT) activities (Kohler
et al. 2008). Rice plants were inoculated with salt-resistant B. amyloliquefaciens
NBRISN13 (SN13) reported increase in the chlorophyll content, plant–water rela-
tions, root shoot lengths, and biomass by upregulating the catalase activity and
proline content as a defensive mechanism (Nautiyal et al. 2013).

PGPR helps in the maintenance of transpiration rate and water conductance so as
to regulate plant stomatal openings and water potential. In saline conditions, maize
plants inoculated with B. megaterium exhibited an increase root water conductance
in relation to the upregulation of two isoforms of plasma membrane aquaporin
protein (ZmPIP) (Marulanda et al. 2010). PGPR genera supported osmolytes and
different phytohormones storage after salinization to cope with initial osmotic
shock. Genetically engineered proBA genes that were derived from B.subtilis in A.
thaliana provided salt stress tolerance by upregulating the synthesis of proline
(Chen et al. 2007). When the rice plants inoculated with salt-tolerant B.amyloliq-
uefaciens (SN13) exposed to the saline environment in hydroponic and saline soil,
the plants tolerance against stress was increased due to the altered expression of 14
genes, among them four genes (NADP-malic enzyme NADP-Me2, somatic
embryogenesis receptor-like kinase SERK1, ethylene responsive element binding
proteins EREBP and SOS1) were upregulated and the expression of 2 genes (glu-
cose insensitive growth GIG and serinethreonine protein kinase SAPK4) was
downregulated in hydroponic setup, while in greenhouse experiment only MAPK5
was upregulated. SN13 inoculation enhanced the gene synthesis that is involved in
the osmotic and salt stress tolerance (Nautiyal et al. 2013). Carbohydrate synthesis
and transport is enhanced by the beneficial microbes directly associated with the
relationship between source and sink, rate of photosynthesis, biomass accumula-
tion, and plant growth rate. Wheat seeds inoculated with B. aquimaris have shown
an increase in the total soluble sugar content and reducing sugars resulting in higher
biomass, sodium reduction and NPK accumulation (Upadhyay and Singh 2015).

In another study, it was observed that the inoculation of pepper plants with
Pantoea dispersa and A. brasilense following salt stress resulted in increased dry
mass storage in relation to stomatal conductance and photosynthesis, but no change
in the chlorophyll content and photosynthesis was observed (del Amor and
Cuadra-Crespo 2012).

Large amount of osmoprotectants used to store in the cytosol of microbes
exhibiting in osmolality fluctuating environment (Kempf and Bremer 1998). The
osmolytes synthesis and accumulation by PGPR under such conditions became
faster. Under oxidative stress, the absorbance of compatible solutes through roots
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assisted them to impart resistance under salinity. Increased nodulation and better
plant growth were observed in the bean (Phaseolus vulgaris) inoculated with
P. polymyxa and R. tropici due to upregulation of trehalose-6-phosphate gene
synthesis. Excessive trehalose synthesis acts as osmoprotectant and provide salt
stress tolerance (Figueiredo et al. 2008).

11.13.2 Ion Homeostasis in Abiotic Stress

To control the ion uptake at the initial stages rather than spending a large amount of
energy in damage repair and clearing excessive salts, plants cells have adaptive
mechanisms to control the excessive salt by storing them in the large
membrane-bound vacuoles. The most important factors limiting the plant growth
and adolescence occurred due to the accumulation of excessive salts like Na+ and
Cl− ions in the plant tissues. Glycophytes are known to have ion exclusion strategy
as a tolerance mechanism in the salt stress. A group of rhizobacteria is known to
remove the toxic ionic stress and improved development and growth under saline
conditions (ref.). These microbes supported tolerance to salt stress by altering the
ion transporters expression and by secretion of specialized biomacromolecules
around roots, i.e., EPS that acts as a physical barrier between the roots and
excessive salt. It was reported that the wheat plants inoculated with Aeromonas
hydrophila/caviae and Bacillus sp. reduced uptake of Na+ because of EPS secretion
that clogs Na+ by binding to the plant roots and preventing its transport to the leaves
(Ashraf et al. 2004). In addition, the EPS producing B. circulans and B. polymyxa
have potential in higher dry matter accumulation in wheat roots and shoots during
the salt stress. Khodair et al. (2008) evide by due to the Bacterial volatile organic
compounds (VOCs) also involved in Na+ exchange pathways in PGPR-based ion
mediated homeostasis. Bacterial VOCs are distant signaling low molecular weight
compounds that help in signal transduction between two microorganisms. Exposure
of Arabidopsis to B. subtilis volatile organic compounds (VOCs) exhibited salinity
tolerance as compared to the unexposed plants by downregulating AtHKT1
expression in roots and increasing expression in the shoots to facilitate root to root
recirculation (Shkolnik-Inbar et al. 2013). The vegetative storage protein expression
was increased through P. simiae AU-mediated VOCs expression in soybean leaves
in relation to reduced Na+ uptake under salinity stress by altering the sodium
transport channels (Vaishnav et al. 2015).

Bacteria have ability to reduce the salt uptake by trapping cations with the help
of rhizosheath in the EPS matrix and altering the ion exchange channels. Macro and
micronutrients imbalance and mineral nutrients exchange caused by the sodium and
chloride ions is controlled with the help of PGPR. Siderophore production by
microbes, nutrients circulation and pH changes in the rhizospheric area facilitate
bioavailability of minerals in the soil (Lugtenberg et al. 2013). In plant shoot, the
Na/K ratio and ionic balance is maintained with the help of PGPR by decreasing the
Na and Cl buildup in the leaves and increasing the Na removal from roots along
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with increasing the affinity K transporter channels. In maize plants K uptake and Na
exclusion enhanced by inoculating with Azotobacter strains C5 (auxin producing)
and C9. Plant stress response observed to enhance increase in proline, chlorophyll
and polyphenol contents in leaves after PGPR inoculation (Rojas-Tapias et al.
2012). Similarly, B. subtilis GB03 inoculation in P. tenuiflora (a halophyte grass)
showed less Na salt accumulation because of increased expression of PtHKT1 and
PtSOS1 genes in roots but under salt stress the gene PtHKT2 in roots was down-
regulated (Niu et al. 2016).

11.13.3 Phytohormone Signaling and Salt Tolerance

Many soil bacteria secreted, modulated and altered the status of endogenous phy-
tohormones by releasing exogenous enzymes, metabolites and hormones, con-
tributed to enhance salinity tolerance. Plant–microbe associations are known to
initiate signaling events to enhance the endogenous production of phytohormones
and several other metabolites under stress conditions (Dodd et al. 2010).

A number of studies elaborated the roles of abscisic acid (ABA), auxin (IAA),
cytokinins (CK), ethylene and gibberellic acid (GA) under salinity stress. These
hormones alter morphology, metabolism, water uptake, and nutrient acquisition
efficiency of plants and consequently result in the larger, healthier and sturdy plants.

11.13.3.1 Abscisic Acid (ABA)

Abscisic acid (ABA) mainly cuts off the leaf and shoot growth of the plant, but
recent research evidenced that the elevated concentrations of ABA in stressed plants
suppress the excess production of ethylene. Mainly the raised ABA level generate
an adaptive response that is fundamental for plant endurance (Pliego et al. 2011).

The aspects of exogenously applied ABA in plant–microbe associations under
salinity stress and the role of the bacterial ABA. In salt-stressed plants, PGPR reg-
ulated the synthesis of ABA and its signaling pathways that resulted in the heightened
plant growth. Halotolerant Dietzia natronolimnaea (STR1) persuaded the salt stress
(150 mM NaCl) resistance system in wheat plants through regulation of ABA sig-
naling course via upregulation of ABA-reactive gene (TaABARE) and 12-oxophyto-
dienoate reductase 1 (TaOPR1) activating TaWRKY and TaMYB input signal,
resulting trailed due to expression of stress-sensitive genes including upregulation of
TaST (a salt stress instigated gene). In PGPR-inoculated plants, the enhanced
antioxidant enzyme gene expression and proline content provided maximum resis-
tance against salt stress (Bharti et al. 2016). Under salinity Cucumis sativus plants
inoculated with Acinetobacter calcoaceticus (SE370), Promicromonospora sp. SE188
and Burkholderia cepacia (SE4) resulted in greater biomass. PGPR reduced elec-
trolyte leakage and increased water potential and, also caused ABA upregulation and
decrease in salicylic acid and gibberellin GA4 contents (Kang et al. 2014).
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Decreased ABA accumulation and increased plant biomass in salinized soil were
observed in cottonseed inoculated with P. putida (Rs-198). However, the enhanced
salt resistance likewise is credited to control ionic balance and enhanced endoge-
nous IAA content (Yao et al. 2010). Under salinity stress conditions, wheat inoc-
ulation with B. subtilis (LDR2) and Arthrobacter protophormiae (SA3) resulted in
enhanced IAA content and decreased ACC and ABA contents. The upregulation of
Serine/Threonine protein kinase–ethylene responsive (TaCTR1) and drought re-
sponsive element (TaDRE2) genes exerted an improved impact and was addition-
ally approved (Barnawal et al. 2017).

11.13.3.2 Auxin (Indole-3-Acetic Acid)

Biosynthesis of auxin occurs by means of complex pathways in rhizobacteria
involved utilization of tryptophan secretion from root exudates and its into IAA
(Spaepen et al. 2007). Upgraded plant cell growth occurred due to activated auxin
signaling pathway and endogenous IAA pool in plants. In plant–microbe associa-
tions, the bacterial signaling molecule is IAA produced by PGPR. Under ideal
conditions of growth, gaining of bacterial IAA in triggered, repressed or impartial
plant growth (Dodd et al. 2010; Spaepen and Vanderleyden 2011). Salinity in soil
influenced cell elongation due to the accumulation of IAA in roots. This accu-
mulated IAA is likewise expected to hinder the synthesis and transport of cytokinin
from root to shoot and brings in increased root lengthening under pressure condi-
tions (Dodd et al. 2005). Enhanced salt stress tolerance was observed in maize when
inoculated with B. amyloliquefaciens (SQR9). It was supported by increased total
soluble sugar and chlorophyll contents, enhanced catalase and peroxidase activity,
improved KC/NaC ratio, and glutathione content. The negative impacts of 50 mM
NaCl on Phaseolus vulgaris grown under hydroponic conditions were found to be
alleviated by Azospirillum brasilense application because of higher accumulation of
flavonoids as well as improved proliferation of roots (Dardanelli et al. 2008).
Improved germination and development of corn and soybean was found when an
IAA-producing co-inoculations of Bradyrhizobium japonicum (E109) and
Azospirillum brasilense (Az39) were done (Cassán et al. 2009, 2014).

Research revealed that plants displayed higher root and leaf development
inoculated with IAA-producing bacterial strains and considered as an adaptive
response to salinity (Albacete et al. 2008). Under hydroponic conditions, PGPR
strains producing IAA documented for enhanced efficiency of nutrient uptake
(Shukla et al. 2012). Recent research avowed that GB03 activated the plant growth
by cell wall releasing enzymes and auxin homeostasis as well (Zhang et al. 2007).
Interestingly, the reduced effects of salt stress in the PGPR inoculated seedlings
were affirmed by the upregulation of genes of RuBisCo encoding subunits (RBCS,
RBCL), HC encoding pumping pyrophosphatase (H(C)-Ppase), NHX2, NHX3,
NHX1, and HKT1, and downregulation of gene encoding 9-cisepoxycarotenoid
dioxygenase (NCED expression) (Chen et al. 2016).
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11.13.3.3 Ethylene

In plants ethylene, a stress hormone synthesized under stress conditions. Rhizobial
nodulation of legumes is also inhibited by ethylene. However, low production
under normal condition soccurred due to adjustment of some physiological reac-
tions, for instance, breaking of seed dormancy (Dodd et al. 2005). Yang cycle in
plants is involved in ethylene synthesis. In this process ACC oxidase catalyze the
conversion of ACC into ethylene. In stress conditions, transportation of ACC to a
specific stressed organ resulted in ethylene production in that particular organ
(Yoon and Kieber 2013). Under salt stress, growth of tomato is reduced due to the
Na+ build up and it is associated with elevated foliar ethylene (Mayak et al. 2004a).
In another study, Albacete et al. (2008) reported that the application of salt, elevated
the ACC levels along with the Na+ accumulation in the leaf, xylem sap, and root.
This phenomenon is associated with initiating the oxidative stress and decrease in
photosynthetic capacity indicating ethylene’s role in foliar senescence. In several
studies, there is a decrease in ethylene quantity in stressed plants as numerous
rhizobacteria contain ACC-deaminase enzyme, which splits ACC into ammonia
and a-ketobutyrate. As stated in the reported model, plant roots are known to
release and then hydrolyze ACC via ACC-D mechanism as ACC-D producing
bacteria gets attached to the plant roots and absorb the released ACC (Glick et al.
1998). Consequently, more ACC is exuded from roots to keep the balanced ACC
level inside the plant cell. Few reports revealed that PGPR containing ACC-D
reduce salt stress (Wu et al. 2012). Achromobacter piechaudii (ARV8) inoculated
strain under salt stress in tomato produce ACC-D which in turn has remarkably
increased the efficacy of nutrient uptake and plant weights (Mayak et al. 2004a).

Researchers reported that improved nodulation in mung bean can be done by
applying the ACC-D co-inoculated with Bradyrhizobium as it can bring down
ethylene synthesis compared to the Bradyrhizobium alone (Shaharoona et al.
2006a). Red pepper under 150 mM NaCl stress increased the ethylene production
that has been accounted for to decrease by ACC-D producing B. iodinum (RS16), Z.
alba (RS111) and B. licheniformis (RS656). (Siddikee et al. 2011). Additionally,
plants treated with PGPR strains those have capability to produce ACC-D showed
even more root nodules, and improved plant growth and productivity under
oxidative stress conditions (Zafar-ul-Hye et al. 2013).

Under saline conditions, up to 90 mM NaCl tomato seedlings inoculated with P.
putida (UW4) exhibited enhanced shoot development in Pisum sativum cv.
Alderman. Inoculation with Variovorax paradoxus (5C-2) reported to have positive
effects under salt stress conditions. In saline soil, ACC-D producing Enterobacter
sp. and P. fluorescens enhanced maize productivity. In inoculated plants under
salinity stress elevated KC/NaCl proportion and NPK uptake were also recorded
(Nadeem et al. 2009). Pantoea dispersa (PSB3), local bacterium remarkable
improvement in pod number, biomass, seed weight, seed number and pod weight
under salt stress. The enhanced salt resilience was related to critical decrease in
electrolyte leakage and Na+ uptake while increase in KC uptake, chlorophyll and
relative water contents (Panwar et al. 2016).
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11.13.3.4 Cytokinins

Cell division and differentiation are critically regulated by auxin and cytokinin
proportion. Some PGP bacteria synthesize rhizobacteria is cytokinin generation
(Dodd et al. 2010; García de Salamone et al. 2001; Aslantaş et al. 2007;
Kudoyarova et al. 2014). The biomass content within the lettuce plant shoot was
found to be raised by the application of CK-mediated B. subtilis under drought
stress (Arkhipova et al. 2007). The role of CK signaling pathway in the plant
development was anticipated by observing the increased CK levels in A. thaliana
roots as a result of the application of cytokinin-producing bacterium B. megaterium
(Ortíz-Castro et al. 2008). Giraud et al. (2007) reported that in the absence of nod
factor in soybean plants the nodulation process occurred with the help of CKs after
inoculating plants with PGPR strain Bradyrhizobium.

11.13.3.5 Gibberellins

Inoculation of wheat and soybean by GA-producing PGP strains of various genera
involved in their growth and Gibberellins development under salt stress (Cassán
et al. 2014). According to another study, tomato plant growth was enhanced by
GA-producing Promicromonospora sp. SE188, revealed in the form of higher
biomass and shoot length (Kang et al. 2012). Kang et al. (2014) also reported that
GA-producing P. putida H-2-3 essentially improved the plant weight, length, and
chlorophyll substance in GA-deficient mutant soybean plants.

It is reported that PGPR isolates B. cepacia, A. calcoaceticus, and
Promicromonospora sp. exerted positive effects on cucumber plants growth under
salinity and drought conditions induced by sodium chloride and polyethylene
glycol treatments (Kang et al. 2014). Enterobacter cloacae, P6 and Bacillus
drentensis, P16 were used in combination with foliar application of silicon to
maintain yield and growth of mung bean plants under saline conditions. The
combination produced good results (Mahmood et al. 2016).

11.14 Impact of PGPR on Crop Growth Under Salinity

Researchers observed that PGPR enhance plant growth and have ability to promote
their salinity tolerance levels, Besides the improvement in physiological responses
and antioxidant potential. Ability of PGPR activated indole-3-acetic acid (IAA),
gibberelins (GA), cytokinins (CK), abscisic acid (ABA), ethylene, and cofactor
pyrroloquinoline quinone (PQQ), helpful in promoting the plant growth (Perrig
et al. 2007). When spermidine introduced against saline stress as a new defender
molecule produced by S. rhizophile, induced plant–microbe interaction process
(Alavi et al. 2013). In soybean seedlings, IAA level decreases during stress con-
ditions but by PGPR inoculation, major improvement was observed in the level of
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hormones increased. The morphological changes in the roots improved the growth
of shoots and ultimately increasing the yield (Asim et al. 2013). Isolation of
halotolerant bacteria and their characterization by a high proline production with
other plant hormones like trans-zeatin riboside, ABA, IAA and GA3 and the
bacterial inoculation into the soybean plant improved length of roots shoots, and
dry mass under salinity stress.

An osmotolerant PGPR named as A. brasilense NH isolated from the
salt-affected soil in Algeria near Mediterranean coast, positively enhanced the
growth of durum wheat in salinity effected soil (Nabti et al. 2007, 2010). To
produce IAA at very high salt concentration, the strain was found effective. IAA
played important role in providing resistance to plants against salt stress and in
growth promotion of plant (Kang et al. 2014; Khalid et al. 2013; Kaya et al. 2010,
2013).

A variety of halophilic bacterial strains belong to the genus Halomonas isolated
from the root zone of Salicornia plants, Halomonas spp. exhibited PGP characters
under high salt concentration specifically due to IAA production(Mapelli et al.
2013). The effect of B. cereus and Pseudomonas sp., in wheat cultivation, revealed
that osmotolerant bacteria have a direct and indirect effect on seed germination of
paddy under saline conditions (Jha and Subramanian 2013). Thus may be due to
important role of bacteria in upregulating IAA that helps in seed germination.
PGPR through the enhancement of IAA under salinity stress cause reduction in
toxin uptake results in the improved plant growth (Chakraborty et al. 2011; Zhang
et al. 2008).

Hormones such as ABA, IAA, and GA3 ameliorated high concentration of salt
stress after treatment with halotolerant strains like P. extremorientalis and
P. chlororaphis resulted in improved growth of staple crops such as common bean
(Phaseolus vulgaris) (Jha and Subramanian 2013).

11.15 Conclusions

Drought and salinity are major problems faced by the agricultural world. PGPR are
the best alternatives to the chemical and traditional methods used against these
problems. PGPR are proved to be efficient in increasing plant growth, yield and
stress tolerance levels. They are non-pollutants and methods for their application
are not costly, moreover, PGPR can be applied on plants at different life stages such
as treatment of seeds with PGPR before planting or after emergence. Development
of the bioinoculum is beneficial to promote economically important crops grown in
arid and semiarid and salt-affected regions of the world. Extensive research on
PGPR is needed to explore mechanisms of their beneficial effects on different cash
and food crops along with searching for suitable methods of PGPR application
according to crop types.
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Chapter 12
Growth and Yield of Field Crops Grown
Under Drought Stress Condition Is
Influenced by the Application of PGPR

Naeem Khan and Asghari Bano

Abstract Water stress causes significant losses to agriculture crops mostly grown
in rainfed condition. Water stress affects the plant–water relation that causes
specific and nonspecific damages to crop. Water stress is categorized as the dom-
inant abiotic stress that is responsible for secondary stresses including oxidative
stress that has hazardous effects on the biomolecules of cell. Plant
growth-promoting rhizobacteria (PGPR) inoculated plants grow well under biotic
and abiotic stresses. Plant survival in abiotic stresses defends on many adaptations
and mitigation strategies. PGPR play dominant role in protecting plants from these
stresses either directly or indirectly. PGPR colonize the rhizosphere and impose
tolerance by producing different metabolites and other volatile compounds and by
regulating gene expression and altering root morphology under water scarcity.
PGPR influence physiology of plant in response to drought. Considerable growth in
cereals has been noted in response to bacterial inoculation. PGPRs like
Azospirillum, Pseudomonas, Bacillus and Azotobacter are associated with plant
roots, improve shoot and root growth and drought tolerance; however, current
works unveiled that PGPRs not have just stimulated the systemic tolerance to
abiotic stresses but also improve nutrient uptake.
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12.1 Introduction

Crop production is significantly reduced worldwide as a result of drought stress. Crop
growth models calculation suggest that this matter will be harsher in the forthcoming
days (Khan et al. 2018). Drought damages normal growth interrupts plant–water
relation and decreases water-use efficiency. It had been reported that less precipitation
and high evapotranspiration result moisture deficient condition (Mishra and Cherkauer
2010). Agriculture drought is the absence of sufficient wetness needed for growth of
plants (Manivannan et al. 2008). Drought-induced reduction in growth causes signif-
icant decrease in plant biomass. The key effects of drought consist of a reduction in cell
division, leaf size; stem growth and nutrient uptake (Li et al. 2009; Farooq et al. 2009).
Plants need to adopt differentmechanisms against drought (Khan et al. 2017). In plants,
changes in response to unfriendly environmental conditions could be used while
selecting drought-tolerant germplasms for better growth and productivity even under
stressful unfriendly condition (Nam et al. 2001; Martínez et al. 2007). The response of
the plant to various abiotic stresses fluctuates from species to species and at different
organizational levels which depends on the age of the plant, the intensity of stress, and
duration of stress (Chaves et al. 2002; Jaleel et al. 2008). Drought stress tolerance could
be understood from plant reactions to lesser water condition (Reddy et al. 2004).
Though the responses of plants to various stresses are well known, the performance of
the plant under multiple stresses is scrappy. This is why it is important for plants to
respond instantaneously to numerous stresses co-occurring at one time. These types of
inquiries are typically not expectable from single factor study (Zhou et al. 2007). It is
noted that water shortage, high rate of evapotranspiration, and intense sunlight reduces
the yield 30–50% (Fathi and Tari 2016) (Fig. 12.1).

Soil inhabitant bacteria have some useful effects on soil properties and plant
health. Kloepper and Schroth (1981) were the first to use the term PGPR for these

Fig. 12.1 An overview of mechanism in microbial phytohormone-mediated plant stress tolerance
(Egamberdieva et al. 2008)
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rhizobacteria. Whereas, the rhizosphere is the region in the vicinity of roots and an
active zone for microbial activities and is of vital significance for plant health and
nutrition (Nihorimbere et al. 2011). The number of rhizobacteria is relatively higher
near roots than surrounding soil due to the presence of root exudates in this region
(Khan and Bano 2016a). PGPR enhance plant growth and impart drought tolerance
by a number of different mechanisms. PGPR improve plant growth by enhancing
abiotic stress tolerance in plants, increase uptake of nutrients, production of phy-
tohormones and ACC-deaminase activity that prevent diseases in plants (Saleem
et al. 2007). PGPR have been utilized commercially (Dutta and Podile 2010) and
hold great potential for sustainable agriculture. Growth-promoting potentials of
PGPR have been examined in a large number of cereals (Gray and Smith 2005;
Khan and Bano 2016b; Khan et al. 2017).

12.2 Effects of Drought Stress on Plant Growth
and Development

Drought affects plants to the extent that impairs normal functions (Siddique et al.
2000) and brings significant changes in plant physiology and morphology (Rahdari
et al. 2012). Drought stress induces a decline in growth have been examined in
many crops (Samarah 2005; Kamara et al. 2003; Oh et al. 2005; Rampino et al.
2006). Drought stress adversely affects fresh weight and water content of the
developing plant (Jaleel et al. 2009). Besides this it affects the accessibility and
nutrient movement in soil. Therefore, drought reduces nutrient availability and
diffusion (Barber et al. 2000). Free radicals like ROS are induced in plants as a
result of water shortage, affecting plant growth by producing oxidative stress. The
higher concentration of ROS is harmful to various plant tissues as it initiates lipid
peroxidation, protein degradation, and destruction of lipids in the affected plants
(Smirnoff 1993; Sgherri et al. 2000; Nair et al. 2008).

Drought coupled with high temperature reduces photosynthesis and is respon-
sible for the continuous production of ROS that may cause plant death (Chaves
et al. 2009). A surge in drought leads to the ionic condition in roots, resulting in
osmotic stress and ion toxicity. In fact, with an increase in droughty period,
cell-wall shriveled and gets loose, resulting poor turgor pressure which ultimately
leads to decreased growth (Anjum et al. 2011; Farooq et al. 2012; Simões-Araújo
et al. 2003). The continuous increase in the period of water stress, increase in the
events of heat waves that enhance drought and heat stresses (Sekhon et al. 2011;
Wahid et al. 2007). There are three main factors responsible for the decrease in
yield by soil water deficit, i.e., reduce in plant canopy, decrease in radiation-use
efficiency, and reduction in harvest index (Earl and Davis 2003). A slow pace in
illuminating drought tolerance mechanism has weakened both traditional breeding
efforts as well as modern genetics approaches for the development of
drought-tolerant varieties (Xiong et al. 2006).
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Water deficit has dominant effects on the incidence of kernel abortion in maize
during pollination (Sangoi 2001). Water stress diminishes normal growth and pro-
ductivity by affecting grain filling (Morgan et al. 1990; Ober et al. 1991). In cereals,
filling of grains is an important step of starch biosynthesis and four enzymes, viz.,
sucrose synthase, adenosine diphosphate–glucose–pyrophosphorylase, starch syn-
thase, and starch branching enzyme are known to play a key role during this process
(Taiz and Zeiger 2006). It is believed that a decrease in sucrose synthetase results in a
decrease in the rate of grain growth in water-stressed wheat (Ahmadi and Baker
2001). In pigeon pea and rice, drought stress concurring with the flowering stage
causes a reduction by 40–55% in grain yield (Nam et al. 2001; Yang et al. 2009).

Lack of moisture results in a substantial decrease in dry matter of plant organs,
though this varies from organ to organ (Asrar and Elhindi 2011). Similarly, drought
greatly restricted the biomass of Asian red sage, though roots were more resistant in
comparison to shoots (Liu et al. 2011; Farooq et al. 2010; Ge et al. 2006; Blum
2005). New plantation and ill-developed plants are very vulnerable to drought stress
because of a limited number of developed roots and a huge mass of stems and
leaves in contrast to roots. Different plant species respond differently to drought
stress. For instance, maize plant responds by delaying flowering (McMaster et al.
2008), a similar response is also present in quinoa (Geerts et al. 2008) and rice
(Fukai et al. 1999), whereas in other crops (soybean, wheat, etc.) drought accel-
erated flowering and physiological maturity (Desclaux and Roumet 1996). Under
drought stress, plants modify their functions in order to curtail adverse effects and
enhance existence (Thapa et al. 2011). In reaction to drying soils, plants adjust the
expression of entire genome that intricate in drought tolerance, thus impart toler-
ance to plants experiencing stress condition (Clement et al. 2008).

12.3 PGPR and Their Mode of Action

PGPR have the ability to inhabit the rhizosphere and improve the tolerance of plants
to various stresses. This is because of their ability to solubilize inorganic phosphate,
produces plant hormones, siderophore, exopolysaccharides (EPS), organic acids
(OA), fix atmospheric nitrogen, and control plant diseases (Muleta et al. 2013; Rani
et al. 2012). A large number of bacteria species have been studied for this purpose
and many of them commercialized (Vejan et al. 2016). However, they are little
utilized, this is because of their inconsistency that could influence crop production.
Success through PGPR inoculation greatly depends on their survival in the rhizo-
sphere, compatibility with crop and interactions with crop and other soil micro-flora
(Compant et al. 2010). Another aspect is that the mode of action, which is diverse
and vary from species to species of PGPR (Siddiqui 2005). This weakness limits the
advantages of PGPR. Hence, the rivalry between chemical fertilizers and biofer-
tilizer is believed redundant in the face of the worldwide agricultural productivity
necessary to nurse the growing world’s population (Lelieveld et al. 2015).
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PGPR have been categorized based on their actions as biofertilizers, phytostim-
ulators, rhizoremediators, and biopesticides (Antoun and Prévost 2005; Kloepper
2003; Vessey 2003). In general, PGPRmay be categorized into extracellular (ePGPR)
and intracellular (iPGPR) PGPR (Figueiredo et al. 2016; Bhattacharyya and Jha
2012). Most of the iPGPR are gram-negative rod-shaped bacteria, while some are
gram-positive cocci or pleomorphic (Bhattacharyya and Jha 2012). Besides, many
actinomycetes are also the dominant inhabitants of rhizosphere microbial community
beneficial characters (Bhattacharyya and Jha 2012; Merzaeva and Shirokikh 2010).
Among them, Streptosporangium sp., Micromonospora sp., Thermobifida sp., and
Streptomyces spp., which have presented huge potential as bio-control agents con-
trary to a variety of root fungal pathogens (Franco-Correa et al. 2010).

12.4 PGPR and Their Mechanism of Action Under
Drought Stress

One alternative treatment against drought is the application of PGPR to crops as they
boost plant growth and increase drought tolerance either directly or indirectly (Bashan
1998; Cassán et al. 2014). This may be due to their ability for fixation of atmospheric
nitrogen, production of different plant hormones including GA, IAA, and cytokinin,
solubilization of inorganic phosphate and production of exopolysaccharides and
siderophores (Mayak et al. 1999). In addition, PGPR is related to catabolism of
molecules linked to stress-signaling in plants (Glick et al. 2007).

The rhizosphere is inhabited by millions of different microbes that form complex
interactions with the plant (Berg 2009; Schmidt et al. 2014). Plant-associated PGPR
adopt itself to stressful environmental conditions and thus improve the resistant of
plants towards a variety of abiotic stressors which also promote plant health and
yield (Schmidt et al. 2014; Yin et al. 2018). However, this depends on the distri-
bution of microorganisms in the rhizosphere and endosphere. Differences in the
bacterial population were experiential at the rhizosphere and in the soil nearby plant
roots due to root exudates (Marasco et al. 2012).

Microbiome related to roots can improve micronutrient uptake or disturb the
content of phytohormones or indirectly they arouse the plant immunity against
phytopathogens (Balloi et al. 2010; Rolli et al. 2015; Berg et al. 2014).
ACCdeaminase producing PGPR species have the ability to lesser stress and impart
tolerance against that particular stress (Lucy et al. 2004). Similarly, Acinetobacter
and Pseudomonas species significantly increased the shoot and leaf biomass the
photosynthetic activity even in drought-sensitive grapevine plants grown under
stress condition (Rolli et al. 2015). Similar results were noted by Khan et al. (2017)
for drought-sensitive chickpea genotype. PGPR, Stenotrophomonas rhizophila
DSM14405 triggered the expression of several functional genes responsible for
stress protection, energy production and for motility of cells (Alavi et al. 2013). The
extremely eroded region of southern Sonoran desert had been reinstated with
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leguminous plants by the application of PGPR in combination with mycorrhizal
fungi and compost (Bashan et al. 2012).

ACC-deaminase-producing bacteria results in more seed yield and enhance seed
size and restore the process of nodulation even under unavailability of water (Dodd
et al. 2005). These bacteria effectively reduced the negative effects of moisture
stress in plants grown under field and pot condition (Arshad et al. 2008).
Inoculation of a pea plant with ACC-deaminase producing P. fluorescens caused
increase root system and improved nutrient uptake under water scarcity (Zahir et al.
2008; Rossi et al. 2012), whereas V. paradoxus augmented growth, yield, and
water-use efficiency of droughty peas (Belimov et al. 2009). This PGPR augmented
the soil drying-induced surge in the abscisic acid of xylem tissues and lessened soil
drying-induced rise of xylem ACC (Dodd et al. 2005; Tiemann and Billings 2011).
It has been reported that nitrogen-fixing PGPR prevents drought-induced decrease
in nodules formation (Belimov et al. 2009) (Fig. 12.2).

PGPR were found responsive even at the transcriptional level in Arabidopsis
thaliana where they improved the growth and tolerance (Timmusk et al. 2011). Six
newly identified stress-related proteins were reported in plants after treatment with
B. licheniformis. Among them the genes of Cadhn, VA, sHSP, and CaPR-10
showed 1.5-fold increase in inoculated plants than control (Lim and Kim 2013).
Upregulation of stress-responsive genes was noted in the inoculated wheat plants,
which also alleviated the harmful effect of drought stress (Kasim et al. 2013;

Fig. 12.2 Mechanism of action of ACC-deaminase-producing rhizobacteria for mitigating the
adverse effects of drought stress (Kumar and Verma 2017)
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Hecker et al. 1996). Similarly, a set of drought signaling responsive genes was
downregulated in the A. thaliana treated with P. chlororaphis compared to those
droughty plants lacking bacterial treatment (von Rad et al. 2008). Transcripts of the
jasmonic acid (JA) marker genes were upregulated in the PGPR inoculated plants
but varied in their reaction to water scarcity (Cho et al. 2013; Schimel et al. 2007).

Rhizobia are well-known mutualistic symbiotic bacteria, could create symbiotic
relations with leguminous crops, and help them in fixing atmospheric nitrogen in
specific root structures known as nodules. These bacteria are also equally beneficial
in non-leguminous plants. Maize plants inoculated with PGPR under drought stress
displayed lessen antioxidant enzyme activity as compared to un-inoculated plants
(Sandhya et al. 2010; Conlin and Nelson 2007). Similarly, inoculated maize with
Bacillus species developed resistance to drought by reducing the activities of the
antioxidants (Vardharajula et al. 2011; Heidari et al. 2011; Placella et al. 2012).
Reduction in the activity of apex, catalase, and GPX was noted in inoculated maize
plants with EPS-producing bacteria resulting in stress tolerance in test plants
(Naseem and Bano 2014). The effectivity of B. thuringiensis in lavender and in
common sage under rainfed condition have been studied and was found a promising
PGPR against drought stress (Armada et al. 2014; Gusain et al. 2015). These studies
provide evidence regarding the advantageous effect of PGPR for drought tolerance
in plants by altering the antioxidants activity under water-deficit conditions (Gusain
et al. 2015) (Fig. 12.3).

Fig. 12.3 Mechanism of plant drought tolerance induced by plant growth-promoting rhizobac-
teria (Dubey et al. 2019)
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12.5 Conclusion

Water scarcity to the agriculture crops mainly in arid and semiarid regions
decreasing crop production. PGPR are playing a significant role in the course of
managing plant stresses. Enhanced production of exopolysaccharides, phytohor-
mone, 1-aminocyclopropane- 1-carboxylate (ACC) deaminase, volatile compounds
by PGPR underwent considerable increases in growth and yield of important
cereals. There is recent urgent to explore the draught resistant mechanisms of PGPR
to facilitate this plant protection and phytoremediation properties in order to sustain
agriculture.
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Chapter 13
Plant Growth Promotion
and Suppression of Fungal Pathogens
in Rice (Oryza Sativa L.) by Plant
Growth-Promoting Bacteria

Hassan Etesami

Abstract Crop plants play an outstanding function in providing food and energy to
humans. Rice (Oryza sativa L.) is one of the most important stable crops that have a
role in providing the main food to more than half of the world’s people. One of the
important factors in increasing yield in rice is the balanced nutrition or supply of the
required nutrients in the proper form and ratios. Chemical fertilizers are essential
components of modern agriculture by providing essential plant nutrients. However,
the overuse of these fertilizers causes serious environmental pollution. But threats
of plant pathogens on the attack and damages on the crop productivity cannot be
ruled out. Therefore, chemical-based pesticides are thought to be an effective and
trustworthy agricultural management measure for repressing pests. Nowadays, the
use of beneficial microorganisms and biological control agents are proved as good
as synthetic pure/chemicals for the increased plant growth and yield. The dimin-
ished utilization of chemical fertilizers for the management of plant pathogens is
considered as a secure and maintainable strategy for safe and rewarding agricultural
productivity. Based on research conducted until this moment, rice-associated bac-
teria are encouraging alternatives to chemical fertilizers in an eco-friendly manner.
In general, the application of plant growth-promoting bacteria (PGPB) could offer a
cheaper and cost-effective approach to overcome the environmental problems
caused by chemical fertilizers and their use in the form of biofertilizers and
biopesticides could decrease our reliance on synthetic agrochemicals. This chapter
highlights the importance of PGPB for enhancing sustainable rice production.

Keywords Sustainable agriculture � Biocontrol agents � PGPR � Biofertilizer �
Co-inoculation
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13.1 Introduction

Cereals are the main source of nutrition for human beings in the world. Among the
cereals, rice (Oryza sativa L.) is of great importance. Rice is a staple food in food
diet over 40% of the world’s population, especially, in Asia (Naureen et al. 2009a).
Of the total energy produced by cereals per person per day, more of it is related to
rice. This has made rice as the most important food product in developing countries.
According to statistics, the world’s rice cultivation area in 2009 was 153 million
hectares, with a production of 585 million tons, which should increase to 800
million tons in 2025. In other words, in order to meet the food needs of this growing
population, an increase of 70% in rice production is needed over the next few years.
Rice is mostly produced in countries, whose population are growing rapidly and
often are limited in terms of land and resources. Therefore, given the limiting
factors of production (including decreasing the quality and quantity of agricultural
land, reducing water resources and labor shortage), the only rational solution is to
increase the yield of rice per unit area of land cultivation or use of high-yielding rice
varieties to meet the demand for rice demanded in 2025 (Mishra et al. 2006).
However, the use of these varieties requires extensive application of fertilizers such
as nitrogen (N) and phosphorus (P) (Hazell 2010). Some of the main constraints on
the growth of this crop can be inadequate fertilizer use, pest infestation, and
growing of low-yielding traditional varieties, and paucity of water (Datta et al.
2017). In general, one of the most important factors in increasing the rice yield is
the balanced nutrition or the supply of essential nutrients. Low-soil fertility is the
most important factor which not only seriously affects the rice production but also
reduces the quality of the rice (Vaid et al. 2014).

Chemical fertilizers are essential components of modern agriculture due to the
provision of essential plant elements. However, the excessive use of these chemical
fertilizers for greater production of crop plants including rice can cause unpre-
dictable environmental impacts including leaching and runoff of nutrients, espe-
cially N and P, leading to environmental degradation (deterioration in air and water
quality) (Gyaneshwar et al. 2002). In addition to essential nutrients, diseases are
also among the most significant limiting factors that affect rice production, causing
annual yield losses conservatively estimated at five percent (Song and Goodman
2001).

In agricultural systems, the utilization of plant growth-promoting bacteria
(PGPB) is of particular consequence in augmenting crop production and preserving
sustainable soil fertility (Bagyaraj and Balakrishna 2012). In the past decade, the
use of PGPB as a biofertilizer or biological control agent in agriculture has been
considered by many researchers. The growth of different crops by these bacteria has
been proved in greenhouse and field experiments. Most studies show that these
bacteria could have positive and economic effects on crop plants such as corn,
wheat, and rice (Freitas and Germida 1990; Çakmakçı et al. 2007; Etesami et al.
2013, 2014a, c, 2015; Ghorchiani et al. 2018; Etesami and Maheshwari 2018) by
mechanisms like increasing the availability of soil mineral elements (i.e., through
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solubilizing insoluble P compounds and potassium (K)-bearing minerals and
releasing P and K), producing plant growth-regulating hormones (i.e.,
indole-3-acetic acid, gibberellin, and cytokinin) and siderophores (increase in
availability of Fe, Zn, etc.), producing ACC (1-aminocyclopropane-1-carboxylate)
deaminase (decrease of stress ethylene), controlling pathogenic microorganisms
(Etesami et al. 2017; Etesami and Maheshwari 2018), and nitrogen fixation
(Bhattacharjee et al. 2008; Saharan and Nehra 2011).

It has been well proven that PGPB could increase plant growth and resistance to
environmental stresses (Fig. 13.1) such as salinity (Dimkpa et al. 2009;
Egamberdieva and Lugtenberg 2014; Paul and Lade 2014; Choudhary et al. 2016;
Qin et al. 2016), drought (Timmusk et al. 2013; Choudhary et al. 2016; Kaushal and
Wani 2016; Ngumbi and Kloepper 2016), heavy metal toxicity (Carmen and
Roberto 2011; Sessitsch et al. 2013; Ullah et al. 2015), nutritional imbalance
(Adesemoye and Kloepper 2009; Yang et al. 2009; Miransari 2013; Chakraborty
et al. 2015; Pii et al. 2015; Choudhary et al. 2016), and plant pathogens (bacterium,
virus, fungi, etc.) (Compant et al. 2005; Pal and Gardener 2006; Ryan et al. 2008)
via miscellaneous mechanisms usually more than one action mechanism (Etesami
and Maheshwari 2018). Despite these good reviews, there are a few review studies
on PGPB-mediated nutrient availability and biological control of fungal pathogens
in rice. Better understanding on interactions of rice with the plant-associated PGPB
enhanced nutrient acquisition and controlled fungal rice pathogens is needed for
increasing the efficiency of nutrient management and rice disease management in
soil and also for promoting eco-friendly low-input sustainable agriculture.
Therefore, the aim of this chapter was to reviews advances in research on PGPB

Fig. 13.1 Common abiotic and biotic stresses in agricultural environments alleviated by PGPR
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capable of increasing the availability of soil insoluble nutrients, their mechanism of
action, and their potential use for biofertilization of nutrients in rice and biological
control of fungal rice pathogens (Table 13.1).

13.2 Nitrogen-Fixing Bacteria (NFB) in Nitrogen
Nutrition

Nitrogen (N) is an important element in the plant and a component of chlorophyll
molecules and therefore plays an important role in photosynthesis and in the pro-
duction of proteins, nucleic acids, and coenzymes. Chemical N-fertilizers are one of
the most influential factors in the production and yield of rice. Without the addition
of chemical N-fertilizers, the yield of existing varieties is severely limited (Ladha
et al. 1997). The excessive use of the chemical fertilizers for greater production of
this crop has caused unpredictable environmental impacts. Currently, most of
the N-fertilizers are produced through the Haber–Bosch process at chemical fer-
tilizer factories. This process requires a large amount of energy (natural gas or oil),
all of which are nonrenewable sources. It also generates carbon dioxide (CO2),
which is a greenhouse gas. In developing countries, the cost of purchasing
N-fertilizers is usually higher than farmers’ income, which limits yield potential of
their crops. Approximately one-third of the applied N (urea-N or nitrate-N, which is
applied as fertilizer) is consumed by the plant; the rest of the N can enter as nitrate
form into underground waters and are a potential hazard to environmental health.
Excess N can also produce nitrous oxide (N2O), an effective greenhouse gas. In
addition, since rice grows in an environment susceptible to N loss, more than half
of the N-fertilizer used in the paddies is lost through denitrification, ammonia
volatilization, and leaching/runoff (Ladha et al. 1997).

In general, the agrosystems that require a lot of N-fertilizers are not sustainable
systems because they require the use of nonrenewable natural resources and can
endanger the health and the environment (Yanni and Dazzo 2010). Reducing the
amount of industrial N production for agricultural systems is one of the important
goals of agricultural researchers. In the case of sustainable rice production, an
important goal is to replace the industrial N fixation to biological N fixation (Yanni
et al. 2001). Two basic ways to solve the problem of N-fertilizer loss in paddy fields
can be proposed: One is the regulation of N application time based on rice needs,
which increases the efficiency of plant use of applied N and another way is to
increase the ability of the rice to biological nitrogen fixation. The second approach
is a long-term strategy, but it has multiple environmental benefits and also helps
low-income farmers. Additionally, farmers can easily adopt a variety of genotypes
with useful features rather than conducting soil and crop management operations
that are costly (Ladha et al. 1997).

Recent advances in understanding the legume–rhizobium–symbiotic relation-
ships at the molecular level and the ability to introduce new genes into the rice
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genome by transformation have made it an excellent opportunity to study the ability
of N fixation in rice, although this has remained largely unfinished until now (Dawe
2000). There are such opportunities for cereals including rice. In general, the
strategies enabling rice to fix nitrogen are complex and have a long-term nature, but
if done, they can increase rice productivity, resource conservation, and environ-
mental security. In addition to the strategies mentioned above, it has been well
known that the use of nitrogen fixation technology can reduce the use of
N-fertilizers in agricultural land, which can be effective at reducing environmental
hazards. Biological nitrogen fixation in rice paddies has significantly contributed to
the sustainable yield of these systems. Studies show that biological nitrogen fixation
in rice paddies can produce up to 50 kg N per hectare (Elbeltagy et al. 2001). It has
been well known that nitrogen fixation through the bacteria associated with rice
(associative and free-living bacteria) has a high potential for supply of N for rice.
For example, in a study, Mäder et al. (2011) observed an increase of 23% in rice
yield obtained upon rice inoculation with N2-fixing Pseudomonas sp. In another
study, the co-inoculation of N2-fixing bacteria (i.e., Brevundimonas diminuta PR7,
Anabaena oscillarioides CR3, and Ochrobactrum anthropi PR10) remarkably
augmented N, P, and K content and bettered rice yield by 21.2%, as compared to
the utilization of recommended quantity of N, P, and K fertilizers (Rana et al.
2015). Due to having a very close relationship with the plant, as compared to other
bacteria, endophytic bacteria can offer the fixed N to rice without its loss.

Endophyte bacteria seem to be more effective at supplying rice with N than other
bacteria. The bacteria isolated from the internal tissues of the plant or isolated from
the plants with sterilized surfaces that do not show any symptoms of the disease are
regarded as endophytic bacteria (Di Fiore and Del Gallo 1995). It is well docu-
mented that a significant diversity of endophytic bacteria such as Pantoea,
Burkholderia, Azospirillum, Herbaspirillum, Rhizobium, Methylobacterium, etc., is
naturally associated with rice (Carvalho et al. 2014; Mano and Morisaki 2008).
Diazotrophs that effectively colonized into rice roots can have a greater potential for
N fixation. It has been reported that the contribution of endorhizosphere bacteria to
N fixation is much more extensive than the contribution of rhizospheric bacteria
because there is no competition in the endorhizosphere with other rhizosphere
microorganisms, and carbon sources with low-pressure oxygen oscillations are
provided (James et al. 2002). Several endophytic N2-fixing bacteria have been
isolated from various rice species including the genera Klebsiella, Citrobacter,
Enterobacter, Bacillus, Alcaligenes, Azospirillum, Rhizobium, Sphingomonas,
Agrobacterium, Corynebacterium, Herbaspirillum, Azoarcus, Penibacillus,
Microbacterium, and Burkholderia (Reinhold-Hurek et al. 2007; Prayitno and Rolfe
2010; Yanni and Dazzo 2010; Gupta et al. 2012; Hongrittipun et al. 2014; Ji et al.
2014).

It has been found that the stimulation of growth of the crop plants (such as rice)
inoculated with N2-fixing bacteria may be due to other mechanisms like increasing
the availability of soil mineral elements, producing plant growth-regulating hor-
mones, siderophores, and ACC deaminase, and controlling pathogenic microor-
ganisms (Etesami et al. 2017; Etesami and Maheshwari 2018) other than nitrogen
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fixation (Bhattacharjee et al. 2008; Saharan and Nehra 2011). For example, pre-
vious studies have shown that nitrogen accumulation in inoculated non-leguminous
plants can be due to either biological N fixation (Elbeltagy et al. 2001; Oliveira
et al. 2002) or escalation in nitrogen uptake from soil (Prayitno et al. 1999; Yanni
et al. 1997). In another study, Etesami and Alikhani (2016a) showed that bacterial
IAA had considerable role in improving use efficiency of N and could increase N
content of rice. In other works, Estrada et al. (2013) showed that P-solubilizing
diazotrophic bacteria augmented nutrient uptake by rice plants. de Souza et al.
(2013) showed that the bacteria (e.g., Herbaspirillum sp., Burkholderia sp.,
Burkholderia sp., Pseudacidovorax sp., and Rhizobium sp.) unable to solubilize
phosphate in in vitro assay and reduce acetylene (low capacity to reduce acetylene)
increased levels of N, P, and K in rice shoots. These observations could indicate
that growth promotion mechanisms other than N2 fixation such as IAA production
and improved nutrient uptake balance (de Souza et al. 2013; Ji et al. 2014). The
above studies show that if the purpose of rice inoculation with bacteria is to supply
nitrogen to the plant, it is better to use nitrogen-fixing bacteria that have other PGP
characteristics (such as IAA, ACC deaminase, siderophores, and phosphate solu-
bilization) as well.

13.3 Phosphate-Solubilizing Bacteria (PSB) in Phosphorus
Nutrition

After nitrogen (N), phosphorus (P), as a necessary nutrient and a macronutrient, is
the most restricting nutrient for the plant (Schachtman et al. 1998; Theodorou and
Plaxton 1993). Phosphorus plays several key roles in the plant, including partici-
pation in energy transfer reactions, photosynthesis, deformation of sugar into starch,
key enzymatic reactions in important metabolic and signaling pathways, and
transference of genetic characteristics in plants (Theodorou and Plaxton 1993).
There has been an enduring increment in the application of P fertilizers in rice
production (Syers et al. 2008) because it is one of the main restricting factors for
upland rice production in many regions of the world (Sahrawat et al. 2001). Since
water scarcity is becoming a major problem for agriculture, there is a pressing need
to cultivate aerobic rice. Aerobic rice requires the same amount of nutrients as
flooded rice, but there is a problem of P availability due to its rapid immobilization/
fixation with elements such as calcium (Ca2+), iron (Fe3+), and aluminum (Al3+)
(Goldstein 1986; Othman and Panhwar 2014). The previous findings also suggest
that P deficiency in aerobic crops is quite common (Fageria 2001).

Phosphorus is the most sensitive nutrient to soil pH. The best pH for P uptake by
the plant is 6.5. In alkaline condition, P becomes insoluble by reacting with calcium
(Ca2+), whereas in acidic soils, it reacts with iron (Fe3+) and aluminum (Al3+) and
becomes unavailable to the plants. The amount of P absorbed by the plant in the soil
is controlled by several factors such as soil pH, calcium ion concentration, soil
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organic matter, clay type, and clay amount, root density and exudates, and soil
moisture and texture. In order to compensate for the shortage of P, large amounts of
P fertilizers are added to the soil annually. The excessive use of P fertilizers and the
subsequent accumulation of P in the soil, in addition to increasing costs, have a
negative effect on uptake of micronutrients and also contribute to environmental
pollution (e.g., eutrophication).

The majority of P fertilizers are adsorbed by solid particles and stored in a solid
phase of soil. Most of the P in the fertilizer, after entering the soil, gradually turns
into insoluble compounds and is stored as plant unavailable forms in the soil (Dey
1988). It has been reported that the P fertilizer use efficiency in calcareous and
alkaline soils does not exceed 20%. The P mobility in the soil is very low and
cannot respond to the rapid absorption of the plant. This leads to the emergence and
development of phosphate-depleted areas adjacent to the contact surface of roots
with soil. Under P-deficient conditions, by modifying root morphology, carbon
metabolism; membrane structure, exudation of organic acids, protons, and
enzymes; and association with mycorrhizal fungi, and harboring
phosphate-solubilizing microorganisms (PSM), some plants have been able to
somehow compensate for their lack of P (uptake of adequate P) (Begum and Islam
2005; Islam and Hossain 2012). Among these strategies, secretion of organic acids
and association of mycorrhizal fungi are very poor in rice under flooding conditions
(Begum et al. 2005; Islam and Hossain 2012). Therefore, the rice plants need an
auxiliary system that can easily go beyond these depleted areas and, by developing
a wide network around the root system, receive P from an exorbitant volume of
adjoining soil.

PGPB such as phosphate-solubilizing bacteria (PSB) are considered to be the
most effective plant assistants for the supply of P at the optimal level and seems to
be another manner for P nutrition in rice under P-insufficient tropical soils (Islam
and Hossain 2012). PSB have been able to dissolve insoluble phosphates through a
set of mechanisms such as production of low-molecular-weight organic acids (i.e.,
gluconic, oxalic, 2-ketogluconic, citric, succinic, lactic, and malic), inorganic acids,
siderophores, and exopolysaccharides (EPS), and secretion of hydrolytic enzymes
(e.g., phosphatases and phytases, which convert the organic forms of P into
P inorganic forms, and thereby increase plant growth under conditions of
P deficiency) (Khan et al. 2007, 2014; Sharma et al. 2013). PSB have the ability to
dissolve inorganic P in a range of 25–42 µg P ml−1 and organic P between 8 and
18 µg P ml−1 (Guang-Can et al. 2008). Agrobacterium, Pseudomonas, Bacillus,
Rhizobium, Flavobacterium, Acinetobacter, Micrococcus, Burkholderia,
Achromobacter, Erwinia, Pantoea, and Streptomyces are of the most important
bacterial genera of solubilizing insoluble phosphates (Khan et al. 2007, 2014;
Sharma et al. 2013).

In addition to improving soil P status, members of the bacterial genera such as
Burkholderia, Pseudomonas, Bacillus, Streptomyces, and Pantoea could also
suppress soil-borne pathogens (Islam and Hossain 2012; Rodrı guez and Fraga
1999). PSB, which form less than one percent total bacterial populations in the soils
(Kucey 1983), have been isolated from approximately all agricultural soils (both
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fertile soils and P-deficient ones) (Oehl et al. 2001). Previous studies show that
rhizosphere and endorhiza of rice plants also harbor the bacteria with a good
potential for solubilizing insoluble phosphates such as Bacillus spp., Pantoea
agglomerans, Streptomyces anthocysnicus, Pseudomonas pieketti, P. aeroginosa,
Acinetobacter sp., Klebsiella sp., Acinetobacter sp., Enterobacter sp.,
Microbacterium sp., Pseudomonas sp., B. megaterium, B. firmus, Erwinia, Serratia,
and Staphylococcus epidermidis (Etesami et al. 2014a; Islam and Hossain 2012;
Naik et al. 2008; Panhwar et al. 2011a; Sapsirisopa et al. 2009; Thakuria et al. 2004;
Zeng et al. 2012). Previous studies show that PSB alone or in combination with
varying doses of P fertilizers could also increase soil available P and P content in
the rice plant tissue (Duarah et al. 2011; Othman and Panhwar 2014; Panhwar et al.
2011a, b, 2013). There are reports that PSB also have the ability to increase the
efficiency of P fertilizer and diminish about 25–50% of the required P to plants
(Attia et al. 2009; Islam and Hossain 2012; Yildirim et al. 2011). In addition to
increasing the efficiency of P fertilizer, PSB also increased total N, K, Ca, S, P, Mg,
Fe, Mn, Zn, and Cu contents in plant tissues (Duarah et al. 2011; Gyaneshwar et al.
2002; Islam and Hossain 2012; Yildirim et al. 2011).

It is well known that PSB can increase plant seed germination (Duarah et al.
2011; Sapsirisopa et al. 2009), plant growth and development (i.e., augmented leaf
chlorophyll content, leaf area index, tiller numbers, plant height, photosynthesis
rate, root morphology, and plant biomass of aerobic rice genotypes) (Duarah et al.
2011; Panhwar et al. 2011a, b), and plant yield and quality (Islam and Hossain
2012), through other mechanisms such as phytohormone production, nitrogen
fixation, urease activity, siderophore production, ACC deaminase, and/or antago-
nisms against phytopathogens, in addition to by solubilizing insoluble phosphates
(Islam and Hossain 2012). In general, the above studies show that PSB have been
found to have the ability to solubilize P in soil and could reduce fertilizers inputs in
rice fields.

13.4 Plant Growth-Promoting Bacteria (PGPB)
in Micronutrient Nutrition

Similar to macronutrients, micronutrients are also required for optimum plant
growth. Micronutrient deficiencies are omnipresent (Das 2014). For example, 50%
of world cereal soils are deficient in zinc (Zn) and 30% of cultivated soils globally
are deficient in iron (Fe). Fe deficiency is common in upland, high pH, and aerobic
soil due to the low solubility of the oxidized ferric form in aerobic environments
(Das 2014; Samaranayake et al. 2012; Zuo and Zhang 2011). Rice is also sub-
stantially deficient in Fe (Bouis and Welch 2010). Toxicity of Fe is one of the major
constraints to lowland rice production (Das 2014). Manganese (Mn) deficiency is
also very common in upland rice (Das 2014). In general, micronutrients-deficient
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soils hamper the growth of many plants including staple foods such as wheat, rice,
corn and sugarcane (Kamran et al. 2017).

Use of micronutrients fertilizers may not be cost-effective in alleviating defi-
ciency of these nutrients and increasing yield of these crop plants. It has been
known that bacteria can cause a substantial increase in concentration of micronu-
trients in crop plants (Etesami and Maheshwari 2018) including in rice grains
(Mäder et al. 2011; Pooniya et al. 2012) through various mechanisms such as
acidification, production of organic acids/organic anions in soil, which sequester the
cations of micronutrients and decrease the pH of the adjacent soil as well as chelate
micronutrients and enhance the solubility of these nutrients, and production of
siderophores, which mainly form the complexes with Fe(III) (Alexander 1977;
Etesami and Maheshwari 2018; Jones and Darrah 1994; Kamran et al. 2017;
Saravanan et al. 2007). For example, Zn-solubilizing bacteria such as Pseudomonas
fragi, Pantoea dispersa, Pantoea agglomerans, E. cloacae, and Rhizobium sp. are
potential alternatives for Zn supplementation and convert applied inorganic Zn to
available forms (Kamran et al. 2017). In a study, Vaid et al. (2014) showed that
Zn-solubilizing Burkholderia and Acinetobacter caused significant increase in
productive tillers per plant (15.1%), number of panicles per plant (13.3%), total Zn
uptake of rice (52.5%), the mean dry matter-yield per pot (12.9%), yield of straw
(12.4%), yield of grain (17.0%), and number of grains per panicle (12.8%) relative
to rice plants non-inoculated with the bacterial isolates in a Zn-deficient soil. It was
reported that this increment might be due to solubilization of insoluble soil Zn via
generating gluconic acid by these bacteria. In another study, co-inoculation of rice
with Providencia sp. PR3, Brevundimonas diminuta PR7, and Ochrobactrum
anthropi PR10 recorded an increment of 13–16% in Fe, Zn, Cu, and Mn concen-
trations, respectively, in rice grains (Rana et al. 2015). Adak et al. (2016) also
observed 13–46% enhancement of Fe and 15–41% enhancement of Zn in rice
grains through the use of cyanobacterial inoculants, under different modes of rice
cultivation. The above studies indicate the potential of the PGPB associated with
rice to be used as biofertilizer and overcome deficiency of micronutrients.

13.5 Silicate-Solubilizing Bacteria (SSB) in Silicon
Nutrition

Silicon (Si) is known as the second most copious element in soils (Epstein 1994).
Utilization of Si is known as an ecologically congenial and environmentally
friendly technique to augment plant growth, attenuate miscellaneous environmental
stresses (i.e., nutritional imbalance, salinity, drought, heavy metal toxicity, and
pathogens) in plants, and enhance the plant resistance to multiple stresses (Etesami
and Jeong 2018). Despite these benefits, Si is still not classified as an essential
element but considered as a beneficial element. This element is useful for some
plants such as monocotyledons and Poaceae species (Etesami and Jeong 2018;
Epstein 1999; Ma et al. 2007). Rice is one of the plants that accumulate this element
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(a Si-accumulator/a siliceous plant-containing Si up to 10% in shoots on a dry
weight basis) and requires high Si content (a high Si-accumulating crop) (Ma and
Takahashi 2002). Rice is known that the escalation in its yield per unit area is
connected with Si depletion, which is a matter of concern (Savant et al. 1997). Due
to being removed from the soil to produce every 100 kg brown rice (about 20 kg/
hm2 SiO2) (Ma and Takahashi 2002), being exported from fields by removing
straw residues with the harvest by farmers, and being connived the exogenous use
of Si in rice cultivation, plant accessible Si in paddy fields is usually low (Cuong
et al. 2017; Etesami and Jeong 2018; Ma and Takahashi 2002). This suggests that
Si may become a yield-limiting element for rice production and its exogenous
application may be necessary to Si-deficient paddy soil for an economic and sus-
tainable rice production system (both high rice yield and disease resistance)
(Bocharnikova et al. 2010; Ning et al. 2014). At the present time, Si-fertilizers are
exerted in many countries for augmenting rice yield (Guntzer et al. 2012). In
previous studies, the positive effects of Si on rice growth and yield have been
reported (Detmann et al. 2012; Gerami et al. 2013; Etesami and Jeong 2018;
Jawahar and Vaiyapuri 2013; Lavinsky et al. 2016; Liang et al. 1994; Pati et al.
2016; Prakash et al. 2011; Singh et al. 2005). For example, in a study, Cuong et al.
(2017) showed that application of Si in combination with the recommended dose of
N, P, and K fertilizers positively affected agronomic and yield-related traits, yield
and nutrient uptakes of rice. Si had also beneficial effects on disease resistance of
rice (i.e., brown spot caused by the fungus Bipolaris oryzae, rice blast caused by the
fungus Pyricularia grisea, and sheath blight caused by Rhizoctonia solani Kuhn,
which are becoming more severe on rice plants are grown in Si-depleted soils)
(Abed-Ashtiani et al. 2012; Ashtiani et al. 2012; Cacique et al. 2012; Dallagnol
et al. 2014; Fauteux et al. 2005; Hayasaka et al. 2005; Ning et al. 2014; Prabhu
et al. 2001; Rodrigues and Datnoff 2005; Sakr 2016; Song et al. 2016; Van
Bockhaven 2014) by various mechanisms such as maintaining mesophyll cells
relatively intact, increasing the thickness of silicon layer, enhancing physiological
or induced resistance to fungal colonization (Si acts as a modulator of host resis-
tance to pathogen), depositing in host cell walls and papillae sites, which is the first
physical barricade for fungal penetration (Ning et al. 2014), and accumulating
phenolics and phytoalexins as well as with the activation of some PR-genes
(Rodrigues and Datnoff 2005).

There are some bacteria like Bacillus globisporus, B. mucilaginosus, B. flexus, B.
megaterium, Burkholderia eburnean, and Pseudomonas fluorescens that can
mobilize K and Si from silicate minerals (i.e., feldspar, muscovite, and biotite)
(Kang et al. 2017; Naureen et al. 2015a; Sheng et al. 2008; Vasanthi et al. 2018;
Vijayapriya and Muthukkaruppan 2010) by various mechanisms such as producing
excess proton, organic ligands, organic acids (i.e., gluconic acid), hydroxyl anion,
extracellular EPS, and enzymes (Meena et al. 2014). Inoculation of rice with
silicate-solubilizing bacteria (SSB) also caused a significant increase in growth and
yield of this plant. In a study (Kang et al. 2017), when combined with silica
fertilization, soil inoculation with Burkholderia eburnean CS4-2 promoted all rice
growth attributes over those of the water-treated (control) and insoluble
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silica-fertilized plants. In addition to solubilizing Si, K, and P (e.g., by competing
with P fixation sites in soil and decreasing the availability of Fe and Mn in plants)
(Kannan and Raj 1998; Sahebi et al. 2015), SSB were also capable of controlling
the growth of fungal pathogens such as Magnaporthae grisae, Rhizoctonia solani,
Altarnaria alternata, and Macrophomina pheasolina (Naureen et al. 2015a). In
addition to the role of Si in increasing rice resistance to pathogens, SSB can
antagonize fungal pathogens by the production of hydrolytic enzymes, HCN (hy-
drogen cyanide), siderophores, and antibiotics (Hassan et al. 2010; Naureen et al.
2015b, 2009b). In a previous study (Vijayapriya and Muthukkaruppan 2010), B.
mucilaginosus, which was efficient in silicate solubilization, showed antagonistic
activity against Pyricularia oryzae. The above studies indicate the potential of SSB
to be used as biofertilizer for overcoming Si deficiency and as biocontrol agents for
controlling fungal rice pathogens.

13.6 Combined Use of PGPB and Chemical Fertilizers
for Rice Production

Application of biological fertilizers, in particular, GPGB, combined with the use of
fertilizers, is the most important integrated plant nutrition strategy for sustainable
agricultural management and increasing their production in a sustainable agricul-
tural system with sufficient input (Bagyaraj and Balakrishna 2012; Etesami and
Alikhani 2016b).

Beneficial effects of PGPB in increasing nutrient uptake by rice, including NPK
uptake, have been reported in previous studies (Adesemoye and Kloepper 2009;
Adesemoye et al. 2009; Biswas et al. 2000; Duarah et al. 2011; Etesami and
Alikhani 2016a; Vessey 2003). It has been reported that the PGPB can diminish the
exertion of chemical fertilizers without compromising with the growth and yield of
rice under nutrient-poor soil conditions (Etesami and Alikhani 2016a; Khan et al.
2017). In a study, Etesami and Alikhani (2016a) showed that co-inoculation with
endophytic (Pseudomonas putida REN5) and rhizosphere (Pseudomonas
fluorescens REN1) bacteria can reduce application rates of N-fertilizer up to 25%
for rice plant. These researchers showed that the compound application of P. putida
REN5 and P. fluorescens REN1 and nitrogen fertilizer levels (50, 75, and 100% of
the recommended N-fertilizer rate) compared to the application of these bacterial
isolates with minimum nitrogen fertilizer (25% of the recommended N-fertilizer
rate) and or control (25% of the recommended N-fertilizer rate) significantly
increased the rice growth indices. It was found that 75% of the recommended
fertilizer rate was the minimum level to diminish N-fertilizer. This indicates that
nitrogen plays a key role in the growth of the rice plant, and the plant’s yield
decreases without the presence of nitrogen. de Souza et al. (2013, 2016) showed
that rice plants inoculated with bacterial strains (Herbaspirillum sp. AG15,
Herbaspirillum sp. AC32, Pseudacidovorax sp. AC32, Burkholderia sp. CA21,
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Azospirillum sp. UR51, and Rhizobium sp. UR51), which were isolated from rice
rhizosphere, with 50% of the recommended N-fertilizer rate achieved growth
indices (i.e., shoot length and dry matter, the number of panicles, and plant yields)
similar to those that received the full-fertilization dose without inoculation. Other
researchers also confirmed that single PGPR or combinations of PGPR promoted
the growth of rice, increased plant height, dry shoot matter, N, P, and K uptake and
grain production even when the recommended amount of nitrogen fertilizer was
reduced in half (Biswas et al. 2000; Duarah et al. 2011; Khorshidi et al. 2011;
Yanni and Dazzo 2010). In addition, rice plants inoculated with these bacterial
strains supplemented with 50% N fertilizer accumulated a higher amount of N and
P than those that received 100% of N fertilizer alone (de Souza et al. 2016). Khan
et al. (2017) also inoculated rice with Burkholderia sp. BRRh-4 and Pseudomonas
aeruginosa BRRh-5 along with 50% of recommended N, P, and K fertilizers. Both
bacterial strains generated equivalent or higher grain yield of rice relative to the
control––plants grown with full recommended––fertilizer doses. The above studies
show that PGPB can interact with rice plant under different nitrogen fertilizer levels,
but this interaction can be much more productive when plants are treated with low
levels of chemical N-fertilizers (de Souza et al. 2016).

Generally speaking, it is believed that PGPB are more effectual in augmenting
plant growth under restricting nutrient conditions. Besides, the colonization of the
plant root by PGPR might have been repressed by the augmenting levels of
nutrients (i.e., N) in the growth medium (Egamberdiyeva 2007; Shaharoona et al.
2008). It was also reported that these bacteria can be used as a supplement to
chemical fertilizers to reduce the use of fertilizers but cannot replace nitrogen
fertilizer in rice (Etesami and Alikhani 2016a). Generally speaking, the
PGPB-based inoculation technology should be consumed along with desired levels
of fertilization to achieve maximal benefits in terms of fertilizer savings, nutrient
uptake, and rice plant growth (de Souza et al. 2016).

13.7 Biological Control of Fungal Rice Pathogens

Pathogenic microorganisms affecting plant fitness are an outstanding and chronic
threat to food production and ecosystem steadfastness throughout the world
(Compant et al. 2005). Diseases of fungal, bacterial, viral origin, and damage
brought about by insects and nematodes can be led to a significant diminution in
crop production. Diseases are one of the most important limiting factors affecting
rice production, which reduces annual rice yield by about 5% (Song and Goodman
2001). More than 70% of the diseases caused by fungi, bacteria, viruses or
nematodes have been reported in rice (Manandhar et al. 1998). In other words, rice
is susceptible to diseases. Pathogenic fungi can reduce the quality and quantity of
rice grain production (Chaiharn et al. 2009) and affliction with these fungi are
among the most niggling of these diseases as it may result in remarkable crop yield
losses (Chaiharn et al. 2009; Suprapta 2012). In addition, the consumption of
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mycotoxins (e.g., aflatoxins, citrinin, ochratoxin A, fumonisins, and zearalenone)-
polluted rice can be hazardous to human beings (Almaguer et al. 2012; Ferre 2016).

To control fungal diseases, fungal pathogens-resistant rice cultivars and fungi-
cides are commonly used. But, due to the loss of resistance to pathogens, despite
the high variability of disease agents of the pathogen population, the useful life of
many pathogen-resistant cultivars is only several years. Use of fungicides is also
expensive and environmentally unfriendly and has led to risks to human health,
environmental pollution, residual toxicity, development of pesticide resistance, and
other beneficial organisms in the soil (Komárek et al. 2010; Suprapta 2012; Yoon
et al. 2013). These fungicides also reduced soil fertility and quality and damaged to
natural ecosystems (Chaiharn et al. 2009). Furthermore, there are a number of
painstaking diseases for which chemical solutions are few, unproductive, or
nonexistent (Gerhardson 2002). Biocontrol is thus being considered as an alter-
native or a supplemental way of diminishing the utilization of chemicals in agri-
cultural land (Compant et al. 2005, 2010; Etesami and Alikhani 2016b, 2016d;
Gerhardson 2002; Pal and Gardener 2006; Suprapta 2012; Welbaum et al. 2004).
Bacterial biocontrol agents can control plant pathogens including fungal pathogens
by various mechanisms (Fig. 13.2). Various suitable nutrient-rich niches on/or
inside roots attract a great diversity of microorganisms, including phytopathogens.
Competition for the nutrients (root exudates including organic acids, amino acids,
specific sugars, etc.) and niches is a underlying mechanism by which PGPB pre-
serve plants from phytopathogens (Compant et al. 2005).

Biocontrol PGPB are aggressive root colonizers and play an important role in the
biological control of plant diseases caused by soil-borne fungal pathogens
(Chaiharn et al. 2009). Another mechanism of biological control by PGPR is
production of allelochemicals like (i) iron(III)-chelating siderophores, which
deprive pathogenic fungi of Fe since the fungal siderophores have lower affinity to
Fe compared to bacterial siderophores (Loper and Henkels 1999; O’sullivan and
O’Gara 1992; Van Loon and Bakker 2005); (ii) production of antibiotics such as
amphisin, 2,4-diacetylphloroglucinol (DAPG), rhizoxin, oomycin A, phenazines,
tensin, pyoluteorin, pyrrolnitrin, tensin, tropolone, oligomycin A, kanosamine,
zwittermicin A, xanthobaccin, viscosinamide, and cyclic lipopeptides (Compant
et al. 2005; de Souza et al. 2003; Défago 1993; Hashidoko et al. 1999; Joseph et al.
2012; Kai et al. 2009; Kim et al. 1999; Nain et al. 2012; Nielsen et al. 2002; Pal and
Gardener 2006); (iii) biocidal volatiles like HCN and ammonia (NH3) (Blumer and
Haas 2000; Kai et al. 2009; Pal and Gardener 2006; Zou et al. 2007); (iv) lytic
enzymes (Chernin and Chet 2002; Sindhu and Dadarwal 2001) such as chitinase
(Ordentlich et al. 1988), which inhibits spore germination and germ-tube elongation
(Frankowski et al. 2001), laminarinase, which digests and lyses mycelia of some
fungi (Lim et al. 1991), b-1,3-glucanase, which lyses fungal cell walls of some
fungi (Fridlender et al. 1993; Singh et al. 1999), glucanases, cellulases, and
detoxification enzymes (Abbas-Zadeh et al. 2010; Fridlender et al. 1993; Kai et al.
2009; Nain et al. 2012; Pal and Gardener 2006; Sindhu and Dadarwal 2001; Zhao
et al. 2010). ISR (induced systemic resistance) is an consequential mechanism by
which PGPR in the rhizosphere prime the whole plant body for augmented defense
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against a scopious range of pathogens and insect herbivores (Compant et al. 2005;
Pal and Gardener 2006; Van Loon and Bakker 2005). Biocontrol PGPR, through
different mechanisms such as production of siderophores, lipopolysaccharides
(Leeman et al. 1995; Maurhofer et al. 1994; Meziane et al. 2005; Van Loon and
Bakker 2005; Van Loon et al. 1998; Van Wees et al. 1997), volatile organic
compounds (Ping and Boland 2004; Ryu et al. 2004), cyclic lipopeptides,
2,4-diacetylphloroglucinol, and homoserine lactones (Lugtenberg and Kamilova
2009), sensitize the plant immune system for enhanced defense without directly
activating overpriced defenses (Pieterse et al. 2014).

Biocontrol PGPR-mediated control of several bacterial, fungal, and viral plant
diseases in plants by this mechanism (ISR) has been reported (Leeman et al. 1995;
Pal and Gardener 2006; Park et al. 2009). It has been also known that the ISR
contains ethylene and jasmonate intracellular signaling, and these hormones stim-
ulate host plant defense responses against plant diseases (Glick 2012). Biocontrol
PGPR-mediated ISR also fortifies plant cell wall strength (Benhamou et al. 1996,
1998), alters host physiology and metabolic responses (Jeun et al. 2004; Park and
Kloepper 2000), and increases accumulation of compounds (i.e., phenylalanine
ammonia-lyase, peroxidase, phytoalexins, polyphenol oxidase, and/or chalcone
synthase) (Chen et al. 2000; Ongena et al. 2000) that augment synthesis of plant
defense chemicals upon challenge by plant pathogens (Compant et al. 2005; Nowak
and Shulaev 2003; Ramamoorthy et al. 2001). The total of these changes lead to
increased plant resistance to diseases. Generally speaking, the most effectual bio-
logical control agents (BCAs) studied to date appear to antagonize pathogens using
multitudinous mechanisms (Iavicoli et al. 2003; Pal and Gardener 2006).

The ability of biocontrol PGPR to lessen or prevent the deleterious effects of
certain fungal rice pathogens has been well documented (Amruta et al. 2018; Awla
et al. 2017; Chaiharn et al. 2009; Etesami and Alikhani 2016b, 2016d, 2018;
Velusamy and Gnanamanickam 2008; Verma et al. 2018).

Magnaporthe oryzae (anamorph Pyricularia oryzae), which causes diseases
generically called “blast disease” or “blight disease—the most destructive disease
of rice (Chaiharn et al. 2009; Dean et al. 2012) and attacks rice plants at all stages of
development and infects the aerial parts of the rice plant—including leaves, nodes,
stems, and panicles, bringing about annual losses of approximately 10–30% in
miscellaneous rice—producing regions (Law et al. 2017), Alternaria sp., which
cause leaf spots, Fusarium oxysporum, which cause root rot, Sclerotium sp., which
cause stem rot (Chaiharn et al. 2009), Bipolaris oryzae, which causes brown spot
disease, Rhizoctonia solani, which causes sheath blight disease, Curvularia oryzae,
which causes leaf spot disease, Gibberella fujikuroi, which causes bakanae disease
in rice seedlings, and Rhizoctonia oryzae-sativae, which causes aggregate sheath
blight disease, have been reported as the most consequential fungal pathogen
bringing about diseases in rice (Boukaew et al. 2013; Tamreihao et al. 2016). By a
combination of different modes of action such as hydrogen ions and gaseous
products including ethylene, HCN and NH3, and siderophore (hydroxamate type),
cell wall degrading enzymes (i.e., chitinase, protease, cellulase, b-1,3-glucanase,
b-1,4-glucanase, and lipase) and antibiotics, biocontrol PGPB (e.g., Streptomyces
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sp. S. globisporus, S. sindeneusis, S. flavotricini, S. philanthi, S. vinaceusdrappus,
S. corchorusii, Ochrobactrum anthropic, Bacillus sp., B. cereus, B. subtilis, B.
methylotrophicus, Enterobacter sp., Pseudomonas aeruginosa, and Pseudomonas
sp.) significantly inhibited the mycelia growth of these fungi (Awla et al. 2017;
Boukaew et al. 2013; Boukaew and Prasertsan 2014; Chaiharn et al. 2009; Khalil
et al. 2014; Li et al. 2011; Ningthoujam et al. 2009; Prapagdee et al. 2008; Shan
et al. 2013; Tamreihao et al. 2016; Tokpah et al. 2016; Zarandi et al. 2009).

In previous studies, Etesami and Alikhani (2016d), (2017), and Etesami et al.
(2014b) investigated the potential of antifungal activity of the bacterial isolates
isolated from rhizosphere and endorhiza of rice, oilseed rape (Brassica napus L.),
and berseem clover (Trifolium alexandrinum L.), respectively, against five rice
pathogenic fungi (Magnaporthe oryzae, M. salvinii, Fusarium verticillioides, F.
fujikuroi, and F. proliferum—the most important pathogenic fungi of rice in Iran)
under in vitro conditions. A considerable part of these isolates showed a good
percentage of mycelial growth inhibition against all the tested major rice fungal
pathogens in dual cultures on solid media (Fig. 13.3) (Etesami and Alikhani 2016d).

Bacillus species (Bacillus mojavensis, B. amyloliquefaciens, B. subtilis, and B.
cereus) were reported as the most propitious bacterial biocontrol agents in rhizo-
sphere and endorhiza of these plants (Etesami and Alikhani 2018). In addition,
endophytic bacterial isolates were more effective at mycelial growth inhibition than
rhizosphere bacterial isolates. Probably endophytic bacteria use mechanisms simi-
lar to PGPR to control plant fungal pathogens. Biocontrol activities of these

Fig. 13.3 Dual culture assay for in vitro inhibition of mycelia of fungal rice pathogens by the
endophytic and rhizoshpere strains grown on PDA agar for 5 days. a endophytic strain B. subtilis
CEN3; b rhizosphere strain B. cereus CEN5; c endophytic isolate; d rhizosphere isolate; e and
f control (pathogen alone); g combination of endophytic and rhizosphere isolates with each other;
and h rhizosphere isolate resulted in no inhibition zones
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bacterial strains may be owing to the creation of antifungal metabolites, volatile
organic compounds (VOCs), siderophores, and cell wall degrading enzymes
(Etesami and Alikhani 2016c).

Among biocontrol bacteria, spore-forming Bacillus bacteria have properties that
make them more suitable for development as biocontrol agents, including high
resistance to stress, production of various secondary metabolites, induction of ISR
in order to reduce the severity of the disease caused by a wide range of pathogens,
stimulating plant growth, simplicity in cultivating and maintaining them, as well as
use of them as spores on plant or seed inoculation (Alina et al. 2015; Shafi et al.
2017). Besides, Streptomyces bacteria also appear to be auspicious biocontrol
agents against a wide range of phytopathogenic fungi due to generating various
bioactive compounds such as antibiotics (e.g., Blasticidin S, Kasugamycin,
Oligomycin A, geldanamycin, and nigericin) or antifungals which can inhibit or kill
the pathogen (Copping and Duke 2007; González-Franco and Robles-Hernandez
2009; Law et al. 2017; Tapadar and Jha 2013; Trejo-Estrada et al. 1998; Yang et al.
2010), the release of extracellular lytic enzymes such as chitinases and glucanases,
which play consequential roles in ruination of fungal cell walls (El-Tarabily et al.
2000; González-Franco and Robles-Hernandez 2009; Palaniyandi et al. 2013), and
their colonization ability, competitive traits, and survival in various types of soil
(ability to produce spores which allow them to survive longer and in various
extreme conditions) (González-Franco and Robles-Hernandez 2009; Law et al.
2017; Ningthoujam et al. 2009). Under greenhouse conditions, Streptomyces could
result in up to 88.3% disease diminution of rice blast (Law et al. 2017).
Approximately, 75% commercially practicable antibiotics were derived from the
genus Streptomyces (Kashif et al. 2016). Besides, Streptomyces produces spores
that help dissemination and confer resistance to many hostile conditions
(Goodfellow and Williams 1983). The biocontrol bacteria not only prevent the
growth of pathogens, but also improve plant growth. These bacteria were also
positive for different PGP traits such as IAA, ACC deaminase, siderophores, and
phosphate solubilization, and could significantly enhance the growth and grain
yield production of the plants (Alina et al. 2015; Etesami and Alikhani 2016c, 2017;
Shafi et al. 2017; Tamreihao et al. 2016).

There are many studies that show bacterial biocontrol agents can be very
promising antagonist candidates against plant pathogens which can be developed
for sustainable plant diseases management. Despite these studies and the recent
interest in bioassays of plant diseases, it is difficult to find examples of commercial
use of biological control agents in controlling pathogens. This can be due to
inappropriate screening systems that are used. In general, biocontrol PGPB by
colonizing the root system of the plant prevent the establishment of harmful rhi-
zospheric microorganisms on the root of the plant. These rhizobacteria must
compete with indigenous microorganisms and effectively colonize the rhizosphere.
In other words, the biocontrol agents and PGPB are influenced by native microbial
communities. Generally, the antagonistic activity of biocontrol bacteria is tested
through in vitro inhibition of fungal pathogens in dual cultures on solid media and
then confirmed in bioassays on host plants. It has been reported that in vitro
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evaluations have some limitations (Compant et al. 2005). Many biological control
agents effectively control diseases in vitro conditions, but have not been successful
in field conditions. The ineffectiveness of biocontrol bacteria in the field is often
attributed to their inability to colonize the roots. Rhizosphere competence and
colonization are considered as an important factor in controlling fungal pathogens
by biocontrol bacteria because both organisms colonize the same ecology niche and
use the same nutrient (Compant et al. 2005). Factors such as temperature, soil
moisture, soil texture, and environmental stresses affect the survival and estab-
lishment of bacteria.

In general, in many studies, a single biological control agent is usually used to
control a pathogen under controlled and greenhouse conditions. This can sometimes
result in incompatible performance by the biological control agent under natural
conditions because a biological control agent cannot be active in all types of soil
environments/agricultural ecosystems (Raupach and Kloepper 1998) or against all
pathogens that attack the host plant (there is usually more than one pathogen in the
soil). Moreover, this may also be due to inadequate colonization, limited resistance
to changes in environmental conditions, and fluctuations in the production of
antifungal metabolites by this biological control agent (Dowling and O’Gara 1994).
Several solutions have been proposed to overcome these problems including the
combined use of two or more isolates in biological control (Raupach and Kloepper
1998). Mixtures of biological control agents with different plant colonization pat-
terns or a biological control agent with antifungal activities against several patho-
gens (formulation of a biocontrol isolate is simpler and cheaper than that of multiple
biocontrol isolates) can be useful for controlling the biological diversity of mis-
cellaneous pathogens via assorted mechanisms of repression of the disease. In
general, the use of a combination of bacterial antagonists for biological control of
pathogens can expand the range of antifungal activities (protection of the plant
against a wide range of fungal pathogens), increase the efficiency, sustainability,
and effect of biological control agents, and combine different characteristics without
applying genetic engineering. In addition, designing a combination of biocontrol
isolates and the use of multiple antifungal properties demonstrated by these isolates
can be useful in the sense that at least one of the biological control mechanisms
among these isolates may exist under unpredictable field conditions. In addition,
mixtures of biocontrol microorganisms can increase the genetic diversity of bio-
logical control systems that prolong the stay in the rhizosphere and use a spacious
range of biological control mechanisms.

A higher efficiency of several isolates from biocontrol agents against plant
pathogens has been reported in previous studies (Etesami and Alikhani 2016c;
Lucas et al. 2009; Schisler et al. 1997). In addition to controlling the disease, the
combination of biocontrol isolates has also increased plant growth in terms of
germination, plant height, and yield. It is noteworthy that the compatibility of
biocontrol isolates to be inoculated with each other on plant should be considered.
The incompatibility of inoculants (biocontrol isolates) can sometimes prevent the
growth of each other and target pathogens. Selection of effective biocontrol isolates
of bacteria is also very important for the control of pathogens in plants.
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The isolation of these bacteria from pathogens repulsive soils can increase the
chance of isolating effective isolates. In order to obtain effective isolates, biocontrol
bacteria should be isolated from the same environment that they are supposed to be
used in it. Formulations and application methods are often of great importance in
the effectiveness of biological control, which should pay attention to them. In
general, according to the studies conducted on biological control of fungal patho-
gens in rice, it can be concluded that Streptomyces and Bacillus bacteria may be
taken advantage of as a potential bioinoculant agent for biocontrol as well as rice
plant growth promoter.

13.8 Conclusions and Future Prospects

Reviews of literature clearly show that rhizosphere and endorhiza of rice harbor
bacteria with a potential in promoting rice growth and controlling fungal rice
pathogens. The co-inoculation of rice with the PGPB, as an attractive technique for
utilization in commercial inoculant formulations than sole-inoculation of these
bacteria, could allow declines in the prevalent high rates of fertilizer and the suc-
ceeding environmental problems without making compromise plant productivity
under in vitro and greenhouse conditions. One of the major challenges encountered
during the selection of biocontrol agents and biofertilizers is that biocontrol agents/
biofertilizers that appear efficacious based on in vitro and greenhouse experiments
might not be effective at controlling plant diseases and increasing rice growth and
yield under field conditions. This inefficiency of bacteria can be owing to the vari-
ations in environmental conditions in different locations. Therefore, the environ-
mental factors at the location where biocontrol agents/biofertilizers will be applied
should be taken into consideration during the selection of suitable biocontrol agents/
biofertilizers. Ideally, the biocontrol agents/biofertilizers should be isolated from and
applied to locations with similar environmental factors in order to achieve successful
biological control/biofertilizers. Besides, the formulation such as liquid, powder, or
granule and the method of use of biocontrol agents/biofertilizers such as seed
inoculation, soil inoculation, and vegetative part inoculation should be inspected as
they are consequential in specifying the outcomes of field experiments. In general,
before PGPB can be regarded for agricultural practices, further studies are essential
to evaluate the efficacy of PGPB on rice plants under field conditions where there are
a variety of constraints such as soil conditions (i.e., pH, soil nutrients status, nutrients
sorption capacity, organic matter, and moisture level of the soil, etc.), environmental
stresses, and types of autochthonous microorganisms that can affect the survival and
growth promotion activities of PGPB/biocontrol agents.
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Chapter 14
Plant Growth-Promoting
Rhizobacteria-Induced Defense Against
Insect Herbivores

Joseph Disi, Jocelyn Simmons and Simon Zebelo

Abstract Plant growth-promoting rhizobacteria (PGPR) improve plant health and
productivity by providing protection to plants from diseases and pests and
enhancing plant growth. PGPR induce systemic resistance (ISR) against microbial
pathogens and herbivorous insects. There are limited studies that show the induc-
tion of systemic resistance in crop plants against insect pests. Commonly used
PGPR genera in insect pest control include Pseudomonas, Bacillus, Burkholderia,
Xenorhabdus, Photorhabdus, Agrobacterium, Streptomyces, etc. PGPR suppress
the activity of insect pests by inducing systemic resistance that results in the pro-
duction of secondary metabolites (terpenes, siderophores, hydrogen cyanide, etc.)
and some display direct insect pathogenicity. This chapter focused on
PGPR-induced defense against insect pest in field crops with emphasis on the
mechanism of action involved against insect pests. PGPR-mediated biochemical
and physical changes in the host plants that display insect pathogenicity, methods
mixtures application, and challenges associated with their use of PGPR in sus-
tainable agriculture.
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14.1 Introduction

There are one million described insect species in our planet earth, but less than one
percent of species are crop pests. Insect pests cause considerable losses in crop
production. Crop producers typically rely on chemical insecticides to protect their
crops against herbivorous insects. Approximately two million tons of insecticides
applied to control insect pests’ worldwide (Aktar et al. 2009). This intensive use of
insecticides have negative impacts such as toxicity to humans and animals, envi-
ronmental pollution, effects on nontarget species and development of resistance.
The backlash of the negative impact of insecticides leads to the increasing demand
from consumers to reduce the use of chemical insecticides in crop production and
protection from deleterious pest and pathogens. Biological control using biopesti-
cides are promising alternative to chemical insecticides. Particularly, the microbial
pesticides have peculiar advantages, because they have unique mode of action. In
many cases, they are species specific and have reduced toxicity. One such approach
involves treating crops with Plant Growth-Promoting Rhizobacteria (PGPR) for
induced defense against herbivores insects.

PGPR are specific strains of root-colonizing bacteria which can elicit increased
rates of plant growth, suppress soil pathogens and induce systemic resistance (ISR)
against diseases and insect pests. The effect of PGPR on insect pests could be indirect
via ISR and/or direct as an entomopathogen. The indirect effect of PGPR against
insects initiated through recognition of the microbes by the host plant, elicitation of
specific hormonal signal pathways that might lead to the biosynthesis of
defense-related chemical compounds, enzymes, protein, secondary metabolites, and
volatile organic compounds (VOCs) against insect herbivores (Pineda et al. 2010,
2013; Van Oosten et al. 2008; Zamioudis and Pieterse 2012; Zebelo et al. 2016).
Some PGPR strains exhibited direct insect pathogenicity. The most commonly used
entomopathogenic bacteria, are Bacillus thuringiensis and Photorhabdus/
Xenorhabdus species. These bacteria developed as an alternative to chemical pesti-
cides. They are host specific and efficient to control insect pests. But these bacteria
have two limitations. (1) They lack persistence in the environment and (2) their
dependence in vectoring agents to infect hosts (e.g., nematodes). Interestingly, select
PGPR strains display direct entomopathogenicity. Their high environmental persis-
tence and ability to penetrate insect cuticle makes them the preferred candidate
bio-insecticides for protection of plants against root-feeding insects (Kupferschmied
et al. 2013) and nematodes (Wahla et al. 2012).

There are limited studies on PGPR-mediated plant–insect interaction. Zehnder
et al. (1997a) elegantly demonstrated that PGPR could trigger ISR against insects
using PGPR strain INR-7 (Bacillus pumilus) using Cucumber (Cucumis sativus L.)
as a model system. C. sativus plants treated with INR-7 were less attractive to
spotted cucumber beetle, Diabrotica undecimpunctata Howardi (Coleoptera:
Chrysomelidae) and the striped cucumber beetle, Acalyma vittatum Fabricius
(Coleoptera: Chrysomelidae), as a result, reduced the number of beetles recorded in
INR-7-treated plants than the untreated control plants. In a similar study, Zehnder
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et al. (1997b) conclude that the reduced number of beetles on PGPR-treated plants
was due to decreased production of curcubitacin (insect-feeding stimulant). Hanafi
et al. (2007) reported that PGPR (Bacillus subtilis) treated tomato plants showed
lower whitefly populations under greenhouse conditions. In an unrelated study
jasmonic acid (JA) pathway involved in the reduction of whitefly population in
PGPR-treated plants (Valenzuela-Soto et al. 2010). The reduction of insect pest
population in PGPR-treated plants clearly showed that these bacteria might induce
resistance in plants against important insect pests.

The genera of PGPR commonly used as biocontrol agents include Pseudomonas,
Bacillus, Burkholderia, Agrobacterium, Streptomyces, etc. (Dey et al. 2014) either
alone or in combination forming a consortium of strain, which triggers multiple
beneficial effects to the growing plants. This chapter focused on the indirect and
direct impact of PGPR on insect pests, induced defense against insect pest in plants.

14.2 PGPR-Mediated Plant–Insect Interactions

PGPR can enhance plant growth and health by fixing atmospheric nitrogen,
increasing nutrient availability and uptake (Spaink 2000), involved in biosynthesis
of essential plant growth-related hormones including Indole-3-acetic acid (IAA),
cytokinins, auxins, gibberellins etc. (Contreras-Cornejo et al. 2009; van Loon
2007). Some PGPR strains promote plant growth via the biosynthesis of secondary
metabolites and enzymes (Vacheron et al. 2013; Zhang et al. 2008). Rhizobacteria
also increases plant health and trigger resistance to plant pathogens and insect
herbivores by ISR (Hossain et al. 2016; Rashid and Chung 2017). Some of the
PGPR promotes plant growth that could result in improved nutrient composition of
the plants (Pandey et al. 2018) and this could affect insect performance
(Schoonhoven and Dicke 2005). Insect pests might be attracted and take advantage
of increased availability of nutrients in PGPR-treated plants (Schoonhoven and
Dicke 2005). PGPR enhances plant tolerance through the regeneration of herbivore
injured plant tissue as a result of increased nutrient and water uptake (Rashid and
Chung 2017). Thus, PGPR augments plant resistance against insect pest, disease,
and weeds by increasing nutrient availability and absorption, the production of
secondary plant metabolites, and growth hormones, these phenomena either directly
or indirectly induce defense in plants.

14.3 PGPR-Mediated ISR Against Insect Pests

At the heart of PGPR-mediated ISR is priming. Conrath (2011) defined priming as a
physiological process by which plants prepare to initiate defense in plants against
pathogens and insect herbivores. Pieterse et al. (2014) showed that PGPR prime
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plants are tolerant of various pathogens and insect herbivores. PGPR triggered ISR
leads to jasmonic acid (JA) and ethylene (ET) in cross talk with salicylic acid
(SA) independent and dependent pathways. Systemic Acquired Resistance (SAR) is
the activation of pathogenesis-related (PR) proteins as a result of SA-dependent
signaling pathway and necrotizing pathogens (Conrath et al. 2002; Hammerschmidt
2009).

PGPR triggered ISR involves jasmonic acid (JA) and ethylene
(ET) independently or in cross talk with salicylic acid (SA)-dependent pathways.
Through these signaling pathways, PGPR regulates plant hormones (JA, ET, and
SA) that affect how insects interact with host plants (Shavit et al. 2013; Van Oosten
et al. 2008). Chewing herbivorous trigger JA-pathways (Pineda et al. 2010). Zebelo
et al. (2016) reported higher levels of JA and JA-related gene expression in
PGPR-treated cotton plant that was injured by beet armyworm. The PGPR,
P. fluorescens strain SS101 activates ISR against chewing insect through JA- and
ET-dependent mechanisms (van de Mortel et al. 2012). Furthermore, higher
expression of the JA/ET-dependent ORA59 pathway than the JA-dependent MYC2
pathway reported in Arabidopsis plants treated with Pseudomonas simile WCS417r
was implicated in the induction of resistance against the cabbage moth larvae
(Pangesti et al. 2016).

PGPR elicited ISR against phloem-feeding insects is dependent on both the JA/
ET- and SA-signaling pathways (Niu et al. 2011). Valenzuela-Soto et al. (2010)
demonstrated JA-dependent ISR and increased expression of JA-independent genes
including terpenoid biosynthetic pathways genes, and photosynthetic genes by
Bacillus subtilis against the phloem sucking insect whitefly on tomato plants
(Solanum lycopersicum). Arabidopsis roots treated with P. fluorescens WCS417r
were highly susceptible to the phloem-feeding aphid Myzus persicae, although they
showed increased expression of PDF1.2 and LOX2 genes after insect attack (Pineda
et al. 2012). These studies are examples of the role of different rhizobacteria genera,
including Pseudomonas and Bacillus, have against phloem-feeding insects. This
could be explained that microbe-associated molecular patterns (MAMPs) of dif-
ferent beneficial microbes recognized by plant root receptors leading to the pro-
duction of specific hormonal signals. MAMPs of beneficial microbes including
flagellin, secondary metabolites, and lipopolysaccharides activate MAMP-triggered
immunity (MTI) that modulate hormonal signals in plants (Hermosa et al. 2012;
Jacobs et al. 2011; Zamioudis and Pieterse 2012). For instance, lipopeptides of B.
amyloliquefaciens S499 induced the expression of defense-related genes lipoxy-
genase D, and F (LOXD, LOXF)-induced ISR in tomato plants (Cawoy et al. 2014).
The early event in rhizobacteria–plant interaction is the recognition of MAMPs of
the rhizobacteria by plant root receptors and leads to the generation of a distinct ISR
signal in the roots. The signal induced by MAMPs transport upward to shoots to
trigger ISR in the leaves instantaneously activate the SA-, JA-, and ET-dependent
signaling pathways. These signaling pathways expressed genes that regulate the
production of defensive compounds such as enzymes, defensive proteins, and
secondary metabolites (alkaloids, phenols, nonvolatile terpenes and VOCs). For
example, the primed plants release VOCs upon herbivore damage (HD); these
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VOCs might attract natural enemies of the herbivore (e.g., wasps) and pollinators or
repel the herbivore directly (Fig. 14.1). Currently, there is no precise information on
how the MAMPs of beneficial microbes modify phytohormone signaling pathways
during plant–insect interactions.

14.3.1 PGPR-Mediated Antibiosis Compounds Biosynthesis

Antibiosis is one of the reported forms of PGPR-mediated host plant resistance
mechanisms against herbivorous insects. Through elevated or compromised pro-
duction of allelochemicals, insect-resistant crops reduce growth, inhibit reproduction,

Fig. 14.1 PGPR prime the host plant to increase the defense against various pathogens and insect
herbivores by the mechanism of induced systemic resistance (ISR) to produce the defensive
compounds. The early event in rhizobacteria–plant interaction is the recognition of
microbe-associated molecular patterns (MAMPs) of the rhizobacteria by plant root receptors
and leads to the generation of a distinct ISR (red arrow) signal in the roots. The signal transport
upward to shoots to trigger ISR in the leaves by instantaneously activating the SA, JA, and
ET-dependent signaling pathways. These signaling pathways lead to the expression of genes that
regulates the production of defensive compounds such as enzymes, defensive proteins, and
secondary metabolites (alkaloids, phenols, nonvolatile terpenes and VOCs). For example, the
primed plants release VOCs upon herbivore damage (HD), these VOCs might attract natural
enemies of the herbivore (e.g., wasps) and pollinators or repel the herbivore directly. Some PGPR
strains serves as an entomopathogen and causes disease root herbivores
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alter physiology, delay maturation, and induce various physical or behavioral
abnormalities in insect herbivores that ultimately suppress insect pest abundance.
Several studies show that PGPR triggers the biosynthesis of plant defense-related
compounds against insects through various plant defense signaling pathways
(Pangesti et al. 2016; van deMortel et al. 2012). For example, plant hormones such as
JA, ET, and SA discussed above regulate the key defense-related chemical com-
pounds that include, but not limited to, flavonoids, lignin, and other secondary
metabolites. Most of these defense-related compounds have been shown to have
broad-spectrum properties, against plant pathogens and insect herbivores (Campos
et al. 2014; Valenzuela-Soto et al. 2010; Zebelo et al. 2016). Biosynthesis of cama-
lexin and glucosinolates is one way PGPR regulate plant defenses against plant
pathogens and insect herbivores (Clay et al. 2009; Kim Jae et al. 2008; Mewis et al.
2005; Muller et al. 2010). Pangesti et al. (2016) reported that the Arabidopsis plants
treated with PGPR activate JA/ET pathway that leads to the biosynthesis of camalexin
and glucosinolates, which triggers ISR against chewing insects. Zebelo et al. (2016)
showed that cotton plants inoculated with mixtures of PGPR Bacillus spp. increased
transcript level of JA-related genes GhLOX1, GhAOS, and GhOPR3, and gossypol
biosynthesis genes including the (+)-d- cadinene synthase (CAD1) gene family
(Cdn1- A, CAD1-C1, Cdn1-C3, and Cdn1-C14). Consequently, the level of gossypol
was elevated in PGPR-treated plants and the herbivory by beet armyworm larvae was
significantly reduced, suggesting that the high level of gossypol in PGPR-treated
plants might have contributed to the induced resistance of cotton plants against beet
armyworm larvae. Gossypol is a phenolic sesquiterpenoid aldehyde with the insec-
ticidal property. High production of phenolic compounds (secondary metabolites)
induces resistance against pathogens and insects (Sharma et al. 2009; Usha Rani and
Jyothsna 2010) Remarkably high levels of gossypol in cotton reduces the growth and
development of Heliothis and Helicoverpa (Noctuidae) larvae (Du et al. 2004;
Stipanovic et al. 2006). JA treatment increases the level of gossypol in cotton plant,
and this was correlated with reduced growth, and development of the mealybug,
Phenacoccus solenopsis (Zhang et al. 2011). High level of phenolic compounds was
reported in rice plants treated with PGPR, P. fluorescens WCS374r (De
Vleesschauwer and Höfte 2009). Furthermore, flavonoids are commonly known as
insect-feeding inhibitor (Schoonhoven and Dicke 2005). Arabidopsis plants treated
with Bacillus and Actinomycetes increases the transcript levels of five transcription
factors (TT8, EGL3, MYB12, MYB114, and MYB113) that regulates the genes for
flavonoid biosynthesis pathways (Ali and McNear 2014). The transcription factor
MYC2 controls JA-signaling pathways upon herbivory, and MYC2 also regulates
flavonoids and anthocyanin biosynthesis pathways (De Vos et al. 2005; Dombrecht
et al. 2007; Verhage et al. 2011).
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14.3.2 Structural Modification of Plant Cells by PGPR

Proteins like lipoxygenase (LOX), lignin and lectins are associated with various
defense-related processes, which include the formation of cell wall structure, stress
adaptation, resistance to pathogens and insects in several crops (Pauwels et al.
2009; Xiaohong et al. 2012). Rice plants colonized by P. fluorescens triggers ISR
against the leaf folder larvae by the activation of several enzymes including LOX,
chitinases and trypsin inhibitors (Commare et al. 2002; Saravanakumar et al. 2007;
Saravanakumar et al. 2008). Al Atalah et al. (2014) reported that the jacalin-related
lectins display insecticidal activity against different types of insects. The
lectin-induced in soybean plants during interaction with bacterial pathogens
including Xanthomonas axono podis pv. Glycines, P. syringae pv. Tomato, and B.
amyloliquefaciens KPS46 (Buensanteai et al. 2009). Lignin being a recalcitrant
confers resistance to insect herbivores (Barakat et al. 2010). The lignin content in
plant cell wall directly related with plant leaf hardiness when lignin content
increases in the plant cell wall the leaf hardiness also increases for insect herbivores
(Johnson et al. 2009). Peroxidase (POD) and polyphenol oxidase (PPO) catalyze
the biosynthesis of lignin and different oxidative phenols that are involved in plant
defense against insect pests (Bhonwong et al. 2009; Gulsen et al. 2010). For
example, P. fluorescens strains Pf1, TDK1 and PY15 display ISR against the leaf
folder larvae (Cnaphalocrocis medinalis) due to the activation of PPO in rice plants
(Saravanakumar et al. 2008). The mechanism of induced resistance against insects
by PGPR related to lignin biosynthesis remains unclear. However, PGPR-mediated
plant defenses against insect herbivores can be induced through biochemical and
physical changes in plants. For example, the induced production of a chemical, such
as a flavonoid, is not only a chemical inhibitor of insects. Instead, it may be linked
to physical modifications of the cell wall by lignification. PGPR modulated ISR
might lead to the production of both chemical and physical barriers that might have
antibiotic and antixenosis effect on insect herbivores.

14.3.3 Effect of PGPR in Sucking and Chewing Insects

Induced systemic resistance works by potentiating plants’ innate immunity which is
effective against insect herbivores. An insect with biting and chewing mouthparts
typically induce responses similar to induced systemic resistance that is dependent
upon jasmonic acid as a signaling molecule and may promote induced resistance
against subsequent insect herbivores (Gatehouse 2002). Insects with piercing and
sucking mouthparts tend to inflict limited tissue damage through feeding and are
often able to evade the wound-induced defense response. These insects may acti-
vate defenses similar to systemically acquired resistance responses that are
dependent upon salicylic acid as a signaling molecule (Walling 2000). PGPR
mediated ISR might vary by insect species and their feeding guilds.
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14.3.3.1 Sucking Insects

Induced systemic resistance by PGPR against sucking insects are plant or beneficial
microbe specific. This effect also depends on whether the targeted insects are
specialist or generalist feeders. For instance, commercial Bacillus species applied in
mixtures in bell pepper was shown to induce tolerance to Myzus persicae Sulzer
(Boutard-Hunt et al. 2009; Herman et al. 2008). Similarly, Fahimi et al. (2014)
reported the adverse effect on the population of Aphis gossypii feeding on cucumber
plants treated with P. fluorescens strain UTPF. Treatment of Arabidopsis thaliana
with P. fluorescens strain WCS417r and then subsequently feeding the plant to the
generalist aphid, M. persicae positively affected growth and development of the
aphid, but no effect documented on the crucifer aphid Brevicoryne brassicae that
fed on the same plant (Pineda et al. 2012). However, treatment of the aphid host
plant (crucifer) with single and mixtures of Bacillus species suppressed the growth
and development of B. brassicae (Gadhave et al. 2016a; Gadhave and Gange 2016).
This indicates a plant-specific or microbial species effect. Valenzuela-Soto et al.
(2010) showed that treatment with Bacillus subtilis reduced the development of
Bemisia tabaci on tomato plants, contrary to a work by Shavit et al. (2013) who
found that B. tabaci nymphs had higher survivorship after they fed on Bacillus
subtilis WCS417r-treated tomato plants.

14.3.3.2 Chewing Insects

There are several examples of PGPR-mediated plant defenses on the behavior of
chewing insects that cut across Lepidoptera, Coleoptera, and Diptera insect orders.
Zehnder et al. (1997b) observed a reduction in the number of cucumber beetles
(Diabrotica undecimpunctata Hawardi (Barber) on cucumber plants or seedlings
treated with Bacillus pumilus strain INR-7 by reducing the production of phagos-
timulants. A similar effect was reported on other aboveground and
belowground-feeding coleopterans in different field crops (Santos et al. 2014; Coy
et al. 2017; Disi et al. 2018b). Studies suggested that PGPR modified behavior of
root-feeding insects via enhanced emission of volatile organic compounds even
though different PGPR genera used in these separate independent studies. In the
study by Santos et al. (2014) root colonization by Azospirillum braslense negatively
affected weight gain and preference by Diabrotica speciose on maize via increased
emission of (E)-b-caryophyllene but root colonization did not cause increased
growth of the plant. Similarly, treatment of maize seeds with Bacillus pumilus strain
INR-7 had an adverse effect on weight gain and preference of Diabrotica virgifera
virgifera but no growth promotion was recorded for this bacterial species (Disi et al.
2018b). Chiriboga et al. (2018) reported the enhanced expression of a gene
involved in the production of (E)-b-caryophyllene which correlated with the sig-
nificantly enhanced emission of (E)-b-caryophyllene in Pseudomonas protegens
CHA0 and Pseudomonas chlororaphis PCL1391 treated maize exposed to infes-
tation by Diabrotica balteata larvae.
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Van Oosten et al. (2008) revealed adverse impact by P. fluorescensWCS417r on
Spodoptera exigua, a generalist chewing herbivore. Pangesti et al. (2015a) reported
that a generalist caterpillar,Mamestra brassicae weighed less upon feeding on roots
of A. thaliana treated with P. fluorescens WCS417r, but there was no effect on the
weight of the specialist Pieris brassicae. Application of P. fluorescens (Pf1 and
TDK1) and Beauveria bassiana (B2) in combination with chitin affected the pro-
duction of defense enzymes in groundnut plants and concomitantly reduced
infestation by a leaf miner (Aproaerema modicella) and a pathogen (Sclerotium
rolfsii) (Senthilraja et al. 2013). Zebelo et al. (2016) showed that mixture of
Bacillus PGPR strains (Blend-8 and Blend-9) enhanced the level of gossypol in
cotton leaves with consequence on growth and development of S. exigua larvae and
pupae. Application of Pseudomonas putida and Rothia sp. on tomato seeds affected
the production of proteins and defense-related enzymes in tomato plants after the
plants infested with Spodoptera litura (Bano and Muqarab 2017). Disi et al.
(2018a) reported reduction in emission of maize volatiles treated by single and
mixture of Bacillus PGPR species that deterred Ostrinia nubilalis oviposition,
suggesting that manipulation of secondary metabolites may be a common mecha-
nism of PGPR-mediated ISR against insects (Zehnder et al. 1997a; Santos et al.
2014; Zebelo et al. 2016; Chiriboga et al. 2018).

14.4 The Entomopathogenicity of PGPR

Entomopathogen defined as the pathogens that can cause disease and kill insects.
An entomopathogen could be fungus, bacteria, virus, nematode or protozoans. The
entomopathogenic bacteria promote plant growth, enhance plant health via ISR and
display insect pathogenicity. Kupferschmied et al. (2013) reviewed broadly about
the potential insect pathogenicity of some PGPR strains. The non-PGPR ento-
mopathogenic bacteria, mainly Bacillus thuringiensis (Bt), Photorhabdus sp., and
Xenorhabdus sp. are commonly used as entomopathogens. Efficiently controls
insect pests in laboratory, greenhouse and field conditions. For example, Bt is
commercially available as topical sprays and has several advantages over chemical
insecticides. Bt attacks specific insect species, and its application is considered to be
environmentally sound and harmless to humans and other mammals
(Kupferschmied et al. 2013). However, the use of Bt to control insect pests has
limitations. Bt has limited persistence on the surface of plant leaves, this is due to
sensitivity to solar irradiation as well as to the chemical environment on plant
leaves, and unlike PGPR strains, Bt is not a competitive plant colonizer (Bizzarri
and Bishop 2008; Raymond et al. 2010). Because the susceptible stages of the pest
insects are during the early instar larvae, Bt provides only short-term crop protec-
tion in the field and requires precise application practices (Bravo et al. 2011).
Similarly, the use of Photorhabdus sp. and Xenorhabdus sp. as biocontrol depends
on nematode vector (Steinernena spp.) for insect infection. Intriguingly, certain
strains of PGPR Pseudomonas spp. and Streptomyces spp. display insect
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pathogenicity and thus could be formulated to extend the present range of
bio-insecticides for protection of plants against insect pests. These ento-
mopathogenic PGPR strains have the remarkable ability to suppress soil-borne
plant pathogens, promote plant growth, and induce systemic plant defenses against
insect pests. Recently, at Auburn University, Department of Entomology and Plant
pathology, Drs. Fadamiro and Kloepper screened more than three hundred strains of
PGPR Bacillus spp. for their entomopathogenicity against beet armyworm, several
strains showed toxicity against beet armyworm (unpublished data). Pseudomonas
spp. and Streptomyces spp. are relatively well documented as an entomopathogen
of several insect species.

14.4.1 Pseusomonas spp. as an Entomopathogen

Pseudomonas fluorescens is an entomopathogeic PGPR used against termites (Devi
and Kothamasi 2009), phytophagous ladybird beetles (Otsu et al. 2004), and aphids
(Hashimoto 2002). P. fluorescens bacteria has been used successfully against
herbivorous insects and as biological control of fungal plant pathogens (Commare
et al. 2002; Karthiba et al. 2010; Péchy-Tarr et al. 2008). P. fluorescens infects the
mid-gut of larvae, pupae, and adults within the Lepidopteran (Tang et al. 2012),
Dipteran (Bansal et al. 2011; Corby-Harris et al. 2007), Coleopteran (Arias-Cordero
et al. 2012; Saitou et al. 2009), Hemipteran species (Hashimoto 2002; Lacava et al.
2007), and Hymenopteran (Li et al. 2012; Mohr and Tebbe 2006).

Pseudomonas luminescens toxify insects through a single toxin gene called
makes caterpillars’ floppy (mcf). This mcf gene regulates a persuasive insect toxin
Mcf1 (Péchy-Tarr et al. 2008). Mcf1 is toxic to the midgut epithelial cells, and high
expression leads to the floppy nature of the insect infected with P. luminescens.
This potent insect toxin of P. luminescens might suppress immune response activity
(Kupferschmied et al. 2013).

Similarly, the mcf1-related gene of P. fluorescens strain Pf-5 and CHA0, a part
of the eight-gene cluster called fit for P. fluorescens insecticidal toxin (Péchy-Tarr
et al. 2008). Kupferschmied et al. (2013) reported that the gene fitD, encodes for the
actual insect toxin, fitABC and E genes encodes a type I secretion system and
fitFGH genes encodes the regulatory proteins. Because the presence of potent Mcf1
toxin in the gene cluster in the Fit toxin, it is conceivable that FitD induces
apoptosis in insect as in P. luminescens.

The Fit toxin gene detected in few PGPR strains, P. protegens, and
P. chlororaphis showed high toxicity toward larvae of lepidopteran insects (Flury
et al. 2016; Loper et al. 2012; Shen et al. 2013). Further, P. protegens strains CHA0
and Pf-5 were lethal to tobacco hornworm larvae, Manduca sexta and the greater
wax moth Galleria mellonella (Péchy-Tarr et al. 2008). In a laboratory assay using
artificial diet and leaves treated with P. protegens strain CHA0 and P. chlororaphis
strain PCL1391 were shown insecticidal activity (Flury et al. 2016). Plants sprayed
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with a low concentration of CHA0 and Pf-5 strains that contain Fit toxin shown
insecticidal activity against Spodoptera littoralis (cotton ballworm), Heliothis vir-
escens (tobacco budworm), and Plutella xylostella (diamondback moth).
(Kupferschmied et al. 2013). In contrast, fit-deficient P. fluorescens failed to tox-
icity against insects in the same assay (Ruffner et al. 2013). Ruffner et al. (2013)
performed host specificity test and examined the potential side effects of the
Pseudomonads toward beneficial insects; the Fit toxin had no oral toxicity toward
the important pollinator, bumblebee Bombus terrestris. Further research might be
needed to confirm host specify of diverse species of Pseudomonads to that of other
beneficial arthropods.

The potential of entomopathogenic PGPR demonstrated impressively by feeding
Chinese cabbage leaves containing suspension of GFP (green fluorescent protein)-
tagged P. protegens CHA0 to larvae of the large cabbage white Pieris brassicae
(Fig. 14.2a, b) (Kupferschmied et al. 2013). The bacteria colonize the insect gut and
subsequently translocated into the hemocoel by so far unknown means, where they
multiply and cause disease (Fig. 14.2b). Quick invasion of the bacteria into the
insect blood system indicates the level of virulence of the microorganisms, which
suggests that these bacteria should be considered for pest management
(Kupferschmied et al. 2013).

Regardless of the insecticidal activity of Fit toxin, when Fit toxin gene knocks
out from some isolates of P. protegens or P. chlororaphis strains, is not sufficient to
reduce the toxic effects of Fit toxins to insects (Maria et al. 2013; Ruffner et al.
2013). Further studies might be required to discover the virulence factors in these
insecticidal pseudomonads. Candidate virulence factors that might play a role in
insect pathogenicity in some of these strains are the so-called toxin complexes (Tc),
first identified in P. luminescens. They are large multimeric insecticidal protein
complexes displayed on the surface of these bacteria (Ffrench-Constant et al. 2007).
Remarkably, Tc-related genes found also in some of the strains of P. chlororaphis
and P. fluorescens (Loper et al. 2012) but their role in insect pathogenicity yet to be
investigated.

Despite the above successful findings of pseudomonads PGPR as ento-
mopathogen to many insect pests, no insecticidal products exist on the market for
biopesticides. Pseudomonads PGPR are successfully used as bio-fungicides in
agriculture, specifically for crop protection (Ahmadzadeh et al. 2006; Siddiqui et al.
2008). Thus, these entomopathogenic Pseudomonas fit well into integrated pest
management (IPM) programs (Dotta 2015).

14.4.2 Streptomyces spp. as an Entomopathogen

Another important PGPR with entomopathogenic characteristic are the
Actinobacteria mostly in the genera Streptomyces. Streptomyces spp. are notable
for their toxic activity against pathogens (e.g., Breza-Boruta et al. 2004) and her-
bivores especially the order Lepidoptera (Arasu et al. 2013; Kaur et al. 2014;
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Fig. 14.2 Certain plant root-associated Pseudomonas bacteria exhibit insect pathogenicity as an
additional trait to the well-studied biocontrol activity against phytopathogens. a The most
important interactions of these plant-beneficial pseudomonads (in green) include cooperation with
the plant host (growth promotion and induction of systemic resistance) and competition with and
antagonism of soil-borne phytopathogens. In addition, they show insecticidal activity and can use
insects as vectors for dispersal. b Certain strains of Pseudomonas protegens and Pseudomonas
chlororaphis are capable of infecting and efficiently killing insect larvae after oral
uptake. P. protegens strain CHA0 (here tagged with GFP for microscopical visualization)
typically forms microcolonies on roots (1) of various plant species (here tomato). Following
ingestion by herbivorous insects, the entomopathogenic P. protegens strain is able to colonize the
midgut (2) of pest insect larvae (here the large cabbage white Pieris brassicae), possibly by
competing with the intestinal microbiota. By a so far unknown mechanism CHA0 cells then cross
the intestinal epithelial barrier and invade the hemocoel within less than 1 day after oral infection
(3). Once in this body compartment, the bacteria proliferate, resist uptake and elimination by
hemocytes and cause disease (4). Bars represent 10 lm (Adopted from Kupferschmied et al.
(2013))
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Vijayabharathi et al 2014; Goda et al. 2015; Sathya et al. 2016). Kaur et al. (2014)
showed that high doses of secondary metabolites from Streptomyces hydrogenas
DH16 increased mortality of Spodoptera litura (Fab.) larvae and lower doses
prolonged development time in larvae and pupae. Polyketide metabolites from
Streptomyces sp. AP-123 caused antifeedant and larvicidal activity on Helicoverpa
armigera and Spodoptera litura larvae. Similar effects by Streptomyces
sp. CAI-155 (Gopalakrishnan et al. 2012, 2016) and Streptomyces griseoplanus
SAI-25 (Sathya et al. 2016) against H. armigera have also been documented on
chickpea. These studies show that Actinobacteria have a strong potential as a
biological control agent.

D-endotoxin proteins and Avermectins from Bacillus thuringiensis and
Streptomyces avermitilis, respectively, are the two most toxic compounds against
herbivores that have ever been identified from soil microbes. Of these two, aver-
mectins is believed to have broad-spectrum activities against pathogens and her-
bivores and it is a gamma-amino butyric acid (GABA) receptor antagonist. It binds
to the GABA receptor, leading to increased flow of chlorine into the muscle and
subsequent muscle relaxation and eventual death of exposed organism (Ishaaya and
Horowitz 1998). Since its discovery, insecticidal activities of Avermectins has been
reported for insect pests from several orders and families (Lasota and Dybas 1991;
Jacob and Sudini 2016; Hariprasad 2016). Negative effect of commercialized
derivatives of Avermectins such as emamectin benzoate on Cydia pomonella and
Cydia molesta (Ioriatti et al. 2009) and ivermectin on biology of the Indian
Owlet-moth, Spirama retorta (Roychoudhury and Joshi 2011) is well documented.
Ioriatti et al. (2009) reported that emamectin benzoate was effective at causing high
mortalities to larva stages of codling moths both in laboratory and semi-field trials
but minimal ovicidal effect was observed. Similarly, high mortality was recorded by
invermectin on S. retorta a foliar pest of Albizia plants. However, a study showed
that abamectin is very toxic to predators. Azod et al. (2016) reported 100% mor-
tality of aphidophagous lady beetle, Menochilus sexmaculatus after feeding on the
common pistachio psylla, Agonoscena pistaciae. Further studies are needed on a
large scale to determine how best Avermectins and its derivatives can be integrated
into current IPM systems as Coccinellids and other predators constitute a significant
part of predators in agro landscapes.

14.5 PGPR Formulations for Insect Pest Control

PGPR formulations can come in ambient of different forms depending on their
application. Although beneficial PGPR group of bacteria are used to ameliorate
environmental degradation (Bashan et al. 2014), those for crop-specific agri-
cultural use have been limited (Kloepper et al. 2004; Liu et al. 2016). The role
of their formulation and application for agricultural needs broadly covered
(Bashan et al. 2014). Depending on the availability of materials, formulations
can be in liquid, solid dry powder, etc.(Arora et al. 2008; Atieno et al. 2012;
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Bhattacharjya and Chandra 2013). The carrier materials can be organic (sawdust,
vermicompost, peat, poultry manure, etc.) or inorganic (talc, perlite, clay soil,
kaolin, etc.) or polymers (e.g., alginate), and these also depend on the need for
the formulation (Bashan et al. 2002). Another determinant of the inoculum
formulation depends on the characteristics of the bacteria.

There are only a few formulated PGPR inoculant for controlling insect pests in
various field crops expect those commercially available for growth promotion and
control of other foliar pathogens (Boutard-Hunt et al. 2009; Herman et al. 2008).
However, the understanding of the “broad-spectrum” activity of many
soil-inhabiting PGPR leads in this direction. The laboratory, greenhouse and
field-based studies reported PGPR and some none-growth-promoting bacteria
mediated plant–insect interactions with a focus on formulation media/carriers
(Table 14.1). Further, as shown, most formulation was liquid and solid meant yet to
address fundamental research. Only a few of the studies utilizing the various for-
mulations [e.g., Gadhave et al. (2016a)] were conducted in the field, and very few
showed carrier based formulations reported had good shelf-life (Sarma et al. 2011).

14.6 Application of PGPR Mixture

Application of PGPR depends on formulations (liquid, dry, slurry or pellets), the
carrier material used for the formulations and the need-based requirement of
farmers.. Given the complication of bacterial–plant–insect species specificity,
PGPR is either applied singly or in the mixture (Domenech et al. 2006; Liu et al.
2016; Pangesti et al. 2013; Pineda et al. 2013; Pineda et al. 2010; Gadhave and
Gange 2016; Raupach and Kloepper 1998). Certain PGPR strains promote growth
of plants, but others induce resistance inplants. Targeting this discrepancy in the
formulation of PGPR mixture should always inform the rationale or one of the most
important reasons for formulating the product, but quite a few workers suggested
that. PGPR mixture may provide broad-spectrum combination based qualities from
individuals that make up the mixture with multifarious in nature. Several published
works showed that application of PGPR mixture was more targeted on improve-
ment of plant growth and yield (Cassán et al. 2009; Requena et al. 1997; Sandheep
et al. 2013; Yadav and Verma 2014) except a few studies that demonstrated that a
mixture of different microorganisms (Azotobacter, Pseudomonas, and Bacillus)
enhanced their competitiveness compared to indigenous bacteria in the soil (e.g.,
Ðalovic et al. 2013).
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Table 14.1 Studies showing PGPR formulations used to test effects on insects: A few examples

PGPR strain(s) Formulation
medium/carrier

Plant species Insect species
tested

References

Pseudomonas putida
89B-61, Serratia
marsescens 90–166,
Flavomonas
oryzihatans INR-5,
Bacillus pumilus strain
INR-7

Tryptic soybean
broth (TSB)

Cucumber Diabrotica
undecimpunctata
howardi and
Acalymma
vittatum (F.)

(Zehnder et al.
1997a)

Pseudomonas
fluorescens PF1 and
FP7, single and in
mixture

Talc-based
powder

Rice Cnaphalocrocis
medinalis

(Commare et al.
2002)

Pseudomonas
fluorescens Pf1, TDK1
and PY15

Talc-based
powder

Rice Cnaphalocrocis
medinalis

(Saravanakumar
et al. 2007, 2008)

Bacillus subtilis
strainGB03 Bacillus
amyloliquefaciens
IN937a

Commercial
formulation

Pepper Myzus persicae (Herman et al.
2008)

Paenobacillus
macerans GB122 and
Bacillus
amyloliquefaciens
GB99

Commercial
formulation

Pepper Myzus persicae (Boutard-Hunt
et al. 2009)

Pseudomonas
fluorescens (PGPR)
Beauveria bassiana
(Fungi)

Talc-based
powder

Rice Cnaphalocrocis
medinalis

(Karthiba et al.
2010)

Bacillus subtilis
BEB-DN (BsDN)

Potato infusion
medium

Tomato Bamisia tabaci (Valenzuela-Soto
et al. 2010)

Pseudomonas
fluorescens Pf1 and
TDK1

Talc-based
powder

Groundnut Aproaerema
modicella

(Senthilraja et al.
2013)

Pseudomonas
fluorescens WCS417r

MgSO4 Arabdopsis Myzus persicae
and Diaeretiella
rapae

(Pineda et al.
2013)

Pseudomonas
fluorescens WCS417r

MgSO4 Tomato Bamisia tabaci (Shavit et al.
2013)

Pseudomonas
fluorescens UTPF68,
UTPF1, UTPF6 and
CHA0

Methylcellulose
solution

Cucumber Aphis gossypii (Fahimi et al.
2014)

Azospirillum
brasilense

Nitro 1000 Maize Diabrotica
speciosa

(Santos et al.
2014)

Pseudomonas
fluorescens WCS417r
and P. simiae
WCS417r

MgSO4 Arabdopsis Mamestra
brassicae, Pieris
brassicae and
Microplitis
mediator

(Pangesti et al.
2015a, b, 2016)

(continued)
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14.7 Challenges Associated with the Use of PGPR
in Sustainable Agriculture

The commercial success of PGPR strains needs economic and feasible market
demand, consistent and broad-spectrum action, safety and stability, longer
shelf-life, low capital costs and easy availability of career materials (Dey et al.
2014). The success and commercialization of PGPR strains depend on the col-
laborative work between the scientific institutions and chemical industries. These
collaborative works mainly focused on the process of marketing include isolation of
antagonist strains, screening, fermentation methods, mass production, formulation
viability, toxicology, industrial linkages, quality control, and field efficacy.
Though PGPR has potential use in sustainable agriculture and commercialization,
the threat of certain PGPR (P. aeruginosa, P. cepacia and B. cereus) to impart
toxicity to animals and pathogenic to human beings as opportunistic pathogens has
to be clarified before large-scale acceptance (Nakkeeran et al. 2006). For example,
volatile production of cyanide by some PGPR strains. Cyanide involves in growth
promotion as well as a growth inhibition characteristic during PGPR–plant inter-
actions. Moreover, cyanide acts as a biocontrol agent against specific plant
pathogens (Ramette et al. 2006); likewise, cyanide can also cause adverse effects on
plant growth and the environment (Solomos and Laties 1976). Potential PGPR

Table 14.1 (continued)

PGPR strain(s) Formulation
medium/carrier

Plant species Insect species
tested

References

Pseudomonas putida
and Rothia sp.

Water Tomato Spodoptera litura (Bano and
Muqarab 2017)

Bacillus cereus,
Bacillus subtilis and
Bacillus
amyloliquefaciens

Saline water Cucumber Brevicoryne
brassicae

(Gadhave and
Gange 2016,
2016a, b)

Bacillus pumilis,
Blend-8 and Blend-9
(both blends contained
four strains)

Water Cotton Spodoptera
exigua

(Zebelo et al.
2016)

Bacillus pumilis, MC1,
MC2, MC3, MC4,
Blend 8, Blend 18,
Blend 19, Blend 20

Water Bermudagrass Spodoptera
frugiperda

(Coy et al. 2017)

Bacillus velezensis
YC7010

MgSO4 Arabdopsis Myzus persicae (Rashid et al.
2017)

Bacillus pumilis,
Blend-8 and Blend-9
(both blends contained
four strains)

Water Maize Ostrinia nubilalis
and Diabrotica
virgifera virgifera

(Disi et al. 2018a,
b)
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strains must pass through several regulatory measures to be commercially viable.
The PGPR strains should not pose any threat to human and animal health and
should not be an environmental hazard. Unlike the commercialization of PGPR
strains used to control plant pathogens, information concerning PGPR strains used
to control insect pest is very limited. Despite that PGPR have been discovered and
studied for last three decades, the widespread use of these products is yet to be seen.
The use of PGPR as biocontrol of pests in sustainable agriculture remains
underutilized.

14.8 Concluding Remarks and Future Perspectives

This chapter highlights PGPR mediated plant–insect interactions. The interaction
between PGPR–plant–insect resulted to plant growth promotion and induced defenses
against insect herbivores. The effect of PGPR-induced systemic resistance against
microbial pathogens has been studied for many years, but relatively little is known
about the effect of ISR on herbivorous insects. Inducing resistance against herbivores is
not the only mechanism through which PGPR affect plant–insect interactions.
Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display
insect pathogenicity. There is evidence that PGPR enhance the effectiveness of natural
enemies by manipulating the production of VOCs, this can also decrease herbivore
pressure (Disi et al. 2018b). It is important to note that even the direct and indirect effect
of PGPR-mediated defenses decreased and the herbivore pressure increases, PGPR can
enhance plant biomass and yield, increasing plant tolerance against insect herbivores.
Moreover, PGPR-treated plants might attract other beneficial organisms, particularly
pollinators and natural enemies of herbivores, the impact of PGPR on pollinators and
natural enemies might need further studies.

Beneficial microbes have an enormous contribution that ranges from increasing
nutrient and moisture uptake to induction of plant defense against plant pathogens
and insect herbivores. Considering this vast importance beneficial microbes might
also contribute to the bio-diversification of plants. Beneficial microbes modulate
plant–insect interactions, and plant genotype is vital for the successes of these
mutualistic interactions. It is recommended that breeders might include traits that
enhance plant–microbe interactions in their selection process. Due to the extended
persistence of beneficial microbes in the environment, they can be an integral part
of sustainable integrated pest management programs.

PGPR has the potential to be used in integrated pest management (IPM), with
the progress of agriculture toward sustainability, PGPR will find greater use as
biocontrol agents. However, we should be genuine with thoughtfulness. Numerous
studies have been done over the past several decades about the potential applica-
tions of a PGPR strains of biocontrol agents in managing a number of plant disease
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and pests, not much significant success achieved yet for application at field level
and commercialization of PGPR products. Rigorous efforts will be required to
demonstrate the benefits of the PGPR as biocontrol of plant disease and insect pests
by conducting trials on farmers’ field.
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Chapter 15
Potential Effect of Plant
Growth-Promoting Rhizobacteria
(PGPR) on Enhancing Protection
Against Viral Diseases

Ahmed R. Sofy, Mahmoud R. Sofy, Ahmed A. Hmed
and Noha K. El-Dougdoug

Abstract Plant viruses spread around the globe and have been considered one of
the most critical plant pathogens, leading to severe economic losses in crop pro-
ductivity and yield quality. Unlike pests, fungi, and bacteria, no direct control
methods can use against viruses. Managing to plant viral diseases depends pri-
marily on the genetic resistance of host plants and their environment, as well as on
the performance of synthetic pesticides to control vectors, an essential strategy for
managing viral diseases. Effective plant viral disease pesticides are available, but
because residual poisoning persists, they are not considered useful in a long-term
solution because of environmental hazards and public health problems. So, new
ways were appealed to complement existing strategies to manage the viral disease
for better and more sustainable viral disease control. The use of bioinoculants is one
of the ways to protect crops that can reduce viral infection to enhance plant growth,
resulting in a significant economic return for growers. In recent years,
PGPR-systemic resistance to plant viruses has trended toward viral disease man-
agement, although many PGPR-ISR studies have centered on several pathogens of
fungi and bacteria. This chapter will address the spectrum of PGPR-mediated ISR
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against some plant viruses including banana bunchy top virus, bean common
mosaic virus strain blackeye cowpea mosaic, bean yellow mosaic virus, bitter gourd
yellow mosaic virus, cucumber green mottle mosaic virus, cucumber mosaic virus,
papaya ringspot virus, pepper mild mottle virus, potato virus X, potato virus Y,
sunflower necrosis virus, tobacco mosaic virus, tobacco necrosis virus, tomato
chlorotic spot virus, tomato mosaic tobamovirus, tomato mottle virus, tomato
spotted wilt virus, tomato yellow leaf curl virus, urdbean leaf crinkle virus, and
watermelon mosaic virus.

Keywords Plant viruses � Biocontrol � Crops management � PGPR � SAR � ISR

15.1 Introduction

Biotic and abiotic stresses adversely affect plant growth parameters, quality, and
quantity based on the plants and stage(s), where average productivity of plant can
be reduced between 65 and 87% (Gursoy et al. 2012). Plant viruses have occurred
worldwide and are the most critical plant pathogens responsible for severe eco-
nomic losses in the productivity and quality of many crops (Balconi et al. 2012). In
contrast to pests, fungi, or bacteria, no direct control methods are evolved against
viruses so far. Management of plant viral diseases depends mainly on host plants
genetic resistance and their environment as well as synthetic pesticides to control
vectors where it is an essential strategy in viral management (Srinivasan and
Mathivanan 2009). Effective plant viral disease pesticides are available, but because
residual poisoning persists, they are not considered useful in a long-term solution
because of environmental health hazards (Srinivasan and Mathivanan 2009). The
ever-increasing costs of pesticides, on the one hand, and consumer demand for food
without pesticides, on the other, have resulted in seeking replacements for these
chemical products (Gerhardson 2002). On the other hand, there are also specific
diseases such as caused by certain viruses and viroids that have few, ineffective or
inexistent chemical solutions (El-Dougdoug et al. 2012a; Gerhardson 2002; Sofy
et al. 2013a, 2012, 2014b). It is, therefore, investigate for plant viral diseases
management by inducing natural defenses of plants, e.g., systemically acquired
resistance (SAR) (Ryals et al. 1994). In recent years, plant growth-promoting
bacteria (PGPR)-systemic resistance to plant viruses has trended in the management
of viral diseases, despite the fact that many PGPR-ISR studies have centered on
several pathogens of fungi and bacteria (Kloepper et al. 2004a, b; van Loon et al.
1998), but available literature revealed the limited information on viral disease
management by using PGPR and other beneficial microorganisms. Furthermore,
some PGPRs stimulate plant growth, resulting in significant economic returns for
growers (Babalola 2010).
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15.2 PGPR-Induced Systemic Resistance Against Plant
Viruses

There are two types of pathogen-induced resistance [Induced Systemic Resistance
(ISR) and Systemic Acquired Resistance (SAR)] defined as “the activation of the
host plant’s chemical or physical defense mechanism by an inducer’’ that leads to
multiple pathogens being controlled (Kloepper 1993; Kloepper et al. 1992). The
ISR’s expression in response to the pathogen inoculation challenge is similar to that
of SAR due to reduced disease severity or reduced number of diseased plants (Van
Loon and Bakker 2005). This reduction is often related to a reduction in pathogen
growth and reduction of tissue invasion in induced tissues, showing that the plant
can better withstand the pathogen (Van Loon 2000; Van Loon and Bakker 2005).

PGPRs are saprophytic bacterial microorganisms that are free-living in the rhi-
zosphere and colonize the root system aggressively (Ramjegathesh et al. 2013).
They can provide plants with beneficial effects through additional secretion such as
vitamin, hormone, growth factors that help enhances plant growth and productivity
(Babalola 2010). Several bacteria including the species of Aeromonas,
Agrobacterium, Arthrobacter, Alcaligenes, Azospirillum, Azoarcus, Azotobacter,
Bacillus, Burkholderia, Bradyrhizobium, Comamonas, Cyanobacteria (predomi-
nantly Anabaena and Nostoc), Enterobacter, Gluconacetobacter, Herbaspirillum,
Klebsiella, Paenibacillus, Pseudomonas, Rhizobium, Serratia, Variovorax,
Streptomyces, and Xanthomonas have been reported as PGPR (Vessey 2003). Some
of these genera such as Azoarcus, Burkholderia, Gluconacetobacter, and
Herbaspirillum established in cells and tissues of higher plants thus are called
include endophytic species (Vessey 2003). However, the majority of PGPR strains
registered are Pseudomonas and Bacillus species (Ramamoorthy et al. 2001).
PGPRs are regarded as inducing systemic resistance, which can reduce the severity
of some diseases in crop plants, termed as PGPR-induced systemic resistance
(Kloepper et al. 1992).

Salicylic acid (SA) is a key signaling molecule that works locally in intracellular
signal transduction (Shirasu et al. 1997). It may enhance the release of H2O2 and
H2O2-derived active oxygen and induce activities of defense-related genes (Shirasu
et al. 1997). Two downstream signaling pathways of salicylic acid reported as the
defense mechanism, where the first pathway triggers fungal and bacterial resistance
through PR and NPR1 genes expression, and the other stimulates resistance to viral
infection through alternative oxidase (Murphy et al. 1999). Since hormones pri-
marily regulate plant defense against viruses, first relying on salicylic acid and
second on jasmonic acid (Alazem and Lin 2015). On the other hand, due to the link
between SA-mediated defense and siRNA antiviral mechanism, salicylic acid is
considered to be extremely important for the resistance (local & systemic), where it
participates in basal immune responses and R-gene resistance (Alamillo et al. 2006;
Alazem and Lin 2015; Baebler et al. 2014; Beris et al. 2018). The defense response
based on salicylic acid involves mitogen-activated kinase activation leading to
increased NPR1 regulation, thereby induces PR genes transcription (Beckers et al.
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2009; Gkizi et al. 2016; Hirt et al. 2013; Kohler et al. 2002; Yi et al. 2015). Further,
the treatment with salicylic acid or biologically active salicylic acid analogs led to
the expression of the gene NtRDRP1 (Beris et al. 2018). The gene NtRDRP1
triggered following infection with many viruses is an essential element in the
defense of plants against viral infection (Beris et al. 2018; Xie et al. 2001). PGPR
activates ISR in salicylate-dependent and -independent manners and intersects
somewhat with the jasmonate/ethylene pathway (Niu et al. 2011; Ryu et al. 2004;
van Wees et al. 2000). Multiple strains of rhizobacteria were observed to produce
salicylic acid (Van Loon and Bakker 2005). There are two criteria for clarifying
whether these strains elicit ISR via SAR pathway activation depending on SA; first,
PRs induction must be related to ISR; second, induced systemic resistance and PRs
induction must be nullified in NahG plants (Van Loon and Bakker 2005).
Experiments by De Meyer et al. (1999) with transformed tobacco of NahG (SA
hydroxylase gene transgenic) revealed that salicylic acid accumulation in plants
resulting from induced resistance of Pseudomonas aeruginosa strain 7NSK2 is due
to its expression, but not due to its induction, and is therefore identical to SAR
induced by tobacco mosaic virus (TMV), which is also not expressed in NahG
tobacco (Gaffney et al. 1993). The characteristic, salicylic acid-stimulating PRs in
tobacco plants were expressed when ISR was elicited against TNV via
Pseudomonas fluorescens strain CHA0 (Maurhofer et al. 1994). Similarly, the
expression of biosynthetic genes of salicylic acid (pchA & pchB) in the salicylic
acid negative, root-colonizing P. fluorescens strain P3 considerably enhanced its
capacity to trigger resistance against TNV in tobacco, confirming that salicylic acid
induces SAR against viruses (Maurhofer et al. 1998). Unlike salicylic
acid-producing Pseudomonas fluorescens strain CHA0, when the genes (pchA &
pchB) were introduced, salicylic acid production increased but didn’t enhance ISR
in tobacco against TNV (Maurhofer et al. 1998). On the other hand, root application
of Bacillus subtilis strain G1 triggered ISR against TMV by activating the signaling
defense genes (PR-1a and PR-1b), and regulatory genes (NPR1 and Coi1) indi-
cating salicylic acid signaling pathway activation (Wang et al. 2009). However,
unlike SAR, resistance induced by P. aeruginosa strain 7NSK2 during the TMV
challenge time was not linked to the expression of PR1a (De Meyer et al. 1999). So,
De Meyer et al. (1999) suggested that treatment with strain 7NSK2 would only
enhance expression of the systemic tissue defense gene, which also explains why its
resistance level is lower than in case of SAR. On the other hand, SA elicitation and
ethylene signaling indicate expression patterns of encoding the osmotin-like protein
(CaPR5) and the encoding of putative antifungal protein (CaPR4) (Choi and
Hwang 2014). Similarly, the characteristic, SA-inducible PRs (CaPR4, CaPR5, and
CaPR10) expressed in pepper plants when ISR was triggered by Bacillus amy-
loliquefaciens strain 5B6 against CMV (Lee and Ryu 2016). Beris et al. (2018)
experiments also showed that after treatment with B. amyloliquefaciens strain
MBI600, the salicylic acid signaling pathway induction in tomato plants and var-
ious patterns of gene expression of tomato defense-related genes have been detected
against potato virus Y (PVY) and tomato spotted wilt virus (TSWV) infection.
Beris et al. (2018) revealed this through transcriptional analysis of a group of genes
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connected with SA-related defense [SlRdR1 (Xie et al. 2001), SlNPR1 (Kohler et al.
2002), SlPR1b.1 (Block et al. 2005)] or JA-related defense [SlLoxD (Hu et al. 2015) and
SlCOI1 (Xie et al. 1998)], priming [SlNPR1 (Yi et al. 2015), SlMPK3 (Beckers et al.
2009)], or RNAi basal defense against viruses [SlRdR1 (Xie et al. 2001)] (Beris et al.
2018). In comparison, B. amyloliquefaciens strain EXTN-1 treated Arabidopsis
wild-type Col-0 plants resulted in the simultaneous activation of two representative
molecular markers (PR-1& PDF1.2), indicating that strain EXTN-1 induces systemic
resistance through SA-dependent and JA-dependent pathways (Ahn et al. 2002).
Similarly, experiments of Park et al. (2006) with B. vallismortis strain EXTN-1 in
transgenic tobacco have proved that there was activation of PR-la and PDF1.2 defense
genes upon treatment with EXTN-1 indicating involvement of a salicylic acid (SA) and
jasmonic acid (JA) dependent pathway, where PR-la and PDF1.2 genes frequently
used as SA and JA signaling indicators, respectively (Reymond and Farmer 1998).
Indeed, tobacco plants treatment with B. amyloliquefaciens strain EXTN-1 resulted in
earlier and increased expression of defense-associated genes (HMGR, PAL, and PR-
1a) in the presence of pepper mild mottle virus infection at non-inoculated, upper
leaves; hence, resistance phase established byEXTN-1 treatment developed locally and
systemically (Ahn et al. 2002). On the other hand, treatment with B. amyloliquefaciens
strain EXTN-1 alone did not induce such strong gene activation (Ahn et al. 2002).
3-hydroxy-3-methylglutaryl CoA reductase (HMGR), phenylalanine ammonia-lyase
(PAL), and PR-1a genes perceived as the reliable molecular markers, wherein tobacco
defense system(s) via salicylic acid-dependent pathway was activated or not (Ahn et al.
2002). Since the expression of these genes was induced within a short time after TMV
infection under the tobacco N gene-activated state (Kang et al. 1998). Further, mRNA
accumulations of these genes also induced by the salicylic acid treatment (Klessig et al.
1994).

Conversely, Ryu et al. (2004) reported that Arabidopsis thaliana is protected by
Serratia marcescens strain 90-166 from cucumber mosaic virus (CMV) through a
virus protection signaling pathway in which NPR1- and SA are independent, but
JA-dependent. Since the severity of CMV symptoms in NahG and Col-0 plants has
been reduced with strain 90-166 and its SA-deficient mutant 90-166-1441, in
addition to the absence of induction of the PR-1 gene through strain 90-166, which
is generally used as a salicylic acid signaling indicator, indicating that resistance has
occurred via a salicylic acid-independent pathway against CMV (Ryu et al. 2004).

Hydrogen peroxide (H2O2) is a systemic source of the early molecular signal that
strengthens apoptotic tissue and causes cell infection apoptosis (Ahn et al. 2011).
H2O2 is a standard response to plant pathogens, a key signal that stimulates
defensive responses (Zhang et al. 2009). PGPR-triggered ISR is also related to
activation for increased cell defensive responses to pathogen attacks, like acceler-
ated accumulation of H2O2 (Conrath et al. 2002; Niu et al. 2011; Van Wees et al.
2008). Li et al. (2016a) reported that Enterobacter asburiae BQ9 initiated the
tomato plants to accelerate and improve the ability to activate cellular defense
responses systemically (production of H2O2) triggered only via the attack of tomato
yellow leaf curl virus (TYLCV). A large number of ISR-related defense enzymes
include PAL, polyphenol oxidase (PPO), ascorbate peroxidase (ASC), peroxidase
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(POD), superoxide dismutase (SOD), glutathione reductase (GR), lipoxygenase
(LOX), catalase (CAT), chitinase, b-1,3-glucanase, and proteinase inhibitors (Van
Loon and Bakker 2005). Furthermore, these enzymes give rise to molecules lib-
eration that generates the primary steps in resistance induction, because of phenolic
compounds and phytoalexins (Chen et al. 2000; Sofy et al. 2014a, b, 2018a, b;
Vanitha and Umesha 2011). The phenolic compounds are oxidized by peroxidase
into their quinone derivatives, which inhibits viruses through viral RNA inactiva-
tion (Lamb and Dixon 1997).

In Phaseolus vulgaris, Bacillus globisporus and Pseudomonas fluorescens–
treated leaves showed increased activity of peroxidase and b-1,3-glucanase,
respectively in pathogen-inoculated leaf sheaths, tobacco necrosis virus
(TNV) (Shoman et al. 2003). On the other hand, polyacrylamide-gel electrophoretic
analysis detected two similar induced proteins in Phaseolus vulgaris leaves treated
with culture filtrates of Streptomyces gibsonii and P. fluorescens compared to the
control (water-treated), which may play a role in defense mechanism in P. vulgaris
plants against TNV (Shoman et al. 2003). PAL has a vital function in multiple
secondary metabolites synthesis, such as phenylpropanoids and phenols, as well as
salicylic acid derivatives and lignin, which imparts immunity to plants and stim-
ulates PGPR-triggered resistance (Gerasimova et al. 2005; Harish et al. 2008; Li
et al. 2016a). Since secondary metabolites accumulation is intended to limit the
invasion of viruses (Lian et al. 2011). So, induction of defense enzymes (POD,
PPO, and PAL), and PR proteins by application of P. fluorescens strains can
improve plants to be resistant to banana bunchy top virus (BBTV) (Harish et al.
2008) and tomato spotted wilt virus (TSWV) (Kandan et al. 2005). Likewise, in
Bacillus-treated tobacco plants challenged with tomato spotted wilt virus, the
defense enzyme (POD, PPO, and PAL) amount and PR proteins have been
increased significantly compared to control (Lian et al. 2011). Damayanti et al.
(2007) reported that Bacillus sp. strain I-6, Bacillus cereus strain I-35, and
Brevibacterium sanguinis strain I-16 increased the POD activity in hot pepper
plants after TMV inoculation, suggested that these rhizobacteria might able to
enhance plant’s defense response through high POD activity. Similarly, increased
total phenols and activity of defense enzymes (POD & PPO) observed in
Streptomyces griseorebens and S. cavourensis-treated cucumber plants challenged
with Cucumber mosaic virus (Shafie et al. 2016).

Also, Rhizobium leguminosarum bv. viceae (mixtures of ICARDA-441 and
ARC-202) induced systemic resistance against bean yellow mosaic virus (BYMV)
via seed treatment, where enhanced levels of defense enzymes activities (peroxidase
and polyphenol oxidase), total phenols, and free proline observed in faba bean
(Sofy et al. 2014a). Further stated five unique (polypeptide markers) induced in R.
leguminosarum bv. viceae (ICARDA-441 + ARC-202)-treated faba bean plants
inoculated with the BYMV (Sofy et al. 2014a). One of the first plant responses to
bacterial, fungal and viral infections is active oxygen species production, whereas
superoxide dismutase, a significant antioxidant enzyme, provides cell protection in
plants from active oxygen species by converting O2− to H2O2 and O2 (Fridovich
1986; Mehdy 1994; Vanacker et al. 2000). Recently Li et al. (2016a) noted that
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Enterobacter asburiae BQ9 generated systemic acquired resistance in tomato plants
against TYLCV, where the activities of PAL, POD, CAT, and SOD were signifi-
cantly increased in TYLCV-challenged E. asburiae BQ9-pretreated plants.
Furthermore, PR1 (PR1a and PR1b) gene transcriptions of BQ9-treated tomato
plants, which were challenged by TYLCV, were faster and broader than untreated
plants. Li et al. (2016a, b further noted that the replication of cucumber green mottle
mosaic virus (CGMMV) in pretreated cucumber plants with Stenotrophomonas
maltophilia strain HW2 was delayed for more than three days, as well as increased
expression of both defense-associated genes (PR1 and PR5) and defense-associated
enzymes (CAT and SOD), resulting in increased cucumber resistance.

15.3 Viral Protection Spectrum via PGPR

Lately, research on the ISR-mediated PGPR scope against viruses in various plants
has gained significance. Several species of (PGPR) are used as microbiological
inoculants for protecting plants from virus infection and enhancing crop yield as
shown in the Table (15.1).

15.3.1 Banana Bunchy Top Virus

Banana bunchy top virus (BBTV), a member of the Nanoviridae family (Babuvirus
genus), causes the bunchy top disease, a serious banana virus disease (Musa spp.,
Musaceae) (Dale 1987; Harding et al. 1991). It is transmitted in a persistent cir-
culative and non-replicative manner by the aphid vector Pentalonia nigronervosa
Coq. (Hu et al. 1996). The disease is difficult to eradicate and manage, where there
are no possible strategies currently available to protect these plants against BBTV
completely (Harish et al. 2008). Nevertheless, another way of integral management
of this disease is for ISR to use in vitro virus-free micropropagated banana plantlets
with rhizobacteria (PGPR) and endophyte bacteria (PGPE) to strengthen the plant
against the virus (Harish et al. 2008). For instance, the application of Streptomyces
chibaensis culture filtrate ten days prior to BBTV inoculation highly inhibited
BBTV infection (Hewedy et al. 2008). In field conditions, the treatment of plants
with a mixture formulated as (EPB5 + EPB22 + Pf1 + CHA0) was also very
successful in limiting BBTV, where the mixture consisted of one strain of endo-
phytic Pseudomonas (EPB5), one strain of endophytic Bacillus (EPB22), and two
strains of rhizobacterial P. fluorescens (Pf1 & CHA0) (Harish et al. 2008). Further,
Kavino et al. (2007a, b) indicated the effective use of a mixture beneficial microbes
(EPB22 + Pf1 + CHA0) in reducing the disease incidence of BBTV in tissue
culture banana plantlets. Also, according to Kavino et al. (2009), the two
chitin-formulated P. fluorescens strains (Pf1 and CHA0) have demonstrated their
effectiveness in BBTV control. In another study, under greenhouse and field
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Table 15.1 Management of plant viruses using PGPR

Virus Plant Potential PGPR References

Banana bunchy top
virus (BBTV)

Banana (Musa
spp.)

Streptomyces chibaensis (Hewedy et al. 2008)

Pseudomnas (EPB5) + Bacillus
(EPB22) + P. fluorescens
(Pf1 + CHA0)

(Harish et al. 2008)

Bacillus (EPB22) + P. fluorescens
(Pf1 + CHA0)

(Kavino et al. 2007a, b)

P. fluorescens (Pf1 + CHA0) (Kavino et al. 2009)

Bacillus (EPB22) + P. fluorescens
(Pf1)

(Harish et al. 2009a)

Bean common mosaic
virus strain blackeye
cowpea mosaic
(BCMV-BlCM)

Cowpea (Vigna
unguiculata)

B. subtilis (GB03) + B. pumilus (T4) (Shankar et al. 2009)

Bean yellow mosaic
virus (BYMV)

Faba bean (Vicia
faba)

P. fluorescens (FB11) (Elbadry et al. 2006)

R. leguminosarumbv. viceae
(FBG05)

R. leguminosarumbv. viceae
(ICARDA-441 + ARC-202)

(Sofy et al. 2014a)

Microbien (Azotobacter
sp. + Asosprillum sp. + B.
megaterium + P. fluorescens + R.
leguminosorum)

(Hilal et al. 2016)

Bitter gourd yellow
mosaic virus
(BGYMV)

Bitter gourd
(Momordica
charantia)

P. chlororaphis (Rajinimala et al. 2009)

P. fluorescens

Cucumber green
mottle mosaic virus
(CGMMV)

Cucumber
(Cucumis sativus)

Stenotrophomonas maltophilia
(HW2)

(Li et al. 2016b)

Watermelon
(Citrullus lanatus)

P. oleovorans (KBPF-004) (Kim et al. 2017)

Cucumber mosaic
virus (CMV)

Cucumber
(Cucumis sativus)

P. syringae pv. lachrymans (Bergstrom et al. 1982)

P. fluorescens (Raupach et al. 1996)

Serratia marcescens

B. pumilus (SE49) + B.
amyloliqefaciens (IN937a)

(Jetiyanon and Kloepper
2002)

B. pumilus (SE49 + IN937b) (Jetiyanon et al. 2003;
Jetiyanon and Kloepper
2002)

B. pumilus (SE34 + IN937b) (Jetiyanon et al. 2003)

Streptomyces violaceusniger (Galal 2006)

Azotobacter chroococcum (El-Borollosy and Oraby
2012)P. fluorescens

Streptomyces calvus (El-Dougdoug et al. 2012b)

Streptomyces canarius,

Streptomyces vinaceusdrappus

Streptomyces nogalater

Streptomyces viridosporus

Streptomyces griseorebens (Shafie et al. 2016)

Streptomyces cavourensis

(continued)
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Table 15.1 (continued)

Virus Plant Potential PGPR References

Tomato (Solanum
lycopersicon L.)

Pseudomonas fluorescens (Raupach et al. 1996)

Serratia marcescens

B. amyloliquefaciens (IN937a) (Zehnder et al. 2000, 2001)

B. subtilus (IN937b)

B. pumilus (SE34)

B. amyloliquefaciens (IN937a) + B.
subtilis (GB03)

(Murphy et al. 2003)

Azospirillum lipoferum
(MRB16) + A. brasilienses
(SP7) + A. brasilienses
(N040) + Anabena oryzae Fritsch

(Dashti et al. 2007)

P. aeruginosa + Stenotrophomonas
rhizophilia

(Dashti et al. 2012)

Pepper (Capsicum
annuum)

B. amyloliquefaciens strain 5B6 (Lee and Ryu 2016)

Tobacco
(Nicotiana
tabacum)

B. pumilus (SE34) (Kloepper et al. 2004b)

Pseudomonas chlororaphis (O6) (Ryu et al. 2007a)

Paenibacillus lentimorbus
(B-30488)

(Kumar et al. 2016)

Arabidopsis
thaliana

Serattia marcescens (90-166) (Ryu et al. 2004)

B. pumilus (SE34)

B. subtilis (GB03) + B.
amyloliquefaciens (IN937a)

(Ryu et al. 2007b)

Papaya ringspot virus
(PRSV)

Squash B. pumilus (SE34) + B.
amyloliquefaciens (IN937a)

(Abdalla et al. 2017)

B. pumilus (SE34) + B. sphaericus
(SE56) + B. amyloliquefaciens
(IN937a)

Pepper mild mottle
virus
(PMMoV)

Tobacco
(Nicotiana
tabacum)

B. amyloliquefaciens (EXTN-1) (Ahn et al. 2002)

Pepper (Capsicum
annuum)

P. oleovorans (KBPF-004) (Kim et al. 2017)

Potato virus X
(PVX)

Tobacco
(Nicotiana
tabacum L. cv.
White Burley)

Streptomyces afghanensis (Hussein 1992)

Potato (Solanum
tuberosumL.)
variety Daeseo

B. vallismortis (EXTN-1) (Park et al. 2006)

Potato virus Y
(PVY)

Chenopodium
quinoa

Streptomyces erythraeus (QS01) (Mohamed and Galal 2005)

Streptomyces erythraeus (QS02)

Streptomyces naganishii (QS03)

Streptomyces michigansis (QS04)

Potato (Solanum
tuberosum L.
variety Daeseo)

B. vallismortis (EXTN-1) (Park et al. 2006)

Tomato (Solanum
lycopersicon L.)

B. amyloliquefaciens (MBI600) (Beris et al. 2018)

(continued)
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Table 15.1 (continued)

Virus Plant Potential PGPR References

Sunflower necrosis
virus
(SNV)

Sunflower
(Helianthus
annuus L.)

PGPMC-1 [Streptomyces fradiae
(MML1042) + B. licheniformis
(MML2501) + Bacillus
(MML2551) + P. aeruginosa
(MML2212)]

(Srinivasan and Mathivanan
2009)

Tobacco mosaic virus
(TMV)

Tobacco
(Nicotiana
tabacum)

P. syringae (Loebenstein and
Lovrekovich 1966)

B. uniflagellatus (Mann 1969)

Datura metel Streptomyces rochei (Mansour et al. 1988)

Tobacco
(Nicotiana
tabacum)

Tobacco
(Nicotiana
tabacum L. cv.
White Burley)

Streptomyces afghanensis (Hussein 1992)

Tobacco
(Nicotiana
tabacum L. cv.
White Burley)

P. aeruginosa (7NSK2) (De Meyer et al. 1999)

Tobacco
(Nicotiana
glutinosa)

Streptomyces erythraeus (QS01) (Mohamed and Galal 2005)

Streptomyces erythraeus (QS02)

Streptomyces naganishii (QS03)

Streptomyces michigansis (QS04)

Hot Pepper B. cereus (I-35) (Damayanti et al. 2007)

Tomato
(Lycopersicon
esculentum)

Pseudomonas spp. (B-25) (Kirankumar et al. 2008)

Tobacco (N.
tabacum cv.
NC89)

B. subtilis (G1) (Wang et al. 2009)

B. amyloliquefaciens (FZB24)

Tobacco
(Nicotiana
tabacum)

B. subtilis (SW1) (Lian et al. 2011)

B. pumilus (EN16)

Tobacco (N.
tabacum cv.
Xanthi-nc)

P. chlororaphis (O6) (Park et al. 2012)

Tobacco
(Nicotiana
tabacum)

B. amyloliquefaciens (Ba33) (Shen et al. 2013)

Tobacco (N.
tabacumcv.
Xanthi-nc)

P. oleovorans (KBPF-004) (Kim et al. 2017)

Tobacco necrosis
virus
(TNV)

Tobacco
(Nicotiana
tabacum)

P. fluorescens (CHA0) (Maurhofer et al. 1994,
1998)

P. fluorescens (P3) (Maurhofer et al. 1998)

Bean
(Phaseolus
vulgaris)

P. fluorescens (Shoman et al. 2003)

Streptomyces gibsonii

Tomato chlorotic spot
virus

Tomato (Solanum
lycopersicon L.)

B. amyloliquefaciens (IN937a)

(continued)
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conditions, mixture application (EPB22 + Pf1) increased yield by reducing the
BBTV incidence (Harish et al. 2009a). Since bacterized plants significantly activate
PR proteins, defense enzymes (PPO, POD, PAL, chitinase, and ß-1,3-glucanase)
and phenolic compounds, thereby inducing resistance to BBTV (Harish et al.
2009a, b; Kavino et al. 2007b).

15.3.2 Bean Common Mosaic Virus Strain Blackeye
Cowpea Mosaic

Bean common mosaic virus strain blackeye cowpea mosaic (BCMV-BlCM), a
member of the family Potyviridae (genus Potyvirus) in cowpea (Vigna unguiculate,
Fabaceae) is seed-transmitted, where the frequency of transmission is as high as

Table 15.1 (continued)

Virus Plant Potential PGPR References

(TCSV) B. pumilus (SE34) + B.
amyloliquefaciens (IN937a)

(Abdalla et al. 2017)

B. pumilus (SE34) + B. sphaericus
(SE56) + B. amyloliquefaciens
(IN937a)

Tomato mosaic
tobamovirus
(ToMV)

Tobacco
(Nicotiana
tabacum L. cv.
White Burley)

Streptomyces afghanensis (Hussein 1992)

Datura metel P. fluorescens 2 (Megahed et al. 2013)

B. circulans

Tomato mottle virus
(ToMoV)

Tomato
(Lycopersicon
esculentum)

B. amyloliquefaciens (IN 937a) (Murphy et al. 2000;
Zehnder et al. 2001)B. subtilis (IN 937b)

B. pumilus (SE34)

Tomato spotted wilt
virus
(TSWV)

Tomato
(Lycopersicon
esculentum cv.
Co-3)

P. fluorescens (CHA0) (Kandan et al. 2002; 2005)

P. fluorescens (CHA0 + CoT-1)

P. fluorescens
(CHA0 + CoT-1 + CoP-1)

Tomato (Solanum
lycopersicon L.)

B. amyloliquefaciens (MBI600) (Beris et al. 2018)

Tomato yellow leaf
curl virus (TYLCV)

Tomato
(Lycopersicon
esculentum cv.
Hezuo 903)

Enterobacter asburiae (BQ9) (Li et al. 2016a)

Urdbean leaf crinkle
virus
(ULCV)

Blackgram (Vigna
mungo)

P. fluorescens (pf1) (Karthikeyan et al. 2009)

P. fluorescens (CHA0)

Watermelon mosaic
virus
(WMV)

Pumpkin
(Cucurbita
maxima)

B. pumilus 293 (B2) (Elbeshehy et al. 2015)
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31%, and economic yield losses encountered, whenever virus-infected seed is used
(Puttaraju et al. 2002; Zettler and Evans 1972). Also, BCMV-BlCM is
aphid-transmitted in the field through Aphis crassivora and Myzus persicae in a
nonpersistent manner (Murphy et al. 1987). Both aphid- and seeds-transmitted can
lead to high yield losses, requiring the use of chemical control in aphids or the
production of virus-free seeds or disease management through induced systemic
resistance using PGPR (Hao et al. 2003). Shankar et al. (2009) used seven PGPR
strains [Bacillus pumilus (T4), B. amyloliquefaciens (IN937a), B. pumilus (INR7),
B. subtilis (SE34), B. subtilis (IN937b), B. subtilis (GB03), and Brevibacillus brevis
(IPC11)] as promising inducers against BCMV-BlCM. All PGPR strains showed a
significant increase in seed germination and seedling vigor and a decrease in the
incidence of BCMV compared to untreated control under both greenhouse and field
conditions (Shankar et al. 2009). Since under greenhouse conditions, the strains
(GB03 and T4) provided 41 and 42% protection, respectively, in the treated cowpea
seeds against BCMV-BlCM, whereas the strain (GB03) provided 34% under field
conditions (Shankar et al. 2009). On the other hand, application of a combination of
the two strains (GB03 + T4) registered the highest protection of 69 and 62%
against BCMV-BlCM under greenhouse and field conditions, respectively (Shankar
et al. 2009).

15.3.3 Bean Yellow Mosaic Virus

Bean yellow mosaic virus (BYMV), a member of the Potyviridae family (Potyvirus
genus), is transmitted by many aphid species in a nonpersistent manner, one of the
most frequently found and probably most damaging viruses affecting the production
of field-grown legumes and some non-legumes (Bos 1970; Boswell and Gibbs
1983; Edwardson and Christie 1991; Fauquet et al. 2005). Faba bean (Vicia faba L.,
Fabaceae) is considered the most important nutritious popular food crop in Egypt
and other countries around the world (Elbadry et al. 2006; Sofy et al. 2014a).
Makkouk et al. (2003) recorded BYMV in 89% of the samples collected from
surveyed Egyptian faba bean fields with high-level BYMV symptoms (80–100%
infection). Controlling of BYMV is difficult due to its quite broad host range and its
ability to be transmitted in a nonpersistent manner by many aphid species and also
through seeds in certain legume species (Berlandier et al. 1997; Frison et al. 1990).
Elbadry et al. (2006) investigated ISR in faba bean against BYMV through seed
bacterization with Rhizobium leguminosarum bv. viceae strain FBG05, and
Pseudomonas fluorescens strain FB11 individually or in combination. The results
showed a decrease in the concentration of BYMV (ELISA) and the percentage of
disease incidence (PDI) in the BYMV-challenged plants treated individually with
strains (FBG05 and FB11) compared to non-bacterized and control-challenged
plants (Elbadry et al. 2006). Co-inoculant preparation of the two strains
(FBG05 + FB11) revealed an insignificant additional reduction of the ELISA value
or PDI compared to the strain (FB11) alone which caused a marked reduction
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(Elbadry et al. 2006). Also, Sofy et al. (2014a)_ENREF_44 investigated the mixture
of two R. leguminosarum bv. viceae strains (ICARDA-441 + ARC-202) that
triggered ISR against BYMV-induced bean yellow mosaic disease with significant
increases in the levels of abscisic acid, salicylic acid, jasmonic acid in addition to
total phenol, free proline and the activities of peroxidase and polyphenol oxidase
enzymes compared to the non-bacterized and controlled challenged plants. Hilal
et al. (2016) also observed induced systemic protection using five formulations of
PGPR [Biogen (Azotobacter sp.), Cerealin (Azotobacter sp. + Asosprillum
sp. + Bacillus polymixa), Microbien (Azotobacter sp. + Asosprillum
sp. + B. megaterium +Pseudomonas fluorescens+ Rhizobium leguminosorum),
Nitrobien (Azotobacter sp. + Asosprillium sp.) and Rhizobacterin (Azotobacter
sp. + Asosprillum sp. + R. leguminosarum)] as foliar spraying or seed soaking of
faba bean against Botrytis fabae and BYMV. Interestingly, Microbien’s foliar
treatment significantly reduced the incidence and severity of the disease for both
Botrytis fabae and BYMV (Hilal et al. 2016). Therefore, PGPR strain could be used
in the same crop to cause resistance to several pathogens (Ramamoorthy et al.
2001).

15.3.4 Bittergourd Yellow Mosaic Virus

Bitter gourd (Momordica charantia L., Cucurbitaceae) is considered an ancient
species native to tropical Asia and Africa (Behera et al. 2010). It is widespread in
China, Malaysia, India, and tropical Africa (Behera et al. 2010). Bitter gourd yellow
mosaic virus (BGYMV), a member of the Geminiviridae family (Begomovirus
genus) is one of the viruses that affect the bitter gourd causing severe yield loss due
to its vector whitefly Bemisia tabaci (Rajinimala et al. 2005, 2009). Induction of
systemic disease resistance in bitter gourd plants against BGYMV is one of the
methods used for controlling the disease (Rajinimala et al. 2003, 2009). Seed
treatment with P. chlororaphis and P. fluorescens has consistently reduced the
disease incidence at 45 days after sowing (DAS), and further, it is significantly
reduced at 75 DAS compared to inoculated untreated control (Rajinimala et al.
2009). The mean plant height of P. chlororaphis- and P. fluorescens-treated plants
at 75 DAS was higher than in the inoculated control, as well as significantly
increased phenol content, peroxidase activity, and polyphenol oxidase activity
(Rajinimala et al. 2009).

15.3.5 Cucumber Green Mottle Mosaic Virus

Ainsworth (1935) first described the cucumber green mottle mosaic virus
(CGMMV), a member of the Virgoviridae family (Tobamovirus genus), when it
was found to cause cucumber disease in England. It also affects other vegetable
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crops such as squash, pumpkin, zucchini, and gherkin, and the fruit cucurbits of
watermelon and melon (Dombrovsky et al. 2017). As a result of increased trade
between different regions, CGMMV spread rapidly through mechanical means,
seeds, soil, pollen, and other propagating materials (Liu et al. 2014, 2016c;
Reingold et al. 2015). Li et al. (2016b) used Stenotrophomonas maltophilia strain
HW2 to control CGMMV, where it demonstrated its ability to promote the growth
of cucumber plants, colonize effectively in cucumber rhizosphere, and its effec-
tiveness against CGMMV was good. Li et al. (2016b) found that the replication of
CGMMV in pretreated cucumber plants with the strain (HW2) delayed for more
than three days and that the expression of viral protein genes in the leaf was
inhibited compared to the control. Additionally, the expression of both
defense-associated genes (PR1 and PR5) and defense-associated enzymes (CAT &
SOD) increased by the strain (HW2) resulting in increased cucumber resistance (Li
et al. 2016b). On the other hand, Kim et al. (2017) evaluated the antiviral activity of
Pseudomonas oleovorans strain KBPF-004 in CGMMV seed transmission com-
pared to strain ATCC 8062 (control strain). Since virus-infected seeds harvested
from infected watermelon plants were treated with cell-free culture supernatant of
each strain before planting compared to untreated CGMMV-infected seeds (Kim
et al. 2017). Kim et al. (2017) found that strain KBPF-004 reduced the rate of
GGMMV seed transmission to 15.8% compared to 59.7% for strain ATCC 8062,
indicating that the viability of GGMMV was adversely affected by strain
KBPF-004.

15.3.6 Cucumber Mosaic Virus

Cucumber mosaic virus (CMV), a member of the Bromoviridae family
(Cucumovirus genus), has a host range of more than 1200 plants in over 100
families worldwide, including crops, vegetables, ornamentals, and woody plants,
where it is transmitted in a nonpersistent manner by at least 75 species of aphid
(El-Dougdoug et al. 2014a; Megahed et al. 2012; Mochizuki and Ohki 2012;
Palukaitis et al. 1992; Sofy and Soliman 2011; Tóbiás et al. 1982).

Several authors studied the induction of systemic disease resistance against
CMV in plants such as cucumber, tomato, pepper, tobacco, and A. thaliana as
follows. Bergstrom et al. (1982) were the first to show that the cucumber leaves
treated with P. syringae pv. lachrymans induced systemic resistance to CMV. The
number of chlorotic and primary lesions in CMV-inoculated decreased and sys-
temic mosaic symptoms delayed (Bergstrom et al. 1982). Also, seed treatment of
cucumber or tomato with S. marcescens 90-166, and P. fluorescens 89B-27 reduced
the mean number of CMV symptomatic plants resulting in systemic resistance
(Raupach et al. 1996). Protection against CMV PGPR seed treatment has either
eliminated the development of viral symptoms in cucumber cotyledons or reduced
disease severity in tomato (Raupach et al. 1996). Similarly, S. marcescens strain
90-166 and B. pumilus strain SE34 systemically protect A. thaliana, by reducing the
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severity of the CMV symptoms and significantly reducing its accumulation in
systemically infected leaves (Ryu et al. 2004). Further, Ryu et al. (2007a) noted that
the GacS global regulator’s role in the rhizosphere-competent P. chlororaphis strain
O6 is relevant in stimulating growth promotion and inducing resistance in tobacco
cv. Samsun. El-Borollosy and Oraby (2012) recommended the use of Azotobacter
chroococcum followed by P. fluorescens to promote cucumber growth and induce
systemic resistance against CMV. Whereas, two types of treatment were performed:
(i) healthy cucumber plants were sprayed and subsequently inoculated with CMV
after spraying at intervals (5 and 10 days) and (ii) healthy cucumber seeds were
irrigated every 3 days–15 days with two hundred ml of each bacterial culture or
supernatants and afterward inoculated with CMV (El-Borollosy and Oraby 2012).

Several authors characterized the role of Streptomyces isolates as PGPR in ISR
against CMV. Galal (2006) found that the foliage treatment with culture filtrates of
the five Streptomyces strains (S. violarus, S. nasri strain H35, Streptomyces sp., S.
aureofaciens, and S. violaceuisniger) resulted in 50–85% reduction of the mosaic
symptoms. Application of bacterial filtrate before CMV inoculation showed a
higher level of antiviral activity than after CMV inoculation when the most
favorable incubation period was after 6 h of incubation (Galal 2006). On the other
hand, seeds soaking in the bacterial filtrate for 2 h achieved the highest viral
inhibition (Galal 2006). Of all the strains tested, S. violaceusniger significantly
inhibited the virus with the highest percentage (Galal 2006). El-Dougdoug et al.
(2012b) also identified five Egyptian Streptomyces isolates (S. calvus, S. canarius,
S. vinaceusdrappus, S. nogalater, and S. viridosporus) capable of producing an
antiviral component in culture filtrate that was not phytotoxic and effective in local
and systemic control of CMV infection. Both S. canarius and S. viridosporus
showed a maximum reduction in the percentage of local lesions produced on the
Chenopodium amaranticolor by CMV (El-Dougdoug et al. 2012b). Recently,
Shafie et al. (2016) reported that foliage treatment with S. griseorebens and S.
cavourensis culture filtrates resulted in a significant reduction in the severity of
CMV infection disease and inhibitory effect when applied 48 h before virus
inoculation.

On the other hand, due to its long shelf life, stability, and efficiency, several
Bacillus species have been widely assessed as practical biological management
agents (Kloepper et al. 2004a). Lee and Ryu (2016) demonstrated that foliar
application of B. amyloliquefaciens strain 5B6 mediated ISR against CMV in
pepper. Since the relative RNA content of CMV coat protein was considerably
reduced in a 3-year field trial through the treatment with the strain (5B6) compared
to water control, as demonstrated by qRT-PCR (Lee and Ryu 2016). On the other
hand, Jetiyanon and Kloepper (2002) demonstrated that eleven mixtures of PGPR
and one single strain treatment significantly reduced CMV of cucumber. Since seed
treatment with [B. pumilus strain (SE49) + Bacillus amyloliqefaciens strain
(IN937a)], [B. pumilus strains (SE49 +IN937b)], (B. pumilus strains
(SE34 + IN937b)], [B. pumilus strain (SE49) + B. sphaericus strain (SE56)], [B.
amyloliqefaciens strain (IN937a) + B. pumilus strain (IN937b)], [B. pumilus strain
(INR7) + B. amyloliqefaciens strain (IN937a)], [B. pumilus strains (INR7 + T4)],
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[B. pumilus strains (IN937b + T4)], [B. pumilus strain (IN937b) + B. sphaericus
strain (SE56)], [B. amyloliqefaciens strain (IN937a) alone], [B. pumilus strains
(IN937b + INR7)] and [B. pumilus strains (SE34 + T4)], reduced mean numbers of
CMV symptomatic plants as a result to induced systemic resistance with 0.8, 0.8,
1.0, 1.0, 1.2, 1.4, 1.4, 1.6, 1.6, 1.6, 1.8, and 2, respectively, compared to the sodium
phosphate buffer control treatment (3.0) (Jetiyanon and Kloepper 2002). In another
study, Jetiyanon et al. (2003) reported that consortia (strain SE49 + strain IN937b)
and (strain SE34 + strain IN937b) offered nearly 80% suppression of disease, while
consortia (strain IN937a + strain IN937b, strain INR7 + strain T4, and strain
IN937a alone) offered nearly 60% suppression of disease compared to the control.

Zehnder et al. (2000, 2001) identified PGPR strains that protect tomato plants
under greenhouse and field conditions from CMV systemic infection. Initially, 26
PGPR strains were evaluated in greenhouse experiments to induce systemic resis-
tance to CMV in tomatoes (Zehnder et al. 2000, 2001). Since four PGPR strains [B.
pumilus (SE34), B. subtilus (IN937b), B. amyloliquefaciens (IN937a), and Kluyvera
cryocrescens (IN114)] selected for field trials and their effectiveness assessed on the
basis of symptomatic plant percentages ranged from 32 to 58% of the most effective
PGPR treatments compared to 88 to 98% of the challenged control (Zehnder et al.
2000, 2001). In field experiments, three PGPR strains (B. amyloliquefaciens strain
IN937a, B. subtilus strain IN937b, and B. pumilus strain SE34) reduced the
development of CMV symptoms and the incidence of disease (Zehnder et al. 2000,
2001). Likewise, Murphy et al. (2003) evaluated six combined formulations with
the carrier chitosan that included Bacillus subtilis strain GB03 together with one of
B. amyloliquefaciens (IN937a), B. pumilus (SE34), B. pumilus (INR7), B. pumilus
(T4), or B. subtilis (IN937b) as promising inducers against CMV in tomato.
A mixture of PGPR [B. amyloliquefaciens (IN937a) + B. subtilis (GB03)] showed
the ability to protect tomato from CMV (Murphy et al. 2003). This mixture also
triggered ISR against CMV and encouraged plant growth in Arabidopsis thaliana
(Ryu et al. 2007b). Likewise, B. pumilus strain SE34 elicited ISR against CMV in
tobacco (Kloepper et al. 2004b). Kumar et al. (2016) suggested that P. lentimorbus
strain B-30488 induce resistance against CMV in tobacco (N. tabacum cv. White
Burley). The strain (B-30488) was isolated from cow’s milk, which increased plant
strength, while the accumulation of RNA virus and virulence in CMV infected
tobacco plants systemic leaves decreased significantly by about 12-fold (91%)
compared to control plants (Kumar et al. 2016). The strain (B-30488) was isolated
from cow’s milk, where the strain increased plant strength, while the accumulation
of RNA virus and virulence in CMV infected tobacco plant systemic leaves
decreased significantly by 91% compared to control plants (Kumar et al. 2016).

On the other hand, the mixing culture of Azospirillum lipoferum strain MRB16,
A. brasilienses strain SP7, A. brasilienses strain N040, and Anabena oryzae Fritsch
showed the ability to protect tomato against CMV containing viral satellite RNA
(CARNA 5) leading to increased fruit yield both in the greenhouse and in the field
(Dashti et al. 2007). Also, Dashti et al. (2012) observed that a PGPR mixture
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containing P. aeruginosa and S. rhizophilia, with a mild strain of CMV associated
with viral satellite RNA (CMV-KU1) enhanced the growth of tomato plants pro-
tected from the severe CMV-16 with 91.3% disease prevention.

15.3.7 Papaya Ringspot Virus

Papaya ringspot virus (PRSV) a member of the Potyviridae family (Potyvirus
genus), causes a destructive disease and is the main restrictive agent in the culti-
vation of cucurbit or papaya throughout the world, where it is transmitted in a
nonpersistent manner by multiple species of aphids (Gonsalves et al. 2010; Tripathi
et al. 2008). The PRSV has two types in which the first type called PRSV-P affects
both cucurbit and papaya and the second type only affects cucurbit but does not
affect papaya and is called PRSV-W, previously known as watermelon mosaic
virus-1 (Bateson et al. 2002; Gonsalves et al. 2010; Tripathi et al. 2008). Quite
recently, Abdalla et al. (2017) reported that mixing either two PGPR strains [B.
pumilus (SE34) + B. amyloliquefaciens (IN937a)] or three strains [B. pumilus
(SE34) + B. sphaericus (SE56) + B. amyloliquefaciens (IN937a)] significantly
reduced the severity of PRSV-W disease in squash plants 3 and 6 weeks after virus
inoculation compared to infected untreated control. Since soil drenching is the more
effective method observed by Abdalla et al. (2017), then root dipping and seed
coating treatment.

15.3.8 Pepper Mild Mottle Virus

Pepper mild mottle virus (PMMoV), a member of the Virgaviridae family
(Tobamovirus genus), is one of the most important pathogens of pepper crops,
where infection can reach 100% in the field (Green 2003; Wetter and Conti 1988).
PMMoV is easily transmitted by grafting, mechanical contact and PMMoV-
infected seed coats (Genda et al. 2005; Svoboda et al. 2006). B. amyloliquefaciens
strain EXTN-1 trigger ISR in tobacco against PMMoV through salicylate-
dependent and jasmonate-dependent pathways (Ahn et al. 2002). On the other
hand, Kim et al. (2017) evaluated the antiviral activity of Pseudomonas oleovorans
strain KBPF-004 in PMMoV seed transmission compared to strain ATCC 8062
(control strain). Since virus-infected seeds harvested from infected pepper plants
were treated with cell-free culture supernatant of each strain before planting com-
pared to untreated PMMoV -infected seeds (Kim et al. 2017). Kim et al. (2017)
found that strain KBPF-004 reduced the rate of PMMoV seed transmission to
15.5% compared to 61.9% for strain ATCC 8062, indicating that the viability of
PMMoV was adversely affected by strain KBPF-004.
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15.3.9 Potato Virus X

Potato virus X (PVX), a member of the Alphaflexiviridae family (Potexvirus
genus), is a major pathogen of potato crops worldwide, infecting a wide range of
hosts, notably within the Solanaceae family (Aboul-Ata et al. 2011; King et al.
2011). It has been included among pathogens with significant economic impact and
can cause significant economic losses in synergistic co-infection with potato virus
Y (Khurana and Singh 1988; Vance 1991). Hussein (1992) reported that both
concentrated metabolites and their acetone extract of Streptomyces afghanensis
(Egyptian isolate) inhibited the development of local lesions caused by
PVX-infected N. tabacum L. cv. White Burley, where the maximum antiviral effect
was observed 2 h after infection. On the other hand, the potato plants treated (seed
treatment) with Bacillus vallismortis strain EXTN-1 increased the yield to untreated
control by up to 45% (Park et al. 2006).

15.3.10 Potato Virus Y

Potato virus Y (PVY), a member of the Potyviridae family (Potyvirus genus), is a
serious pathogen infecting several important crop species in the night shad family,
including potato, tomato, tobacco, and pepper, resulting in significant yield losses
and quality degradation (El-Dougdoug et al. 2014b; Glais et al. 2002; Sofy et al.
2013b). Mohamed and Galal (2005) observed that both the culture filtrates with
pellets (cells of streptomycetes) of four Egyptian halotolerant Streptomyces isolates
(S. erythraeus strain QS01, S. erythraeus strain QS02, S. naganishii strain QS03,
and S. michigansis strain QS04) isolated from Qaroon Lake showed a decrease in
the number of local necrotic lesions produced by PVY on Chenopodium quinoa. On
the other hand, potato plants treated with Bacillus vallismortis strain EXTN-1
increased yields of up to 45% and chlorophyll content compared to the untreated
control by protecting plants against potato virus Y (Park et al. 2006). Also, the
application of B. amyloliquefaciens strain MBI600 decreased the accumulation of
PVY during early infection and overdue detection of PVY in apical leaves (Beris
et al. 2018). Where, in addition to the length of the tomato plants treated with the
strain (MBI600), the fresh and dry weight after 30 days of inoculation was sig-
nificantly higher than that of water and BTH treatments (Beris et al. 2018).

15.3.11 Sunflower Necrosis Virus

Sunflower necrosis virus (SNV) is a strain of tobacco streak virus (TSV), a member
of the Bromoviridae family (Ilarvirus genus) that has recently caused significant
crop loss in sunflower in India (Chavhan et al. 2017; Ravi et al. 2001). Although
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Ilarvirus transmitted through seeds (van Regenmortel et al. 2000), SNV trans-
mission not confirmed by sunflower seeds (Srinivasan and Mathivanan 2009).
Insecticides are mainly used to control the SNV carrier (thrips) for disease man-
agement as observed by Srinivasan and Mathivanan (2009). On the other hand, the
application of two PGPR microbial consortia [PGPMC-1 (Streptomyces fradiae
strain MML1042 + Bacillus licheniformis strain MML2501 + Bacillus strain
MML2551 + P. aeruginosa strain MML2212), and PGPMC-2 (strains
MML2501 + MML2551 + MML2212)] to the sunflower plants in two different
formulations in powder and liquid forms resulted in increased efficiency of ISR
against SNV (Srinivasan and Mathivanan 2009). In addition to a significant
reduction in disease, plants treated with PGPMC-1 liquid formulation registered an
increase in seed germination, plant height and yield parameters with a higher
income and benefit–cost ratio (Srinivasan and Mathivanan 2009).

15.3.12 Tobacco Mosaic Virus

Tobacco mosaic virus (TMV), a member of the Virgoviridae family (Tobamovirus
genus), is a global plant virus infecting many horticultural crops and one of the
most destructive plant diseases, resulting in severe losses (Sutic et al. 1999). Several
studies have shown that individual PGPR strains could result in ISR against TMV
as follows. Loebenstein and Lovrekovich (1966) noted that, injecting heat-killed
cells of P. syringae into the intracellular spaces of N. tabacum var. Samsun NN
leaves 0–7 days before inoculation with TMV reduced TMV lesions to 3–12%
compared with water-injected control leaves. Whereas heat-killed bacteria were
injected 5–72 h after inoculation with TMV, the number of lesions decreases by
86% and the area per lesion by 95–33% (Loebenstein and Lovrekovich 1966).
Knowledge of this kind of resistance came mainly from the work of several authors
including Loebenstein and Lovrekovich (1966). Also, De Meyer et al. (1999)
showed that root colonization with P. aeruginosa strain 7NSK2 triggered ISR in
tobacco against TMV, which is phenotypically similar to SAR TMV. Pseudomonas
spp. strain B-25 treatment significantly improved growth components and fruit
yield of TMV-challenged tomato plants, whereas at 60 DAT (days after trans-
planting); plant height, the number of branches, number of leaves, total biomass,
chlorophyll content, and fruit yield were increased by 44.8, 69.9, 59.5, 52.2, 158.2
and 102%, respectively, over challenged control (TMV only) (Kirankumar et al.
2008). Also, treatment with the strain (B-25) increased NPK uptake in
TMV-challenged tomato plants, where N, P, and K uptake were increased by 78.6,
84.5 and 80.3%, respectively, and higher than challenged control (Kirankumar et al.
2008). P. chlororaphisstrain strain O6 has been shown to have ISR activity against
cucumber mosaic virus, where the global GacS regulator is considered necessary
for strain (O6) to stimulate ISR determinants (Ryu et al. 2007a). The nature of
antiviral components in O6 against TMV identified by Park et al. (2012) as a cyclic
peptide with molecular formula C39H67N9O12S composed of seven different amino
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acids and called “Peptamine.” Peptamine (1000 µg/ml) exhibited more than 95% of
disease suppression on the leaves treated with the mixture of TMV (Park et al.
2012). Recently, Kim et al. (2017) reported that P. oleovorans strain KBPF-004
cell-free culture diluted supernatant (1/20) treated N. tabacum cv. Xanthi-nc leaves
showed the highest, i.e., 96% antiviral activity against mechanical transmission of
TMV, whereas strain ATCC 8062 showed 19.7% compared to untreated leaf
regions (control).

Long back, Mann (1969) showed that the applied culture of Bacillus uniflag-
ellatus used as a soil drench method induces systemic resistance to TMV and
reduces the number of lesions. Similarly, Fahmy and Mohamed (1984) found that
the culture filtrate of certain microorganisms containing B. subtilis reduced the local
lesions produced by TMV on the tobacco cv. Samsun. Damayanti et al. (2007)
reported that Bacillus sp. strain I-6, B. cereus strain I-35, and Brevibacterium
sanguinis strain I-16 protected hot pepper plants from TMV and attained maximally
by strain 1-15. Wang et al. (2009) assessed that individual strains (B. amyloliq-
uefaciens strains FZB24 and FZB42 and B. subtilis strains G1 and B3) could induce
resistance against TMV and decrease the severity of the disease 28 days
post-inoculation. However, the effect of B. amyloliquefaciens (FZB24) and B.
subtilis (G1) treatments was most significant (Wang et al. 2009). Furthermore,
western blot analysis confirmed that tobacco plants treated with B. amyloliquefa-
ciens (FZB24) and B. subtilis (G1) contained a lower amount of the TMV coat
protein compared to tobacco plants treated with B. amyloliquefaciens (FZB42) and
B. subtilis (B3) (Wang et al. 2009). Tobacco plants treated with B. pumilus strain
EN16 or B. subtilis strain SW1 also offered protection of 52% and 71%, respec-
tively, at 14 d of inoculation (Lian et al. 2011). The amount of virus detected by
ELISA decreased in tobacco plants treated with EN16 or SW1 (Lian et al. 2011).
Further, after 5 d and 7 d intervals between PGPR treatment and TMV inoculations,
respectively, strain EN16 and SW1 induce optimal resistance (Lian et al. 2011).
Shen et al. (2013) recommended the use of B. amyloliquefaciens strain Ba33 as a
soil disinfectant and an antiviral agent against TMV, where Ba33 treatments
decreased the number of local necrotic lesions and disease index. The best treatment
was spraying N. tabacum with strain Ba33 simultaneously with TMV inoculation in
field trials comparable to ningnanmycin registered and established as an antiviral
agent in tobacco (Shen et al. 2013).

Mansour et al. (1988) Observed inhibition of TMV (from Datura metel leaves)
using Streptomyces rochei, while S. rimosusor and S. gougerotti caused weak
inhibition. Both the concentrated metabolites and their acetone extract of
Streptomyces afghanensis (Egyptian isolate) inhibited the development of local
lesions caused by TMV-infected N. tabacum L. cv. White Burley, where the
maximum antiviral effect was observed 2 h after infection (Hussein 1992).
Similarly, the culture filtrates with cell pellets of four Egyptian halotolerant
Streptomyces isolates (S. erythraeus strain QS01, S. erythraeus strain QS02, S.
naganishii strain QS03, and S. michigansis strain QS04) showed a decrease in the
number of local necrotic lesions produced by TMV on N. glutinosa (Mohamed and
Galal 2005).
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15.3.13 Tobacco Necrosis Virus

Tobacco necrosis virus (TNV), a member of the Tombusviridae family (Necrovirus
genus), is a plant virus has an extensive host range including many cultivated
species, where it is infectious to 298 species of 167 genera belonging to 54 families
(Edwardson and Christie 1997). The virus occurs in plant roots and is transmitted in
a nonpersistent manner by the chytrid fungus vector Olpidium, especially O.
brassicae and O. bornavirus (Fry and Campbell 1966; Hull 2002; Sutic et al. 1999).
The soil application of P. fluorescens strain CHA0 which produces salicylic acid
naturally under iron-limited conditions exhibits induced systemic protection against
TNV in tobacco, where the incidence of leaf necrosis in tobacco plants is reduced
after inoculation with TNV (Maurhofer et al. 1994, 1998). While the introduction of
the salicylic acid biosynthetic genes (pchA and pchB) into P. fluorescens strain
CHA0 that produces salicylic acid increased salicylic acid production in tobacco
rhizosphere and in vitro, it did not improve ISR in tobacco against TNV (Maurhofer
et al. 1998). On the other hand, the introduction of salicylic acid biosynthetic genes
into P. fluorescens strain P3 which does not produce salicylic acid gives this strain
the ability to produce salicylic acid in vitro and significantly enhances its capability
to ISR in tobacco against TNV (Maurhofer et al. 1998). Foliage treatment with B.
globisporus, P. fluorescens, or S. gibsonii culture filtrate profoundly reduced the
local lesions number in Phaseolus vulgaris, where P. fluorescens and S. gibsonii
showed the highest inhibitory effect of TNV infection by 91.5% and 97.2%,
respectively (Shoman et al. 2003).

15.3.14 Tomato Chlorotic Spot Virus

Tomato chlorotic spot virus (TCSV), a member of the Bunyaviridae family
(Tospovirus genus), is transmitted by thrips (Thysanoptera: Thripidae) in a per-
sistent and propagative manner, where the most efficient TCSV vectors are the dark
form of Frankliniella schultzei followed by Frankliniella occidentalis (King et al.
2011; Martínez et al. 2018; Peters et al. 1996; Polston et al. 2013). TCSV causes
diseases associated with significant losses in overall yield and quality in both
agricultural and ornamental crops (Pappu et al. 2009; Polston et al. 2013).
Application of Bacillus amyloliquefaciens strain IN937a reduced the severity of
TCSV disease in tomato plants by almost 50% compared to infected untreated
control (Abdalla et al. 2017). Whereas soil drenching application of mixture of
either two PGPR strains [Bacillus pumilus (SE34) + B. amyloliquefaciens
(IN937a)] or three strains [B. pumilus (SE34) + B. sphaericus (SE56) + B. amy-
loliquefaciens (IN937a)] showed the highest reduction of TCSV disease severity at
3 and 6 weeks after virus inoculation compared to infected untreated control in both
first and second trials (Abdalla et al. 2017).
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15.3.15 Tomato Mosaic Tobamovirus

Tomato mosaic tobamovirus (ToMV), a member of the Virgaviridae family
(Tobamovirus genus), is found in tomatoes around the world where it can be
seed-borne and spread very quickly through mechanical transmission by grafting or
contaminated tools and workers, resulting in significant losses (Adams et al. 2012;
Broadbent 1965). Egyptian isolate of Streptomyces afghanensis has an antiviral
effect against ToMV, that inhibited local lesion produced on N. tabacum L. cv.
White Burley (Hussein 1992). Recently, Megahed et al. (2013) mentioned that the
liquid culture, cells and culture filtrate of individual P. fluorescens 2, and B. cir-
culans imparted ISR on tomato plants and reduced the ToMV symptoms and
ToMV local lesions produced on Datura metel as ToMV indicator host. The seed
treatment with an individual liquid culture, microbial culture filtrate and microbial
cells of P. fluorescens 2 profoundly reduced the local lesions number by 49.2, 57.7,
and 58.5%, respectively, compared to infected untreated control, while B. circulans
reduced the local lesions number by 42.3, 46.8, and 47.3%, respectively, compared
to infected untreated control (Megahed et al. 2013). Interestingly, P. fluorescens
proved better than B. circulans during field trials (Megahed et al. 2013).

15.3.16 Tomato Mottle Virus

Tomato mottle virus (ToMoV), a member of the Geminiviridae family
(Begomovirus genus), transmitted through whitefly B biotype, Bemisia tabaci
(Gennadius), was a primary limiting agent of tomato yields (Kring et al. 1991;
Polston et al. 1993; Simone et al. 1990). ToMoV management was limited due to
the ability of its vector to acquire insecticide resistance and lack of genetically
resistant tomatoes (Denholm et al. 1996; Stansly et al. 1991). In 1997, Murphy et al.
(2000) and Zehnder et al. (2001) noted that the severity ratings of ToMoV disease
were significantly less in the plants treated with powder-based treatments of B.
amyloliquefaciens strain IN937a, and B. subtilus strain IN937b compared to the
control. Consequently, in all powder-based treatments, the Southern blot analysis
showed a lower percentage of ToMoV-infected tomato plants compared to plants
undergoing seed treatment singly or control treatment (Murphy et al. 2000; Zehnder
et al. 2001). Further, Murphy et al. (2000) and Zehnder et al. (2001) used
B. pumilus strain SE34 instead of Bacillus amyloliquefaciens strain IN937a, where
the severity symptom ratings of ToMoV were notably reduced in plants treated as
seed treatment alone with B. subtilis (IN937b), in addition to plants treated as
powder treatment alone and seed + powder treatment with B. pumilus (SE34)
compared to control (Murphy et al. 2000; Zehnder et al. 2001).
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15.3.17 Tomato Spotted Wilt Virus

Tomato spotted wilt virus (TSWV), a member of the Bunyaviridae family
(Tospovirus genus), ranks among the top 10 most economically important plant
viruses worldwide with a broad host range of up to 1000 plant species (Mumford
et al. 1996; Naidu et al. 2008; Parrela et al. 2003). TSWV transmitted by western
flower thrips, Frankliniella occidentalis (Pergande) as the primary vector in a
persistent and propagative manner (Ogada et al. 2013; Whitfield et al. 2005), as
well as transmitted by multiple species of thrips (Ullman et al. 1997). It causes
severe damages to crops grown in greenhouses, and open fields in all climate zones
(German et al. 1992; Peters et al. 1996). Treatment of seeds, seedlings, soil or foliar
applications with P. fluorescens strains (CHA0, CoT-1, and CoP-1) either alone or
in mixtures has triggered ISR against TSWV infection in tomato under both
greenhouse and field conditions (Kandan et al. 2002, 2005). They found that the
mixture of (CHA0 + CoT-1 + CoP-1) decreased disease maximum by 84%, fol-
lowed by the strain (CHA0) individually or in combined with the strain (CoT-1) by
80% compared to the untreated control plants (Kandan et al. 2002, 2005). This is
why P. fluorescens strains treated tomato plants demonstrated increased growth
promotion compared to untreated control plants under both greenhouse and field
conditions (Kandan et al. 2002, 2005). On the other hand, Beris et al. (2018)
demonstrated that under two different environmental conditions, the application of
B. amyloliquefaciens strain MBI600 as foliar, drench, or soil amendment reduced
the TSWV incidence by up to 80%.

15.3.18 Tomato Yellow Leaf Curl Virus

Tomato yellow leaf curl virus (TYLCV), a member of the Geminiviridae family
(Begomovirus genus), is a plant virus spread throughout the world and can be found
in most places where tomatoes are grown and is considered one of the most
destructive plant diseases in the world leading to severe losses (Navas-Castillo et al.
2011; Rybicki 2015; Sofy et al. 2017). TYLCV transmitted by the whitefly Bemisia
tabaci (Hemiptera; Aleyrodidae) in a circulative and persistent manner (Gotz et al.
2012). Enterobacter asburiae strain BQ9-elicited ISR against tomato yellow leaf
curl disease of TYLCV-induced tomato was investigated by Li et al. (2016a) who
observed a significant 42% decrease in the disease even after 45 days of inoculation
leading to long-term plant protection against TYLCV, in addition to increased
growth parameters compared to mock treatment plants (Li et al. 2016a). Moreover,
viral load in BQ9-pretreated tomato plants was reduced after 9 days by nearly 1/3
of viral control (Li et al. 2016a). In addition to the production of H2O2, the
expression of both defense-associated genes and defense enzymes was associated
with BQ9-induced ISR against TYLCV (Li et al. 2016a).
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15.3.19 Urdbean Leaf Crinkle Virus

Urdbean leaf crinkle virus (ULCV) has not been assigned to any genus and family
until now and is a plant virus that causes urdbean leaf crinkle disease (ULCD)
which is also considered to be very severe among viral diseases (Gautam et al.
2016; Ravinder Reddy et al. 2005). The disease is more severe in blackgram than
mungbean under field conditions, where the virus is transmitted by seed, grafting,
and sap inoculation, as well as by insects, whiteflies, and aphids (Gautam et al.
2016). Karthikeyan et al. (2009) reported that foliar- and soil-applied P. fluorescens
(strain pf1 or strain CHA0) 24 h prior to virus inoculation triggered ISR against
ULCV in blackgram, significantly reducing ULCV infection. The strain (Pf1) was
highly effective in reducing the percentage of ULCV infection by 9.33% for foliar
application or soil application compared to 74.50% for the control (Karthikeyan
et al. 2009). Whereas, foliar- and soil-applied strain (CHA0) reduced the percentage
of ULCV infection by 17.31%, and 20%, respectively, compared to the control by
77.16% (Karthikeyan et al. 2009). Furthermore, the strain (Pf1) increased the
activity of POD, PAL, and PPO and induced the phenolics accumulation in
blackgram plants against ULCV, thus helping the host plants to resist the disease
(Karthikeyan et al. 2009).

15.3.20 Watermelon Mosaic Virus

Watermelon mosaic virus (WMV), a member of the Potyviridae family (Potyvirus
genus), is a plant virus mostly distributed in temperate and Mediterranean regions
with broader host range than most Potyviruses, resulting in severe losses to all
cucurbit plants (Desbiez et al. 2009; Desbiez and Lecoq 2008; Moradi 2011).
A strategic approach to plant management of watermelon mosaic virus disease is
based on the use of insecticides to control its vectors (whites and aphids) and the
cross-protection of genetically engineered plants (Elbeshehy et al. 2015;
Lomonossoff 1995). Elbeshehy et al. (2015) investigated the induction of systemic
disease resistance in pumpkin against WMV by soil application with two PGPR
strains (B. subtilis 281 strain B1 and B. pumilus 293 strain B2) either individually or
in combination. They found that the strain (B2) suppressed disease by approxi-
mately 77.7% significantly higher than plants treated with the strain (B1) and
mixture (B1 + B2) that suppressed disease by 33.3% and 66.6%, respectively
(Elbeshehy et al. 2015). Furthermore, in plants treated with the strain (B2) or a
mixture of strains (B1 + B2), the concentration of WMV measured by ELISA was
0.16 and 0.34, respectively, which was significantly lower compared to plants
treated with strain (B1) and untreated WMV control than 0.75 and 1.366, respec-
tively (Elbeshehy et al. 2015).
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15.4 Conclusion

Viral diseases are difficult to eradicate and manage, where there are currently no
strategies to completely protect plants from viruses. PGPRs are considered to
induce systemic resistance, which can reduce the severity of certain diseases in crop
plants, known as PGPR-induced systemic resistance. Although PGPR-ISR studies
have centered on several pathogens of fungi and bacteria, several species of PGPR
are used as microbial inoculants to protect plants from virus infection and improve
crop yield. Since once resistance induced, it will provide nonspecific protection
against viruses. This chapter deals with several studies highlighting the importance
of several PGPR species against the viral infection of different plants. This
approach is, therefore, one of the methods of environmentally friendly prevention
and sustainable development.
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Chapter 16
Conclusion

Piyush Pandey

Abstract The beneficial microorganisms, majorly PGPR are helpful in the
improvement of plant growth and enhanced crop productivity. The future of organic
agriculture is bound to be dominated by the application of PGPR. This book has
been brilliantly carved out with the information on the mechanisms of interactions,
and cross talk of PGPR with plants, that will be useful in designing the strategies of
their application. Application of PGPR for biocontrol, as biopesticides, is another
domain that has translated in profitable industry, yet the information on their use
against viral infections is fascinating. Further, phytoremediation of heavy metal
from contaminated soil has been discussed in this book. In fact, the sustainable
management of field crops by PGPR triumph its merit, for ensuring the food
security in eco-friendly manner, and this book is a valuable collection of infor-
mation for its application and success.

Keywords PGPR � Biocontrol � Plant immunity � Cereals crops � Horticulture
crops

“A reasonable agriculture would do its best to emulate nature. Rather than change
the earth to suit a crop… it would diversify its crops to suit the earth”—this quote
by Klinkenborg (2013) reflects the necessity of agricultural technologies to proceed
toward green and sustainable agri practices. This book, has been complemented
with elaborated discussions, which has come up as an excellent cumulative effort of
scientists from different expertise, and single goal, i.e. promotion of PGPR for
better crop productivity and management.

A couple of chapters is focused on using different combinations of organisms
like various rhizobacteria, or PGPR with mycorrhizae, for the improvement of plant
growth. In fact, the term consortium was given in the last part of nineteenth century
for symbiotically living two or more bacteria, but the applications of such relations
in soil is recently becoming popular among users, which is supposed to provide
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better results. Not only it provides relatively more functional genes in system, but
also ensures the stability and survival of inoculated PGPR in new environment
(Pandey and Maheshwari 2007).

There are another two contributions which discuss the use of PGPR in vegeta-
bles. While one of these is specifically focused on cucurbitaceous vegetables, while
another one describes the significance of PGPR in productivity and disease man-
agement in tomato, pepper, melon, radish, and lettuce. In fact, the importance of
horticultural crops in food safety is less realized, but these crops are important not
only for economic reasons but also as a source of nutrition to large population.
PGPR shall play a significant role in improving the quality of produce, along with
economic benefits.

The cross talk between PGPR and host plant have been a very interesting aspect
for research. It has been realized that the chemical communications between soil
bacteria and host plants may induce the plants to tolerate abiotic stress such as salt
and drought stress. In fact, differentially expressed stress proteins had been iden-
tified in the treated host plants and expression of stress-specific genes had been
found to increase by 1.5-fold in PGPR-treated plants (Lim and Kim 2013). Such
facts make use of PGPR even more interesting where the direct mechanisms of
plant growth are further strengthened by the indirect benefits to plants. Similarly,
phytoremediation of heavy metal contaminated soil is coming up as another applied
aspect of PGPR (Kotoky and Pandey 2018), and this required a systematic dis-
cussion, which has been incorporated in this book.

The PGPR are versatile organisms. Their competitive physiological skills of
PGPR in rhizosphere also provide them the ability to remove some phy-
topathogenic parasites from the soil. This indirect mechanism of growth promotion
has been utilized for the formulation of PGPR-based biopesticides. Considering the
benefits of biological control, it is appropriate to understand the molecular and
physiological mechanisms of interactions, to obtain maximum benefits (Backer
et al. 2018). The biological control of fungal phytopathogens has been relatively
studied more, yet it’s stimulating and thought-provoking to read a chapter on the
protection of plants from viral diseases, primarily by the mechanism of induced
systemic resistance. There might be several checkpoints to understand the under-
lying mechanism, such as de novo production of pathogenesis-related proteins,
modifications in cell wall composition and/or synthesis of phytoalexins, yet there is
a possibility to find many other compounds, which are likely to exist but have not
been identified (Heil and Bostock 2002).

This book will be useful not only to the researchers, but also to each and every
stakeholder that contributes toward food security and green agriculture. The enri-
ched efforts of contributors and editorial team have resulted in a volume, which
systematically describes to different issues, and applications of PGPR in sustainable
agriculture. Needless to mention, that maybe, such volumes will be needed to place
the PGPR technology in field to its potential, but this particular book stands on its
merit for the information and contents, which will be useful to all.
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