l‘)

Check for
updates

From Dynamic State Machines
to Promela

Massimo Benerecetti'®™), Ugo Gentile?, Stefano Marrone®, Roberto Nardone?,
Adriano Peron', Luigi L. L. Starace', and Valeria Vittorini!

! University of Naples Federico II, Naples, Italy
{massimo.benerecetti,adriano.peron2,valeria.vittorini}@unina.it,
luigi.starace@gmail.com
2 CERN, Geneva, Switzerland
ugo.gentile@cern.ch
3 Universita della Campania “Luigi Vanvitelli”, Caserta, Italy
stefano.marrone@unicampania.it
4 University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
roberto.nardone@unirc.it

Abstract. Dynamic State Machines (DSTM) is an extension of Hier-
archical State Machines recently introduced to answer some concerns
raised by model-based validation of railway control systems. However,
DSTM can be used to model a wide class of systems for design, verifi-
cation and validation purposes. Its main characteristics are the dynamic
instantiation of parametric machines and the definition of complex data
types. In addition, DSTM allows for recursion and preemptive termina-
tion. In this paper we present a translation of DSTM models in Promela
that can enable automatic test case generation via model checking and,
at least in principle, system verification. We illustrate the main steps of
the translation process and the obtained Promela encoding.

1 Introduction

Dynamic STate Machine (DSTM) is a recently-developed modelling language [1],
developed in the context of the ARTEMIS Joint Undertaking project CRYSTAL
(CRitical sYSTem engineering AcceLeration) [10]. DSTM has been devised to
explicitly meet industrial requirements in design, verification and validation of
complex control systems, and includes in its formal framework both complex
control flow constructs (such as asynchronous forks, preemptive termination,
recursive execution) and complex data flow constructs (such as custom complex
type definition, parametric machines, and inter-process communication). DSTM
borrows many syntactic elements from UML Statecharts, and extends them with
the notion of module and with the possibility of recursion and dynamic instan-
tiation. The possibility of modelling both complex behaviours and data enables
the usage of DSTM at different levels of abstraction and for different purposes,
for example property verification and model-based testing.

The ultimate objective of ongoing work on DSTM is to enable its usage
within model-driven tool chains for application or product life-cycle manage-
ment. In this direction, this paper presents a transformation from DSTM to

© Springer Nature Switzerland AG 2019
F. Biondi et al. (Eds.): SPIN 2019, LNCS 11636, pp. 56-73, 2019.
https://doi.org/10.1007/978-3-030-30923-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30923-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-30923-7_4

From Dynamic State Machines to Promela 57

PROMELA in order to provide the necessary support for the automatic integra-
tion of verification and validation methodologies based on DSTM into industrial
verification and validation processes. Previous work [1,8,9] provides the motiva-
tion for the introduction of DSTM, the formal definition of the syntax semantics,
and its application to the validation of railway control systems. In those papers
the encoding of DSTM models to PROMELA models was merely sketched. Here
a complete translation is presented, emphasizing how the the hierarchical struc-
ture of DSTM models can be encoded into the modular features of PROMELA
embodied in the notion of process types. Even though, due to space constraints,
a precise formal account of the equivalence between the DSTM semantics pre-
sented in [1] and the resulting PROMELA encoding is not provided here, the cor-
rectness can be stated in terms of a suitable correspondence between executions
of a DSTM and of its PROMELA encoding, based on the step semantics. Such
a correspondence would allow for formal verification of linear time properties of
DSTM with SPIN.

Many works introducing transformations from high level specification lan-
guages to formal languages are discussed in the literature. Among them trans-
formations from AADL, MARTE and MARTE-DAM UML profiles are of spe-
cial interest for the analysis of critical systems (e.g., in [2,3,11]). In particular,
a transformation from SysML to the specification languages of Spin, Prism and
NuSMV model checkers is presented in [5]. The implementation of Statecharts
in PROMELA has been studied since 1998 [7]. In [4] an algorithm to automat-
ically encode an ASM specification in PROMELA is presented with the aim of
automated generation of test sequences. The novelty of our work is the source
formalism and its peculiarities, in particular recursion and dynamic instantiation
that are not allowed in other state-based languages.

The paper is organized as follows. Section 2 provides the basics on DSTM
and describes some original modelling examples. The translation from DSTM
models to PROMELA models is introduced in Sect. 3, where the key issues to
be addressed and the adopted solutions are discussed. Section4 contains some
closing remarks and suggestions for future work.

2 Dynamic State Machines

In this section we provide an overview of DSTM through some examples, in
order to introduce the main notions used in the rest of the paper. For a complete
account of the formal syntax and semantics of DSTM we refer to [1].

A Dynamic STate Machine (DSTM) model is a sequence of machines My, M,
..., M, communicating over a set X of global variables and a set C' of global
communication channels. Machine M is the initial machine, namely the highest
level of the hierarchical system. Each machine M;, with ¢ € {2,...,n}, may be
parametric over a set of parameters P; C P. Parameters are aliases for chan-
nels and variables names and are actualized at runtime, when the machine is
instantiated, allowing multiple instantiations of the same machine with different
parameter values. When a parametric machine is instantiated, each parameter is

58 M. Benerecetti et al.

mapped to its actual value by means of a parameter-substitution function, which
associates the parameters with actual ground values. A machine M; represents
a module in a DSTM specification and is defined as a state-transition diagram,
whose possible kinds of vertices are:

node: basic control state of a machine;

entering node: initial pseudo-node of a machine. A machine may specify mul-
tiple entering nodes, corresponding to different initial conditions;

initial node: default entering pseudo-node of a machine, to be used when no
entering node is explicitly specified;

exit node: final (or exiting) node of a machine corresponding to different ter-
mination conditions;

box: node modelling the parallel activation of machines associated with itself. A
transition entering a box represents the parallel activation of the correspond-
ing machines, while a transition exiting a box corresponds to a return;

fork: control pseudo-node modelling the activation of new processes. Such acti-
vation may be either synchronous (the forking process is suspended and waits
for the activated processes to terminate) or asynchronous (the forking process
continues its activity along the newly-activated processes);

join: control pseudo-node used to synchronize the termination of concurrently
executing processes or to force their termination (preemptive join).

The vertices corresponding to stable, meaningful control points are called nodes,
as opposed to pseudo-nodes, which are only transient points. Transitions repre-
sent changes in the control state of a machine. A transition is labelled with a
name and decorated with a trigger (an input event originating from the external
environment or from other machines, e.g. the presence of messages on a given
channel), a guard (a Boolean condition on the current contents of variables and
channels) and an action (one or more statements on variables and channels). For
a transition to be fired its trigger must be fulfilled and its guard satisfied. When
a transition fires, its action is executed with possible side-effects. In the following
7 denotes the trivial trigger (no external event is required), True denotes the
trivial guard (always satisfied), and € denotes the empty action (no side effects).

Counter

T7 boxIncr1 T Incrementer

Incrementer T12 116
e 3
Tll® byOne finished
T4
- T13
o limit O doublelncr
byTwo
T15

Fig. 1. The Counting DSTM specification

Main

counterBox |13

[Counter] interrupted

T T
@—{ i1) default [o

initial T

[Incrementer]
limit

stopped

Ezample 1 (The Counting DSTM). Consider the Counting DSTM consisting of
the machines Main (the initial machine), Counter and Incrementer represented

From Dynamic State Machines to Promela 59

in Fig. 1. Default entering pseudo-nodes are depicted as black circles, entering
pseudo-nodes as white circles, final nodes as crossed-out white circles. Boxes
are represented by rectangles and decorated with a comma-separated list of
associated machines enclosed in square brackets. Nodes are drawn as rounded
rectangles and fork and join pseudo-nodes are represented by black bars. Each
node and pseudo-node is decorated with its name. Transitions are directed edges
from source to target vertices, and are detailed in Table 1, where Src and Trg
are the source and target of the transition, Dec is the associated decoration
and Inst the parameter substitution function. Transitions T1, T5, T12, T13 are
implicit transitions; T14 and T15, T16 are internal transitions; transitions T6
and T11 are, respectively, entering fork and exiting join transitions; T2 and T7
are call by default transitions, while T8 is a call by entering. T2, T7 and T8
are transitions with a non-empty substitution function since they enter boxes
instantiating parametric machines. T9 and T10 are return by default, with the
first being a preemptive transition (marked by ®). T3, with its non-trivial trigger
signal?, is a return by interrupt while T4 is a well-formed return by exiting since
its source is (counterBox, limit) and counterBox instantiates exactly one Counter
machine and limit is an exiting state of such instantiated machine.

A DSTM is well-formed Table 1. Transitions of the Counting DSTM

if it satisfies a set of

syntactical constraints T | sre Trg Dec Inst

(formally defined in T1 | initial idlel (7, True,) @

[1]) in order to guar- T2 | idlel counterBox (T, True, €) P_to=100
T3 | counterBox interrupted (signal?, True,e) | &

antee that: (a’) param- T4 | (counterBox, limit) | stopped (T, True, €) 2]

eter substitution func- 15 | default idle2 (7, True, e @

tions and call by enter- T6 |idle2 fk (7, True, e 2

an/@flntlng transitions T7 | fk boxIncrl (T, True, € P_limit=P_to

)
)
)
are Consistent; (b) at T8 | fk (boxlIncr2, byTwo) | (7, True,e; P_limit=P_to
)
)

. T9 | boxlncrl (jn, ®) (T, True, € @

eaCh tlme’ the con- T10 | boxIncr2 jn (T, True, € z
trol state of a machine T11 |jn limit (1, True, & o
can be located in at T12 | byOne simplelncr (T, True,) z
most one node; (C) for T13 blyTwo d.oublelncr (T, True, €) 2]
- T14 | simplelncr simplelncr (7T, x<P_limit, x++) | &

each Jom pseudonode, T15 | doublelncr doublelncr (T, True, x+=2) 2]
there eXiStS a corre- T'16 | simplelncr finished (T,x>P_limit, &) z

sponding fork. Addi-

tionally, exiting fork and entering join transitions can only be labelled with
a trivial trigger, guard and action, while boxes instantiated by a fork can only
be refined by a single machine.

Ezxample 2. To illustrate the dynamic instantiation capabilities of DSTM and
asynchronous fork transitions, consider the Dynamic DSTM detailed in Fig. 2
and in Table2. Transition T4 is an asynchronous fork, T2 is triggered by the
reception of any message on the channel req and T3 enters boxIncr instantiating
an Incrementer machine, specified as in Example 1. T6 is an entering join transi-
tion. Notice that the Dynamic DSTM is able to instantiate an unbounded num-
ber of concurrent Incrementer machines by repeatedly firing transition T2 and

60 M. Benerecetti et al.

Table 2. Transitions of the Dynamic
Dynamic T7 DSTM

boxIncr
[Incrementer]

o T |Src Trg Dec Inst

[B T1 default |waiting | (7, True,) g

default T2 waiting |fk (req?, True,) 2]
T3|fk boxIncr| {7, True, €) P_limit=10

T4 |(fk, |) |waiting | (7, True,€) z

. . T5/|boxIncr|jn 7, True, %]

Fig. 2. The Dynamic DSTM T6 | waiting jn é,r‘ True. E; p

T7|jn waiting | (7, True, served++) | &

performing the asynchronous fork T4. Indeed, T4 creates a loop with transition
T2, involving the node waiting and the fork pseudo-node. When the Dynamic
machine performs the asynchronous fork T4, it continues its execution in par-
allel with the activated Incrementer machine. Being still active, the process
Dynamic might fire the transition T2 again, and a second activation of machine
Incrementer occurs. Hence, this new instance would run in parallel with both
the process Dynamic and the previously activated instance of Incrementer.

The types system in DSTM is based on the one of PROMELA, with the
addiction of multi-types. Types in DSTM can either be basic types, compound
types or multi-types. The basic types BT includes the Int type for integers,
the Chn type for channel names and a set of user-defined enumeration types
BTy, ...,BTy. Compound types are tuples of basic types, e.g., the compound
type CT = (BTj,,...,BT},) is a tuple of basic types with BTj;, € BT. Simple
types contains both basic types and compound types. A multi-type MT is a com-
position of simple types: MT = {ST4,..., STy }. T denotes the set of all types.

Channels allow for communication with the external environment and
between internal components via bounded first-in first-out buffers. Furthermore,
channels are partitioned into the two sets of internal and external channels.
Internal channels, whose names belong to C; C C, are used for communications
between components and are restricted to simple types, whereas external ones,
whose names belong to C'g C C, are used for communications with the external
environment and are restricted to having bounded buffers of length 1.

2.1 DSTM Semantics

The evolution of a DSTM consists in a sequence of instantaneous reactions called
steps. A step is a maximal set of transitions that are triggered by the current
system state and by the current value of channels. The firing of a transition can
have side effects on the available channels and variables. The content sent dur-
ing a step on an external channel, unlike for internal ones, can only be observed
in the next step. DSTM semantics is defined over ground machines, namely
machines in which actions, triggers and guards contain no parameters (parame-
ters do not hold any value during execution, they serve only as placeholders and

From Dynamic State Machines to Promela 61

are substituted with actual values before instantiation). Ground machines are
obtained from parametric machines by suitably applying parameter-substitution
functions. The semantics of transition decorations is defined w.r.t. an evaluation
context (p, x,n), where p associates variables with values, x evaluates channels
content in the current state, while n associates with each external channel its
content in the next step. The formal semantics for DSTM is provided by defining
a Labelled Transition System (LTS) [1]. The main intuition behind this formal-
ization is that each state s of the LTS model represents a complete configuration
(state) of the DSTM in a given instant, including the current control locations
and the current evaluation context, while a step in the DSTM will correspond to
a suitably-defined sequence of LTS transitions, each capturing DSTM transition
firings. The global control state stores information about the current control
state of each active process (ground machine). Since a machine may instanti-
ate multiple machines, the control state can be represented by a tree, called
the control tree. Each vertex of such a tree is labelled with either a machine,
a box or a node. According to the intuition that pseudo-nodes represent only
transient non-stable control points, control tree vertices cannot be labelled by
pseudonodes. The root of a control tree, labelled by a machine, represents the
main (initial) process, having the highest level in the hierarchy. Leaves represent
control states in which each currently-active process is in and are labelled by
nodes. Internal vertices represent the call hierarchy and cannot be labelled by
nodes. Whenever a vertex is labelled by a machine M, it either is the root or is
the child of a node labelled by a box instantiating M. If a node is labelled by
either a box or a node, then its parent is labelled by the machine the box or the
node belongs to.

Definition 1. The state of a DSTM D s a tuple (CT, Fr,0) where:

— CT is a control tree over D, describing the current state of the control flow;

— Fr is the frontier of CT, containing those vertices of CT that can be the
source of a transition in the current step;

-0 ={p,x,n) is an evaluation context.

Ezample 1 (Continued). Consider the Counting DSTM depicted in Fig. 1. Some
of the Counting DSTM’s possible control trees are represented in Fig.3. In
the figure, each machine-labelled (resp. box-labelled, node-labelled) vertex is
depicted as a diamond ¢ (resp. a square [J, a circle o - possibly crossed-out ® if
labelled by an exiting state). Moreover, each node is decorated with the name
of the corresponding machine/box/state.

62 M. Benerecetti et al.

Tree (a) encodes the control (a) (b) (©)
state in which only the Main Main Main Main
machine is running and is in z
the idlel state. Tree (b) encodes idlet counterBox counterBox

the control state in which the Count
ounter
Main machine has entered the I

Counter

box counterBox, thus instantiat- idle2 boxIncr boxIncr2
ing an instance of the Counter
machine in its state idle2. Tree (c) Incrementer Incrementer
is the control state in which the

finished doublelncr

Counter machine, instantiated by
Main by entering the box counter- Fig. 3. Control trees of the Counting DSTM
Box, in turn instantiates two dis-

tinct instances of the Incrementer machine. by entering the boxes boxIncrl and
boxIncr2. The first instance is in the finished end state, while the other one is in
the doublelncr state.

DSTM transitions may have source or target in pseudo-nodes which, as said,
correspond to transient, unstable control points. Therefore, a transition involving
pseudo-nodes may be seen as part of a super-transition connecting proper control
points. For example, a fork (resp., a join) can be seen as a super-transition
connecting one source with multiple targets (resp., multiple sources with one
target). Compound transitions are able to capture this intuition and allow us to
consider only transitions having source(s) and target(s) in proper control points.
Hence, there exist three types of compound transitions: simple (non-implicit
transition such that neither its source nor its target are fork or join nodes), fork
and join. The notion of enabledness of a transition w.r.t. a DSTM state is as
follows. A compound transition of a machine M is enabled in a DSTM state s if:
(a) the guards and triggers of the transition are satisfied in the execution context
of s; (b) the sources of the compound transition are contained in the frontier of s;
and (c) no transition of an ancestor of M in the hierarchy is enabled. The targets
of an executed transition cannot belong to the frontier of the resulting DSTM
state, so as to prevent the sequential firing of transitions within the same step.
Once the maximality of the current step has been reached (no other transition
can be executed in the current step), an implicit next step transition occurs.
Such transition updates: (a) the frontier with the vertices of the current control
tree; and (b) the external channels with new messages, either those produced
in the previous step or, if no message was produced for that channel, with non-
deterministically generated messages.

Ezample 2 (Continued). Consider the Dynamic DSTM of Fig. 2. Figure 4 shows
steps in one of its possible computations. In its initial state sg, the DSTM has
a control state encoded by tree (Sp). Suppose that the external environment
generates a message on the external req channel, thus enabling transition T2.

From Dynamic State Machines to Promela 63

The compound asyn- (s,) Step 1 (S1) Step 2 (Sy)
chronous fork ct; = :
((T2), (T3, T4)) is enabled

in the waiting-labelled

node. No other com- waiting cf; _

N

: bynamic : 'D')./.r.:amic Dynamic

waiting boxIncr

boxIncr waiting [] boxIncr ~
cty -~ P

pound transitions are RN
enabled, so the first
step consists only in
ct; and in the next

ety Ss< .

- cty L~

Incrementer Increm. Increm.

step transition. When s\implelncElf2 B QO simplelncr () simplelncr
ct; fires, the node 1 Tt
(labelled by waiting) is Fig. 4. Steps in a Dynamic DSTM computation

replaced by two sub-

trees obtaining tree (Sp). Suppose that another message is available on the
external channel req. Compound transition ct; is again enabled in node 1. This
time also T14 from the Incrementer machine is enabled, and so is the simple
compound transition cty = ((T14), (T14)). The second step consists of two com-
pound transitions ct; and cty, which may be executed in any order, followed by
the next step initialization transition. Execution of step 2 results in the control
tree (Sz), where two instances of the Incrementer machine are executing con-
currently along with the Dynamic machine, which is waiting for new requests in
its waiting state.

3 From DSTM to Promela

Translating a DSTM to PROMELA presents several challenges, due to the sub-
stantial differences between the two specification languages. The translation we
propose is a two-step process. The first step encodes the vertical hierarchical
structure of a DSTM model (boxes) into the PROMELA proctype system. The
second step transforms the resulting ordinary state machines into an actual
PROMELA specification which also takes care of enforcing the step semantics
and modelling a possibly non-deterministic environment.

3.1 Encoding the DSTM Vertical Hierarchy

This step transforms each machine of a hierarchical DSTM specification into
an ordinary (flat) state machine, by removing all boxes, forks and joins and by
substituting them with suitably defined nodes and transitions. Such transitions
are also used to model the activation of other flat machines (by means of the
PROMELA run command) and to ensure a correct handling of machine termina-
tion. Each such machine can then be encoded into a PROMELA proctype. Note
that this transformation does not affect the size of the specification, indeed the
size of the resulting model is linear in the size of the original DSTM.

For each machine M a type M_ex is introduced that enumerates all the exiting
states of M. Recall that the execution of a PROMELA run command associates a

64 M. Benerecetti et al.

pid to the activated process. The handling of termination is achieved by adding,
for each machine M instantiated by a box B, two new channels: a channel of
type M_ex, named chT_B_M_ex, and a channel of type {term,interrupt}, called
chT B_M. The first channel is used by the called machine to communicate the
reaching of an exiting state to the caller, while the second is used by the caller
to issue a termination message to the callee, signalling whether the termination
is synchronous or preemptive (i.e., an interrupt).

Each machine activation action has the form run MachineName (params),
where params is a list containing the following parameters:

— parent: the pid of its parent process in the hierarchy;
— initialState: the initial state for the instance being instantiated;
— ch_T_ex and ch_T: the channels required to handle termination.

When removing a box, three different situations may arise, depending on the
structure of the DSTM, each dealt with a specific translation schema:

simple box: all the transitions entering the box have as source boxes or nodes;

synchronous fork: the source of the transition entering the box is a fork pseudo-
node and no asynchronous fork transition exiting the fork exists;

asynchronous fork: the source of the transition entering the box is a fork
pseudo-node and there is an asynchronous fork transition exiting the fork.

Simple Box Schema. In this case the box is substituted by a node having the
same name. All transitions whose source (resp. target) is the box are replaced by
transitions exiting (resp. entering) the newly-created node, as shown in Fig. 5.
The decoration of this transition extends the one of the original transition, in
order to model the instantiation of the other machines associated with the box
and to handle their termination. As shown in Fig. 5, the triggers and guards of
an entering transition are unchanged. A run action is added for each machine
instantiated by the box, with the parent parameter set to the pid of the calling
process.

before flattening

jn

(t, True,) | b1 (z, True, f1)

(& ¢, a)

before flattening

ty = (7, True, az) (z, True, an) | bn (t, True, Br)
t = (&1, $1, o) b . [Ma] :
IY(B)] | 3 = (£, True, as) fk ink

after flattening

after flattening (7, 1, B})

1=t ¢) & b,

£ = (&1 b @)

(by, ... bn)

(t, du L)

t; = (f, True, a;)

Fig. 5. Simple box flattening Fig. 6. Synchronous fork flattening

From Dynamic State Machines to Promela 65

As for the transitions exiting the box, we distinguish the following cases. If
the original transition is a return by exiting, the guard needs to be enriched with
a condition checking for termination of the instantiated machine in the required
exit state. Hence, a guard of the form chT_b_M_ex[7<ex>] is conjoined with the
original guard. If the original transition is a return by default, the guard needs
to be conjoined with a check for the termination of each of the called machines.
To check for a machine termination, regardless of the exiting state, we use a
condition of the form chT_b_M_ex[?7<_>]. If the original transition is a return
by interrupt, the transition guard need not be enriched. In either case, when a
return transition fires, all the called processes must terminate. This is achieved
by adding, for each called process, two actions. One of the form chT_b_M!<msg>,
where msg is either interrupt or term, which sends a termination message to the
called process. The second action chT_b_M_ex?<_> is used, instead, to clean the
corresponding channel used by the terminating machine to signal its termination.

Synchronous Fork Schema. In the synchronous fork case, the calling pro-
cess suspends itself and waits for the termination of the called processes. In
this case, the fork pseudo-node, the boxes called by the fork and the associ-
ated (non-preemptive) joins are considered as a single block. The entire block
is replaced by a new node and suitably defined transitions to and from that
node. The transition modelling the fork operation leads from the source node of
the entering fork to the newly-introduced node. This transition instantiates the
necessary processes by means of appropriate run actions, as in the simple box
case. Each corresponding join operation is modelled by adding a transition from
the new node to the target of the original exiting join transition. This transition
is decorated with a trivial trigger, a guard requiring the appropriate termination
of each machine instantiated by the involved boxes, and an action that takes
care of issuing a termination message to each of the instantiated machines and
removing messages from the exit-signalling channels.

In the general schema depicted in Fig. 6, the decoration of the transitions
modelling the fork are of the form (£, ¢, '), where £ and ¢ are the original trig-
ger and guard of the corresponding entering fork transition, and o' = « - @,
with @ the sequence of run actions that activates the processes associated with
the called boxes. Each one of the joins jn; is modelled by a single transition of
the form (7, ¢;, Bl), where: (i) ¢; is the conjunction of the appropriate termina-
tion conditions (either by exiting or by default) for each machine instantiated
by the fork, as in the case of the simple box and (ii) 8, = 3; - 3, with (8 con-
taining the appropriate termination-synchronization actions chT B M!<term> -
chT_B_M_ex?<_> for each machine M in the box B instantiated by the fork.

Asynchronous Fork Schema. After performing an asynchronous fork the call-
ing process continues to run concurrently with the newly instantiated processes.
In this case the fork, the boxes entered by the fork and each associated join are
considered as a single block and replaced by suitable transitions. The first tran-
sition models the fork operation and leads from the source node of the entering
fork to the target node of the asynchronous fork transition, which is a node of the
current machine. This transition must also instantiate, by means of appropriate

66 M. Benerecetti et al.

run actions, the necessary processes that model the called boxes. Note that, in
this case the parent parameter corresponds to the parent of the calling process,
as the new processes being instantiated become siblings of the calling process in
the hierarchy tree. In order to model the join operations we add a transition for
each join associated with the current fork. Each of these transitions leads from
the source node of the entering join to the target of the exiting join.

before flattening

o) o ot

b (t, True,)
(£, ¢, a) 4’ (z, True, i) after flattening

. (E, ¢, a") B ; (Ern d' B)
{r, True,) o
| [M"]

fk jn

Fig. 7. Asynchronous fork flattening schema

Figure 7 depicts the case of a single fork/join pair, where s, = (s;,b1,...,by),
with ¢ € {1,...,k}, to keep track of the concurrently instantiated boxes as well.
The decoration of the transition modelling the fork operation is defined exactly
as in the case of a synchronous fork. The one modelling the join operation is
decorated with (&, ¢', 3'), where: & is the trigger associated with the entering
join; the guard ¢’ = ¢; A ¢ conjoins the original guard ¢, in the entering join
with the termination conditions for the instantiated machine; the action 3 =
B - B concatenates the original action of the exiting join with the sequence of
termination synchronization actions for the involved boxes.

Handling Preemptive Joins. The fork schemata described above need to be suit-
ably extended in the case the corresponding join is preemptive. In a preemp-
tive join, one or more entering join transitions may be qualified as preemptive.
For each such entering join, a distinct transition inheriting the same trigger
and guard as the corresponding original preemptive entering join is introduced.
Moreover, if the original preemptive entering join is a return (either by default
or by exiting) with source a box b, the guard is enriched with appropriate con-
ditions requiring the termination of the machine associated with b, as in the
previous cases. The action is defined as in the non-preemptive case, the only
difference being that termination message issued to the terminating machine is
an interrupt and has the form chT_B_M!<interrupt>.

3.2 From Flat DSTM to Promela
The PROMELA encoding we propose for a DSTM model is structured as follows:

1. an initial section for global declarations of datatypes, variables, and channels;

From Dynamic State Machines to Promela 67

2. an active proctype named Engine, which is the root of the process hierar-
chy. Its purpose is to start the process modelling the initial machine, manage
the proper initialization of external channels before each step, and orchestrate
processes in order to simulate the step semantics of DSTM;

3. a proctype declaration for each of the n machines M, ..., M, of the DSTM.

In order to translate a flattened model into a PROMELA specification we
need to address the following key points: (1) translation of data-flow elements;
(2) orchestration of the concurrent flat machines and correct realization of the
steps semantics; (3) encoding of each flat machine into a proctype.

Translation of Data-Flow Elements. The mapping of DSTM types and vari-
ables to their PROMELA equivalent is rather straightforward, with the DSTM
types naturally mapped to the PROMELA types (mtype and datatypes declared
by means of typedef). Internal DSTM channels are mapped to PROMELA chan-
nels with buffer size equal to the bound of the DSTM channel. If the DSTM
channel is a multi-type channel, it is modelled by a set of PROMELA channels,
one for each simple type constituting the multi-type. These channels are managed
in a way that guarantees that, in each position, at most one of them contains
a valid message. This can be achieved by adding a validity bit field to each
message in the channels. External channels are encoded by channels with buffer
size equal to two, with the first position containing the message for the current
step and the second position containing the message for the next step possibly
produced during the current one. External channels are managed in such a way
that the first position in the channel is always filled. This ensures that messages
produced in each step are always stored in the second position and that these
messages cannot trigger transitions in the current step, as required by the step
semantics. To this purpose, an additional validity bit field is introduced in every
message, so that an empty external channels can be modelled by inserting in the
first position a bogus message containing an invalid message.

To comply with the DSTM specification, additional operations on external
channels are managed by the Engine process. At the beginning of the first step
a, possibly-bogus, message for each external channel is non-deterministically
generated and placed in the first position. At the beginning of any new step,
instead, the messages in the first positions of the external channels, correspond-
ing to the external inputs of the previous step, are removed. For all the channels
that remain empty (i.e., no message was generated during the previous step) a,
possibly-bogus, message is non-deterministically generated.

Enforcing the Step Semantics. From a global system state s = (CT, Fr,6), a
machine M; is allowed to execute a compound transition ct if such transition
is enabled in state s of the control tree. Due to the encoding of the vertical
hierarchy described in the previous section, there are no compound transitions
anymore and the above condition can be simplified. An instance of a machine
M; is allowed to execute a transition if:

1. it has never executed during the current step (sequential firing of transitions
in the same step is forbidden);

68 M. Benerecetti et al.

2. none of its descendants in the process hierarchy has executed;
3. none of its ancestors can execute a transition.

In order to simulate the step semantics, we exploit a token-passing mecha-
nism. Each PROMELA process that models an instance of a DSTM machine is
required to own a token in order to fire a transition. When a process holding a
token is scheduled, it first checks if one of its transitions can be fired. In this case,
it performs an enabled transition and consumes the token. If, on the other hand,
no transition is executable, the process passes its token to all of its children. A
complete top-down propagation of the token in the process hierarchy, starting
from the Engine process, is called phase.

Since a transition fired during a phase may enable transitions that were not
previously enabled (e.g., by sending messages or modifying the content of shared
variables), the token-passing phase needs to be iterated so as to guarantee the
maximality of each step. When a phase is concluded without any transition
firing, a maximal step is reached.

Recall that sequential firing by the same process and the execution of both
an ancestor and a descendant must be avoided during a single step. To this end,
during each phase, processes who fire a transition propagate this information
upwards in the process hierarchy so as to prevent ancestors from executing tran-
sitions (back-propagation mode). To implement this mechanism, the following
global data structures are used:

— symbolic constants that refer to states of the machines, with an additional
backProp label;

— a Boolean variable HasFired, used to keep track of the fact that at least one
transition fired during the last concluded phase;

— an array HasToken of MAX_PROC bits, used to model token-ownership by active
process instances; an array dyingPid of MAX_PROC bits used to keep track of
the pids of terminated processes;

— an array HasExecuted (resp. descendantExecuted) of MAX_PROC bits, used
to keep track of the fact that a given process (resp. one of its descendants
including the process itself) fired a transition during the current step;

— a square matrix ChildrenMatrix of bits of size MAX_PROC, which encodes
the active process hierarchy (ChildrenMatrix[A].children[B] is set if the
process with pid B is a child of the process with pid A4).

Information about the current state of every machine instance is stored in a
mtype variable DSTMstate local to each PROMELA process. An additional vari-
able state, assuming values in {ready,backProp}, is used to record whether
a given proctype is ready to simulate the corresponding machine or is in the
back-propagation mode. The step-semantics-enforcing mechanism is detailed as
follows:

1. at the beginning of a step, after performing the required management opera-
tions for external channels, Engine passes the token to the main process and
to its siblings. At this point, the global flag HasFired and the Descendant-
Executed flag of every process are set to false;

From Dynamic State Machines to Promela 69

2. every process owning the token and not having the DescendantExecuted
flag set, tries to execute a transition. If a transition is executed, the global
flag HasFired is set to true and a local variable DSTMstate is assigned to
the machine next state. If no transition is executable, the process passes its
token on to its children. In either case, state is set to backProp and the
process enters the back-propagation mode in step 3. If a process is in the
back-propagation mode and receives the token, then it is allowed to return
to its simulation-ready state, without consuming the token;
3. every process in the back-propagation mode can execute if its Descendant-
Executed flag is set but its parent flag is not. In this case, the process sets the
DescendantExecuted flag for its parent as well. When no transition is enabled
and the back-propagation is complete (i.e., a deadlock state is reached), the
execution moves to step 4;
4. process Engine activates and
(a) if flag HasFired is set, Engine starts a new phase. The hasFired flag
is unset, Engine passes the token to its children once again, and the
execution continues at step 2;

(b) if HasFired is unset, then the current phase ended with no transitions
fired and the current step is concluded. Execution continues by starting
a new semantic step.

This mechanism is implemented in PROMELA by the proctypes schemas reported
in Figs. 8 and 9, which are described in detail in the following section.

3.3 Promela Encoding

The complete PROMELA encoding of a DSTM D is as follows. The specification
contains n proctypes, one for each machine M of the DSTM. The general schema
of such proctypes is reported in Fig.8. The generic M proctype has the same
parameters as the corresponding flat machine, and starts with the declaration of
local variables and channels required to handle communication of the termination
requirements with its children, if any.

Then, the process enters the main iteration statement (line 4), which termi-
nates in one of the following cases:

— an exiting state of M is reached and a termination request on the channel
chT is received (line 30);

— it receives an interrupting termination request on the channel chT (line 37);

— its parent pid is marked as “dying” in the array dyingPid (line 37).

The main iteration statement features an option sequence for each machine state
S € NUEn guarded by the condition (state == S && HasToken[_pid]l==1) &&
state==ready. Each of these option sequences immediately consumes the token
(line 8) and, then, enters a selection statement that non-deterministically chooses
an enabled transition to execute. This selection construct (line 9) contains an
option sequence for each transition ¢ with source state S. Each option sequence is
guarded by a condition of the form (£ && ¢ && !'DescendantExecuted), with &

70 M. Benerecetti et al.

1proctype M(pid parent;mtype initial;chan chT;chan chT_ex){
2 // declare channels for termination synch. with children here

3 byte i; mtype state=ready, DSTMstate=inital;

4 do

5 // for each state S € N; U En;

6 : (DSTMstate==S && HasToken[_pid] && state==ready) ->
7

8

atomic {
HasToken[_pid]=0;

9 if lactive proctype Engine() {
10 /1 for each transition ¢ with Sre(¢) = S, Trg(t) = T, Dec(t) = (£, ¢, a) 2 pid PidMain; byte i;
11 :: (€ 8% ¢ &8 !descendantExecuted[_pidl) -> 3 chan chT_Main = [1] of {bit};
12 «; DSTMstate = T; HasFired=1; 4 chan chT_Main_ex = [1] of {bit};
13 HasExecuted[_pidJ]=1; descendantExecuted[_pidl=1; 5 PidMain = run Main(_pid,initial,chT_Main,chT_Main_ex);
14 :: else -> // no transition is executable 6 ChildrenMatrix[_pid].children[PidMain]=1;
15 if 7
16 :: (!HasExecuted[_pid]) -> // did not exec. in this step 8 nextStep: // startsanew step
17 for (i:0..MAX_PROC-1) { // pass token to children 9 atomic {
18 if 10 // handle external channels management
19 ::(ChildrenMatrix[_pid].children[i]) -> 11 HasFired=0;
20 HasToken[il=1; 12 for (i : @ .. MAX_PROC-1){
21 ::else->skip; 13 HasExecuted[i1=0; descendantExecuted[i]=0;
22 fi; 14 HasToken[i] = ChildrenMatrix[_pid].children[i];
3 i 15 }
24 ::else->skip; 16 }
25 fi; 17 goto waitTimeout;
26 fi; 18
2 state = backProp; 19 nextPhase: // startsanew phase in the current step
83 . 20 atomic {
29 // for each exiting state ex € Ex; . .
30 ::(DSTMstate=-ex && chT2[term])->{chT?tern; goto die} . HasFired=0;
31 7 S y ’ 22 for (i : @ .. MAX_PROC - 1){ // give token to children
31 // handle upwards propagation of descendantExecuted 2 HasToken[i] = ChildrenMatrix[_pid].children[il;
32 ::(state==backProp && descendantExecuted[_pid] && - E ’
33 I descendantExecuted[parent]) -> 2 }
34 { descendantExecuted[parent] = 1 } 2 3 I
35 // handle original state restoring after backProp 2 goto waitTimeout;
36 ::(state==backProp & HasToken[_pid])->{state=ready} 27 o
37 od unless (dyingPid[parent] || chT?[interruptl) -> { 28 waitTimeout:
38 if 29 do
39 :: (chT?2[_1) -> chT?<_> 30 ;0 timeout -> // deadlock
40 :: else->skip 31 if
41 fi 32 :: (!HasFired) -> goto nextStep;
42 goto die 33 :: (HasFired) -> goto nextPhase;
43} 34 fi;
44 die: dyingPid[_pid]=1 35 od unless (chT_Main_ex?[_]) -> {chT_Main!<term>}
453 36}

Fig. 8. Flat machine to proctype Fig.9. The Engine proctype

and ¢ being the trigger and the guard associated with transition ¢, respectively
(line 11). When executed, it performs the actions specified in the transition
decoration (line 12). For each run operator occurring within the actions (of the
form run P(X,init,chT,chT_ex), where X is either _pid or parent, in case
of asynchronous forks) the pid of the newly-instantiated process is stored in a
local variable (pidTemp = run P(...)). An assignment statement of the form
ChildrenMatrix[X].children[pidTemp]=1 takes care of updating the process
hierarchy accordingly. The token is then given to the newly-instantiated process.

Each option sequence updates the DSTMstate variable to the corre-
sponding transition target and sets the flags HasFired, HasExecuted, and
DescendantExecuted to true (lines 12-13). An additional option sequence, exe-
cutable only when no transitions are enabled, takes care of passing the token to
the process children (line 14-25). After the selection statement, state is set to
backProp (line 27) and the process moves into the back-propagation mode. Lines
30-36 take care of handling process termination, the back-propagation within
the current phase, and the restoration of the state after the back-propagation.
Specifically, for each exiting state, an option sequence of the form shown in line 30

From Dynamic State Machines to Promela 71

is present. The DescendantExecuted back-propagation is handled by the option
sequence in lines 32-34. These lines are executable when state == backProp,
and DescendantExecuted is set for the proctype and not for its parent. In this
case, the DescendantExecuted flag for its parent is set to true. The option
sequence in line 36 resets the simulation-ready state after the back-propagation.

To conclude the specification, Fig.9 shows a PROMELA encoding for the
process Engine. Process Engine, after declaring local variables and channels
required for handling termination of the initial machine (lines 2—4), starts an
instance of the Main process (line 5) for that machine and records it as one
of its children (line 6). Lines 8-16 are responsible for starting a new semantic
step, by executing the statement labelled nextStep. This statement manages
the initialization of the external channels for the new step, resets the hasFired
flag and passes the token onto its children (line 14). The nextPhase statement
(lines 19-25) takes care of starting a new phase, by reinitializing hasFired flag
and passing the token again to the children. Finally, the waitTimeout state-
ment (lines 28-35) forces Engine to wait for the current phase to complete. If
the phase completes with no transition fired (i.e., hasFired is not set), then a
new step is initiated, otherwise a new phase starts.

Table 3. Generated PROMELA code statistics

Proctype Lines of code | Local channels | Options in the
main loop

Main (Fig.1) 164 2

Counter (Fig.1) 140 4 6

Incrementer (Fig. 1) 160 0 7

Dynamic (Fig. 2) 92 2 4

Engine (model in Fig.1) | 57 2 -

Engine (model in Fig.2) | 56 1 -

The application of the transformation rules to the models in Figs.1 and 2
generates four proctypes for the first model and three proctypes for the second
model. Table 3 reports, for each proctype, the number of lines of code, channels
and options in the main loop of each process in the PROMELA encoding of the two
DSTMs. The prototypical environment for DSTM specification we have imple-
mented is available at https://github.com/stefanomarrone/dstm. The repository
includes the source code of: (a) a textual editor for DSTM producing DSTM
specifications in xml format; (b) the compiler translating a DSTM specification
(in xml format) into a PROMELA program (.pml). The textual specifications and
the .pml programs for Counter (Fig.1) and Dynamic (Fig.2) can be found in
the same repository.

Correctness of the Translation. We briefly discuss the correspondence between
the DSTM specification and its encoding into PROMELA. In the first phase,

https://github.com/stefanomarrone/dstm

72 M. Benerecetti et al.

boxes are replaced by machine states, whose labels keep track of the actual boxes
they represent. Each DSTM machine is, then, encoded with a single proctype,
which records the current state of the machine in the local variable DSTMstate.
Data types, on the other hand, have a direct correspondence with PROMELA
types. According the these observations, each global state of DSTM can eas-
ily be mapped into a PROMELA state. Indeed, the hierarchical structure of a
DSTM state is encoded in the ChildrenMatrix global variable, which connects
process instances corresponding to box instances. In other words, all the seman-
tic information encoded in a DSTM state is present in a PROMELA state as
well. Moreover, every PROMELA state can be mapped into a DSTM state by
abstracting away the additional elements (variables and channels) introduced to
simulate the semantics. A DSTM step corresponds to a sequence of PROMELA
transitions connecting two PROMELA states in which the control of the process
Engine is located at the nextStep label. With this correspondence in place,
it is, then, possible to define a relation between DSTM executions and execu-
tions of the PROMELA encoding. Such a relation can be formalized by a weak
bisimulation relation, where the implementation details, such as the token pass-
ing, the back-propagation and the termination mechanisms, are considered non-
observable internal actions.

4 Conclusions

In this paper the translation from Dynamic STate Machines to PROMELA is
presented. DSTM is a concise formalism expressive enough to easily capture
peculiar features of multi-process control systems. The automated translation to
PROMELA eases the implementation and the integration of tool chains exploiting
the usage of formal methods into industrial verification and validation processes.
Future work include the study of suitable tunings of the translation in PROMELA
in order to mitigate unnecessary state explosion phenomena during the model
analysis phase. On the applicative side, we plan to investigate instrumentation
methods of the resulting PROMELA code, in particular to support automatic test
case generation via model checking with respect to different coverage criteria on
the original DSTM model that can take into account the intrinsic hierarchy and
modularity of the formalism (e.g., coverage of state/transition of a machine in a
specific instantiation context). Finally, the correspondence between executions
of a DSTM and of its encoding, as discussed at the end of the previous section,
enables model checking of linear time properties with the SPIN engine. To this
end, we plan to investigate a suitable extension of LTL, in the same vain of [6],
able to contextualize properties within the structure of a DSTM. The extended
logic can, then, be translated into classic LTL, by exploiting the correspondence
above, and verified with SPIN.

From Dynamic State Machines to Promela 73

References

10.

11.

Benerecetti, M., et al.: Dynamic state machines for modelling railway control sys-
tems. Sci. Comput. Program. 133, 116-153 (2017). https://doi.org/10.1016 /j.scico.
2016.09.002

Bernardi, S., et al.: Enabling the usage of UML in the verification of railway sys-
tems: the DAM-rail approach. Reliab. Eng. Syst. Saf. 120, 112-126 (2013). https://
doi.org/10.1016/j.ress.2013.06.032. http://www.sciencedirect.com/science/article/
pii/S095183201300197X

Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within marte.
Softw. Syst. Model. 10(3), 313-336 (2011). https://doi.org/10.1007/s10270-009-
0128-1

Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate tests from
ASM specifications. In: Borger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263-277. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36498-6_15

Kolbl, M., Leue, S., Singh, H.: From SysML to model checkers via model transfor-
mation. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp.
255-274. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0-15
Lanotte, R., Maggiolo-Schettini, A., Peron, A.: Structural model checking for com-
municating hierarchical machines. In: Fiala, J., Koubek, V., Kratochvil, J. (eds.)
MFCS 2004. LNCS, vol. 3153, pp. 525-536. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28629-5_40

Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts in
promela/spin. In: Proceedings. 2nd IEEE Workshop on Industrial Strength For-
mal Specification Techniques, pp. 90-101. IEEE, October 1998. https://doi.org/
10.1109/WIFT.1998.766303

Nardone, R., et al.: Modeling railway control systems in promela. In: Artho, C.,
Olveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 121-136. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29510-7_7

Nardone, R., et al.: Dynamic state machines for formalizing railway control system
specifications. In: Artho, C., Olveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476,
pp. 93-109. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17581-2_7
Pfliigl, H., El-Salloum, C., Kundner, I.. CRYSTAL, critical system engineering
acceleration, a truly European dimension. ARTEMIS Mag. 14, 12-15 (2013)
Rugina, A.E., Kanoun, K., Kaaniche, M.: The ADAPT tool: from AADL archi-
tectural models to stochastic Petri nets through model transformation. In: 2008
Seventh European Dependable Computing Conference, pp. 85-90. IEEE (2008)

https://doi.org/10.1016/j.scico.2016.09.002
https://doi.org/10.1016/j.scico.2016.09.002
https://doi.org/10.1016/j.ress.2013.06.032
https://doi.org/10.1016/j.ress.2013.06.032
http://www.sciencedirect.com/science/article/pii/S095183201300197X
http://www.sciencedirect.com/science/article/pii/S095183201300197X
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1007/3-540-36498-6_15
https://doi.org/10.1007/3-540-36498-6_15
https://doi.org/10.1007/978-3-319-94111-0_15
https://doi.org/10.1007/978-3-540-28629-5_40
https://doi.org/10.1007/978-3-540-28629-5_40
https://doi.org/10.1109/WIFT.1998.766303
https://doi.org/10.1109/WIFT.1998.766303
https://doi.org/10.1007/978-3-319-29510-7_7
https://doi.org/10.1007/978-3-319-17581-2_7

	From Dynamic State Machines to Promela
	1 Introduction
	2 Dynamic State Machines
	2.1 DSTM Semantics

	3 From DSTM to Promela
	3.1 Encoding the DSTM Vertical Hierarchy
	3.2 From Flat DSTM to Promela
	3.3 Promela Encoding

	4 Conclusions
	References

