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Abstract. In this work, we discuss a numerical model checking algo-
rithm for analyzing incompletely specified models of stochastic systems,
specifically, Discrete Time Markov Chains (DTMC). Models of a system
could be incompletely specified for several reasons. For example, they
could still be under development or, there could be some doubt about
the correctness of some components. We restrict ourselves to cases where
incompleteness can be captured by expanding the logic of atomic propo-
sitions to a three valued logic that includes an unknown truth value. We
seek to answer meaningful model checking queries even in such circum-
stances.

The approach we adopt in this paper is to develop the model checking
algorithm from first principles. We develop a tool based on the algorithm
and compare the performance of this approach with the indirect approach
of invoking a binary model checker.
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1 Introduction

Probabilistic models are widely used to represent real-world systems that exhibit
stochastic behaviour, like cyber-physical systems, biological processes, network
and security protocols. Examples of such probabilistic models are Markov chains
like Discrete and Continuous Time Markov Chains (DTMC and CTMC respec-
tively) [3], Markov Decision Processes (MDP), Constrained Markov Chains [8]
and Probabilistic Automata [13]. Verification of these types of probabilistic mod-
els involves asserting whether or not the system design exhibits the required
behavior. The required behavior or property is formally specified as statements
in logics like Probabilistic Computation Tree Logic (PCTL) [16] and Continuous
Stochastic Language (CSL) [4].

Probabilistic Model Checking is a formal technique to analyze and ver-
ify the required behaviour of stochastic systems. Given a probabilistic model
that describes a stochastic system, and a formal specification of the required
behaviour of the system, the goal of probabilistic model checking is to decide
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whether the system exhibits the required behaviour or not. Probabilistic model
checking has been explored in the literature using either numerical [4,12,16] or
statistical algorithms [22,23,25].

Traditionally, systems are analyzed through model checking once the entire
information about a model is available, at least in principle. An interesting ques-
tion is if this analysis can be done when the model has incomplete information.
The incompleteness may arise because of either (i) nonavailability of input infor-
mation about either state space or transitions between states, (ii) if the correct-
ness of some module is in doubt or (iii) loss of information due to abstraction of
models, or some combination of the three. To capture incomplete information, a
natural choice is to expand binary logic to include a third unknown truth value.
We denote this by the question mark “?”. Depending upon the type of incom-
pleteness, different techniques have been reported to verify both stochastic as
well as non stochastic incomplete models.

There exists a significant body of work on model checking with three val-
ued logics. Bruns and Godefroid [6,7] use three valued modal logic to represent
models with partial state space. These models are then verified by using model
checking algorithms for binary truth values. Similarly, Chechik et al. [11] used
multi-valued logic to represent incomplete and inconsistent information in a
model. They verified such a model using a symbolic multi-valued CTL model
checker. Abstraction is often used to deal with problems of state space explosion
in model checking. However, such an approach may cause loss of information
in the model. This incompleteness in the abstracted model can be represented
using a third truth value. Godefroid et al. [15] and Chechik [10] discussed the
verification of abstracted models using three valued LTL and CTL model check-
ers, respectively. Abstraction is also commonly used in verification of stochastic
models like Markov chains, to overcome the problem of state-space explosion
[14,17,19]. Besides abstraction, incompleteness in stochastic systems may arise
from imprecise transition probabilities obtained from statistical experiments.
For example, discrete-time Markov chains have been defined wherein transition
probabilities are intervals instead of exact values to handle imprecision [18,20].
Verification of such interval based discrete-time Markov chains works by either
reducing it to a class of discrete-time Markov chains or to a Markov decision
process [5,9,24].

Another way of capturing incomplete information, the one on which this
paper is based, is to allow some atomic propositions to assume the “?” truth
value in some states [2]. An interesting question is to determine which properties
of the system can be verified in the absence of complete information–is there
sufficient information in the model to evaluate a particular property to either
True or False? It is possible to answer this question by invoking PCTL model
checking algorithms twice [2]. We refer to this approach as 2MC.

In this paper, we adopt a direct approach that solves the numerical model
checking problem from first principles as exposited in [4,21]. We call this app-
roach 1MC. While this approach is an adaptation of the standard numer-
ical model checking algorithm, the fact that true and false are no longer
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complementary to each other raises some complications, which we address. We
also show examples to illustrate the approach and practical applications of the
problem formulation and the solution.

Intuitively, one expects the 1MC algorithm to perform better in cases when
the 2MC algorithm has to invoke the model checker twice and 2MC to perform
better when it needs to invoke it only once. We back this intuition up with
experimental evidence.

The rest of the paper is arranged as follows. Section 2 discusses the syntax and
semantics of the modeling and specification formalism for incomplete models.
Section 3 discusses the model checking algorithm. Implementation details, results
and comparison with 2MC are discussed in Sect. 4. Section 5 concludes the paper
with a brief discussion on future directions.

2 qDTMC and qPCTL

2.1 Discrete Time Markov Chain with Question Marks (qDTMC)

A Discrete Time Markov Chain with question marks (qDTMC) extends the
traditional DTMC to account for incomplete information in a model.

Definition 1. A qDTMC is a tuple M = (S, iinit,P, AP,L) where

– S is a finite non-empty set of states,
– iinit : S → [0, 1] is the initial distribution, such that

∑

s∈S

iinit(s) = 1,

– P : S ×S → [0, 1] gives the transition probability between two states in S such
that:

∀s ∈ S :
∑

s′∈S

P(s, s′) = 1,

– AP is a set of atomic propositions, and
– L : S × AP → {T, F, ?} assigns a truth value from the set {T, F, ?} to each

atomic proposition a ∈ AP in a state s ∈ S.

A qDTMC differs from a DTMC only in terms of its labelling function. The
truth values T and F correspond that an atomic proposition being true and false
respectively in the state s. If it is not known whether an atomic proposition is
true or false in s, then the truth value ? is assigned to the atomic proposition.

Figure 1 illustrates an example qDTMC M wherein the state s0 is the initial
state with probability 1 in the state space S = {s0, s1, ..., s6}. The weight on
each transition between the states denotes the probability of the transition.
AP = {p, q} is a set of atomic propositions in M. The truth value of each
atomic proposition in a state is also represented in the qDTMC. For instance,
¬pq? denotes p is false and q is unknown in the state s0 and pq denotes both p
and q are true in the state s2. We consider qDTMC M as a running example in
the paper.
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Fig. 1. Example of a qDTMC

Definition 2. A path π in a qDTMC M is a sequence of states s0, s1, s2, . . .
such that for all i = 0, 1, 2, . . . si ∈ S and P(si, si+1) > 0. The i + 1th state in a
path π is denoted by π[i]. The set Path(s) is the set of all infinite paths starting
from state s in M.

Definition 3. A cylinder set C(ω) is the set of all infinite paths with a common
finite prefix ω = s0, s1, . . . , sn. The probability measure μ of C(ω) in the qDTMC
M can be defined as

μ(C(ω)) =
n−1∏

i=0

P(si, si+1)

2.2 qPCTL

Probabilistic Computation Tree Logic with question marks (qPCTL) is an exten-
sion of PCTL [16], defined to formally express a property required of a qDTMC
model. In what follows, our notational convention will be similar to that of [2].
The syntax of qPCTL is the same as that of PCTL:

Syntax:

Φ :: = � | a | Φ1 ∧ Φ2 | ¬Φ | Pr��θ[ψ]
ψ :: = XΦ | Φ1UΦ2 | Φ1 U≤k Φ2

where Φ, Φ1, and Φ2 are state formulas, ψ is a path formula, a is an atomic
proposition, θ ∈ [0, 1] defines the probability constraint, �� ∈ { <, >, ≤, ≥}
represents the set of comparison operators, and k ∈ N is the time bound. The
X, U , and U≤k operators are called Next, Until and Bounded Until respectively.

Recall that an atomic proposition a can have one of the three truth values
{T, F, ?} in a qPCTL formula. Thus, in addition to verifying a property as true
(T ) or false (F ), a qPCTL formula can also be evaluated to “unknown” (?). The
conditions for which the logic returns ? are incorporated into the semantics of
qPCTL.
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For the truth values (T , F , ?) in qPCTL, the logical operations (∧, ∨, ¬) are
as defined in Tables 1, 2 and 3.

Table 1. The
AND operator

∧ T ? F

T T ? F

? ? ? F

F F F F

Table 2. The
OR operator

∨ T ? F

T T T T

? T ? ?

F T ? F

Table 3. The
NOT operator

¬
T F

? ?

F T

Semantics:
Each state formula Φ in qPCTL is verified to either T , F , or ? in a state s ∈ S
that is (s, Φ) = {T, F, ?} as:

1. The qPCTL formula Φ can trivially be �.

(s,�) = T ; (s,¬�) = ¬(s,�) = F.

2. An atomic proposition a in a qDTMC can have three possible truth values
{T, F, ?}. Thus, a qPCTL formula Φ = a in a state s is evaluated to {T, F, ?}
if

(s, a) =

⎧
⎨

⎩

T iff L(s, a) = T
F iff L(s, a) = F
? iff L(s, a) =?

3. Using the NOT and AND operator from Tables 3 and 1 respectively, we have:

(s, ¬Φ) =

⎧
⎨

⎩

T iff (s, Φ) = F
F iff (s, Φ) = T
? iff (s, Φ) =?

and (s, Φ1 ∧ Φ2) =

⎧
⎨

⎩

T iff (s, Φ1) = T ∧ (s, Φ2) = T
F iff (s, Φ1) = F ∨ (s, Φ2) = F
? otherwise

4. If a qPCTL formula contains a probabilistic operator that is Φ = Pr��θ[ψ],
then the probability measure of paths starting from state s that evaluate
path formula ψ to true or false is calculated separately. The formula Φ is
then verified as follows:

(s, Pr��θ[ψ]) =

⎧
⎨

⎩

T if μ{π ∈ Path(s) : (π, ψ) = T} �� θ
F if μ{π ∈ Path(s) : (π, ψ) = F} �� 1 − θ
? otherwise

A path formula ψ for a path π ∈ Path(s) has the following semantics:

1. Next operator : A path formula of form ψ = XΦ is verified to {T, F, ?} for
a path π if the state formula Φ is evaluated to {T, F, ?}, respectively, in the
second state of π.

(π,XΦ) =

⎧
⎨

⎩

T if (π[1], Φ) = T
F if (π[1], Φ) = F
? if (π[1], Φ) = ?
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2. Until operator :

(π, Φ1UΦ2) =

⎧
⎪⎪⎨

⎪⎪⎩

T if ∃i : (π[i], Φ2) = T ∧ ∀i′ < i : (π[i′], Φ1) = T
F if (∀i : (π[i], Φ2) = F )

∨ [∃i : (π[i], Φ2) = T ∧ ∃i′ < i : (π[i′], Φ1) = F ]
? otherwise.

Thus, ψ evaluates to ? if one of the following occurs:
– Φ2 is ? for all the states in π.
– Φ2 is ? for at least one state in π and is never T in any of the states along

the path and Φ1 is never F .
– Φ2 is T for some state π[i] and Φ1 is ? for at least one state π[k] with

k < i but never F in any of the states upto π[i].
3. Bounded Until : A path formula of the form ψ = Φ1U

≤kΦ2 is verified to
{T, F, ?} same as that for until operator, but only for paths of finite length
k.

(π, Φ1U
≤kΦ2) =

⎧
⎪⎪⎨

⎪⎪⎩

T if ∃i ≤ k : (π[i], Φ2) = T ∧ ∀i′ < i : (π[i′], Φ1) = T
F if (∀i ≤ k : (π[i], Φ2) = F )

∨ [∃i ≤ k : (π[i], Φ2) = T ∧ ∃i′ < i : (π[i′], Φ1) = F ]
? otherwise.

3 qPCTL Model Checking

For a qDTMC M = (S,P, iinit, AP,L), a state s ∈ S and a qPCTL state formula
Φ, we want to determine if (s, Φ) = T . We note that if (s, Φ) �= T , then Φ
need not be false in the state s. Unlike for DTMCs, the two statements are not
complementary for qDTMCs. Hence we define three satisfaction sets SatT (Φ),
SatF (Φ), and Sat?(Φ).

Definition 4. A state s ∈ SatT (Φ) if and only if (s, Φ) = T . A state s ∈
SatF (Φ) if and only if (s, Φ) = F . Finally, s ∈ Sat?(Φ) if and only if (s, Φ) =?.

We now describe an algorithm 1MC, to compute these satisfaction sets
SatT (Φ) and SatF (Φ) by performing a bottom-up traversal of the syntax tree
of Φ. The remaining satisfaction set Sat?(Φ) can be computed as Sat?(Φ) =
S \ [SatT (Φ) ∪ SatF (Φ)]. For a given state formula Φ, these satisfaction sets
will partition the state space S. We now discuss the 1MC algorithm in detail.
Algorithm 1 lists the pseudocode.

Non-probabilistic Operators: The satisfaction sets for each of the non-
probabilistic operators in the qPCTL is based on the logical operations described
in Tables 1, 2 and 3. Cases 1 through 4 of the 1MC algorithm compute the sat-
isfaction sets for non-probabilistic operators. It is easy to see that:

Lemma 1. For the non-probabilistic state formulas, the 1MC Algorithm (cases
1 through 4) is correct.
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Probabilistic Operators: Construction of the satisfaction sets for probabilistic
operators is somewhat more complicated. We need a few definitions first.

Definition 5. True satisfaction probability for a state s is defined as the prob-
ability measure of paths starting from s which evaluate the path formula ψ as T .
It is denoted by Pr((s, ψ) = T ).

Definition 6. False satisfaction probability for a state s is defined as the prob-
ability measure of paths starting from s which evaluate the path formula ψ as F ,
and is denoted by Pr((s, ψ) = F ).

Now, the satisfaction sets can be defined as:

SatT (Pr��θ[ψ]) = {s ∈ S |Pr((s, ψ) = T ) �� θ}
SatF (Pr��θ[ψ]) = {s ∈ S |Pr((s, ψ) = F ) �� 1 − θ}
Sat?(Pr��θ[ψ]) = S \ [SatT (Pr��θ[ψ]) ∪ SatF (Pr��θ[ψ])]

To construct these sets, we have to calculate Pr((s, ψ) = T/F/?) for path for-
mula ψ. There are three path formulas in qPCTL–Next, Until and Bounded Until.
We now discuss the algorithms for computing the satisfaction probabilities for
these path formulas:

1. Next operator – [XΦ]: The satisfaction probabilities for next operator are
calculated by adding transition probabilities of the state s to the states which

Algorithm 1. Algorithm 1MC
Function: ComputeSat(Φ)
switch ( Φ )
case �:

SatT (Φ) ← S; SatF (Φ) ← ∅; Sat?(Φ) ← ∅
case a:

for all s ∈ S do
if L(s, a) = T then

SatT (Φ) ← SatT (Φ) ∪ {s}
else if L(s, a) = F then

SatF (Φ) ← SatF (Φ) ∪ {s}
else

Sat?(Φ) ← Sat?(Φ) ∪ {s}
end if

end for
case ¬Φ1

ComputeSat(Φ1)
SatT (Φ) ← SatF (Φ1); SatF (Φ) ← SatT (Φ1); Sat?(Φ) ← Sat?(Φ1)

case Φ1 ∧ Φ2

ComputeSat(Φ1); ComputeSat(Φ2)
SatT (Φ) ← SatT (Φ1) ∩ SatT (Φ2)
SatF (Φ) ← SatF (Φ1) ∪ SatF (Φ2)
Sat?(Φ) ← S \ [SatT (Φ) ∪ SatF (Φ)]
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case Pr��θ[ψ]
switch (ψ)
case XΦ1

ComputeSat(Φ1)
for all s, s′ ∈ S do

if s′ ∈ SatT (Φ1) then
PrT (s, ψ) ← PrT (s, ψ) + P(s, s′)

else if s′ ∈ SatF (Φ1) then
PrF (s, ψ) ← PrF (s, ψ) + P(s, s′)

else
Pr?(s, ψ) ← Pr?(s, ψ) + P(s, s′)

end if
end for

case [Φ1UΦ2]
ComputeSat(Φ1); ComputeSat(Φ2)
S=0 ← Compute Until S=0

S=? ← Compute Until S=?

S=1 ← Compute Until S=1

Sfind ← S \ [S=0 ∪ S=1 ∪ S=?]
for all s ∈ S do

PrT (s, ψ) ← Compute Until PrT (s)
� Computes true satisfaction probability using equation 1.

PrF (s, ψ) ← Compute Until PrF (s)
� Computes false satisfaction probability using equation 2.

end for
case [Φ1U

≤kΦ2]
ComputeSat(Φ1); ComputeSat(Φ2)
S=0 ← SatF (Φ2) ∩ SatF (Φ1)
S=? ← [(Sat?(Φ1) \ SatT (Φ2)) ∪ (Sat?(Φ2) \ SatT (Φ1)) ]
S=1 ← SatT (Φ2)
Sfind ← SatT (Φ1) \ SatT (Φ2)
for all s ∈ S do

PrT (s, ψ) ← Compute BUntil PrT (s, k)
� Computes true satisfaction probability using equation 4

PrF (s, ψ) ← Compute BUntil PrF (s, k)
� Compute false satisfaction probability using equation 5

end for
end switch
for all s ∈ S do

if PrT (s, ψ) �� θ then
SatT (Φ) ← SatT (Φ) ∪ {s}

else if PrF (s, ψ) �� 1 − θ then
SatF (Φ) ← SatF (Φ) ∪ {s}

else
Sat?(Φ) ← Sat?(Φ) ∪ {s}

end if
end for

end switch
return SatT (Φ), SatF (Φ), Sat?(Φ)
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satisfy Φ as T , F or ?.

Pr((s,XΦ) = T ) =
∑

s′∈SatT (Φ)

P(s, s′)

Pr((s,XΦ) = F ) =
∑

s′∈SatF (Φ)

P(s, s′)

Pr((s,XΦ) = ?) =
∑

s′∈Sat?(Φ)

P(s, s′)

Based on satisfaction probabilities, each state s in S belongs to only one of the
three satisfaction sets SatT (Pr��θ[XΦ]), SatF (Pr��θ[XΦ]) or Sat?(Pr��θ[XΦ]). If
Pr((s,XΦ) = T ) �� θ then s ∈ SatT (Pr��θ[XΦ]). Else if Pr((s,XΦ) = F ) �� 1−θ
then s ∈ SatF (Pr��θ[XΦ]). Otherwise, s belongs to the set Sat?(Pr��θ[XΦ]).

Example 1. In Fig. 1, a qDTMC M1 with state space S = {s0, s1, . . . , s6} with
an initial state s0 is given. If we want to verify a qPCTL state formula Φ =
Pr≥0.5[Xq] for M1, then the satisfaction sets will be: SatT (Φ1) = {s1, s3, s6},
SatF (Φ1) = {s4, s5} and Sat?(Φ1) = {s0, s2}. Thus for the initial state s0, the
qPCTL state formula Φ1 will be evaluated to ?.

2. Until operator – [Φ1UΦ2]: Identifying B with the set of states where Φ2 is
true and C as the set of states where Φ1 is true, a graph theoretic notion of
constrained reachability is useful:

Definition 7. Constrained reachability in a qDTMC (s, C U B) is defined as
an event of reaching the destination set B ⊆ S from the state s such that all the
preceding states in the path belong to a constraint set C ⊆ S.

Thus the true satisfaction probability Pr((s, Φ1UΦ2) = T ) can be calculated
as the probability of constrained reachability being true for paths starting from
state s. We can also denote this probability as Pr((s, C U B) = T ). Similarly,
the false satisfaction probability Pr((s, Φ1UΦ2) = F ) = Pr((s, C U B) = F ) is
the probability of constrained reachability being false.

Notably, it is possible that constrained reachability for a path in a qDTMC
is neither true nor false. For such paths, constrained reachability is evaluated to
unknown (?). This requires us to calculate all the reachability probabilities sepa-
rately for each state in M. For each state s, the probability that the constrained
reachability is T/F/? is denoted by x

(T/F/?)
s respectively, and is defined as:

x(T/F/?)
s = Pr((s, C U B) = T/F/?) = Pr((s, Φ1UΦ2) = T/F/?).

To calculate these constrained reachability probabilities, we first partition
the state space S into {S=0, S=1, S=? and Sfind}. We now define each of these
partition sets and discuss how to construct these sets later.

S=0 = {s ∈ S | Pr((s, C U B) = F ) = 1}
B ⊆ S=1 ⊆ {s ∈ S|Pr((s, C U B) = T ) = 1}

S=? = {s ∈ S | Pr((s, C U B) =?) = 1}
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The remaining states in S form the set Sfind:

Sfind = S \ [S=0 ∪ S=1 ∪ S=?]

Thus, for states s ∈ S=1, x
(T )
s = 1, x

(F )
s = 0 and x

(?)
s = 0. Similarly for states

s ∈ S=0, x
(F )
s = 1, x

(T )
s = 0 and x

(?)
s = 0 and for states s ∈ S=?, x

(?)
s = 1,

x
(T )
s = 0 and x

(F )
s = 0.

For a state s in the set Sfind, the constrained reachability probabilities are
neither exactly 1 nor 0. We now identify the paths starting from s that eventually
reach the set S=1 such that all the preceding states are from set Sfind. These
paths will evaluate C U B (or Φ1UΦ2) to T and the probability measure of these
paths gives x

(T )
s . Similarly, x

(F )
s is the probability measure of paths from s that

reach S=0 through the states from Sfind and hence evaluate C U B (or Φ1UΦ2)
to F .

The satisfaction probabilities for the path formula [Φ1UΦ2] is then calculated
using the following sets of linear equations.

x(T )
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if s ∈ S=1

0 if s ∈ S=0

0 if s ∈ S=?
∑

t∈S

P(s, t).x(T )
t if s ∈ Sfind

(1)

x(F )
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ S=1

1 if s ∈ S=0

0 if s ∈ S=?
∑

t∈S

P(s, t).x(F )
t if s ∈ Sfind

(2)

Pr((s, Φ1UΦ2) =?) = x(?)
s = 1 − [x(T )

s + x(F )
s ] (3)

We now discuss how to construct S=0, S=? and S=1. Pseudocode listing for these
subroutines is provided in the Algorithms 2, 3 and 4. Then, the set Sfind =
S \ [S=0 ∪ S=1 ∪ S=?] is computed.

We first compute S=0, the set of states that have the false satisfaction proba-
bility Pr((s, Φ1UΦ2) = F ) = 1. We identify the states that have false satisfaction
probability less than 1. To do this, we first identify the set R of states for which
Φ2 is either T or ?. Then we do a backward search on the paths leading to R, to
find states where Φ1 is not F . We add these states to R. When no more states
can be added to R, we remove R from the state space to get the set S=0.

Example 2. For the qDTMC M1 in Fig. 1 and a qPCTL state formula Φ =
Pr≥0.5[¬p U q], we first identify the satisfaction sets for the state formulas
Φ1 = ¬p and Φ2 = q :
SatT (Φ1) = {s0, s3}, SatT (Φ2) = {s2, s6},
SatF (Φ1) = {s2, s4, s6}, SatF (Φ2) = {s1, s4}
Sat?(Φ1) = {s1, s5} and Sat?(Φ2) = {s0, s3, s5}.
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We can now compute the set R = {s0, s1, s2, s3, s5, s6}. Thus the partition set
S=0 will be {s4}.

We follow a similar procedure to identify the set of states for which the
probability Pr((s, Φ1UΦ2) =?) will be 1. We start with the states that belong
to either S=0 or SatT (Φ2) and then identify the paths leading to these states.
The probability Pr((s, Φ1UΦ2) =?) for such paths will always be less than 1.
We thus exclude these states from the set S=?.

Example 3. In continuation of Example 2, the set R is now computed as
R = {s4, s2, s6} ∪ {s0, s3} = {s0, s2, s3, s4, s6}. Thus the set S=? is computes
to {s1, s5}.

The set S=1 consists of states that have the true satisfaction probability
Pr((s, Φ1UΦ2) = T ) = 1. As before, we first identify the set of states that have
true satisfaction probability less than 1, and then remove them from the state
space to compute S=1.

Example 4. The set R in Algorithm 4 for M1 is now computed as R =
{s4, s1, s5} ∪ {s0, s3} = {s0, s1, s3, s4, s5}. Thus the set S=1 will be {s2, s6}.
Also, the set Sfind can now be computed as Sfind = {s0, s3}.

Algorithm 2. Algorithm to compute S=0 for until operator
Function: Compute Until S=0

R ← SatT (Φ2) ∪ Sat?(Φ2)
while true do

R′ ← R ∪ {s ∈ S \ SatF (Φ1) | ∃s′ ∈ R,P(s, s′) > 0}
if R′ = R then

break
else

R ← R′

end if
end while
S=0 ← S \ R return S=0

Algorithm 3. Algorithm to compute S=? for until operator
Function: Compute Until S=?

R ← S=0 ∪ SatT (Φ2)
while true do

R′ ← R ∪ {s ∈ SatT (Φ1) \ SatT (Φ2) | ∃s′ ∈ R,P(s, s′) > 0}
if R′ = R then

break
else

R ← R′

end if
end while
S=? ← S \ R return S=?
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Algorithm 4. Algorithm to compute S=1 for until operator
Function: Compute Until S=1

R ← S=0 ∪ S=?

while true do
R′ ← R ∪ {s ∈ SatT (Φ1) \ SatT (Φ2)|∃s′ ∈ R,P(s, s′) > 0}
if R′ = R then

break
else

R ← R′

end if
end while
S=1 ← S \ R

Example 5. Now for M1 and the qPCTL formula Φ = Pr≥0.5[¬p U q], we can
compute the satisfaction sets using the true and false satisfaction probabilities:
SatT (Φ) = {s2, s3, s6}, SatF (Φ) = {s4} and Sat?(Φ) = {s0, s1, s5}. Thus, for
the initial state s0, Φ will be evaluated to ?.

3. Bounded Until operator – [Φ1U
≤kΦ2]: The satisfaction probabilities for

[Φ1U
≤kΦ2] can be directly computed by evaluating k transitions of the

qDTMC. Depending on the truth values of Φ1 and Φ2 in a state, the state
space S is partitioned into sets S=0, S=1, S=? and Sfind in the 1MC algo-
rithm. This partition is illustrated in Fig. 2.

S=0 = SatF (Φ2) ∩ SatF (Φ1),
S=? = [ (Sat?(Φ1) \ SatT (Φ2)) ∪ (Sat?(Φ2) \ SatT (Φ1)) ],
S=1 = SatT (Φ2),
Sfind = S \ [S=0 ∪ S=1 ∪ Sfind] = SatT (Φ1) \ SatT (Φ2)

A state s ∈ S=1 if the truth value of Φ2 is T in s. Now irrespective of the
truth value of Φ1, the path formula Φ1U

≤kΦ2 will be evaluated as T for all paths
starting from this state s, because Φ2 is T in the initial state of the path. Thus,
the true (false) satisfaction probability for states in S=1 will be 1 (0).

A state belonging to set S=0 will have truth values of both Φ1 and Φ2 as F .
All paths starting from such a state s ∈ S=0 will have both Φ1 and Φ2 false in
the initial state itself and will evaluate Φ1U

≤kΦ2 to F . Thus, the true (false)
satisfaction probabilities for states in S=0 will be 0 (1).

A state s belongs to the set S=? if the truth value of at least one of Φ1 or
Φ2 is ? in s and the other is not T . No path starting from such a state s ∈ S=?

can evaluate Φ1U
≤kΦ2 to either T or F–the truth or falsehood of Φ1U

≤kΦ2 for
a path starting in s is cannot be determined if (i) Φ1 is ? in s and Φ2 is not T
or (ii) Φ1 is not T and Φ2 is ?. For such states, both true and false satisfaction
probabilities are 0.

Now, the remaining states in the state space will have Φ1 as T , but Φ2 is
either F or ?. Since Φ2 is not T in starting state s of the path, we need to find
the value of Φ1 and Φ2 in the subsequent states. Thus, these states form the set
Sfind.
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Fig. 2. A table illustrating possible combinations of truth values for Φ1 and Φ2 at a
state s and corresponding partition set

Example 6. Given a qDTMC M1 and qPCTL formula Φ = Pr≥0.5[¬p U≤3 q],
we can compute the partition sets of the state space S as: S=0 = {s4}, S=? =
{s1, s5}, S=1 = {s2, s6} and Sfind = {s0, s3}.

We now calculate the satisfaction probabilities of the path formula
[Φ1U

≤k Φ2] for the paths starting at a state s using the 1MC algorithm. We
denote the true satisfaction probability for state s as Pr((s, Φ1U

≤k Φ2) = T )
or x

(T ),k
s . We know that the true satisfaction probability for states in S=1 is 1.

Also for states in S=0 and S=?, the true satisfaction probability is 0.
To evaluate the path formula Φ1U

≤kΦ2, a path with initial state s ∈ Sfind

is traversed until either a state in one of S=0, S=1 or S=?, or the bound k is
reached. If a state s ∈ Sfind when bound k is reached, then the probability of
[Φ1U

≤k Φ2] being evaluated to T is 0. The 1MC algorithm thus computes the
true satisfaction probability as follows.

x(T ),k
s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s ∈ S=1

0 if s ∈ S=0

0 if s ∈ S=?

0 if s ∈ Sfind ∧ k = 0
∑

t∈S

P(s, t).x(T ),k−1
t if s ∈ Sfind ∧ k > 0

(4)

Similarly, we now calculate the false satisfaction probability and denote it
as Pr((s, Φ1U

≤k Φ2) = F ) or x
(F ),k
s . Recall that the path formula [Φ1U

≤k Φ2]
evaluates to F if either the formula Φ2 is F at all states of k-length path, or if
at some state Φ2 evaluates to T but at some preceding state, Φ1 evaluated to F .

We know that the false satisfaction probability for states in S=0 is 1 and is
0 for states in S=1 and S=?. We also know that the states in set Sfind will have
Φ1 as T and Φ2 is either F or ?. Now no path starting from a state that has Φ1

as T and Φ2 as ? (Sfind ∩ Sat?(Φ2)) will evaluate Φ1U
≤kΦ2 as F . Thus, false

satisfaction probability for such states will be 0.
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We now traverse paths with initial state s ∈ Sfind ∩ SatF (Φ2) until either a
state in one of S=0, S=1, S=? or Sfind ∩ Sat?(Φ2), or the bound k is reached. If
a state s ∈ Sfind ∩ SatF (Φ2) when bound k is reached, then the probability of
[Φ1U

≤k Φ2] being evaluated to F is 1. This correlates to Φ2 evaluating to F at
all states in the path, and thus path formula [Φ1U

≤k Φ2] being evaluated to F .

x(F ),k
s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if s ∈ S=1

1 if s ∈ S=0

0 if s ∈ S=?

0 if s ∈ (Sfind ∩ Sat?(Φ2))
1 if s ∈ (Sfind ∩ SatF (Φ2)) ∧ k = 0

∑

t∈S

P(s, t).x(F ),k
t if s ∈ (Sfind ∩ SatF (Φ2)) ∧ k > 0

(5)

x(?),k
s = 1 − [x(T ),k

s + x(F ),k
s ] (6)

Example 7. For the given qDTMC M1 and qPCTL formula Φ = Pr≥0.5

[¬p U≤3 q], the true satisfaction probability for state s0, Pr((s0,¬p U≤3 q) = T )
is 0.475. Also, the false satisfaction probability Pr((s0,¬p U≤3 q) = F ) is 0.
Thus, the initial state s0 ∈ Sat?(Φ) and the formula Φ is evaluated to ? at state
s0.

From the above arguments, we conclude that:

Lemma 2. For the path formulas XΦ, Φ1U
≤kΦ2 and Φ1UΦ2, Algorithm1 is

correct for the corresponding probabilistic state formulas:

– 1MC(s, Pr��θ[XΦ])=T (alt., F or ?) iff (s, Pr��θ[XΦ])=T (resp., F or ?)
– 1MC(s, Pr��θ[Φ1UΦ2])=T (alt., F or ?) iff (s, Pr��θ[Φ1UΦ2])=T (resp., F or

?)
– 1MC(s, Pr��θ[Φ1U

≤kΦ2])=T (alt., F or ?) iff (s, Pr��θ[Φ1U
≤kΦ2])=T (resp.,

F or ?)

From lemmas 1 and 2, we have:

Theorem 1. 1MC(s, Φ)=T (alt., F or ?) iff (s, Φ) =T (resp., F or ?)

Complexity of qPCTL Model Checking: Unlike for the standard PCTL
model checking algorithm [4], the 1MC algorithm for qPCTL model checking
computes an additional partition set S=? before solving the system of linear
equations for the states in the set Sfind. The computation of set S=? is done
in Θ(|S|) time. Other than that, the asymptotic time complexity is polynomial
with respect to the size of the model M and linear in terms of the size of the
query Φ. Thus, the time complexity of the 1MC qPCTL model checking algo-
rithm is the same as that of the PCTL algorithm and the 2MC algorithm for
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qPCTL–O(poly(size(M)).nmax.|Φ|), where nmax is the maximum step bound for
bounded until and 1 if the formula does not contain a bounded until. However,
in many cases, a drop in the number of runs results in a significant performance
improvement over the 2MC algorithm. This is more pronounced for larger mod-
els. We validate this with extensive experimentation in the next section.

4 Implementation and Results

We have implemented the 1MC algorithm as a Java tool. The tool takes as
an input the qDTMC model and the qPCTL query. The tool supports both
qualitative and quantitative qPCTL queries. A qualitative query only checks if
the required probability threshold is met, and results in T , F or ?. A quantitative
query on the other hand computes the exact probability of the query being T ,
F and ?.

We will begin by mentioning that the 1MC approach discussed in this paper
yields matching results for the case studies reported in [1] and [2]– (i) a model
representing an incomplete program code, and (ii) a network model that has
incomplete information about its nodes respectively.

We now compare the performance of the proposed 1MC algorithm with the
2MC algorithm in [2] for model checking different qDTMCs. For the sake of
fairness, we also implemented the standard PCTL model checker from scratch.
The 2MC algorithm calls this bare-bones model checker as a subroutine.

For a fixed size of state space, we randomly generate 50 qDTMCs with differ-
ent transition probability matrices and labeling functions. We study the varia-
tion in time taken to verify models with different structures for different qPCTL
queries, and record the minimum and maximum time taken.

We repeat this for different sizes of state spaces starting from qDTMCs with
5 states, and up to 1500 states. Thus the algorithms were compared in terms of
the time taken to verify the models of varying sizes.

Figure 3 plots the minimum and maximum times taken by the 1MC and
2MC algorithms to verify the properties Φ1 = Pr≥0.8[p0 U p1], Φ2 =
Pr≥0.7[ p0 U Pr≥0.6[X p1]] and Φ3 = Pr≥0.7[ p0 U Pr≥0.6[ p1 U p2]] where
p0, p1 and p2 are atomic propositions in the incomplete models.

It can be seen from the results that the minimum time curve for 1MC algo-
rithm is higher than that for the 2MC algorithm. This is due to the fact that
the 2MC algorithm need not compute both its steps in all cases. For instance, if
the probability of a property being true meets the required threshold in the first
step itself, the model checker need not calculate the probability of a property
being false. However, the 1MC algorithm calculates both true as well as false
probability in single step, which increases the computation overhead. In many
cases, however, both steps of 2MC algorithm are needed; thus making it very
expensive for models with large state space. The proposed 1MC algorithm gen-
erates results faster for such models and has a lower maximum time curve than
that for 2MC algorithm.
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Fig. 3. Minimum and maximum time taken by the algorithms to verify properties Φ1,
Φ2 and Φ3 for models of varying sizes and topology.

5 Conclusion and Future Work

We believe that model checking for incomplete models will be of immense prac-
tical use. While it is possible to design algorithms that use existing techniques
designed for binary logic, it is useful to have algorithms designed exclusively
for three-valued logics. We discussed an algorithm and its application for model
checking PCTL queries against incomplete DTMCs that accommodate a three-
valued logic.

Future efforts in this direction would be (i) applying these algorithms for
interim analysis of incomplete models in practice and (ii) designing similar algo-
rithms and tools for other models and systems of logic.
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