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Abstract. Dependency graphs, as introduced more than 20 years ago
by Liu and Smolka, are oriented graphs with hyperedges that connect
nodes with sets of target nodes in order to represent causal dependencies
in the graph. Numerous verification problems can be reduced into the
problem of computing a minimum or maximum fixed-point assignment
on dependency graphs. In the original definition, assignments link each
node with a Boolean value, however, in the recent work the assignment
domains have been extended to more general setting, even including infi-
nite domains. We present an overview of the recent results on extensions
of dependency graphs in order to deal with verification of quantitative,
probabilistic and timed systems.
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1 Model Verification

The scale of computational systems nowadays varies from simple toggle-buttons
to various embedded systems and network routers up to complex multi-purpose
computers. In safety critical applications, we need to provide guarantees about
system behaviour in all situations/configurations that the system can encounter.
Such guarantees are classically provided by first creating a formal model of the
system (at an appropriate abstraction level) and then using formal methods
such as model checking and equivalence checking to rigorously argue about the
behaviour of the models. At the highest abstraction level, systems are usually
modelled as labelled transition systems or Kripke structures (see [5] for an intro-
duction). In labelled transition systems (LTS), a process changes its (unobserv-
able) internal states by performing visible actions. Kripke structures on the other
hand allow to observe the validity of a number of atomic predicates revealing
some (partial) information about the current state of a given process, whereas
the state changes are not labelled by any visible actions.

An example of LTS modelling a simple traffic light is given in Fig. 1a.
Although the states have been named for convenience, they are considered
opaque. Instead, this formalism uses the action-based perspective where the
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(b) A variant of traffic light LTS
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(c) Dependency graph with root (R1, R2) for bisimulation checking

Iteration A(R1, R2) A(R′
1, R

′
2) A(G1, G2) A(R1, R

′
2)

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 1 1 1 1

(d) Iterative minimum fixed-point computation by using the global algorithm

Fig. 1. Traffic light LTS variants

actions of the transitions are considered visible. For example from R1 there is a
transition to R′

1 labelled with a ‘wait’ action that allows to extend the duration
of the red color, after which only the action ‘to green’ is available. A slight vari-
ant of the LTS is given in Fig. 1b where from G2 it is possible to enter directly
the state R′

2 by performing the ‘to red’ action. We can now ask the (equivalence
checking) question whether the two systems are equivalent up to some given
notion of equivalence (see e.g. [22]), e.g. bisimilarity [36], which is not the case
in our example.

The simple traffic light can also be modelled as a Kripke structure that is
depicted in Fig. 2a. Here the transitions are not labelled by any actions while the
states are labelled with the propositions ‘red’ and ‘green’ that indicate the status
of the light in that state. We note that the states R and R′ are indistinguishable
as they are labelled by the same proposition ‘red’. We can now ask the (model
checking) question whether the initial state R satisfies the property that on any
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execution the proposition ‘green’ will eventually hold and until this happens the
light is in ‘red’. This can be e.g. expressed by the CTL property ‘A red U green’
and it indeed holds for R in the depicted Kripke structure.

G{green}

R{red} R′ {red}

(a) Traffic light Kripke structure

R, A red U green

v1

R, green
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R, red
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G, green

v8
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v9

∅
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(b) Dependency graph with root v1 encoding R |= A red U green

Iteration A(v1) A(v2) A(v3) A(v4) A(v5) A(v6) A(v7) A(v8) A(v9)

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 0
2 0 0 1 0 0 1 1 1 0
3 0 0 1 1 0 1 1 1 0
4 1 0 1 1 0 1 1 1 0
5 1 0 1 1 0 1 1 1 0

(c) Interactive minimum fixed-point computation using the global algorithm

Fig. 2. Kripke structure of traffic light

1.1 On-the-Fly Verification

The challenge is how to decide the equivalence and model checking problems
even for systems described in high level formalism such as automata networks or
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Petri nets. These formalisms allow for a compact representation of the system
behaviour, meaning that even though their configurations and transitions can
still be given as a labelled transition system or a Kripke structure, the size of
these can be exponential in the size of the input formalism. This phenomena
is known as the state-space explosion problem and it makes (in many cases)
the full enumeration of the state-space infeasible for practical applications. In
order to deal with state-space explosion, on-the-fly verification algorithms are
preferable as they construct the reachable state-space step by step and hence
avoid the (expensive) a priory enumeration of all system configurations. In case a
conclusive answer about the system behaviour can be drawn by exploring only a
part of the state-space, this may grant a considerable speed up in the verification
time.

The idea of local or on-the-fly model checking was discovered simultaneously
and independently by various people in the end of the 80s all engaged in mak-
ing model checking and equivalence checking tools for various process algebras,
e.g. the Concurrency Workbench CWB [15]. Due to its high expressive power—
as demonstrated in [16,37]—particular focus was on truly local model-checking
algorithms for the modal mu-calculus [28]. Several discussions and exchanges
of ideas between Henrik Reif Andersen, Kim G. Larsen, Colin Stirling and
Glynn Winskel lead to the first local model-checking methods [3,10,29,30,38,40].
Besides the CWB these were implemented in the model checking tools TAV [9,23]
for CCS and EPSILON [12] for timed CCS.

Simultaneously, in France a tool named VESAR was developed that combined
the model checking idea (from the Sifakis team in Grenoble) and the simulation
world (from Roland Groz at CNET Lannion and Claude Jard in Rennes, who
were checking properties on-the-fly using observers). The VESAR tool was devel-
oped by a French company named Verilog and its technology was later reused for
another tool named Object-Geode from the same company, which was heavily
sold in the telecom sector [1].

As an alternative to encoding into the modal mu-calculus, it was realized that
an even simpler formalism—Boolean equation systems (BES)—would provide a
universal framework for recasting all model checking and equivalence checking
problems. Whereas [31] introduces BES and first local algorithms, the work in
[2] provides the first optimal (linear-time) local algorithm. Later extensions and
adaptions of BES were implemented in the tools CADP [35] and muCRL [24].

1.2 Dependency Graphs Related Work

In this paper we survey the (extensions) of dependency graphs [33] (DG) intro-
duced in 1998 Liu and Smolka. Similar to Boolean equation systems, DG serve
as a universal tool for the representation of various model checking and equiv-
alence checking problems, providing us with a universal method for on-the-fly
exploration of DG. The elegant local (on-the-fly) algorithm presented in [33]
runs in linear time with respect to the size of the DG and allows for an early
termination in case the chosen search strategy manages to reveal a conclusive
answer without necessarily exploring the whole graph.



Model Verification Through Dependency Graphs 5

Recently, the ideas of DG have been extended to various domains such as
timed [11], weighted [25,26] and probabilistic [34] systems. We shall account
for some of the most notable extensions and further improvements to the local
algorithm from [33] such as its parallelization. We shall start by defining the
notion of dependency graphs as introduced by Liu and Smolka [33].

2 Dependency Graphs

Dependency graphs are a variant of directed graphs where each edge, also called a
hyperedge, may have multiple target nodes [33]. The intuition is that a property of
a given node in a dependency graph depends simultaneously on all the properties
of the target nodes for a given hyperedge, while different outgoing hyperedges
provide alternatives for deriving the desirable properties. Formally, a dependency
graph (DG) is a pair G = (V,E) where V is a set of nodes and E ⊆ V × 2V is
the set of hyperedges.

Figure 3a graphically depicts a dependency graph. For example the root node
v1 has two hyperedges: the first hyperedge has the target node v2 and the second
hyperedge has two targets v3 and v4. The node v2 has no outgoing hyperedges,
while the node v3 has a single outgoing hyperedge with no targets (shown by
the empty set).

As shown in Fig. 3b it is possible to interpret the dependencies among the
nodes in dependency graph as a system of Boolean equations, using the general
formula

v =
∨

(v,T )∈E

∧

u∈T

u

where by definition the conjunction of zero terms is true, and the disjunction of
zero terms is false. We denote false by ff (or 0), and true by tt (or 1).

We can now ask the question whether there is an assignment of Boolean
values to all nodes in the graph such that all constructed Boolean equations
simultaneously hold. Formally, an assignment is a function A : V → {0, 1} and
an assignment A is a solution if it satisfies the equality:

A(v) =
∨

(v,T )∈E

∧

u∈T

A(u).

In our case, there are three solutions as listed in Fig. 3c. The existence of several
such possible assignments that solve the equations is caused by cyclic dependen-
cies in the graph as e.g. v5 depends on v6 and at the same time v6 also depends
of v5.

However, if we let the set of all possible assignments be A and define A1 ≤ A2

if and only if A1(v) ≤ A2(v) for all v ∈ V where A1, A2 ∈ A, then we can observe
that (A,≤) is a complete lattice [4,19] which guarantees the existence of the
minimum and maximum assignment in the lattice.

There is a standard procedure how to compute such a minimum/maximum
solution. For example for the minimum solution we can define a function F :
A → A that transforms an assignment as follows:
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v1

v2 v3 v4 v5 v6

v7

∅
(a) Dependency graph

v1 = v2 ∨ (v3 ∧ v4)

v2 = ff

v3 = tt

v4 = (v5 ∧ v6) ∨ v7

v5 = v6

v6 = v4 ∧ v5

v7 = v4

(b) Corresponding equation system

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = tt

v6 = tt

v7 = tt

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = ff

v6 = ff

v7 = tt

v1 = ff

v2 = ff

v3 = tt

v4 = ff

v5 = ff

v6 = ff

v7 = ff

(c) Possible solutions

Iteration v1 v2 v3 v4 v5 v6 v7

0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 0

(d) Iterative minimum fixed-point computation by using the global algorithm

Fig. 3. Example of dependency graph

F (A)(v) =
∨

(v,T )∈E

∧

u∈T

A(u).

Clearly, the function F is monotonic and an assignment A is a solution to a
given dependency graph if and only if A is a fixed point of A, i.e. F (A) = A.
From the Knaster-Tarski fixed-point theorem [39] we get that the monotonic
function F on the complete lattice (A,≤) has a unique minimum fixed point
(solution).

By repeatedly applying F to the initial assignment A0 where A0(v) = 0 for
all nodes v, we can iteratively find a minimum fixed point as formulated in the
following theorem.

Theorem 1. Let Amin denote the unique minimum fixed point of F . If there is
an integer i such that F i(A0) = F i+1(A0) then F i(A0) = Amin .
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Input: A dependency graph G = (V, E).
Output: Minimum fixed point Amin .

1 A := A0

2 repeat
3 A′ := A
4 forall v ∈ V do
5 A(v) :=

∨
(v,T )∈E

∧
u∈T A′(u)

6

7 until A �= A′

8 return A

Algorithm 1. Global algorithm for minimum fixed point Amin

Clearly F i(A0) is a fixed point as F (F i(A0)) = F i(A0) by the assumption of
the theorem. We notice that A0 ≤ Amin and because F is monotonic and Amin

is a fixed point, we also know that F j(A0) ≤ F j(Amin) = Amin for an arbitrary
j. Then in particular F i(A0) ≤ Amin and because Amin is the minimum fixed
point and F i(A0) is a fixed point, necessarily F i(A0) = Amin .

For any finite dependency graph, the iterative computation of Amin as sum-
marized in Algorithm 1, also referred to as the global algorithm, is guaranteed
to terminate after finitely many iterations and return the minimum fixed-point
assignment. Dually, the iterative algorithm can be used to compute maximum
fixed points on finite dependency graphs.

3 Encoding of Problems into Dependency Graphs

We shall now demonstrate how equivalence and model checking problems can
be encoded into the question of finding a minimum fixed-point assignment on
dependency graphs. Typically, the nodes in the dependency graph encode the
configurations of the problem in question and the hyperedges create logical con-
nections between the subproblems. We provide two examples showing how to
encode strong bisimulation checking and CTL model checking into dependency
graphs.

3.1 Encoding of Strong Bisimulation

Recall that two states s and t in a given LTS are strongly bisimilar [36], written
s ∼ t, if there is a binary relation R over the states such that (s, t) ∈ R and

– whenever s
α−→ s′ then there is t

α−→ t′ such that (s′, t′) ∈ R, and
– whenever t

α−→ t′ then there is s
α−→ s′ such that (s′, t′) ∈ R.

We encode the question whether s0 ∼ t0 for given two states s0 and t0 into
a dependency graph where the nodes (configurations) are pairs of states of the
form (s, t) and the hyperedges represent all possible ‘attacks’ on the claim that
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s, t

s′, t′
1

. . . s′, t′
m s′

1, t
′ . . . s′

n, t′

for all s
α−→ s′ for all t

α−→ t′

{t′
1, . . . , t

′
m} = {t′ | t

α−→ t′} {s′
1, . . . , s

′
n} = {s′ | s

α−→ s′}

Fig. 4. Encoding rule for strong bisimulation checking

s and t are bisimilar. For example, if one of the two states can perform an action
that is not enabled in the other state, we will introduce a hyperedge with the
empty set of target nodes, meaning that the minimum fixed-point assignment of
the node (s, t) will get the value 1 standing for the fact that s �∼ t. In general
the aim is to construct the DG in such a way that for any node (s, t) we have
Amin((s, t)) = 0 if and only if s ∼ t. The construction, as mentioned e.g. in [19],
is given in Fig. 4. The rule says that if s can take an α-action to s′, then the
configuration (s, t) should have a hyperedge containing all target configurations
(s′, t′) where t′ are all possible α-successors of t. Symmetrically for the outgoing
transitions for t that should be matched by transitions from s.

Let us consider again the transition systems from Fig. 1. The dependency
graph to decide whether R1 is bisimilar with R2 is given in Fig. 1c where we can
note that the configuration (R1, R

′
2) has a hyperedge with no target nodes. This

is because R1 can perform the ‘wait’ action that R′
2 can not match. If we now

compute Amin , for example using the global algorithm in Fig. 1d, we notice that
Amin((R1, R

′
2)) = 1 which means that R1 and R′

2 are not bisimilar.

3.2 Encoding of CTL Model Checking

We shall now provide an example of encoding a model checking problem into
dependency graphs. In particular, we demonstrate the encoding for CTL logic as
described e.g. in [18]. We want to check whether a state s of a given LTS satisfies
the CTL formula ϕ. We let the nodes of the dependency graph be of the form
(s, ϕ) and these nodes will be decomposed into a number of subgoals depending
of the structure of the formula ϕ. The encoding will ensure that Amin((s, ϕ)) = 1
if and only if s |= ϕ for any node (s, ϕ) in the dependency graph [17]. Figure 5
shows the rules for constructing such a dependency graph.

Returning to our example from Fig. 2, we see in Fig. 2b the constructed
dependency graph for the model checking question R |= A red U green.
The fixed-point computation using the global algorithm is given in Fig. 2c and
because Amin(v1) = 1, we can conclude that the state R indeed satisfies the CTL
formula A red U green. For simplicity, the encoding as shown in Fig. 5 does not
include negation, but the construction can be extended to support negation [17].
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s, ϕ1 ∧ ϕ2

s, ϕ1 s, ϕ2

s, ϕ1 ∨ ϕ2

s, ϕ1 s, ϕ2

s, EXϕ

s1, ϕ sn, ϕ. . .

s, Eϕ1Uϕ2

s, ϕ1 s1, Eϕ1Uϕ2s, ϕ2 sn, Eϕ1Uϕ2. . .

s, Aϕ1Uϕ2

s1, Aϕ1Uϕ2s, ϕ1s, ϕ2 sn, Aϕ1Uϕ2. . .

Fig. 5. Encoding to determine whether s |= ϕ where {s1, . . . , sn} = {s′ | s → s′}

4 Local Algorithm for Dependency Graphs

The encodings of verification problems into dependency graphs, as discussed in
the previous section, construct a graph with a root node v0 such that from the
value of the minimum fixed-point assignment of the node v0, we can deduce the
answer to the verification problem in question.

In Algorithm 1 we have already seen a method for computing iteratively the
minimum fixed point Amin for all nodes in the dependency graph. However, due
to the state-space explosion problem, such a graph can be exponentially large
(or even infinite) and hence it is infeasible to explore it completely. As we are
often only interested in Amin(v0) for a given node v0, we do not necessarily
have to explore the whole dependency graph. This is shown in Fig. 7a, where
we can see that Amin(v1) = 1 due to the outgoing hyperedge from v1 with
empty set of targets, and this value can propagate directly to the node v0 and
we can also conclude that Amin(v0) = 1; all this without the need to explore the
(possibly large or even infinite) subtree with the root v2. This idea is formalized
in Liu and Smolka’s local algorithm [33] that computes the value of Amin(v0) for
a given node v0 in an on-the-fly manner.

Algorithm 2 shows the pseudocode of the local algorithm. The algorithm
maintains the waiting set W of hyperedges to be explored (initially all outgoing
hyperedges from the root node v0) as well as the list of dependencies D for
every node v, such that D(v) contains the list of all hyperedges that should be
reentered into the waiting list in case the value of the node v changes from 0 to
1. Due to a small technical omission, the original algorithm of Liu and Smolka
did not guarantee termination even for finite dependency graph. This is fixed in
Algorithm 2 by inserting the if-test at line 10 that makes sure that we do not
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Input: A dependency graph G = (V, E) and a node v0 ∈ V .
Output: Amin(v0)

1 forall v ∈ V do
2 A(v) := ?
3 A(v0) := 0
4 D(v0) := ∅
5 W := {(v0, T ) | (v0, T ) ∈ E}
6 while W �= ∅ do
7 e := (v, T ) ∈ W
8 W := W \ {e}
9 if A(v′) = 1 for all v′ ∈ T then

10 if A(v) �= 1 then
11 A(v) := 1
12 W := W ∪ D(v)

13 else if ∃v′ ∈ T such that A(v′) = 0 then
14 D(v′) := D(v′) ∪ {e}
15 else if ∃v′ ∈ T such that A(v′) = ? then
16 A(v′) := 0
17 D(v′) := ∅
18 W := W ∪ {(v′, U) | (v′, U) ∈ E}
19 return A(v0)

Algorithm 2. Liu and Smolka’s local algorithm computing Amin(v0)

reinsert the dependencies D(v) of a node v in case that the value of v is already
known to be 1.

In Fig. 6b we see the computation of the local algorithm on the dependency
graph from Fig. 6a. Under the assumption that the algorithm makes optimal
choices when picking among hyperedges from the waiting list (third column in
the table), we can see that only a subset of nodes is ever visited and the value of
Amin(v1) can be determined by exploring only the middle subtree of v1 because
once in the 6th iteration the value A(v1) is improved from 0 to 1, we terminate
early and announce the answer.

4.1 Optimizations of the Local Algorithm

The local algorithm begins with all nodes being assigned ? such that whenever
a new node is discovered during the forward search, it gets the value 0 and
this value may be possibly increased to 1. Hence the assignment values grow as
shown in Fig. 7b. As soon as the root receives the value 1, the local algorithm
can terminate. If the root never receives the value 1, we need to explore the
whole graph and wait until the waiting set is empty before we can terminate
and return the value 0. Hence during the computation, the value 0 of a node is
‘uncertain’ as it can be possibly increased to 1 in the future.

Consider the dependency graph in Fig. 7c. In order to compute Amin(v0), the
local algorithm computes first the minimum fixed-point assignment both for v1
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v1

v2

v3 v4

v5

v6 v7

v8

v9 v10 v11

∅

e1 e2 e3

e4 e5

e6
e7

e8

e9
e10

e11

(a) Example of a dependency graph

Iteration W (v, T ) ∈ W A(v1) A(v2...4) A(v5) A(v6) A(v7) A(v8...11)

0 {e1, e2, e3} 0 ? ? ? ? ?
1 {e1, e2, e3} e2 0 ? 0 ? ? ?
2 {e1, e3, e6} e6 0 ? 0 ? 0 ?
3 {e1, e3, e11} e11 0 ? 0 0 0 ?
4 {e1, e3, e10} e10 0 ? 0 1 0 ?
5 {e1, e3, e11} e11 0 ? 0 1 1 ?
6 {e1, e3, e6} e6 0 ? 1 1 1 ?
7 {e1, e2, e3} e2 1 ? 1 1 1 ?

(b) Execution of local algorithm for computing Amin(v1)

Fig. 6. Demonstration of local algorithm for minimum fixed-point computation

and v2 before it can terminate with the answer that the final value for the root
is 0. However, we can actually conclude that Amin(v1) = 0 as the final value of
the node v1 is clearly 0 and hence v0 can never be upgraded to 1, irrelevant of
the value of Amin(v2).

This fact was noticed in [18] where the authors suggest to extend the pos-
sible values of nodes with the notation of certain-zero (see Fig. 7d for the value
ordering), i.e. once the assignment of a node becomes 0, its value can never
be improved anymore to 1. The certain zero value can be back-propagated and
once the root receives the certain-zero value, the algorithm can terminate early
and hence speed up the computation of the fixed-point value for the root. The
efficiency of the certain-zero optimization was demonstrated for example on the
implementation of dependency graphs for CTL model checking of Petri nets [18]
and for other verification problems in the more general setting of abstract depen-
dency graphs [21].
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v0

v1 v2

. . .∅
(a) Value of Amin(v2) is unnecessary for concluding
that Amin(v0) = 1

1

0

?

(b) Liu&Smolka
value ordering

v0

v1 v2

. . .

(c) Value of Amin(v2) is unnecessary for concluding
that Amin(v0) = 0

1 0

−

?

(d) Certain-zero
value ordering

Fig. 7. Certain-zero optimization

4.2 Distributed Implementation of the Local Algorithm

State-space explosion problem means that the size of dependency graphs may
become too large to fit into the memory of a single machine and/or the veri-
fication time may become infeasible. In [19] the authors describe a distributed
fixed-point algorithm for dependency graphs that distributes the workload over
several machines. The algorithm is based on message passing where the nodes
of the dependency graphs are partitioned among the workers and each worker
is responsible for computing the fixed-point values for the nodes it owns, some-
times requiring messages to be sent once the target nodes of an hyperedge are
not own by the same worker as the root of the hyperedge. The experiments
confirm an average speed up of around 25 times for 64 workers (CPUs) and
6 times for 8 workers. This is a satisfactory performance as the problem is P-
complete (recall that we showed in Sect. 3 a polynomial time reduction from the
P-complete problem of strong bisimulation checking [6] into fixed-point compu-
tation on dependency graphs), and hence inherently believed hard to parallelize.
Moreover, the distributed algorithm can be used ‘out-of-the-box’ for a number
for model verification problems (all those that can be encoded into dependency
graphs), instead of designing single purpose distributed algorithms for each indi-
vidual problem.
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CCS, ≈ CTL, |= WCTL, |=

Encoding1 Encoding2 Encoding3 . . .

DG EDG SDG . . .

Algorithm1 Algorithm2 Algorithm3 . . .

Amin Amin Amin . . .
(a) Single-purpose algorithms for minimum fixed-point computation

CCS, ≈ CTL |= WCTL |= . . .

Encoding1 Encoding2 Encoding3 . . .

ADG

Algorithm

Amin

(b) Abstract Dependency Graph (ADG) solution

Fig. 8. Model verification without and with abstract dependency graphs

5 Abstract Dependency Graphs

Dependency graphs have recently been extended in several directions in order
to reason about more complex problems. Extended dependency graphs, intro-
duced in [18], add a new type of edge to dependency graphs to handle negation.
Another extension with weights, called symbolic dependency graphs [26], extends
the value annotation of nodes from the 0–1 domain into the set of natural num-
bers together with a new type of so-called cover-edges. Recently an extension
presented in [14] considers as the value-assignment domain the set of piece-wise
constant functions in order to be able to encode weighted PCTL model checking.
Because the constructed dependency graphs in these extensions are different, for
each problem that we consider we need to implement a single-purpose algorithm
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to compute the fixed points on such extended dependency graphs, as depicted
in Fig. 8a.

In [21] abstract dependency graphs (ADG) are suggested that permit a more
general, user-defined domain for the node assignments together with user-defined
functions for evaluating the fixed-point assignments. As a result, a number of
verification problems can be now encoded as ADG and a single (optimized)
algorithm can be used for computing the minimum fixed point as depicted in
Fig. 8b.

In ADG the values of node assignments have to form a Noetherian Ordering
Relation with least element (NOR), which is a triple D = (D,�,⊥) where (D,�)
is a partial order, ⊥ ∈ D is its least element, and � satisfies the ascending chain
condition: for any infinite chain d1 � d2 � d3 � . . . there is an integer k such
that dk = dk+j for all j > 0. For algorithmic purposes, we assume that such a
domain together with the ordering relation is effective (computable).

Instead of hyperedges, each node in an ADG has an ordered sequence of
target nodes together with a monotonic function f : Dn → D of the same arity
as the number of its target nodes. The function is used to evaluate the values of
the node during an iterative, local fixed-point computation.

An assignment A : V → D is now a function that to each node assigns a
value from the domain D and we define a function F as

F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vn))

where E(v) stands for the monotonic function assigned to node v and v1, v2, . . . vn

are all (ordered) target nodes of v.
The presence of the least element ⊥ ∈ D means that the assignment A⊥

where A⊥(v) = ⊥ for all v ∈ V is the least of all assignments (when ordered
component-wise). Moreover, the requirement that (D,�,⊥) satisfies the ascend-
ing chain condition ensures that assignments cannot increase indefinitely and
guarantees that we eventually reach the minimum fixed-point assignment as for-
mulated in the next theorem.

Theorem 2. There exists a number i such that F i(A⊥) = F i+1(A⊥) = Amin .

An example of ADG over the NOR D = ({0, 1}, {(0, 1)}, 0) that represents
the classical Liu and Smolka dependency graph framework is shown in Fig. 9a.
Here 0 (interpreted as false) is below the value 1 (interpreted as true) and the
monotonic functions for nodes are displayed as node annotations. In Fig. 9b
we demonstrate the fixed-point iterations computing the minimum fixed-point
assignment.

A more interesting instance of ADG with an infinite value domain is given in
Fig. 9c. The ADG encodes an example of a symbolic dependency graph (SDG)
from [26] (with the added node E). The nodes are assigned nonnegative integer
values (note that we use the ordering relation in the reverse order here) with
the initial value being ∞ and the ‘best’ value (the one that cannot be improved
anymore) being 0. The fixed-point computation is shown in Fig. 9d.



Model Verification Through Dependency Graphs 15

A

B ∨ (C ∧ D)

B

1

C

1

D

E ∧ F

E1 F E ∧ D

(a) Abstract dependency graph over NOR
({0, 1}, ≤, 0)

A B C D E F

A⊥ 0 0 0 0 0 0
F (A⊥) 0 1 1 0 1 0
F 2(A⊥) 1 1 1 0 1 0
F 3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation of
Figure 9a

A 0 if B ≤ 5 else ∞

B max{C, D + 3}Cmin{D, E}

D 0E3

(c) Abstract dependency graph over NOR
(N ∪ {∞}, ≥, ∞)

A B C D E

A⊥ ∞ ∞ ∞ ∞ ∞
F (A⊥) ∞ ∞ ∞ 0 3
F 2(A⊥) ∞ ∞ 0 0 3
F 3(A⊥) ∞ 3 0 0 3
F 4(A⊥) 0 3 0 0 3

(d) Fixed-point computation of
Figure 9c

Fig. 9. Abstract dependency graphs

The authors in [21] devise an efficient local (on-the-fly) algorithm for ADGs
and provide a publicly available implementation in a form of C++ library. The
experimental results confirm that the general algorithm on ADGs is competitive
with the single-purpose optimized algorithms for the particular instances of the
framework.

6 Applications of Dependency Graphs

We shall finish our survey paper with an overview of selected applications of
dependency graphs for various verification problems.

Timed Games: In [11] the zone-based on-the-fly reachability algorithm for timed
automata implemented in UPPAAL [32] was extended with the synthesis of
reachability strategies for timed games. In this application the nodes of the
ADG are reachable symbolic states of the form (�, Z) where � is a location and
Z is a zone, and the NOR D for such a node are all subsets W ⊆ Z where W
is a finite union of (sub-)zones such that W � W ′ if W ⊆ W ′. Informally, the
(increasing) set W contains information about the concrete states for which a
winning strategy is already known to exist. The resulting on-the-fly algorithm
is implemented in UPPAAL TIGA [7].
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Weighted CTL: In [25,26] ADGs—called symbolic DGs at the time of writing
of the papers—were used for efficient on-the-fly model checking for weighted
Kripke structures with respect to weighted extensions of CTL. Here nodes of
the ADG are pairs of the form (s, ϕ) where s a state of the weighted Kripke
structure and ϕ is a WCTL formula. The NOR D for nodes (s, ϕ), where ϕ is a
cost-bounded modality, is (N ∪ {∞},≥,∞). Informally, the (decreasing) values
for such nodes provide upper bounds for which the property is known to hold in
the associated state s. The resulting on-the-fly algorithm has been implemented
in the tool WKTool1. In [13], parametric model checking for WCTL has been
considered. Here the outcome of the model checking effort is a direct description
of the constraints on the parameters that will render the model checking problem
true. In this case the NOR D is extended to (P → (N ∪ {∞}),≥,∞), where P
is the set of parameters and ≥ is the pointwise extension of ≥ to functions.

Probabilistic CTL: For model checking Markov reward models (MRM) with
respect to probabilistic WCTL, the work in [14,34] provides an on-the-fly algo-
rithm using ADG. Here nodes are of the form (s, ϕ) where s is a state of the MRM
and ϕ is a property of PWCTL, and where modalities have upper cost-bounds
and lower probability bounds. Semantically, the NOR D consists of monotonic
functions of the type p : R≥0 → [0, 1]. Informally, assigning a function p to a
node (s, ϕ) indicates that for any cost-bound c the property ϕ holds at least
with probability p(c). The Noetherian property of D is ensured by restricting D
to piecewise constant functions.

Petri Nets and Games: The CTL model checking engine of the award-winning
tool TAPAAL [20] applies dependency graphs with certain-zero optimiza-
tion [17,18]. Also for various game engines dependency graphs have been applied.
In [27] synthesis for safety games for timed-arc Petri net games have been
given demonstrating (and exploiting) equivalence between continuous-time and
discrete-time setting. Finally in [8] partial order reduction for synthesis of reach-
ability games on Petri nets has been obtained based on dependency graph frame-
work.

CAAL: Finally we want to point to the educational tool CAAL [4]2, which—
using dependency graphs— supports a variety of equivalence checking techniques
as well as model checking for recursive Hennessy-Milner logic for CCS and timed
CCS.

Acknowledgments. We would like to thank to Hubert Garavel and Radu Mateescu
for sharing the French history of on-the-fly model checking with us. The last author is
partially affiliated with FI MU. The work of the second author has taken place in the
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