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Preface

This volume contains the proceedings of the 26th International Symposium on Model
Checking Software, SPIN 2019, held in Beijing, China, July 15–16, 2019. SPIN is a
well-recognized periodic event started in 1995 around the model checking tool SPIN.
Since 1995, the event has evolved and has been consolidated as a reference symposium
in the area of formal methods related to model checking. The previous edition of the
SPIN symposium took place in Málaga (Spain) with a record number of submissions
and participants.

The SPIN 2019 edition requested regular papers, short papers, and tool demos in the
following areas: formal verification techniques for automated analysis of software;
formal analysis for modeling languages, such as UML/state charts; formal specification
languages, temporal logic, and design-by-contract; model checking, automated theorem
proving, including SAT and SMT; verifying compilers; abstraction and symbolic
execution techniques; static analysis and abstract interpretation; combination of
verification techniques; modular and compositional verification techniques; verification
of timed and probabilistic systems; automated testing using advanced analysis
techniques; combination of static and dynamic analyses; derivation of specifications,
test cases, or other useful material via formal analysis; case studies of interesting
systems or with interesting results; engineering and implementation of software veri-
fication and analysis tools; benchmark and comparative studies for formal verification
and analysis tools; formal methods education and training; and insightful surveys or
historical accounts on topics of relevance to the symposium. The symposium attracted
29 submissions that were carefully reviewed by three Program Committee (PC) mem-
bers. The selection process included further online discussion open to all PC members.
As a result, 13 papers were selected for presentation at the symposium and publication
in Springer’s proceedings. The program consisted of 11 regular papers and 2 demo-tool
papers. The program also included one invited talk.

We would like to thank all the authors who submitted papers, the Steering Com-
mittee, the PC, the additional reviewers, the invited speakers, the participants, and the
local organizers for making SPIN 2019 a successful event. We also thank all the
sponsors that provided logistics and financial support to make the symposium possible.

July 2019 Fabrizio Biondi
Thomas Given-Wilson

Axel Legay



Organization

Program Committee

Saddek Bensalem VERIMAG, France
Fabrizio Biondi Avast, Czech Republic
Dragan Bosnacki Eindhoven University of Technology, The Netherlands
Gilles Geeraerts Université libre de Bruxelles, Belgium
Thomas Given-Wilson Universite Catholique de Louvain, Belgium
Patrice Godefroid Microsoft, USA
Gregor Goessler Inria, France
Radu Iosif VERIMAG, CNRS, University of Grenoble Alpes,

France
Axel Legay UCLouvain, Belgium
Stefan Leue University of Konstanz, Germany
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Alice Miller University of Glasgow, UK
Corina Pasareanu CMU, NASA Ames Research Center, USA
Charles Pecheur Université catholique de Louvain, Belgium
Doron Peled Bar Ilan University, Israel
Jiri Srba Aalborg University, Denmark
Maurice H. ter Beek ISTI-CNR, Italy
Antti Valmari University of Jyväskylä, Finland
Jaco van de Pol Aarhus University, Denmark
Farn Wang National Taiwan University, Taiwan

Additional Reviewers

Bozga, Marius
Caltais, Georgiana
Dricot, Jean-Michel
Guha, Shibashis
Jensen, Peter Gjøl
Koelbl, Martin

Kölbl, Martin
Mariegaard, Anders
Mazzanti, Franco
Spoletini, Paola
Xu, Xiao



Contents

Model Verification Through Dependency Graphs . . . . . . . . . . . . . . . . . . . . 1
Søren Enevoldsen, Kim Guldstrand Larsen, and Jiří Srba

Model Checking Branching Time Properties for Incomplete Markov Chains . . . 20
Shiraj Arora and M. V. Panduranga Rao

A Novel Decentralized LTL Monitoring Framework Using Formula
Progression Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Omar Bataineh, David S. Rosenblum, and Mark Reynolds

From Dynamic State Machines to Promela . . . . . . . . . . . . . . . . . . . . . . . . . 56
Massimo Benerecetti, Ugo Gentile, Stefano Marrone, Roberto Nardone,
Adriano Peron, Luigi L. L. Starace, and Valeria Vittorini

String Abstraction for Model Checking of C Programs . . . . . . . . . . . . . . . . 74
Agostino Cortesi, Henrich Lauko, Martina Olliaro, and Petr Ročkai

Swarm Model Checking on the GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Richard DeFrancisco, Shenghsun Cho, Michael Ferdman,
and Scott A. Smolka

Statistical Model Checking of Complex Robotic Systems . . . . . . . . . . . . . . . 114
Mohammed Foughali, Félix Ingrand, and Cristina Seceleanu

STAD: Stack Trace Based Automatic Software Misconfiguration
Diagnosis via Value Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Yuan Liu, Xi Wang, Lintao Xian, and Zhongwen Guo

Extracting Safe Thread Schedules from Incomplete Model
Checking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Patrick Metzler, Neeraj Suri, and Georg Weissenbacher

Learning Guided Enumerative Synthesis for Superoptimization . . . . . . . . . . . 172
Shikhar Singh, Mengshi Zhang, and Sarfraz Khurshid

Applying Model Checking Approach with Floating Point Arithmetic
for Verification of Air Collision Avoidance Maneuver Hybrid Model . . . . . . 193

Sergey Staroletov and Nikolay Shilov

Conformance Testing of Schedulers for DSL-based Model Checking. . . . . . . 208
Nhat-Hoa Tran and Toshiaki Aoki



A Study of Learning Data Structure Invariants Using Off-the-shelf Tools. . . . 226
Muhammad Usman, Wenxi Wang, Kaiyuan Wang, Cagdas Yelen,
Nima Dini, and Sarfraz Khurshid

VeriVANca: An Actor-Based Framework for Formal Verification
of Warning Message Dissemination Schemes in VANETs . . . . . . . . . . . . . . 244

Farnaz Yousefi, Ehsan Khamespanah, Mohammed Gharib,
Marjan Sirjani, and Ali Movaghar

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

x Contents



Model Verification Through Dependency
Graphs

Søren Enevoldsen, Kim Guldstrand Larsen, and Jǐŕı Srba(B)

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, 9220 Aalborg East, Denmark

srba@cs.aau.dk

Abstract. Dependency graphs, as introduced more than 20 years ago
by Liu and Smolka, are oriented graphs with hyperedges that connect
nodes with sets of target nodes in order to represent causal dependencies
in the graph. Numerous verification problems can be reduced into the
problem of computing a minimum or maximum fixed-point assignment
on dependency graphs. In the original definition, assignments link each
node with a Boolean value, however, in the recent work the assignment
domains have been extended to more general setting, even including infi-
nite domains. We present an overview of the recent results on extensions
of dependency graphs in order to deal with verification of quantitative,
probabilistic and timed systems.

Keywords: Dependency graphs · Verification ·
Fixed-point computation · On-the-fly algorithms

1 Model Verification

The scale of computational systems nowadays varies from simple toggle-buttons
to various embedded systems and network routers up to complex multi-purpose
computers. In safety critical applications, we need to provide guarantees about
system behaviour in all situations/configurations that the system can encounter.
Such guarantees are classically provided by first creating a formal model of the
system (at an appropriate abstraction level) and then using formal methods
such as model checking and equivalence checking to rigorously argue about the
behaviour of the models. At the highest abstraction level, systems are usually
modelled as labelled transition systems or Kripke structures (see [5] for an intro-
duction). In labelled transition systems (LTS), a process changes its (unobserv-
able) internal states by performing visible actions. Kripke structures on the other
hand allow to observe the validity of a number of atomic predicates revealing
some (partial) information about the current state of a given process, whereas
the state changes are not labelled by any visible actions.

An example of LTS modelling a simple traffic light is given in Fig. 1a.
Although the states have been named for convenience, they are considered
opaque. Instead, this formalism uses the action-based perspective where the
c© Springer Nature Switzerland AG 2019
F. Biondi et al. (Eds.): SPIN 2019, LNCS 11636, pp. 1–19, 2019.
https://doi.org/10.1007/978-3-030-30923-7_1
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(b) A variant of traffic light LTS

R1, R2

R′
1, R

′
2 G1, G2

R1, R
′
2

∅wait

to green

to green

to red

to red

to red to red

to green

wait

(c) Dependency graph with root (R1, R2) for bisimulation checking

Iteration A(R1, R2) A(R′
1, R

′
2) A(G1, G2) A(R1, R

′
2)

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 1 1 1 1

(d) Iterative minimum fixed-point computation by using the global algorithm

Fig. 1. Traffic light LTS variants

actions of the transitions are considered visible. For example from R1 there is a
transition to R′

1 labelled with a ‘wait’ action that allows to extend the duration
of the red color, after which only the action ‘to green’ is available. A slight vari-
ant of the LTS is given in Fig. 1b where from G2 it is possible to enter directly
the state R′

2 by performing the ‘to red’ action. We can now ask the (equivalence
checking) question whether the two systems are equivalent up to some given
notion of equivalence (see e.g. [22]), e.g. bisimilarity [36], which is not the case
in our example.

The simple traffic light can also be modelled as a Kripke structure that is
depicted in Fig. 2a. Here the transitions are not labelled by any actions while the
states are labelled with the propositions ‘red’ and ‘green’ that indicate the status
of the light in that state. We note that the states R and R′ are indistinguishable
as they are labelled by the same proposition ‘red’. We can now ask the (model
checking) question whether the initial state R satisfies the property that on any
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execution the proposition ‘green’ will eventually hold and until this happens the
light is in ‘red’. This can be e.g. expressed by the CTL property ‘A red U green’
and it indeed holds for R in the depicted Kripke structure.

G{green}

R{red} R′ {red}

(a) Traffic light Kripke structure

R, A red U green

v1

R, green

v2

R, red

v3

R′, A red U green

v4

R′, green

v5

R′, red

v6

G, A red U green

v7

G, green

v8

G, red

v9

∅

∅ ∅
(b) Dependency graph with root v1 encoding R |= A red U green

Iteration A(v1) A(v2) A(v3) A(v4) A(v5) A(v6) A(v7) A(v8) A(v9)

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 0
2 0 0 1 0 0 1 1 1 0
3 0 0 1 1 0 1 1 1 0
4 1 0 1 1 0 1 1 1 0
5 1 0 1 1 0 1 1 1 0

(c) Interactive minimum fixed-point computation using the global algorithm

Fig. 2. Kripke structure of traffic light

1.1 On-the-Fly Verification

The challenge is how to decide the equivalence and model checking problems
even for systems described in high level formalism such as automata networks or
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Petri nets. These formalisms allow for a compact representation of the system
behaviour, meaning that even though their configurations and transitions can
still be given as a labelled transition system or a Kripke structure, the size of
these can be exponential in the size of the input formalism. This phenomena
is known as the state-space explosion problem and it makes (in many cases)
the full enumeration of the state-space infeasible for practical applications. In
order to deal with state-space explosion, on-the-fly verification algorithms are
preferable as they construct the reachable state-space step by step and hence
avoid the (expensive) a priory enumeration of all system configurations. In case a
conclusive answer about the system behaviour can be drawn by exploring only a
part of the state-space, this may grant a considerable speed up in the verification
time.

The idea of local or on-the-fly model checking was discovered simultaneously
and independently by various people in the end of the 80s all engaged in mak-
ing model checking and equivalence checking tools for various process algebras,
e.g. the Concurrency Workbench CWB [15]. Due to its high expressive power—
as demonstrated in [16,37]—particular focus was on truly local model-checking
algorithms for the modal mu-calculus [28]. Several discussions and exchanges
of ideas between Henrik Reif Andersen, Kim G. Larsen, Colin Stirling and
Glynn Winskel lead to the first local model-checking methods [3,10,29,30,38,40].
Besides the CWB these were implemented in the model checking tools TAV [9,23]
for CCS and EPSILON [12] for timed CCS.

Simultaneously, in France a tool named VESAR was developed that combined
the model checking idea (from the Sifakis team in Grenoble) and the simulation
world (from Roland Groz at CNET Lannion and Claude Jard in Rennes, who
were checking properties on-the-fly using observers). The VESAR tool was devel-
oped by a French company named Verilog and its technology was later reused for
another tool named Object-Geode from the same company, which was heavily
sold in the telecom sector [1].

As an alternative to encoding into the modal mu-calculus, it was realized that
an even simpler formalism—Boolean equation systems (BES)—would provide a
universal framework for recasting all model checking and equivalence checking
problems. Whereas [31] introduces BES and first local algorithms, the work in
[2] provides the first optimal (linear-time) local algorithm. Later extensions and
adaptions of BES were implemented in the tools CADP [35] and muCRL [24].

1.2 Dependency Graphs Related Work

In this paper we survey the (extensions) of dependency graphs [33] (DG) intro-
duced in 1998 Liu and Smolka. Similar to Boolean equation systems, DG serve
as a universal tool for the representation of various model checking and equiv-
alence checking problems, providing us with a universal method for on-the-fly
exploration of DG. The elegant local (on-the-fly) algorithm presented in [33]
runs in linear time with respect to the size of the DG and allows for an early
termination in case the chosen search strategy manages to reveal a conclusive
answer without necessarily exploring the whole graph.
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Recently, the ideas of DG have been extended to various domains such as
timed [11], weighted [25,26] and probabilistic [34] systems. We shall account
for some of the most notable extensions and further improvements to the local
algorithm from [33] such as its parallelization. We shall start by defining the
notion of dependency graphs as introduced by Liu and Smolka [33].

2 Dependency Graphs

Dependency graphs are a variant of directed graphs where each edge, also called a
hyperedge, may have multiple target nodes [33]. The intuition is that a property of
a given node in a dependency graph depends simultaneously on all the properties
of the target nodes for a given hyperedge, while different outgoing hyperedges
provide alternatives for deriving the desirable properties. Formally, a dependency
graph (DG) is a pair G = (V,E) where V is a set of nodes and E ⊆ V × 2V is
the set of hyperedges.

Figure 3a graphically depicts a dependency graph. For example the root node
v1 has two hyperedges: the first hyperedge has the target node v2 and the second
hyperedge has two targets v3 and v4. The node v2 has no outgoing hyperedges,
while the node v3 has a single outgoing hyperedge with no targets (shown by
the empty set).

As shown in Fig. 3b it is possible to interpret the dependencies among the
nodes in dependency graph as a system of Boolean equations, using the general
formula

v =
∨

(v,T )∈E

∧

u∈T

u

where by definition the conjunction of zero terms is true, and the disjunction of
zero terms is false. We denote false by ff (or 0), and true by tt (or 1).

We can now ask the question whether there is an assignment of Boolean
values to all nodes in the graph such that all constructed Boolean equations
simultaneously hold. Formally, an assignment is a function A : V → {0, 1} and
an assignment A is a solution if it satisfies the equality:

A(v) =
∨

(v,T )∈E

∧

u∈T

A(u).

In our case, there are three solutions as listed in Fig. 3c. The existence of several
such possible assignments that solve the equations is caused by cyclic dependen-
cies in the graph as e.g. v5 depends on v6 and at the same time v6 also depends
of v5.

However, if we let the set of all possible assignments be A and define A1 ≤ A2

if and only if A1(v) ≤ A2(v) for all v ∈ V where A1, A2 ∈ A, then we can observe
that (A,≤) is a complete lattice [4,19] which guarantees the existence of the
minimum and maximum assignment in the lattice.

There is a standard procedure how to compute such a minimum/maximum
solution. For example for the minimum solution we can define a function F :
A → A that transforms an assignment as follows:
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v1

v2 v3 v4 v5 v6

v7

∅
(a) Dependency graph

v1 = v2 ∨ (v3 ∧ v4)

v2 = ff

v3 = tt

v4 = (v5 ∧ v6) ∨ v7

v5 = v6

v6 = v4 ∧ v5

v7 = v4

(b) Corresponding equation system

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = tt

v6 = tt

v7 = tt

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = ff

v6 = ff

v7 = tt

v1 = ff

v2 = ff

v3 = tt

v4 = ff

v5 = ff

v6 = ff

v7 = ff

(c) Possible solutions

Iteration v1 v2 v3 v4 v5 v6 v7

0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 0

(d) Iterative minimum fixed-point computation by using the global algorithm

Fig. 3. Example of dependency graph

F (A)(v) =
∨

(v,T )∈E

∧

u∈T

A(u).

Clearly, the function F is monotonic and an assignment A is a solution to a
given dependency graph if and only if A is a fixed point of A, i.e. F (A) = A.
From the Knaster-Tarski fixed-point theorem [39] we get that the monotonic
function F on the complete lattice (A,≤) has a unique minimum fixed point
(solution).

By repeatedly applying F to the initial assignment A0 where A0(v) = 0 for
all nodes v, we can iteratively find a minimum fixed point as formulated in the
following theorem.

Theorem 1. Let Amin denote the unique minimum fixed point of F . If there is
an integer i such that F i(A0) = F i+1(A0) then F i(A0) = Amin .
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Input: A dependency graph G = (V, E).
Output: Minimum fixed point Amin .

1 A := A0

2 repeat
3 A′ := A
4 forall v ∈ V do
5 A(v) :=

∨
(v,T )∈E

∧
u∈T A′(u)

6

7 until A �= A′

8 return A

Algorithm 1. Global algorithm for minimum fixed point Amin

Clearly F i(A0) is a fixed point as F (F i(A0)) = F i(A0) by the assumption of
the theorem. We notice that A0 ≤ Amin and because F is monotonic and Amin

is a fixed point, we also know that F j(A0) ≤ F j(Amin) = Amin for an arbitrary
j. Then in particular F i(A0) ≤ Amin and because Amin is the minimum fixed
point and F i(A0) is a fixed point, necessarily F i(A0) = Amin .

For any finite dependency graph, the iterative computation of Amin as sum-
marized in Algorithm 1, also referred to as the global algorithm, is guaranteed
to terminate after finitely many iterations and return the minimum fixed-point
assignment. Dually, the iterative algorithm can be used to compute maximum
fixed points on finite dependency graphs.

3 Encoding of Problems into Dependency Graphs

We shall now demonstrate how equivalence and model checking problems can
be encoded into the question of finding a minimum fixed-point assignment on
dependency graphs. Typically, the nodes in the dependency graph encode the
configurations of the problem in question and the hyperedges create logical con-
nections between the subproblems. We provide two examples showing how to
encode strong bisimulation checking and CTL model checking into dependency
graphs.

3.1 Encoding of Strong Bisimulation

Recall that two states s and t in a given LTS are strongly bisimilar [36], written
s ∼ t, if there is a binary relation R over the states such that (s, t) ∈ R and

– whenever s
α−→ s′ then there is t

α−→ t′ such that (s′, t′) ∈ R, and
– whenever t

α−→ t′ then there is s
α−→ s′ such that (s′, t′) ∈ R.

We encode the question whether s0 ∼ t0 for given two states s0 and t0 into
a dependency graph where the nodes (configurations) are pairs of states of the
form (s, t) and the hyperedges represent all possible ‘attacks’ on the claim that
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s, t

s′, t′
1

. . . s′, t′
m s′

1, t
′ . . . s′

n, t′

for all s
α−→ s′ for all t

α−→ t′

{t′
1, . . . , t

′
m} = {t′ | t

α−→ t′} {s′
1, . . . , s

′
n} = {s′ | s

α−→ s′}

Fig. 4. Encoding rule for strong bisimulation checking

s and t are bisimilar. For example, if one of the two states can perform an action
that is not enabled in the other state, we will introduce a hyperedge with the
empty set of target nodes, meaning that the minimum fixed-point assignment of
the node (s, t) will get the value 1 standing for the fact that s �∼ t. In general
the aim is to construct the DG in such a way that for any node (s, t) we have
Amin((s, t)) = 0 if and only if s ∼ t. The construction, as mentioned e.g. in [19],
is given in Fig. 4. The rule says that if s can take an α-action to s′, then the
configuration (s, t) should have a hyperedge containing all target configurations
(s′, t′) where t′ are all possible α-successors of t. Symmetrically for the outgoing
transitions for t that should be matched by transitions from s.

Let us consider again the transition systems from Fig. 1. The dependency
graph to decide whether R1 is bisimilar with R2 is given in Fig. 1c where we can
note that the configuration (R1, R

′
2) has a hyperedge with no target nodes. This

is because R1 can perform the ‘wait’ action that R′
2 can not match. If we now

compute Amin , for example using the global algorithm in Fig. 1d, we notice that
Amin((R1, R

′
2)) = 1 which means that R1 and R′

2 are not bisimilar.

3.2 Encoding of CTL Model Checking

We shall now provide an example of encoding a model checking problem into
dependency graphs. In particular, we demonstrate the encoding for CTL logic as
described e.g. in [18]. We want to check whether a state s of a given LTS satisfies
the CTL formula ϕ. We let the nodes of the dependency graph be of the form
(s, ϕ) and these nodes will be decomposed into a number of subgoals depending
of the structure of the formula ϕ. The encoding will ensure that Amin((s, ϕ)) = 1
if and only if s |= ϕ for any node (s, ϕ) in the dependency graph [17]. Figure 5
shows the rules for constructing such a dependency graph.

Returning to our example from Fig. 2, we see in Fig. 2b the constructed
dependency graph for the model checking question R |= A red U green.
The fixed-point computation using the global algorithm is given in Fig. 2c and
because Amin(v1) = 1, we can conclude that the state R indeed satisfies the CTL
formula A red U green. For simplicity, the encoding as shown in Fig. 5 does not
include negation, but the construction can be extended to support negation [17].



Model Verification Through Dependency Graphs 9

s, ϕ1 ∧ ϕ2

s, ϕ1 s, ϕ2

s, ϕ1 ∨ ϕ2

s, ϕ1 s, ϕ2

s, EXϕ

s1, ϕ sn, ϕ. . .

s, Eϕ1Uϕ2

s, ϕ1 s1, Eϕ1Uϕ2s, ϕ2 sn, Eϕ1Uϕ2. . .

s, Aϕ1Uϕ2

s1, Aϕ1Uϕ2s, ϕ1s, ϕ2 sn, Aϕ1Uϕ2. . .

Fig. 5. Encoding to determine whether s |= ϕ where {s1, . . . , sn} = {s′ | s → s′}

4 Local Algorithm for Dependency Graphs

The encodings of verification problems into dependency graphs, as discussed in
the previous section, construct a graph with a root node v0 such that from the
value of the minimum fixed-point assignment of the node v0, we can deduce the
answer to the verification problem in question.

In Algorithm 1 we have already seen a method for computing iteratively the
minimum fixed point Amin for all nodes in the dependency graph. However, due
to the state-space explosion problem, such a graph can be exponentially large
(or even infinite) and hence it is infeasible to explore it completely. As we are
often only interested in Amin(v0) for a given node v0, we do not necessarily
have to explore the whole dependency graph. This is shown in Fig. 7a, where
we can see that Amin(v1) = 1 due to the outgoing hyperedge from v1 with
empty set of targets, and this value can propagate directly to the node v0 and
we can also conclude that Amin(v0) = 1; all this without the need to explore the
(possibly large or even infinite) subtree with the root v2. This idea is formalized
in Liu and Smolka’s local algorithm [33] that computes the value of Amin(v0) for
a given node v0 in an on-the-fly manner.

Algorithm 2 shows the pseudocode of the local algorithm. The algorithm
maintains the waiting set W of hyperedges to be explored (initially all outgoing
hyperedges from the root node v0) as well as the list of dependencies D for
every node v, such that D(v) contains the list of all hyperedges that should be
reentered into the waiting list in case the value of the node v changes from 0 to
1. Due to a small technical omission, the original algorithm of Liu and Smolka
did not guarantee termination even for finite dependency graph. This is fixed in
Algorithm 2 by inserting the if-test at line 10 that makes sure that we do not
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Input: A dependency graph G = (V, E) and a node v0 ∈ V .
Output: Amin(v0)

1 forall v ∈ V do
2 A(v) := ?
3 A(v0) := 0
4 D(v0) := ∅
5 W := {(v0, T ) | (v0, T ) ∈ E}
6 while W �= ∅ do
7 e := (v, T ) ∈ W
8 W := W \ {e}
9 if A(v′) = 1 for all v′ ∈ T then

10 if A(v) �= 1 then
11 A(v) := 1
12 W := W ∪ D(v)

13 else if ∃v′ ∈ T such that A(v′) = 0 then
14 D(v′) := D(v′) ∪ {e}
15 else if ∃v′ ∈ T such that A(v′) = ? then
16 A(v′) := 0
17 D(v′) := ∅
18 W := W ∪ {(v′, U) | (v′, U) ∈ E}
19 return A(v0)

Algorithm 2. Liu and Smolka’s local algorithm computing Amin(v0)

reinsert the dependencies D(v) of a node v in case that the value of v is already
known to be 1.

In Fig. 6b we see the computation of the local algorithm on the dependency
graph from Fig. 6a. Under the assumption that the algorithm makes optimal
choices when picking among hyperedges from the waiting list (third column in
the table), we can see that only a subset of nodes is ever visited and the value of
Amin(v1) can be determined by exploring only the middle subtree of v1 because
once in the 6th iteration the value A(v1) is improved from 0 to 1, we terminate
early and announce the answer.

4.1 Optimizations of the Local Algorithm

The local algorithm begins with all nodes being assigned ? such that whenever
a new node is discovered during the forward search, it gets the value 0 and
this value may be possibly increased to 1. Hence the assignment values grow as
shown in Fig. 7b. As soon as the root receives the value 1, the local algorithm
can terminate. If the root never receives the value 1, we need to explore the
whole graph and wait until the waiting set is empty before we can terminate
and return the value 0. Hence during the computation, the value 0 of a node is
‘uncertain’ as it can be possibly increased to 1 in the future.

Consider the dependency graph in Fig. 7c. In order to compute Amin(v0), the
local algorithm computes first the minimum fixed-point assignment both for v1
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v1

v2

v3 v4

v5

v6 v7

v8

v9 v10 v11

∅

e1 e2 e3

e4 e5

e6
e7

e8

e9
e10

e11

(a) Example of a dependency graph

Iteration W (v, T ) ∈ W A(v1) A(v2...4) A(v5) A(v6) A(v7) A(v8...11)

0 {e1, e2, e3} 0 ? ? ? ? ?
1 {e1, e2, e3} e2 0 ? 0 ? ? ?
2 {e1, e3, e6} e6 0 ? 0 ? 0 ?
3 {e1, e3, e11} e11 0 ? 0 0 0 ?
4 {e1, e3, e10} e10 0 ? 0 1 0 ?
5 {e1, e3, e11} e11 0 ? 0 1 1 ?
6 {e1, e3, e6} e6 0 ? 1 1 1 ?
7 {e1, e2, e3} e2 1 ? 1 1 1 ?

(b) Execution of local algorithm for computing Amin(v1)

Fig. 6. Demonstration of local algorithm for minimum fixed-point computation

and v2 before it can terminate with the answer that the final value for the root
is 0. However, we can actually conclude that Amin(v1) = 0 as the final value of
the node v1 is clearly 0 and hence v0 can never be upgraded to 1, irrelevant of
the value of Amin(v2).

This fact was noticed in [18] where the authors suggest to extend the pos-
sible values of nodes with the notation of certain-zero (see Fig. 7d for the value
ordering), i.e. once the assignment of a node becomes 0, its value can never
be improved anymore to 1. The certain zero value can be back-propagated and
once the root receives the certain-zero value, the algorithm can terminate early
and hence speed up the computation of the fixed-point value for the root. The
efficiency of the certain-zero optimization was demonstrated for example on the
implementation of dependency graphs for CTL model checking of Petri nets [18]
and for other verification problems in the more general setting of abstract depen-
dency graphs [21].
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v0

v1 v2

. . .∅
(a) Value of Amin(v2) is unnecessary for concluding
that Amin(v0) = 1

1

0

?

(b) Liu&Smolka
value ordering

v0

v1 v2

. . .

(c) Value of Amin(v2) is unnecessary for concluding
that Amin(v0) = 0

1 0

−

?

(d) Certain-zero
value ordering

Fig. 7. Certain-zero optimization

4.2 Distributed Implementation of the Local Algorithm

State-space explosion problem means that the size of dependency graphs may
become too large to fit into the memory of a single machine and/or the veri-
fication time may become infeasible. In [19] the authors describe a distributed
fixed-point algorithm for dependency graphs that distributes the workload over
several machines. The algorithm is based on message passing where the nodes
of the dependency graphs are partitioned among the workers and each worker
is responsible for computing the fixed-point values for the nodes it owns, some-
times requiring messages to be sent once the target nodes of an hyperedge are
not own by the same worker as the root of the hyperedge. The experiments
confirm an average speed up of around 25 times for 64 workers (CPUs) and
6 times for 8 workers. This is a satisfactory performance as the problem is P-
complete (recall that we showed in Sect. 3 a polynomial time reduction from the
P-complete problem of strong bisimulation checking [6] into fixed-point compu-
tation on dependency graphs), and hence inherently believed hard to parallelize.
Moreover, the distributed algorithm can be used ‘out-of-the-box’ for a number
for model verification problems (all those that can be encoded into dependency
graphs), instead of designing single purpose distributed algorithms for each indi-
vidual problem.
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CCS, ≈ CTL, |= WCTL, |=

Encoding1 Encoding2 Encoding3 . . .

DG EDG SDG . . .

Algorithm1 Algorithm2 Algorithm3 . . .

Amin Amin Amin . . .
(a) Single-purpose algorithms for minimum fixed-point computation

CCS, ≈ CTL |= WCTL |= . . .

Encoding1 Encoding2 Encoding3 . . .

ADG

Algorithm

Amin

(b) Abstract Dependency Graph (ADG) solution

Fig. 8. Model verification without and with abstract dependency graphs

5 Abstract Dependency Graphs

Dependency graphs have recently been extended in several directions in order
to reason about more complex problems. Extended dependency graphs, intro-
duced in [18], add a new type of edge to dependency graphs to handle negation.
Another extension with weights, called symbolic dependency graphs [26], extends
the value annotation of nodes from the 0–1 domain into the set of natural num-
bers together with a new type of so-called cover-edges. Recently an extension
presented in [14] considers as the value-assignment domain the set of piece-wise
constant functions in order to be able to encode weighted PCTL model checking.
Because the constructed dependency graphs in these extensions are different, for
each problem that we consider we need to implement a single-purpose algorithm
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to compute the fixed points on such extended dependency graphs, as depicted
in Fig. 8a.

In [21] abstract dependency graphs (ADG) are suggested that permit a more
general, user-defined domain for the node assignments together with user-defined
functions for evaluating the fixed-point assignments. As a result, a number of
verification problems can be now encoded as ADG and a single (optimized)
algorithm can be used for computing the minimum fixed point as depicted in
Fig. 8b.

In ADG the values of node assignments have to form a Noetherian Ordering
Relation with least element (NOR), which is a triple D = (D,�,⊥) where (D,�)
is a partial order, ⊥ ∈ D is its least element, and � satisfies the ascending chain
condition: for any infinite chain d1 � d2 � d3 � . . . there is an integer k such
that dk = dk+j for all j > 0. For algorithmic purposes, we assume that such a
domain together with the ordering relation is effective (computable).

Instead of hyperedges, each node in an ADG has an ordered sequence of
target nodes together with a monotonic function f : Dn → D of the same arity
as the number of its target nodes. The function is used to evaluate the values of
the node during an iterative, local fixed-point computation.

An assignment A : V → D is now a function that to each node assigns a
value from the domain D and we define a function F as

F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vn))

where E(v) stands for the monotonic function assigned to node v and v1, v2, . . . vn

are all (ordered) target nodes of v.
The presence of the least element ⊥ ∈ D means that the assignment A⊥

where A⊥(v) = ⊥ for all v ∈ V is the least of all assignments (when ordered
component-wise). Moreover, the requirement that (D,�,⊥) satisfies the ascend-
ing chain condition ensures that assignments cannot increase indefinitely and
guarantees that we eventually reach the minimum fixed-point assignment as for-
mulated in the next theorem.

Theorem 2. There exists a number i such that F i(A⊥) = F i+1(A⊥) = Amin .

An example of ADG over the NOR D = ({0, 1}, {(0, 1)}, 0) that represents
the classical Liu and Smolka dependency graph framework is shown in Fig. 9a.
Here 0 (interpreted as false) is below the value 1 (interpreted as true) and the
monotonic functions for nodes are displayed as node annotations. In Fig. 9b
we demonstrate the fixed-point iterations computing the minimum fixed-point
assignment.

A more interesting instance of ADG with an infinite value domain is given in
Fig. 9c. The ADG encodes an example of a symbolic dependency graph (SDG)
from [26] (with the added node E). The nodes are assigned nonnegative integer
values (note that we use the ordering relation in the reverse order here) with
the initial value being ∞ and the ‘best’ value (the one that cannot be improved
anymore) being 0. The fixed-point computation is shown in Fig. 9d.
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A

B ∨ (C ∧ D)

B

1

C

1

D

E ∧ F

E1 F E ∧ D

(a) Abstract dependency graph over NOR
({0, 1}, ≤, 0)

A B C D E F

A⊥ 0 0 0 0 0 0
F (A⊥) 0 1 1 0 1 0
F 2(A⊥) 1 1 1 0 1 0
F 3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation of
Figure 9a

A 0 if B ≤ 5 else ∞

B max{C, D + 3}Cmin{D, E}

D 0E3

(c) Abstract dependency graph over NOR
(N ∪ {∞}, ≥, ∞)

A B C D E

A⊥ ∞ ∞ ∞ ∞ ∞
F (A⊥) ∞ ∞ ∞ 0 3
F 2(A⊥) ∞ ∞ 0 0 3
F 3(A⊥) ∞ 3 0 0 3
F 4(A⊥) 0 3 0 0 3

(d) Fixed-point computation of
Figure 9c

Fig. 9. Abstract dependency graphs

The authors in [21] devise an efficient local (on-the-fly) algorithm for ADGs
and provide a publicly available implementation in a form of C++ library. The
experimental results confirm that the general algorithm on ADGs is competitive
with the single-purpose optimized algorithms for the particular instances of the
framework.

6 Applications of Dependency Graphs

We shall finish our survey paper with an overview of selected applications of
dependency graphs for various verification problems.

Timed Games: In [11] the zone-based on-the-fly reachability algorithm for timed
automata implemented in UPPAAL [32] was extended with the synthesis of
reachability strategies for timed games. In this application the nodes of the
ADG are reachable symbolic states of the form (�, Z) where � is a location and
Z is a zone, and the NOR D for such a node are all subsets W ⊆ Z where W
is a finite union of (sub-)zones such that W � W ′ if W ⊆ W ′. Informally, the
(increasing) set W contains information about the concrete states for which a
winning strategy is already known to exist. The resulting on-the-fly algorithm
is implemented in UPPAAL TIGA [7].
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Weighted CTL: In [25,26] ADGs—called symbolic DGs at the time of writing
of the papers—were used for efficient on-the-fly model checking for weighted
Kripke structures with respect to weighted extensions of CTL. Here nodes of
the ADG are pairs of the form (s, ϕ) where s a state of the weighted Kripke
structure and ϕ is a WCTL formula. The NOR D for nodes (s, ϕ), where ϕ is a
cost-bounded modality, is (N ∪ {∞},≥,∞). Informally, the (decreasing) values
for such nodes provide upper bounds for which the property is known to hold in
the associated state s. The resulting on-the-fly algorithm has been implemented
in the tool WKTool1. In [13], parametric model checking for WCTL has been
considered. Here the outcome of the model checking effort is a direct description
of the constraints on the parameters that will render the model checking problem
true. In this case the NOR D is extended to (P → (N ∪ {∞}),≥,∞), where P
is the set of parameters and ≥ is the pointwise extension of ≥ to functions.

Probabilistic CTL: For model checking Markov reward models (MRM) with
respect to probabilistic WCTL, the work in [14,34] provides an on-the-fly algo-
rithm using ADG. Here nodes are of the form (s, ϕ) where s is a state of the MRM
and ϕ is a property of PWCTL, and where modalities have upper cost-bounds
and lower probability bounds. Semantically, the NOR D consists of monotonic
functions of the type p : R≥0 → [0, 1]. Informally, assigning a function p to a
node (s, ϕ) indicates that for any cost-bound c the property ϕ holds at least
with probability p(c). The Noetherian property of D is ensured by restricting D
to piecewise constant functions.

Petri Nets and Games: The CTL model checking engine of the award-winning
tool TAPAAL [20] applies dependency graphs with certain-zero optimiza-
tion [17,18]. Also for various game engines dependency graphs have been applied.
In [27] synthesis for safety games for timed-arc Petri net games have been
given demonstrating (and exploiting) equivalence between continuous-time and
discrete-time setting. Finally in [8] partial order reduction for synthesis of reach-
ability games on Petri nets has been obtained based on dependency graph frame-
work.

CAAL: Finally we want to point to the educational tool CAAL [4]2, which—
using dependency graphs— supports a variety of equivalence checking techniques
as well as model checking for recursive Hennessy-Milner logic for CCS and timed
CCS.

Acknowledgments. We would like to thank to Hubert Garavel and Radu Mateescu
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Abstract. In this work, we discuss a numerical model checking algo-
rithm for analyzing incompletely specified models of stochastic systems,
specifically, Discrete Time Markov Chains (DTMC). Models of a system
could be incompletely specified for several reasons. For example, they
could still be under development or, there could be some doubt about
the correctness of some components. We restrict ourselves to cases where
incompleteness can be captured by expanding the logic of atomic propo-
sitions to a three valued logic that includes an unknown truth value. We
seek to answer meaningful model checking queries even in such circum-
stances.

The approach we adopt in this paper is to develop the model checking
algorithm from first principles. We develop a tool based on the algorithm
and compare the performance of this approach with the indirect approach
of invoking a binary model checker.

Keywords: Probabilistic model checking ·
Discrete Time Markov Chains · Probabilistic computational tree logic ·
Three valued logic · Incomplete models

1 Introduction

Probabilistic models are widely used to represent real-world systems that exhibit
stochastic behaviour, like cyber-physical systems, biological processes, network
and security protocols. Examples of such probabilistic models are Markov chains
like Discrete and Continuous Time Markov Chains (DTMC and CTMC respec-
tively) [3], Markov Decision Processes (MDP), Constrained Markov Chains [8]
and Probabilistic Automata [13]. Verification of these types of probabilistic mod-
els involves asserting whether or not the system design exhibits the required
behavior. The required behavior or property is formally specified as statements
in logics like Probabilistic Computation Tree Logic (PCTL) [16] and Continuous
Stochastic Language (CSL) [4].

Probabilistic Model Checking is a formal technique to analyze and ver-
ify the required behaviour of stochastic systems. Given a probabilistic model
that describes a stochastic system, and a formal specification of the required
behaviour of the system, the goal of probabilistic model checking is to decide
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whether the system exhibits the required behaviour or not. Probabilistic model
checking has been explored in the literature using either numerical [4,12,16] or
statistical algorithms [22,23,25].

Traditionally, systems are analyzed through model checking once the entire
information about a model is available, at least in principle. An interesting ques-
tion is if this analysis can be done when the model has incomplete information.
The incompleteness may arise because of either (i) nonavailability of input infor-
mation about either state space or transitions between states, (ii) if the correct-
ness of some module is in doubt or (iii) loss of information due to abstraction of
models, or some combination of the three. To capture incomplete information, a
natural choice is to expand binary logic to include a third unknown truth value.
We denote this by the question mark “?”. Depending upon the type of incom-
pleteness, different techniques have been reported to verify both stochastic as
well as non stochastic incomplete models.

There exists a significant body of work on model checking with three val-
ued logics. Bruns and Godefroid [6,7] use three valued modal logic to represent
models with partial state space. These models are then verified by using model
checking algorithms for binary truth values. Similarly, Chechik et al. [11] used
multi-valued logic to represent incomplete and inconsistent information in a
model. They verified such a model using a symbolic multi-valued CTL model
checker. Abstraction is often used to deal with problems of state space explosion
in model checking. However, such an approach may cause loss of information
in the model. This incompleteness in the abstracted model can be represented
using a third truth value. Godefroid et al. [15] and Chechik [10] discussed the
verification of abstracted models using three valued LTL and CTL model check-
ers, respectively. Abstraction is also commonly used in verification of stochastic
models like Markov chains, to overcome the problem of state-space explosion
[14,17,19]. Besides abstraction, incompleteness in stochastic systems may arise
from imprecise transition probabilities obtained from statistical experiments.
For example, discrete-time Markov chains have been defined wherein transition
probabilities are intervals instead of exact values to handle imprecision [18,20].
Verification of such interval based discrete-time Markov chains works by either
reducing it to a class of discrete-time Markov chains or to a Markov decision
process [5,9,24].

Another way of capturing incomplete information, the one on which this
paper is based, is to allow some atomic propositions to assume the “?” truth
value in some states [2]. An interesting question is to determine which properties
of the system can be verified in the absence of complete information–is there
sufficient information in the model to evaluate a particular property to either
True or False? It is possible to answer this question by invoking PCTL model
checking algorithms twice [2]. We refer to this approach as 2MC.

In this paper, we adopt a direct approach that solves the numerical model
checking problem from first principles as exposited in [4,21]. We call this app-
roach 1MC. While this approach is an adaptation of the standard numer-
ical model checking algorithm, the fact that true and false are no longer
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complementary to each other raises some complications, which we address. We
also show examples to illustrate the approach and practical applications of the
problem formulation and the solution.

Intuitively, one expects the 1MC algorithm to perform better in cases when
the 2MC algorithm has to invoke the model checker twice and 2MC to perform
better when it needs to invoke it only once. We back this intuition up with
experimental evidence.

The rest of the paper is arranged as follows. Section 2 discusses the syntax and
semantics of the modeling and specification formalism for incomplete models.
Section 3 discusses the model checking algorithm. Implementation details, results
and comparison with 2MC are discussed in Sect. 4. Section 5 concludes the paper
with a brief discussion on future directions.

2 qDTMC and qPCTL

2.1 Discrete Time Markov Chain with Question Marks (qDTMC)

A Discrete Time Markov Chain with question marks (qDTMC) extends the
traditional DTMC to account for incomplete information in a model.

Definition 1. A qDTMC is a tuple M = (S, iinit,P, AP,L) where

– S is a finite non-empty set of states,
– iinit : S → [0, 1] is the initial distribution, such that

∑

s∈S

iinit(s) = 1,

– P : S ×S → [0, 1] gives the transition probability between two states in S such
that:

∀s ∈ S :
∑

s′∈S

P(s, s′) = 1,

– AP is a set of atomic propositions, and
– L : S × AP → {T, F, ?} assigns a truth value from the set {T, F, ?} to each

atomic proposition a ∈ AP in a state s ∈ S.

A qDTMC differs from a DTMC only in terms of its labelling function. The
truth values T and F correspond that an atomic proposition being true and false
respectively in the state s. If it is not known whether an atomic proposition is
true or false in s, then the truth value ? is assigned to the atomic proposition.

Figure 1 illustrates an example qDTMC M wherein the state s0 is the initial
state with probability 1 in the state space S = {s0, s1, ..., s6}. The weight on
each transition between the states denotes the probability of the transition.
AP = {p, q} is a set of atomic propositions in M. The truth value of each
atomic proposition in a state is also represented in the qDTMC. For instance,
¬pq? denotes p is false and q is unknown in the state s0 and pq denotes both p
and q are true in the state s2. We consider qDTMC M as a running example in
the paper.
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Fig. 1. Example of a qDTMC

Definition 2. A path π in a qDTMC M is a sequence of states s0, s1, s2, . . .
such that for all i = 0, 1, 2, . . . si ∈ S and P(si, si+1) > 0. The i + 1th state in a
path π is denoted by π[i]. The set Path(s) is the set of all infinite paths starting
from state s in M.

Definition 3. A cylinder set C(ω) is the set of all infinite paths with a common
finite prefix ω = s0, s1, . . . , sn. The probability measure μ of C(ω) in the qDTMC
M can be defined as

μ(C(ω)) =
n−1∏

i=0

P(si, si+1)

2.2 qPCTL

Probabilistic Computation Tree Logic with question marks (qPCTL) is an exten-
sion of PCTL [16], defined to formally express a property required of a qDTMC
model. In what follows, our notational convention will be similar to that of [2].
The syntax of qPCTL is the same as that of PCTL:

Syntax:

Φ :: = � | a | Φ1 ∧ Φ2 | ¬Φ | Pr��θ[ψ]
ψ :: = XΦ | Φ1UΦ2 | Φ1 U≤k Φ2

where Φ, Φ1, and Φ2 are state formulas, ψ is a path formula, a is an atomic
proposition, θ ∈ [0, 1] defines the probability constraint, �� ∈ { <, >, ≤, ≥}
represents the set of comparison operators, and k ∈ N is the time bound. The
X, U , and U≤k operators are called Next, Until and Bounded Until respectively.

Recall that an atomic proposition a can have one of the three truth values
{T, F, ?} in a qPCTL formula. Thus, in addition to verifying a property as true
(T ) or false (F ), a qPCTL formula can also be evaluated to “unknown” (?). The
conditions for which the logic returns ? are incorporated into the semantics of
qPCTL.
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For the truth values (T , F , ?) in qPCTL, the logical operations (∧, ∨, ¬) are
as defined in Tables 1, 2 and 3.

Table 1. The
AND operator

∧ T ? F

T T ? F

? ? ? F

F F F F

Table 2. The
OR operator

∨ T ? F

T T T T

? T ? ?

F T ? F

Table 3. The
NOT operator

¬
T F

? ?

F T

Semantics:
Each state formula Φ in qPCTL is verified to either T , F , or ? in a state s ∈ S
that is (s, Φ) = {T, F, ?} as:

1. The qPCTL formula Φ can trivially be �.

(s,�) = T ; (s,¬�) = ¬(s,�) = F.

2. An atomic proposition a in a qDTMC can have three possible truth values
{T, F, ?}. Thus, a qPCTL formula Φ = a in a state s is evaluated to {T, F, ?}
if

(s, a) =

⎧
⎨

⎩

T iff L(s, a) = T
F iff L(s, a) = F
? iff L(s, a) =?

3. Using the NOT and AND operator from Tables 3 and 1 respectively, we have:

(s, ¬Φ) =

⎧
⎨

⎩

T iff (s, Φ) = F
F iff (s, Φ) = T
? iff (s, Φ) =?

and (s, Φ1 ∧ Φ2) =

⎧
⎨

⎩

T iff (s, Φ1) = T ∧ (s, Φ2) = T
F iff (s, Φ1) = F ∨ (s, Φ2) = F
? otherwise

4. If a qPCTL formula contains a probabilistic operator that is Φ = Pr��θ[ψ],
then the probability measure of paths starting from state s that evaluate
path formula ψ to true or false is calculated separately. The formula Φ is
then verified as follows:

(s, Pr��θ[ψ]) =

⎧
⎨

⎩

T if μ{π ∈ Path(s) : (π, ψ) = T} �� θ
F if μ{π ∈ Path(s) : (π, ψ) = F} �� 1 − θ
? otherwise

A path formula ψ for a path π ∈ Path(s) has the following semantics:

1. Next operator : A path formula of form ψ = XΦ is verified to {T, F, ?} for
a path π if the state formula Φ is evaluated to {T, F, ?}, respectively, in the
second state of π.

(π,XΦ) =

⎧
⎨

⎩

T if (π[1], Φ) = T
F if (π[1], Φ) = F
? if (π[1], Φ) = ?
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2. Until operator :

(π, Φ1UΦ2) =

⎧
⎪⎪⎨

⎪⎪⎩

T if ∃i : (π[i], Φ2) = T ∧ ∀i′ < i : (π[i′], Φ1) = T
F if (∀i : (π[i], Φ2) = F )

∨ [∃i : (π[i], Φ2) = T ∧ ∃i′ < i : (π[i′], Φ1) = F ]
? otherwise.

Thus, ψ evaluates to ? if one of the following occurs:
– Φ2 is ? for all the states in π.
– Φ2 is ? for at least one state in π and is never T in any of the states along

the path and Φ1 is never F .
– Φ2 is T for some state π[i] and Φ1 is ? for at least one state π[k] with

k < i but never F in any of the states upto π[i].
3. Bounded Until : A path formula of the form ψ = Φ1U

≤kΦ2 is verified to
{T, F, ?} same as that for until operator, but only for paths of finite length
k.

(π, Φ1U
≤kΦ2) =

⎧
⎪⎪⎨

⎪⎪⎩

T if ∃i ≤ k : (π[i], Φ2) = T ∧ ∀i′ < i : (π[i′], Φ1) = T
F if (∀i ≤ k : (π[i], Φ2) = F )

∨ [∃i ≤ k : (π[i], Φ2) = T ∧ ∃i′ < i : (π[i′], Φ1) = F ]
? otherwise.

3 qPCTL Model Checking

For a qDTMC M = (S,P, iinit, AP,L), a state s ∈ S and a qPCTL state formula
Φ, we want to determine if (s, Φ) = T . We note that if (s, Φ) �= T , then Φ
need not be false in the state s. Unlike for DTMCs, the two statements are not
complementary for qDTMCs. Hence we define three satisfaction sets SatT (Φ),
SatF (Φ), and Sat?(Φ).

Definition 4. A state s ∈ SatT (Φ) if and only if (s, Φ) = T . A state s ∈
SatF (Φ) if and only if (s, Φ) = F . Finally, s ∈ Sat?(Φ) if and only if (s, Φ) =?.

We now describe an algorithm 1MC, to compute these satisfaction sets
SatT (Φ) and SatF (Φ) by performing a bottom-up traversal of the syntax tree
of Φ. The remaining satisfaction set Sat?(Φ) can be computed as Sat?(Φ) =
S \ [SatT (Φ) ∪ SatF (Φ)]. For a given state formula Φ, these satisfaction sets
will partition the state space S. We now discuss the 1MC algorithm in detail.
Algorithm 1 lists the pseudocode.

Non-probabilistic Operators: The satisfaction sets for each of the non-
probabilistic operators in the qPCTL is based on the logical operations described
in Tables 1, 2 and 3. Cases 1 through 4 of the 1MC algorithm compute the sat-
isfaction sets for non-probabilistic operators. It is easy to see that:

Lemma 1. For the non-probabilistic state formulas, the 1MC Algorithm (cases
1 through 4) is correct.
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Probabilistic Operators: Construction of the satisfaction sets for probabilistic
operators is somewhat more complicated. We need a few definitions first.

Definition 5. True satisfaction probability for a state s is defined as the prob-
ability measure of paths starting from s which evaluate the path formula ψ as T .
It is denoted by Pr((s, ψ) = T ).

Definition 6. False satisfaction probability for a state s is defined as the prob-
ability measure of paths starting from s which evaluate the path formula ψ as F ,
and is denoted by Pr((s, ψ) = F ).

Now, the satisfaction sets can be defined as:

SatT (Pr��θ[ψ]) = {s ∈ S |Pr((s, ψ) = T ) �� θ}
SatF (Pr��θ[ψ]) = {s ∈ S |Pr((s, ψ) = F ) �� 1 − θ}
Sat?(Pr��θ[ψ]) = S \ [SatT (Pr��θ[ψ]) ∪ SatF (Pr��θ[ψ])]

To construct these sets, we have to calculate Pr((s, ψ) = T/F/?) for path for-
mula ψ. There are three path formulas in qPCTL–Next, Until and Bounded Until.
We now discuss the algorithms for computing the satisfaction probabilities for
these path formulas:

1. Next operator – [XΦ]: The satisfaction probabilities for next operator are
calculated by adding transition probabilities of the state s to the states which

Algorithm 1. Algorithm 1MC
Function: ComputeSat(Φ)
switch ( Φ )
case �:

SatT (Φ) ← S; SatF (Φ) ← ∅; Sat?(Φ) ← ∅
case a:

for all s ∈ S do
if L(s, a) = T then

SatT (Φ) ← SatT (Φ) ∪ {s}
else if L(s, a) = F then

SatF (Φ) ← SatF (Φ) ∪ {s}
else

Sat?(Φ) ← Sat?(Φ) ∪ {s}
end if

end for
case ¬Φ1

ComputeSat(Φ1)
SatT (Φ) ← SatF (Φ1); SatF (Φ) ← SatT (Φ1); Sat?(Φ) ← Sat?(Φ1)

case Φ1 ∧ Φ2

ComputeSat(Φ1); ComputeSat(Φ2)
SatT (Φ) ← SatT (Φ1) ∩ SatT (Φ2)
SatF (Φ) ← SatF (Φ1) ∪ SatF (Φ2)
Sat?(Φ) ← S \ [SatT (Φ) ∪ SatF (Φ)]
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case Pr��θ[ψ]
switch (ψ)
case XΦ1

ComputeSat(Φ1)
for all s, s′ ∈ S do

if s′ ∈ SatT (Φ1) then
PrT (s, ψ) ← PrT (s, ψ) + P(s, s′)

else if s′ ∈ SatF (Φ1) then
PrF (s, ψ) ← PrF (s, ψ) + P(s, s′)

else
Pr?(s, ψ) ← Pr?(s, ψ) + P(s, s′)

end if
end for

case [Φ1UΦ2]
ComputeSat(Φ1); ComputeSat(Φ2)
S=0 ← Compute Until S=0

S=? ← Compute Until S=?

S=1 ← Compute Until S=1

Sfind ← S \ [S=0 ∪ S=1 ∪ S=?]
for all s ∈ S do

PrT (s, ψ) ← Compute Until PrT (s)
� Computes true satisfaction probability using equation 1.

PrF (s, ψ) ← Compute Until PrF (s)
� Computes false satisfaction probability using equation 2.

end for
case [Φ1U

≤kΦ2]
ComputeSat(Φ1); ComputeSat(Φ2)
S=0 ← SatF (Φ2) ∩ SatF (Φ1)
S=? ← [(Sat?(Φ1) \ SatT (Φ2)) ∪ (Sat?(Φ2) \ SatT (Φ1)) ]
S=1 ← SatT (Φ2)
Sfind ← SatT (Φ1) \ SatT (Φ2)
for all s ∈ S do

PrT (s, ψ) ← Compute BUntil PrT (s, k)
� Computes true satisfaction probability using equation 4

PrF (s, ψ) ← Compute BUntil PrF (s, k)
� Compute false satisfaction probability using equation 5

end for
end switch
for all s ∈ S do

if PrT (s, ψ) �� θ then
SatT (Φ) ← SatT (Φ) ∪ {s}

else if PrF (s, ψ) �� 1 − θ then
SatF (Φ) ← SatF (Φ) ∪ {s}

else
Sat?(Φ) ← Sat?(Φ) ∪ {s}

end if
end for

end switch
return SatT (Φ), SatF (Φ), Sat?(Φ)
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satisfy Φ as T , F or ?.

Pr((s,XΦ) = T ) =
∑

s′∈SatT (Φ)

P(s, s′)

Pr((s,XΦ) = F ) =
∑

s′∈SatF (Φ)

P(s, s′)

Pr((s,XΦ) = ?) =
∑

s′∈Sat?(Φ)

P(s, s′)

Based on satisfaction probabilities, each state s in S belongs to only one of the
three satisfaction sets SatT (Pr��θ[XΦ]), SatF (Pr��θ[XΦ]) or Sat?(Pr��θ[XΦ]). If
Pr((s,XΦ) = T ) �� θ then s ∈ SatT (Pr��θ[XΦ]). Else if Pr((s,XΦ) = F ) �� 1−θ
then s ∈ SatF (Pr��θ[XΦ]). Otherwise, s belongs to the set Sat?(Pr��θ[XΦ]).

Example 1. In Fig. 1, a qDTMC M1 with state space S = {s0, s1, . . . , s6} with
an initial state s0 is given. If we want to verify a qPCTL state formula Φ =
Pr≥0.5[Xq] for M1, then the satisfaction sets will be: SatT (Φ1) = {s1, s3, s6},
SatF (Φ1) = {s4, s5} and Sat?(Φ1) = {s0, s2}. Thus for the initial state s0, the
qPCTL state formula Φ1 will be evaluated to ?.

2. Until operator – [Φ1UΦ2]: Identifying B with the set of states where Φ2 is
true and C as the set of states where Φ1 is true, a graph theoretic notion of
constrained reachability is useful:

Definition 7. Constrained reachability in a qDTMC (s, C U B) is defined as
an event of reaching the destination set B ⊆ S from the state s such that all the
preceding states in the path belong to a constraint set C ⊆ S.

Thus the true satisfaction probability Pr((s, Φ1UΦ2) = T ) can be calculated
as the probability of constrained reachability being true for paths starting from
state s. We can also denote this probability as Pr((s, C U B) = T ). Similarly,
the false satisfaction probability Pr((s, Φ1UΦ2) = F ) = Pr((s, C U B) = F ) is
the probability of constrained reachability being false.

Notably, it is possible that constrained reachability for a path in a qDTMC
is neither true nor false. For such paths, constrained reachability is evaluated to
unknown (?). This requires us to calculate all the reachability probabilities sepa-
rately for each state in M. For each state s, the probability that the constrained
reachability is T/F/? is denoted by x

(T/F/?)
s respectively, and is defined as:

x(T/F/?)
s = Pr((s, C U B) = T/F/?) = Pr((s, Φ1UΦ2) = T/F/?).

To calculate these constrained reachability probabilities, we first partition
the state space S into {S=0, S=1, S=? and Sfind}. We now define each of these
partition sets and discuss how to construct these sets later.

S=0 = {s ∈ S | Pr((s, C U B) = F ) = 1}
B ⊆ S=1 ⊆ {s ∈ S|Pr((s, C U B) = T ) = 1}

S=? = {s ∈ S | Pr((s, C U B) =?) = 1}
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The remaining states in S form the set Sfind:

Sfind = S \ [S=0 ∪ S=1 ∪ S=?]

Thus, for states s ∈ S=1, x
(T )
s = 1, x

(F )
s = 0 and x

(?)
s = 0. Similarly for states

s ∈ S=0, x
(F )
s = 1, x

(T )
s = 0 and x

(?)
s = 0 and for states s ∈ S=?, x

(?)
s = 1,

x
(T )
s = 0 and x

(F )
s = 0.

For a state s in the set Sfind, the constrained reachability probabilities are
neither exactly 1 nor 0. We now identify the paths starting from s that eventually
reach the set S=1 such that all the preceding states are from set Sfind. These
paths will evaluate C U B (or Φ1UΦ2) to T and the probability measure of these
paths gives x

(T )
s . Similarly, x

(F )
s is the probability measure of paths from s that

reach S=0 through the states from Sfind and hence evaluate C U B (or Φ1UΦ2)
to F .

The satisfaction probabilities for the path formula [Φ1UΦ2] is then calculated
using the following sets of linear equations.

x(T )
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if s ∈ S=1

0 if s ∈ S=0

0 if s ∈ S=?
∑

t∈S

P(s, t).x(T )
t if s ∈ Sfind

(1)

x(F )
s =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ S=1

1 if s ∈ S=0

0 if s ∈ S=?
∑

t∈S

P(s, t).x(F )
t if s ∈ Sfind

(2)

Pr((s, Φ1UΦ2) =?) = x(?)
s = 1 − [x(T )

s + x(F )
s ] (3)

We now discuss how to construct S=0, S=? and S=1. Pseudocode listing for these
subroutines is provided in the Algorithms 2, 3 and 4. Then, the set Sfind =
S \ [S=0 ∪ S=1 ∪ S=?] is computed.

We first compute S=0, the set of states that have the false satisfaction proba-
bility Pr((s, Φ1UΦ2) = F ) = 1. We identify the states that have false satisfaction
probability less than 1. To do this, we first identify the set R of states for which
Φ2 is either T or ?. Then we do a backward search on the paths leading to R, to
find states where Φ1 is not F . We add these states to R. When no more states
can be added to R, we remove R from the state space to get the set S=0.

Example 2. For the qDTMC M1 in Fig. 1 and a qPCTL state formula Φ =
Pr≥0.5[¬p U q], we first identify the satisfaction sets for the state formulas
Φ1 = ¬p and Φ2 = q :
SatT (Φ1) = {s0, s3}, SatT (Φ2) = {s2, s6},
SatF (Φ1) = {s2, s4, s6}, SatF (Φ2) = {s1, s4}
Sat?(Φ1) = {s1, s5} and Sat?(Φ2) = {s0, s3, s5}.
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We can now compute the set R = {s0, s1, s2, s3, s5, s6}. Thus the partition set
S=0 will be {s4}.

We follow a similar procedure to identify the set of states for which the
probability Pr((s, Φ1UΦ2) =?) will be 1. We start with the states that belong
to either S=0 or SatT (Φ2) and then identify the paths leading to these states.
The probability Pr((s, Φ1UΦ2) =?) for such paths will always be less than 1.
We thus exclude these states from the set S=?.

Example 3. In continuation of Example 2, the set R is now computed as
R = {s4, s2, s6} ∪ {s0, s3} = {s0, s2, s3, s4, s6}. Thus the set S=? is computes
to {s1, s5}.

The set S=1 consists of states that have the true satisfaction probability
Pr((s, Φ1UΦ2) = T ) = 1. As before, we first identify the set of states that have
true satisfaction probability less than 1, and then remove them from the state
space to compute S=1.

Example 4. The set R in Algorithm 4 for M1 is now computed as R =
{s4, s1, s5} ∪ {s0, s3} = {s0, s1, s3, s4, s5}. Thus the set S=1 will be {s2, s6}.
Also, the set Sfind can now be computed as Sfind = {s0, s3}.

Algorithm 2. Algorithm to compute S=0 for until operator
Function: Compute Until S=0

R ← SatT (Φ2) ∪ Sat?(Φ2)
while true do

R′ ← R ∪ {s ∈ S \ SatF (Φ1) | ∃s′ ∈ R,P(s, s′) > 0}
if R′ = R then

break
else

R ← R′

end if
end while
S=0 ← S \ R return S=0

Algorithm 3. Algorithm to compute S=? for until operator
Function: Compute Until S=?

R ← S=0 ∪ SatT (Φ2)
while true do

R′ ← R ∪ {s ∈ SatT (Φ1) \ SatT (Φ2) | ∃s′ ∈ R,P(s, s′) > 0}
if R′ = R then

break
else

R ← R′

end if
end while
S=? ← S \ R return S=?
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Algorithm 4. Algorithm to compute S=1 for until operator
Function: Compute Until S=1

R ← S=0 ∪ S=?

while true do
R′ ← R ∪ {s ∈ SatT (Φ1) \ SatT (Φ2)|∃s′ ∈ R,P(s, s′) > 0}
if R′ = R then

break
else

R ← R′

end if
end while
S=1 ← S \ R

Example 5. Now for M1 and the qPCTL formula Φ = Pr≥0.5[¬p U q], we can
compute the satisfaction sets using the true and false satisfaction probabilities:
SatT (Φ) = {s2, s3, s6}, SatF (Φ) = {s4} and Sat?(Φ) = {s0, s1, s5}. Thus, for
the initial state s0, Φ will be evaluated to ?.

3. Bounded Until operator – [Φ1U
≤kΦ2]: The satisfaction probabilities for

[Φ1U
≤kΦ2] can be directly computed by evaluating k transitions of the

qDTMC. Depending on the truth values of Φ1 and Φ2 in a state, the state
space S is partitioned into sets S=0, S=1, S=? and Sfind in the 1MC algo-
rithm. This partition is illustrated in Fig. 2.

S=0 = SatF (Φ2) ∩ SatF (Φ1),
S=? = [ (Sat?(Φ1) \ SatT (Φ2)) ∪ (Sat?(Φ2) \ SatT (Φ1)) ],
S=1 = SatT (Φ2),
Sfind = S \ [S=0 ∪ S=1 ∪ Sfind] = SatT (Φ1) \ SatT (Φ2)

A state s ∈ S=1 if the truth value of Φ2 is T in s. Now irrespective of the
truth value of Φ1, the path formula Φ1U

≤kΦ2 will be evaluated as T for all paths
starting from this state s, because Φ2 is T in the initial state of the path. Thus,
the true (false) satisfaction probability for states in S=1 will be 1 (0).

A state belonging to set S=0 will have truth values of both Φ1 and Φ2 as F .
All paths starting from such a state s ∈ S=0 will have both Φ1 and Φ2 false in
the initial state itself and will evaluate Φ1U

≤kΦ2 to F . Thus, the true (false)
satisfaction probabilities for states in S=0 will be 0 (1).

A state s belongs to the set S=? if the truth value of at least one of Φ1 or
Φ2 is ? in s and the other is not T . No path starting from such a state s ∈ S=?

can evaluate Φ1U
≤kΦ2 to either T or F–the truth or falsehood of Φ1U

≤kΦ2 for
a path starting in s is cannot be determined if (i) Φ1 is ? in s and Φ2 is not T
or (ii) Φ1 is not T and Φ2 is ?. For such states, both true and false satisfaction
probabilities are 0.

Now, the remaining states in the state space will have Φ1 as T , but Φ2 is
either F or ?. Since Φ2 is not T in starting state s of the path, we need to find
the value of Φ1 and Φ2 in the subsequent states. Thus, these states form the set
Sfind.
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Fig. 2. A table illustrating possible combinations of truth values for Φ1 and Φ2 at a
state s and corresponding partition set

Example 6. Given a qDTMC M1 and qPCTL formula Φ = Pr≥0.5[¬p U≤3 q],
we can compute the partition sets of the state space S as: S=0 = {s4}, S=? =
{s1, s5}, S=1 = {s2, s6} and Sfind = {s0, s3}.

We now calculate the satisfaction probabilities of the path formula
[Φ1U

≤k Φ2] for the paths starting at a state s using the 1MC algorithm. We
denote the true satisfaction probability for state s as Pr((s, Φ1U

≤k Φ2) = T )
or x

(T ),k
s . We know that the true satisfaction probability for states in S=1 is 1.

Also for states in S=0 and S=?, the true satisfaction probability is 0.
To evaluate the path formula Φ1U

≤kΦ2, a path with initial state s ∈ Sfind

is traversed until either a state in one of S=0, S=1 or S=?, or the bound k is
reached. If a state s ∈ Sfind when bound k is reached, then the probability of
[Φ1U

≤k Φ2] being evaluated to T is 0. The 1MC algorithm thus computes the
true satisfaction probability as follows.

x(T ),k
s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s ∈ S=1

0 if s ∈ S=0

0 if s ∈ S=?

0 if s ∈ Sfind ∧ k = 0
∑

t∈S

P(s, t).x(T ),k−1
t if s ∈ Sfind ∧ k > 0

(4)

Similarly, we now calculate the false satisfaction probability and denote it
as Pr((s, Φ1U

≤k Φ2) = F ) or x
(F ),k
s . Recall that the path formula [Φ1U

≤k Φ2]
evaluates to F if either the formula Φ2 is F at all states of k-length path, or if
at some state Φ2 evaluates to T but at some preceding state, Φ1 evaluated to F .

We know that the false satisfaction probability for states in S=0 is 1 and is
0 for states in S=1 and S=?. We also know that the states in set Sfind will have
Φ1 as T and Φ2 is either F or ?. Now no path starting from a state that has Φ1

as T and Φ2 as ? (Sfind ∩ Sat?(Φ2)) will evaluate Φ1U
≤kΦ2 as F . Thus, false

satisfaction probability for such states will be 0.
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We now traverse paths with initial state s ∈ Sfind ∩ SatF (Φ2) until either a
state in one of S=0, S=1, S=? or Sfind ∩ Sat?(Φ2), or the bound k is reached. If
a state s ∈ Sfind ∩ SatF (Φ2) when bound k is reached, then the probability of
[Φ1U

≤k Φ2] being evaluated to F is 1. This correlates to Φ2 evaluating to F at
all states in the path, and thus path formula [Φ1U

≤k Φ2] being evaluated to F .

x(F ),k
s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if s ∈ S=1

1 if s ∈ S=0

0 if s ∈ S=?

0 if s ∈ (Sfind ∩ Sat?(Φ2))
1 if s ∈ (Sfind ∩ SatF (Φ2)) ∧ k = 0

∑

t∈S

P(s, t).x(F ),k
t if s ∈ (Sfind ∩ SatF (Φ2)) ∧ k > 0

(5)

x(?),k
s = 1 − [x(T ),k

s + x(F ),k
s ] (6)

Example 7. For the given qDTMC M1 and qPCTL formula Φ = Pr≥0.5

[¬p U≤3 q], the true satisfaction probability for state s0, Pr((s0,¬p U≤3 q) = T )
is 0.475. Also, the false satisfaction probability Pr((s0,¬p U≤3 q) = F ) is 0.
Thus, the initial state s0 ∈ Sat?(Φ) and the formula Φ is evaluated to ? at state
s0.

From the above arguments, we conclude that:

Lemma 2. For the path formulas XΦ, Φ1U
≤kΦ2 and Φ1UΦ2, Algorithm1 is

correct for the corresponding probabilistic state formulas:

– 1MC(s, Pr��θ[XΦ])=T (alt., F or ?) iff (s, Pr��θ[XΦ])=T (resp., F or ?)
– 1MC(s, Pr��θ[Φ1UΦ2])=T (alt., F or ?) iff (s, Pr��θ[Φ1UΦ2])=T (resp., F or

?)
– 1MC(s, Pr��θ[Φ1U

≤kΦ2])=T (alt., F or ?) iff (s, Pr��θ[Φ1U
≤kΦ2])=T (resp.,

F or ?)

From lemmas 1 and 2, we have:

Theorem 1. 1MC(s, Φ)=T (alt., F or ?) iff (s, Φ) =T (resp., F or ?)

Complexity of qPCTL Model Checking: Unlike for the standard PCTL
model checking algorithm [4], the 1MC algorithm for qPCTL model checking
computes an additional partition set S=? before solving the system of linear
equations for the states in the set Sfind. The computation of set S=? is done
in Θ(|S|) time. Other than that, the asymptotic time complexity is polynomial
with respect to the size of the model M and linear in terms of the size of the
query Φ. Thus, the time complexity of the 1MC qPCTL model checking algo-
rithm is the same as that of the PCTL algorithm and the 2MC algorithm for
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qPCTL–O(poly(size(M)).nmax.|Φ|), where nmax is the maximum step bound for
bounded until and 1 if the formula does not contain a bounded until. However,
in many cases, a drop in the number of runs results in a significant performance
improvement over the 2MC algorithm. This is more pronounced for larger mod-
els. We validate this with extensive experimentation in the next section.

4 Implementation and Results

We have implemented the 1MC algorithm as a Java tool. The tool takes as
an input the qDTMC model and the qPCTL query. The tool supports both
qualitative and quantitative qPCTL queries. A qualitative query only checks if
the required probability threshold is met, and results in T , F or ?. A quantitative
query on the other hand computes the exact probability of the query being T ,
F and ?.

We will begin by mentioning that the 1MC approach discussed in this paper
yields matching results for the case studies reported in [1] and [2]– (i) a model
representing an incomplete program code, and (ii) a network model that has
incomplete information about its nodes respectively.

We now compare the performance of the proposed 1MC algorithm with the
2MC algorithm in [2] for model checking different qDTMCs. For the sake of
fairness, we also implemented the standard PCTL model checker from scratch.
The 2MC algorithm calls this bare-bones model checker as a subroutine.

For a fixed size of state space, we randomly generate 50 qDTMCs with differ-
ent transition probability matrices and labeling functions. We study the varia-
tion in time taken to verify models with different structures for different qPCTL
queries, and record the minimum and maximum time taken.

We repeat this for different sizes of state spaces starting from qDTMCs with
5 states, and up to 1500 states. Thus the algorithms were compared in terms of
the time taken to verify the models of varying sizes.

Figure 3 plots the minimum and maximum times taken by the 1MC and
2MC algorithms to verify the properties Φ1 = Pr≥0.8[p0 U p1], Φ2 =
Pr≥0.7[ p0 U Pr≥0.6[X p1]] and Φ3 = Pr≥0.7[ p0 U Pr≥0.6[ p1 U p2]] where
p0, p1 and p2 are atomic propositions in the incomplete models.

It can be seen from the results that the minimum time curve for 1MC algo-
rithm is higher than that for the 2MC algorithm. This is due to the fact that
the 2MC algorithm need not compute both its steps in all cases. For instance, if
the probability of a property being true meets the required threshold in the first
step itself, the model checker need not calculate the probability of a property
being false. However, the 1MC algorithm calculates both true as well as false
probability in single step, which increases the computation overhead. In many
cases, however, both steps of 2MC algorithm are needed; thus making it very
expensive for models with large state space. The proposed 1MC algorithm gen-
erates results faster for such models and has a lower maximum time curve than
that for 2MC algorithm.
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Fig. 3. Minimum and maximum time taken by the algorithms to verify properties Φ1,
Φ2 and Φ3 for models of varying sizes and topology.

5 Conclusion and Future Work

We believe that model checking for incomplete models will be of immense prac-
tical use. While it is possible to design algorithms that use existing techniques
designed for binary logic, it is useful to have algorithms designed exclusively
for three-valued logics. We discussed an algorithm and its application for model
checking PCTL queries against incomplete DTMCs that accommodate a three-
valued logic.

Future efforts in this direction would be (i) applying these algorithms for
interim analysis of incomplete models in practice and (ii) designing similar algo-
rithms and tools for other models and systems of logic.
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Abstract. This paper presents a new technique for optimizing formal
analysis of Boolean formulas and Linear Temporal Logic (LTL) formu-
las, namely the formula simplification tables. A formula simplification
table is a mathematical table that shows all possible simplifications of
the formula under different truth assignments of its variables. The sim-
plification table is constructed using a three-valued logic: besides true
and false, the variable can take an unknown value. The advantages of
constructing a simplification table of a formula are two-fold. First, it can
be used to compute the logical influence weight of each variable in the
formula, which is a quantitative score that shows the importance of the
variable in affecting the outcome of the formula. Second, it can be used to
identify variables that have the highest logical influences on the outcome
of the formula. We demonstrate the effectiveness of formula simplifica-
tion table in the context of software verification by developing an efficient
framework for the well-known decentralized monitoring problem.

1 Introduction

This paper describes a new technique to improve formal analysis of both Boolean
formulas and Linear temporal logic formulas (LTL). The new presented improve-
ment technique is mainly based on the notion of formula simplification tables.
A formula simplification table is a mathematical table that shows all possible
simplified forms of the formula under different truth assignments of its variables.
The simplification table is constructed using a three-valued logic: besides true
and false, the variable can take an unknown value. Constructing a simplification
table of a formula has several advantages. First, it can be used to compute a log-
ical influence weight (i.e., a quantitative score) of each variable in the formula,
which is a metric that shows the importance of the variable to the outcome of
the formula. Second, it can be used to identify variables in the specification that
have the highest logical influence on its outcome.

However, the scalability of formula simplification tables requires controlling
the size of the formula (i.e., the number of variables in the formula), as the
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size of the table grows exponentially with respect to the number of variables.
To address this issue we present an algorithm for reducing large formulas to a
simplified form by detecting and contracting variables whose logical influences on
the outcome of the formula are equivalent. The simplifications we perform in this
paper cannot be obtained using traditional techniques by detecting duplicates,
syntactic contradictions or tautologies.

The presented simplifications are mainly based on the observation that large
formulas contain variables with equivalent logical influences, and therefore one
needs not consider all the variables in the formula when constructing a formula
simplification table. It is possible then to construct a much smaller formula
sufficient to prove the original property. In particular, given an input formula ϕ,
our simplification technique produces a simplified formula ϕ

′
while reducing and

contracting variables whose logical influences on the outcome of the formula are
equivalent. Then some sound logical extension rules are applied to draw valid
conclusions about the original formula.

We demonstrate the effectiveness of formula simplification tables in the con-
text of software verification by developing an efficient solution to the well-known
decentralized LTL monitoring problem. In the decentralized LTL monitoring
problem, a group of processes cooperate with each other in order to monitor a
global LTL formula, where each process observes only a subset of the variables
of the main formula. The goal is then to develop a solution that allows processes
to detect violation of the global formula as early as possible and with least com-
munication overhead. We develop a solution to the problem by synthesizing an
efficient communication strategy for processes that allows them to propagate
their observations in an optimal way.

2 The Decentralized LTL Monitoring Problem

A distributed program P = {p1, p2, . . . , pn} is a set of n processes which cooper-
ate with each other in order to achieve a certain task. Distributed monitoring is
less developed and more challenging than local monitoring: they involve design-
ing a distributed algorithm that monitors another distributed algorithm. In this
work, we assume that no two processes share a common variable. Each process of
the distributed system emits events at discrete time instances. Each event σ is a
set of actions denoted by some atomic propositions from the set AP . We denote
2AP by Σ and call it the alphabet of the system. We assume that the distributed
system operates under the perfect synchrony hypothesis, and that each process
sends and receives messages at discrete instances of time, which are represented
using an identifier t ∈ N

≥0. An event in a process pi, where 1 ≤ i ≤ n, is either

– internal event (i.e. an assignment statement),
– message sent, where the local state of pi remains unchanged, or
– message received, where the local state of pi remains unchanged.

Since each process sees only a projection of an event to its locally observable
set of actions, we use a projection function Πi to restrict atomic propositions to
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the local view of monitor Mi attached to process pi, which can only observe those
of process pi. For atomic propositions (local to process pi), Πi : 2AP → 2AP ,
and we denote APi = Πi(AP ), for all i = 1 . . . n. For events, Πi : 2Σ → 2Σ

and we denote Σi = Πi(Σ) for all i = 1 . . . n. We assume that ∀i,j≤n,i �=j ⇒
APi ∩ APj = ∅ and consequently ∀i,j≤n,i �=j ⇒ Σi ∩ Σj = ∅. That is, events
are local to the processes where they are monitored. The system’s global trace,
g = (g1, g2, . . . , gn) can now be described as a sequence of pair-wise unions of
the local events of each process’s traces. We denote the set of all possible events
in pi by Ei and hence the set of all events of P by EP =

⋃n
i=1 Ei. Finite traces

over an alphabet Σ are denoted by Σ∗, while infinite traces are denoted by Σ∞.

Definition 1 (LTL formulas [16]). The set of LTL formulas is inductively
defined by the grammar

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where X is read as next, F as eventually (in the future), G as always (globally),
U as until, and p ∈ AP is an atomic proposition.

Definition 2 (LTL Semantics [16]). Let w = a0a1 . . . ∈ Σ∞ be an infinite
word with i ∈ N being a position. Then we define the semantics of LTL formulas
inductively as follows

– w, i |= true
– w, i |= ¬ϕ iff w, i 
|= ϕ
– w, i |= p iff p ∈ ai

– w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2

– w, i |= Fϕ iff w, j |= ϕ for some j ≥ i
– w, i |= Gϕ iff w, j |= ϕ for all j ≥ i
– w, i |= ϕ1Uϕ2 iff ∃k≥i with w, k |= ϕ2 and ∀i≤l<k with w, l |= ϕ1 and

k, l ∈ N

– w, i |= Xϕ iff w, i + 1 |= ϕ.

We now review the definition of three-valued semantics LTL3 that is used
to interpret common LTL formulas, as defined in [5]. The semantics of LTL3 is
defined on finite prefixes to obtain a truth value from the set B3 = {
,⊥, ?}.

Definition 3 (LTL3 semantics). Let u ∈ Σ∗ denote a finite word. The truth
value of a LTL3 formula ϕ with respect to u, denoted by [u |= ϕ], is an element
of B3 defined as follows:

[u |= ϕ] =

⎧
⎪⎨

⎪⎩


 if ∀σ ∈ Σ∞ : uσ |= ϕ

⊥ if ∀σ ∈ Σ∞ : uσ 
|= ϕ

? otherwise

According to the semantics of LTL3 the outcome of the evaluation of ϕ can be
inconclusive (?). This happens if the so far observed prefix u itself is insufficient
to determine how ϕ evaluates in any possible future continuation of u.
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Problem 1 (The decentralized monitoring problem [6]). Given a dis-
tributed program P = {p1, p2, . . . , pn}, a finite global-state trace α ∈ Σ∗, an
LTL property ϕ, and a set of monitor processes M = {M1,M2, . . . ,Mn} such
that

– each process pi has a local set of propositions APi, and
– each process pi has a local monitor Mi, and
– monitor Mi can read truth values of APi, and
– monitor Mi can communicate with other monitors.

The main constraint that decentralised LTL monitoring addresses is the lack
of a global sensor or monitor and a central decision making point asserting
whether the system’s global trace α has violated or satisfied the property ϕ.
The decentralised monitoring problem aims then to design an algorithm for
distributing and monitoring ϕ, such that satisfaction or violation of ϕ can be
detected by local monitors alone.

3 Simplification Tables for Boolean Formulas

In this section, we discuss techniques that can be used to detect variables in a
Boolean formula or in an LTL formula whose logical influences on the outcome of
the formula are equivalent. Given a formula ϕ with a set of atomic propositions
prop(ϕ) = {a1, . . . , an}, we ask the following questions:

1. Does ϕ contain variables whose logical influences on the outcome of the for-
mula are equivalent?

2. Can we develop tests to extract variables with equivalent logical influences?
3. Can we assign a value (a quantitative score) to every variable in ϕ, corre-

sponding to its importance in affecting the outcome of the formula?
4. Can we identify the variables that have the highest logical influence on the

outcome of the formula ϕ?

Consider the Boolean formula ϕ = (a ∨ (b ∧ c)). Do variables a and b have
equivalent logical influence? Which variable has the highest logical influence on
the outcome of ϕ? The answers to these questions depend on how the formula
ϕ is simplified under different truth assignments of its variables. To answer the
questions we introduce what we call a formula simplification table.

Definition 4 (Formula simplification table). A simplification table is a
mathematical table that shows all possible simplified forms of a given formula
that result from different truth assignment of its variables. A simplification table
has one column for each input variable, and one final column showing the sim-
plified formula under the given combination of truth assignments. The variables
take their truth values from the truth domain B3 = {⊥,
, ?}. Each row of the
table contains one possible configuration of the variables and the formula that
results from substituting truth values of the variables in the main formula.
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Table 1. A simplification table for the formula ϕ = (a ∨ (b ∧ c))

a b c Simplified formula a b c Simplified formula a b c Simplified formula

? ? ? (a ∨ (b ∧ c)) � ? ? � ⊥ ? ? (b ∧ c)

? ⊥ ? a � ? � � ⊥ ? ⊥ ⊥
? ⊥ ⊥ a � ? ⊥ � ⊥ ? � b

? ⊥ � a � ⊥ ? � ⊥ ⊥ ? ⊥
? ? � (a ∨ b) � ⊥ ⊥ � ⊥ ⊥ ⊥ ⊥
? ? ⊥ a � ⊥ � � ⊥ ⊥ � ⊥
? � ? (a ∨ c) � � ? � ⊥ � ? c

? � ⊥ a � � � � ⊥ � � �
? � � � � � ⊥ � ⊥ � ⊥ ⊥

Definition 5 (Variables with equivalent logical influences). Two vari-
ables in a formula are said to be equivalent in their logical influences on the
outcome of the formula if under the same truth assignment they yield formu-
las with identical syntactic structure. Let ϕ be a formula with the set of atomic
propositions ϕ. We say that the two variables a, b ∈ prop(ϕ) have equivalent
logical influences on ϕ (denoted as a ≡ b) if the following condition holds

prog(ϕ, a = ⊥) = prog(ϕ, b = ⊥)[b/a] ∧
prog(ϕ, a = 
) = prog(ϕ, b = 
)[b/a]

where prog(ϕ, a = v) is a function that returns a new formula of ϕ after substi-
tuting the truth value of a in ϕ. We write prog(ϕ, b = ⊥)[b/a] to indicate that
the variable a will be renamed by b in the resulting formula prog(ϕ, b = ⊥).

From the simplification table of the formula ϕ = (a∨(b∧c)) (Table 1) we note
that the two variables b and c have equivalent logical influence on the outcome
of ϕ as prog(ϕ, b = ⊥) = prog(ϕ, c = ⊥)[b/c] and prog(ϕ, b = 
) = prog(ϕ, c =

)[b/c], while the variables a and b have inequivalent logical influence on the
outcome of the formula as prog(ϕ, a = 
) 
= prog(ϕ, b = 
)[a/b].

We now introduce a new notion that can be used to improve the efficiency of
decentralized LTL monitoring, namely the notion of influence weights of variables
in a formula. We show then how to measure the influence weights of variables in
a given formula by constructing a simplification table for the formula.

Definition 6 (Influence weights of variables). The influence weight of a
variable in a given formula is a quantitative score that shows the importance of
the variable in affecting the outcome of the formula. It can be computed from
the simplification table of the formula. Let ϕ be a formula and prop(ϕ) be the
set of atomic propositions of ϕ and a ∈ prop(ϕ). The influence weight of the
variable a (denoted as IWϕ(a)) can be computed by taking the ratio of the num-
ber of formulas in the simplification table that a appears in to the number of
configurations in which a has unknown truth value (a =?).



A Novel Decentralized LTL Monitoring Framework 43

From Table 1 we note that IWϕ(a) =
8
9
, IWϕ(b) =

4
9
, and IWϕ(c) =

4
9
. We

conclude that the variable a has higher logical influence on the outcome of the
formula than both b and c. This can be shown from the value of the influence
weight of a which is larger than the weights of both b and c.

Observation 1 (Properties of influence weights of variables). Let ϕ be
an LTL formula with atomic propositions prop(ϕ) = {a1, . . . , an}. The basic
properties of logical influence weights of {a1, . . . , an} can be summarized as fol-
lows

1. for any variable ai ∈ prop(ϕ) we have 0 ≤ IWϕ(ai) ≤ 1.
2. when ai ≡ aj then IWϕ(ai) = IWϕ(aj) but the converse in not true.

Definition 7 (Equivalent configurations). Let ϕ be a formula with a set
of propositional variables {a1, . . . , an}. We say that the two configurations O =
(a1 = v1, . . . , an = vn) and O

′
= (a1 = v

′
1, . . . , an = v

′
n) are equivalent if they

lead to the same simplified formula, where v1, . . . , v
′
n ∈ B3. Formally, we say that

the two configurations O and O
′
are equivalent if

prog(...(prog(ϕ, a1 = v1), a2 = v2), . . . , an = vn) =
prog(...(prog(ϕ, a1 = v

′
1), a2 = v

′
2), . . . , an = v

′
n)

The simplification table of a formula can also be used to derive Boolean
formulas characterizing the conditions under which the main formula can be
simplified into some specific formulas. Deriving such Boolean formulas can be
very useful for certain problems such as the decentralized LTL monitoring prob-
lem, where processes can use such formulas to determine the minimal set of
variables whose truth values need to be propagated. For example, for the for-
mula ϕ = (a∨(b∧c)) one can see from the simplification table of ϕ that there are
multiple configurations that lead to the same simplified formula. For instance,
there are five different configurations that simplify the formula to the atomic
formula φ = a. One can then derive a Boolean formula Bφ characterizing the
cases under which ϕ can be simplified to φ, which will be in this case Bφ = (b+c)
(i.e., we write b to refer to the logical complement of the variable b).

4 Progression Tables for LTL Formulas

The technique described at the previous section can be used also for LTL formu-
las to compute the influence weights of variables in a given LTL formula. Note
that for propositional logic formulas, we call the table as simplification table
since the formula gets simplified when we substitute a truth value of a variable
in the formula (i.e., the size of the formula is reduced). This is not always the
case for temporal formulas, as the formula may be expanded at each state of the
trace to express sets of obligations (requirements) that the system should fulfill
for the remaining part of the trace. We therefore call the table as progression
table rather than simplification table when dealing with LTL formulas.
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The notion of influence weights of variables in temporal formulas is very
similar to the one introduced for the Boolean formulas with some slight modifi-
cation, where we define the influence weight of a variable in a temporal formula
to be the ratio of the number of formulas in the progression table in which the
variable appears in where its truth value is unknown to the total number of
configurations in which the variable has unknown truth value.

Let us construct a progression table for the temporal formula ϕ = F (a∧ b)∨
G(c ∧ d). Since we mainly use the progression table to measure the influence
weights of the variables to the outcome of the formula, we choose to restrict the
temporal operators to specific time step t ≥ 0 and use the classical expansion
rules to express the semantics of the operators (i.e., F (a) ≡ a ∨ XF (a)). It
is interesting to note that restricting temporal operators to specific time step
does not harm the analysis, it just simplifies it. From the definition of influence
weights (see Definition 6) it is sufficient then to consider the temporal operators
at a single step to compute the logical influence weights of variables to the
outcome of the formula.

Table 2. A partial progression table for the formula F (a ∧ b) ∨ G(c ∧ d)

a(t) b(t) c(t) d(t) Progressive formula a(t) b(t) c(t) d(t) Progressive formula
? ? ? ? ((a(t) ∧ b(t)) ∨ XF (a ∧ b)) ∨ (c(t) ∧ d(t) ∧ XG(c ∧ d)) ⊥ ? ? ? XF (a ∧ b) ∨ ((c(t) ∧ d(t)) ∧ XG(c ∧ d))
? ? ⊥ ? (a(t) ∧ b(t)) ∨ XF (a ∧ b) ⊥ � ? � XF (a ∧ b) ∨ (d(t) ∧ XG(c ∧ d))
? ? ⊥ ⊥ (a(t) ∧ b(t)) ∨ XF (a ∧ b) ⊥ ⊥ ? ? XF (a ∧ b) ∨ ((c(t) ∧ d(t)) ∧ XG(c ∧ d))
? ? � ⊥ (a(t) ∧ b(t)) ∨ XF (a ∧ b) ⊥ � ? ? XF (a ∧ b) ∨ ((c(t) ∧ d(t)) ∧ XG(c ∧ d))
? ? ⊥ � (a(t) ∧ b(t)) ∨ XF (a ∧ b) ⊥ � ? ⊥ XF (a ∧ b)
? ? ? ⊥ (a(t) ∧ b(t)) ∨ XF (a ∧ b) ⊥ ? ? ⊥ XF (a ∧ b)
? ? � ? (a(t) ∧ b(t)) ∨ XF (a ∧ b) ∨ (d(t) ∧ XG(c ∧ d)) ⊥ ? ? � XF (a ∧ b) ∨ (d(t) ∧ XG(c ∧ d))
? ? ? � (a(t) ∧ b(t)) ∨ XF (a ∧ b) ∨ (c(t) ∧ XG(c ∧ d)) ⊥ ⊥ ? ⊥ XF (a ∧ b)
? ? � � (a(t) ∧ b(t)) ∨ XF (a ∧ b) ∨ XG(c ∧ d) ⊥ ⊥ ? � XF (a ∧ b) ∨ (d(t) ∧ XG(c ∧ d))
? ⊥ ? ? XF (a ∧ b) ∨ ((c(t) ∧ d(t)) ∧ XG(c ∧ d)) � ? ? ? b(t) ∨ XF (a ∧ b) ∨ (c(t) ∧ d(t) ∧ XG(c ∧ d))
? ⊥ ? ⊥ XF (a ∧ b) � ? ? ⊥ b(t) ∨ XF (a ∧ b)
? ⊥ ⊥ ? XF (a ∧ b) � ? ? � b(t) ∨ XF (a ∧ b) ∨ (d(t) ∧ XG(c ∧ d))
? ⊥ ⊥ ⊥ XF (a ∧ b) � � ? � �
? ⊥ ⊥ � XF (a ∧ b) � � ? ? �
? ⊥ � ⊥ XF (a ∧ b) � � ? ⊥ �
? ⊥ � � XF (a ∧ b) ∨ XG(c ∧ d) � ⊥ ? ? XF (a ∧ b) ∨ ((c(t) ∧ d(t)) ∧ XG(c ∧ d))
? ⊥ � ? XF (a ∧ b) ∨ (d(t) ∧ XG(c ∧ d)) � ⊥ ? ⊥ XF (a ∧ b)
? ⊥ ? � XF (a ∧ b) ∨ (c(t) ∧ XG(c ∧ d)) � ⊥ ? � XF (a ∧ b) ∨ ((c(t) ∧ XG(c ∧ d))
? � ⊥ ⊥ a(t) ∨ XF (a ∧ b) ? � ? ⊥ a(t) ∨ XF (a ∧ b)
? � ⊥ ? a(t) ∨ XF (a ∧ b) ? � ? ? (a(t) ∨ XF (a ∧ b)) ∨ ((c(t) ∧ d(t)) ∧ XG(c ∧ d))
? � ? � (a(t) ∨ XF (a ∧ b)) ∨ (c(t) ∧ XG(c ∧ d)) ? � � ? (a(t) ∨ XF (a ∧ b)) ∨ (d(t) ∧ XG(c ∧ d))
? � � � a(t) ∨ XF (a ∧ b) ∨ XG(c ∧ d) ? � � ⊥ a(t) ∨ XF (a ∧ b)
? � ⊥ � a(t) ∨ XF (a ∧ b)

However, before constructing a progression table for the formula we use Defi-
nition 5 to detect variables in the formula whose logical influences on the outcome
of the formula are equivalent. This would help to reduce the size of the table.
Using Definition 5 we conclude that a ≡ b and c ≡ d but a 
≡ c. We therefore
have two sets of variables whose logical influences are equivalent: E1 = {a, b} and
E2 = {c, d}. In this case we do not need to construct a full progression table for
the formula as IWϕ(a) = IWϕ(b) and IWϕ(c) = IWϕ(d). From the constructed
(partial) progression table of the formula ϕ = F (a ∧ b) ∨ G(c ∧ d) (Table 2) we
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can see that the variables a and b have higher logical influences on the outcome

of the formula than the variables c and d, where IWϕ(a) = IWϕ(b) =
27
27

= 1

and IWϕ(c) = IWϕ(d) =
16
27

≈ 0.60. This is mainly due to the semantics of the

operators F and G and that the subformulas F (a∧b) and G(c∧d) are connected
using the logical connective ∨. This leads to the conclusion that the set of logical
and temporal operators used in the formula affect the weights of the variables.

In general, when computing influence weights (quantitative scores) of vari-
ables in a given formula ϕ using progression tables, we construct partial progres-
sion tables of size (3n − 2n) where we skip the configurations in which all the
variables have definite truth values. Recall that an influence weight of a variable
in a given formula is computed by taking the ration of the number of simplified
formulas in the table in which the variable appears in to the number of configu-
rations in which the variable is assigned an unknown truth value. We distinguish
here two cases when constructing a progression table for a formula:

1. if the formula does not contain variables with equivalent logical influences
then we construct a partial progression table of the size (3n−2n). We skip here
the set of configurations in which all the variables have definite (known) truth
values as such configurations will not considered when computing influence
weights of variables.

2. if the formula contains variables whose logical influences on the outcome of
the formula are equivalent then we construct a partial progression table of
the size (k × 3n−1 − 3n−2). Suppose that the given formula has c sets of
variables with equivalent logical influences E1, . . . , Ec then the variable k can
be computed as follows k = (n−∑c

i=1 |Ei|)+ c. For example, for the formula
ϕ = F (a∧b)∨G(c∧d) considered above the progression table (Table 2) consists
of 45 entries instead of 81 entries as the formula contains two sets of variables
whose logical influences are equivalent E1 = {a, b} and E2 = {c, d}. In this
case k = 2 and the minimum size of the table that can be constructed to
compute influence weights of variables will be 45 as variables with equivalent
logical influences have the same influence weights.

5 Simplifications

When some variables are shown to be equivalent in their logical influences w.r.t.
the outcome of a formula, then some of these variables can be replaced by one
representative. We now describe the basic steps that can be followed to simplify
a formula that contains variables with equivalent logical influences.

1. Detect sets of variables in the formula whose logical influences on the outcome
of the formula are equivalent. This can be performed using Definition 5.

2. Fix the names of two variables in each derived set while replacing the names
of the other variables to one of the fixed names. The reason for maintaining
two variables from each set is to detect the influence of each variable on the
other and their joint influence on the variables from the other sets.
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1: Input: ϕ
2: int k := 1
3: Bool Equiv := false
4: for each ai ∈ V arϕ do
5: for each aj ∈ (V arϕ \ ai) do
6: if prog(ϕ, ai = �) = prog(ϕ, aj = �)[ai/aj ] ∧
7: prog(ϕ, ai = ⊥) = prog(ϕ, aj = ⊥)[ai/aj ] then
8: Ek := ∅
9: add aj to Ek

10: remove aj from V arϕ

11: Equiv := true
12: end if
13: if Equiv = true then
14: add ai to Ek

15: Equiv := false
16: k + +
17: end if
18: end for
19: end for

Algorithm 1. Algorithm for detecting variables with equivalent logical influence

3. Reconstruct the formula using the new set of variable names. This yields a
formula with redundant variables.

4. Simplify the resulting formula by eliminating redundant variables.

The resulting simplified LTL formula has the same syntactic structure as
the original formula but in a reduced form, as the number of variables in the
simplified formula is less than that of the original formula.

Example 1. Consider the following LTL formula

ϕ = G(a1 ∧ a2 ∧ . . . ∧ an1) ∨ F (b1 ∧ b2 ∧ . . . ∧ bn2).

According to Definition 5 the formula ϕ has two sets of variables with equivalent
logical influences: E1 = {a1, . . . , an1} and E2 = {b1, . . . , bn2}. Suppose that we
choose to maintain the variables a1 and a2 from E1 and replace the names of
the other variables in E1 by a1 and b1 and b2 from E2 and replace the names of
the other variables in E2 by b1. This yields the following formula

ϕ
′
= G(a1 ∧ a2 ∧ a1 ∧ . . . ∧ a1) ∨ F (b1 ∧ b2 ∧ b1 ∧ . . . ∧ b1).

The formula ϕ
′
contains redundant variables and hence can be simplified to

ϕR = G(a1 ∧ a2) ∨ F (b1 ∧ b2).

6 From Simplified Formula to Original Formula

We now describe the steps that can be followed to draw correct logical conclu-
sions about the original formula from the results obtained of the analysis of the
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simplified formula. Given an LTL formula ϕ we simplify ϕ to ϕR by contracting
variables with equivalent logical influences as described in Sect. 5.

1. Construct a progression table for the simplified formula ϕR.
2. Compute influence weights of the variables in the simplified formula ϕR.
3. Synthesize Boolean formulas for sets of configurations in the progression table

of the formula ϕR that yield the same LTL formula.
4. Extend influence weights of the variables to the original formula ϕ.
5. Extend sets of synthesized Boolean formulas to the original formula ϕ.

Note that steps (1–3) of the above procedure can be performed as described
in the previous section. We now describe how steps (4–5) can be implemented
by developing rules for extending logical conclusions derived from the simplified
formula. Let B

ϕR

φ be a Boolean formula synthesized from the progression table
of the formula ϕR for sets of configurations that yield the LTL formula φ. The
general form of the Boolean formula B

ϕR

φ can be expressed as follows

B
ϕR

φ = (T0 + T1 + . . . + Tn)

where each term Ti has the form
∏

(V ) (a product of a set of variables), where
V is a set of propositional variables from prop(ϕ). Let {E1, . . . , Ek} be the sets
of variables with equivalent logical influence extracted from the formula ϕ. Note
that for each set Ei we maintain only two variables in the simplified formula.
Let us denote the variables maintained from the set E1 by a1 and a2 which we
will use to formalize the extension rules given below. Extending sets of Boolean
formulas from the simplified formula to the original formula can take one of the
following forms: (i) extending B

ϕR

φ by adding new variables to some terms in
B

ϕR

φ , and (ii) extending B
ϕR

φ by adding new terms to B
ϕR

φ .

1. When none of the variables in the equivalent set E1 appears in the formula
φ. That is, for all ai ∈ E1 we have ai 
∈ prop(φ). We have three cases here:
(a) if there exists a term T in B

ϕR

φ such that (|T.V | ≥ 1 ∧ (T.V ∩ E1) = 1)
then for each variable in E1 that is not in the short formula ϕR add a new
term to Bφ that is identical to T while replacing the variable (T.V ∩ E1)
by one from the set E1 that is not in the short formula.

(b) if there exists a term T in B
ϕR

φ such that (|T.V | > 1 ∧ (T.V ∩ E1) = 2)
then add all variables in E1 that is not in the short formula ϕR to V .

(c) if none of the variables in E1 appears in the terms of BϕR

φ then the formula
B

ϕR

φ needs not to be extended with respect to the set E1.
2. When variables a1 and a2 appear in the formula φ. We have two case here

(a) if variables a1 and a2 appear in the formula φ but none of them appears in
the terms of the formula B

ϕR

φ . In this case, we need to extend the formula
φ by adding all variables in E1 that are not in ϕR to φ.

(b) if variables a1 and a2 appear in the formula φ and in the formula B
ϕR

φ .
Then the formula B

ϕR

φ will be extended in two steps (i) add all variables
in E1 that are not in ϕR to φ, and (ii) use extension rules 1(a)-1(b) to
extend the formula B

ϕR

φ .
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We now discuss some useful results that can be used to simplify the compu-
tation of influence weights of variables.

Lemma 1. Let ϕ be an LTL formula with propositional variables prop(ϕ) =
{a1, . . . , an}. Let ϕR be a simplified version of ϕ computed as described in
Sect. 5. Then when IWϕR

(ai) = 1 (the weight of ai in the short formula) we
have IWϕ(ai) = 1 (the weight of ai in the long formula).

Theorem 1. Let ϕ be an LTL formula with a set of propositional variables
prop(ϕ) = {a1, . . . , an}. Let ϕR be a simplified formula of ϕ computed as
described in Sect. 5. Then when all variables in ϕ have equivalent logical influence
on the outcome of ϕ and that IWϕR

(a1) = N
D then IWϕ(a1) = Nn−1

Dn−1 .

Lemma 1 states that variables of weight one do not get influenced by adding
more variables to the formula as long as the semantics of the formula is preserved.
On the other hand, Theorem1 states that for formulas whose variables are equiv-
alent in their logical influences then the influence weights of these variables can
be computed in a straightforward way using the formula IWϕ(ai) = Nn−1

3n−1 , where
ai is a variable in ϕ and n is the number of variables in the formula ϕ.

Example 2. Consider the following LTL formula

ϕ = F (a1 ∧ a2 ∧ a3 ∧ a4 ∧ a5) ∨ G(b1 ∧ b2 ∧ b3 ∧ b4)

Note that ϕ has two sets of variables with equivalent logical behavior: E1 =
{a1, a2, a3, a4, a5} and E2 = {b1, b2, b3, b4}. Using the simplification rules
described in Sect. 5 we can simplify ϕ to ϕR = F (a1 ∧ a2) ∨ G(b1 ∨ b2). The
progression table of the reduced formula is given in Table 2. We consider here
the Boolean formulas for the the cases of configurations that lead to the simpli-
fied formulas XF (a1 ∧ a2) and 
. The expressions can be given as follows

B
ϕR

(XF (a1∧a2))
=

∑

i=1..2,j=1..2

(ai.bj) B
ϕR

	 =
∏

i=1..2

(ai)

Extending the Boolean expression B
ϕR

(XF (a1∧a2))
to the original formula can

be performed using rule 2(b), while extending the expression B
ϕR

	 to the original
formula can be performed using rule 1(b) which yield the following formulas

B
ϕ
(XF (a1∧a2∧a3∧a4∧a5))

=
∑

i=1..5,j=1..4

(a1.bj) B
ϕ
	 =

∏

i=1..5

(ai)

Note that the influence weights of the variables a1, a2, a3, a4, and a5 will
be the same since their logical influences on the outcome of the formula are
equivalent. From the progression table of the simplified formula we note that
IWϕR

(a1) = IWϕR
(a2) = 1 and IWϕR

(b1) = IWϕR
(b2) = 0.66. From Lemma 1

we conclude that IWϕ(a1) = IWϕ(a2) = 1 and from Theorem1 we conclude
that IWϕ(b1) = IWϕ(b2) ≈ 0.039.
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7 Using Progression Tables in Decentralized Monitoring

The information extracted from the progression table of the monitored formula
can be used for two purposes: (i) to synthesize efficient communication strategy
for processes, and (ii) to propagate observations of processes in an efficient way.
However, for each process, we associate what we call influence logical power.
Such power can be computed according to the observation power of the process
(i.e., the set of variables in the formula that are locally observed by the process).

Definition 8 (Influence power of processes). Let P be a distributed system
with n processes {q1, .., qn} and ϕ be an LTL property of P that we seek to
monitor in a decentralized fashion. Let qi ∈ P be a process with a set of atomic
propositions APi = {a1, . . . , ak} and that APi ⊆ prop(ϕ). The influence power
of process pi (denoted as IPϕ(qi)) can be computed as follows

IPϕ(qi) =
k∑

j=1

(IWϕ(aj)).

That is, the influence logical power of a process can be computed by taking the
sum of the logical weights of the variables observable by that process.

In our setting, processes with higher influence power will receive higher prior-
ity in the order of communication. This is mainly because processes with higher
influence power they either observe larger number of variables of the monitored
formula or variables with higher influence weights and hence their ability to
simplify the formula are higher than those with lower influence power.

Example 3. Suppose that we would like to monitor a formula ϕ = F (b∨(a1∧a2∧
c)) and that we have three processes: process A with APA = {a1, a2}, process
B with APB = {b}, and process C with APC = {c}. To synthesize an efficient
round-robin communication policy for processes we use Definition 8 to compute
their influence power. We first need to compute the logical influence weight of
each variable in the formula. This can be computed by constructing a progression
table for the formula ϕ. From the progression table of the formula we find that
IWϕ(a1) = IWϕ(a2) = IWϕ(c) = 8

27 and IWϕ(b) = 26
27 . From these values we

can see that the influence power of processes are: IPϕ(A) = 16
27 , IPϕ(B) = 26

27 ,
and IPϕ(C) = 8

27 . However, since IPϕ(B) > IPϕ(A) > IPϕ(C) then the round-
robin policy will be of the form (B → A → C → B), where the direction of the
arrows represents the order of communication.

Instead of allowing processes to propagate their entire observations to their
neighbor processes, they can take advantage of the constructed progression table
of the formula to compute the minimal set of variables whose truth values need
to be propagated. Note that in some situations it is sufficient for processes to
propagate only a subset of their observations while allowing the receiving process
to draw the same conclusion about the truth value of the monitored formula.
Suppose for example that processes A and B monitor an LTL formula ϕ =
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F (a1 ∧ a2 ∧ b1 ∧ b2) and that process A observes a1 and a2. Suppose that at
some state s process A observes that a1 = ⊥ ∧ a2 = 
. Then A needs only to
propagate the truth value of a1 to B as this would be sufficient to allow B to
know that (a1 ∧ a2 ∧ b1 ∧ b2) = ⊥ and hence F (a1 ∧ a2 ∧ b1 ∧ b2) =?.

As mentioned earlier, a Boolean formula is given as sums of products of the
form Bφ = (T0 +T1 + . . .+Tk), where each term Ti represents a condition under
which the formula ϕ can be simplified to φ and has the form

∏
(V ) where V is a

set of variables. Suppose that at some step s of the trace being monitored process
A simplifies the monitored formula ϕ to formula φ using its observations. The
question is then what A should communicate to its neighbor process? A simple
procedure can be used to compute the minimal set of variables whose truth
values need to be propagated as described below.

1. Find all terms in the formula Bφ which hold to true when replacing the
variables in Bφ by their definite truth values. Let us denote the set containing
all the terms that hold to true in the formula Bφ by L.

2. Find the term in L with the smallest corresponding V set, let us denote that
set by Vmin. In this case, the variables in the set Vmin represent the minimal
set of variables whose truth values need to be propagated.

Our decentralized monitoring algorithm consists of two phases: setup and
monitor. The setup phase consists of the five steps described in Sect. 5. We now
summarize the actual monitoring steps in the form of an explicit algorithm that
describes how local monitors operate and make decisions:

1. [Read next event]. Read next σi ∈ Σi (initially each process reads σ0).
2. [Compute minimal set of variables to be transmitted]. Examine the set of

Boolean formulas derived from the progression table to compute the minimal
set of variables whose truth values need to be propagated.

3. [Compute the receiving process]. For our communication strategy, the receiv-
ing process of some process p is fixed between states and computed according
to some round-robin communication policy, as described in Sect. 7.

4. [Propagate truth values of variables in Vmin]. Propagate the truth values of
variables in the minimal set in Vmin to the receiving process.

5. [Evaluate the formula ϕ and return]. If a definite verdict of ϕ is found return
it. That is, if ϕ = 
 return 
, if ϕ = ⊥ return ⊥.

6. [Go to step 1]. If the trace has not been finished or a decision has not been
made then go to step 1.

We now turn to discuss the basic properties of our decentralized monitoring
framework. Let |=D be the satisfaction relation on finite traces in the decentral-
ized setting and |=C be the satisfaction relation on finite traces in the centralized
setting, where both |=D and |=C yield values from the same truth domain. Note
that in a centralized monitoring algorithm we assume that there is a central pro-
cess that observes the entire global trace of the system being monitored, while in
our decentralized monitoring algorithm processes observe part of the trace, per-
form remote observation, and use the progression table of the monitored formula
in order to setup an efficient communication strategy.
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Theorem 2 (Soundness). Let ϕ ∈ LTL and α ∈ Σ∗. Then α |=D ϕ =

/⊥ ⇒ α |=C ϕ = 
/⊥.

Soundness means that all verdicts (truth values taken from a truth-domain)
found by the decentralized monitoring algorithm for a global trace α with respect
to the property ϕ are actual verdicts that would be found by a centralized
monitoring algorithm that have access to the trace α.

Theorem 3 (Completeness). Let ϕ ∈ LTL and α ∈ Σ∗. Then α |=C ϕ :
B ⇒ ∃α

′ ∈ Σ∗.|α′ | ≤ n ∧ α.α
′ |=D ϕ : B, where n is the number of processes in

the distributed system and B ∈ {
,⊥}.
Completeness means that all verdicts found by the centralized monitoring

algorithm will be found by the decentralized monitoring algorithm but not nec-
essarily at the same time (i.e., after consuming the same number of events).
That is, the decentralized algorithm reaches the same verdict as the centralized
algorithm but with some bounded delay σ ≤ n. This is mainly due to the dis-
tribution of information and communications. We refer the reader to the full
version at http://arxiv.org/abs/1810.13129 for the missing proofs.

8 Experiments

We have evaluated our monitoring approach against the LTL decentralized mon-
itoring approach of Bauer and Falcone [6], in which the authors developed a
monitoring algorithm for LTL based on the formula-progression technique [4].
The formula progression technique takes a temporal formula φ and a current
assignment I over the literals of φ as inputs and returns a new formula after
acting I on φ. The idea is to rewrite a temporal formula when an event e is
observed or received to a formula which represents the new requirement that
the monitored system should fulfill for the remaining part of the trace. We also
use the tool DECENTMON3 (http://decentmon3.forge.imag.fr/) in our evalu-
ation, which is a tool dedicated to decentralized monitoring. The tool takes as
input multiple traces, corresponding to the behavior of a distributed system,
and an LTL formula. The reason for choosing DECENTMON3 in our evaluation
is that it makes similar assumptions to our presented approach. Furthermore,
DecentMon3 improves the original DecentMon tool developed in [6] by limiting
the growth of the size of local obligations and hence it may reduce the size of
propagated messages. We believe that by choosing the tool DECENTMON3 as
baseline for comparison we make the evaluation much fairer.

We denote by BF the monitoring approach of Bauer and Falcone, and PDM
our presented approach in which processes construct a progression table for the
monitored formula which will be used to synthesize efficient round robin pol-
icy for processes and to propagate observations in an optimal way. We compare
the approaches against benchmark for patterns of formulas [2] (see Table 3). In
Table 3, the following metrics are used: #msg, the total number of exchanged
messages; |msg|, the total size of exchanged messages (in bits); |trace|, the aver-
age length of the traces needed to reach a verdict; and |mem|, the memory in

http://arxiv.org/abs/1810.13129
http://decentmon3.forge.imag.fr/
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bits needed for the structures (i.e., formulas plus state for our algorithm). For
example, the first line in Table 3 says on average, traces were of length 4.65 when
one of the local monitors in approach BF came to a verdict, and of length 5.26
when one of the monitors in PDM came to a verdict.

Table 3. Benchmarks for 1000 generated LTL pattern formulas (Averages)

|ϕ| |trace| #msg. |msg.| |mem|
BF PDM BF PDM BF PDM BF PDM

abs 4.65 5.10 4.46 5.15 1,150 102 496.4 11.9

exis 27.9 29.5 19.7 20.8 1,100 411 376 19.8

bexis 43.6 41.3 31.6 31.9 55,000 25415 28,200 20.6

univ 5.86 6.2 5.92 5.82 2,758 138 498 22.5

prec 54.8 54.5 25.4 26.9 8,625 755 663 34.9

resp 622 622 425 515 22,000 1211 1,540 17.5

precc 4.11 5.2 4.81 5.95 5,184 356 1,200 15.7

respc 427 444 381 409 9,000 2799 4,650 22.1

consc 325 324 201 234 7,200 1223 2,720 15.8

8.1 Benchmarks for Patterns of Formulas

We compared the two approaches with realistic specifications obtained from spec-
ification patterns [9]. Table 3 reports the verification results for different kinds of
patterns (absence, existence, bounded existence, universal, precedence, response,
precedence chain, response chain, constrained chain). The specification formulas
are available at [2]. We generated 1000 formulas monitored over the same setting
(processes are synchronous and reliable). For these benchmarks we generated
formulas as follows. For each pattern, we randomly select one of its associated
formulas. Such a formula is “parametrized” by some atomic propositions from
the alphabet of the distributed system which are randomly instantiated. For this
benchmark (see Table 3), the presented approach leads to significant reduction
on both the size of messages and the amount of memory consumption compared
to the optimized version of the BF algorithm (DECENTMON3).

9 Related Work

Finding redundancies in formulas has been studied in the form of vacuity detec-
tion in temporal logic formulas [3,14]. Here, the goal is to identify vacuously
valid subparts of formulas, indicating, for example, a specification error. In con-
trast, our focus is to reduce the complexity of the formula by detecting variables
whose logical influences on the outcome of the formula are equivalent and then
reduce the complexity of the formula by reducing the number of variables.
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Various simplification rules have also been successfully applied as a prepro-
cessing step for solving, usually for bit-vector arithmetic [12,13]. These rules are
syntactic and theory-specific. In contrast, the technique described in this paper is
not meant as a preprocessing step for solving and guarantees non-redundancy, it
is rather a simplification technique for detecting and contracting variables with
equivalent logical influences for the purpose of optimizing formal analysis of
formulas by constructing simpler forms sufficient to prove the original property.

The literature on decentralized monitoring problem is a rich literature, where
several monitoring algorithms have been developed for verifying distributed sys-
tems at runtime [6,7,11,15,17,18]. We discuss here some interesting works on
the problem and refer the reader to [1,10] for a more comprehensive survey.

Bauer and Falcone [6] propose a decentralized framework for runtime moni-
toring of LTL. The framework is constructed from local monitors which can only
observe the truth value of a predefined subset of propositional variables. The local
monitors can communicate their observations in the form of a (rewritten) LTL
formula towards its neighbors. Mostafa and Bonakdarpour [15] propose simi-
lar decentralized LTL monitoring framework, but truth value of propositional
variables rather than rewritten formulas are shared.

The work of Falcone et al. [11] proposes a general decentralized monitoring
algorithm in which the input specification is given as a deterministic finite-state
automaton rather than an LTL formula. Their algorithm takes advantage of
the semantics of finite-word automata, and hence they avoid the monitorability
issues induced by the infinite-words semantics of LTL. They show that their
implementation outperforms the Bauer and Falcone decentralized LTL algorithm
[6] using several monitoring metrics.

Colombo and Falcone [8] propose a new way of organizing monitors called
choreography, where monitors are organized as a tree across the distributed sys-
tem, and each child feeds intermediate results to its parent. The proposed app-
roach tries to minimize the communication induced by the distributed nature of
the system and focuses on how to automatically split an LTL formula according
to the architecture of the system.

El-Hokayem and Falcone [10] propose a new framework for decentralized
monitoring with new data structure for symbolic representation and manipula-
tion of monitoring information in decentralized monitoring. In their framework,
the formula is modelled as an automaton where transitions of the automaton
are labelled with Boolean expressions over atomic propositions of the system.

10 Conclusion and Future Work

We presented a novel framework for decentralized monitoring of LTL formulas
based on the notion of formula progression tables. The progression tables can
be used to extract useful information about the analysed formula including log-
ical influence weights of the variables in the formula. We showed how formula
progression tables can be used to optimize decentralized monitoring solutions
of LTL formulas by synthesizing efficient communication strategies for processes



54 O. Bataineh et al.

and propagating information in an optimal way. In future work, we aim to employ
some decomposition techniques to split the global LTL formula into local LTL
expressions. This would help to avoid the memory-explosion problem.
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Abstract. Dynamic State Machines (DSTM) is an extension of Hier-
archical State Machines recently introduced to answer some concerns
raised by model-based validation of railway control systems. However,
DSTM can be used to model a wide class of systems for design, verifi-
cation and validation purposes. Its main characteristics are the dynamic
instantiation of parametric machines and the definition of complex data
types. In addition, DSTM allows for recursion and preemptive termina-
tion. In this paper we present a translation of DSTM models in Promela
that can enable automatic test case generation via model checking and,
at least in principle, system verification. We illustrate the main steps of
the translation process and the obtained Promela encoding.

1 Introduction

Dynamic STate Machine (DSTM) is a recently-developed modelling language [1],
developed in the context of the ARTEMIS Joint Undertaking project CRYSTAL
(CRitical sYSTem engineering AcceLeration) [10]. DSTM has been devised to
explicitly meet industrial requirements in design, verification and validation of
complex control systems, and includes in its formal framework both complex
control flow constructs (such as asynchronous forks, preemptive termination,
recursive execution) and complex data flow constructs (such as custom complex
type definition, parametric machines, and inter-process communication). DSTM
borrows many syntactic elements from UML Statecharts, and extends them with
the notion of module and with the possibility of recursion and dynamic instan-
tiation. The possibility of modelling both complex behaviours and data enables
the usage of DSTM at different levels of abstraction and for different purposes,
for example property verification and model-based testing.

The ultimate objective of ongoing work on DSTM is to enable its usage
within model-driven tool chains for application or product life-cycle manage-
ment. In this direction, this paper presents a transformation from DSTM to
c© Springer Nature Switzerland AG 2019
F. Biondi et al. (Eds.): SPIN 2019, LNCS 11636, pp. 56–73, 2019.
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Promela in order to provide the necessary support for the automatic integra-
tion of verification and validation methodologies based on DSTM into industrial
verification and validation processes. Previous work [1,8,9] provides the motiva-
tion for the introduction of DSTM, the formal definition of the syntax semantics,
and its application to the validation of railway control systems. In those papers
the encoding of DSTM models to Promela models was merely sketched. Here
a complete translation is presented, emphasizing how the the hierarchical struc-
ture of DSTM models can be encoded into the modular features of Promela
embodied in the notion of process types. Even though, due to space constraints,
a precise formal account of the equivalence between the DSTM semantics pre-
sented in [1] and the resulting Promela encoding is not provided here, the cor-
rectness can be stated in terms of a suitable correspondence between executions
of a DSTM and of its Promela encoding, based on the step semantics. Such
a correspondence would allow for formal verification of linear time properties of
DSTM with SPIN.

Many works introducing transformations from high level specification lan-
guages to formal languages are discussed in the literature. Among them trans-
formations from AADL, MARTE and MARTE-DAM UML profiles are of spe-
cial interest for the analysis of critical systems (e.g., in [2,3,11]). In particular,
a transformation from SysML to the specification languages of Spin, Prism and
NuSMV model checkers is presented in [5]. The implementation of Statecharts
in Promela has been studied since 1998 [7]. In [4] an algorithm to automat-
ically encode an ASM specification in Promela is presented with the aim of
automated generation of test sequences. The novelty of our work is the source
formalism and its peculiarities, in particular recursion and dynamic instantiation
that are not allowed in other state-based languages.

The paper is organized as follows. Section 2 provides the basics on DSTM
and describes some original modelling examples. The translation from DSTM
models to Promela models is introduced in Sect. 3, where the key issues to
be addressed and the adopted solutions are discussed. Section 4 contains some
closing remarks and suggestions for future work.

2 Dynamic State Machines

In this section we provide an overview of DSTM through some examples, in
order to introduce the main notions used in the rest of the paper. For a complete
account of the formal syntax and semantics of DSTM we refer to [1].

A Dynamic STate Machine (DSTM) model is a sequence of machines M1,M2,
. . . ,Mn communicating over a set X of global variables and a set C of global
communication channels. Machine M1 is the initial machine, namely the highest
level of the hierarchical system. Each machine Mi, with i ∈ {2, . . . , n}, may be
parametric over a set of parameters Pi ⊆ P . Parameters are aliases for chan-
nels and variables names and are actualized at runtime, when the machine is
instantiated, allowing multiple instantiations of the same machine with different
parameter values. When a parametric machine is instantiated, each parameter is
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mapped to its actual value by means of a parameter-substitution function, which
associates the parameters with actual ground values. A machine Mi represents
a module in a DSTM specification and is defined as a state-transition diagram,
whose possible kinds of vertices are:

node: basic control state of a machine;
entering node: initial pseudo-node of a machine. A machine may specify mul-

tiple entering nodes, corresponding to different initial conditions;
initial node: default entering pseudo-node of a machine, to be used when no

entering node is explicitly specified;
exit node: final (or exiting) node of a machine corresponding to different ter-

mination conditions;
box: node modelling the parallel activation of machines associated with itself. A

transition entering a box represents the parallel activation of the correspond-
ing machines, while a transition exiting a box corresponds to a return;

fork: control pseudo-node modelling the activation of new processes. Such acti-
vation may be either synchronous (the forking process is suspended and waits
for the activated processes to terminate) or asynchronous (the forking process
continues its activity along the newly-activated processes);

join: control pseudo-node used to synchronize the termination of concurrently
executing processes or to force their termination (preemptive join).

The vertices corresponding to stable, meaningful control points are called nodes,
as opposed to pseudo-nodes, which are only transient points. Transitions repre-
sent changes in the control state of a machine. A transition is labelled with a
name and decorated with a trigger (an input event originating from the external
environment or from other machines, e.g. the presence of messages on a given
channel), a guard (a Boolean condition on the current contents of variables and
channels) and an action (one or more statements on variables and channels). For
a transition to be fired its trigger must be fulfilled and its guard satisfied. When
a transition fires, its action is executed with possible side-effects. In the following
τ denotes the trivial trigger (no external event is required), True denotes the
trivial guard (always satisfied), and ε denotes the empty action (no side effects).

Fig. 1. The Counting DSTM specification

Example 1 (The Counting DSTM). Consider the Counting DSTM consisting of
the machines Main (the initial machine), Counter and Incrementer represented
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in Fig. 1. Default entering pseudo-nodes are depicted as black circles, entering
pseudo-nodes as white circles, final nodes as crossed-out white circles. Boxes
are represented by rectangles and decorated with a comma-separated list of
associated machines enclosed in square brackets. Nodes are drawn as rounded
rectangles and fork and join pseudo-nodes are represented by black bars. Each
node and pseudo-node is decorated with its name. Transitions are directed edges
from source to target vertices, and are detailed in Table 1, where Src and Trg
are the source and target of the transition, Dec is the associated decoration
and Inst the parameter substitution function. Transitions T1, T5, T12, T13 are
implicit transitions; T14 and T15, T16 are internal transitions; transitions T6
and T11 are, respectively, entering fork and exiting join transitions; T2 and T7
are call by default transitions, while T8 is a call by entering. T2, T7 and T8
are transitions with a non-empty substitution function since they enter boxes
instantiating parametric machines. T9 and T10 are return by default, with the
first being a preemptive transition (marked by ⊗). T3, with its non-trivial trigger
signal?, is a return by interrupt while T4 is a well-formed return by exiting since
its source is (counterBox, limit) and counterBox instantiates exactly one Counter
machine and limit is an exiting state of such instantiated machine.

Table 1. Transitions of the Counting DSTM

T Src Trg Dec Inst

T1 initial idle1 〈τ, True, ε〉 ∅

T2 idle1 counterBox 〈τ, True, ε〉 P to=100

T3 counterBox interrupted 〈signal?, True, ε〉 ∅

T4 (counterBox, limit) stopped 〈τ, True, ε〉 ∅

T5 default idle2 〈τ, True, ε〉 ∅

T6 idle2 fk 〈τ, True, ε〉 ∅

T7 fk boxIncr1 〈τ, True, ε〉 P limit=P to

T8 fk (boxIncr2, byTwo) 〈τ, True, ε〉 P limit=P to

T9 boxIncr1 (jn, ⊗) 〈τ, True, ε〉 ∅

T10 boxIncr2 jn 〈τ, True, ε〉 ∅

T11 jn limit 〈τ, True, ε〉 ∅

T12 byOne simpleIncr 〈τ, True, ε〉 ∅

T13 byTwo doubleIncr 〈τ, True, ε〉 ∅

T14 simpleIncr simpleIncr 〈τ, x<P limit, x++〉 ∅

T15 doubleIncr doubleIncr 〈τ, True, x+=2〉 ∅

T16 simpleIncr finished 〈τ, x≥P limit, ε〉 ∅

A DSTM is well-formed
if it satisfies a set of
syntactical constraints
(formally defined in
[1]) in order to guar-
antee that: (a) param-
eter substitution func-
tions and call by enter-
ing/exiting transitions
are consistent; (b) at
each time, the con-
trol state of a machine
can be located in at
most one node; (c) for
each join pseudonode,
there exists a corre-
sponding fork. Addi-
tionally, exiting fork and entering join transitions can only be labelled with
a trivial trigger, guard and action, while boxes instantiated by a fork can only
be refined by a single machine.

Example 2. To illustrate the dynamic instantiation capabilities of DSTM and
asynchronous fork transitions, consider the Dynamic DSTM detailed in Fig. 2
and in Table 2. Transition T4 is an asynchronous fork, T2 is triggered by the
reception of any message on the channel req and T3 enters boxIncr instantiating
an Incrementer machine, specified as in Example 1. T6 is an entering join transi-
tion. Notice that the Dynamic DSTM is able to instantiate an unbounded num-
ber of concurrent Incrementer machines by repeatedly firing transition T2 and
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Fig. 2. The Dynamic DSTM

Table 2. Transitions of the Dynamic
DSTM

T Src Trg Dec Inst

T1 default waiting 〈τ,True, ε〉 ∅

T2 waiting fk 〈req?,True, ε〉 ∅

T3 fk boxIncr 〈τ,True, ε〉 P limit=10
T4 (fk, ↓) waiting 〈τ,True, ε〉 ∅

T5 boxIncr jn 〈τ,True, ε〉 ∅

T6 waiting jn 〈τ,True, ε〉 ∅

T7 jn waiting 〈τ,True, served++〉 ∅

performing the asynchronous fork T4. Indeed, T4 creates a loop with transition
T2, involving the node waiting and the fork pseudo-node. When the Dynamic
machine performs the asynchronous fork T4, it continues its execution in par-
allel with the activated Incrementer machine. Being still active, the process
Dynamic might fire the transition T2 again, and a second activation of machine
Incrementer occurs. Hence, this new instance would run in parallel with both
the process Dynamic and the previously activated instance of Incrementer.

The types system in DSTM is based on the one of Promela, with the
addiction of multi-types. Types in DSTM can either be basic types, compound
types or multi-types. The basic types BT includes the Int type for integers,
the Chn type for channel names and a set of user-defined enumeration types
BT1, . . . , BTk. Compound types are tuples of basic types, e.g., the compound
type CT = 〈BTj1 , . . . , BTjk〉 is a tuple of basic types with BTji ∈ BT. Simple
types contains both basic types and compound types. A multi-type MT is a com-
position of simple types: MT = {ST1, . . . , STk}. T denotes the set of all types.

Channels allow for communication with the external environment and
between internal components via bounded first-in first-out buffers. Furthermore,
channels are partitioned into the two sets of internal and external channels.
Internal channels, whose names belong to CI ⊆ C, are used for communications
between components and are restricted to simple types, whereas external ones,
whose names belong to CE ⊆ C, are used for communications with the external
environment and are restricted to having bounded buffers of length 1.

2.1 DSTM Semantics

The evolution of a DSTM consists in a sequence of instantaneous reactions called
steps. A step is a maximal set of transitions that are triggered by the current
system state and by the current value of channels. The firing of a transition can
have side effects on the available channels and variables. The content sent dur-
ing a step on an external channel, unlike for internal ones, can only be observed
in the next step. DSTM semantics is defined over ground machines, namely
machines in which actions, triggers and guards contain no parameters (parame-
ters do not hold any value during execution, they serve only as placeholders and
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are substituted with actual values before instantiation). Ground machines are
obtained from parametric machines by suitably applying parameter-substitution
functions. The semantics of transition decorations is defined w.r.t. an evaluation
context 〈ρ, χ, η〉, where ρ associates variables with values, χ evaluates channels
content in the current state, while η associates with each external channel its
content in the next step. The formal semantics for DSTM is provided by defining
a Labelled Transition System (LTS) [1]. The main intuition behind this formal-
ization is that each state s of the LTS model represents a complete configuration
(state) of the DSTM in a given instant, including the current control locations
and the current evaluation context, while a step in the DSTM will correspond to
a suitably-defined sequence of LTS transitions, each capturing DSTM transition
firings. The global control state stores information about the current control
state of each active process (ground machine). Since a machine may instanti-
ate multiple machines, the control state can be represented by a tree, called
the control tree. Each vertex of such a tree is labelled with either a machine,
a box or a node. According to the intuition that pseudo-nodes represent only
transient non-stable control points, control tree vertices cannot be labelled by
pseudonodes. The root of a control tree, labelled by a machine, represents the
main (initial) process, having the highest level in the hierarchy. Leaves represent
control states in which each currently-active process is in and are labelled by
nodes. Internal vertices represent the call hierarchy and cannot be labelled by
nodes. Whenever a vertex is labelled by a machine M , it either is the root or is
the child of a node labelled by a box instantiating M . If a node is labelled by
either a box or a node, then its parent is labelled by the machine the box or the
node belongs to.

Definition 1. The state of a DSTM D is a tuple 〈CT ,Fr , θ〉 where:

– CT is a control tree over D, describing the current state of the control flow;
– Fr is the frontier of CT, containing those vertices of CT that can be the

source of a transition in the current step;
– θ = 〈ρ, χ, η〉 is an evaluation context.

Example 1 (Continued). Consider the Counting DSTM depicted in Fig. 1. Some
of the Counting DSTM’s possible control trees are represented in Fig. 3. In
the figure, each machine-labelled (resp. box-labelled, node-labelled) vertex is
depicted as a diamond � (resp. a square �, a circle ◦ - possibly crossed-out ⊗ if
labelled by an exiting state). Moreover, each node is decorated with the name
of the corresponding machine/box/state.
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Fig. 3. Control trees of the Counting DSTM

Tree (a) encodes the control
state in which only the Main
machine is running and is in
the idle1 state. Tree (b) encodes
the control state in which the
Main machine has entered the
box counterBox, thus instantiat-
ing an instance of the Counter
machine in its state idle2. Tree (c)
is the control state in which the
Counter machine, instantiated by
Main by entering the box counter-
Box, in turn instantiates two dis-
tinct instances of the Incrementer machine. by entering the boxes boxIncr1 and
boxIncr2. The first instance is in the finished end state, while the other one is in
the doubleIncr state.

DSTM transitions may have source or target in pseudo-nodes which, as said,
correspond to transient, unstable control points. Therefore, a transition involving
pseudo-nodes may be seen as part of a super-transition connecting proper control
points. For example, a fork (resp., a join) can be seen as a super-transition
connecting one source with multiple targets (resp., multiple sources with one
target). Compound transitions are able to capture this intuition and allow us to
consider only transitions having source(s) and target(s) in proper control points.
Hence, there exist three types of compound transitions: simple (non-implicit
transition such that neither its source nor its target are fork or join nodes), fork
and join. The notion of enabledness of a transition w.r.t. a DSTM state is as
follows. A compound transition of a machine M is enabled in a DSTM state s if:
(a) the guards and triggers of the transition are satisfied in the execution context
of s; (b) the sources of the compound transition are contained in the frontier of s;
and (c) no transition of an ancestor of M in the hierarchy is enabled. The targets
of an executed transition cannot belong to the frontier of the resulting DSTM
state, so as to prevent the sequential firing of transitions within the same step.
Once the maximality of the current step has been reached (no other transition
can be executed in the current step), an implicit next step transition occurs.
Such transition updates: (a) the frontier with the vertices of the current control
tree; and (b) the external channels with new messages, either those produced
in the previous step or, if no message was produced for that channel, with non-
deterministically generated messages.

Example 2 (Continued). Consider the Dynamic DSTM of Fig. 2. Figure 4 shows
steps in one of its possible computations. In its initial state s0, the DSTM has
a control state encoded by tree (S0). Suppose that the external environment
generates a message on the external req channel, thus enabling transition T2.
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Fig. 4. Steps in a Dynamic DSTM computation

The compound asyn-
chronous fork ct1 =

〈〈T2〉, 〈T3,T4〉〉 is enabled
in the waiting-labelled
node. No other com-
pound transitions are
enabled, so the first
step consists only in
ct1 and in the next
step transition. When
ct1 fires, the node 1
(labelled by waiting) is
replaced by two sub-
trees obtaining tree (S1). Suppose that another message is available on the
external channel req. Compound transition ct1 is again enabled in node 1. This
time also T14 from the Incrementer machine is enabled, and so is the simple
compound transition ct2 = 〈〈T14〉, 〈T14〉〉. The second step consists of two com-
pound transitions ct1 and ct2, which may be executed in any order, followed by
the next step initialization transition. Execution of step 2 results in the control
tree (S2), where two instances of the Incrementer machine are executing con-
currently along with the Dynamic machine, which is waiting for new requests in
its waiting state.

3 From DSTM to Promela

Translating a DSTM to Promela presents several challenges, due to the sub-
stantial differences between the two specification languages. The translation we
propose is a two-step process. The first step encodes the vertical hierarchical
structure of a DSTM model (boxes) into the Promela proctype system. The
second step transforms the resulting ordinary state machines into an actual
Promela specification which also takes care of enforcing the step semantics
and modelling a possibly non-deterministic environment.

3.1 Encoding the DSTM Vertical Hierarchy

This step transforms each machine of a hierarchical DSTM specification into
an ordinary (flat) state machine, by removing all boxes, forks and joins and by
substituting them with suitably defined nodes and transitions. Such transitions
are also used to model the activation of other flat machines (by means of the
Promela run command) and to ensure a correct handling of machine termina-
tion. Each such machine can then be encoded into a Promela proctype. Note
that this transformation does not affect the size of the specification, indeed the
size of the resulting model is linear in the size of the original DSTM.

For each machine M a type M ex is introduced that enumerates all the exiting
states of M. Recall that the execution of a Promela run command associates a
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pid to the activated process. The handling of termination is achieved by adding,
for each machine M instantiated by a box B, two new channels: a channel of
type M ex, named chT B M ex, and a channel of type {term,interrupt}, called
chT B M. The first channel is used by the called machine to communicate the
reaching of an exiting state to the caller, while the second is used by the caller
to issue a termination message to the callee, signalling whether the termination
is synchronous or preemptive (i.e., an interrupt).

Each machine activation action has the form run MachineName(params),
where params is a list containing the following parameters:

– parent: the pid of its parent process in the hierarchy;
– initialState: the initial state for the instance being instantiated;
– ch T ex and ch T: the channels required to handle termination.

When removing a box, three different situations may arise, depending on the
structure of the DSTM, each dealt with a specific translation schema:

simple box: all the transitions entering the box have as source boxes or nodes;
synchronous fork: the source of the transition entering the box is a fork pseudo-

node and no asynchronous fork transition exiting the fork exists;
asynchronous fork: the source of the transition entering the box is a fork

pseudo-node and there is an asynchronous fork transition exiting the fork.

Simple Box Schema. In this case the box is substituted by a node having the
same name. All transitions whose source (resp. target) is the box are replaced by
transitions exiting (resp. entering) the newly-created node, as shown in Fig. 5.
The decoration of this transition extends the one of the original transition, in
order to model the instantiation of the other machines associated with the box
and to handle their termination. As shown in Fig. 5, the triggers and guards of
an entering transition are unchanged. A run action is added for each machine
instantiated by the box, with the parent parameter set to the pid of the calling
process.

Fig. 5. Simple box flattening Fig. 6. Synchronous fork flattening
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As for the transitions exiting the box, we distinguish the following cases. If
the original transition is a return by exiting, the guard needs to be enriched with
a condition checking for termination of the instantiated machine in the required
exit state. Hence, a guard of the form chT b M ex[?<ex>] is conjoined with the
original guard. If the original transition is a return by default, the guard needs
to be conjoined with a check for the termination of each of the called machines.
To check for a machine termination, regardless of the exiting state, we use a
condition of the form chT b M ex[?< >]. If the original transition is a return
by interrupt, the transition guard need not be enriched. In either case, when a
return transition fires, all the called processes must terminate. This is achieved
by adding, for each called process, two actions. One of the form chT b M!<msg>,
where msg is either interrupt or term, which sends a termination message to the
called process. The second action chT b M ex?< > is used, instead, to clean the
corresponding channel used by the terminating machine to signal its termination.

Synchronous Fork Schema. In the synchronous fork case, the calling pro-
cess suspends itself and waits for the termination of the called processes. In
this case, the fork pseudo-node, the boxes called by the fork and the associ-
ated (non-preemptive) joins are considered as a single block. The entire block
is replaced by a new node and suitably defined transitions to and from that
node. The transition modelling the fork operation leads from the source node of
the entering fork to the newly-introduced node. This transition instantiates the
necessary processes by means of appropriate run actions, as in the simple box
case. Each corresponding join operation is modelled by adding a transition from
the new node to the target of the original exiting join transition. This transition
is decorated with a trivial trigger, a guard requiring the appropriate termination
of each machine instantiated by the involved boxes, and an action that takes
care of issuing a termination message to each of the instantiated machines and
removing messages from the exit-signalling channels.

In the general schema depicted in Fig. 6, the decoration of the transitions
modelling the fork are of the form 〈ξ, φ, α′〉, where ξ and φ are the original trig-
ger and guard of the corresponding entering fork transition, and α′ = α · α,
with α the sequence of run actions that activates the processes associated with
the called boxes. Each one of the joins jni is modelled by a single transition of
the form 〈τ, φi, β

′
i〉, where: (i) φi is the conjunction of the appropriate termina-

tion conditions (either by exiting or by default) for each machine instantiated
by the fork, as in the case of the simple box and (ii) β′

i = βi · β, with β con-
taining the appropriate termination-synchronization actions chT B M!<term> ·
chT B M ex?< > for each machine M in the box B instantiated by the fork.

Asynchronous Fork Schema. After performing an asynchronous fork the call-
ing process continues to run concurrently with the newly instantiated processes.
In this case the fork, the boxes entered by the fork and each associated join are
considered as a single block and replaced by suitable transitions. The first tran-
sition models the fork operation and leads from the source node of the entering
fork to the target node of the asynchronous fork transition, which is a node of the
current machine. This transition must also instantiate, by means of appropriate
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run actions, the necessary processes that model the called boxes. Note that, in
this case the parent parameter corresponds to the parent of the calling process,
as the new processes being instantiated become siblings of the calling process in
the hierarchy tree. In order to model the join operations we add a transition for
each join associated with the current fork. Each of these transitions leads from
the source node of the entering join to the target of the exiting join.

Fig. 7. Asynchronous fork flattening schema

Figure 7 depicts the case of a single fork/join pair, where s′
i = (si, b1, . . . , bn),

with i ∈ {1, . . . , k}, to keep track of the concurrently instantiated boxes as well.
The decoration of the transition modelling the fork operation is defined exactly
as in the case of a synchronous fork. The one modelling the join operation is
decorated with 〈ξt, φ

′, β′〉, where: ξt is the trigger associated with the entering
join; the guard φ′ = φt ∧ φ conjoins the original guard φt in the entering join
with the termination conditions for the instantiated machine; the action β′ =
β · β concatenates the original action of the exiting join with the sequence of
termination synchronization actions for the involved boxes.

Handling Preemptive Joins. The fork schemata described above need to be suit-
ably extended in the case the corresponding join is preemptive. In a preemp-
tive join, one or more entering join transitions may be qualified as preemptive.
For each such entering join, a distinct transition inheriting the same trigger
and guard as the corresponding original preemptive entering join is introduced.
Moreover, if the original preemptive entering join is a return (either by default
or by exiting) with source a box b, the guard is enriched with appropriate con-
ditions requiring the termination of the machine associated with b, as in the
previous cases. The action is defined as in the non-preemptive case, the only
difference being that termination message issued to the terminating machine is
an interrupt and has the form chT B M!<interrupt>.

3.2 From Flat DSTM to Promela

The Promela encoding we propose for a DSTM model is structured as follows:

1. an initial section for global declarations of datatypes, variables, and channels;
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2. an active proctype named Engine, which is the root of the process hierar-
chy. Its purpose is to start the process modelling the initial machine, manage
the proper initialization of external channels before each step, and orchestrate
processes in order to simulate the step semantics of DSTM;

3. a proctype declaration for each of the n machines M1, . . . ,Mn of the DSTM.

In order to translate a flattened model into a Promela specification we
need to address the following key points: (1) translation of data-flow elements;
(2) orchestration of the concurrent flat machines and correct realization of the
steps semantics; (3) encoding of each flat machine into a proctype.

Translation of Data-Flow Elements. The mapping of DSTM types and vari-
ables to their Promela equivalent is rather straightforward, with the DSTM
types naturally mapped to the Promela types (mtype and datatypes declared
by means of typedef). Internal DSTM channels are mapped to Promela chan-
nels with buffer size equal to the bound of the DSTM channel. If the DSTM
channel is a multi-type channel, it is modelled by a set of Promela channels,
one for each simple type constituting the multi-type. These channels are managed
in a way that guarantees that, in each position, at most one of them contains
a valid message. This can be achieved by adding a validity bit field to each
message in the channels. External channels are encoded by channels with buffer
size equal to two, with the first position containing the message for the current
step and the second position containing the message for the next step possibly
produced during the current one. External channels are managed in such a way
that the first position in the channel is always filled. This ensures that messages
produced in each step are always stored in the second position and that these
messages cannot trigger transitions in the current step, as required by the step
semantics. To this purpose, an additional validity bit field is introduced in every
message, so that an empty external channels can be modelled by inserting in the
first position a bogus message containing an invalid message.

To comply with the DSTM specification, additional operations on external
channels are managed by the Engine process. At the beginning of the first step
a, possibly-bogus, message for each external channel is non-deterministically
generated and placed in the first position. At the beginning of any new step,
instead, the messages in the first positions of the external channels, correspond-
ing to the external inputs of the previous step, are removed. For all the channels
that remain empty (i.e., no message was generated during the previous step) a,
possibly-bogus, message is non-deterministically generated.

Enforcing the Step Semantics. From a global system state s = 〈CT,Fr , θ〉, a
machine Mi is allowed to execute a compound transition ct if such transition
is enabled in state s of the control tree. Due to the encoding of the vertical
hierarchy described in the previous section, there are no compound transitions
anymore and the above condition can be simplified. An instance of a machine
Mi is allowed to execute a transition if:

1. it has never executed during the current step (sequential firing of transitions
in the same step is forbidden);
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2. none of its descendants in the process hierarchy has executed;
3. none of its ancestors can execute a transition.

In order to simulate the step semantics, we exploit a token-passing mecha-
nism. Each Promela process that models an instance of a DSTM machine is
required to own a token in order to fire a transition. When a process holding a
token is scheduled, it first checks if one of its transitions can be fired. In this case,
it performs an enabled transition and consumes the token. If, on the other hand,
no transition is executable, the process passes its token to all of its children. A
complete top-down propagation of the token in the process hierarchy, starting
from the Engine process, is called phase.

Since a transition fired during a phase may enable transitions that were not
previously enabled (e.g., by sending messages or modifying the content of shared
variables), the token-passing phase needs to be iterated so as to guarantee the
maximality of each step. When a phase is concluded without any transition
firing, a maximal step is reached.

Recall that sequential firing by the same process and the execution of both
an ancestor and a descendant must be avoided during a single step. To this end,
during each phase, processes who fire a transition propagate this information
upwards in the process hierarchy so as to prevent ancestors from executing tran-
sitions (back-propagation mode). To implement this mechanism, the following
global data structures are used:

– symbolic constants that refer to states of the machines, with an additional
backProp label;

– a Boolean variable HasFired, used to keep track of the fact that at least one
transition fired during the last concluded phase;

– an array HasToken of MAX PROC bits, used to model token-ownership by active
process instances; an array dyingPid of MAX PROC bits used to keep track of
the pids of terminated processes;

– an array HasExecuted (resp. descendantExecuted) of MAX PROC bits, used
to keep track of the fact that a given process (resp. one of its descendants
including the process itself) fired a transition during the current step;

– a square matrix ChildrenMatrix of bits of size MAX PROC, which encodes
the active process hierarchy (ChildrenMatrix[A].children[B] is set if the
process with pid B is a child of the process with pid A).

Information about the current state of every machine instance is stored in a
mtype variable DSTMstate local to each Promela process. An additional vari-
able state, assuming values in {ready,backProp}, is used to record whether
a given proctype is ready to simulate the corresponding machine or is in the
back-propagation mode. The step-semantics-enforcing mechanism is detailed as
follows:

1. at the beginning of a step, after performing the required management opera-
tions for external channels, Engine passes the token to the main process and
to its siblings. At this point, the global flag HasFired and the Descendant-
Executed flag of every process are set to false;
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2. every process owning the token and not having the DescendantExecuted
flag set, tries to execute a transition. If a transition is executed, the global
flag HasFired is set to true and a local variable DSTMstate is assigned to
the machine next state. If no transition is executable, the process passes its
token on to its children. In either case, state is set to backProp and the
process enters the back-propagation mode in step 3. If a process is in the
back-propagation mode and receives the token, then it is allowed to return
to its simulation-ready state, without consuming the token;

3. every process in the back-propagation mode can execute if its Descendant-
Executed flag is set but its parent flag is not. In this case, the process sets the
DescendantExecuted flag for its parent as well. When no transition is enabled
and the back-propagation is complete (i.e., a deadlock state is reached), the
execution moves to step 4;

4. process Engine activates and
(a) if flag HasFired is set, Engine starts a new phase. The hasFired flag

is unset, Engine passes the token to its children once again, and the
execution continues at step 2;

(b) if HasFired is unset, then the current phase ended with no transitions
fired and the current step is concluded. Execution continues by starting
a new semantic step.

This mechanism is implemented in Promela by the proctypes schemas reported
in Figs. 8 and 9, which are described in detail in the following section.

3.3 Promela Encoding

The complete Promela encoding of a DSTM D is as follows. The specification
contains n proctypes, one for each machine M of the DSTM. The general schema
of such proctypes is reported in Fig. 8. The generic M proctype has the same
parameters as the corresponding flat machine, and starts with the declaration of
local variables and channels required to handle communication of the termination
requirements with its children, if any.

Then, the process enters the main iteration statement (line 4), which termi-
nates in one of the following cases:

– an exiting state of M is reached and a termination request on the channel
chT is received (line 30);

– it receives an interrupting termination request on the channel chT (line 37);
– its parent pid is marked as “dying” in the array dyingPid (line 37).

The main iteration statement features an option sequence for each machine state
S ∈ N∪En guarded by the condition (state == S && HasToken[ pid]==1) &&
state==ready. Each of these option sequences immediately consumes the token
(line 8) and, then, enters a selection statement that non-deterministically chooses
an enabled transition to execute. This selection construct (line 9) contains an
option sequence for each transition t with source state S. Each option sequence is
guarded by a condition of the form (ξ && φ && !DescendantExecuted), with ξ
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Fig. 8. Flat machine to proctype Fig. 9. The Engine proctype

and φ being the trigger and the guard associated with transition t, respectively
(line 11). When executed, it performs the actions specified in the transition
decoration (line 12). For each run operator occurring within the actions (of the
form run P(X,init,chT,chT ex), where X is either pid or parent, in case
of asynchronous forks) the pid of the newly-instantiated process is stored in a
local variable (pidTemp = run P(...)). An assignment statement of the form
ChildrenMatrix[X].children[pidTemp]=1 takes care of updating the process
hierarchy accordingly. The token is then given to the newly-instantiated process.

Each option sequence updates the DSTMstate variable to the corre-
sponding transition target and sets the flags HasFired, HasExecuted, and
DescendantExecuted to true (lines 12–13). An additional option sequence, exe-
cutable only when no transitions are enabled, takes care of passing the token to
the process children (line 14–25). After the selection statement, state is set to
backProp (line 27) and the process moves into the back-propagation mode. Lines
30–36 take care of handling process termination, the back-propagation within
the current phase, and the restoration of the state after the back-propagation.
Specifically, for each exiting state, an option sequence of the form shown in line 30
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is present. The DescendantExecuted back-propagation is handled by the option
sequence in lines 32–34. These lines are executable when state == backProp,
and DescendantExecuted is set for the proctype and not for its parent. In this
case, the DescendantExecuted flag for its parent is set to true. The option
sequence in line 36 resets the simulation-ready state after the back-propagation.

To conclude the specification, Fig. 9 shows a Promela encoding for the
process Engine. Process Engine, after declaring local variables and channels
required for handling termination of the initial machine (lines 2–4), starts an
instance of the Main process (line 5) for that machine and records it as one
of its children (line 6). Lines 8–16 are responsible for starting a new semantic
step, by executing the statement labelled nextStep. This statement manages
the initialization of the external channels for the new step, resets the hasFired
flag and passes the token onto its children (line 14). The nextPhase statement
(lines 19–25) takes care of starting a new phase, by reinitializing hasFired flag
and passing the token again to the children. Finally, the waitTimeout state-
ment (lines 28–35) forces Engine to wait for the current phase to complete. If
the phase completes with no transition fired (i.e., hasFired is not set), then a
new step is initiated, otherwise a new phase starts.

Table 3. Generated Promela code statistics

Proctype Lines of code Local channels Options in the
main loop

Main (Fig. 1) 164 2 7

Counter (Fig. 1) 140 4 6

Incrementer (Fig. 1) 160 0 7

Dynamic (Fig. 2) 92 2 4

Engine (model in Fig. 1) 57 2 –

Engine (model in Fig. 2) 56 1 –

The application of the transformation rules to the models in Figs. 1 and 2
generates four proctypes for the first model and three proctypes for the second
model. Table 3 reports, for each proctype, the number of lines of code, channels
and options in the main loop of each process in the Promela encoding of the two
DSTMs. The prototypical environment for DSTM specification we have imple-
mented is available at https://github.com/stefanomarrone/dstm. The repository
includes the source code of: (a) a textual editor for DSTM producing DSTM
specifications in xml format; (b) the compiler translating a DSTM specification
(in xml format) into a Promela program (.pml). The textual specifications and
the .pml programs for Counter (Fig. 1) and Dynamic (Fig. 2) can be found in
the same repository.

Correctness of the Translation. We briefly discuss the correspondence between
the DSTM specification and its encoding into Promela. In the first phase,

https://github.com/stefanomarrone/dstm
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boxes are replaced by machine states, whose labels keep track of the actual boxes
they represent. Each DSTM machine is, then, encoded with a single proctype,
which records the current state of the machine in the local variable DSTMstate.
Data types, on the other hand, have a direct correspondence with Promela
types. According the these observations, each global state of DSTM can eas-
ily be mapped into a Promela state. Indeed, the hierarchical structure of a
DSTM state is encoded in the ChildrenMatrix global variable, which connects
process instances corresponding to box instances. In other words, all the seman-
tic information encoded in a DSTM state is present in a Promela state as
well. Moreover, every Promela state can be mapped into a DSTM state by
abstracting away the additional elements (variables and channels) introduced to
simulate the semantics. A DSTM step corresponds to a sequence of Promela
transitions connecting two Promela states in which the control of the process
Engine is located at the nextStep label. With this correspondence in place,
it is, then, possible to define a relation between DSTM executions and execu-
tions of the Promela encoding. Such a relation can be formalized by a weak
bisimulation relation, where the implementation details, such as the token pass-
ing, the back-propagation and the termination mechanisms, are considered non-
observable internal actions.

4 Conclusions

In this paper the translation from Dynamic STate Machines to Promela is
presented. DSTM is a concise formalism expressive enough to easily capture
peculiar features of multi-process control systems. The automated translation to
Promela eases the implementation and the integration of tool chains exploiting
the usage of formal methods into industrial verification and validation processes.
Future work include the study of suitable tunings of the translation in Promela
in order to mitigate unnecessary state explosion phenomena during the model
analysis phase. On the applicative side, we plan to investigate instrumentation
methods of the resulting Promela code, in particular to support automatic test
case generation via model checking with respect to different coverage criteria on
the original DSTM model that can take into account the intrinsic hierarchy and
modularity of the formalism (e.g., coverage of state/transition of a machine in a
specific instantiation context). Finally, the correspondence between executions
of a DSTM and of its encoding, as discussed at the end of the previous section,
enables model checking of linear time properties with the SPIN engine. To this
end, we plan to investigate a suitable extension of LTL, in the same vain of [6],
able to contextualize properties within the structure of a DSTM. The extended
logic can, then, be translated into classic LTL, by exploiting the correspondence
above, and verified with SPIN.
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Abstract. Automatic abstraction is a powerful software verification
technique. In this paper, we elaborate an abstract domain for C strings,
that is, null-terminated arrays of characters. We describe the abstract
semantics of basic string operations and prove their soundness with
regards to previously established concrete semantics of those operations.
In addition to a selection of string functions from the standard C library,
we provide semantics for character access and update, enabling auto-
matic lifting of arbitrary string-manipulating code into the domain.

The domain we present (called M-String) has two other abstract
domains as its parameters: an index (bound) domain and a character
domain. Picking different constituent domains allows M-String to be tai-
lored for specific verification tasks, balancing precision against complex-
ity.

In addition to describing the domain theoretically, we also provide
an executable implementation of the abstract operations. Using a tool
which automatically lifts existing programs into the M-String domain
along with an explicit-state model checker, we have evaluated the pro-
posed domain experimentally on a few simple but realistic test programs.

1 Introduction

The C programming language is still very relevant [3]: a large number of systems
of critical importance are written in C, including server software and embedded
systems. Unfortunately, due to the way C programs are laid out in memory, they
often contain bugs that can be exploited by malicious parties to mount security
attacks. Guaranteeing correctness of such software is of great concern. In partic-
ular, we are interested in ensuring correctness of C programs that manipulate
strings. Incorrect string manipulation can cause a number of catastrophic events,
ranging from crashes in critical software components to loss or exposure of sen-
sitive data.

In the C programming language, strings are not a basic data type and oper-
ations on them are provided as library functions [7]. Indeed strings are repre-
sented as zero-terminated arrays of characters – due to the possible discrepancy
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between string size and array (buffer) size, C programs which manipulate strings
can suffer from buffer overflows and related issues. A buffer overflow is a bug
that affects C code which incorrectly tries to access a buffer outside its bounds
– an out-of-bounds write (a related bug – an out-of-bounds read – is also a prob-
lem, even though not as immediately dangerous as a buffer overflow). Moreover,
buffer overflows are usually exploitable and often can easily lead to arbitrary
code execution [25]. In the light of these facts, it is clearly important to investi-
gate methods to automatically reason about correctness of string manipulation
code in C programs. Automated code analysis tools can identify existing bugs,
reduce the risk of introducing new bugs and therefore help prevent costly security
incidents.

In this paper, we present a sound approach for conducting string analysis
in C programs. In particular, we consider the M-String segmentation abstract
domain [10]. We use it to perform abstraction-based model checking [9] of C
programs, with focus on string manipulation. The model checker is split into
two parts, as proposed in [23]: a program transformation which changes the
program to execute in the abstract domain, and a standard, explicit-state model
checker which exhaustively explores the abstract state space.

1.1 Related Work

Static methods with the ability to automatically detect buffer overflows have
been widely studied in the literature and many different inference techniques
were proposed and implemented: constraint solvers for various theories (including
string theories) and techniques based on them (e.g. symbolic execution), tainted
data-flow analysis, string pattern matching analysis or annotation analysis [27].
Additionally, a large number of bug hunting tools based on static analysis and
the above mentioned techniques have been implemented [1,14,16,17,29,30].

For instance, in [19] authors introduced a performant backward compatible
method of bounds checking of C program, i.e., the representation of pointers is
left unchanged (thus differentiating the proposed schema from previously exist-
ing techniques), allowing inter-operation between checked and unchecked code,
with recompilation confined to the modules where problems might occur. In [14],
a static verifier of C strings has been presented, namely CSSV. Contracts are
supplied to the tool, which acts in 4 stages, reducing the problem of checking
code that manipulates string to checking code that manipulates integers. Finally,
Splat, described in [31], is a tool that automatically generates test inputs, sym-
bolically reasoning about lengths of input buffers.

Briefly, static code analysis attempts to quickly approximate possible
behaviours of a program, without examining its actual executions. This way,
static analysis reasons about many of the possible runs of a program and pro-
vides a degree of assurance that the property of interest holds (or that it is
violated). However, with static analysis, neither positive nor negative results are
guaranteed to be correct [2].

To obtain a higher degree of confidence, a number of more expensive meth-
ods are available in the software verification toolbox [15]. Model checking with
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abstraction and refinement is one such high-assurance, high-precision method [9],
though of course both the precision and reliability come at a price in terms of
computational complexity.

Various researchers have shown how the framework of abstract interpreta-
tion [12] can be used to approximate semantics of string operations. The basic,
well-known domains are a string set domain, which simply keeps track of a
set of strings – this is specific instance of the general (bounded) set domain.
Another is the character inclusion domain (which keeps track of which charac-
ters appear in a string, but not in what order or how many times), the prefix-
suffix domain (which keeps track of the first and the last letter) and their various
products. Another general-purpose string domain is the string hash domain pro-
posed in [24], based on a distributive hash function. A more complete review of
general-purpose string domains is readily available in the literature, e.g. [5,11].

Such general-purpose domains focus on the generic aspects of strings, with-
out accounting for the specifics of string handling in different programming lan-
guages. It is, however, often beneficial to consider such specific aspects of string
representation when designing abstract domains for program analysis: indeed,
M-String is a domain tailored specifically for the representation of strings used
in C programs. A number of abstract string domains (and their combinations)
for analysis of JavaScript programs have been evaluated in [5]. Another domain
that was conceived for JavaScript analysis is the simplified regular expression
domain defined in [26]. While dynamic languages heavily rely on strings and
their analysis benefits greatly from tailored abstract domains, the specifics of
the C approach to strings also deserves attention: the M-String domain, tailored
for modeling zero-terminated strings stored in character buffers in C programs
has first been described in [10]. In addition to theoretical work, a number of
tools based on the abovementioned abstract domains and their combinations
have been designed and implemented [18,20,26,28].

Finally, combining many domains in a single analysis can often substantially
improve precision over either of the individual domains. However, combining
domains naively requires a quadratic number of translation functions. A solu-
tion to this problem, with special focus on string domains, has been proposed
in [4]. Moreover, analysis of strings based on abstract interpretation is not limited
to designing abstract string domains – an analysis for programs which process
structured text, based on grammar inference, was proposed in [21]. A related
approach based on over-approximation of string expressions using regular gram-
mars (widened from context-free grammars constructed via static analysis) is
described in [8].

1.2 Paper Contribution

In this paper we define the semantics of the M-String abstract domain, based
on the concrete semantics presented in [10], both in human-readable and in
executable form. Additionally, we have extended LART [23], a tool which can
perform automatic abstraction on programs, with support for more complicated
(non-scalar) domains, which allowed us to also integrate the M-String domain.
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By using the extended version of LART along with DIVINE 4 [6], an explicit state
model checker based on LLVM, we can automatically verify correctness of string
operations in C programs. We demonstrate this capability by analysing a number
of C programs, ranging from quite simple to moderately complex, including
parsers generated by bison, a tool which translates context-free grammars into
C parsers. The main contribution of this paper is in demonstrating the actual
impact of an ad-hoc segmentation-based abstract domain on model checking of
C programs.

2 M-String

M-String (M) [10] is an ad hoc segmentation-based abstract domain designed
for string analysis in C programs, based on a refinement of the segmentation
approach to array representation proposed in [13]. In [13], the array’s content is
abstracted by consecutive, non-overlapping segments covering all array elements.
In [10] the authors took advantage of this representation and defined a domain
that abstracts C-like strings, distinguishing the so-called string of interest1 of a
character array from the rest of its content.

The goal of the domain is to infer the presence of common string manipulation
errors that may result in buffer overflows or, more generally, that may lead to
undefined behaviours. Additionally, keeping track of the content of the char array
after the first null character allows us to reduce false positives: in particular,
rewriting the first null character in the string is not always a bug, since further
null characters may follow. Finally, M-String, like the array segmentation-based
representation defined in [13], is parametric with respect to the abstraction of
the array elements value, and the representation of array indices.

2.1 Concrete Domain

Let A be a finite set of characters representable by the character encoding in
use and let C = A∗ be the set of all the possible character arrays. Then, the
operational semantics of character array variables (c ∈ C) are concrete array
environments μ ∈ Rm mapping character array names c ∈ C to their values
μ(c) ∈ M � Rv × E × E × M × Z, where:

– Rv � X → X is the environment which maps names x ∈ X to values ρ(x) ∈ X ,
– E is the expressions domain,
– M : Z → Z × A, and Z is the integers domain.

1 The string of interest of a character array is the sequence of characters up to the
first null one (included). In the case in which the null character occurs at the first
index of a character array, then its string of interest is defined as “null”. If the
null character does not occur in the array, then its string of interest is defined as
“undefined”. Otherwise, the string of interest is considered to be “well-defined”.
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For more details we invite the reader to refer to [10,13]. Moreover, we high-
light the fact that the concrete domain we present is used as a framework that
helps us in constructing the abstract representation, and it is not how the (con-
crete) values are actually represented in programs. That said, let c be an array of
characters. Its concrete value is a quintuple μ(c) = (ρ, c.low, c.high,Mc,Nc) ∈
M where ρ ∈ Rv and:

– c.low, c.high ∈ E are expressions whose values [[c.low]]ρ and [[c.high]]ρ respec-
tively represent the integer lower bound and the integer upper bound of c,

– Mc is a function that maps an index i to a pair Mc(i) = 〈i, v〉 of the index
i and the corresponding character array element value v, i.e. Mc : Ic → Pc

such that:

Ic = {i : i ∈ [[[c.low]]ρ, [[c.high]]ρ)}
Pc = {〈i, v〉 : i ∈ [[[c.low]]ρ, [[c.high]]ρ ∧ c[i] = 'v'}

– Nc is the set of indexes which map to the string terminating characters,
i.e. Nc = {i ∈ [[[c.low]]ρ, [[c.high]]ρ) | Mc = 〈i, '\0'〉}.

Example 1. Let s = ''Hello\0'' be a character array then, its con-
crete value is given by μ(s) = (ρ, 0, 6,Ms,Ns), where Ps is the set
{(0, 'H'), (1, 'e'), (2, 'l'), (3, 'l'), (4, 'o'), (5, '\0')} and Ns corresponds to the sin-
gleton {5}.

2.2 Abstract Domain

The M-String (M) abstract domain approximates sets of character arrays with
a pair of segmentations that highlight the nature of their strings of interest. The
elements of the domain are split segmentation abstract predicates. Segments cap-
ture sequences of identical abstract values, and are delimited by so-called seg-
ment bounds. More precisely, the M-String abstract domain is given by M(B, C,
R). R denotes the abstraction of scalar variable environments. C is the abstrac-
tion of the character array elements, and it is equipped with is_null, a special
monotonic function lifting abstract elements in C to a value in the set {true,
false, maybe}. B denotes the abstraction of segment bounds, equipped with the
following operations: equality (=B), ordering (�B), least upper bound between
subsequent segment bounds (�B[bi, bi+1)), addition (+B), and subtraction (−B).
The M-String abstract domain is the complete lattice (M,�M,⊥M,	M,
M,�M)
where:

– M � (Ms ,Mns) ∪ {⊥M,	M}
• Ms corresponds to

⋃{Ssb × Sk

sm × Sse | k � 0} ∪ Sse ∪ {∅}, and it
represents the segmentation of the string of interest of a given character
array, where,

[Ssb = {B × C}, Ssm = {B × C × { , ?}}, Sse = {B × { }}]
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• Mns corresponds to
⋃{Snsb×Sk

nsm×Snse | k � 0}∪{∅}, and it represents
the segmentation of the content of a given character array after its string
of interest, or character arrays that do not contain the null terminating
character. Here,

[Snsb = Ssb , Snsm = Ssm , Snse = {B × { , ?}}]
In particular:
1. bi ∈ B denotes the segment bounds, such that i = 1, . . . , n and n > 1

(notice that b1 and bn respectively represent the array lower bound and
the array upper bound),

2. pi ∈ C are abstract predicates, chosen in an abstract domain C, denoting
possible values of pairs 〈i, v〉 in a segment (i.e. C[[〈i, v〉]]ρ),

3. the question mark ? indicates the preceding segment might be empty,
while indicates a non-empty segment

The elements in M are m = (s, ns) (i.e. split segmentation abstract predi-
cates). Let c ∈ C be an array of characters, and μ(c) be its concrete value;
for instance, if the string of interest of c is null (i.e. min(Nc) = 0) then: m is
equal to (b1 , ∅) if the size of c is equal to 1, (b1 , b2p2b3?3p3b4?4 . . . bn?n) oth-
erwise. In the rest of the paper we will refer to the s and to the ns parameters
of a given abstract string m by m.s and m.ns respectively.

– Let m1 and m2 be two abstract values in the M-String domain then: m1 �M

m2 ⇔ m1 = ⊥M∨m1 ≡ m2∨ unify(m1,m2) = m2. Notice that m1 and m2 are
equivalent when they represent the same set of character arrays. Here, “unify”
is a sound upper bound operator (originally defined in [13] and tweaked in
[10] to modify two split segmentations so that they coincide).
Take m1 and m2 to be compatible if their parameters have com-
mon lower and upper bounds of s and ns. Then, unify(m1,m2) =
(unify(s1, s2),unify(ns1, ns2)) if m1 and m2 are compatible, 	M otherwise.

– ⊥M, 	M are special elements denoting the bottom/top element of the lattice.
– �M represents the join operator, that defines the least upper bound between

two abstract elements, such that: m1 �M m2 = unify(m1,m2) if m1 and m2

are compatible, 	M otherwise. Then the character abstract domain join is
applied segment-wise.

Abstraction. Let X be a set of concrete character array values. The abstraction
function on the M-String abstract domain αM maps X to ⊥M in the case in which
X is empty, otherwise to the pair of segmentations that best over-approximate
values in X.

Concretization. The concretization function on the M-String abstract domain
γM maps an abstract element to a set of character arrays values as follows:
γM(⊥M) = ∅, otherwise γM(m) is the set of all possible character arrays values
represented by a split segmentation abstract predicate m. The formalization is
quite complex, and the reader may refer to Appendix A.1.
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Example 2. Let S = {s1, s2, s3} be a set of character arrays, such that: s1 =
''car\0xx'', s2 = ''bay\0xx'', and s3 = ''day\0xx''. The abstract value of S in
M, instantiated with the standard constant propagation domain (CP), is given
by s = αM({μ(x) | x ∈ S}) = ({0} 	CP {1} 'a' {2}	CP {3}, {4} 'x' {6}). The
concretization function of s, i.e. γM(s) maps s to the set of all possible character
arrays values of length 6 that contain a string of interest of length 4, and having
the character 'a' at position 1 and the character 'x' at position 4 and 5.

2.3 Abstract Semantics

In [10] authors restricted their focus on a small representative set of operators
which are part of the string.h library of the C programming language (i.e.
strcpy, strcat, strlen, strchr, strcmp and the “assignment to an array ele-
ment” operator), and they defined the concrete semantics of those operators.
We recall the character arrays concrete semantics (slightly modified from the
one presented in [10]). In particular, S is the semantics that, given a statement
and eventually some concrete character arrays values in M, returns a concrete
character array resulting from that operation, i.e. S : Stm × M → M ∪ {null}
where, null denotes unknown values. Moreover, for strlen and strcmp we give
the semantics L : Stm × M → Z ∪ {	Z}.

Below we present the abstract semantics of the strcat, strlen and strchr
operators, and we prove their soundness (the reader interested in the definitions
of the abstract semantics and of the proofs of soundness of the complete set
of operators introduced above may refer to Appendix A.4). We denote by SM

and LM the abstract counterparts of S and L respectively, such that: SM :
Stm × M → M and LM : Stm × M → B.

Additional Operators. We present some additional abstract operators use-
ful to define the abstract semantics. Their complete algorithms are defined in
Appendix A.3.

Length Operators (minLen, maxLen, Len). We introduce the notions of min-
imum and maximum length of a split segmentation abstract predicate, and
the length of the strings of interest that it represents. Precisely, we define:
minLen(m)=min{len(x) | x ∈ γM(m)}, maxLen(m)=max{len(x) | x ∈
γM(m)}, and Lenm.s = max{len(x) | x ∈ γ�

M(m.s)} (see Appendix A.1 for the
definition of γ�

M), where len(x) denotes the size of a concrete character array value.

Segment concatenation (⊕). Let bpb′ and uru′ be two segments (b, b′, u, u′ ∈ B
and p, r ∈ C) then, their concatenation is defined as follows: bpb′ ⊕uru′ such that
bpb′ ⊕ uru′ = bpb′ru∗ where u∗ = b′ + (u′ − u). In the case in which the right
hand side operand is a segmentation, then all the segment bounds belonging to
it are modified accordingly. Question marks, if present, are left unchanged.
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Abstract Semantics of strcat: If the input (m1 and m2 respectively) approx-
imate character arrays that contain a well-defined or null string of interest, and if
the minLen of m1 is greater than or equal to the the sum of Lenm1.s and Lenm2.s

minus one then the strcat returns m′
1 where m2.s has been appended to m1.s

and the following segments are modified accordingly. Otherwise it returns 	M.
Let m.s[bi]s (m.ns[bi]s) be the left hand side parameter (the right hand side

parameter) of m starting from the i-th segment bound. Conversely, m.s[bi]u
(m.ns[bi]u) is the left hand side parameter (the right hand side parameter) of m
up to the i-th segment bound.
Then SM[[strcat]](m1,m2) is equal to:

– m′
1 if m1 �= (∅, ns), m2 �= (∅, ns) and minLen(m1) � (Lenm1.s +Lenm2.s − 1);

– 	M otherwise, where:

1. If m1=(b1p1...bi , ns)∧ m2=(b1 , ns)⇒m′
1 = (m1.s[bi]u ⊕ m2.s,m1.ns)

2. If m1 = (b1p1...bi , ns) ∧ m2 = (b1p1...bi , ns) ⇒ m′
1 = (m1.s[bi]u ⊕

m2.s,m1.ns[b∗]s), where b∗ = (bim2
−B b1m2

) +B bim1
+B 1

Notice that, question marks, if present, are left unchanged.

Abstract Semantics of strlen: If the input split segmentation abstract predi-
cate (m) approximates character arrays that contain a well-defined or null string
of interest then the strlen operator returns the least upper bound between the
segment bounds which limit a certainly or maybe is_null segment abstract
predicate. Otherwise it returns 	B.

Let x be an abstract character value (i.e. C[[v]]ρ) appearing in a generic
segment abstract predicate p. Formally, LM[[strlen]](m) is equal to:

–
⊔

B

∀bi∈m.s

{�B[bi, bi+1) | x occurs in pi ∧ x may be null} if m �= (∅, ns);

– 	B otherwise, where �B[bi, bi+1) is a shorthand for bi �B bi + 1 �B bi + 2 �B

... �B bi+1 − 1, and it returns the set of elements in the interval [bi, bi+1).

Abstract Semantic of strchr: If the input split segmentation abstract predi-
cate (m) approximates character arrays that contain a well-defined or null string
of interest, and if the abstract character we are looking for (x ∈ C) appears in
m.s then the strchrx operator returns a split segmentation abstract predicate
denoting the sub-segmentation of its left hand side input parameter starting from
the first occurrence of x. Otherwise it returns 	M. Formally, S[[strchrx]](m) is
equal to:

– (b1 , ∅) if m = (b1 , ns) and x is null ;
– (bi , ∅) if m = (b1p1...bi , ns) and x is null ;
– (s[bk]s, ∅) if m = (b1p1...bi , ns), x may be not null and ∃k : k = min{z ∈

[1, i) : x appears in pz};
– 	M otherwise.
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Theorem 1 (Soundness of the abstract semantics). SM and LM are sound
over-approximations of S and L respectively. Formally,

γM(SM[[stm]](m)) ⊇ {S[[stm]](c) : c ∈ γM(m)}
γB(LM[[stm]](m)) ⊇ {L[[stm]](c) : c ∈ γM(m)}

where c = μ(c) denotes the concrete value of c.

Proof. We prove the soundness separately for each operator.

– See Appendix A.4 (Theorem 2) for the strcat proof of soundness.
– Consider the unary operator strlen, and let m be a split segmenta-

tion abstract predicate. We have to prove that γB(LM[[strlen]](m)) ⊇
{L[[strlen]](c) : c ∈ γM(m)}. The strlen of c, if c contains a well-formed
string, returns an integer value n denoting the length of the sequence of
characters before the first null one, 	Z otherwise, by definition of L. Then n
belongs to γB(LM[[strlen]](m)) because LM[[st-rlen]](m) is equal to the least
upper bound of all the segment bounds in m.s (included their inner values)
in which a certainly or maybe null value is contained, if m highlights the
presence of well-formed strings; otherwise, the abstract operator returns 	B,
by definition of LM.

– Consider the unary operator strchrx, and let m be a split segmenta-
tion abstract predicate. We have to prove that γM(SM[[strchrx]](m)) ⊇
{S[[strchrx]](c) : c ∈ γM(m)}. The strchrx of c returns, if x is present
in c, a sub-array of c (i.e. sub.c) that goes from the first occurrence of x
in c to the first occurrence of the null-terminating character included, null
otherwise, by definition of S. Then sub.c belongs to γM(SM[[strchrx]](m))
because SM[[strchrx]](m), if m highlights the presence of well-formed strings
and x appears in m.s, is equal to a sub-segmentation of m.s that goes from
the first appearance of x in m.s to the end of m.s, and αC(x) = x; otherwise,
the abstract operator returns 	M, by definition of SM. �

3 Program Abstraction

Adapting M-String to the analysis of real-world C programs requires, first of
all, a procedure that identifies string operations automatically. A subset of such
operations then needs to be performed using abstract operations, carried out on
a suitable abstract representation. The technique that captures this approach is
known as abstract interpretation. A typical implementation is based on an inter-
preter in the programming language sense: it executes the program by directly
performing the operations written down in the source code. However, instead
of using concrete values and concrete operations on those values, part (or the
entirety) of the computation is performed in an abstract domain, which over-
approximates the semantics of the concrete program.

Since in this paper, we focus on string abstraction, we would like to be able to
perform the remainder of the program (i.e. the portions that do not work with
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Fig. 1. The figure depicts a comparison of interpretation/compilation-based
approaches. In interpretation-based approach, entire abstract interpretation is per-
formed during runtime. A virtual machine (VM) interprets bitcode operations
abstractly and maintain an abstract state. Consequently, it generates an abstract state-
space for a model-checking algorithm (MC). On the other hand, compilation-based app-
roach instruments abstract operations into the compiled program and provides their
implementation as a library. A virtual machine then executes the instrumented program
as regular bitcode.

strings) concretely. In fact, we only want to abstract some of the strings and
string operations in the program, since the domain at hand is an approximation:
in cases, where the program works with strings that exhibit minimal variation,
e.g. string literals, using the M-String representation would not offer any benefit,
and could actually hurt performance or introduce spurious counterexamples.

These considerations lead us to conclude that it would be beneficial to re-
use, or rather re-purpose, existing tools which work with explicit programs
to implement abstract interpretation in a modular fashion. A design in this
style (compilation-based abstract interpretation) was proposed and implemented
in [23].

However, as presented, the approach was limited to abstracting scalar values.
In this paper, we extend this approach to work with strings and other domains
that represent more complex objects.

3.1 Compilation-Based Approach

To perform abstraction, instead of (re-)interpreting instructions abstractly, we
transform abstract instructions into equivalent explicit code, which implements
the abstract computation. The transformation occurs before model checking (or
other dynamical analysis), during the compilation process.

The transformed program can be further analyzed or processed without spe-
cial knowledge of the abstract domains in use, because those are now encoded
directly in the program. Comparison of this compilation-based approach and
the approach of more traditional abstract interpreters (an interpretation-based
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approach) is shown in Fig. 1. In compilation-based approach, we consider two
levels of abstraction:

1. static, concerning the syntax and the type system,
2. dynamic, or semantic, concerning execution and values.

LART performs syntactic (static) abstraction on LLVM bitcode [22]. The goal of
syntactic abstraction is to replace some of the LLVM instructions in the program
with their abstract counterparts. We illustrate syntactic abstraction in Fig. 2.

3.2 Syntactic Abstraction

During syntactic abstraction, LART performs a data flow analysis, starting from
annotated abstract values (abstract) as the roots. The result of this analysis
is the set of all operations that may come into contact with an abstract value.
These are then substituted by their abstract counterparts (a_strcat, a_strlen).
An abstract instruction takes abstract values as its inputs and produces an
abstract value as its result. The specific meaning of those abstract instructions
and abstract values then defines the semantic abstraction.

To formulate syntactic abstraction unambiguously, we take advantage of the
static type system of LLVM. By assigning types to program variables, we can
maintain a precise boundary between concrete and abstract values in our pro-
gram.

We recognize a set of concrete scalar types S. We give a map Γ that induc-
tively defines finite (non-recursive) algebraic types over the set of given scalars.
To be specific, the set of all types Γ (T ) derived from a set of scalars T is defined
as follows:

1. T ⊆ Γ (T ), meaning each scalar type is included in Γ (T ),
2. if t1, . . . , tn ∈ Γ (T ) then also the product type is in Γ (T ): (t1, . . . , tn) ∈

Γ (T ), n ∈ N,
3. if t1, . . . , tn ∈ Γ (T ) then also disjoint union is in Γ (T ): t1 | t2 | · · · | tn ∈

Γ (T ), n ∈ N,
4. if t ∈ Γ (T ) then t∗ ∈ Γ (T ), where t∗ denotes pointer type.

Fig. 2. Syntactic abstraction.

In syntactic abstraction, we extend the con-
crete set of types by abstract types. From these,
we generate admissible types using Γ . Depend-
ing on the level of abstraction, we define a dif-
ferent set of basic abstract types. In the case
of scalar abstraction, a set of basic abstract
types contains abstract scalar types A. Corre-
spondence between abstract and concrete scalars
is given by a bijective map Λ : S → A. Finally,
each value, which exists in the abstracted pro-
gram, has an assigned type of Γ (S ∪ A). In par-
ticular, this means that the abstraction works
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with mixed types – products and unions with both concrete and abstract fields.
Likewise, it is possible to form pointers to both abstract values and to mixed
aggregates.

3.3 Aggregate Domains

Scalars in a program are simple values which cannot be further decomposed
into meaningful constituent parts. A typical example would be an integer, or a
pointer. However, programs typically also work with more complex data, that we
can think of as compositions – aggregates – of multiple scalar values. Depending
on the nature of such aggregates, we can classify them as arrays, which contain a
variable number of items which all belong to a single type, records (structures),
which contain a fixed number of items in a fixed layout, but each of these can be
of a different type. The items in such aggregates can be (and often are) scalars,
but more complicated aggregates are also possible: arrays of records, records
which in turn contain other records, and so on.

In contrast to scalar domains, which deal with scalar values, an aggregate
domain represents composite data, in the spirit of the above definition. An
abstract aggregate domain approximates (concrete) aggregate values by keep-
ing track of certain properties of the aggregate, for instance the length of an
array, or a set of scalars that appear in the array. In the case of M-String, the
information it tracks is a segmentation, where segments are represented using
their bounds and a single value abstracting their content.

Aggregate domains could be equipped with quite arbitrary operations,
though there are two that stand out, because they are in some sense univer-
sal, and those are byte-wise access and modification (update) of the content of
the aggregate. The universality of those operations stems from the fact that in a
low-level representation of a program, all operations with aggregate values take
this form. In LLVM, it is possible (though not guaranteed), that access to the
aggregate is encoded at a slightly higher level: as extraction and modification
of entire scalars (as opposed to individual bytes). For M-String, though, this
distinction is not important: the scalars stored in C strings are individual bytes.
It should be also noted that the access and update form the interface between
scalars and aggregates (even in the case of byte-oriented access, since bytes are
also scalars). Therefore, the types of those two operations contain a single aggre-
gate and (at least) a single scalar domain. Some (or all) of those domains may
be abstract domains.

Syntactic abstraction has to handle aggregate domains differently from scalar
domains. In LLVM, aggregate values are usually represented using pointers of
a specific (aggregate) type. For this reason, aggregate abstraction starts from
the types that represent its objects. In the case of arrays, those are concrete
pointers into those arrays: let us call them P ∗, where P ⊆ Γ (S). We use the set
of abstract pointers A∗ to represent the types of abstract values in an aggregate
domain. Thus the set of admissible types in the abstract program is generated by
Γ (S ∪ A∗). Like in scalar domains, we define a natural correspondence between
pointers to concrete values P ∗ as a bijective map Λ : P ∗ → A∗.
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Please note that pointers in general contain two pieces of information: they
determine the object and an offset into that object. In explicit programs, this
distinction is not very important, since those two parts are represented uniformly
and often cannot be distinguished at all. The distinction, however, becomes
important when we deal with abstract aggregate values. In this case, the object
portion of the pointer is concrete, since it determines a single specific abstract
object. However, the offset may or may not be concrete – depending on the
specific abstract aggregate domain, it may be more advantageous to represent
the offset abstractly. In either case, however, all memory access through such a
pointer needs to be treated as an abstract access or update operation.

In LLVM, there are two basic memory access operations – load and store,
which correspond to the access and update operations. Rather importantly, mem-
ory access is always explicit – memory is never directly used in a computation.
We use this fact in the design of aggregate abstraction, where we can assume that
access to the content of an aggregate will always go through a pointer associated
with the abstract object.

3.4 Semantic Abstraction

Where syntactic abstraction was concerned with the syntax of operations, their
types and the types of values and variables, semantic abstraction is concerned
with the runtime values that appear during the computation performed by a
program. While syntactic abstraction introduced the maps Λ and Λ−1 to transfer
between concrete and abstract types, semantic abstraction introduces lift and
lower : operations (instructions) which convert between concrete and abstract
values. They represent a realization of the abstraction (α) and concretization
(γ) functions.

While lift and lower form a boundary between concrete and abstract scalar
computation, the access and update operations of an aggregate domain form a
boundary between scalar and aggregate domains. We kindly refer to [23], where
a reader may find how LART transforms an abstract program into an executable
form.

3.5 Abstract Operations

After syntactic abstraction, the program temporarily contains abstract instruc-
tions. Abstract instructions take abstract values as operands and give back
abstract values as their results. However, after transformation, we require that
the resulting program is semantically valid LLVM bitcode. Hence, it is crucial
that each abstract instruction can be realized as a suitable sequence of concrete
instructions. This makes it possible to obtain an abstract program that does
not actually contain any abstract instructions and execute it using standard
(concrete, explicit) methods.

In detail, syntactic abstraction replaces concrete instructions with their
abstract counterparts: an instruction with type (t1, . . . , tn) → tr is substituted
by an abstract instruction of type (Λ(t1), . . . , Λ(tn)) → Λ(tr). Moreover, lift
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and lower are inserted as needed. The implementation is free to decide which
instructions to abstract and where to insert value lifting and lowering, so long
as it obeys type constraints.

Additionally, in string abstraction, we also want to abstract function calls
such as strcat, strcpy etc. From the perspective of abstraction, we treat these
functions as single operations that take abstract values and produce results.
Therefore, we can process them in the same way as instructions. For example,
by transforming strcat of type (str , str) → str we obtain strcata of type
(Λ(str), Λ(str)) → Λ(str). Afterwards, all abstract operations are realized using
concrete subroutines [23].

We could have also transformed standard library functions (strcat, strcmp,
etc.) instruction by instruction using only abstract access and update of a con-
tent, but in this way we would lose a certain degree of precision in the abstraction,
the exact amount depending on the operation.

4 Instantiating M-String

M-String, as a content domain, enables a parametrization of string abstraction.
To be specific, it supports the parametrization of string segmentation represen-
tation in which we can substitute different domains of bounds and characters.
As a representation of string values, we can use a scalar domain equipped with
the correct operations, and the same holds for bounds of segments as described
in Sect. 2.

An implementation of a particular M-String instance can be automatically
derived from a parametric description, given well-defined abstract domains C for
characters and B to represent segment bounds. M-String also requires that both
C and B support certain operations that appear in the generic implementation
of the abstract operations. These are mainly basic arithmetic and relational
operators. For further details of the implementation, see the appendix of this
paper.

4.1 Symbolic Scalar Values

In program verification, it is common practice to represent certain values sym-
bolically (for instance inputs from the environment). This type of representation
enables a verification procedure to consider all the possible values with a reason-
ably small overhead. computation is implemented using abstraction of the same
type as described here: computations on scalar values are lifted into the term
domain, which simply keeps track of values using terms (expressions) in form
of abstract syntax trees. Those trees contain atoms (unconstrained values) and
operators of the bitvector logic. The term domain additionally keeps track of
any constraints derived from the control flow of the program (a path condition).
A more detailed description is presented in [23].

Paired with a constraint solver for the requisite theory,2 the term domain
coincides with symbolic computation. The solver makes it possible to detect
2 For scalars in C programs, we use the bitvector theory.
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computations that have reached the bottom of the term domain (those are the
infeasible paths through the program) and also to check for equality or subsump-
tion of program states. With those provisions, the bitvector theory is completely
precise (i.e. it is not an approximation, but rather models the program state
faithfully).

4.2 Concrete Characters, Symbolic Bounds

For evaluation purposes, we have instantiated the M-String domain by setting
C, the domain of the individual characters, to be the concrete domain (i.e. char-
acters are represented by themselves) and B, the domain of segment bounds, to
be symbolic 64b integers. The main motivation for this instantiation is a balance
between simplicity on one hand (both the domains we used for parameters were
already available in the tools we used) and the ability to describe strings with
undetermined length and structure.

At the implementation level (as explained in more detail in the following
section), the domain continues to be parametric: the specific domains we picked
could be easily swapped for other domains (an immediate candidate would be
using both symbolic characters and symbolic bounds). Compared to the the-
oretical description of M-String, the implementation uses a slightly simplified
representation using a pair of arrays (cf. Fig. 3), where the specific type of char-
acters and bounds is given by the parameter domains C and B respectively.

Fig. 3. M-String value with symbolic bounds, where string of interest is from b1 to b3.

Table 1. Benchmarks of abstract operations were evaluated on three types of M-Strings
(Word, Sequence, and Alternation) – see Sect. 5 for description. The table depicts the
number of states in the state space of the verified program, verification time in seconds
for the different length of inputs and an average time of a transformation (LART).

Word Sequence Alternation

Statesverification(s) LART (s)Statesverification (s) LART (s)Statesverification (s) LART (s)

8 64 10244096 8 64 10244096 8 64 10244096

strcmp163 12.814.717.1 27.2 0.85 12 0.550.671.15 1.79 0.65 744 63.4110 129 141 0.77

strcpy 36 1.671.632.18 2.48 0.51 9 0.360.270.51 0.83 0.88 74 3.624.9 5.3 4.36 0.46

strcat477 32.233.431.9 33.4 0.92 25 2.282.5 2.79 3.19 0.93 2406 208 218 220 205 0.95

strchr 24 0.280.350.53 1.14 0.88 6 0.030.080.13 0.26 0.56 45 0.540.540.92 1.89 0.83

strlen 26 0.450.460.69 1.31 0.86 6 0.090.110.17 0.33 0.86 53 1.011.211.94 2.33 0.82

M-String, when instantiated like this, is particularly suitable for representing
strings with runs of a single character of variable length, i.e. the strings of the
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form akblcm . . . where relationships between k, l,m, . . . can be specified using
standard arithmetic and relational operators and each of a, b, c is a specific letter.
This in turn allows M-String to be used for checking program behaviour on
broad classes of input strings described this way. A more detailed account of
this approach can be found in Sect. 5.

4.3 Implementation

We have implemented the abstract semantics of operations in the M-String
domain as a C++ library, in a form that allows programs to be automati-
cally lifted into this domain by LART and later model-checked with DIVINE.
An abstract domain definition in LART consists of a C++ class that describes
both the representation (in terms of data) and the operations (in terms of code)
of the abstract domain.

The abstract domain is equipped with a set of essential operations, which
appear in all programs that work with strings: these are lift, update and access.
All other operations which involve strings can be, in principle, derived auto-
matically using the same procedure that is applied to user programs. However,
abstracting only access and update causes either a loss of precision or a blowup
in complexity. For this reason, we also include hand-crafted implementations of
the following abstract operations: strcmp, strcpy, strcat, strchr, and strlen.
These are all based on the abstract semantics of the respective operations as
described in Sect. 2 and in the Appendix A.4.

A more complete description of the implementation of LART and DIVINE,
their source code, and the Appendices A.1–A.4 which describe the technical
details of the MString domain can be found online.3

5 Experimental Evaluation

For evaluation purposes, we have picked three scenarios. In first of those, we
show that the provided implementation of basic string functions is more efficient
than lifting them automatically based on the access and update operations. In the
second scenario, we analyse various implementations of the same string functions
by lifting them automatically and checking that their outputs match the ones
we expect based on the concrete semantics of those operations – in this case, the
inputs are provided in the form of specific abstract (M-String) values. In the last
scenario, we have picked a few real-world programs to demonstrate that M-String
can be successfully used in analysis of moderately complex C code. To this end,
we have chosen two context-free grammars and used them to generate C parsers
using the bison and flex tools, again providing abstract strings as inputs to
the generated parsers. All experiments were performed with an identical set of
resource constraints: 1 h of CPU time, 80GB of RAM and 4 CPU cores.4

3 https://divine.fi.muni.cz/2019/mstring.
4 The processor used to run the benchmarks was Intel Xeon E5-2630 clocked at

2.60 GHz. To make reproduction of the benchmarks easier, we provide instructions
and scripts in the online supplementary material.

https://divine.fi.muni.cz/2019/mstring/
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Table 2. The table depicts the verification results of functions from pdclib. For each
type of input M-String of a given length, we present duration of verification and the
size of the state space. T denotes a timeout of the verification.

LengthWord Sequence Alternation

4 8 16 4 8 16 4 8 16

strcmp 18.5s 90 597 s 1228 2410 s 11416 3.82 s 14 12 s 32 32.2 s 68 70.7 s 348T – T –

strcpy 8.4 s 45 99 s 438 775 s 4410 5.7 s 14 17.5 s 24 71.8 s 44 11.6 s 80 168 s 928 3230 s 19234

strcat 75.5 s 303T – T – 23.7 s 35 117 s 149 769 s 737 249 s 1085T – T –

strchr 12.4 s 39 166 s 245 934 s 1265 4.34 s 8 16.5 s 12 158 s 20 13.4 s 57 316 s 815T –

strlen 0.5 s 27 7.9 s 169 811 s 1365 0.27 s 8 0.6 s 14 1.7 s 20 1.8 s 48 69 s 357 3250 s 5307

Abstract Operations: The first set of benchmarks covers resource usage measure-
ments of M-String operations. Results are presented in Table 1. We run each
operation separately on three different M-String inputs with a single parameter,
length:

– Word is a string of the form aibjck, i + j + k ≤ length,
– Sequence has the form alength , and
– Alternation is aibjakbl, i + j + k + l ≤ length.

We have measured how much time we spend in the abstract operations which
are part of the M-String domain and compare them to the same programs, but
with the functions abstracted automatically, using only the M-String definitions
of access and update.

One of the results is that the size of the state space does not depend on the
length of the string when using the operations from M-String. This is because
the number of segments does not change and the operations perform the same
amount of work. In comparison, analysis of automatically lifted implementations
of the same functions5 does not terminate in a 1-hour time limit for strings of
length 64 and more. This is caused by the fact that the concrete implementations
need to iterate over each character individually, while the M-String implementa-
tion directly works with segments.

C Standard Library: The second scenario deals with correctness of various con-
crete implementations of the same set of standard library functions. Namely, we
used 3 sources: pdclib, musl-libc and μCLibc. The results are very similar,
hence we only present results for pdclib (Table 2) – data for the remaining 2
are part of the supplementary material.

In these benchmarks, we compare the results of the abstract implementation
with the result of the automatically abstracted (originally concrete) implemen-
tation of each function and check that they give identical results.

Results show that analysis of strings with alternating characters is more
expensive. This is because a segment might disappear and two segments are
5 The implementations were taken from pdclib, a public-domain libc implementa-

tion.
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Table 3. Evaluation on parsers of mathematical expressions (ME) and simple programs
(BP). Inputs for ME were of 3 forms: Addition is a string with two numbers with +
between them, Ones is a sequence of ones, and Alternation represent a number with
multiple digits. Inputs for BP were of the form: Value constructs a constant, while
Loop is a program with a single bounded loop and Wrong is a program with a syntax
error.

merged into one: the SMT queries arising from those events are hard to solve,
because of the large number of possible overlaps in the segment bounds.

The library implementations access and update the string one character at a
time, resulting in large SMT formulas – this causes the blowup in analysis time
and hence timeouts with longer strings.

Bison Grammar: In the last scenario, we analyse two parsers generated by bison.
First is a parser for numerical expressions which consist of binary operators and
numbers (see Table 3). The second example is a parser for a simple programming
language.

Like with the previous scenarios, inputs which contain long sequences of the
same character perform the best, especially when contrasted with a similar task
performed on an input with alternating digits.

6 Conclusion

We have presented a segmentation-based abstract domain for approximating C
strings. The main novelty of the domain lies in its focus on string buffers, which
consist of two parts: the string of interest itself, and a tail of allocated and
possibly initialized but unused memory. This paradigm allows for precise model-
ing of string functions from the standard C library, including their often fragile
handling of terminating zeroes and buffer bounds. In principle, this allows the M-
String domain to identify string manipulation errors with security consequences,
such as buffer overflows.

In addition to presenting the domain theoretically, we have implemented the
abstract semantics in executable form (as C++ code) and combined them with
a tool that automatically lifts string-manipulating code in existing C programs
to the M-String domain. Since M-String is a parametric domain – the domains
for both segment content and segment bounds can be freely chosen – we have
instantiated M-String (for evaluation purposes) with concrete characters and
with symbolic (bitvector) bounds.
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Abstract. We present Grapple, a new and powerful framework for
explicit-state model checking on GPUs. Grapple is based on swarm veri-
fication (SV), a model-checking technique wherein a collection or swarm
of small, memory- and time-bounded verification tests (VTs) are run in
parallel to perform state-space exploration. SV achieves high state-space
coverage via diversification of the search strategies used by constituent
VTs. Grapple represents a swarm implementation for the GPU. In par-
ticular, it runs a parallel swarm of internally-parallel VTs, which are
implemented in a manner that specifically targets the GPU architecture
and the SIMD parallelism its computing cores offer. Grapple also makes
effective use of the GPU shared memory, eliminating costly inter-block
communication overhead. We conducted a comprehensive performance
analysis of Grapple focused on the various design parameters, including
the size of the queue structure, implementation of guard statements, and
nondeterministic exploration order. Tests are run with multiple hardware
configurations, including on the Amazon cloud. Our results show that
Grapple performs favorably compared to the SPIN swarm and a prior
non-swarm GPU implementation. Although a recently debuted FPGA
swarm is faster, the deployment process to the FPGA is much more
complex than Grapple’s.

Keywords: GPU · Model checking · Swarm verification · Grapple

1 Introduction

Modern computing exists in a space that is increasingly parallel, distributed,
and heterogeneous. High-performance co-processors such as GPUs (Graphics
Processing Units) are utilized in many super-computing applications due to their
high computational throughput, energy efficiency, and low cost [5]. GPGPU
(General-Purpose Computing on a GPU) is achieved through the use of GPU
programming languages such as the Open Computing Language (OpenCL) [6]
and the Compute Unified Device Architecture (CUDA) [1].

In 2014, we adapted the multicore SPIN model checking (MC) algorithm of
[24] to the GPU [12]. While our approach achieved speedups up to 7.26x over
traditional SPIN, and 1.26x over multicore SPIN, it was severely limited by the
c© Springer Nature Switzerland AG 2019
F. Biondi et al. (Eds.): SPIN 2019, LNCS 11636, pp. 94–113, 2019.
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memory footprint of the GPU, and by an explicit limit on state-vector size set
by the hash function [8].

The introduction of Swarm Verification (SV) in [27] represented an entirely
new approach to parallel MC. In SV, a large number of MC instances are exe-
cuted in parallel, each with a restricted memory footprint and a different search
path. Each instance is called a verification test (VT), because it does not seek
to cover the full state space as a model checker would. Through the use of diver-
sification techniques, VTs are independent of one other in terms of the portions
of the model’s state space they cover. By executing a sufficiently large number
of VTs, one is therefore statistically guaranteed to achieve nearly complete, if
not complete coverage of the entire state space.

In this paper, we present Grapple, bringing the light-weight yet powerful
nature of SV to the massively parallel GPU architecture. While other swarm
implementations run internally sequential VTs in parallel, Grapple VTs are
internally parallel and evolved from our previous GPU-based MC design [12].
Each VT runs on a single block of the GPU, with a bitstate hash table in shared
memory, compacting per-state storage by a factor of 64 compared to the cuckoo
tables used in [12]. These tables use the hash function of [29], eliminating the
hard 64-bit state vector limit of our previous model checker.

Grapple VTs run in parallel on all available GPU streaming multiprocessors
(SMs), and make efficient use of the GPU scheduler to quickly replace jobs the
instant an SM becomes available. As VTs are independent of each other and
each one is tightly bound to a single chip on hardware, there is no need for
inter-block communication or additional synchronization primitives.

To assess Grapple’s performance, we used a benchmark specifically designed
for SV-based model checkers [16,27]: a model that can randomly generate more
than 4 billion states. Exploration progress in the benchmark is captured by the
visitation of 100 randomly distributed states, or waypoints, with 100 waypoints
approaching complete state-space exploration. Our experiments, which we ran
on multiple hardware configurations, including the Amazon cloud [2], evaluate
the impact of variations in queue size, guard-statement implementation, and
nondeterministic exploration order.

We also compared Grapple’s performance with the FPGA swarm implemen-
tation of [16], the CPU swarm of [27], and the original (non-swarm) GPU imple-
mentation of [12]. Grapple easily outperforms the GPU implementation and the
CPU swarm, and reaches all waypoints in a number of VTs comparable to that
required by the FPGA implementation. While it cannot compete in raw speed
with the hardware-level FPGA implementation, it offers much easier deployment,
with VTs that complete in under a second. We additionally evaluated Grapple
using multiple configurations of the Dining Philosophers problem, a small model
with a known state-space size and deadlock violation.

In summary, our main contributions are as follows. (i) We introduce Grapple,
a GPU-based swarm verification model checker with internally parallel verifi-
cation tasks. (ii) We analyze structural elements of VTs (e.g., search strategy,
queue size, guard logic, number of threads per VT) to determine how they impact
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the rate of exploration. (iii) We compare Grapple’s performance to previous SV
implementations on the CPU [27] and FPGA [16], as well as to our non-swarm
GPU-based model checker [12].

The rest of the paper is organized as follows. Section 2 provides back-
ground on GPU hardware, the CUDA programming model, the SPIN model
checker, and swarm verification. Section 3 presents our Grapple model checker.
Section 4 presents our various experimental results. Section 5 considers related
work. Section 6 interprets our findings and offers directions for future work.

2 Background

Fig. 1. GPU hardware model.
SP = Stream Processor

To motivate our design decisions for Grap-
ple, we first explain the intricacies of GPU
hardware and the associated CUDA pro-
gramming model, and provide an overview
of the SPIN model checker [7], on which
Grapple is based. Further details on the
GPU hardware and CUDA are available in
the CUDA C Programming Guide [4].

2.1 GPU Hardware Model

The GPU is a high-performance co-
processor designed to efficiently render 3D
graphics in real time. GPUs are well-
suited for linear algebra, matrix arithmetic,
and other computations frequently used
in graphical applications. As illustrated in
Fig. 1, the GPU architecture consists of a
scalable array of N multithreaded Stream-
ing Multiprocessors (SMs), each of which is
made up of M Stream Processor (SP) cores.
Each core is equipped with a fully pipelined
integer-arithmetic logic unit (ALU) and a
floating-point unit (FPU) that execute one integer or floating-point instruction
per clock cycle. Each SM controls a warp of 32 threads, executing the same
instructions in lock-step for all threads.

The GPU features a number of memory types, differing in access speed,
capacity, and read/write availability. Global memory is large (order of gigabytes),
available device-wide, but relatively slow. Constant memory is a cached, read-
only memory intended for storing constant values that are not updated during
execution. Finally, each SM has a shared memory region (16–48 KB). In practice,
accessing shared memory can be up to 100 times faster than using global memory
for the same transaction.
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Devices connect to the host machine using the PCIe bus. Communication
between the host and device are extremely costly compared to on-board memory
accesses, including those that use global memory.

2.2 CUDA Programming Model

CUDA is the proprietary NVIDIA programming model for general-purpose com-
puting on their GPU architecture. While the alternative model, OpenCL, is uni-
versally compatible with all GPU architectures, the high-performance of CUDA
has led to wide adoption. We decided to write Grapple in CUDA for this reason,
but an OpenCL implementation would be very similar.

The CUDA parallel computing model uses tens of thousands of lightweight
threads assembled into one- to three-dimensional thread blocks. A thread executes
a function called a kernel, which contains the computations to be run in parallel.
Each thread uses different parameters. Threads located in the same thread block
can work together in several ways. They can insert a synchronization point into
the kernel, which requires all threads in the block to reach that point before
execution can continue. They can also share data during execution. In contrast,
threads located in different thread blocks cannot communicate in such ways and
essentially operate independently.

Shared-memory transactions are typically parallel to some number n dis-
tinct banks, but if two or more address requests fall in the same bank, the
collision causes a serialization of the access. It is therefore important to under-
stand addressing patterns when utilizing shared memory. Register management
is also critically important. Use of registers is partitioned among all threads and,
as such, using a large number of registers within a CUDA kernel will limit the
number of threads that can run concurrently. Double and long variables, use
of shared memory, and unoptimized block/warp geometry all lead to increased
register use. If available registers are exhausted, the contents will spill over into
local memory- a special type of device memory with the same high-latency and
low-bandwidth as global memory.

The SIMD nature of warps on SPs has a great impact on code structure for
the GPU. As warps act in lock-step, any branching logic encountered by a warp
must have all branches explored by all threads. The data created during the
additional branch exploration is simply discarded. This phenomena is referred
to as branch divergence and is warp-local; other warps continue to perform inde-
pendently of the divergent warp. This can lead to scheduling conflicts where
non-branching warps must wait for the divergent warps to complete. It is also
generally a performance loss within a warp, especially for cases where one or
more branches is long but uncommonly taken.

Finally, kernels can be launched in parallel on a single device, as long as
that device has the capacity to do so. Streams are command sequences that
execute in order internally, but can be concurrent with each other. The number of
concurrent streams is device dependent, and additional streams will queue until
the device has availability. Streams are unnecessary to run parallel commands
on multiple devices, and are not needed for pipelining data transfers with kernel
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execution. Two commands from multiple streams cannot run concurrently if
the host specifies memory manipulation or kernel launches on stream 0 (default)
between them. Synchronization, where necessary, can be invoked within a stream
or across streams with provided CUDA sync statements.

2.3 SPIN Model Checker

SPIN [7] is a widely used model checker designed to verify multi-threaded soft-
ware. SPIN has an ever-growing list of features and options, including opti-
mization techniques, property specification types, and hardware support. State
spaces can be pruned using partial order reduction, speed can be increased by
changing search strategies or disabling certain checks, and memory footprint
can be reduced through bitstate hashing. SPIN can handle safety and liveness
properties, any LTL specification, Büchi automata, never claims, and invariant
assertions. Multicore support was added in 2007 [23], improved in 2012 [24], and
extended to liveness properties in 2015 [20].

A central feature of the 2012 algorithm is the structure holding the frontier of
newly discovered states. In order to assign these states to the N worker threads,
SPIN uses two sets of N × N queues. By splitting each frontier queue into
an N × N structure all threads can communicate without the need for mutex
locks. Of these two queue sets, one (output) fills with a new frontier as the
other (input) empties the current frontier. When the input queue is empty, all
threads synchronize and the two swap labels. This process continues until both
the input and output are empty or a violation is found. We adopt this structure
for Grapple.

2.4 Swarm Verification

Recently, support for large-scale parallel model checking on CPU-based systems
was added to SPIN in the form of swarm verification (SV) [25–27]. SV is a
technique wherein a large number of small verification tasks (VTs) are run in
parallel on many independent processors, including multiple CPUs, multicore
CPUs, and distributed systems [25]. The term verification test is used in place
of model checker or verifier because these tests are not guaranteed to complete.
Instead, each test is given a set amount of time and memory to explore whatever
portion of the state space it can. VTs can be as small as a number of KBs.

Each VT is independent, and the state space it covers is differentiated
through the use of various diversification techniques. These techniques include
reversing search direction or search order, randomizing nondeterministic choice
order of transitions, and other perturbations of the original search algorithm.
VTs do not share resources nor need to live on the same physical machine. Given
enough parallel hardware, all VTs can run concurrently. When these resources
are more limited, VTs will be scheduled like any other batch of independent
programs.

The most potent diversification technique is the use of statistically indepen-
dent hash functions. With up to 108 suitable unique 32-bit hash polynomials,
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in addition to other search diversification methods, the potential number of dis-
tinct concurrent searches is easily in the billions [25]. Hash functions reduce the
state space graph via collisions; as each hash table is much smaller than the
total number of states, collisions are frequent. If we treat each collision as valid
(consider them the same state, even if that is not the case), the state space will
be quickly, and naturally pruned.

Fig. 2. Pruning states via hash colli-
sion. (i) Hash collision {B,C} on trace
ABEFJDI. (ii) Hash collision {E,F} on
trace ABECGHKLDI.

Figure 2 depicts state-space prun-
ing via collision. In both searches,
a left-favoring Depth-First Search
strategy is used, but their hash
tables use different hash polynomi-
als to store states. In the left graph,
nodes B and C have the same hashed
value, so C appears to be the same
state and will not be expanded. In
the right graph, E and F have the
same value, preventing the expan-
sion of F . While this method of
pruning all but assures that individ-
ual VT will not reach all states in

the state space, with a sufficient number of diverse VTs, the swarm as a whole
will achieve full coverage.

3 Swarm Verification via the Grapple Model Checker

The Grapple model checker brings the power of GPU computing to the model-
checking problem via swarm verification. For simplicity of presentation, we dis-
cuss Grapple’s design in terms of a Waypoints (WPs) benchmark specifically
designed for SV-based model checkers [16,27]. The WP benchmark involves a
model that can randomly generate more than 4 billion states. Said model is
comprised of 8 processes each in control of 4 bits. At successor generation, the
current process will nondeterministically set one of its bits to 1. Exploration
progress in the benchmark is captured by the visitation of 100 randomly dis-
tributed states, or waypoints, with 100 waypoints suggesting a nearly complete
state-space exploration. This style of presentation does not in any way imply
that Grapple is limited to this one benchmark; it is still a general-purpose model
checker. And indeed, we present results from an additional model in Sect. 4.

Although traditionally each VT is a small, sequential version of SPIN, this is
not the case for Grapple VTs, which run on the GPU. As discussed in Sect. 2.1,
the GPU has a SIMD/SIMT programming model: a single instruction or set of
instructions is given to a group of threads operating on different data. Warps of
32 threads execute in lock-step, and all branches in logic must be fully explored
by the entire warp. Mimicking SPIN by running a completely sequential VT
on an entire warp would waste massive amounts of resources. Instead, we use a
modified version of the 2014 GPU MC algorithm [12] to run a single, internally-
parallel VT per warp. VTs execute independently in parallel outside of the warp,
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but internally (i.e., within a given VT), all data structures are shared among
the threads and there is a single state space to explore.

While the queue structure and general search algorithm remain the same as
the 2014 MC, there are a number of alterations made to the GPU VT to take
advantage of the new swarm environment. First and foremost, the hash table is a
bitstate implementation moved to shared memory. This hash table is only shared
among threads within a VT and not between VTs. Factors typically considered
weaknesses of a shared-memory approach are its locality to an SM and its small
size (48 KB maximum). With each SIMD-parallel VT limited to a single warp,
all threads within the VT are guaranteed to be on the same SP within the same
SM, and therefore all have access to this structure. The 48 KB limit is not an
issue for VTs utilizing bitstate hashing, as such a table can hold nearly 400,000
entries. This is on the low end of the scale for a VT compared to those in other
SV implementations [25,27], but VTs of this size were shown to work well in a
recent FPGA implementation [16].

Also as in the FPGA implementation, cuckoo hashing [8] has been replaced
with an AB mix function based on the Jenkins Linear Feedback Shift Register
(LFSR) [29]. For this purpose, two random integers, A and B, are generated on
the host machine for each VT and included as parameters in the VT’s kernel
launch. This hash function change is motivated by a desire to better align with
the FPGA implementation, as well as the elimination of the multiple-function
schema used in the cuckoo algorithm. The random variables are reused on the
GPU in some search strategies as quick random-digit generators, as on-device
random generation tends to be convoluted and this method is more efficient.
Since each VT is relegated to a single warp, the fast-barrier synchronization [41]
used in the previous GPU MC implementation has also been removed. Instead,
the on-board CUDA syncthreads() function is used at the required synchro-
nization points.

Grapple, like the FPGA swarm [16], runs multiple VTs within a single pro-
gram, with additional copies of that program launched by script if necessary. In
contrast, the SPIN swarm [27] is coordinated by a script that simply launches
every VT as an independent thread. A Grapple program running on the GPU
initiates multiple VTs, each a CUDA kernel, and utilizes streams to run these
kernels in parallel whenever possible. The number of VTs that a core program can
launch is dependent upon the hardware of the device(s) available, the memory
footprint of each VT, and how initialization and memory transfers are handled.
In the current design, all variables and structures are initialized, transferred to
the GPU before kernel launch, transferred back to the host after kernel com-
pletion, and then freed in a single batch. Theoretically, more VTs could be
launched within a program and additional efficiency squeezed out if the trans-
fers were pipelined with some VT execution, but the current arrangement also
has benefits.
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Fig. 3. Control flow for Grapple with 250 * K VTs.

Since the primary diversification techniques in Grapple are alterations in hash
polynomial, search structure, and nondeterminism order, most of the host-level
set-up is common across VTs. Overall, these common elements reduce the cost of
this process to be nearly negligible when compared to time spent on the device.
In this case, pipelining would increase overall complexity of the core code with
minimal benefit. On the theme of common initialization, structures are placed
in constant memory whenever possible so all VTs gain fast read-only access.

Figure 3 illustrates the control flow of Grapple. Upon start-up, a swarm script
launches a CUDA program on all available hardware devices (GPUs). When
there is only a single device, these K programs must sequentialize with each
other, with one program launching after the execution of the previous program
and its sort instance (the Linux sort utility is used to count WPs) has terminated.
Internally, each CUDA program initializes a number of VTs, in this case 250,
sharing common data wherever possible to minimize overhead. Examples of this
includes setting up the initial state and sending WP identifiers to GPU constant
memory. This initialization/pre-launch procedure runs on the CPU (host).
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Each VT is assigned to a single stream, and as many of them as possible will
be launched in parallel to the N streaming multiprocessors (SMs) available on
the device. The number (250) of VTs maintained by a given GPU program is a
function of the global memory footprint of all structures associated with those
VTs. While the hash tables are assigned to the 48 KB of on-chip shared memory,
frontier queues and other support structures must still hold the full-length global
state vectors and combine to reach the upper limits of the GPU global memory.
Despite sitting on global memory, these structures are still access-limited to a
single VT, maintaining VT independence.

Once launched, a VT executes its complete search until its frontier queues
are empty, and there are no more states to be explored. This exhaustion process
is driven by the limited size of the hash table, and the collision-based pruning
mentioned described in Sect. 2.4.

To achieve maximal utilization of SMs and therefore maximal parallelism
at the SM-level, VTs are assigned to SMs using pipelining: as soon as a VT
completes its execution on a SM, the GPU scheduler replaces it with a new VT,
until all VTs within the CUDA program have been executed on some SM. At
this point, the host collects the discovered WPs from all 250 VTs and appends
this information to a single output file. All data structures on both the GPU
and CPU are released, and the program terminates. The output file is read by a
sort utility, and current progress reported by the swarm script. The next GPU
program is launched, and the process continues until all GPU programs in the
swarm are exhausted.

Note that for a single GPU system, a swarm of size 50,000 VTs requires 200
sequentially launched CUDA programs. One of the benefits of Grapple, and SV
in general, is that if additional GPUs are available, even on different machines in
different locations, these 200 CUDA programs can run in parallel with each other
without additional modification. These other GPUs may have more memory or
more SMs, allowing more VTs per program or more concurrent execution of
VTs, respectively.

Due to the abridged nature of VT searches, minute changes in control flow
can have a major impact on the set of visited states for each VT. As hash
collisions are resolved by dropping the new entry, even differences in the order of
constituent operations change the results. To better understand a VT’s behavior,
we offer in Algorithm 1 a comprehensive breakdown of a VT’s main control loop.
Furthermore, in Sect. 4, we conduct a series of tests that illuminate the effects
of making even minor changes to the code.
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Algorithm 1. State-Space Exploration Loop executed
by each VT thread
Each of a given VT’s N parallel threads does the following:

while none of thread i ’s output queues are empty do
for all N of thread i ’s input queues do

while input queue j is not empty do
for all processes in the model do

for all nondeterministic choices NDC
within a process do

successor = successor generation(process,
NDC, state);
selection = (mix(a, b, state));
hashed value = (selection/8) % table size;
sel = selection%8;
visited state = table[hashed value];
table[hashed value] |= (1<<sel);
if (visited state &(1 <<sel)) == 0 then

Report state back to CPU for check
against 100 WPs
Pick random thread i’ ∈ N to
output to
if i’ has slots then

Insert the new state into queue i’
end if//implicit else drop the state

end if
end for//close for (NDC)

end for//close for (process)
end while

end for
syncthreads();

Check output queues for emptiness
end while

The nondetermin-
istic choice (NDC)
has a variety of dif-
ferent implementation
options. Traditionally,
all nondeterministic
options would be acc-
essed in order as in
standard BFS (paral-
lel BFS in this case)
behavior. With minor
modification, all non-
deterministic options
can be visited in ran-
dom order. To min-
imize the amount of
branching logic, all
NDC order possibil-
ities are enumerated
in constant memory,
and the selection of
order is completely
random for each step
in the loop.

As described in
Sect. 2.3, Grapple VTs
use a set of N ×
N queue structures to
allow lock-free com-
munication between
threads. Each thread
has a set of N input

queues and N output queues, with I slots in each queue. We call an N × N × I
set of queues a queue structure. In Sect. 4, we consider a queue structure in Grap-
ple to be the same as a queue in SPIN and FPGA VTs. For this to hold, I will
often be as small as four or five slots.

In Grapple, the input and output queue structures are sets of pointers to a
single array in GPU global memory. To avoid illegal memory access, a VT must
first check that there are slots available when attempting to insert a new state.
In Algorithm 1, this check happens after a state is marked visited. If there are
no queue slots available, the state is dropped and its successors potentially lost.
If instead the queue check happens before the state is marked visited, the same
state (or a state with the same hash value) can be visited later. This second
location is used in FPGA and Grapple VTs.
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The logic employed with this check also plays a factor in Grapple’s perfor-
mance. If the check prevents writing outside the bounds of the underlying array
structure, hence referred to as the old guard, it will still allow threads to write
to unintended targets. A stricter boundary check, the new guard, enforces the
local limitation of I. In practice, illustrated in Sect. 4, VTs with the old guard
have better performance.

The reason for the better behavior of the old guard is as follows. When a
thread n attempts to write to another thread q, the new guard would make
sure n is not writing to q + 1 instead. If n is attempting to write to the (non-
existent) I + 1 slot of q, it instead overwrites slot 0 of q + 1. In practice, this is
a random state-drop that replaces a shallow state in the queue structure with a
deeper one. Both guards lead to a state-drop, but the old guard favors keeping
deep states while the new guard favors shallow states. In general, the Grapple
implementation uses the old, deep-state-favoring, guard logic.

All discussion of dropped states to this point has been of random drops or
partial-match drops (hash collisions). It is also possible to do complete explicit-
state drops for specific state-vector matches. The default behavior of the FPGA
swarm is to consider WPs to be violations. When one of these states is encoun-
tered, it is reported and dropped without generating successors. While for other
models this behavior may lead to unreachable portions of the state space, it is
not the case for the WP model. Our Grapple tests include variants with and
without this WP dropping behavior.

4 Experimental Results

In this section, we present experimental results for Grapple. The first set of exper-
iments use the WP benchmark to test variants of the Grapple VT design, and
allow us to compare performance with the SPIN [27] and FPGA [16] swarms,
as well as with our non-swarm GPU implementation [12]. All of these tests
use the same 100 WPs, selected from a random distribution over the 32-bit
integer space. The GPU used in these experiments is an Nvidia Geforce 660Ti
GPU with 2 GB GPU global memory, and 7 SMs. This is an older, inexpensive
GPU model but still allows for Grapple to show sufficient performance. SPIN
experiments run Swarm 3.2 with SPIN 6.4.7, using an Intel dual-socket server
that has two Xeon E5-2670v3 CPUs (24 cores total) running at 2.3 GHz and
Hyper-Threading enabled (48 hardware threads total), with 128 GB of RAM.
FPGA experiments are done with cycle-accurate SystemC simulations using
Xilinx Vivado HLS 2017.4, targeting a Xilinx Virtex-7 XC7V690T FFG1761-
3 FPGA. The test environments for the SPIN and FPGA experiments are the
same as in [16]. Additionally, we include experiments using the Dining Philoso-
pher’s problem in order to demonstrate Grapple’s ability to discover a known
deadlock violation. Finally, we show Grapple’s potential in a high-performance
environment by running WP benchmark tests on Amazon’s EC2 GPU cloud
platform [2].
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4.1 WP Benchmark

FPGA experiments use internally sequential VTs with 48 KB of storage each.
The FPGA runs in batches of 44 concurrent VTs, starting a new batch when
the previous one finishes. Unlike the general-purpose VT designs of the GPU
and CPU swarms, which can be applied to any Promela model, the FPGA
swarm is currently limited (hardwired) to the 32-bit random number generator.
Fortunately, there are still some variants of this WP benchmark to test against.
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Fig. 4. Grapple VT vs FPGA VT.

Figure 4 shows combined
results of two FPGA swarm
variants and three Grapple
variants running the WP bench-
mark. In the standard configu-
ration, WPs are recorded upon
discovery, considered a viola-
tion, and the state is dropped.
Non-WP states first check the
queue, and are marked visited
and propagate if there are slots
available or drop and remain
unvisited if the queue is full.
This allows the state (or a col-

liding state) to potentially be visited later by the same VT. In later Grapple
tests, we refer to this control flow as “FPGA-style”, as it matches the behavior
of VTs in [16].

Half-warp (16 threads per VT) Grapple leads the FPGA in number of WPs
from the very beginning and reaches the 100th WP in 34,500 VTs, over 28,000
fewer VTs than its counterpart. The full-warp (32 threads per VT) Grapple
implementation, however, is outpaced by the FPGA. The FPGA completes the
WP benchmark in 30,947 fewer VTs. While these three versions share the same
control flow and queue structure size (4,096 entries), the half-warp Grapple
implementation has much better performance when using the WP/VT met-
ric. In terms of raw speed, however, the half-warp version is slower, with VTs
lasting 650 ms compared to the full-warp’s average of 451 ms. Both Grapple ver-
sions cannot match the hardware-level speed of the FPGA implementation, but
Grapple offers fast VTs with a much easier deployment process than the FPGA
swarm.

There is also an alternate control flow, wherein the 100 WPs are reported
but otherwise treated like any other state. In this case, all 100 are discovered by
the FPGA in 46,515 VTs or roughly 74.4% the number of VTs as the previous
iteration. Full-warp Grapple also sees improvement, completing in 77,750 VTs.
This is not significant enough to catch up with the FPGA or half-warp Grapple.
A no-drop version of half-warp Grapple was not included in these tests.

On FPGA hardware, the swarms from Fig. 4 complete in an extremely fast
12.5 s for the original and 9.3 s for no-drop, with individual VTs lasting only
∼0.2 ms. These swarms, however, were run on a cycle-accurate FPGA simulator,
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where one second of simulated time takes approximately one hour of wall-clock
time. The simulation allows for more useful data collection without harming
FPGA performance, and is cheaper and faster than deploying to a physical
FPGA.

Fig. 5. Impact of frontier size on Grap-
ple search.

Fig. 6. Impact of guard logic change on
Grapple search.

Figure 5 shows the impact of the queue structure size on Grapple’s perfor-
mance. This test was inspired by the WP/VT difference between earlier half-
warp vs full-warp tests. For the same size queue structure (N×N×I), a Grapple
half-warp VT has more slots per thread (a smaller N value means a larger I
value). Since the number of slots can impact state-drops (see Sect. 3), we ran
a series of tests expanding the queue structure size (and thus the I value) for
full-warp Grapple. When I = 16 or I = 8 (16,384 or 8,192 total queue structure
size), by 25,000 VTs we determined that these versions would not outperform
the I = 4 control and terminated the swarms. I = 6 performs just slightly
worse than the control. Grapple achieved peak performance with I = 5 (5,120
queue structure size), reaching 100 WPs in 62,000 VTs. This is better than the
93,500 VTs of the control, but still worse than the 34,500 of half-warp Grap-
ple. Since half-warp Grapple uses a queue structure of 4,096 elements (I = 16
with N = 16), but outperforms all full-warp versions in WP/VT, the difference
in performance requires further study. It is likely due to a low-level bottleneck,
such as register access patterns or to differences in exploration order arising from
the fewer random thread options.

We also tested the impact of altering the guard logic for full-warp Grapple’s
queue structure, as explained in Sect. 3. Both versions use a queue structure with
4,096 entries, and otherwise identical control flow. Figure 6 shows the old guard
logic maintaining a WP lead throughout the lifetime of the swarm, reaching the
100th WP in 93,500 VTs. The new guard logic takes an additional 90,000 VTs
to find all 100 WPs, with ∼47% of the search spent looking for the final WP.
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Unlike in Grapple and FPGA tests, where the hash table size is always 48 KB
per VT, SPIN swarm experiments run on a variety of different hash table sizes.
While a 48 KB hash table would be ideal for comparison purposes, a SPIN swarm
requires hash tables to be multiples of 32. With the table size set to 32 KB, SPIN
ran for over a week without discovering all 100 WPs, after which we terminated
the search. The next step up, with 64 KB-hash-table VTs, managed to find 90
WPs in 263,220 s (just over three days). As in [16], the optimal configuration for
the SPIN swarm seems to be a 256 MB table per VT. This version uncovers all
100 WPs in 10,890 s, ∼3.4x as long as half-warp Grapple or ∼1.8x as long as
full-warp Grapple.

The optimal setting for SPIN VTs requires over 5000x the amount of mem-
ory per VT as Grapple and the FPGA. A larger memory footprint for each VT
lets a VT cover a greater portion of the state-space, but at the cost of longer
execution time per VT. The SPIN results suggest that either the overhead for
creating many small SPIN VTs hinders their effectiveness, or that SPIN’s imple-
mentation of diversification techniques favor larger VTs. While SPIN could run
more concurrent VTs if more machines were available, improving performance,
the same could be said for the Grapple and FPGA versions.

Non-swarm GPU tests were difficult for this model. Our original implemen-
tation in [12] called for four full explicit-state cuckoo hash tables to contain
every possible state vector. Although the WP benchmark uses randomly gen-
erated 32-bit states, the states are still wrapped in a 64-bit unsigned long long
integer. Following the original MC design, the total hash storage alone would
be 128 GB, much larger than the 2 GB of global memory on this GPU. Con-
verting this checker to bitstate hashing allows us to cut the hash storage to a
more-reasonable 500 MB. However, this does not account for the other support
structures that still use full 64-bit state vectors. The simplest solution is to run a
version that is 250x the size of a single Grapple VT, since we know 250 Grapple
VTs can be allocated in one CUDA program without exhausting memory. A
table this size can hold just over 98 million states, a fraction of the statespace
generated by the WP benchmark. Our non-swarm checker explores this space in
352 s, reaching 10 WPs. As a standalone program, the GPU MC clearly cannot
compete with the full state-space exploration of Grapple.

4.2 Dining Philosophers Model

Table 1 contains results for Dining Philosophers, where each philosopher picks
up the left stick, then the right, releases the left and then the right. There is
a violating state (deadlock) when all philosophers pick up their respective left
stick concurrently. The minimum number of VTs tested is 7, since less than 7
would take the same amount of time to run on this GPU. For versions with more
processes, we use sets of 451 VTs (an arbitrary large number that fits within
the GPU memory footprint), but for DP10 and DP11, we determined that more
precision would be better than just saying x≤ 451. The number of VTs needed to
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fully explore the state space increases dramatically when increasing the number
of processes to 12. This is as expected, as DP11 has 177,146 states to fit into
392,800 slots per VT (∼45% occupancy), while DP12 has 531,440 states to fit
into the same number of slots (∼135% occupancy). Beyond 12, we prematurely
terminate the search due to the low rate of new state discovery.

Table 1. Dining Philosophers model in Grapple.

Number
of pro-
cesses

% of VTs
finding
violation

Average VT
execution time

State space size # of VTs
to explore

% of state
space
covered by
first
451VTs

10 67.72 195ms 59048 100% in 7 100

11 46.65 366ms 177146 100% in 14 100

12 25.55 677ms 531440 100% in
3157

99.99

13 13.75 832ms 1594322 99.21% in
24,805

98.65

14 11.18 882ms 4782968 97.76% in
13,530

92.72

15 11.35 902ms 14348906 93.19% in
50,061

76.56

The final column of Table 1 shows the percentage of the state space covered
in the first 451 VTs. Due to search overlap, the number of unique states visited
grows logarithmically with the number of VTs. The effect is more pronounced
in a deterministic model like Dining Philosophers, since the only source of diver-
sification in Grapple for such models is the VT’s hash polynomial.

4.3 Large-Scale Results

For our large-scale experiments, we used two Amazon EC2 nodes [2], one with
4 and one with 8 Tesla V100 devices. Each device features 16 GB global mem-
ory and 80 SMs. All devices for each configuration run concurrently and their
reported WPs are collected by a script on the host. As in the previous tests, each
VT is independent and features data structures private to said VT. There is no
inter-GPU communication other than WP counting by the script. Each CUDA
program runs 2,000 VTs between reports to the host.
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Fig. 7. Grapple with 16 threads/VT on Amazon
EC2

As in Fig. 7, the 4-GPU
node reaches all 100 WPs in
72,000 VTs (18,000 per GPU).
The 8-GPU node reaches all
100 in 80,000 VTs (10,000
per GPU). Even with state-
recording overhead they com-
plete in 42 min and 21 min,
respectively. This is faster
than our previous results with
such recording disabled. Turn-
ing off state-recording results
in a reduction of average
VT time from 1.02250 s to
203.51 ms. This is a significant
reduction of 80.1%.

5 Related Work

In [23], SPIN was extended to support dual-core processors, using nested DFS
to check safety and liveness properties. This work was extended to multicore
systems for safety properties in [24] and liveness properties in [20]. Despite the
earlier debut of a distributed model checker [11], the dual-core version of SPIN
was the first parallel MC to reach wide adoption. Other work sought to avoid the
naturally sequential depth-first post-order found in dual-core SPIN’s nested DFS
algorithm by leveraging the parallelism in breadth-first reachability analysis on
both distributed [35] and multicore systems [10]. This was mainly accomplished
using two algorithms: One Way Catch Them Young (OWCTY) and Maximal
Accepting Predecessors (MAP). Both algorithms perform parallel reachability
analysis, but differ in the way they detect cycles in the state-space graph.

Early GPU-based MC efforts focused on a priori graph exploration, as
opposed to generating new states on-the-fly [9,17,22,28,32]. The first on-the-fly
GPU approach used the GPU to generate new states with enabled transitions,
and the CPU for duplicate detection [18]. This is not unlike waypoint counting
in Grapple, but their system makes less efficient use of the GPU hardware and
is not based on SV. GPUexplore [38] was introduced in 2014 along with our
own GPU-based model checker [12]. While we tried to redesign SPIN to take
advantage of the GPU architecture, GPUexplore worked on Labeled Transition
Systems (LTSs) and followed a symbolic approach. Grapple uses VTs based on
our 2014 design, so it is still very different than GPUexplore. A GPU-based on-
the-fly reachability checking system for LTSs that achieved 50–100x performance
over sequential search was presented in [40].

In [36], GPUs were used for strong and branching bisimilarity checking.
A GPU-based method for liveness checking for finite-state concurrent system
appeared in [37]. Three partial-order reduction algorithms were implemented
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on the GPU in [33], bringing GPUexplore closer to parity with existing CPU-
based checkers. A second version of GPUexplore was released that same year,
with improvements made to lock-less hashing and thread synchronization [39].
Unlike [37], this version does not include support for liveness properties. Scal-
ability tests for GPUexplore were carried out in [13], achieving 5.5 million
states/second on a 61.9 million state model. Additionally, they used GPUex-
plore to pit the 2015 Maxwell Architecture Nvidia Titan X GPU against the
2016 Pascal Titan X GPU, averaging a 1.73x improvement on the new device.
A more in-depth comparison between cuckoo hashing and the GPUexplore table
was carried out in [14], concluding that cuckoo hashing is 3x faster for random
data and up to 9x faster for non-random data.

A GPU-based parameter-synthesis tool for stochastic systems was presented
in [15]. Utilizing a single GPU, it achieves up to 31x the performance of sequen-
tial approaches. A multi-core version of the LTSMIN model checker [31] out-
performed the 2005 multi-core SPIN and the 2008 multi-core DiVinE model
checkers. In [19], a new multi-core DFS algorithm called CNDFS with better
performance than the OWCTY algorithm was presented. This technique uses
a swarm approach with state coloring to perform cycle detection concurrently
with state-space exploration. LTSMIN saw further improvements in 2015 includ-
ing support for new modeling languages [30].

In [21,34], an FPGA was used to accelerate the exploration of a relatively
small 10,000-state model, achieving a 50x speed-up compared to its software
equivalent. The FPGA swarm of [16], to which this work is compared, achieved
a 900x improvement over a SPIN swarm for a model of a much more substantial
size (4B+ states). While this scale of improvement is unlikely for a single GPU
device, the process of deployment to the FPGA is much more complex compared
to the GPU. Additionally, their FPGA swarm was designed specifically for the
32-bit WP model, while Grapple can handle arbitrary Promela models.

6 Conclusions

We have presented Grapple, a new framework for highly efficient explicit-state
model checking on the GPU. Grapple is based on swarm verification (SV), and
its features include: a parallel swarm of internally parallel verification tasks
(VTs); GPU-optimized implementations of hash functions and bitstate repre-
sentation of visited states; and optimal use of GPU shared memory, thereby
eliminating inter-block communication/synchronization overhead. Our experi-
mental results show that Grapple outperforms multicore SV [25] and GPU non-
SV [12] approaches, and that it uses a number of VTs similar to that required
by an FPGA swarm [16].

Future work includes adding support for larger state vectors, allowing us to
test Grapple with larger-scale model instances from the BEEM database [3]. We
will also investigate new diversification techniques, including randomized process
order and alternative NDC search strategies.
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Abstract. Failure of robotic software may cause catastrophic damages.
In order to establish a higher level of trust in robotic systems, formal
methods are often proposed. However, their applicability to the func-
tional layer of robots remains limited because of the informal nature of
specifications, their complexity and size. In this paper, we formalize the
robotic framework Gen

oM3 and automatically translate its components to
UPPAAL-SMC, a real-time statistical model checker. We apply our app-
roach to verify properties of interest on a real-world autonomous drone
navigation that does not scale with regular UPPAAL.

1 Introduction

Although robotic software is tested, both in the field and using simulators, its
lack of safety hinders the deployment of robots in costly and human-interaction
missions (e.g. home assistants, deep space). As an example, the NASA Remote
Agent Experiment had to be stopped due to a deadlock, never detected during
the one-year testing phase [25]. Other examples include the autonomous vehicle
Alice [19] and the museum guide RoboX9 [32]. Such failures are mainly due to
the nature of classical, scenario-based testing, unable to provide guarantees on
important properties. Formal methods are a promising alternative, but their use
in robotics is still marginal, and varies according to the software layers [33].
Indeed, at the decisional layer, in charge of high-level decision making functions
(e.g. planning [17]), models are often formal with complete semantics, which
facilitates their formal modeling and verification [7,12]. In contrast, functional
layer components, in charge of low-level actions involving sensors and actuators
(e.g. localization and navigation), are developed within non formal frameworks
(e.g. ROS [26]), which makes their formalization particularly challenging and
costly. Furthermore, the formal modeling is non reusable (it needs to be redone
whenever a component evolves) and models are not guaranteed to scale. Con-
sequently, many previous works either focus on simple case studies (usually not
deployed on real robots), resort to non realistic abstractions (e.g. ignoring timing
constraints), or propose no alternatives to deal with scalability issues (Sect. 7).

We propose in this paper the use of formal methods to verify the functional
layer of robotic systems. We focus on verification by means of model checking,
c© Springer Nature Switzerland AG 2019
F. Biondi et al. (Eds.): SPIN 2019, LNCS 11636, pp. 114–134, 2019.
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and use statistical model checking [22] to tackle scalability issues. A particular
interest is given to real-time properties, e.g. schedulability and bounded response,
crucial in robotics (examples in Sect. 6). To tackle the abovementioned problems,
we (1) formalize (Sect. 3) the robotic framework Gen

oM3 (Sect. 2), (2) develop
automatic, sound transformation from any Gen

oM3 specification into UPPAAL
and UPPAAL-SMC models (Sects. 4, 5) and (3) verify crucial real-time prop-
erties, while avoiding non-realistic abstractions (e.g. all timing constraints are
considered), on a real drone application (Sect. 6). We conclude with related work
(Sect. 7) and lessons learned (Sect. 8).

2 Preliminaries

2.1 GenoM3

Gen
oM3 [23] is a tool to specify and implement robotic functional components.

Each component, in charge of a functionality, ranging from sensor control (e.g.
laser) to more integrated computations (e.g. navigation), is organized as shown
in Fig. 1a. For space and readability, we omit in this paper control services and
interruption of activities, but the interested reader may refer to [11] for details.

A component implements the core algorithms of its functionality within activ-
ities, which it executes following requests from external clients. Thus, the com-
ponent has a (i) control Task to process the clients requests and report to them
accordingly and (ii) one or more execution task(s) to execute activities. These
tasks share parameters and computed values of the component through the Inter-
nal Data Structure (IDS). Finally, a component provides ports to share data with
other components.

2.1.1 Behavior
We briefly explain how a component behaves. We use the support example of
activity MoveDistance that belongs to the component Demo, developed for illus-
tration purposes (listing. 1).

Activities: activities are finite-state machines FSM, each state called a codel.
An activity is executed by the execution task it specifies (line 6 specifies that
activity MoveDistance is executed by the motion task).



116 M. Foughali et al.

Activities

Control Task
Control

 Services

Clients

Ports

Execution Tasks

Codels

IDS

read/write

rea
d/w

rite

read/write

Requests Reports

start

ether

pa
us
e

(a) A generic component

actual
velocity

IMU

nhfc

Task: 
main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuver
pom

state

mikrokopter

Task: 
plan 5ms
Services:
Goto
WayPoint
TakeO

Task: 
exec 5ms
Services:
perm

Task: 
io 1ms
Services:
perm, add

Task: 

Services:
perm

Task: 
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task: 
comm
Services:
perm
connect
monitor
set_ramp

mocap
pose

optitrack

Task: 
publish 4ms
Services:
Init

(b) The quadcopter case study

Fig. 1. Generic GenoM3 component & case study.

FSM: define the activity behavior through codels and transitions. A codel is
a state at which a chunk of C or C++ code is executed. It specifies its argu-
ments (e.g. exec uses the IDS fields speedRef, posRef and state and the port
Mobile, line 4) and the possible transitions subsequent to its execution (e.g.
start returns exec or ether, line 3). Taking a pause transition pauses the exe-
cution of the activity until the next cycle (see below) of its execution task (e.g.
taking transition pause::exec, line 4, pauses the activity at codel exec from
which it will be resumed at the next cycle of task motion). A codel may (option-
ally) specify a WCET (worst case execution time) on a given platform (e.g. end
has a WCET of 1 ms, line 5). An FSM has always the codels start (entry point)
and ether (end point with no code attached). When the latter is reached, the
activity is terminated and reported to the client.

Control Task: manages requests and reports (from/to clients). When a request
for an activity is received, the control task validates it and activates such activity
(which informs the execution task in charge to execute it). Upon completion of
any activity, the control task sends a report to the corresponding client.

Execution Tasks: periodic or aperiodic. With each cycle (triggered by period or
event), an execution task runs, sequentially, all the activities it is in charge of,
previously activated by the control task. The execution of an activity ends when
it is paused or terminated. In the former case, the activity is resumed at the
next cycle.
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IDS & Concurrency: Tasks are run as parallel threads, with fine-grain concurrent
access to the IDS: only the required field(s) by a codel (in its activity, run in a
task) are locked when it executes and simultaneous readings are allowed.

2.1.2 Templates
Gen

oM3 features an automatic generation mechanism based on templates. A tem-
plate may access all the component information (e.g. tasks periods, activities and
their codels) and generate text files with no restrictions (examples in Sect. 5.2).
There are templates that, for instance, generate component implementations for
PocoLibs [1] and ROS-Comm [26] middleware. These implementation templates
also collect codels execution time, which are reported (average and WCET)
upon completion, and the number of occurrences of transitions in all activities
(Sect. 5.2).

2.1.3 Case Study
In this paper, we consider the quadcopter in Fig. 1b. In Sect. 6, we explain how
we use the components for a navigation mission. For technical details on each
component (out of the scope of this paper), we refer the interested reader to [8].

2.2 UPPAAL

UPPAAL [2] is a real-time model checker. Models are based on timed automata
(TA) and supported properties are mainly safety, liveness and bounded response.

Timed Automata: A TA [16] is a tuple 〈L, l0 ,X ,Σ ,E , I 〉 where L is a finite set
of locations, l0 ∈ L is the initial location, X is a finite set of clocks, Σ is a finite
set of actions including synchronization and internal actions, E is a finite set
of edges of the form (l, g, a, ϕ, l′), with l, l′ ∈ L, g a predicate on R

X , a ∈ Σ,
and ϕ a binary relation on R

X , and I assigns an invariant predicate I(l) to any
location l.

Extending TA: In a TA, urgencies are expressed locally through invariants. For
global urgencies, e.g. involving different TA, UTA [4] are introduced. In a UTA,
when an eager edge (denoted

�

) is enabled, time cannot progress and the edge
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must be taken (or disabled by taking another edge) immediately. TA can also be
extended with data variables. We refer to UTA extended with data as DUTA.
Figure 2 shows a DUTA example with two locations, l0 (initial, denoted with an
inner circle), and l1 , and one

�

edge. Guards are in green, invariants in purple and
operations in blue. ex (resp. O) is a Boolean expression (resp. some operations)
over some variables. In this example, if the guard remains false for more than 3
time units, the DUTA timelocks.

UPPAAL supports a subclass of DUTA that allows (i) urgent channels (over
which only time-constraint-free edges may synchronize), but not eager edges
(example in Sect. 5) and (ii) Boolean and integer data types and functions with-
out pointers.

2.3 UPPAAL-SMC

UPPAAL-SMC is an extension of UPPAAL based on stochastic timed automata
STA.

Stochastic Timed Automata: An STA is a tuple 〈TA, μ, γ〉 where TA =
〈L, l0 ,X ,Σ ,E , I 〉 is a timed automaton (Sect. 2.2), μ is the set of density delay
functions μs ∈ L×R

X , which can be either uniform or exponential distribution,
and γ is the set of probability functions γs over Σ in TA.

In brief, STA extend TA with (i) density functions (on locations) and (ii)
probabilities (on edges). Since we target STA as supported by UPPAAL-SMC,
we show an STA example in the .xta format (listing 2). If the location has an
associated invariant (e.g. l1 , line 3), the density function is a uniform distribution
(exponential distribution with a user-supplied rate otherwise, e.g. 10 on l0 , line
3). Probabilities, uniform by default, can be added using (i) a branchpoint (lines
5 to 7) and (ii) the keyword “probability” followed by the number of occurrences,
used to compute probabilities (the probability to take the edge from l1 to l0
(resp. to l2 ) is 1/3 (resp. 2/3)).

Verification in UPPAAL-SMC: In this paper, we are interested in probability
evaluation, that is estimating the probability Pr [<= b](Opx≤dφ) where b is a
time bound on runs, Op is either � or � and φ lies within the Weighted Metric
Temporal Logic WMTL≤ [5] grammar (atomic propositions endowed with U, the
until operator and O, the next operator).

Fig. 2. A generic DUTA example Fig. 3. A generic TTD example



Statistical Model Checking of Complex Robotic Systems 119

3 Formalizing Gen
oM3

We semanticize Gen
oM3 components using timed transition systems TTS

(Sect. 3.1). For readability and space, control task and aperiodic behaviors are
excluded. This version preserves important mechanisms, e.g. concurrency, and
the more complex version can be found in [11]. Since the control task is excluded,
we will often refer to an execution task as simply task.

3.1 Timed Transition Systems

We propose a variation of TTS in [15] where (i) a dense-time model (time inter-
vals have durations in R≥0 with bounds in Q≥0 ∪ ∞) is considered instead of
a discrete one and (ii) more general time intervals (left- and right-open) are
accepted. TTS are suitable to semanticize Gen

oM3. For instance, they are conve-
nient to formalize the global urgency constraints (e.g. a codel executes as soon
as it has the required (shared) resources, Sect. 2.1.1), as opposed to clock-based
transition systems such as TA where urgencies are expressed only locally (see
examples in [8]). Semantics in TTS also allowed automatic mapping to Fiacre
in [10].

Let I be the set of well-formed (time) intervals. An element i of I can have
the form: (f1) [a, b] (f2) ]a, b] (f3) [a, b[ or (f4) ]a, b[, where a ∈ Q≥0, b ∈ Q≥0∪∞,
and with a � b for f1 (a < b otherwise). Interval i is thus the set of reals x ∈ R≥0

such that a ≤ x ≤ b (f1), a < x ≤ b (f2), a ≤ x < b (f3), a < x < b (f4). In any
form, we say that ↓i = a (resp. ↑i = b) is the lower (resp. upper) bound of i.

A TTS is a tuple 〈U, S, s0, τ, I〉 where:

– U is a finite set variables,
– S is a set of states. Each state of S is an interpretation of variables in U ,
– s0 is the initial state (s0 ∈ S) that maps each variable in U to its initial value,
– τ is a set of transitions. Each transition t ∈ τ defines for every state s ∈ S a

(possibly empty) set of successors t(s) ⊆ S,
– I : τ �→ I maps each transition t ∈ τ to a static (time) interval I(t) ∈ I.

The semantic “meaning” of time intervals depends on the enabledness of
transitions: if transition t is enabled at s (s is the current state of the TTS and
t(s) 
= ∅) since date Δ then we can take t starting at date d s.t. Δ + ↓I (t) < d
if I (t) is of form (f2) or (f4) (Δ + ↓I (t) ≤ d otherwise) and must take it no later
than date d′ < Δ+↑I (t) if I (t) is of form (f3) or (f4) (d′ ≤ Δ+↑I (t) otherwise),
unless it is disabled in between by taking another transition. If t is disabled, then
I(t) has no semantic effect (detailed semantics in [11]).

3.1.1 TTDs
A timed transition diagram TTD (inspired from [15]) is a finite directed graph
with a set of vertices V and a set of edges E. The unique initial vertex is v0 ∈ V .
Each edge e ∈ E is labeled with: an interval I(e) (omitted if equal to [0 ,∞[); a
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guard ge (omitted if tautology); and an atomic sequence of operations ope (omit-
ted if has no side effects). An edge e connecting vertex v to vertex v′ is denoted,
interchangeably, e ∈ E or v

e−→ v′ ∈ E. Figure 3 shows a simple generic TTD
with two vertices, v0 (initial, denoted with an incoming edge without source)
and v1, and one edge e.

3.1.2 Composition of TTDs
The parallel composition of n TTDs, P1, . . . , Pn, over a set of shared variables,
Us, results in a TTS {Θ}[ ‖i∈1..n Pi ], where Θ gives the initial valuations of each
variable in Us and each component Pi accesses Us and a set of local variables
Ui. For detailed semantics of such TTS, we refer the interested reader to [11].

For simplicity, we stop referring to the names of edges in TTDs: v
e−→ v′

(Sect. 3.1.1) will be referred to, from now on, as simply v → v′, or v → (resp.
→ v′) when the identity of v′ (resp. v) is irrelevant. This is because in our Gen

oM3
semantics (Sect. 3.3), edges are uniquely defined through their source and target
vertices.

3.2 Syntax and Syntactical Restrictions of a Gen
oM3 Component

3.2.1 Activity
An activity A is a tuple 〈CA,WA,TA,TP

A 〉 where:
- CA is a set of codels with at least two codels (for starting and termination,
Sect. 2.1.1): {startA, etherA} ⊆ CA,
- WA : CA\{etherA} �→ Q>0 associates to every codel its WCET (Sect. 2).
The codel etherA (reserved for termination) is excluded (no code attached to it,
Sect. 2.1.1),
- TA is a set of transitions of the form c → c′ (each transition is uniquely defined
through its source codel c and target codel c′). We denote this relation by simply
c → (or → c′) when the identity of codel c (or c′) is unimportant,
- TP

A ⊆ TA is the set of pause transitions.

3.2.2 Task
A task T is a triple 〈Per ,A, V 〉 where:
- Per ∈ Q>0 is the period,
- A is the non-empty set of activities T is in charge of,
- V is a set of variables.

3.2.3 Component
A component Comp is a triple 〈E, V, μ〉 where:
- E is a set of tasks,
- V is a set of variables,
- μ : C �→ P(C) is the conflict function, where C is the union of all codels in
all activities of all tasks in E and P(C ) its powerset. μ(c) is the set of codels
that are in conflict (cannot execute simultaneously) with c. If μ(c) = ∅ then c
is thread safe (thread unsafe otherwise).
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3.2.4 Well-Formed Components
Well-formed components are defined by the following syntactic restrictions. For
any activity A, we require that (i) each codel in CA\{etherA} has at least one
successor in the relation defined by TA, (ii) TA must not include any transition
whose source codel is etherA (reserved for termination), and (iii) etherA cannot
be the target of a pause transition because the latter is for pausing while the
former is for termination. These requirements can be expressed succinctly as
follows:

∀c ∈ CA\{etherA} ∃c′ ∈ CA : (c → c′ ∈ TA)
∀c, c′ ∈ CA : (c → c′ ∈ TA) ⇒ (c 
= etherA)
∀c, c′ ∈ CA : (c → c′ ∈ TP

A ) ⇒ (c′ 
= etherA)

Finally, ether codels are thread safe. Also, there is no conflict within the same
task: any two activities A and B in the same task are executed sequentially “by
construction” (one task = one thread). Therefore, we require that μ(c) ∩ CB =
μ(c′) ∩ CA = ∅ for all c in CA and c′ in CB .

3.3 Operational Semantics of a Gen
oM3 Component

Before we go further, we need to distinguish between what the programmer
specifies (reflected at the syntactical level, e.g. in transitions TA, Sect. 3.2.1),
and what is enforced to produce the expected behavior (e.g. starting and mutual
exclusion edges, Definition 3). We present operational semantics “top-down”,
from component to activities.

3.3.1 Component Semantics
A component Comp semantics is given by the TTS Comp = {Θ}[‖i∈1 ..n Ti ]
where n =| E | is the number of tasks in E (Sect. 3.2.3) and Ti are tasks. For
each codel c ∈ C s.t. μ(c) 
= ∅ (Sect. 3.2.3), there is a Boolean r c in the set
of shared variables Us (V in Sect. 3.2.3), initially false (Θ(r c) = False for all
r c ∈ Us). These variables help semanticize concurrency (Definition 3).

3.3.2 Task Semantics
The semantics of a task is given by the TTS
T = {Θ}[Tim||M ||(‖A∈A A)] where Tim is the timer (Definition 1), M is the
task manager (Definition 2), and ‖A∈A A is the composition of all activities A
(Definition 3) in A (Sect. 3.2.2). The set of shared variables Us (V in Sect. 3.2.2)
contains: N , the set of “names” of activities to execute, sig , the period signal,
and Π, the control passing variable. Π ranges over TTDs “names” (by abuse of
notation, M is the name of the manager TTD and the name of activity A is A),
N has the same type as Π excluding M , and sig is a Boolean. The initial values
are Θ(N) = ∅, Θ(sig) = False, and Θ(Π) = M (the manager has the control
when the system starts).

Definition 1 Timer semantics. The timer semantics is given in Fig. 4.
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Changing the value of sig to true corresponds to transmitting a signal asyn-
chronously to the manager (Definition 2). The time interval [Per ,Per ] ensures
that this signal is transmitted at exactly each period (each Per time units).

Definition 2 Manager semantics. The manager semantics is given in Fig. 5.

Vertex wait denotes waiting for the next period and manage is to execute
activities, if any. The operation Π := rand(N ) gives the control to one of the
activities in N (by assigning randomly an element from N to Π). The manager
transits back to wait as soon as it has the control and N is empty.

Since Θ(N) = ∅, no activity would ever be executed. This is because fulfilling
activities requests is the role of the control task that we do not represent here.
Therefore, the manager performs the operation rrand(N ) to initialize N ran-
domly, over the set of activities T is in charge of; while respecting the condition
(A ∈ N ∧ B ∈ N) ⇒ (A 
= B). The operation rrand(N ) covers all the possible
evolutions of tasks, as the resulting set of configurations of N is a superset of
that obtained when a control task is present (details in [11]). Note how the guard
on the edge from wait to manage does not contain the clause Π = M because
this is always true at vertex wait (Θ(Π) = M and the manager cannot lose the
control at vertex wait).

Fig. 4. Timer TTD

Fig. 5. Manager TTD Fig. 6. Activities A and B in task T

Definition 3 Activities semantics. The operational semantics of an activity
〈CA,WA, TA, TP

A 〉 (Sect. 3.2.1) is given by a TTD such that:
- Vertices V : each c ∈ CA is mapped to a vertex c ∈ V . A vertex cexec ∈ V is
added for each thread-unsafe codel c (μ(c) 
= ∅, Sect. 3.2.3). The initial vertex
v0 is etherA,
- Edges E = EN ∪ EA are nominal (in EN ) or additional (in EA):

– EN : each transition c → c′ in TA is mapped to an edge c → c′ (resp.
cexec → c′) in EN if μ(c) = ∅ (resp. otherwise). We distinguish three dis-
joint sets of nominal edges: EN = EP ∪ ET ∪ EX . EP is the set of pause
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edges that maps the set of pause transitions TP ; ET is the set of termination
edges of the form → ether and EX the set of the remaining (execution) edges.

– EA = ES ∪ EM where ES contains the starting edge ether → start and EM

the mutual exclusion edges of the form c → cexec (for each thread-unsafe codel
c).

- Time intervals I: I (e) =]0 ,WA(c)] iff e ∈ EN (I (e) = [0 , 0 ] otherwise).
Now we define the guards and operations:
- Each edge in ET ∪ EP is augmented with the operation Π := M and the
operation UP(A,N ) that removes A (the activity “name”) from N ,
- The edge in ES , and each edge c → in EN ∪ EM such that exists an edge → c
in EP , are guarded with Π = A,
- Each edge c → in EM is augmented with the operation r c := true (see shared
variables in Sect. 3.3.1).
Finally, (i) the guard of each edge c → in EM is conjuncted with the expression
∀c′ ∈ μ(c) : ¬r c′ and (ii) r c := false is added to the operations of each edge
cexec → in EN .

Nominal edges map transitions that the programmer specifies, while additional
edges reflect actions enforced by Gen

oM3 to handle starting and concurrency.
Edges are uniquely defined through their source and target vertices. For activi-
ties, this can be concluded from syntax, restrictions and semantics (Sects. 3.2.1,
3.2.4 and Definition 3). For the manager and the timer, it is shown in Figs. 4
and 5.

Let us illustrate through an example how activities evolve following these
semantics, and how this coincides with the behavior in Sect. 2.1.1. We consider
a component with two tasks T and T ′. T is in charge of two activities A and
B (on which we focus) while T ′ is in charge of one activity D. We give the
syntactical definitions of A and B:

Activity A

– CA = {startA, etherA},
– WA(startA) = 1 ,
– TA = {startA → startA,

startA → etherA},
– TP

A = {startA → startA}.

Activity B

– CB = {startB ,mainB , etherB},
– WB (startB ) = 1 ,WB (mainB ) = 2 ,
– TB = {startB → mainB ,

mainB → mainB ,mainB → etherB},
– TP

B = {mainB → mainB}.

Now, because of the mutual exclusion between T and T ′, the start codels of
A (in T ) and D (in T ′) are in conflict: μ(startA) = {startD} (and symmetrically
μ(startD) = {startA}). The remaining codels are thread safe.

We apply Definition 3 to get the TTDs of A and B in Fig. 6 evolving within
T (the manager and timer (generic) TTDs are given in Figs. 5 and 4, respec-
tively). Starting an activity, from ether or wherever it was paused last, is subject
to having the control through Π (e.g. edge etherB → startB ). At the end of exe-
cution, either by pausing (e.g. edge mainB → mainB ) or terminating (e.g. edge
startAexec → etherA), the control is given back to the manager (Π := M), and



124 M. Foughali et al.

the activity removes its “name” from N (UP(), no further execution for this
activity in this cycle). Π ensures thus a sequential behavior within the same
task, that is between the manager and each A in A (no two edges in two differ-
ent TTDs can be enabled simultaneously).

At the codels level, outgoing edges of vertices c (the underlying codel is
thread safe, e.g. startB ) and cexec (otherwise, e.g. startA) are associated with
the interval ]0 ,W (c)] to reflect that the execution of a codel takes between a
non-null time and its WCET. Boolean expressions involving r c′ variables, which
take part in the guards on edges c → cexec , prevent the thread-unsafe codel c
to execute if there is at least a codel in μ(c) that is already running, and the
time interval [0, 0] allows it to execute as soon as this is no longer the case. For
instance, the guard on startA → startA exec disables this very edge (even when
A has the control) as long as the activity D (in the concurrent task T ′, not
shown here) is at vertex startD exec (denoting the execution of startD), captured
through the truth of the Boolean r startD . Similarly, operations r c := true on
edges c → cexec prevent thread-unsafe codels in μ(c) to run in parallel with c
(e.g. r startA := true on startA → startA exec). Finally, operation r c := false on
edges of the form cexec → (e.g. r startA := false) allow activities with codels in
conflict with c to capture the end of execution of c through the falseness of r c.

4 Translation

TTS semantics are translated to DUTA in order to automatically map Gen
oM3

to UPPAAL and UPPAAL-SMC. We show the translation for activities, since it
is rather straightforward for the manager and the timer (Fig. 7).

Fig. 7. DUTA translation of manager and timer

Mapping intervals into clock constraints and

�

edges may lead to incorrect
translations, as shown in Fig. 8 (activity B). Indeed, if Bta is paused (taking
mainB → mainB ), it will timelock after 2 time units unless it resumes the con-
trol before then (all outgoing edges from location mainB are disabled). This is
encountered when there is a vertex in the TTD that (i) maps a thread-safe codel
and (ii) is the target of a pause edge. This problem is due to clocks evolving inde-
pendently from edges enabledness in DUTA (in contrast to intervals in TTDs).
We propose a generic translation for all activities.
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Fig. 8. Incorrect translation (activity B) Fig. 9. Correct translation (activity B)

Definition 4 Activities Ata(DUTA). The DUTA translation Ata of the TTD
A (Definition 3), is given by the following rules:

- Clocks: Ata has a clock xA, whose initial valuation is zero,
- Locations: Each vertex c in A of a thread-safe codel c s.t. there exists → c

in TP is mapped to two locations c and cpause . Each remaining vertex in A is
mapped to a location with the same name. Each location c that maps a vertex
c 
= ether of a thread-safe codel is associated with an invariant xA ≤ ↑I(c →)
with c → any outgoing edge of c. The same invariant rule is applied to each
location cexec,

- Edges: - Each pause edge c
g,op−−→ c′ in A s.t. c′ is thread safe is mapped to

an edge c
xA>0 ,op−−−−−→ c′

pause, and an eager edge c′
pause

g,x :=0−−−−→ c′ is added.
- Each remaining edge in A is mapped to an edge in Ata with the same source

and target, where: (1) intervals [0, 0] are mapped into

�

edges, (2) each outgoing
(resp. incoming) edge of a location associated with an invariant is guarded (resp.
augmented) with xA > 0 (resp. with xA := 0), then (3) guards (resp. operations)
associated with each edge result from the conjunction (resp. sequencing) of guards
(resp. operations) of its TTD counterpart and the guards (resp. resets) over
clocks.

These rules allow clocks to evolve unboundedly at locations cpause (when the
activity is paused). Resuming the activity is then equivalent to taking the edge
cpause → c with a clock reset to count the WCET of c starting from 0, which we
may see when applying Definition 4 to activity B (Fig. 9).

Translation Soundness: DUTA models must be faithful to the Gen
oM3 semantics.

We use weak timed bisimulation to prove that the translation is sound. Details
on the proof may be found in [11].

5 Automatic Mapping

We see how the DUTA models are automatically mapped into UPPAAL and
UPPAAL-SMC. In order to do so, we first present the current implementation.
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Implementation: In the actual implementation (either in ROS-Comm or PocoL-
ibs middleware), the set of activities to execute (N) is substituted with an array
run of size n = |A| (the number of activities in the task) of records, starting
at index 0. Each record is composed of two fields: an activity “name” m and
its “status” s, that may be requested (r) or idle (d), equivalent, respectively,
to A ∈ N and A /∈ N in the semantics. The operation arand(t) initializes the
status s fields of array t randomly. The variable i, initially equal to 0, ranges
from 0 to n. The function next(t , b) browses the array t, starting from index b,
and returns the index of the first element with s = r (|t | if such an element is
not found or b = |t |).

The implementation of a task is then derived from its semantics as
follows. For any activity A, each operation UP(A,N ) is replaced by
i := i + 1 , i := next(run, i). In the manager, the guard N 
= ∅ (resp. N = ∅) is
replaced by i 
= n (resp. i = n), the operation Π := rand(N ) by Π := run[i ].m,
and the operation rrand(N ) by arand(run), i := next(run, i) (in reality, the run
array is updated by the control task, not considered in our presentation). Finally,
the edge manage → wait in the manager is augmented with the operation i := 0 .
Accordingly, the implementation model of task T (Figs. 4, 5 and 6) is given in
Fig. 10. Trivially, the semantics (allowing random “scheduling” of activities) is
a superset of the implementation (where the order of execution of activities is
predefined when initializing names fields (m) in run). The random scheduling
at the semantics level allows to derive different implementations if needed. For
DUTA, it is sufficient to apply the TTD-DUTA translation rules. Figure 11 gives
the DUTA implementation of activity A (Fig. 10).

Fig. 10. TTDs in task T (implementation). Fig. 11. DUTA (implementa-
tion) of activity A.
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5.1 Mapping to UPPAAL

We see how to model an activity. First, we deal with urgent edges (UPPAAL only
allows urgent channels, Sect. 2.2). We add a process urgency and synchronize its
unique edge, over an urgent channel exe, with each eager edge in the activity
(and with all eager edges in the system):

Now we can model e.g. activity A. Listing. 3 is a partial UPPAAL model of
A (only additional edges are shown). Constant M = 0 denotes the manager, so
Π ranges over [M , size run] (line 1) where activity names are encoded in turn
as constant integers in this range. CELL is the record type for run (line 1) and
mut is an array that facilitates implementing mutual exclusion variables (r c
becomes mut [r c], line 1, 7).

5.2 Automatic Synthesis

We generalize the approach for automatic synthesis using the template mech-
anism (Sect. 2.1.2). We develop a template that generates automatically the
UPPAAL model for any Gen

oM3 specification (made of any number of compo-
nents). We show an example on how additional edges are generated for a given
activity a (listing 4). The interpreter outputs everything as is, except what is
enclosed in <’ ’> that it evaluates in Tcl, and in <” ”> that it evaluates and
outputs the result.

In lines 3 to 7, we check each outgoing transitions of each codel (keyword
yields), and append the successor to the list p if such transition is a pause. We
also append the codel c to the list tu if its field mutex , which contains the codels
c is in conflict with, is not empty. Therefore, p contains all the codels targeted
by a pause and tu all thread-unsafe codels in a. At line 11, we generate the
starting edge, then the mutual exclusion edges from line 12 to 20, where, for
each thread-unsafe codel c, we add the guard on having the control through Π
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if c is also in p (applying Definition 4 and inductively Definition 3). The task
name is added to distinguish variables in different tasks.

Extending to UPPAAL-SMC: Implementation templates (Sect. 2.1.2) generate,
for each transition in each activity, a line with the number of its occurrences:

A .proba file is thus constructed, then passed as an argument to the UPPAAL-
SMC template, together with the Gen

oM3 specification. Listing 5 shows an excerpt
of the UPPAAL-SMC template. For simplicity, we only show the case where
the source codel is thread safe and none of its outgoing transitions is pause
or termination. Line 3 conditions adding probabilities by the existence of more
than one successor. Line 5 connects the edge to a branchpoint (as shown in
Sect. 5.1). Lines 6–8 generate the outgoing edges of the branchpoint and extract
occurrences from the .proba file.
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6 Verification Results

We use the automatically generated models (Sect. 5) to specify and verify impor-
tant real-time properties on the quadcopter case study (Sect. 2.1.3). Experiments
are carried out on a laptop (Intel Core i7; 16 GB of RAM). Tasks are assigned
to independent cores on the hardware. Experiments, with instructions on how
to reproduce them, are freely clonable from https://github.com/Mo-F/uppaal-
smc-exp.

6.1 Model Checking

With UPPAAL, we get the same results as with the Fiacre template in [8]:
the stationary flight application (excluding the component Maneuver) scales,
while the navigation application (involving all components) does not. We use
UPPAAL-SMC for the latter.

6.2 Statistical Model Checking

As seen in Sect. 2, components need to receive requests from clients to run.
For that, we add a client to ensure a navigation application (see below). The
automatically generated UPPAAL-SMC model of the quadcopter plus the added
client make 36 complex processes overall, on which we carry out the statistical
verification.

6.2.1 Client
The client (Fig. 12) uses urgent channels rc X (X is a component) to send activ-
ities requests to components, through rq X variables. Since UPPAAL-SMC sup-
ports only broadcast channels, we guard each channel rc X with the Boolean
s X, true only when X is ready to receive a request (which forces a rendezvous
behavior). Location hold is for waiting an amount t between sending servo-
ing requests (nhfc and mikrokopter) and taking off (maneuver), as servo-
ing must have already started before taking off (which is an important prop-
erty to verify). Exponential rates are required on invariant-free locations (high
rates imply a high probability to leave the location at smaller time values, but
values are unimportant here because of the urgencies enforced by rc X chan-
nels). The self-loop at location navigate enables, using the Boolean f , issuing a
new goto request each time the last goto activity (to navigate) has ended (goal
invalid, reached, or unreachable). From the same location, a request wait then
take off can be sent (to land). The client covers thus all the possible scenarios of
navigation.

6.2.2 Properties of Interest
The following properties are crucial such that accidents may occur if they are
not satisfied.

https://github.com/Mo-F/uppaal-smc-exp
https://github.com/Mo-F/uppaal-smc-exp
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Fig. 12. UPPAAL-SMC client (quadcopter navigation).

Readiness: When requests are sent to maneuver, the previously requested activ-
ities from mikrokopter and nhfc must have already started executing. Find
the minimum value of t to satisfy this property with the highest possible prob-
ability.
Schedulability: Estimate the probability of schedulability of periodic tasks in the
critical components pom, mikrokopter and nhfc.

6.2.3 Verification with UPPAAL-SMC
Statistical parameters are set to a high confidence (0 .98 ) and precision (0 .005 ),
and the runs are bounded to b = 10s.
Readiness: Readiness is typically a bounded response property, not supported by
UPPAAL-SMC. We propose an alternative using the Until operator. An activity
starts once its codel start begins executing, which is equivalent to reaching the
location start exec (since none of the codels start in this context is thread safe).
Therefore, the client “cl” must not reach location start4 (from which it sends
requests to maneuver) before locations start exec of each previously requested
activity (start and servo (mikrokopter) and servo in nhfc) is reached. Readi-
ness boils down then to the conjunction of the three Until properties in listing 6.

Note that attempting to reduce these properties to only one using the conjunc-
tion of their right terms would result in a stricter property (e.g. start exec of
servo may be left before start exec of servo nhfc is reached). We tune t starting
from 1 ms. The highest possible probability is returned by the verifier (≥99%
considering the precision, 0.005 ± 0.005) for all of the three properties as soon
as t is equal to 8 ms. Results for p3 for different values of t are given in Table 1.
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Table 1. Analysis results for p3 (list-
ing 6) with the query Pr [<= b]p3 .

t (ms) Results Runs Time

7 Pr ∈ [0 .98 , 0 .99 ] 3279 12

8 Pr ∈ [0 .99 , 1 ] 1595 6

100 Pr ∈ [0 .99 , 1 ] 390 3

Table 2. Analysis results for schedulability
(pom)

Task Query Results Runs Time

io Pr [<= b]vsio Pr ∈ [0 , 0 .01 ] 390 966

filter Pr [<= b]vsfilter Pr ∈ [0 , 0 .01 ] 390 962

Therefore, in order to ensure a high probability of satisfying Readiness, t may
have any value larger than 8 ms. We fix it to 1 s.
Schedulability: It is reduced to a reachability property. Indeed, it is sufficient
to verify that whenever the manager is executing activities (at location man-
age), no new period signal is received (sig is false), see Fig. 7. The probability of
violating this property is the lowest possible for all tasks of the critical compo-
nents pom, mikrokopter and nhfc (≤1%). Examples of results on pom tasks
are given in Table 2 with vsT being the violation of schedulability of task T :
<> manager T .manage and sig T .

6.2.4 Discussion
While we cannot verify some properties in a precise way (due to scalability issues
with model checking), the results we get with UPPAAL-SMC are encouraging.
We verify important properties up to a high probability, which is better than
classical scenario-based testing. The verification is cost effective: around 15 min
in the worst case, and a remarkably low memory consumption (less than 15 mb).
Nevertheless, two main issues are encountered, besides non exhaustivity. First,
though 99% is fair for this application, we generally lack precise requirements
expressed probabilistically in the robotics domain. Second, the expressiveness
of UPPAAL-SMC query language is limited (e.g. bounded response properties
are not supported). While we often manage, with some artefacts, to verify closer
alternatives, such artefacts need a proficiency with formal languages that robotic
practitioners do not possess.

7 Related Work

Model Checking: The synchronous language ESTEREL [3] is used in some model-
checking-based verification works such as [18,30,31], where the robotic specifica-
tions are either translated by hand to, or hard-coded in ESTEREL. Efforts such
as [24] rely on automatic translation of RoboChart models into CSP [27] in order
to verify real-time properties. However, RoboChart is not a robotic framework
(its models are not executable on robotic platforms). That is, robotic appli-
cations, initially specified in a robotic framework, need to be modeled first in
RoboChart, then translated into CSP. An attempt to formalize ROS components
is developed in [13] where UPPAAL is used to verify buffer-related properties
(no overflow). Only the message passing part (publisher/subscriber) is modeled,
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manually, and crucial bounded response properties (e.g. messages are delivered
within a bounded amount of time), are not verified. Our work distinguishes itself
across three main aspects: (i) this is the first work that fully formalizes a robotic
framework for functional-layer specifications, (ii) modeling is fully automatized
and (iii) only real-world applications are analyzed.

Statistical & Probabilistic Model Checking: Real-time statistical/probabilistic
model checking has been used to verify systems in various domains such as com-
munication protocols [21], railway systems [6] and decisional robotics [29]. At the
functional layer of robotic systems, statistical and probabilistic model checkers
are seldom used. The work presented in [14] is a notable exception. ROS graphs
are formalized in an ad-hoc fashion (no operational semantics given), then, on
an autonomous vehicle case study, PRISM [20] estimates the probability of find-
ing an object in a bounded amount of time. To the best of our knowledge, our
work presented here is the first that applies real-time statistical model check-
ing to complex, concurrent functional layer, where formal models are sound and
automatic. The choice of UPPAAL-SMC is motivated by the fact that the auto-
matic translation gives us the opportunity to use regular UPPAAL and resort
to UPPAAL-SMC when models do not scale.

Comparison to Our Previous Work: In our previous efforts to verify the quad-
copter, model checking scaled only for the stationary flight, excluding the
Maneuver component [8,9]. This is the first work that verifies the naviga-
tion application, involving all the components, through sound and automatic
bridging with UPPAAL-SMC.

8 Conclusion

We propose in this paper automatic and sound generation of formal models
from robotic specifications, and obtain encouraging results on a real application.
Our contributions advance the state of the art toward a correct and practical
verification of robotic systems.

However, it is difficult to set the probabilities for properties because we lack
this kind of requirements in robotics. We need to investigate further this problem.
Moreover, the restricted query language of UPPAAL-SMC forced us to reason on
alternatives using the supported operators only. For a robotic programmer, this
could be discouraging since it requires a good knowledge of the tool, the query
language and the underlying logic. A possible future work consists therefore in
developing query-to-query transformations that are transparent to the practi-
tioner. Finally, we are interested in verifying some hardware-related properties
using SMC such as energy consumption (as in [28]).
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Abstract. Configurable software allows users to customize software
behaviors through configurations. However, software misconfigurations
that lead to the hard-to-diagnose system crash failures could inflict enor-
mous harm to users and should be diagnosed with a high priority. To
address this problem, we present a systematic approach (and its tool
implementation, called STAD) to diagnosing misconfigurations based
on static code analysis. Our approach analyzes the value dependency
between variables obtained by exploring the stack trace, generates the
value dependency graph (VDG), recommends the root cause of a mis-
configuration via the VDG, and utilizes the correlation between config-
uration options to improve our recommendation results. There are two
advantages compared with existing approaches: STAD does not require
software crash reproduction, and users do not need to provide configura-
tion options and their option read points (i.e. the statements that access
the values of configuration options). We evaluated STAD on 8 misconfig-
urations from JChord built on Java. STAD can successfully diagnose all
misconfigurations with less average number of false positives compared
with existing approaches. In addition, STAD runs in less than one minute
for each misconfiguration, making debugging more efficient.

Keywords: Misconfiguration diagnosis · Value dependency graph ·
Configuration options · Static analysis

1 Introduction

To meet specific user demands, configurable software allows users to customize
software behaviors with sufficient configuration options. However, due to the
configuration complexity caused by the increase of configuration options and
configuration constraints, and the lack of user domain knowledge, software mis-
configurations occur frequently. In recent years, misconfigurations have become
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one of the main causes of system failures [18]. For example, in September 2018,
a MongoDB server belonging to Veeam exposed hundreds of millions of records
because of a misconfiguration [12]. In November 2018, a DNS server misconfig-
uration caused an outage of AWS in Seoul for about two hours [20]. Rabkin and
Katz [13] pointed out that misconfigurations are the primary cause of Hadoop
cluster failures, in terms of the number of technical support cases and support
time. Similar problems have also been confirmed in other types of systems, such
as storage systems [10,19], data-intensive systems [21] and cloud systems [9].

Yin et al. [19] reported that mistaken parameter values account for 70%–
85% of all misconfigurations and that a significant portion of misconfigurations
can cause crashes. A crash not only leads to a poor user experience, but also
damages the interests of users. In addition, the magnitude of the hazard is usually
positively correlated with the duration of the crash. So, misconfigurations that
lead to the system crash failures should be diagnosed with a high priority.

Diagnosing such misconfigurations is very time-consuming and tedious. To
deal with this predicament, many researchers are committed to developing tools
to achieve automatic misconfiguration diagnosis [2,7,13,23]. However, many
tools such as ConfAid [2] and ConfDiagnoser [23] assume that users can rerun the
software with previously misconfigured configuration settings to reproduce crash
errors. Unfortunately, manual crash reproduction is labor-intensive and tiresome
[5]. And automatic crash reproduction is difficult, either introduces non-trivial
performance overhead, or fails to reproduce many crashes in practice because of
scalability issues, such as the path explosion problem [4] and the object creation
challenge [16]. Moreover, crash reproduction can infringe on user privacy as it is
likely to collect user personal configuration settings. ConfDoctor [7] can diagnose
misconfigurations without program re-execution and crash reproduction, but it
requires users to manually search for configuration options in a document and
find option read points for each configuration option from the source code. Here
an option read point (orp) is a statement that accesses a configuration option
value. For most configurable software, their source code has at least thousands
of lines and their documents have dozens of pages. Manual labor is huge and
error-prone. Moreover, because of the limitations of development resources, the
documents of some software cannot be updated in time, and even some software
does not provide supporting documents, so that users cannot obtain accurate
and complete configuration options. Locating orps from the source code requires
professional code analysis capabilities, which is an obstacle for ordinary users.

Our approach (and its tool implementation STAD) aims to address the above-
mentioned challenges. The key idea of STAD is to track the value flow of variables
through the methods related to the crash stack trace, then label the variables
that are directly associated with configuration options, and finally output a
ranked list of suspicious configuration options that may cause the misconfig-
uration. STAD determines the entry statement and relevant methods for the
diagnosis analysis by exploring the stack trace, and identifies the configuration
options and corresponding orps based on the classes managing configuration
APIs. Besides, STAD computes the correlation between configuration options
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by considering the line spacing between orps to improve the recommendation
results. As a lightweight approach, STAD does not need crash reproduction,
code instrumentation or personal configuration settings. It needs only the crash
stack trace of the current misconfiguration. The contributions of this work are
the following ones.

– Aimed at a new configuration convention we found, a novel approach to
extracting configuration options and locating orps for programs is presented.

– A systematic approach to diagnosing software misconfigurations is presented.
It uses only static analysis.

– An empirical evaluation on 8 misconfigurations from JChord1 and a compar-
ison with three existing approaches demonstrate the usefulness of our app-
roach.

The rest of this paper is organized as follows. We first present the overview of
our approach. In Sect. 3, we detail our approach. Section 4 describes the imple-
mentation. In Sect. 5, we evaluate the accuracy and efficiency of our approach,
and compare our approach with three existing approaches. Section 6 discusses
related work. We summarize our conclusions in Sect. 7.

2 Technique Overview

The key-value configuration structure has been adopted by many configuration
mechanisms, such as the Unix system environment, the Windows Registry and
the Java Properties API [14]. In this paper, we focus on this type of configuration
structure. Configurable software commonly contains a base class for managing
the configuration options and configuration APIs intensively [6]. We adopt this
coding convention and call this class the main configuration class (mcc). Each
module of software may have its own configuration class, and these classes usually
inherit from the mcc.

Figure 1 illustrates the workflow of our technique. STAD only takes as input
the crash stack trace, the source code and the name of the mcc. STAD first
preprocesses the stack trace to obtain a sorted set of statements related to stack
frames (Sect. 3.1), and identifies all configuration options and orps corresponding
to each option (Sect. 3.2). Then, STAD analyzes the value dependency between
variables to generate the value dependency graph (VDG) based on the sorted
statements set, configuration options and orps (Sect. 3.3). Different from [15],
here the VDG is a directed graph where each vertex represents a variable and
a directed edge (a, b) stands for variable a depending on variable b in terms of
value. Finally, STAD recommends the suspicious options by analyzing the VDG
and report the ranked results to users (Sect. 3.4).

We use Java as an example to explain the technical details, but the technology
can be extended to other object oriented languages that support stack trace.
Besides, the configuration options are set and manipulated at the source code

1 JChord: https://bitbucket.org/psl-lab/jchord/.

https://bitbucket.org/psl-lab/jchord/


138 Y. Liu et al.

level [3]. The misconfiguration options reside in the source code of the application
instead of the libraries. So we exclude the standard JDK library and the third-
party libraries when analyzing the source code. This practice was used in several
past papers [7,13].

Fig. 1. Workflow of our misconfiguration diagnosis technique.

3 Systematic Diagnosis Analysis

This section describes our analysis in more detail, presenting four subanalyses
in turn according to the diagnostic process.

3.1 Preprocessing the Crash Stack Trace

A crash stack trace comprises the exception type and an ordered list of crash
stack frames of size of k as shown in Fig. 2. Each crash stack frame contains
the fully qualified class name, the name of the method called up, as well as the
file name and line number where the call happened. And each frame points to
one specified execution point (usually called one frame execution point) which
is denoted by fepi, for i = 1, . . . , k (see Fig. 2). The fep1 is the point where
an unhandled error was detected, and the method containing fepj+1 called the
method containing fepj (j = 1, . . . , k− 1) at the statement fepj+1. We prepro-
cess the crash stack trace according to the following two steps.

Filtering the Crash Stack Trace. We adopt two rules to filter the crash stack
trace to get frames. First, we omit the first line that indicates the exception type
and only extract frames that range from the second line to the end line. Second,
the top several frames occasionally point to the libraries, and we exclude them
by matching the full qualified class names with regular expressions. We define
T as a sorted set of the frames obtained after filtering:

T = {ti, i = 1, . . . , n}
where ti represents a crash stack frame obtained after filtering, and n is the
number of these frames.
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Fig. 2. A crash stack trace.

Fig. 3. An example of option variable
declarations.

Fig. 4. A segment of BNF grammar
specification for accessing an option
variable.

Locating Frame Execution Points. Each frame ti in T can be only mapped
to one frame execution point fepi according to the file name and the line number
in ti. We define F as a sorted set of the feps located based on T :

F = {fepi, i = 1, . . . , n}
where n is equal to the size of T .

3.2 Locating Option Read Points

ORPLocator [6] can locate the majority of orps in some software. However,
it only considers the convention that configuration classes provide developers
with methods whose names start with the prefix get for obtaining configuration
option values. We observe that some software, for example, JChord, does not
provide such get-methods. Developers need obtain configuration option values
by accessing the variables declared in configuration classes. These variables are
used to store configuration option values, and we call them the option variables,
such as maxHeap, maxStack and jvmargs in Fig. 3. For the latter case, we propose
a new approach to extracting configuration options and locating orps.
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Identifying Configuration Classes. To obtain all configuration options and
orps, we identify all configuration classes including the mcc and mcc’s subclasses.
A configuration class is denoted by conf and all configuration classes are stored
into a set called C. If a class inherits from conf , we also add it to C.

Searching for Option Variable Names. There is a consistent one-to-one
match between each option variable and each configuration option. For a con-
figuration option, STAD determines its option variable in accordance with two
assumptions. First, each option variable can only be assigned once and is initial-
ized with library functions to ensure the consistency of the option value. Second,
each configuration option name is a string composed of words and separators.
The separators are usually “.” or “ ”.

We define P as the set of key-value pairs to store the option variable names,
and in each pair the value (i.e. Moption(ci)) is also a set of key-value pairs:

P = {〈ci,Moption(ci)〉, i = 1, . . . , t}
where ci represents the name of confi in C, in each pair of Moption(ci) the key
represents the option variable name and the value represents the configuration
option name, and t is the size of C.

Algorithm 1. Getting option variable names and option names.
Auxiliary functions:
searchAllDeclofClassFields(c): get the declaration statements of static fields in class c
getClassFieldName(stmt): get the option variable name from the statement stmt
getOptionName(stmt): get the option name from the statement stmt
orderPbyInheritance(): order P by key, and the base class precedes all its child classes
getSuperClass(c): get the name of the base class of class c
Global: P , C
getClassVarOptionMap()

1: for each c in C do
2: statements ⇐ searchDeclStaticFields(c)
3: if statements is not null then
4: Mo p t i o n (c) ⇐ null
5: for each stmt in statements do
6: key ⇐ getClassFieldName(stmt)
7: value ⇐ getOptionName(stmt)
8: Mo p t i o n (c).put(key, value)
9: end for
10: P .put(c.name,Mo p t i o n (c))
11: end if
12: end for
13: orderPbyInheritance()
14: for each p in P do
15: superClassName ⇐ getSuperClass(p.key)
16: if superClassName is not null then
17: p.value ⇐ p.value ∪ P .get(superClassName)
18: end if
19: end for

The algorithm for computing P is shown in Algorithm 1. We compute
Moption(ci) based on confi and confi’s base class because a subclass can inherit
the static fields from its base class.
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Locating Access Sites of Option Variables. An access site of an option
variable is the statement where the option variable is accessed. Obviously, an
access site of an option variable is an orp. An option variable can have multiple
access sites. The grammar of accessing an option variable is depicted in Fig. 4.

As the grammar shows, an option variable can be accessed in two ways: by
its name or with a reference. For the latter usage, we consider three cases. So
we locate the access sites of an option variable according to the following four
cases. For an access site, we use the file name and the line number to indicate
an orp.

– As a static field, an option variable can be directly accessed using its name
inside the conf where it is declared.

– The <reference> refers to a class name.
– The <reference> refers to an instance of conf or a method call expression

that returns an instance of conf .
– The <reference> refers to an instance creation expression.

We do not consider accessing an option variable by the this or super keyword,
because the this and super cannot access a static field in Java.

We define the collection of located results L as a set of key-value pairs, and
the value (i.e. Morps(ci)) of each pair is also a set of key-value pairs:

L = {〈ci,Morps(ci)〉, i = 1, . . . , t}

where ci represents the name of confi in C, in each pair of Morps(ci) the key
represents the option variable name and the value represents the corresponding
orps, and t is the size of C.

Linking Option Read Points to Options. P has the same keys (i.e. config-
uration class names) with L. And for a fixed ci, Morps(ci) has the same keys
(i.e. option variable names) with Moption (ci). So we can build a table mapping
each orp to the configuration option name most directly related to it.

3.3 Analyzing the Value Dependency Between Variables

Our investigation shows that the root cause of a statement throwing a runtime
error is the abnormal value of a variable in the statement. And the mistaken value
of a configuration option causes the abnormal value to appear via the value
dependency between variables. We determine the value dependency between
variables based on the statements with assignment operations, and use the VDG
to describe it.

Unlike traditional data dependency analysis, we do not try to find all possible
dependencies, but make full use of stack trace to find the most relevant depen-
dencies between variables instead of statements, which can greatly reduce the
computational space. The workflow of analyzing the value dependency between
variables is shown in Fig. 5.
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Fig. 5. Workflow of analyzing the value dependency between variables.

Extracting Variable Names from a Statement. We classify statements into
assignment type statements and non-assignment type statements. The assign-
ment type statements consist of assignment statements, for-each statements and
setter methods call statements. We consider the assignment type statements as
the basis of analyzing the value dependency between variables. We consider the
following four cases to extract the variable names, and use the set V to store
them.

First, for an assignment statement, we determine whether a basic assignment
operator (i.e. “=”) is included. If it contains a “=”, we extract variable names
from the right of “=”. If it contains a compound assignment operator, such as
“+=” and “/=”, the left operand also impacts itself, so we extract variable names
from both right and left of the compound assignment operator. Specially, for an
object initialization statement, we extract the parameter from the parameter
list of the constructor. Because of one or more parameters of the constructor,
we need to build the correspondence between the instance variables and the
parameters of the constructor in advance.

Second, for a for-each statement, for instance, for (type var : array), var is
assigned by per element of array, so we extract the name of array.

Third, for a setter method call statement, we extract the parameter name
from the parameter list of the setter method.

Last, for a non-assignment type statement, we take all variables into consid-
eration because we can’t determine which variable’s value is abnormal.

After extracting a list of variable names from a statement, we remove dupli-
cates from the list, and mark the location for each variable using a class name
and a method name.

Searching Backwards for the Last Assignment Type Statement. For a
variable in V , we propose Algorithm 2 to search backwards for the last assign-
ment type statement of it. The statement in which the variable is extracted is
denoted by analStmt. We search inside the method where analStmt is located,
and use the line number to compute the distance between an assignment type
statement and analStmt.

We specifically consider the situation whether analStmt is inside a condi-
tional block. If analStmt is not inside a conditional block, we search all con-
ditional blocks backwards because we are not sure which conditional block the
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program has executed; otherwise, we only search the conditional block inside
which analStmt is and ignore the others.

Algorithm 2. Searching backwards for the last assignment type statement(s)
of the variable.
Auxiliary functions:
getAllAsgmtTypeStmts(varName): get all assignment type statements that assign
values to the variable named varName
getLineNum(analStmt): get the line number of the statement analStmt
isInDiffBlock(stmt1, stmt2): determine whether stmt1 and stmt2 are inside different
blocks of the same conditional statement
Input: the variable name varName and the statement analStmt where the variable
is located
Output: the last assignment type statement(s) of the variable
getAsignStmts(varName, analStmt)

1: preAsgmtTypeStmts ⇐ null
2: allStmts ⇐ getAllAsgmtTypeStmts(varName)
3: ln ⇐ getLineNum(analStmt)
4: if allStmts is not null then
5: remove the elements whose line numbers are greater than ln from allStmts
6: sort allStmts in descending order of line number
7: for each stmt in allStmts do
8: if isInDiffBlock(analStmt, stmt) then
9: allStmts.remove(stmt)

10: end if
11: end for
12: asgmtTypeStmt ⇐ allStmts[0]
13: preAsgmtTypeStmts.add(asgmtTypeStmt)
14: for each stmt in allStmts do
15: if isInDiffBlock(asgmtTypeStmt, stmt) then
16: preAsgmtTypeStmts.add(stmt)
17: asgmtTypeStmt ⇐ stmt
18: end if
19: end for
20: end if
21: return preAsgmtTypeStmts

Determining the Corresponding Arguments. Since Java passes arguments
by value, there is the value dependency between parameters and arguments.
Given a parameter, we determine the corresponding argument by taking the
following steps. First, we compute the index of the parameter in the parameter
list and store the index into a set S. Second, we find the method call statement
based on F . Last, we use the index to search for the argument in the argument
list.
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Generating the Value Dependency Graph. By integrating the previous
steps, Algorithm 3 is proposed to analyze the value dependency between vari-
ables inside a method. If an orp is found, we add the configuration option name
related to it to V and stop looking for a new assignment type statement for this
option. For each element in V , we use E to store their value dependencies. After
performing the analysis, we generate the VDG using V and E.

Algorithm 3. Intraprocedural value dependency analysis.
Auxiliary functions:
isOptionReadStmt(analStmt): get configuration option names if the statement analStmt is an orp
getVarNames(analStmt): extract variable names from the statement analStmt
maintainEdges(): maintain E when a new vertex is added to V
getParmIndex(varName, analStmt): get the position of the variable named varName in the
parameter list of the statement analStmt
getParmIndex(varName, analStmt): is the function from Algorithm 2
Global: V , E , S , varNameLst (a list of variable names extracted from statements)
getValueDependencyInfo(analStmt)

1: optionNames ⇐ isOptionReadStmt(analStmt)
2: varNames ⇐ getVarNames(analStmt)
3: if varNames is empty then
4: if optionNames is not empty then
5: V .add(optionNames)
6: maintainEdges(optionNames)
7: end if
8: return
9: else
10: V .add(varNames)
11: varNameLst.add(varNames)
12: if F does not contain analStmt then
13: if optionNames is not empty then
14: V .add(optionNames)
15: maintainEdges(optionNames)
16: end if
17: maintainEdges(varNames)
18: end if
19: end if
20: while varNameLst is not empty do
21: stmts ⇐ getAsignStmts(varNameLst[0], analStmt)
22: if stmts is not empty then
23: for each stmt in stmts do
24: maintainEdges(varNameLst[0])
25: varNameLst.remove(varNameLst[0])
26: getValueDependencyInfo(stmt)
27: end for
28: else
29: maintainEdges(varNameLst[0])
30: varNameLst.remove(varNameLst[0])
31: S .put(varNameLst[0], getParmIndex(varNameLst[0], analStmt))
32: end if
33: end while

Moreover, the crash stack trace usually involves multiple methods. Therefore,
based on Algorithm 3, we designed Algorithm 4 which is suitable for multiple
associated methods. Taking fep1 of F as the entry statement, when S is empty
or all feps are analyzed, Algorithm 4 ends.
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A callee can be called by multiple callers, but Algorithm 4 can precisely
determines the caller of a callee based on F (details in Sect. 3.1). So we consider
that STAD is context-insensitive.

Algorithm 4. Interprocedural value dependency analysis.
Auxiliary functions:
getArgumentNames(index, stmt): get the argument name via the parameter index
Global: F , V , E , S
mainValueDependencyAnalysis()

1: for each stmt in F do
2: if S is not empty then
3: for each s in S do
4: edges ⇐ edges + s.key+ “,” + getArgumentNames(s.value, stmt) + “@”
5: end for
6: end if
7: S .clear()
8: getValueDependencyInfo(stmt)
9: if S is empty then
10: break
11: end if
12: end for

3.4 Recommending Suspicious Configuration Options

The collection of variable names that are extracted from the statement fep1 is
denoted by V1. For a vertex vi in the VDG, the shortest path distance between
vi and V1 is defined as:

d(vi) = min({Distance(vj , vi) | vi ∈ V , vj ∈ V1})

where the Distance(vj , vi) is used to compute the path distance from vj to vi.
If vj cannot reach vi, d(vi) is infinite.

The suspicious configuration options are stored into a sorted set Ω. We use
the following strategy to compute Ω.

VDG with Option Names. If there is only one configuration option name,
we directly add it to Ω. If not, we first compute the shortest path distances
between option names and V1, then add these option names to Ω in ascending
order of the distance.

Moreover, Zhang et al. [22] reported that there are rich correlations between
configuration options. If there is a configuration correlation between option A
and option B, the misconfiguration of option A may affect the access of option
B. In this situation, we find that the crash stack trace is usually related to option
B instead of option A. And there is a method in which both option A and option
B are read. We exploit such correlations to improve our recommendation results.
For each option X in Ω, we first search for the options whose orps and the orps
of X are located inside the same methods. Then we compute the line spacing
between orps. These two steps are easy to accomplish via the table obtained in
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Sect. 3.2. Last, we append these option names to Ω in ascending order of the
line spacing.

VDG Without Option Names. This situation is caused by the incomplete
location of orps. Because during the software maintenance, developers may not
centralize the new configuration options into the configuration classes for man-
agement, but instead declare the option variables where needed and access them.
However, we find that these option variables are among the extracted variables
that do not depend on other variables.

For the VDG, we define the sorted set V2 as the collection of vertexes that
are not starting points of directed edges. First, we compute d(vk) for each vertex
vk in V2, remove the vertexes from V2 whose distances are infinite, and sort V2

in ascending order of d(vk). Then, for each vertex in V2, we search for the dec-
laration statement of the variable represented by the vertex, extract the option
name based on the second rule described in Sect. 3.2, and add the option name
into Ω. Last, similar to the first situation (i.e. VDG with Option Names), for
each option in Ω, we search for the options that may have a correlation with it
and add them into Ω.

4 Implementation

We implemented a tool called STAD as our technique prototype. STAD is built
on Java and relies on the srcML2 toolkit. The srcML toolkit supports convert-
ing the source code into an XML document. Different types of statements are
identified by different XML elements. Therefore, STAD analyzes the source code
by searching for and analyzing XML elements. STAD uses the XPath (version
2.0) to analyze the XML document directly and uses Graphviz3 to visualize the
value dependency between variables.

5 Evaluation

To evaluate how effective and efficient is STAD in systematically diagnosing
misconfigurations, we investigated the following aspects. (1) The effectiveness
and time cost of STAD in extracting configuration option names and locating
option read points. (2) The effectiveness and time cost of STAD in misconfigu-
ration diagnosis. (3) Comparison with existing techniques on misconfiguration
diagnosis.

5.1 Experimental Setup

We evaluated STAD on JChord (version 2.1) which is a program analysis plat-
form for Java. We reproduced 8 misconfigurations listed in Table 1. The config-
uration option names for each error are shown in column “Erroneous Configu-
ration Option” in Table 5. These misconfigurations are from [8] and have been
used to evaluate ConfAnalyzer [13], ConfDiagnoser [23] and ConfDoctor [7].
2 srcML: https://www.srcml.org/.
3 Graphviz: https://www.graphviz.org/.

https://www.srcml.org/
https://www.graphviz.org/
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Table 1. Misconfigurations of JChord used in the evaluation.

Error ID Description of misconfiguration

1 No main class is specified

2 No main method in the specified class

3 Running a nonexistent analysis

4 Invalid context-sensitive analysis name

5 Printing nonexistent relations

6 Disassembling nonexistent classes

7 Invalid reflection kind

8 Wrong classpath

We ran our experiment on a laptop with Intel Core i7 6700HQ (2.6 GHz) and
8 GB physical memory, running Windows 10.

5.2 Results and Analyses

Locating Option Read Points. The configuration options provided by
JChord can be got from the online document4. For the corresponding orps,
two people located them from the source code and resolved the discrepancies.
The number of orps found by two people was 209 and 214, respectively. After
inspected, 209 identical orps were identified and we adopted these 209 orps.
We treat a line of code as an object to be evaluated when analyzing inter-rater
agreement. The Cohen Kappa score is near 0.987.

Table 2. The overall results of STAD.

Item STAD Documented Documented and Found

#Found %Found

Configuration options 59 60 56 93.3%

orps 211 209 203 97.1%

Accuracy. The overall results are shown in Table 2. STAD identifies 59 configu-
ration options and 211 orps. For documented configuration options and orps, it
finds 56 out of the 60 options (93.3%) and 203 out of the 209 orps (97.1%). The
reasons why the 4 options are not identified by STAD are shown in Table 3.
Time Cost. As shown in Table 4, column “orps” represents the time cost of
STAD in extracting configuration options and locating orps. The time cost is
only related to the source code, so it takes 30 s for each error. This far exceeds
manual identification. Note that this is a one-time effort, and it is suitable for
the diagnosis of different misconfigurations of the same software.
4 https://www.seas.upenn.edu/∼mhnaik/chord/user guide/properties.html.

https://www.seas.upenn.edu/~mhnaik/chord/user_guide/properties.html
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Table 3. The reasons why options are not found by STAD.

ID Option name Description

1 chord.props.file Option values are directly accessed
by the Java Properties API

2 chord.args.<id>

3 chord.ssa Option name is changed

4 chord.print.methods Option is removed

Table 4. Time cost of STAD (seconds).

Error ID Stack trace orps Value
dependency

Suspects Total

1 12 30 3 10 55

2 12 30 2 10 54

3 5 30 3 3 41

4 6 30 8 1 45

5 4 30 2 3 39

6 4 30 4 3 41

7 4 30 3 4 41

8 11 30 2 6 49

Misconfiguration Diagnosis. As shown in Table 5 (Column “STAD”), STAD
can diagnose all misconfigurations.

Accuracy. STAD successfully identifies the root cause of all misconfigurations.
For all errors except error #8, STAD gets the root cause configuration options
without false positives; for error #8, the root cause configuration option ranks
second. The average number of false positives in STAD output is 0.1. For error
#45, there are not configuration option names in the VDG and its V2 contains
four variable names, namely format, key, ctxtKindStr and legalVals. All variables
except ctxtKindStr are parameters, and there are no declaration statements with
initialization for them. The ctxtKindStr represents the option variable corre-
sponding to the configuration option chord.ctxt.kind. For error #8, the option
chord.class.path has a configuration correlation with the option chord.main.class,
causing a crash stack trace about chord.main.class. So STAD firstly recommends
chord.main.class instead of chord.class.path.

Time Cost. As shown in Table 4, column “Stack trace”, “Value dependency”
and “Suspects” represents preprocessing the crash stack trace, analyzing the
value dependency between variables and recommending suspicious configuration

5 all VDGs of 8 errors can be obtained from: https://www.jianguoyun.com/p/
DZ3TiAwQlOmKBhiYrsMB.

https://www.jianguoyun.com/p/DZ3TiAwQlOmKBhiYrsMB
https://www.jianguoyun.com/p/DZ3TiAwQlOmKBhiYrsMB
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Table 5. Experimental results of misconfiguration diagnosis with different techniques.
Data in the column “ConfAnalyzer”, “ConfDiagnoser” and “ConfDoctor” is taken from
[13,23] and [7] respectively. Column “#FPs” represents the number of times a correct
option was mistaken for a suspicious one.

Error ID Erroneous Configuration

Option

STAD ConfAnalyzer ConfDiagnoser ConfDoctor

#FPs Success #FPs Success #FPs Success #FPs Success

1 chord.main.class 0 Y 0 Y 0 Y 1 Y

2 chord.main.class 0 Y 0 Y 0 Y 0 Y

3 chord.run.analyses 0 Y 0 Y 16 Y 0 Y

4 chord.ctxt.kind 0 Y 2 Y 0 Y 0 Y

5 chord.print.rels 0 Y 0 Y 14 Y 0 Y

6 chord.print.classes 0 Y 0 Y 15 Y 0 Y

7 chord.reflect.kind 0 Y 2 Y 0 Y 0 Y

8 chord.class.path 1 Y 1 N 7 Y 21 Y

Ave. of FPs—Success ratio (%) 0.1 100 0.6 87.5 5.7 100 2.7 100

options respectively. Obviously, the total time cost for each misconfiguration
diagnosis is less than 1 min. This is fast enough to satisfy most scenarios. If we
store the results of locating orps, STAD can save at least half of the time for
diagnosing a misconfiguration.

Comparison with Existing Techniques. We compared STAD with three
existing approaches, ConfAnalyzer [13], ConfDiagnoser [23], and ConfDoctor [7].
The experimental results are shown in Table 5. ConfAnalyzer cannot pinpoint
the root cause of error #8, because the option value flows into the system calls.
ConfDiagnoser gives too many false positives for error #3, #5 and #6. The
worst ranking for ConfDoctor is error #8 because ConfDoctor cannot capture
the dependency between command line arguments and configuration options [7].
The average number of false positives in STAD is less than other approaches.

5.3 Discussion

Limitations. First, STAD is suitable for diagnosing configuration errors that
can produce a stack trace. Second, as we describe in Sect. 2, STAD focuses on
the key-value configuration structure. There are also some software that adopts
the Spring XML configuration model. This model uses the XML elements, such
as <bean> and <property>, to manage the configuration settings. Third, our
implementation and experiments are restricted to Java. Fourth, we evaluated
STAD on misconfigurations involving just one configuration error. Last, STAD
does not consider the method calls when extracting variable names.

Threats to Validity. First, JChord may not be representative, though it has been
selected as a subject program in many evaluations of papers. Second, all 8 errors
are created by ConfErr [11] and they do not cover all real error types, such as
compatibility errors. Thus we cannot claim the results can be generalized to an
arbitrary program.
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6 Related Work

The most closely related work is misconfiguration diagnosis based on program
analysis. Such methods diagnose misconfigurations by identifying the statements
and execution paths that are affected by configuration options via data flow
analysis and control flow analysis [1,2,7,13,17,23]. ConfAnalyzer [13] builds a
map between configuration options and program points by data flow and locates
related options by the map and line numbers in the exception. ConfDiagnoser [23]
first gets all judge statements affected by configuration options by thin slicing,
then obtains an execution profile of these judge statements under a misconfig-
uration by program instrumentation, finally infers the root cause by comparing
the execution profile with the correct profile. ConfDoctor [7] gets the set of state-
ments affected by each configuration option via forward slicing, and obtains the
set of statements affected by stack trace via backward slicing, then compares
the two sets for each option, finally ranks the suspicious configuration options
by computing the correlation degrees. ConfAid [2] instruments program binaries
to get the causal dependencies introduced through control and data flow as the
program executes, and uses these dependencies to link the erroneous behavior to
specific option. SPEX [17] gets all configuration variables related to configura-
tion options by data flow analysis, then infers configuration constraints via the
data flow of these variables, finally infers the root cause based on the constraints.
X-ray [1] diagnoses the misconfiguration by summarizing the performance cost of
each configuration option and can diagnose misconfigurations with the abnormal
performances.

There are several differences to the above techniques. First, many previous
techniques employ dynamic analysis [1,2,23]. STAD adopts only static analy-
sis, does not need users to reproduce misconfigurations, and does not depend
on code instrumentation, avoiding the performance overhead. Second, manual
labeling is required to determine the range and the start position of the static
analysis for ConfAnalyzer [13] and SPEX [17]. STAD can automatically ana-
lyze the stack trace and define the start or end statement. Third, ConfDoctor is
similar to STAD. However, ConfDoctor assumes that the configuration options
are published and orps can be located completely by searching for option names
in source code [7]. STAD can automatically extract options and locate orps for
each option.

7 Conclusion

This paper describes STAD, a technique to diagnose misconfigurations without
the crash reproduction and the manual extraction of configuration options and
orps. STAD focuses on the misconfigurations that caused by mistaken parameter
values and lead to system crashes. STAD recommends the suspicious configu-
ration options based on the VDG and the configuration correlation between
options. Unlike previous work, STAD analyzes the variables directly rather than
the statements. The empirical evaluation shows that our technique is highly
effective and efficient in misconfiguration diagnosis.
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In future work, we plan to handle some limitations in our technique. For
instance, we will analyze the method calls when we extract variables from state-
ments. Besides, configuration constraints have a great effect on misconfiguration
diagnosis, we will focus on the mining and representation of configuration con-
straints. We also plan to develop techniques to guide users to configure software
safely to avoid some misconfigurations.
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Abstract. Model checkers frequently fail to completely verify a con-
current program, even if partial-order reduction is applied. The verifica-
tion engineer is left in doubt whether the program is safe and the effort
towards verifying the program is wasted.

We present a technique that uses the results of such incomplete ver-
ification attempts to construct a (fair) scheduler that allows the safe
execution of the partially verified concurrent program. This scheduler
restricts the execution to schedules that have been proven safe (and
prevents executions that were found to be erroneous). We evaluate the
performance of our technique and show how it can be improved using
partial-order reduction. While constraining the scheduler results in a
considerable performance penalty in general, we show that in some cases
our approach—somewhat surprisingly—even leads to faster executions.

1 Introduction

Automated verification of concurrent programs is inherently difficult because
of exponentially large state spaces [38]. State space reductions such as partial-
order reduction (POR) [10,16,17] allow a model checker to focus on a subset of all
reachable states while the verification result is valid for all reachable states. How-
ever, even reduced state spaces may be intractably large [17] and corresponding
programs infeasible to (automatically) verify, requiring manual intervention.

We propose a novel model checking approach for safety verification of
potentially non-terminating programs with a bounded number of threads, non-
deterministic scheduling, and shared memory. Our approach iteratively generates
incomplete verification results (IVRs) to prove the safety of a program under a
(semi-)deterministic scheduler. The scheduling constraints induced by an IVR
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can be enforced by iteratively relaxed scheduling [29], a technique to enforce fine-
grained orderings of concurrent memory events. When the scheduling constraints
of an IVR are enforced, all executions (under all non-deterministic inputs) are
safe, even if the underlying (operating system) scheduler is non-deterministic.
Thereby, the program can be executed safely before a (potentially infeasible)
complete verification result is available. Executions can still exploit concurrency
and the number of memory accesses that are executed concurrently may even be
increased. As the model checking problem is eased, additional programs become
tractable. Furthermore, IVRs can be used to safely execute unsafe programs
which are safe under at least one scheduler. E.g., instead of programming syn-
chronization explicitly, our model checking algorithm can be used to synthesize
synchronization so that all executions are safe.

1 initially:
2 empty buffer of

size N
3 count = 0
4 mutex = 0
5 thread T1:
6 while true:
7 produce()
8 thread T2:
9 while true:

10 consume()

11 produce:
12 lock(mutex)
13 if count < N:
14 put item
15 count += 1
16 unlock(mutex)
17 consume:
18 lock(mutex)
19 remove item
20 count −= 1
21 unlock(mutex)

Fig. 1. Producer-consumer problem
with bug

We use the producer-consumer example
from Fig. 1 to explain our approach. The
verifier analyses an initial schedule, e.g.,
where thread T1 and T2 produce and con-
sume in turns, and emits an IVR R1, guar-
anteeing safe executions under this sched-
ule. With its second IVR, the verifier might
verify the correctness of producing two
items in a row and the scheduling con-
straints can be relaxed accordingly. When
the verifier hits an unsafe execution (the
consumer produces an underflow), it emits an unsafe IVR for debugging. If the
verifier accomplishes to analyze all possible executions of the program, it will
report the final result partially safe, as the program can be used safely under all
inputs but unsafe executions exist. Had there been no unsafe or safe IVR, the
final result would be safe or unsafe, respectively.

This paper shows how to instantiate our approach by answering these ques-
tions: 1. Which state space abstractions are suitable for iterative model check-
ing? The abstraction should be able to represent non-terminating executions and
facilitate the extraction of schedules. 2. How to formalize and represent suitable
IVRs? IVRs should be as small as possible in order to allow short iterations,
while they must be large enough to guarantee fully functional executions under
all possible program inputs. More precisely, for every possible program input,
an IVR must cover a program execution. 3. What are suitable model checking
algorithms that can be adapted to produce IVRs? A suitable algorithm should
easily allow to select schedules for exploration.

2 Incomplete Verification Results

2.1 Basic Definitions

A program P comprises a set S of states (including a distinct initial state) and a
finite set T of threads. Each state s ∈ S maps program counters and variables to
values. We use l(s) to denote the program location of a state s, which comprises
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a local location lT (s) for each thread T ∈ T . W.l.o.g. we assume the existence
of a single error location that is only reachable if the program P is not safe.

A state formula φ is a predicate over the program variables encoding all
states s in which φ(s) evaluates to true. A transition relation R relates states s
and their successor states s′. Each tread T is partitioned into local transitions
Rl,l′ such that l = lT (s) and l′ = lT (s′) for all s, s′ satisfying Rl,l′(s, s′) and
Rl,l′ leaves the program locations and variables of other threads unchanged. We
use Guard(R) to denote a predicate encoding ∃s′ . R(s, s′), e.g., Guard(R13,14) is
(count < N) for the transition from location 13 to 14 in Fig. 1. We say that Rl,l′

(or T , respectively) is active at location l and enabled in a state s iff l(s) = l
and s satisfies Guard(R). Multiple transitions of a thread T at a location can
be active, but we allow only one transition R to be enabled at a given state and
define enabledT (s) := {R} if R exists and enabledT (s) := ∅ otherwise.

If there exist states s for which no transition of a thread T is enabled (e.g.,
in line 12 in Fig. 1), T may block. We assume that such locations lT (s) are
(conservatively) marked by may-block(lT (s)).

An execution is a sequence s0, T1, s1, . . . , where s0 is the initial state and
the states si and si+1 in every adjacent triple (si, Ti, si+1) are related by the
transition relation of Ti. An execution that does not reach the error location is
safe. A deadlock is a state s in which no transitions are enabled. W.l.o.g. we
assume that all finite executions correspond to deadlocks and are undesirable;
intentionally terminating executions can be modelled using terminal locations
with self-loops.

An execution τ is (strongly) fair if every thread Ti enabled infinitely often in
τ is also scheduled infinitely often [5]. We assume that fairness is desirable and
enforce it by our algorithm presented in Sect. 3. Other notions of fairness such
as weak fairness can be enforced analogously.

Non-determinism can arise both through scheduling and non-deterministic
transitions. A scheduler can resolve the former kind of non-determinism.

Definition 1 (scheduler). A scheduler ζ : (S ×T )∗ ×S → T of a program P
is a function that takes an execution prefix s0, T1, . . . , Tn, sn and selects a thread
that is enabled at sn, if such a thread exists. A scheduler ζ is deadlock-free ( fair,
respectively) if all executions possible under ζ are deadlock-free (fair).

A scheduler for the program of Fig. 1, for instance, must select T1 rather
than T2 for the prefix sinit , T1, s1, T1, s2, T1, s3, T2, s4, T2, s5, since at that point
the lock is held by T1 and enabledT2(s5) = ∅.

Non-deterministic transitions are the second source of non-determinism. If
Rl,l′ of thread T allows multiple successor states for a state s, we presume the
existence of input symbols X such that each ι ∈ X determines a unique successor
state s′ by selecting an Rι

l,l′ ⊆ Rl,l′ with Rι
l,l′(s, s

′).

Definition 2 (input). An input is a function χ : (S×T )∗ → X, which chooses
an input symbol depending on the current execution prefix.
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In conjunction, an input and a scheduler render a program completely deter-
ministic: the input χ and scheduler ζ select a transition in each step such that
each adjacent triple (si, Ti+1, si+1) is uniquely determined.

For Partial Order Reduction (POR), we assume that a symmetric indepen-
dence relation ‖ on transitions of different threads is given, which induces an
equivalence relation on executions. Two transitions R1 and R2 are only inde-
pendent if they are from distinct threads, they are commutative at states where
both R1 and R2 are enabled, and executing R1 does neither enable nor disable
R2. We write R1 ∦ R2 if R1 and R2 are not independent.

2.2 Requirements on Incomplete Verification Results

Our goal is to ease the verification task by producing incomplete verification
results (IVRs) which prove the program safety under reduced non-determinism,
i.e., only for a certain scheduler. We only allow “legitimate” restrictions of the
scheduler that do not introduce deadlocks or exclude threads. Inputs must not be
restricted, since this might reduce functionality and result in unhandled inputs.

Hence, we define an IVR to be a function R that maps execution prefixes
to sets of threads, representing scheduling constraints. An IVR for the program
from Fig. 1, for instance, may output {T1} in states with an empty buffer, mean-
ing that only thread T1 may be scheduled here, and {T2} otherwise, so that an
item is produced if and only if the buffer is empty. A scheduler ζR enforces (the
scheduling constraints of) an IVR R if ζR(τ) ∈ R(τ) for all execution prefixes
τ . IVR R permits all executions possible under a scheduler that enforces R.

The remainder of this subsection discusses the requirements on useful IVRs.
We define safe, realizable, deadlock-free, fairness-admitting, and fair IVRs. In
the following subsection, we instantiate IVRs with abstract reachability trees
(ARTs).

Safety. An IVR R can either expose a bug in a program or guarantee that all
permitted executions are safe. Here, we are only concerned with the latter case.
An IVR R is safe if all executions permitted by R are safe. An unsafe IVR
permits an unsafe execution and is called a counterexample.

Completeness. To reduce the work for the model checker, a safe IVR R should
ideally have to prove the correctness of as few executions as possible. At the
same time, it should cover sufficiently many executions so that the program can
be used without functional restrictions. For instance, the IVR R(τ) := ∅, for all
τ , is safe but not useful, as it does not permit any execution. Consequently, R
should permit at least one enabled transition, in all non-deadlock states, which
is done by realizable IVRs: an IVR R is realizable if at least one scheduler that
enforces R exists. Furthermore, an IVR should never introduce a deadlock: an
IVR R is deadlock-free if all schedulers that enforce R are deadlock-free.

Fairness. In general, we deem only fair executions desirable. The IVR R(τ) :=
{T1}, for instance, is deadlock-free for the program of Fig. 1 but useless, as no
item is consumed. A deadlock-free IVR admits fairness if there exists a fair
scheduler enforcing R (i.e., a fair execution of the program is possible).
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If a scheduler permits both fair and unfair executions, it might be difficult to
guarantee fairness at runtime. In such cases, a fair IVR can be used: A deadlock-
free IVR R is fair if all schedulers enforcing R are fair.

2.3 Abstract Reachability Trees as Incomplete Verification Results

In this subsection, we instantiate the notion of IVRs using abstract reach-
ability trees (ARTs), which underly a range of software model checking
tools [9,21,23,28] and have recently been used for concurrent programs [39].
Due to the explicit representation of scheduling choices from the beginning of
an execution up to an (abstract) state, ARTs are well-suited to represent IVRs.
Model checking algorithms based on ARTs perform a path-wise exploration of
program executions and represent the current state of the exploration using a
tree in which each node v corresponds to a set of states at a program location
l(v). These states, represented by a predicate φ(v), (safely) over-approximate the
states reachable via the program path from the root of the ART (ε) to v. Edges
expanded at v correspond to transitions starting at l(v). A node w may cover v
(written v � w) if the states at w include all states at v (φ(v) ⇒ φ(w)); in this
cases, v is covered (covered(v)) and its successors need not be further explored.
(Intuitively, executions reaching v are continued from w.) Formally, an ART is
defined as follows:

Definition 3 (abstract reachability tree [28,39]). An abstract reachability
tree (ART) is a tuple A = (V, ε,−→,�), where (V,−→) is a finite tree with root
ε ∈ V and �⊆ V × V is a covering relation. Nodes v are labeled with global
control locations and state formulas, written l(v) and φ(v), respectively. Edges

(v, w) ∈−→ are labeled with a thread and a transition, written v
T,R−−→ w.

Intuitively, an ART A is well-labeled [28] if A ’s −→-edges represent the tran-
sitions of the program and edges v � w indicate that all states modeled by
node v are also modeled by node w. Formally, A is well-labeled if for every

edge v
T,Rl,l′−−−−→ w in A we have that (i) φ(ε) represents the initial state, (ii)

φ(v)(s) ∧ Rl,l′(s, s′) ⇒ φ(w)(s′) and lT (v) = l and lT (w) = l′, and (iii) for every
v, w with v � w, φ(v) ⇒ φ(w) and ¬covered(w).

mutex = 0 ∧ count = 0

mutex = 0 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 1

mutex = 0 ∧ count = 1

false

ε

v1

. . .. .
.

T1: produce()

T1: lock(mutex)

T1: if (count<N)

T1: put item

T1: count+=1

T1: unlock(mutex)

T1: else

T2: consume()T1: produce()

An incomplete ART Ap−c for the
producer-consumer problem of Fig. 1 is
shown on the right. Nodes show the state
formulas and edges are labeled with the
thread and statement corresponding to
the transition.

ART-Induced Schedulers. A well-labeled
ART A directly corresponds to an IVR
RA that simulates an execution by
traversing A . We define RA as follows:
Let τ = s0, T1, s1, . . . , sn be an execution
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prefix. If A contains no path that corresponds to τ , RA leaves the schedules for
this execution unconstrained. Otherwise, let vn be the last node of the path in
A that corresponds to τ . RA permits exactly those threads that are expanded
at vn (or at w if vn is covered by some node w). E.g., the execution prefix
τ = s0, T1, s1 corresponds to the path from ε to v1 in Ap−c. As only T1 is
expanded at v1, RA p−c allows only {T1} after τ .

Safety. An ART is safe if whenever lT (v) is the error location then φ(v) = false.
As only safe executions may correspond to a path in a safe ART (cf. Theorem
3.3 of [39]), RA is a safe IVR.

Completeness. In order to derive a deadlock-free IVR from a well-labeled ART
A , we have to fully expand at least one thread T at each node v that represents
reachable states (where T is fully expanded at v if v has an outgoing edge for
every active transition of T at lT (v)). However, there may exist reachable states
s represented by φ(v) for which no action of T is enabled (i.e., enabledT (s) = ∅).
If T is the only thread expanded at v, RA is not realizable. This situation can
arise for locations l at which T may block (marked with may-block(lT )).

Consequently, whenever may-block(lT (v)) in a deadlock-free ART A , we
require that φ(v) is strong enough to entail that the transitions R of T expanded
at v (or at the node covering v, respectively) are enabled (i.e., φ(v) ⇒ Guard(R)).
For instance, φ(v1) in the ART shown above proves the enabledness of T1 at v1,
as φ(v1) ⇒ mutex = 0 and lock(mutex) is enabled if mutex = 0.

Lemma 1. If an ART A is deadlock-free, RA is a deadlock-free IVR.

Fairness. IVRs derived from deadlock-free ARTs do not necessarily admit fair-
ness if the underlying ART contains cycles (across � and −→ edges) that represent
unfair executions. In order to make sure a deadlock-free ART admits fairness
we implement a scheduler that allows A to schedule each thread infinitely often
(whenever it is enabled infinitely often) by requiring that every (� ∪ −→)-cycle
is “fair”, defined as follows.

Definition 4 (ART admitting fairness). A deadlock-free ART A = (V, ε,−→
,�) admits fairness if every (� ∪ −→)-cycle contains, for every thread T that is
enabled at a node of the cycle, a node v such that T is expanded at v.

Lemma 2. If an ART A admits fairness, RA is an IVR that admits fairness.

T1: lock()

T1: unlock()

T2: lock()

T2: unlock()

︸

︷
︷

︸

produce
1
item

co
ns
um

e
1
it
em

︷

︸
︸

︷

Note that the expansion of a thread T at a
node in a cycle does not guarantee that the tran-
sition is part of the cycle. A slight modification
of the fairness condition for ARTs leads to a suf-
ficient condition for ARTs as fair IVRs, as the
following definition and lemma show. The differ-
ence in the fairness condition is that all enabled
threads are expanded within each (� ∪ −→)-cycle
c, which we denote by fair(c). The (� ∪ −→)-
cycle shown on the right, for instance, is fair.



Extracting Safe Thread Schedules from Incomplete Model Checking Results 159

Algorithm 1 Part 1: Iterative Impact for concurrent programs: main
procedure (based on [39])

input : Program with threads T
intermediate outputs: fair ARTs A1 ⊆ A2 ⊆ . . . ⊆ An and unsafe ARTs
output : safe, partially safe, or unsafe

Data: A = (V, ε, −→, �) := ({ε}, ε, ∅, ∅),
W := {ε}, I := {}

1 Function Main()
2 while true do
3 status := Iteration()
4 if status = no progress then
5 break
6 else if status = counterexample

then
7 yield A as an unsafe IVR
8 else
9 A ′ := Remove_Error_Paths(A )

10 yield A ′ as a safe IVR

11 if A is safe then
12 return safe
13 else if Remove_Error_Paths(A )

admits fairness then
14 return partially-safe
15 else
16 return unsafe

17 Function Iteration()
18 W := New_Schedule_Start()
19 if W = ∅ then
20 return no progress
21 while W 	= ∅ do
22 select and remove v from W
23 Close(v)
24 if v not covered then
25 status := Refine (v)
26 if status = counterexample then
27 return counterexample
28 status := Check_Enabledness(v)
29 if status = no progress then
30 return no progress
31 Expand (v)

32 return progress

Definition 5 (fair ART). A deadlock-free ART A = (V, ε,−→,�) is fair if
fair(c) holds for every (� ∪ −→)-cycle c.

Lemma 3 (fairness). For all fair ARTs A , RA is a fair IVR.

Given an ART A that admits fairness, one can generate a fair ART A ′ such
that RA permits all executions permitted by RA ′ .

3 Iterative Model Checking

A suitable algorithm for our framework must generate fair IVRs. We use model
checking based on ARTs (cf. Sect. 2.3), which allows us to check infinite execu-
tions and explicitly represent scheduling. Nevertheless, other program analysis
techniques such as symbolic execution are also suitable to generate IVRs. In
particular, our algorithm (Algorithm 1 parts 1 and 2) constitutes an iterative
extension of the Impact algorithm [28] for concurrent programs [39]. We chose
Impact as a base for our algorithm because it has an available implementation
for multi-threaded programs, which we use to evaluate our approach in Sect. 5.

Impact generates an ART by path-wise unwinding the transitions of a pro-
gram. Once an error location is reached at a node v, Impact checks whether
the path π from the ART’s root to v corresponds to a feasible execution. If
this is the case, a property violation is reported; otherwise, the node labeling is
strengthened via interpolation. Thereby, a well-labeled ART is maintained. Once
the ART is complete, its node labeling provides a safety proof for the program.
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Algorithm 1 Part 2: Iterative Impact for concurrent programs

continued:
1 Function Check_Enabledness(v)

2 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn §
§ path from ε to v

3 if not may-block(lvn−1)T n then
4 return progress
5 if R1 ∧ . . . ∧ Rn−1 ∧ ¬Guard(Rn) is

unsat then
6 φ(v) := φ(v) ∧ Guard(Rn)
7 else
8 return Backtrack(v)

9 Function Close(v)
10 for all uncovered nodes w that have

been created before v do
11 if l(w) = l(v) ∧ (φ(v) ⇒ φ(w)) §

§ ∧∀c ∈ CA (v, w). fair(c)
then

12 �:=� ∪{(v, w)}
13 �:=� \{(x, y) : v � y}
14 for T with v

T−→ v′ §
§ and not w

T−→ w′ do
15 add (v, T ) to I

16 Function Backtrack(v)

17 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn §
§ path from ε to v

18 i := n − 1
19 while i ≥ 0 do

20 if ∃T, v′
i. vi

T−→ v′
i /∈ A §

§ ∧(Skip(vi, T) = false)
then

21 add vi
T−→ v′

i to A

22 W := W ∪ {v′
i}

23 prune
Ti+2,Ri+2−−−−−−−−→ vi+3 . . . §
§ . . .

Tn,Rn−−−−−→ vn from A
24 φ(vi+1) := false
25 return progress

26 i := i − 1

27 return no progress

28

29 Function Expand(v)
30 T := Schedule_Thread (v)
31 Expand_Thread (T , v)

In each iteration, our extended algorithm yields an IVR which is either unsafe
(a counterexample) or fair (can be used as scheduling constraints). If the algo-
rithm terminates, it outputs “safe”, “partially safe”, or “unsafe”, depending on
whether the program is safe under all, some, or no schedulers. Procedure Main()
repeatedly calls Iteration() (line 3), which, intuitively, corresponds to an execu-
tion of the original algorithm of [39] under a deterministic scheduler. Iteration()
(potentially) extends the ART A . If no progress is made (A is unchanged), the
algorithm terminates (lines 12, 14, and 16). Otherwise, an intermediate output
is yielded: either A as an intermediate output (line 7) or A with all previously
found counterexamples removed, i.e., the largest fair ART that is a subgraph of
A , denoted by Remove Error Paths().

Iteration() maintains a work list W of nodes v to be explored via Close(v)
(Algorithm 1 part 2), which tries to find (as in [39]) a node that covers v.
In addition to the covering check of [39], we check fairness, where CA (v, w)
denotes all cycles that would be closed by adding the edge v � w (line 11 of
Algorithm 1 part 2). If such a node w is found, any thread T that is expanded
at v but not at w (line 14 of Algorithm 1 part 2) must not be skipped at w
by POR. Instead of expanding T instantaneously at w (as in [39]), which would
explore another schedule, T is added to the set I so that it can be explored in a
subsequent iteration. If no covering node for v is found, v is refined, which returns
counterexample if v has a feasible error path (line 25). Otherwise (line 28),
Check Enabledness() (Algorithm 1 part 2) performs a deadlock check by testing
whether the last action that leads to v is enabled in all states represented by the
predecessor node. If not, deadlock-freedom is not guaranteed and Backtrack()
tries to find a substitute node where exploration can continue.
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1 Variables:
2 int x, y
3 Thread T1:
4 while true:
5 x := 1
6 if y = 0:
7 y := 1
8 Thread T2:
9 while true:

10 x := 0

ε

v1

v2

v3

v4 v5

v6

T1: x:=1

T2: x:=0

T1: read y

T1: if y=0 T1: else

T1: y:=1

ε

v3

σ1, true

σ2, y = 0

σ3, y �= 0

(a)

(b)

Fig. 2. (a) Section paths. (b) A program schedule

The deterministic scheduler of Iteration() is controlled by New Schedule -
Start() and Schedule Thread(). The former selects a set of initial nodes for the
exploration (line 18 of Algorithm 1 part 1); the latter decides which thread
to expand at a given node (line 30 of Algorithm 1 part 2). We use a simple
heuristic that selects the first (in breadth-first order) node which is not yet fully
expanded and use a round-robin scheduler for Schedule Thread that switches
to the next thread once a back jump occurs (e.g., the end of a loop body is
reached). Additionally, Schedule Thread returns only threads that are necessary
to expand at the given node after POR (cf. Skip() [39]). More elaborate heuristics
are conceivable but out of the scope of this paper.

The correctness of Algorithm 1 w.r.t. safety follows from the correctness
of [28] and [39]. Additionally, Algorithm 1 is also fair:

Lemma 4 (fairness of Algorithm 1). Any safe ART A generated by Algo-
rithm 1 is fair.

4 Partial-Order Reduction

A naive enforcement of the context switches at the relevant nodes of a safe IVR
RA would result in a strictly sequential execution of the transitions, foiling
any benefits of concurrency. To enable parallel executions, we introduce pro-
gram schedules that relax the scheduling constraints by means of partial-order
reduction (POR). Note that this application of POR concerns the enforcement
of scheduling constraints and occurs in addition to POR applied by our model
checking algorithm when constructing an ART (cf. Sect. 3). Nevertheless, depen-
dency information that is used for POR during model checking can be reused so
that redundant computations are avoided.

The goal is to permit the parallel execution of independent transitions (in
different threads) whose order does not affect the outcome of the execution
represented by A (i.e., the resulting traces are Mazurkiewicz-equivalent). Using
traditional POR to construct such scheduling constraints poses two challenges:
1. Executions may be infinite, but we need a finite representation of scheduling
constraints. 2. The control flow of an execution may be unpredictable, i.e., it
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is a priori unclear which scheduling constraints will apply. We solve issue 1
by partitioning ARTs into sections and associate a finite schedule with every
section. To address issue 2, we require that sections do not contain branchings
(control flow and non-deterministic transitions).

Consider the program and corresponding ART in Fig. 2a. The if-statement
of T1 is modeled as a separate read transition followed by a branching at node
v3. We define three section paths π1 := ε −→ v1 −→ v2 −→ v3, π2 := v3 −→ v4 −→
v6 −→ ε, and π3 := v3 −→ v5 −→ ε. After π1 has been executed, a scheduler can
distinguish the cases y = 0 and y �= 0 and schedule π2 or π3 accordingly.

Formally, a section path v1
R1−−→ . . .

Rn−−→ vn+1 corresponds to a branching-free
path in an ART whose first transition may be guarded. A section path fol-
lows −→A edges, skipping covering edges �. The section schedule of a section
path describes the Mazurkiewicz equivalence class of the contained transi-
tions and is defined as the smallest partial order σ = (Vσ,−→σ) such that
Vσ = {e1, . . . , en} and −→σ⊇ {(ei, ej) : i < j ∧ Ri ∦ Rj}, where ei, 1 ≤ i ≤ n
is the occurrence of transition Ri at position i. The section schedule of π1

is ({e1, e2, e3}, {(e1, e2), (e1, e3)}) with e1 � T1 : x:=1, e2 � T2 : x:=0, and
e3 � T1 : read y.

A program schedule Σ comprises several section schedules. Σ is a labeled
graph (VΣ ,−→Σ). Each node v ∈ VΣ is the start of a section path π in A . Each
edge is labeled with the section schedule of π and the guard Guard(R) of the
first transition R in π. As A is deadlock-free, there exists a thread T which is
fully expanded at v in A and we require that Σ likewise has outgoing edges at v
labeled with T for each transition of T at v. Figure 2b shows a program schedule
for our example program.

A scheduler can enforce the scheduling constraints of a program schedule
by picking a section schedule that matches the current execution prefix and
scheduling an event whose predecessors (according to the section schedule) have
already been executed. Hence, all independent events in a section can be executed
concurrently without synchronization. All events of a section schedule have to
appear before the first event of the next section schedule, so that the states
reached between sections correspond to nodes of the program schedule.

A program schedule of an ART A that admits fairness permits exactly those
executions that correspond to a path in A (modulo Mazurkiewicz equivalence).
In particular, as Mazurkiewicz equivalence preserves safety properties [17], only
safe executions are permitted.

Lemma 5 (correctness). Let A be an ART that admits fairness and Σ a
program schedule for A . All program executions induced by Σ are equivalent to
an execution that corresponds to a path in A .

5 Evaluation

In five case studies, we evaluate our iterative model checking algorithm and
scheduling based on IVRs. We use the Impara model checker [39], as it is the only
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available implementation of model checking for non-terminating, multi-threaded
programs based on a forward analysis on ARTs we have found. Impara uses
lazy abstraction with interpolants based on weakest preconditions. We extend
the tool by implementing our algorithm presented in Sect. 3. Impara accepts C
programs as inputs, however, some language features are not supported and we
have rewritten programs accordingly.1 We refer to the (non-iterative) Impara
tool as Impara-C (for complete verification) and to our extension of Impara
with iterative model checking as Impara-IMC.

Based on the ARTs constructed by Impara, program schedules are gener-
ated automatically and encoded as vector clocks. We instrument the benchmark
programs with a call-back to a specially designed user space scheduler directly
before and after each access to a global variable. The result is a multi-threaded
program that executes concurrent memory accesses according to a given program
schedule. All experiments have been executed on a 4-core Intel Core i5-6500 CPU
at 3.2 GHz. We report median values averaged over five runs.

5.1 Infeasible Complete Verification
1

2

3

4

5

6

7

8

9

T1 produce

T2 produce

T3 produce

T4 produce

T5 consume

T6 consume

T7 consume

T8 consume

Even for a moderate number of threads, complete verifica-
tion, i.e., verification of a program under all possible sched-
ules and inputs, may be infeasible. In particular, Impara-
C times out (after 72 h) on a corrected variant of the pro-
ducer consumer problem (Fig. 1) with four producers and
four consumers. Impara-IMC produces the first IVR R1

after 4:29:53 h. A simplification of R1 is depicted on the
right; it covers all executions in which the threads appear
to execute their loop bodies atomically in the order T1, T2, . . . , T8. While the
main bottleneck for Impara-C is state explosion and finding many coverings for
different schedules, we observe that the main issue to produce R1 is to find a
single covering that comprises all threads, i.e., to find a fair cycle.

The subsequent IVRs R2, . . . ,R8 are found much faster than the first IVR,
after 19:31, 12:3, 6:13, 28:0, 9:25, 8:27, and 8:40 min. We stop the model
checker after eight IVRs. According to our implementation of New Schedule
Start() in Algorithm 1, IVR Ri permits, in addition to all executions per-
mitted by Ri−1, those executions in which the threads appear in the order
Ti, T1, . . . , Ti−1, Ti+1, . . . , T8. Hence, R8 gives the scheduler more freedom than
R1, which may result in a better execution performance, e.g., because a pro-
ducer which has its item available earlier does not have to wait for all previous
producers.

1 E.g., Pthread mutexes, some uses of the address-of operator, and reuse of the same
function by several threads are not supported. We solve these issues by rewriting
our benchmark programs so that Impara handles them correctly and their intuitive
semantics is not changed. We will publish our modifications to Impara, including
two bug fixes.
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5.2 Deadlocks

1 Thread T1:
2 while true:
3 lock(mutex1)
4 lock(mutex2)
5 execute critical section()
6 unlock(mutex2)
7 unlock(mutex1)

8 Thread T2:
9 while true:

10 lock(mutex2)
11 lock(mutex1)
12 execute critical section()
13 unlock(mutex2)
14 unlock(mutex1)

A common issue with
multi-threaded programs
are deadlocks, which may
occur when multiple mute-
xes are acquired in a wrong
order, as in the program on
the right, in which two threads use two mutexes to protect their critical sections.
A deadlock is reached, e.g., when T2 acquires mutex2 directly after T1 has acquired
mutex1. A monolithic verification approach would try to verify one or more execu-
tions and, as soon as a deadlock is found, report the execution that leads to the
deadlock as a counterexample. With manual intervention, this counterexample
can be inspected in order to identify and fix the bug.

In contrast, Impara-IMC logs both safe and unsafe IVRs. The first IVR
found in this example covers all executions in which Threads 1 and 2 execute
their loop bodies in turns, with Thread 1 beginning. As expected, executing the
program with enforcing the first program schedule never leads to a deadlock.
Executing the uninstrumented program (without scheduling constraints) leads
to a deadlock after only a few hundred loop iterations. Hence, IMC enables to
safely use the program deadlock-free and without manual intervention.

5.3 Race Conditions Through Erroneous Synchronization

1 Threads
2 T1: while true: produce()
3 T2: while true: produce()
4 T3: while true: consume()
5 T4: while true: consume()

6 produce:
7 if buffer is not full():
8 lock()
9 assert buffer is not full()

10 add item()
11 unlock()

12 consume:
13 if buffer is not empty():
14 lock()
15 assert buffer is not empty()
16 remove item()
17 unlock()

The above program shows a variant of the producer-consumer problem with
two producers and two consumers which uses erroneous synchronization: both
the produce and consume check the amount of free space without acquiring the mutex
first. For example, a buffer underflow occurs if the buffer contains only one item
and the two consumers concurrently find that the buffer is not empty; although
the buffer becomes empty after the first consumer has removed the last item,
the second consumer tries to remove another item.

1

2

3

4

5

T1 produce

T2 produce

T3 consume

T4 consume

The first IVR found by Impara-IMC is depicted sim-
plified on the right. The simplification merges all indi-
vidual edges of a procedure into a single edge, which is
possible as Impara-IMC does not apply context switches
inside of procedures during the first iteration. Since both
procedures appear to be executed atomically, no assertion
violation is found during the first iteration. We ran the
program with a program schedule corresponding to the first IVR. As expected,
we have not observed any assertion violations.
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5.4 Declarative Synchronization

Figure 3 shows an extension of a benchmark used in [15], which is a simplified
extract of the multi-threaded Frangipani file system. The program uses a time-
varying mutex: depending on the current value of the busy bit, a disk block is
protected by m busy or m inode. We want to evaluate whether we can use Impara-
IMC to generate safe program schedules even if all mutexes are (intentionally)
removed from the program.

1 Variables:
2 int block
3 boolean busy
4 boolean inode
5 mutex m inode
6 mutex m busy
7 Initially: inode = busy

8 Thread T1:
9 while true:

10 lock(m inode)
11 if not inode:
12 lock(m busy)
13 busy := true
14 unlock(m busy)
15 inode := true
16 block := 1
17 unlock(m inode)

18 Thread T2:
19 while true:
20 lock(m busy)
21 if not busy:
22 block := 0
23 unlock (m busy)

24 Thread T3:
25 while true:
26 lock(m inode)
27 lock(m busy)
28 inode := false
29 busy := false
30 unlock(m inode)
31 unlock(m busy)

Fig. 3. The file system benchmark

1 Thread T1:
2 while true:
3 if not inode:
4 busy := true
5 inode := true
6 atomic−begin
7 assume inode and busy
8 block := 1
9 atomic−end

10 Thread T2:
11 while true:
12 if not busy:
13 atomic−begin
14 assume not busy
15 block := 0
16 atomic−end

17 Thread T3:
18 while true:
19 atomic−begin
20 assume inode = busy
21 inode := false
22 busy := false
23 atomic−end

Fig. 4. The file system benchmark with synchronization constraints in assume state-
ments

For this purpose, we use a variant of the file system benchmark where all
mutexes are removed and synchronization constraints are declared as assume
statements, shown in Fig. 4. It is sufficient to assure for T1 that the block is
written only if it is allocated, i.e., both inode and busy are true. For T2, it is
sufficient to assure that the block is only reset if it is not busy, i.e., busy = false.
Finally, for T3, it is necessary to assure that the block is deallocated only if it is
already deallocated or fully allocated, i.e., inode = busy.

1 Thread T ′
2:

2 while true:
3 atomic−begin
4 assume not busy
5 block := 0
6 atomic−end

Running Impara-IMC on the file system benchmark
without mutexes yields a first program schedule that
schedules T1, T2, T3 repeatedly in this order, according to
our simple heuristic for an initial IVR. However, although
all executions permitted by this schedule are fair, the if-
condition of T2 always evaluates to false and T2 never per-
forms useful work. To obtain a more useful schedule, we inform the model checker
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that the (omitted) else-branch of Thread T2 is not useful. We encode this infor-
mation by inserting else: assume false. After simplifying the code, we obtain T ′

2 as
depicted on the right. For the updated code, Impara-IMC yields a first scheduler
that schedules T3 before T2 before T1, so that all threads perform useful work.

5.5 Performance

Table 1 shows the performance impact of enforcing IVRs on several correct
programs. Each program is model-checked once until the first IVR (Impara-
IMC) and once completely (Impara-C). As a baseline, the program is run with-
out schedule enforcement (unconstrained). The first IVR is enforced without
(Opt0), and with optimizations (Opt1, Opt2). Opt1 applies POR and omits
operations on synchronization objects (mutexes, barriers).2 Opt2 uses, in addi-
tion to Opt1, longer section schedules (by replicating a section eight times)
and stronger partial-order reduction that identifies independent accesses to dis-
tinct indices of an array. Additionally, for the producer-consumer benchmark,
we apply a compiler-like optimization, removing and reordering events to reduce
the number of constraints.3 Both Opt1 and Opt2 enable the concurrent execu-
tion of more memory accesses, e.g., because the beginning of a critical section
can already be executed before a thread arrives at a constrained access that has
to wait. The schedules for each benchmark (Opt0–Opt2) are obtained from the
first IVR. As all benchmarks use unbounded loops, we measure the execution
time performance by counting useful (i.e., with a successful concurrent access
such as a produced item) loop iterations and terminating the execution after 2 s.

Table 1. Experimental results (to: timeout, rounded to full seconds). Performance
is measured in number of useful (e.g., with a successful concurrent access such as a
produced item) loop iterations within a time limit of 2 s.

Benchmark Model checking Performance (higher is better)

Time 1st IVR Impara-C Opt0 Opt1 Opt2 Unconstr

prod.-cons. 1p 1c 2m 0 s to (72 h) 4 864 489 7 466 093 11370258 8 199 202

prod.-cons. 2p 2c 23m 47 s to (72 h) 3 400 187 5 959 041 8 428 598 11643208

prod.-cons. 4p 4c 4h 29m 53 s to (72 h) 1 327 063 2 576 695 3 676 876 7210796

double lock 1 ms 0 s 0 s 1 845 1 834 3217 1 797

file system 0 s 0 s 3 667 4 877 035 6 705 672 23822129

barrier 1 s 4m 14 s 1 238 720 8 285 228 14586849 1 077 907

We use the producer-consumer implementation (with correct synchroniza-
tion and buffer size 1000) from SV-COMP [1] (stack safe), modified with an
2 As enforcing an IVR is redundant to synchronization over existing mutexes and

barriers, omitting them is safe.
3 Opt2 follows a general algorithm, however we do not automate our implementation

of Opt2, as it would be a large effort to implement compiler optimizations. Our
implementation of Opt1 is automated.
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unbounded loop and with 1, 2, and 4 producers and consumers. The double lock
benchmark is a corrected version (lock operations in T2 reversed) of the dead-
lock benchmark (Sect. 5.2), where the critical section is simulated by sleeping for
1 ms; the uncorrected version reached a deadlock after only 172 loop iterations.
The file system benchmark from SV-COMP (time var mutex safe) is extended
with a third thread and again with unbounded loops as in Sect. 5.4. The barrier
benchmark uses two barriers to implement ring communication between threads.

As the model checking columns of Table 1 show, Impara-IMC finds the first
IVR often much faster than or at least as fast as it takes Impara-C for com-
plete model checking; it can produce an IVR even for our largest benchmarks,
where Impara-C times out. For a buffer size of 5, Impara-C can verify the
producer-consumer benchmark even with eight threads but again, Impara-IMC
is considerably faster in finding the first IVR. Subsequent IVRs were generated
considerably faster than the first IVR, which might be caused by caching of facts
in the model checker.

Somewhat surprisingly, some benchmarks are slower when executed uncon-
strained. We conjecture that this is caused by more memory accesses being
executed in parallel under Opt2. In all but one cases, Opt2 is considerably faster
than Opt1, which is considerably faster than Opt0. The highest overhead is
observed for the file system benchmark, where Opt2 is about 3.5 times slower
than the unconstrained execution. We conjecture that the high overhead here
stems from an unequal distribution of loop iterations among threads, when exe-
cuted unconstrained: the loop body of T2 was executed nearly 100 times more
frequently than T1, while it is shorter and probably faster. Opt0–Opt2 exe-
cute all threads nearly balanced. In addition to the Pthread barriers used in
the barrier benchmark, we tried a variant with busy waiting barriers, where
the unconstrained execution showed a performance of 13 567 135, which is still
slower than Opt2. When the buffer size of the producer-consumer benchmark
with eight threads is reduced to 5, the performance of unconstrained executions
decreases to 3 240 136 compared to 3 392 111 with Opt2.

Even in repeated executions of the experiment, the unconstrained variant
of double lock showed only “starving” executions in the sense that the second
thread was never able to acquire the mutexes before the timeout of 2 s. Hence,
the constrained executions improve on the operating system scheduler in terms
of a balanced execution of all threads.

In order to compare to the enforcement of input-covering schedules [7]
(explained in Sect. 6), we measure the overhead of our scheduler implementa-
tion on the pfscan benchmark used there. Pfscan is a parallel implementation of
grep and uses 1 producer and 2 consumer threads to distribute tasks, consisting
of reading and searching a file for a given query. As input, we use 8 files with
100 MB of random content each. We evaluate 4 different schedules4, which show
an overhead between 3% and 10% (with Opt2). Hence, IVRs can perform much
better than input-covering schedules (60% overhead reported in [7]).

4 As Impara cannot handle several features used by pfscan (such as condition vari-
ables, structs, and standard output), we manually generate initial IVRs.
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6 Related Work

Unbounded model checking [18,20,32,39] is a technique to verify the correctness
of potentially non-terminating programs. In our setting, we deploy algorithms
that use abstract reachability trees (ARTs) [21,28,39] to represent the already
explored state space and schedules, and perform this exploration in a forward
manner. Instead of discarding an ART after an unsuccessful attempt to verify a
program, we use the ART to extract safe schedules.

Conditional model checking [8] reuses arbitrary intermediate verification
results. In contrast to our approach, they are not guaranteed to prove the safety
of a program that is functional under all inputs and does not enforce the pre-
conditions (e.g., scheduling constraints) of the intermediate result.

Context bounding [31,35,36] eases the model checking problem by bounding
the number of context switches. It is limited to finite executions and unlike our
approach, does not enforce schedules at runtime.

Automated fence insertion [2,3,13,24,26] transforms a program that is safe
under sequential consistency to a program that is also safe under weaker mem-
ory models. While the amount of non-determinism in the ordering of events is
reduced, non-determinism due to scheduling can not be influenced. Synchroniza-
tion synthesis [19] inserts synchronization primitives in order to prevent incorrect
executions, but may introduce deadlocks.

Deterministic multi-threading (DMT) [4,6,7,11,12,27,30,34] reduces non-
determinism due to scheduling in multi-threaded programs. Schedules are chosen
dynamically, depending on the explicit input, and can not be enforced by a
model checker. Nevertheless, there are combinations with model checking [11]
and instances which schedule based on previously recorded executions [12].

We are aware of only one DMT approach that supports symbolic inputs [7].
Similar to our sections, bounded epochs describe infinite schedules as permuta-
tions of finite schedules. Via symbolic execution, an input-covering set of sched-
ules is generated, which contains a schedule for each permutation of bounded
epochs. As all permutations need to be analyzed (even if they are infeasible),
state space explosion through concurrency is only partially avoided; indeed, the
experimental evaluation shows that the analysis is infeasible even for five threads
when the program has many such permutations. In contrast, we do not require
race-freedom, use model checking, sections may contain multiple threads, omit
infeasible schedules, and allow a safe execution from the first schedule on, i.e.,
an IVR can be considerably smaller than an input-covering set of schedules.

Deterministic concurrency requires a program to be deterministic regardless
of scheduling. In [37], a deterministic variant of a concurrent program is syn-
thesized based on constraints on conflicts learned by abstract interpretation.
In contrast to DMT, symbolic inputs are supported, however no verification
of general safety properties is done and the degree of non-determinism is not
adjustable, in contrast to IVRs.
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Sequentialized programs [14,22,25,32,33,36] emulate the semantics of a
multi-threaded program, allowing tools for sequential programs to be used. The
amount of possible schedules is either not reduced at all or similar to context
bounding.

7 Conclusion

We present a formal framework for using IVRs to extract safe schedules. We state
why it is legitimate to constrain scheduling (in contrast to inputs) and formulate
general requirements on model checkers in our framework. We instantiate our
framework with the Impact model checking algorithm and find in our evaluation
that it can be used to 1. model check programs that are intractable for monolithic
model checkers, 2. safely execute a program, given an IVR, even if there exist
unsafe executions, 3. synthesize synchronization via assume statements, and 4.
guarantee fair executions. A drawback of enforcing IVRs is a potential execution
time overhead, however, in several cases, constrained executions turned out to
be even faster than unconstrained executions.
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Abstract. The field of program synthesis has seen substantial recent
progress in new ideas, e.g., program sketching and synthesis modulo
pruning, and applications, e.g., in program repair and superoptimiza-
tion, which is our focus in this paper. The goal of superoptimization is
to generate a program which is functionally equivalent to the given pro-
gram but is optimal with respect to some desired criteria. We develop
a learning-based approach to guide the exploration of the space of can-
didate programs to parts of the space where an optimal solution likely
exists. We introduce the techniques of bulk and sequence orderings which
enable this directed search. We integrate these machine learning tech-
niques with an enumerative superoptimizer and experimentally evalu-
ate our framework using a suite of subjects. Our findings demonstrate
that machine learning techniques can play a useful role in reducing the
amount of candidate program space that the enumerative search must
to explore in order to find an optimal solution; for the subject programs,
the reduction is up to 80% on average.

Keywords: Superoptimization · Program synthesis ·
Enumerative search · Machine learning

1 Introduction

Program synthesis addresses the problem of automatic generation of code typ-
ically with respect to a given specification that captures the intention of the
user [25]. Program synthesis techniques have been applied to solve problems in
a variety of domains, including program repair [12], robotics [29], tutoring sys-
tems [22], and superoptimization [27,31,34,38]. Various approaches to synthesize
programs have been proposed and studied, e.g., program sketching [2], where the
user provides a partial program with “holes” in it for the synthesizer to fill out
in such a way that the completed program satisfies the given correctness cri-
teria. The user intent can also be captured using natural language inputs [13]
or input-output demonstrative examples [16,21] to facilitate synthesis. We focus
on a class of well-known synthesis approaches that have two main components:
a search capability to explore the program space to seek valid programs, and
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some equivalence or correctness checker to determine the feasibility of the solu-
tion [7,35]. The specific steps of the search over the program space have a direct
impact on the efficiency of the synthesizer.

In superoptimization, which is our focus, the specification takes the form of
a program for which a functionally equivalent optimal candidate is desired using
a synthesis-based method [34]. The optimality criterion can be the code size,
memory accesses, energy efficiency etc. In contrast with optimizing compilers,
superoptimizers search for all programs in very large program spaces rather than
relying on a set of rewrite rules. Conceptually, superoptimization considers the
optimization avenues which a compiler will apply and can discover optimizations
which a compiler may miss. For example, superoptimizers are shown to discover
peephole optimization rules for compilers [5,18]. In one instance, a superopti-
mizer optimized a complex multiplication kernel to achieve a speed-up of 60%
over an optimizing compiler [33,38].

Several synthesis approaches have been developed and studied in the context
of superoptimization. Symbolic or constraint-solving based techniques formulate
the synthesis task as a boolean satisfiability problem [2,41]. The input specifica-
tions and the programming language constructs are encoded into a single formula
and any solution to the formula is a desired program. While this technique can
be slow, it is useful in synthesizing constant values in a program. Stochastic
search based techniques [38,39] sample the search space by randomly mutat-
ing the input program and using a cost function to determine the acceptance
of the candidate. Stochastic superoptimization is fast and capable of synthesiz-
ing long programs. However, there is a possibility of getting caught in a local
minima, which leads to sub-optimal solutions. Enumerative program synthesis
involves generating expressions according to the language grammar and encod-
ing the semantic specifications of the language into a satisfiability modulo theory
(SMT) [6] formula. Enumerative search coupled with an equivalence checker has
proven to be effective [23,40,43]. However, these systems find it hard to scale
beyond a few lines of code when using expressive representations, especially ones
allowing for a large range of constants and hence require intelligent pruning tech-
niques [3,5]. Recent superoptimization frameworks use multiple types of search
techniques that collaborate and complement each other to optimize a variety of
programs [34].

Enumeration-based synthesis is the specific synthesis approach we focus on
in this paper. Our insight is that there exist opportunities in the enumeration
process to employ machine learning-based search techniques to help optimize the
search. Specifically, we utilize feed-forward networks [36] and sequence transla-
tion models [42], which, to the best of our knowledge, have not been used in
prior work on enumerative superoptimization.

This paper introduces effective methods from machine learning to direct state
space exploration and likely find superoptimization solutions faster. We develop
our techniques in the context of the ARMv7 Instruction Set Architecture (ISA).
As our training data, we use over 26000 programs and optimize them using a
recent superoptimizer called Greenthumb [33]. This enables learning of the opti-
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mization rules applied by the superoptimizer. We devise learning strategies to
recognize patterns which the superoptimizer uses to optimize programs. The
learned model is used to guide the search towards regions in program space that
are likely to contain an optimal solution. For example, if the model determines
that a program containing instructions A, B, C can be optimized to a program
containing instructions C and E, this information can be used to prioritize explo-
ration of programs comprising C and E when the superoptimizer is presented
with a program which has instructions A, B and C.

We devise two learning strategies to direct the search towards regions in the
space of candidate programs which likely contain an optimal solution. Bulk order-
ing looks at the input code and recommends a ranked ordering of instructions.
A higher ranking indicates a higher likelihood of the instruction being present
in the optimized code. Sequence ordering analyzes the input code and generates
a collection of ranked orderings of instructions, one for each location in the opti-
mized sequence. This results in a fine-grained ordering which relies on the input
program as well as the location of the instruction being searched. We develop
a feed-forward neural network (FNN) [36] model to accomplish bulk ordering.
The network takes as input an encoded representation of the input program
and outputs instructions that need to be searched first when exploring optimal
candidates. We accomplish sequence ordering using a sequence-to-sequence [42]
network comprised of gated recurrent unit networks [9], which are commonly
used in machine language translation tools. The objective is to learn an opti-
mized sequence for a given unoptimized sequence of instructions. We study the
enumerative superoptimization process and identify overheads that are incurred
at different phases of the search. During a search phase, the search algorithm
looks for the next instruction in the candidate being synthesized. The instruc-
tions enumerated during this phase comprise the search overhead. If the search
determines that no program of current size can satisfy correctness, it restarts
and looks for longer candidates. The instructions enumerated during this expan-
sion phase cause the expansion overhead. We develop two strategies to address
these overheads. Prioritization aims to reduce the search overhead while pruning
reduces the number of instructions enumerated during the expansion phase. Pri-
oritization and pruning techniques are realized using the rankings suggested by
the ordering schemes. Finally, we equip the enumerative search with prioritiza-
tion and pruning capabilities made possible by bulk and sequence orderings and
perform an experimental evaluation, which demonstrates a significant reduction
of overheads.

This paper makes the following contributions:

– Learning to optimize enumerative search. We study the performance of
enumerative search to identify sources of inefficiencies and propose pruning
and prioritization techniques to address the bottlenecks. These techniques are
made feasible by ordering schemes that direct the search algorithm towards
regions in the program space that are likely to contain the optimal solution.
We devise two learning strategies to realize the proposed ordering schemes.
Bulk ordering generates one ranked ordering for the whole input and is imple-
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mented using a feed-forward neural network. Sequence ordering generates a
series of rankings, one for each instruction in the optimal sequence, and is
formulated as a sequence learning task and implemented using a sequence to
sequence translation network.

– Integration. The learned models for bulk and sequence orderings are inte-
grated with an enumerative superoptimizer. This provides the search core,
the capability to incorporate pruning and prioritization techniques which are
used to guide the search making it more efficient.

– Dataset. To train the machine learning models, we generate a corpus of over
26000 unoptimized and optimized code sequence pairs that follow the ARMv7
ISA specifications. These sequences vary in length, instruction mix, number
of variables etc. Our dataset is publicly available at:

https://github.com/Shikhar8990/TrainingPrograms Superoptimization
Datasets like these can play an important role in superoptimizer development
and analysis.

– Evaluation. We perform an experimental evaluation of our approach. The
results show that learning has a useful role in synthesis-based superoptimiza-
tion. The test suite comprises 15 synthetic programs which are designed to
test the efficacy of our scheme in identifying different optimization avenues.
Our approach achieves an average of 80% reduction in the instructions enu-
merated for the subject programs.

2 Background

2.1 Enumerative Superoptimization

This section describes the basic enumerative superoptimization search proce-
dure. Given a test suite as a desired correctness criteria, the search enumerates
candidate expressions of increasing size. A candidate that passes all the test cases
is given to the equivalence checker. If the candidate is functionally equivalent
to the specification and has a lower cost (according to the optimality criterion)
than all previously found candidates (including the specification), it becomes the
current solution. In case the candidate is not equivalent, the search is provided
a counterexample in the form of a test case which gets added to the test suite.
This process continues until all equivalent programs of lesser cost than the spec-
ification are enumerated, the search times out, or it is determined that no such
candidate exists.

2.2 Illustration

Modern superoptimizers formulate enumerative synthesis as a graph search prob-
lem [34]. The nodes in the graph denote the current state of the program exe-
cution (represented by the values of active variables/registers, overflow, sign
flags etc). A directed edge between two nodes is an instruction that changes
the program state by modifying one or more values. We illustrate the enumera-
tive search based synthesis procedure for a sample program in ARMv7 assembly

https://github.com/Shikhar8990/TrainingPrograms_Superoptimization
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language. The objective is to synthesize a program of minimum possible length
which takes two integers as inputs and returns 1 if the numbers are equal and
returns 0 otherwise. The system is also provided a program that computes the
desired result as a reference implementation that has to be optimized.

mov r1, #0
<-,0>

sub r1, r0, #1

sub r1, r1, r1

<-,1>

<-,-1>

Length: 1
Tests: 1

<1,0>

Length: 1
Tests: 2

<1,0>
<8,8>

<-,0>
<-,8>
<-,0>
<-,1>

<-,0>
<-,0>

<-,1>
<-,8>

Length: 2
Tests: 2

<1,0>
<8,8>

<1,0>, <8,8>

<1,1>, <8,8>

<1,1>, <8,16>

<1,0>, <0,8>

movneq r1, r0 <-,1>, <-,8>

<-,0>, <-,8>

<-,2>, <-,16>

<-,0>, <-,1>

<-,1>, <-,16>

<-,2>, <-,1>

Fig. 1. Enumerative search procedure

Figure 1 illustrates the various steps in the search procedure. The program
state is represented using two registers R0 and R1 which contain the program
inputs (we do not show the program status flags for simplicity). The output of
the program is stored in R1. The enumerator is provided an initial test input (1,
0) and the expected output (0). Using this test input, the search starts generating
programs of size one to determine if a single instruction brings about a change in
the program state such that R1 contains the desired result. At the end of the first
search step, the feasible candidates that pass the test are provided to an SMT
solver, which checks for program equivalence with the reference implementation.
In this case, the equivalence checker provides another test case and none of the
single instruction programs generate the desired output for both tests. At this
point, the search graph is expanded by enumerating all legal instructions, which
results in multiple intermediate states. This is followed by a second search phase
which enumerates programs comprising two instructions. At each stage, the set
of instructions that are considered for either search or expansion comprise the
opcode pool. We define one search and expansion phase as an epoch.

3 Our Approach

3.1 Optimizing Enumerative Search

The illustrative example in the previous section highlights two distinct enumera-
tion overheads. The search overhead comprises of instructions which are enumer-
ated in the search phase while the expansion overhead includes the instructions
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enumerated to expand the search graph i.e. increase the size of the program to
be searched. These overheads can become prohibitively large when expressive
ISAs and language representations are used, resulting in increased search times
and resource requirements. We introduce two concepts to reduce the search and
expansion overheads of enumerative search.

Prioritization. Prioritization aims to reduce the search overhead by reordering
the opcode pool such that instructions that are more likely to be present in the
optimal candidate are searched first.

Algorithm 1. Enumerative Search Loop - Bulk Ordering
� pSPEC is the unoptimized program, numInsts is the number of instructions to

consider when expanding the graph
input: numInsts, pSPEC

output: pOPT � pOPT is the optimized program

1: orderedPool ← BulkPrioritization(pSPEC) � Prioritized list of instructions
2: prunedPool ← BulkPruning(orderedPool, numInsts) � List containing numInsts

instructions

3: pSIZE ← 1 � start with single instruction programs

4: pCOST ← Cost(pSPEC) � Initial cost

5: Graph ← InitializeGraph()
6: while true do � Main search loop

� Search phase

7: for all inst ∈ orderedPool do
8: (pCAND, found) ← findCandidate(Graph, inst, pSPEC)

9: if found then
10: if Cost(pCAND) < pCOST then
11: pCOST ← Cost(pCAND) � Update the current cost

12: pOPT ← pCAND � Found a cheaper candidate

� Expansion phase
13: pSIZE ← pSIZE + 1

� Restrict the graph expansion using prunedPool

14: Graph ← ExpandGraph(Graph, prunedPool)

Pruning. Pruning reduces the size of the search graph that is built during the
expansion phase. In the illustrative example, if the opcode pool is limited to the
instructions that are likely to be present in the optimal candidate, this can lead
to significant reduction in expansion overheads.

3.2 Ordering Schemes

Both prioritization and pruning require the opcode pool used by the enumerative
search to be modified in a particular fashion. Prioritization uses a ranked order-
ing of instructions while pruning removes lower-ranked instructions from the
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Algorithm 2. Enumerative Search Loop - Sequence Ordering
� pSPEC is the unoptimized program, numInsts is the number of instructions to

consider when expanding the graph
input: numInsts, pSPEC output: pOPT � pOPT is the optimized program

1: pSIZE ← 1 � Start with single instruction programs
2: pCOST ← Cost(pSPEC) � Initial cost
3: Graph ← InitializeGraph()
4: orderedPool ← SeqPrioritization(pSPEC , pSIZE) � Initialize ordered pool
5: while true do � Main search loop

� Search phase
6: for all inst ∈ orderedPool do
7: (pCAND, found) ← findCandidate(Graph, inst, pSPEC)
8: if found then
9: if Cost(pCAND) < pCOST then

10: pCOST ← Cost(pCAND) � Update the current cost
11: pOPT ← pCAND � Found a cheaper candidate

� Expansion phase
12: pSIZE ← pSIZE + 1

� Generate an orderedPool for the current pSIZE

13: orderedPool ← SeqPrioritization(pSPEC , pSIZE)
� Generate a prunedPool for the current pSIZE

14: prunedPool ← SeqPruning(orderedPool, numInsts)
15: Graph ← ExpandGraph(Graph, prunedPool)

opcode pool when expanding the graph. We describe two approaches to achieve
this ordering.

Bulk Ordering. This type of ordering generates one ordered opcode pool for
the entire search. It reads the input program and emits a ranked ordering of
instructions that are likely to exist in the program. This ranking is used to pri-
oritize and prune the opcode pool. Algorithm1 describes the bulk ordering proce-
dure. It begins with an input program pSPEC and an empty graph. The function
BULKPRIORITIZATION reads the input program and generates a ranked list,
which is used in the search phase. BULKPRUNING is called to generate the
pruned opcode pool, which is used by the synthesizer to grow the graph. This
function takes as input parameters, the ordered pool generated in the previous
line, and numInsts - the number of instructions to consider when expanding the
graph. For example, if numInsts is 10, the graph will be expanded using only the
top 10 instructions from the ordered pool. The FINDCANDIDATE procedure
takes as input the current graph, the instruction being considered, and the ref-
erence specification (pSPEC) and determines if an equivalent candidate can be
synthesized using sub-programs in Graph and the current instruction. It returns
a tuple containing a found flag which is true if an equivalent candidate (pCAND)
is found. In case an equivalent candidate is found, the current cost and pOPT
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are updated if this candidate is cheaper than all the previous candidates. After
all the instructions in the ordered pool are searched, Graph is expanded using
the pruned pool generated by BULKPRUNING and the search resumes to look
for a candidate with one instruction more than the previous iteration.

Sequence Ordering. In sequence ordering, a ranking is generated for each
epoch; every search and expansion phase is provided a distinct ranking of instruc-
tions. Sequence ordering aims to generate a more descriptive ordering which
depends not only on the input program but also on the position of that instruc-
tion in the candidate program. The intuition is that the preference ordering can
change depending on the location of the instruction. For example, when search-
ing for optimal candidates of size 2, bulk ordering will generate the same rankings
for both instructions 1 and 2 while sequence ordering (Algorithm2) will generate
distinct rankings for the two instructions. To accomplish this, after every expan-
sion phase, a distinct ordering is generated for the new instruction that needs to
be searched. The pruning (SEQPRUNING) and prioritization (SEQPRIORITI-
ZATION) functions are called at every epoch (one iteration of the while loop).
Distinguishing it from the bulk ordering counterpart, the sequence prioritiza-
tion method requires additional information about instruction location, which is
equal to the current size of the program (pSIZE).

4 Learning Framework

This section describes the machine learning infrastructure used to accomplish
bulk and sequence ordering. As previously discussed, our approach is to use a
large collection of unoptimized code sequences and their optimized counterparts
to learn optimization avenues and scenarios for a specific language representa-
tion. We formulate a scheme to encode these code-sequence pairs into a format
that can be used by machine learning models. We represent programs as vectors,
which are provided to the networks for training and inference. We use a feed-
forward network to generate bulk orderings while sequence ordering is achieved
using a sequence-to-sequence translation network.

4.1 Corpus Generation

To generate a large database of code sequences, we developed a random program
generator which can emit programs adhering to the ARMv7 standard. In machine
language terminology, the part of the instruction which specifies the operation
to be performed is called an opcode. The values on which the operation is to
be performed are called operands. These values can be directly specified as a
part of the instruction (called immediate operands), or the opcodes can also
use the values in special locations called registers. The program generator has
knobs for regulating instruction mix, length, opcode flavors (different formats
in which an opcode can be used) and range of immediate values. The current
version of the program generator can synthesize 20 different opcodes. It uses 4
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registers and 5-bit constants to generate the operands. The maximum length
of the program is capped at 8. We generated around 125000 sequences and all
of them were provided to Greenthumb to find an optimal equivalent program,
should one exist. The objective was to make the corpus diverse enough so that
Greenthumb discovers various kinds of optimization techniques applicable under
different scenarios. Out of around 125000 programs, Greenthumb was able to
discover optimal solutions for around 26000, which were used for training.

4.2 Learning Bulk Ordering

Feed-Forward Networks. Feed-forward neural networks (FNNs) are one of
the oldest and most widely studied networks. They find application in non-
linear regression and classification tasks [36,44]. These networks comprise neural
populations structured in layers. In these networks, a connection is allowed only
between a particular layer and its successors. There are no backward or intra-
layer connections. Along with the input and output layers, a network can have
one or more hidden layers. If every neuron in one layer is connected to every
neuron in the successive layer, the layers are said to be fully connected. FNNs
with one or more hidden layers are commonly called multi-layer perceptrons.
The network learns through a process called back-propagation [37] where the
weight of each unit is modified according to a loss function which quantifies
the error between the predicted and actual outputs. FNNs are well suited for
learning bulk orderings as they can be trained to classify an instruction being
present or absent in the optimized program for a given input program.

Implementation. Figure 2 depicts the feature extraction and encoding process.
Each instruction in the code sequence is converted to a token. A token retains
information about the opcode and the type of operands that are used. It strips
the instruction of the register numbers and values of operands. This makes the
learning problem tractable by reducing the feature space. We list all possible
ways in which the opcode can be used and assign it a position in a 1-D array.
For example, the opcode ADD can exist with 3 register operands, 2 registers, and
1 immediate operand, with an optional conditional suffix and with a secondary
shift operation on the second register operand. This is done for all opcodes,
which results in 92 unique tokens. Each token is assigned a unique index in a
vector and the presence of an instruction is recorded by incrementing the value
at the corresponding token location by 1. These values are then normalized with
respect to the total number of instructions in the program.

After a design space exploration, we configured the FNN to have 2 hidden
layers with 16 and 8 hidden units respectively. The network has 92 units in
the input and output layers, one for each token in the feature vector. The acti-
vations of the output layer are sorted, and this provides a ranked ordering of
tokens/instructions. The training was carried out for 100 epochs with a batch
size of 32. The neural network was implemented and trained using Keras [10]
with the Tensorflow [1] back-end.
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sub r3, r0, #1
orr r3, r3, r0
add r3, r3, #1
and r0, r3, r0

sub_rri
orr_rrr
add_rri
and_rrr

and_rrr and_rri and_crr sub_rri orr_rrr add_rri
0.25 0 0 0.25 0.25 0.25

Fig. 2. Feature generation and encoding for bulk ordering

4.3 Learning Sequence Orderings

Seq2seq Networks. Recurrent Neural Networks (RNNs) are special types of
artificial neural networks that have been the subject of recent interest by the
machine learning community [19,47]. This architecture was conceived by Elman
in 1990 [15]. Conventional FNNs are oblivious to sequential information or order-
ing in time; they generate a prediction by considering only the current input.
RNNs are capable of considering not only the current input but also its past
decisions. An RNN unit has “memory” and a notion of a state, and this allows
it to learn and interpret sequences. Information about the sequence is embed-
ded into its state and it looks at its present state as well as the current input
when making predictions. There is a feedback loop from the output of the unit
back into it and this keeps updating its internal state and letting information
persist. Gated Recurrent Units [9] (GRUs) are a special type of RNNs which
have found application in various sequence learning and sequence-to-sequence
translation (seq2seq) tasks [11,42]. Seq2seq network architecture consists of two
GRU networks - an encoder and a decoder. The encoder processes the input
sequence to generate an output and update its internal state. The output of
the encoder is discarded and the final internal state acts as a “context” for the
decoder. A decoder is another GRU network which predicts the next token in
the target sequence when provided with all previous tokens. During training,
the input to the decoder is the desired target sequence and the output is the
same target sequence but shifted by one time-step. The target sequences are
provided explicit “START” and “STOP” tokens to signal the beginning and end
of the sequence. The initial internal state of the decoder is determined by the
“context” provided by the encoder. This process of learning is called Teacher
Forcing [30]. During inference, the input sequence is provided to encoder while
the decoder is given only a “START” token which signals is to start decoding
using the final encoder context. Seq2seq networks are well suited for learning
sequence orderings as they can be trained to learn the position of an instruction
in the optimized code for a given input program.

Implementation. The feature generation process for sequence ordering is
shown in Fig. 3. The input and output sequences are converted to their token
representations and each token is assigned a distinct index in a one dimensional
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vector. Each instruction in the code sequence is assigned one such vector with
the value at the corresponding token index set to 1. The vectors are consolidated
to create a 2-dimensional structure of one-hot vectors. Our implementation of
the seq2seq network comprises 256 GRU units in both the encoder and decoder.
The 2-D structure corresponding to the input code sequence is fed to the encoder
and for each token predicted in the output sequence by the decoder, we record
and sort the output activations to derive one ranked ordering per token. The net-
work was trained for 1000 epochs with a batch size of 32. We used the pytorch-
seq2seq [17,32] library to configure the network. This network configuration was
determined after evaluating several different configurations.

sub_rri orr_rrr add_rri and_rrr

sub r3, r0, #1
orr r3, r3, r0
add r3, r3, #1
and r0, r3, r0

Token Index
sub_rri 1
orr_rrr 2
add_rri 3
and_rrr 4

1000...000
0100...000
0010...000
0001...000

Fig. 3. Feature generation and encoding for sequence ordering

5 Evaluation

5.1 Subjects

To test the ordering schemes, we create a handwritten suite comprising 15 pro-
grams ranging in length from to 2 to 5 instructions. The destination register of
the last instruction contains the result of the program. These program lengths
are typical of the state-of-art work on applying learning to program synthesis [4]
and was chosen to be a reasonable design parameter to evaluate our scheme.
Programs of the length we consider are also appropriate in determining if the
learned models can recognize fundamental optimizations, and each subject in the
suite can be optimized using one or more of these optimization techniques. The
programs are classified into three non-exclusive categories. Category A programs
can be optimized by combining two or more instructions into one. Category B
programs can be optimized by avoiding redundant data movement while Cate-
gory C programs contain instructions that have no effect and can be eliminated.
Table 1 lists these programs and their optimized counterparts.

5.2 Integration with Enumerative Search

This section describes the integration of the learned models with an enumer-
ative searcher to enable pruning and prioritization. We take the enumerative
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Table 1. Benchmark programs

progID Original Optimized Category

1 add r0, r0, r1
add r0, r0, r1

add r0, r0, r1, lsl #1 A

2 mov r0, r1
mov r2, r0

mov r2, r1 B

3 mov r0, r1
mov r2, r0
mov r3, r2

mov r3, r1 B

4 mov r0, r1
add r2, r2, r0

add r2, r1, r2 B

5 orr r0, r1, r3
sub r2, r0, #2
mov r1, r2

orr r2, r1, r3
sub r1, r2, #2

B

6 add r0, r1, r2
sub r0, r0, r3
mov r1, r0
eor r3, r1, r2

sub r3, r3, r2
sub r0, r1, r3
eor r3, r0, r2

B

7 mvn r0, r1
add r2, r1, r0

mvn r2, #0 A

8 mvn r0, r0
mvn r1, r1
rsb r2, r1, r0

sub r2, r1, r0 A

9 add r1, r1, #0
add r2, r1, r0

add r2, r0, r1 C

10 sub r1, r1, #0
add r2, r1, r0

add r2, r0, r1 C

11 orr r1, r1, #0
add r2, r1, r0

add r2, r0, r1 C

12 mvn r0, r1
orr r2, r1, r0

mvn r2, #0 A

13 cmp r0, r1
movlt r2, r1
movge r2, r1
add r3, r2, r3

add r3, r1, r3 C

14 mvn r0, r1
and r2, r0, r2
mvn r3, r2
rsb r3, r3, r0

bic r3, r2, r1
rsb r3, r1, r3

AB

15 add r0, r0, r1
add r0, r0, r1
mov r2, r0
sub r3, r2, #0
and r3, r3, r1

add r3, r0, r1, lsl #1
and r3, r1, r3

ABC
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search provided in the Greenthumb framework [33] and extend it to incorporate
the ordering schemes. As described in the previous sections, sequence and bulk
models suggest an ordering of instructions. The instruction encodings used for
learning contain information about the opcode and the type of operands. This
encoding provides a template for the enumerative search to generate instructions.
For example, using a token sub rri, the enumerator will generate instructions
using sub as an opcode, a register and an immediate (constant) on which the
operation is performed and a destination register to store the result. The search
strategy determines the exact register names and constant values. Three con-
figurations are used for experimentation - Vanilla configuration is enumerative
search without any modifications, Bulk and Sequence configurations implement
bulk and sequence pruning/prioritization respectively. For the optimality crite-
ria, we use a model that assigns a certain cost to each instruction in the language.
Instructions which are more complex and take longer to complete incur higher
penalties.

5.3 Enumeration Overheads

To make a case for the necessity of an ordering scheme like ours, we run the
test programs on the vanilla configuration. Each program is run five times and
the number of instructions searched to reach the optimal solution is recorded.
Figure 4 plots the average (left y-axis) and standard deviation (right y-axis) of
the number of instructions searched during the superoptimization process. One
way to quantify the unnecessary program space that is explored is to count
the number of instructions that are enumerated before an optimal candidate is
found. For subject programs containing 2 instructions, this value ranges from
3 instructions for program 12 to as high as 154 for program 1. For programs
of length 3, the search explores 40 instructions for program 8 while program 5
requires enumerating around 1500 instructions. These overheads become more
pronounced as the size of the program increases. In order to optimize program 6,
which has a length of 4, almost 8000 instructions are enumerated. Most programs
exhibit a high variation in search overhead across identical runs. The reason for
this is that during every search and expansion phase, the superoptimizer shuffles
the opcode pool. This non-determinism hinders reproducibility and makes per-
formance analysis rather difficult. These observations call for a need to develop
a more structured approach to explore the program space.

5.4 Performance of Ordering Schemes

This section discusses the efficacy of bulk and sequence orderings when used to
prioritize and prune the program space.

Prioritization. Figure 5 depicts the impact of prioritization on the search over-
head. The test programs are run with pruning turned off. The number of instruc-
tions enumerated during the search phase is recorded for both bulk and sequence
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Fig. 4. Average and std-dev of instructions searched - vanilla configuration
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Fig. 5. Impact of prioritization on search overhead

ordering and are normalized with respect to the number of instructions enu-
merated in the vanilla configuration. Ordering schemes can reduce the search
overhead anywhere between 10% and 90%. Bulk ordering proves more efficient
for some programs while sequence ordering proves efficient for others. For exam-
ple, the solution to program 14 consists of 2 instructions - bic (bit clear) with 3
registers followed by rsb (reverse subtract) with 3 registers. Sequence ordering
assigns top rank to bic with three registers and third rank to rsb with three
registers. As a result, the search is directed towards these instructions, which
enables it to find the optimal solution without having to search invalid instruc-
tions. Without sequence ordering, the synthesizer had to search over 900 extra
instructions before reaching the same solution. For three cases – sequence order-
ing in programs 7 and 10 and bulk ordering in program 8 – the ordering schemes
degrade the performance. This is because of the inefficient ordering suggested
by our models. The solution to program 8 is a single instruction sub (subtract)
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or rsb (reverse subtract) which uses three registers. Bulk ordering assigns a rank
of 18 and 19 to these instructions, which is not a good prediction. Vanilla con-
figuration, on the other hand, picks sub with three registers as the third choice,
which results in fewer instructions being searched.
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Fig. 6. Impact of pruning on expansion overhead

Pruning. The objective of this study was to evaluate the impact of ordering
schemes in restricting the size of the graph that is built when the size of the opti-
mal candidate being searched is increased by an instruction. Since 4 programs
in the test suite yield an optimal solution comprising more than one instruction,
we use these programs to study pruning performance. Figure 6 compares the
expansion overheads of the ordering techniques with the vanilla configuration.
We allow the search to expand the graph using only the top 10 instructions
recommended by bulk and sequence orderings. The four test programs are run
with prioritization turned off and only instructions enumerated in the expansion
phase are counted. The number of instructions is normalized with respect to
the vanilla configuration. Three out of four test programs show more than 80%
reduction in expansion overhead. For program 15, the optimal solution com-
prises an add instruction with 3 registers and a secondary shift operation. This
instruction does not find a place in the top 10 rankings of either bulk (rank
12) or sequence (rank 32) orderings. As a result, the graph does not contain
this instruction and the search is unable to find an optimal solution. The choice
of considering only the top 10 instructions was to underline the importance of
careful determination of how much a graph should be pruned. While aggressive
pruning leads to greater overhead reduction, there is also an increased risk of
not enumerating instructions essential to the search process. For example, had
we chosen to consider the top 12 instructions instead of top 10, bulk pruning
would have found the solution to program 15 but also increased the expansion
overhead for the rest of the programs.
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Prioritization and Pruning. In this section, pruning and prioritization are
combined and their impact on the overall enumeration overhead is studied. Enu-
merative search is extended to incorporate bulk and sequence orderings accord-
ing to the scheme described in Sect. 3. Figure 7 shows the total reduction in
enumeration overhead across both search and expansion phases. The orderings
are unable to find a solution for program 15 because an instruction required for
the optimal solution is pruned out by both the schemes (discussed in the previ-
ous section). Bulk ordering proves beneficial in all of the remaining 14 programs
while sequence ordering is able to reduce the number of enumerated instructions
in 12 programs. Both these techniques result in an average overhead reduction
of 80%. Bulk ordering performs better in some cases while sequence ordering
performs better in others. It was anticipated that the sequence ordered pruning
and prioritization would exhibit superior performance as it was expected to gen-
erate a more fine-grained ordering. However, bulk ordering proved to be more
efficient. Since sequence translation models are very difficult to train, we suspect
that further training is required along with a larger dataset. We continue to
experiment with the model to improve its performance.
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Fig. 7. Impact of prioritization and pruning on total overhead

6 Limitations and Future Work

Our approach shares the limitations of other machine learning based approaches,
specifically the quality of training data is crucial for the approach’s effectiveness.
While we created a diverse corpus of subjects, our evaluation results may not
generalize to programs that have characteristics different from the ones we used.
Moreover, similar to other heuristics that prune search space, our learning-based
pruning technique may lead the search to completion without finding a solution
that could have been found by an exhaustive search that did not use pruning.
Scalability remains a major challenge for learning based program synthesis and
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making our technique efficient and practical for larger programs remains an
active area of research.

The focus of our work is enumerative search. Modern superoptimizers, such
as Greenthumb, use a combination of search strategies. We plan to apply learn-
ing to different search algorithms to create a more comprehensive solution for
superoptimization in future work.

7 Related Work

Massalin [31] first introduced the concept of superoptimization in 1987 for code
written in the assembly of the Motorola 68020 ISA. Massalin’s superoptimizer
was able to synthesize code comprising a few instructions. Since then, several
approaches and techniques to superoptimize have been developed. These tech-
niques vary in terms of the target code environment, search algorithms, the speed
of search, computational overheads, size of the synthesized code etc. STOKE is
a stochastic superoptimizer for the x86 64 ISA [38] that uses a random search to
rapidly explore the incredibly vast program space to come up with an optimized
version of the given program. Stochastic search starts with an input program
and generates modifications on that program. A proposal distribution determines
the probability of a particular modification. The new candidate is accepted or
rejected based on correctness and optimality criteria. Reinforcement learning [46]
is demonstrated to have improved the performance of the STOKE superopti-
mizer by learning the proposal distribution using the semantics of the input
program [8]. To the best of our knowledge, our proposed technique is the first
to apply machine learning to enumerative superoptimization. Enumerative syn-
thesis is crucial to a comprehensive superoptimization framework as it ensures
optimality of the solution.

In the more general context of program synthesis, machine learning tech-
niques, such as probabilistic inference [20,24,26] and Genetic Programming [28,
45] have shown to be useful in previous work. Machine learning has also been
applied to inductive program synthesis where input-output examples are used
to generate code in a domain-specific language. One approach uses recurrent
neural networks to synthesize code in a language comprising regular expression-
based string transformations [14]. DeepCoder [4] combines enumerative search
and learning to synthesize programs. For a given language representation com-
prising several high level functions, a neural network is trained to learn the
likelihood of a function being present for a given set of inputs and outputs to
the program, and this information is used to guide the search. The technique
implemented in [48] extends [4] to incorporate information about intermediate
program states to predict the next instruction. A key difference between Deep-
coder and our work is that Deepcoder considers inductive program synthesis
using examples of input/output values, whereas we consider superoptimization
where the input is an unoptimized program and the output is its optimized
version.
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8 Conclusion

This paper presented an approach based on machine learning for more effec-
tive superoptimization using program synthesis based on enumerative search.
We introduced ordering schemes that give priority to instructions that are likely
to exist in an optimal program. Bulk ordering scheme analyzes the input code
and recommends a ranked ordering of instructions. Sequence ordering scheme
generates a collection of ranked orderings of instructions, one for each location
in the optimized sequence. Using these ordering schemes, we developed prun-
ing and prioritization techniques which guide the enumerative search towards
regions in the program space that likely contain an optimal solution. We devel-
oped learning-based techniques to implement bulk and sequence orderings and
integrated them with an enumerative superoptimizer to implement prioritiza-
tion and pruning. An experimental evaluation of our approach using a suite of
superoptimization subjects demonstrates that machine learning techniques can
play a useful role in reducing the amount of program space that the enumerative
search has to explore in order to find an optimal solution.
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Abstract. A term Cyber-Physical System (CPS) refers to a mathe-
matically described (specified) real-world process, that combines dis-
crete changes of pre-defined control states (a cyber part) and changes
of controllable continuous-time states (a physical part). In this paper,
we present a model-checking approach to verification of Cyber-Physical
Systems. The primary goal of the paper is to try using SPIN verifier and
Promela language to specify and verify a safety property of a CPS for
Air Collision Avoidance. The main “obstacle” preventing model checking
the CPSs is the absence of a floating-point arithmetic in input languages
of model checkers. In this paper, we describe an implementation of a
standard floating-point arithmetic in Promela language as well as results
of verifying an Air Collusion Avoidance model using this implementation
and comparison of our approach with other approaches. Also, we stress
an importance of verified standard mathematical functions used in CPSs
solutions.

Keywords: Cyber-Physical Systems · Model checking · SPIN ·
Promela · Floating-point arithmetic · Standard IEEE-754

1 Introduction

A term Cyber-Physical System (CPS) refers to a mathematically described (spec-
ified) real-world process, that combines discrete changes of pre-defined control
states (a cyber part) and evaluation of controllable continuous-time states (a
physical part)—the time is passing and these controllable variables of a model
are changing according to some mathematical specification (e.g., they are solu-
tions of a system of ODE—Ordinary Differential Equations).
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These systems can be modeled as Hybrid automata [11] which represent
discrete-time and continuous-time transitions; such models are known as Hybrid
models and specified using the Hybrid Dynamic Logic [13]. According to A.
Platzer [15], the syntax of hybrid programs is defined as follows:

α ::= x := e | ?Q | x′ = f(x)&Q | α ∪ α | α;α | α∗ (1)

where α is a meta-variable for the hybrid programs, x is a meta-variable for
program variables, e is a meta-variable for the first-order real-valued terms, f
is a meta-variable for the continuous real functions, and Q is a meta-variable
for the first-order formulas over real numbers. The construct ‘;’ means here the
sequential composition, ‘∪’—is the non-deterministic choice, ‘?’—is the condition
operator, and ‘∗’—is the non-deterministic iteration (like Kleene-star).

In this work, we are mostly interested in verification of safety properties of
Cyber-Physical Systems [12], express that a specified (bad) situation will never
happen during a system execution.

Of course, such systems can be implemented as C++ or Java programs by
solving the differential equations of the CPS analytically (i.e. explicitly) prior
to coding or by solving the ODEs numerically in runtime (for example, using
the Runge-Kutta method). The Model-Driven Developing (MDD) approach is
becoming more and more popular nowadays to describe the behavior of a CPS
in various forms of flowcharts, it could be expressed in Modelica declarative
language [8], using Berkeley’s Ptolemy [5] or Matlab Simulink [1]. Then the CPS
can be numerically simulated many times and each simulation can be tested
against a particular safety property (i.e. that a particular bad situation never
happens in every particular simulation exercise).

However, numerical simulation and test-based validation cannot guarantee a
safety property of a CPS: simulation just shows some plots with key parameters
and/or listings of their current values, but unexpected unsafe behavior may be
missed in simulation (while the corresponding real-world process may influence
people or harm hardware and can cost a lot).

It this paper we deal with a demo CPS to model the Air Collision Prevention
Maneuver [6,14], which is a simplification of aircraft control system, and the
absence of collision of two planers as a safety property (more precisely—that
two aircraft should not be in a circle of a given radius).

Formal verification is a way to prove mathematically that a model program
meets formal requirements (that specify a correct model behavior). In the Model
Checking approach [4], these requirements are usually expressed in a temporal
logic, such as LTL or CTL. The models for verification are usually written in a
special modeling language, which simplifies conventional imperative or functional
programming languages (by using enumerable types, fix-size finite memory, etc.)
but adds non-deterministic transitions and some features for inter-process com-
munication and synchronization.
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The main advantage of a formal verification is a chance to prove the correct-
ness of a model for all the possible behaviors (but not only for simulated ones).
Of course, the formal model of a system or formal specification of the system’
requirements could be incorrect or be incomplete, so we cannot claim that the
formal verification makes the system totally correct, but still any formal verifica-
tion is a good way to validate the formal model against the formal specification
beforehand implementing real system code.

In this paper, we address the problem of verifying CPSs. Currently, the model
checking approach is not applied here because of the absence of floating-point
types. We present a way to implement floating-point arithmetic in Promela lan-
guage for the SPIN verifier. A CPS for Air Collision Avoidance is used as a run-
ning verification example. Also, we count of resulting internal states and discuss
the feasibility and scalability of the approach to CPS modeling and verification
with a comparison to other formal techniques.

For sake of paper completeness, let us conclude the introductory section with
a very brief characteristic of used tools SPIN and Promela (more detailed sketch
is unnecessary for SPIN workshop audience) and the problem with floating-point
within these tools.

SPIN is a verifier for models written in a special Promela input language [22]
with respect to given LTL requirements constructed using key variables of the
model. To deal with CPSs models, we may relay upon the following language
features:

– it is an actor-based (process-oriented) language,
– it is primarily designed to describe protocols interoperations,
– it has C-styled syntax and fix-size finite data types,
– it uses function inlining quite similar to the macros in C,
– it allows non-deterministic transitions.

We can state that Promela language is ideal for modeling cyber parts of CPSs,
but it is not so convenient to model physical parts. As the paper deals with
modeling of CPSs, we should found a way to use continuous time in model
programs, and hence, the fixed-point or the floating-point arithmetic should
be applied for it. Of course, using floating-point arithmetic is more interesting
because of higher accuracy: since CPSs are modeled with differential equations,
there are many “opportunities” to increase the total error with an imprecise
data type.

Unfortunately, the Promela language comes neither with fixed-point nor
floating-point types. The official site says [23]:

There are no floating-point numbers in basic Promela because the purpose
the language is to encourage abstraction from the computational aspects
of a distributed application while focusing on the verification of process
interaction, synchronization, and coordination.
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So, the model checking approach implemented in SPIN is designed not to check
the calculations; the purpose is to check interoperations. But later in the paper,
the approach will be used to verify also a system that represents the Air Collision
Prevention model with a lot of floating-point calculations.

The rest of the paper has the following structure. In the next very short Sect. 2
we present the collision avoidance model. The floating-point arithmetic and its
implementation are presented in the Sect. 3. In the last Sect. 4 we present our
verification process and outcome of our verification experiment (Subsect. 4.1),
compare our approach with some other approaches (Subsect. 4.2) and conclude
discussing topics for further research (Subsect. 4.3).

2 The Roundabout Maneuver

The Roundabout Maneuver is a behavior of aircraft to make Collision Avoidance,
and it is a subject to cooperation in air traffic control. The avoidance of collision
is achieved by an agreement on some common angular velocity ωxy and common
centre cxy around which both can fly by the circle safely without coming closer
to each other not more than Rsafe [14]. In this section, it is stating how we
can model two planers which are going to enter the Maneuver and what safety
property should be specified verified to prove the correctness of the Collision
Avoidance.

2.1 Flight Dynamic

According to [14], the flight dynamic can be modeled as a system:
⎧
⎪⎨

⎪⎩

x1 = v · cosθ

x2 = v · sinθ

θ′ = ω

(2)

where x = (x1, x2) is a planar position, v—a linear velocity, ω—an angular
velocity, θ—an angular orientation. After introducing the linear speed vector
d = (d1, d2) = (vcosθ, vsinθ) from (2) the following differential equation for two
aircraft is derived: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x′
1 = d1, x′

2 = d2

d′
1 = −ω · d2, d′

2 = ω · d1

y′
1 = e1, y′

2 = e2

e′
1 = −ωy · e2, e′

2 = ωy · e1

(3)

where also y = (y1, y2) is a second planar position, e = (e1, e2) – a second linear
speed vector, ωy – an angular velocity of the second planer.
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The system (3) can be solved analytically (manually with pen-and-paper or
symbolically with using tools like Mathematica or Maxima [21]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = x1(0) +
d1(0) · sin(ω · t) + d2(0) · (cos(ω · t) − 1)

ω

x2(t) = x2(0) +
d2(0) · sin(ω · t) + d1(0) · (1 − cos(ω · t))

ω
d1(t) = d1(0) · cos(ω · t) − d2(0) · sin(ω · t)
d2(t) = d1(0) · sin(ω · t) + d2(0) · cos(ω · t)

y1(t) = y1(0) +
e1(0) · sin(ωy · t) + e2(0) · (cos(ωy · t) − 1)

ωy

y2(t) = y2(0) +
e2(0) · sin(ωy · t) + e1(0) · (1 − cos(ωy · t))

ωy

e1(t) = e1(0) · cos(ωy · t) − e2(0) · sin(ωy · t)
e2(t) = e1(0) · sin(ωy · t) + e2(0) · cos(ωy · t)

(4)

Numeric simulation of the system has been implemented in C++. The pro-
gram (available on GitHub [18]) in a loop increases the time variable t to some
Δt, calculates positions according to (4) and plots them. An example result is
shown in Fig. 1.

Fig. 1. Roundabout Maneuver simulation

2.2 The Maneuver

When two aircraft move according to (4), they can proceed to the Roundabout
Maneuver, but the safety property (specified below in the next Subsect. 2.3)
should be held as a precondition.

The procedure of the Maneuver:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1 = −ωxy · x2 − cc2

d2 = ωxy · x1 − cc1

e1 = −ωxy · y2 − cc2

e2 = ωxy · y1 − cc1

(5)
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where ωxy is a common angular velocity, cc1 and cc2—new centers of aircraft
curves.

2.3 The Safety Property

Before and during the Maneuver the aircraft should be outside the circle with
radius Rsafe. So, we have the following precondition to the entry procedure of
the Maneuver and the safe property to verify:

(x1 − y1)2 + (x2 − y2)2 � R2
safe (6)

3 Floating-Point Arithmetic

In this section we recall IEEE-754 representation of floating-point numbers and
operations. Nowadays the floating-point arithmetic is (usually) implemented in
hardware (co-processors and processors). Because of the absence of floating-point
arithmetic in a particular language (e.g. Promela), floating-point numbers and
operations should be coded in a “software mode”, that means they should be
written according to algorithms based on the representation of the numbers in
the memory to calculate the operations results and maintain the representation
format.

3.1 Integer Based Representation of Floating-Point Numbers

As there is a 32-bit type in Promela (the int datatype), it is possible to represent
floating-point numbers as integers, then implement the floating-point operations,
and there will be a type that is a “very similar” to float (i.e. real number
single precision) data type in C. The internal representation of float in 32 bits
is depicted below:

1 bit
︷ ︸︸ ︷
Sign(0, 1)

8 bit
︷ ︸︸ ︷
Exponent

23 bit
︷ ︸︸ ︷
Mantissa (7)

In this representation Sign is the bit equals to 0 for positives and 1—for neg-
atives; Exponent and Mantissa are the power of the binary exponent of the
number and its multiplier respectively; the number represented by (7) is equal
to

Float(32bit) = (−1)Sign · 2128+Exponent · Mantissa

223
, (8)

where 23 is the size of the mantissa in bits and 128 is the bias value for 8-bit
exponent representation.
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3.2 Algorithms of Software Floating-Point Arithmetic

– Adding two positive floating-point numbers: before we add numbers, they
need to have a common exponent, so the adding firstly getting a more promi-
nent exponent of two numbers, than modifying the other number by shifting
to the right to the diff of two exponents and then actually adding the two
mantises. If the resulting mantissa is bigger than the maximum allowed value,
the resulting exponent is decreased, and the result is shifted to the right.

– Subtracting two floating-point numbers, a bigger and a lower: we should first
find a maximum exponent of the two, then shift the other mantissa to the
right according to the exponent diff, do the actual subtracting of the mantisses
and then check the sign of the result, if the result is negative, change the sign
and put the absolute value as the result.

– Subtracting and adding numbers with different signs and comparisons: these
cases can be resolved by checking the signs and apply operations to add or
to subtract with a possible change of the sign of the result.

– Multiplying two floating-point numbers: the resulting exponent is the sum of
the two exponents, the resulting mantissa is the product of the two mantises
shifted by 8 each other (otherwise the overflow occurs) and then the result
should be shifted to achieve the number not to exceed the maximum allowed
mantissa and the resulting sign is the modulo-2 sum of the two signs.

– Dividing two floating-point numbers is the hardest operation to implement.
The resulting exponent is the subtraction of the two exponents, and the result-
ing sign is the modulo 2-sum of the two signs, the resulting mantissa is cal-
culated by the iterative process of adding next division product and getting
the remainder and repeat to div the remainder by the second number while
remainder is more than a given bound. To div two numbers in integers and
reduce an error and number of loops, we execute a process of shifting the
first number to the left to the highest possible value and shifting the second
number to the right while it has 0 as a low bit in the base of 2 representation.

– Some common procedures are executed before any operation, these are: get-
ting the sign, exponent and mantissa from a number by shifting and putting
a mask; and after any operation—shifting the resulting mantissa to achieve
the highest possible number not more than 2mantissa bits (see (8)), and every
shifting should be done with updating the exponent. The resulting number is
formatted according to the (7).

3.3 Implementation of the Floating-Point Arithmetic

Implementation of the 32-bit floating-point arithmetic uses some Promela lan-
guage features such as function inlining (macros) and bitwise operations (pro-
vided because the language has been constructed for protocols verification). The
implementation is freely available on GitHub [19].

The developing process was as follows:

– firstly, these algorithms were implementing as functions in C [19],
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– then these functions were tested on random numbers (using Unit-testing),
– and finally C-functions were rewritten in Promela.

We have started with C-implementation because this language offers more
convenient debugging and testing support. An example of the implementation
of floating-point multiplication (the most straightforward operation) is given in
Listing 1.1.

byte s i g n b = b mul >>
( MANTISSA BITS + EXP SIZE ) ;
ea = ea & EXP MASK;
eb = eb & EXP MASK;
/ / r e s u l t i n g e xp o n e n t
i n t e = ea + eb − EXP BIAS ;
a mul = a mul & MASK;
b mul = b mul & MASK;
/ / r e s u l t i n g m a n t i s s a
i n t p mul = ( ( a mul >> 8) ∗
( b mul >> 8 ) )
>> ( MANTISSA BITS − 1 6 ) ;
/ / r e s u l t i n g s i g n
b i t s i g n = ( s i g n a + s i g n b ) % 2 ;
e = ( s i g n << EXP SIZE ) + e ;
r e s u l t = p mul |
( e << MANTISSA BITS ) ;

}
f i

}

Listing 1.1. Implementation of multiplication of floating-point numbers in Promela
i n l i n e m u l f l o a t ( r e s u l t , a p a s s , b p a s s ){

i n t a mul = a p a s s ; / / c r e a t e c o p i e s
i n t b mul = b p a s s ;
i f : : ( a mul == 0 | | b mul == 0) −>
r e s u l t = 0 ;

: : e l s e −> {
i n t ea = a mul >> MANTISSA BITS ,
eb = b mul >> MANTISSA BITS ;
byte s i g n a = a mul >>
( MANTISSA BITS + EXP SIZE ) ;

In the listing we note the shifting operator that truncates the resulting value
to satisfy the size of the mantissa, and here is a point to loosing precision for
floating-point values especially that presented inaccurately due to the impossi-
bility to represent them as a decomposition of a number in powers of two. (But
it is an “official” truncation according to the standard.)

Some additional operations were implemented to allow to create floating-
point numbers in code and to show their values in the simulation mode.
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Fig. 2. The sine function implementation internal automaton

– float from int(result, x, rate of minus10) creates a floating-point value
result by dividing the value of x by the value of 10rate of minus10; for exam-
ple, the following code snippet defines the approximation π with 5 digits in
the decimal part:
i n t p i ;
f l o a t f r o m i n t ( pi , 3141592 , 6 ) ;
/ /3141592∗10ˆ{ −6}

– print float representation(float num) prints the number float num in
human-readable format (8); for example, the value of the constant pi defined
above will be printed as pi = [0 2 3294144] that is 51471∗2−14. (If we put
this value to a calculator or, for example, into the Google’s search string, we
will get 3.14154052734).
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Trigonometric functions (our hybrid model has the differential equation solu-
tion with sin / cos) can be implemented as Taylor series. Currently, the sine is
implemented as the sum (9) bounded to a given precision or count of terms and
the cosine is implemented based on the identity (10).

sin(x) = x − x3

3!
+

x5

5!
− ... (9)

cos(x) = sin(
π

2
− x) (10)

(Please refer to [17] for criticism and verification of this approach).
In Fig. 2 the sine internal automaton generated by iSpin and graphviz tools

is shown to illustrate a complexity of implementation of floating-point standard
functions in Promela. A comprehensive verification of standard functions (like
sine verification in [10,17]), is out of scope of our paper, but it is possible to apply
the model checking approach to verify the standard functions in floating-point
arithmetic.

4 Main Results and Conclusion

4.1 Verification of the Example

The overall process is presented in Fig. 3. First we had solved the CPS system
and got a solution (4) for X, D, Y , T . Then we had created a model simulator
of the CPS with a visualization of two aircraft position for “playing” with the
model and adjusting its initial values. (Simultaneously it was used for dynamic
checks of the safety condition (6).) Next we had implemented 32-bit floating-
point arithmetic (as described in the Sect. 3), sine and cosine functions. After all
these it has become possible to implement the CPS model behavior according
to formulas (4–6).

In the code [19] we show how to implement this CPS. The implementation
sets the initial values for x1, x2, y1, y2, etc., then loops (adding Δt to t) and
calculates values for the solution of the differential equation according to (4)
(which are coded as inline functions in Promela). The LTL formula representing
the safety property (6) is [](safe == 1) where safe variable is setting as a result
of evaluating (6) after calculating values of all variables of (4).

The verification result output for t ∈ [0..1] is shown in Fig. 4. The model
checker has utilized more than 2 GB of memory, about 8000 bytes for the state
vector (SPIN’s VECTORZ parameter [9]) and generated more than 250.000
states. It looks like that verifying such systems is near the limit of Model Check-
ing approach applicability, so we did not test the method on potentially all t
intervals using the non-deterministic addition.

4.2 Comparison with Other Related Methods

Actually, the ODE system that model the Roundabout Maneuver is included
as an example in the KeYmaera [15], an interactive proof assistant designed to
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Fig. 3. CPS verification software engineering process

Fig. 4. The CPS verification results with SPIN

specify and verify Hybrid systems. The tool implements the dynamic differential
logic (DDL) that extends Pratt’s dynamic logic by adding the following axioms
[16]: Hoare’s assignment rule; solution of the symbolic initial value problem;
iteration axiom; modal modus ponens from modal logic; induction schema for
loops; variation of Harel’s convergence rule, suitably adapted to hybrid systems
over R; Barcan formula; vacuous modalities, Gödel’s necessitation rule for modal
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logic and an axiom for reducing differential equations with evolution domain
constraints to equations without it, so it is now possible to write and check
invariants for modalities after runs of (1).

Fig. 5. The CPS verification results with KeYmaera tool

The main advantages of KeYmaera are initial system description in the orig-
inal equations (not in code), ability to verify over potentially all the possible
values for some parameters, opportunity to extend the class of verifying systems
by providing lemmas for particular types of equations. But verification using
this tool additionally requires linkage of external tools like Reduce, Orbital and
SMT to simplify the system at every step of the proving process by providing the
real arithmetic, ODE solution or counterexample generation ability. In Fig. 5 the
result of verification of the system with KeYmaera is shown. We note that the
proof tree consists of 138 nodes of DDL simplification rules and for our type of
ODE system it can be done fully automatically (otherwise it requires to simplify
the system step-by-step since KeYmaera is an interactive theorem prover).

A part of the reasons preventing introduction of KeYmaera to industrial
practice is the absence of a convenient DSL language and/or a GUI to describe
the model systems, but some steps to solve the problem have been attempted
[2]. Another disadvantage of KeYmaera is inherited from dynamics logic that
doesn’t support parallel processes and their interaction.
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Listing 1.2. Axioms for proving the Sine function in ACSL using bounded Taylor series
recursive implementation

l o g i c r e a l SinN { l } (
r e a l x , r e a l sum ,
r e a l c u r r e n t , i n t e g e r i , i n t e g e r i max ) ;

axiom SinNEmpty : \ f o r a l l
r e a l x , r e a l sum , r e a l c u r r e n t ,
i n t e g e r i , i n t e g e r i max ;
(\ abs ( c u r r e n t ) <= EPS ) | | ( i == i max ) ==>
SinN ( x , sum , c u r r e n t , i , i max ) == sum + c u r r e n t ;

axiom SinNNext : \ f o r a l l
r e a l x , r e a l sum , r e a l c u r r e n t ,
i n t e g e r i , i n t e g e r i max ;
\abs ( c u r r e n t ) > EPS ==>
SinN ( x , sum , c u r r e n t , i , i max ) ==
SinN ( x , sum + c u r r e n t ,
c u r r e n t ∗ ( −1.0 ∗ x ∗ x /
( ( 2 ∗ i ) ∗ (2 ∗ i + 1 ) ) ) , i + 1 , i max ) ;

It is also possible to try to verify C code [18] of a model using a deductive
approach [7] by providing code contracts (requires, ensures and loop invariants),
for example, as annotations in ACSL language [3], and then verifying them with
Frama-C WP (the Weakest Precondition) tool. But due to the lack of proper
support of real arithmetic and the lemmas for trigonometric functions a verifying
engineer now will definitely have troubles to verify such systems (while some
successful attempts have been reported [20]). For example, now we have ended
up with verifying the part of the CPS in C code, it required to write bounded (to
a given accuracy or iteration count) sine axioms (see Listing 1.2) as a recursive
solution for (9) and check it in a loop invariant. As it is shown in this listing,
deductive verification here corresponds to logical predicates that use the real
type (a general type with clear real arithmetic), and to prove the computations
we need to make type-conversion to the float type and use Frama-C real model
which does not care about possible rounding errors, NaNs, etc.

4.3 Concluding Remarks

In this paper, the Air Collision Avoidance system has been modeled and verified
with the model checking approach. The approach is based on implementation
of floating-point arithmetic and some standard functions. The created code can
be potentially used as a library to verify (with some degree of accuracy) other
CPS models. Moreover, the code for a CPS system with using this library can
be generated from a system description. Using our approach by implementing
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the IEEE-754 standard and verify the model, we can say that our proof will be
correspond to the behaviour of real code that use the same arithmetic standard.

The implementation of floating-point arithmetic very close to the standard
can be applied further for obtaining lemmas to do deductive verification. We
are also planning to use the Promela model to check some properties of real
computations instead of tests.

We hope in the conclusion that the approach may be used for modeling
and verifying hybrid models with communicating actors. In the paper, we mod-
eled just a simple single-actor (or one-process) system, but what if two aircraft
communicating together as actors and at the same time a physical process is per-
forming according to some differential equations? We believe that such systems
can be modeled in Promela, however, these systems are extremely hard for verifi-
cation, and perhaps some different verification techniques or their combinations
should be used.
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Foundation grant no. 17-01-00789 Platform-independent approach to formal specifica-
tion and verification of standard mathematical functions.
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Abstract. When we verify concurrent systems executed under a real
operating system (OS), we should take the scheduling policy of the OS
into account. However, with a specific implementation of an OS, the
description of the scheduling policy does not exist or not clear to describe
the behaviors of the real scheduler. In this case, we need to make assump-
tions in the specification by ourselves. Therefore, checking the correctness
of the specification of the scheduling policy is important because it affects
the verification result. In this paper, we propose a method to validate
the correspondence between the specification of the scheduling policy
and the implementation of the scheduler using testing techniques. The
overall approach can be regarded as conformance testing. As a result, we
can find the inconsistency between the implementation and the specifi-
cation. That indicates the incorrectness of the specification. To deal with
testing, we propose a domain-specific language (DSL) to specify the test
generation with the scheduling policy. A search algorithm is introduced
to determine the executions of the processes. The tests are generated
automatically and exhaustively by applying model-based testing (MBT)
techniques. Based on this method, we develop a tool for generating the
tests. We demonstrate our method with Linux FIFO scheduling policy.
The experiments show that we can facilitate the test generation and
check the specification of the scheduling policy easily.

Keywords: Conformance testing · Domain-specific language ·
Model checking · Test generation · Scheduling policy ·
Model-based testing

1 Introduction

The executions of the processes of a real software system are determined by a
scheduler. Therefore, verifying systems with considering all possible interleavings
of the behaviors of the processes in the presence of the scheduler can produce
spurious bugs because some of the executions may not exist. Thus, the scheduling
policy needs to be taken into account during the verification to increase the
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accuracy. In fact, many kinds of schedulers, which adopt different strategies, are
used in a real OS. For example, the Linux scheduler supports different policies
for non-real-time and real-time tasks based on their priorities, such as round-
robin and first-in-first-out. That means dealing with facilitating the variation of
schedulers is also needed.

To overcome these problems, in previous work [20], we proposed a method
to verify systems using model checking techniques. Our method is based on
specifying the way to explore the state space using a DSL [7] to handle the
executions of the processes. This method is named DSL-based Model Checking.
In our approach, we introduced a DSL named SchDSL1 to describe the scheduling
policies. The main purpose of the DSL is to provide a high-level support for the
succinct specification of various scheduling policies. Based on the specification of
the behaviors of the scheduler, a search algorithm is realized to explore the state
space following the scheduling policy to verify the system. With this approach,
the problem now is that the quality of the specification of the policy in the
DSL affects the verification result. Therefore, ensuring the correctness of the
specification is necessary and important.

In our research, we aim at verifying software systems run on real OSs.
However, it is difficult to find the corresponding specification of the imple-
mentation of the scheduler. We mean that there is no specification for a spe-
cific implementation or the corresponding specification is not clear to describe
the behaviors of the real scheduler. For example, the specification of real-
time FIFO policy of Linux OS indicates that if a call to the functions
sched_setscheduler/sched_setparam to increase the priority of the running
or runnable SCHED_FIFO thread, it may preempt the current thread with the
same priority [13]. Thus, there are two options for the implementation: (1) the
corresponding process preempts the current process and (2) this running pro-
cess isn’t preempted. In fact, there are multiple versions of Linux OS and which
option is implemented on each version of Linux is not described in the specifi-
cation. In addition, the behaviors of the scheduler in a real OS can be observed
only in executing the system. Therefore, using testing techniques is an appropri-
ate approach to check the correspondence between the specification of the policy
and the implementation in a real OS. That helps us to increase the confidence
of the specification of the policy.

To address these problems, we propose a method to generate the tests to
check the correspondence between the specification of the scheduling policy and
the implementation. The main idea is that we can apply conformance testing
techniques to check whether the implementation of the scheduler follows the
specification. As a result, we can find the inconsistency between the implemen-
tation and the specification. That indicates the incorrectness of the specification.
To make the tests, we apply MBT techniques. Firstly, we extend our DSL for
specifying the test generation. This language aims to facilitate the specification
of the scheduling policy with the definition of the test generation. Secondly,
we propose a search algorithm to visit every state of the system to realize the

1 SchDSL stands for ‘Scheduling DSL’.
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executions of the processes. Each execution following the search (called an execu-
tion path or a trail) is used to generate a test. All of the necessary information
for the search and for generating the tests is realized automatically from the
specification of the scheduling policy and the definition of the tests in the DSL.

We have implemented our method on a tool named SSpinJa2 and conducted
the experiments for generating the tests. We have applied our approach to check-
ing the correspondence between the specification and the implementation of the
real-time FIFO scheduling policy of Linux OS. The results show that our method
is practical. With this approach, we can check the correspondence between the
specification of the scheduling policy and the implementation of the scheduler.

The rest of the paper is organized as follows: Sect. 2 gives the detail of our
approach. The DSL is introduced in Sect. 3. The method for generating the tests
is shown in Sect. 4. The implementation of our method is introduced in Sect. 5.
In Sect. 6, we show a case study with the experimental results for generating test
cases and test programs to check the specification of the scheduling policy with
the implementation of Linux OS. Section 7 presents the related work. Finally,
the conclusion and future work are given in Sect. 8.

2 Approach

Our method for the testing is to check that the behaviors specified in the spec-
ification are the same as the real ones (meaning that they are accepted by the
real scheduler). Figure 1 depicts an example of a system using priority schedul-
ing policy with 3 processes (P, Q and R). In this example, process P has the
highest priority and process R has the lowest one. The only action of each pro-
cess is terminating itself. We know that when the current process terminates,
the scheduler will select the highest priority process to run. Therefore, with this
example, firstly, process P is selected because it has the highest priority; this
process terminates; then process Q runs; at the end, process R is selected and
also terminates. To ensure the correspondence between the scheduling policy
and the implementation of the real scheduler, these behaviors of the scheduler
is necessary to check. With this example, we have only one execution of the
system, which can be tested by checking the running order of these processes.

An execution ~ a test case

P: run
Q: ready
R: ready

Q: run
R: ready R: run

P.terminate Q.terminate R.terminate
Scheduling PoliciesOS

Accepted by?
Real scheduler

Fig. 1. An example for the testing

Here, we face these two following problems: (a) how to chose a suitable set of
processes with their attributes (called an environment) for the testing, and (b)
2 https://sites.google.com/site/trannhathoa/home/sspinja (accessed: 1-Jun-2019).

https://sites.google.com/site/trannhathoa/home/sspinja


Conformance Testing of Schedulers for DSL-based Model Checking 211

how to create the tests from the corresponding environment. In addition, with
a concurrent system, there are multiple executions of the processes. It leads
to the fact that manually making the tests is error-prone and time-consuming.
That means a systematic approach is necessary. To address these problems, we
apply MBT techniques to generate the tests automatically and exhaustively.
Our method is as follows, first, we extend our DSL to define the tests generated.
Then, we determine the necessary environments for the testing. After that, we
apply model checking techniques to indicate the executions of the system to
generate the tests using the specification of the test above. We then apply the
tests with the real implementation of the scheduler in an OS. Our method for
the testing is depicted in Fig. 2. It includes three main steps.

Model

Generate Test cases
Step 1: 
Current: P running
P terminates
Expected: Q running
...

Tests cases
Step 1: 
Current: P running
P terminates
Expected: Q running
...

Test programs
...
public void P() {...}
public void Q() {...}
...

Test programs
...
public void P() {...}
public void Q() {...}
...

Scheduling Policy

Prepare

Real OS

Check acceptance

Fig. 2. Testing method

In the first step, a model is used to represent the behaviors of the system.
With a scheduling policy, this model includes a set of processes and a scheduler.
We call the processes and their attributes as an environment. Actually, the envi-
ronment is necessary for the testing because the processes are used to perform
the scheduling tasks. In the second step, we explore the model of the system
(realized by the set of processes and the scheduler) to determine the executions
of these processes following the scheduling policy. Each execution indicates a
test case to generate the tests. The corresponding code for a test (test case or
test program) is now constructed by mapping the behaviors of the system to the
codes generated (this method is depicted in Fig. 3). In the last step, we perform
the tests to check whether these executions are accepted by the real scheduler
in an OS. That means the behaviors specified by the scheduling policy exist in
the real scheduler.

s1

s2

s3 s4

a

b c

Executions
{ab, ac}

Model

Explore
Test cases
Step 1: 
Current: P running
P terminates
Expected: Q running
...

Test programs
...
public void P() 
{...}
public void Q() 
{...}
...

Test programs
...
public void P() 
{...}
public void Q() 
{...}
...

Test cases
Step 1: 
Current: P running
P terminates
Expected: Q running
...

Indicate the 
executions

Map to the 
code generated

Fig. 3. Method for generating the tests

Our approach for generating the tests is depicted in Fig. 4; the corresponding
parts are explained in details in Sect. 3. The main points are as follows.
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Scheduler Description (3)Processes Attributes (2)Process Program (1)

Specifying Scheduling Policy

Modeling Language DSL

Test Specification (4)

Specifying Test Generation

Property Scheduler Information (b)

Search Algorithm (5)

Scheduler Function (a)

Generation Tool

Converting

Test Generation Results (test cases, test programs)

Generate Structure (c) Generate Function (d)

Scheduling Policy

Environment

RequirementsConcurrent System DSL-based Model Checking

Verification of concurrent systems

Fig. 4. Test generation approach

Firstly, the behaviors of the processes and the attributes of the processes are
specified in (a) process program (1) and (b) process attributes (2). The informa-
tion needed for performing scheduling tasks is generated from the description
of the scheduling policy in the DSL (called scheduler description (3)). Here,
the scheduler function (a) is used to perform the scheduling tasks (i.e. handling
the scheduling events3) and the scheduler information (b) is for determining the
state of the system. Based on the description of the scheduler, a search algorithm
(5) is realized to explore the system state space.

Secondly, we aim to check the correspondence between the specification of
the scheduling policy and the real behaviors of the scheduler. Actually, in the
specification, the behaviors of the scheduler are specified in the scheduling events.
Therefore, we need to check the correspondence between these events and the
behaviors of the real scheduler. That means the code generated needs to be
considered with the scheduling events.

Thirdly, to generate the test, we extend our DSL to specify the tests gener-
ated. The description of the test (called test specification (4)) is used to generate
(1) a generate structure (c) and (2) a generate function (d). These two artifacts
are used to generate the tests following the search on the state space, where (a)
the generate structure determines the structure of the tests (i.e. test cases, test
programs) and (b) the generate function is used to construct the tests.

Fourthly, the code (of the tests) is determined in the search using the search
algorithm (5). Each test can be realized (on-the-fly) from the trail that (1) leads
to the violation of a property (expressed by an assertion statement in the process
program) at a state of the system (an error happens) or (2) contains a state that
has been visited (an execution of the processes is found). We then apply the tests
to check whether the implementation of the scheduler follows the specification
to guarantee the correctness of the specification of the scheduling policy.

3 We deal with the behaviors of the scheduler based on handling scheduling events.
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As shown in Fig. 4, the quality of the policy affects the verification result.
That means checking the correctness of the specification of the scheduling policy
is necessary and important. The validated scheduling policy now helps to ensure
the correctness of the concurrent systems in the verification.

3 DSL for Scheduling Policies and Test Generation

3.1 Language for Scheduling Policies

In the previous work [20], to facilitate the scheduling policies, we propose a
DSL for specifying the scheduling tasks. Our DSL contains two types of the
specification: (a) the attributes of the processes and (b) the behaviors of the
scheduler. An example for specifying the priority scheduling policy is depicted
in Fig. 5. With this example, the behaviors of the processes, the attributes of the
processes, and the behaviors of the scheduler are specified in (a) process program,
(b) process attribute, and (c) scheduler description, respectively.

Fig. 5. An example for the scheduling policy

The behaviors of the processes are described in a modeling language, which
is based on Promela [8]. The set of processes and their initial attributes are
determined in the process attribute (b). That can be done by defining (a) the
attributes of the processes, (b) the process types (i.e. the processes with the same
behaviors) with the initial values for the attributes, and (c) the initialization of
these processes. In the example, we define two processes (P and Q); the priority
of P is greater than that of Q; these two processes are executed at the same time.

The main task of a scheduler is selecting a process for the execution and
changing the running statuses of the processes (e.g. blocking a process). There
is a situation that multiple processes can be selected to run (e.g. the processes
with the same priority). To deal with this fact, we order processes using their
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attributes for the selection. Firstly, we introduce collections, which are defined
in the data part of the scheduler description (c), to represent the statuses of the
processes. Each collection is an abstract data type that maintains a partially
ordered set (poset) of the processes. Secondly, we define the ordering method
for the processes by declaring a function in the comparator part. In the example
(as shown in Fig. 5), a collection named ready is used. This collection uses
function priorityOrder to order the processes. With this function, the process
with higher priority will be placed in front of the other in the collection. If two
processes have the same priority, they will have the same order.

To perform the scheduling tasks, the scheduler handles the scheduling events,
which are defined in the event handlers and the interface functions of the sched-
uler description (as shown in Fig. 5c). Some of these events are pre-defined,
which are new_process, select_process, and clock. The event new_process
occurs when a new process arrives to the system. The event select_process
is for selecting a process to run. The event clock is a timer event, which hap-
pens following the occurrence of each action of the process4. Besides, to allow
the communication between the processes and the scheduler, such as a process
can increase its priority, we provide an interface to define the scheduling tasks
performed by the process (called process scheduling events). That is showed in
the interface functions part. In the example (Fig. 5), the scheduler handles two
events (new_process and select_process). When a new process (indicated by
target) arrives, if its priority is greater than that of the current process (indi-
cated by running_process), the current process will be preempted (by putting it
to the ready collection). This makes the scheduler select another process to run.
To do that, the scheduler obtains a process from this collection. That behavior
is specified in the select_process event handler. In this example, an interface
function named terminate is defined to terminate the current process.

3.2 Language for the Test Generation

In our work, the scheduling policy is specified in the DSL. To indicate the behav-
iors of the system, we need to prepare the set of processes with the corresponding
attributes (called an environment). Actually, the number of processes with their
attributes can be determined based on the purpose of the testing. For example,
to check the selection of the scheduler with priority policy, we can use only 2
processes with different values for the priorities of these processes. In fact, the
values for the attributes can be limited, e.g. we can use different priorities in the
range [0..2] for the processes. Moreover, we can determine the behaviors needed
for the testing, e.g. the processes perform scheduling tasks, such as terminating
itself or executing a new process. We now can determine the environment(s) to
realize the model of the system, which indicates the behaviors of the processes
following the scheduling policy. We then use this model to generate the tests
(test cases and test programs).

4 We consider that an action of the process takes one time unit.
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Fig. 6. An example for the test generation

To generate the tests, we extend the DSL to specify the codes generated fol-
lowing the behaviors of the scheduler. We use FIFO scheduling policy to demon-
strate the specification of the test generation (as shown in Fig. 6). This example
contains three files for describing the behaviors of the processes, the attributes
of the processes and the behaviors of the scheduler with the description of test
generation, which are specified in process program (a), process attribute (b), and
scheduler description with test specification (c), respectively.

We support two types of the test, i.e. test case and test program. In gen-
eral, each test case contains multiple steps, which indicate the current values
of the variables, the behavior of the system, and the expected values for these
variables. A test program is a program for testing a part of the system (e.g. the
scheduler). The program usually has a structure (e.g. the header for the dec-
laration, the main function for performing the program and the functions that
express the behaviors of the processes). The structure of a test can be defined
using the component(s) defined in the component part. Some special components
including init, processes, behaviors and error are pre-defined, where: (1) the
init component is used for initializing the test generation (e.g., we can use this
component to prepare the declaration of the test programs); (2) the processes
component corresponds to the set of processes; (3) the behaviors component
indicates the set of actions of a process; (4) the error component points out
the corresponding error (violation of a property indicating by an assertion in the
test program), which happens during the execution of the processes.

To support the test generation, we introduce two more events: pre_take
and post_take. These events are for dealing with the pre-processing and post-
processing of each behavior (action) of a process. For instance, we can display the
current value of a variable before taking an action (pre_take) and the expected



216 N.-H. Tran and T. Aoki

value of this variable after taking this action (post_take) in a test case. To
generate the tests, we introduce statements gen and genln for generating the
code following the scheduling events (the difference between gen and genln is
that the code generated using genln is with the line break, but gen is not).

In the example (as shown in Fig. 6), we specify the test cases generation. Each
test case contains two components (header and behaviors). The structure of
the tests and the template of each component are defined. We use the string
operator to produce each component. The code generated is specified in the
events pre_take and post_take using the genln statements. The value of the
variable cnt defined in the process program can be get using the function Sys().
The codes generated indicate the current value of the cnt variable before taking
an action of the current process and the expected value of the variable after
taking this action. We use the string operations to concatenate the codes and
the components (in text string) with functions getStep() and getTotalStep()
(the index of the step and the number of steps in a test case).

4 Test Generation with Scheduling Policies

We propose an algorithm to generate the tests following the search using the
scheduling policy and the test specification. To deal with the scheduling policy,
the behaviors of the scheduler are considered. The algorithm is shown in Algo-
rithm1, which is an extension of the algorithm introduced in [20]. Our idea for
the generation is that the codes generated (by mapping the behaviors of the
system with the text strings) are recorded during the search and are used to
generate the tests after an execution being found.

The algorithm performs a search starting from function START (line 3) to
visit every state that is reachable from the initial state Σ0 of the system. The
behaviors of the system following the scheduling policy are determined by these
following functions. Function SCH_SELECT (line 14) is used to obtain the pro-
cesses for the execution (it happens when the system has no running process).
This function can return an empty set (line 15) indicating that no process can be
executed. In this case, the system only performs the timer action (clock) deter-
mined by function SCH_CLOCK (line 16). Otherwise, all actions of the processes
selected (line 26, 27) are considered. Function SCH_TAKE (line 28) performs an
action a of the process to change the system state: Σa = SCH_TAKE(a,Σ).

To generate the tests, the data structures corresponding to a test sequence
(T S) and the result of the test generation (T G) are used, where T S is an ordered
set of generation steps (a generation step corresponds to the code generated fol-
lowing a behavior of the system) and T G is an unordered set of strings represent-
ing the result of the test generation. We also introduce the following functions:
(1) Function getIO (line 17, 30) is used to get the values of the variables at a
state of the system; (2) Function genCode (line 17, 30) is used to generate the
corresponding code following a behavior of the system; (3) Function Add step
(line 17, 30) is used to add a generation step to the test sequence; (4) Function
Remove last step (line 42) is for removing the last generation step from the
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Algorithm 1. Test generation algorithm following the search
1: Input: Σ0 � initial state
2: Output: T G � test generation
3: procedure Start
4: Stack: ST = ∅
5: State space: SP = ∅
6: Test sequence: T S = ∅
7: Test generation: T G = ∅
8: Push(ST , Σ0)
9: Add state(SP, Σ0)

10: Search
11: end procedure
12: procedure Search
13: Σ = Top(ST )
14: P = SCH SELECT(Σ)
15: if P == ∅ then
16: Σt = SCH CLOCK(Σ)
17: Add step(T S, 〈〈getIO(Σ), getIO(Σt)〉, genCode(〈Σ, clock, Σt〉)〉)
18: if Contains(SP, Σt) == false then
19: Push(ST , Σt)
20: Add state(SP, Σt)
21: Search
22: else
23: Add test(T G, genTest(T S))
24: end if
25: else
26: for p ∈ P do
27: for a ∈ p.Lp do
28: Σa =SCH TAKE(a, Σ)
29: Σt

a =SCH CLOCK(Σa)

30: Add step(T S, 〈〈getIO(Σ), getIO(Σt
a)〉, genCode(〈Σ, a, Σt

a〉)〉)
31: if Contains(SP, Σt

a) == false then

32: Push(ST , Σt
a)

33: Add state(SP, Σt
a)

34: Search
35: else
36: Add test(T G, genTest(T S))
37: end if
38: end for
39: end for
40: end if
41: Pop(ST )
42: Remove last step(T S)
43: end procedure

test sequence; (5) Function genTest (line 23, 36) is used to generate the test
from the test sequence; (6) Function Add test (line 23, 36) is used to add a test
derived from the test sequence (TS) to the set of tests (T G). This function is
called when the search reaches to a visited state.

We note that, if the error is determined at the current state, e.g. taking an
action that leads to the violation of a property, we can generate a test from the
current test sequence. This fact is not shown in this algorithm.

5 Implementation

We extend our tool named SSpinJa, which is first introduced in [20], to deal with
the test generation with the scheduling policy. The architecture of our tool is
shown in Fig. 7. The back-end of the tool was extended from SpinJa [12], which
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is a re-implementation of Spin model checker [10]. SpinJa is developed in Java
using the object-oriented design principle with the aim to extend easily while
being competitive in memory usage and runtime. We used XText framework [3]
for the implementing of the DSL. XText is a framework for the development
of programming languages and DSL. It supports a full infrastructure including
parser, linker, type checker, compiler as well as the editing environment for the
development.

Model
uses

Scheduler model

LibraryCompiler

Test informa on

Scheduler descrip onProcess program Test specifica on

Converter

Search Algorithm

Fig. 7. The architecture of the tool.

We follow the compilation approach to prepare the necessary information
beforehand. The process program in the modeling language is compiled into a
model (in Java) which uses the libraries of SSpinJa. A converter under the XText
framework was built to generate all necessary information from the description
of the scheduling policy and from the test specification. This information is for
performing the scheduling tasks and generating the tests following the behaviors
of the system. The information generated includes (1) the implementation of
the process, (2) the implementation of the collections with ordering methods,
(3) the implementation of the scheduler, (4) the structure of the tests and (5)
the generation functions. We implemented the search algorithm in the tool for
exploring the system state space to generate the tests.

6 Case Studies

In this section, we introduce case studies to check the correspondence between
the policy specified in the DSL with the implementation of the real scheduler.
Real-time FIFO policy on Linux OS was used in the experiments. The experi-
ments were conducted on Intel Core i7, 3.4 GHz CPU with 32G RAM.

Test Cases Generation. In this experiment, we generated test cases corre-
sponding to the behaviors of the processes defined in the process program with
FIFO scheduling policy. The description of the policy with the test generation
in the DSL is depicted in Fig. 6. Because the specification of Linux scheduling
policy indicates that the process with higher priority always preempts the cur-
rent process, we only used the processes with the same priority to check the
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selection of the scheduler. With the real-time policies, we used only one configu-
ration for the testing (the processes had the same priority). The test generation
was indicated following the search to cover all the states of the system. With
this experiment, 14 test cases were generated. The results for the generation are
listed in Table 1.

Test Programs Generation. In the next experiment, we generated test pro-
grams following the scheduling specified in the DSL to check the correspondence
between the description of the policy with the implementation of the scheduler.
The real-time FIFO policy and Linux Ubuntu version 12.04.5 are used. Base on
the specification of Linux scheduling policy [13], there is a case that when a pro-
cess arrives, it may preempt the current process if they have the same priority.
That means we can not determine which process will be executed next. In this
experiment, only the case that the processes had the same priority was consid-
ered. Therefore, we created the processes with the same priority and checked
which process was selected to run. To generate the test programs, we indicated
the scheduling tasks in the process program (e.g. terminates itself or executes
another process). In comparison with the previous experiment (the test cases
generation), the attributes of the processes, and the behaviors of the scheduler
are kept. The specification for the test generation was changed to specify the
code generated for the test programs. In this experiment, 29 programs were
generated. A summary of the results is represented in Table 1.

Table 1. Test generation result

No. tests States Memory (MB.) Time (s)

Test cases generation 14 16 21.119 0.03

Test programs generation 29 16 21.2529 0.05

For executing the test programs, there is no specification of the implemen-
tation of this Linux version indicating which process will be selected to run
if a process with the same priority as the current one arrives at the system
(i.e. the current process may be preempted). In this situation, we can make the
assumption that for an implementation of Linux OS, the scheduler can select
any process among these processes to run. In fact, with our approach, a test
is generated following only an execution of the system. Thus, it cannot handle
all the possible executions of these processes. To check the specification of the
scheduling policy with the implementation of the scheduler, our method is based
on executing the test program multiple times with checking the execution orders
of the processes. Here, we count the actions of the processes (called steps). A test
program is passed (in testing) if all the actions are performed in the right order.
We wrote a test script to execute the tests generated and handle the results of
the execution. The bound of times to try for each program was set to 1000000.
In this experiment, all the tests were passed after 1388702 times to try in total
2371.407 s. The detail results are shown in Table 2.
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Table 2. Test program execution results

Test program Passed No. steps Times to try Time (s)

Program 0.c Yes 4 674 1.147

Program 1.c Yes 2 1 0.004

Program 2.c Yes 4 81 0.214

Program 3.c Yes 2 1 0.004

Program 4.c Yes 4 89 0.215

Program 5.c Yes 7 813 2.429

Program 6.c Yes 7 264453 451.564

Program 7.c Yes 4 52284 89.027

Program 8.c Yes 8 159024 272.397

Program 9.c Yes 2 12140 20.730

Program 10.c Yes 4 595 1.138

Program 11.c Yes 3 15904 27.686

Program 12.c Yes 6 52659 92.072

Program 13.c Yes 6 6023 10.440

Program 14.c Yes 8 52506 88.996

Program 15.c Yes 8 400181 681.109

Program 16.c Yes 4 676 1.149

Program 17.c Yes 8 107358 182.041

Program 18.c Yes 5 18433 31.164

Program 19.c Yes 8 635 1.118

Program 20.c Yes 3 629 1.084

Program 21.c Yes 3 14044 23.764

Program 22.c Yes 4 25 0.074

Program 23.c Yes 8 209274 355.802

Program 24.c Yes 4 11002 18.633

Program 25.c Yes 7 923 1.695

Program 26.c Yes 7 8135 15.364

Program 27.c Yes 6 1 0.008

Program 28.c Yes 6 139 0.339

Discussion. As shown in Table 2, all the tests are passed. That means all the
behaviors specified in the specification exist in the real scheduler. In other words,
the specification can specify the behaviors of the scheduler. The experiments also
showed that our approach is practical. In fact, we can generate the test programs
for checking the correspondence between the specification of the FIFO policy and
the implementation of the Linux scheduler. This is done easily with the support
of the DSL. In addition, with the test specification in the DSL, all the test
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cases and the test programs were generated automatically. The behaviors of the
processes are modeled in the process program. Here, we use the search to explore
the corresponding system state space, therefore, all the states of the system are
covered and represented in the tests.

The execution orders of the processes affect the code generated. For example,
which process selected among the processes with the same priority will lead to the
different code generated in comparison with the others. In our implementation,
all of the duplicate results in the test generation will be removed. Therefore,
although using the same process program and the same scheduling policy, the
number of test cases (in the first experiment) and the number of test programs (in
the second experiment) are different. Besides, in our approach, the specification
of the scheduling policy and the test specification in the DSL is reusable and
flexible to deal with the variation of the behaviors of the scheduler with the test
generation. The number of lines of description code for each scheduling policy
and for the test generation used in the experiments is really small in comparison
with the results of the tests generated (as shown in Table 3). In other words,
using the DSL is an effective way for the specification.

Table 3. Number of lines of the code generated

Experiment No. lines of the
specification

Test generation results

Test cases generation (a) 72 14 test cases, 317 lines

Test programs generation (b) 124 29 test programs, 3058 lines

Actually, with our method, we can check the correspondence between the
specification of the scheduling policy and the real strategy implemented in the
OS. That helps us to increase the confidence of the specification of the scheduling
policy to ensure the correctness of software systems. Here, with the automatic
test generation, we can easily deal with the quality assurance of the software
product (i.e. the system with the scheduling policies). In another hand, with the
conformance testing approach, by assuming the correctness of the specification
of the scheduling policy, we can generate the tests to check the correctness of
the implementation of the scheduler in an OS.

However, there is a case that the specification of the scheduling policy is not
clear to describe the behaviors of the scheduler (as shown in the specification of
Linux FIFO scheduling policy). That means there are multiple options for the
implementation of the scheduler. We call them as non-deterministic behaviors
of the scheduler. For testing these behaviors, executing a test program many
times to check the satisfaction is an ineffective approach because it only shows
the satisfaction indicated by the program and can not prove the dissatisfac-
tion. Besides, we can see that the average times to try and the average time
for executing the programs corresponding to the number of the steps in these
experiments are varied (as shown in Fig. 8). The problem is now how to design
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a suitable test program which can cover the non-deterministic behaviors of the
system mentioned above.
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Fig. 8. Experimental results.

7 Related Work

Our work uses testing techniques to deal with checking the correspondence
between the specification and the implementation. Recent researches use
designed models taken from UML diagrams, such as state diagram, activity
diagram, use cases diagram and sequence diagram for test cases generation
[15,18,19]. There are works to deal with this problem using technologies from ver-
ification (model-checking, SAT solving and constraint satisfaction) [1,6,16,17].
With the behaviors of each process representing in the model of the system,
we can find the executions that lead to the violation of a property (counter-
examples) or satisfy the property (witness) using model checking approach. In
addition, there are tools, such as SAL [9] and STG [5], for the test generation.
SAL uses a specification with Boolean trap variables representing test goals to
generate the tests. STG use symbolic generation techniques to deal with the
state space explosion problem. In our approach, we apply MBT techniques for
the test generation. Our research uses the search to explore the state space and
generate the tests following the behaviors of the system as these approaches do.
However, these works and tools do not deal with the scheduling policies as our
work does.

The research proposed by Chen and Aoki [4] introduces the scheduler in
the system model to generate test cases with the help of Spin model checker
for conformance testing of OSEK/VDX OS. In fact, Spin can print out the
information of the system during the checking phase using embedded C function
of Promela. Their work uses this functionality to produce the log corresponding
to the invoked system services and the current state of the system. Using that
log, another tool will generate test cases for checking the implementation of
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the system. This is a practical work. However, because this work is based on
the support of the model checker, we can see that the approach has several
limitations. Firstly, the scheduler is modeled and embedded in the model of
the system. Thus, the checking phase needs to consider many behaviors of the
system and store unnecessary information of the scheduler. Secondly, we need to
build another tool to complete the generation with the results produced by the
model checker. Thirdly, it is difficult to deal with other scheduling policies for
generating the tests. In comparison with this work, our method can be regarded
as conformance testing as this work does. However, our purpose for this research
is different and we have already overcome these problems above.

In our approach, we propose a DSL to facilitate the specification of the
scheduling policies and the test generation. There are some works introducing
the DSL for the test generation. For specifying system operations, the work [11]
introduced a DSL to extract the test cases from use case definitions. However, it
only focuses on automating the system test process and does not deal with the
scheduler. Paiva et al. [14] proposed a DSL for automatic generation of test cases
from the specification of a system. This work focus on interactive components
of the system and lack of behaviors of the system. To deal with verifying the
event-based systems, Cyrille Artho et al. presented a tool named Modbat [2],
which provides a DSL for constructing the state machine based on the explicit
representation of system states. That means the behaviors of the system are
modeled as finite state machine explicitly in the DSL proposed. Our research
is different from these works because our DSL is for specifying the scheduling
policies with the test generation and the system state space is built on-the-fly
during the verification.

Our DSL is based on the language introduced in the previous work [20].
This language aims to deal with the variation of the scheduling policies used in
model checking techniques. For generating the tests, in this work, we extend our
language for specifying the tests generated. In fact, several elements were added
to the DSL for defining the tests with the structure and the template of the
tests. For exploring the state space, we also introduce a new search algorithm
to construct the tests. The test generation is produced using the searching trails
resulted by the verification.

8 Conclusion

This paper presents an approach to check the correspondence between the spec-
ification of the scheduling policy and the implementation in an OS using testing
techniques. The overall method can be regarded as conformance testing. As a
result of testing, we can find the inconsistency between the specification and
the implementation of the real scheduler. If no inconsistency is found, we can
increase the confidence of the quality of the scheduling policy before making any
verification of the system run on the real OS.

The advantages of our approach are: (1) the specification of the tests in the
DSL is flexible to generate the tests, (2) the descriptions of the system can be
reused completely, and (3) the approach is practical.
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We have the following contributions for this paper. First, we propose a DSL to
provide a high-level support for the succinct specification of the test generation
with the scheduling policies. Second, we propose a search algorithm to explore
the state space to generate the tests following the behaviors of the scheduler.
Third, we implement our method in a tool to generate the tests exhaustively
and automatically.

In the future, we plan to study some heuristic methods for selecting suitable
execution paths for the test generation. In addition, we are going to overcome
the problem of checking the non-deterministic behaviors of the systems.
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Abstract. Data structure invariants play a key role in checking correct-
ness of code, e.g., a model checker can use an invariant, e.g., acyclicity
of a binary tree, that is written in the form of an assertion to search for
program executions that violate it, e.g., erroneously introduce a cycle in
the structure. Traditionally, the properties are written manually by the
users. However, writing them manually can itself be error-prone, which
can lead to false alarms or missed bugs. This paper presents a controlled
experiment on applying a suite of off-the-shelf machine learning (ML)
tools to learn properties of dynamically allocated data structures that
reside on the program heap. Specifically, we use 10 data structure sub-
jects, and systematically create training and test data for 6 ML methods,
which include decision trees, support vector machines, and neural net-
works, for binary classification, e.g., to classify input structures as valid
binary search trees. The study reveals two key findings. One, most of the
ML methods studied – with off-the-shelf parameter settings and without
fine tuning – achieve at least 90% accuracy on all of the subjects. Two,
high accuracy is achieved even when the size of the training data is sig-
nificantly smaller than the size of the test data. We believe future work
can utilize the learnt invariants to automate dynamic and static analy-
ses, thereby enabling advances in machine learning to further enhance
software testing and verification techniques.

Keywords: Data structure invariants · Machine learning · Korat

1 Introduction

Data structure invariants are properties that the data structures in a program
must satisfy in valid states, e.g., a binary search tree implementation must create
structures that are trees, i.e., contain no cycles, and consist of keys that appear
in the tree in the correct search order. In object-oriented programs such invari-
ants are termed class invariants and are expected to hold in all publicly-visible
states [28,34].

Data structure invariants play a key role in testing and verification. For exam-
ple, when written as assertions they enable a number of assertion-based checking
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techniques. To illustrate, in software testing, they serve as test assertions as well
as a basis of automated test generation [4,27]; in model checking, they serve as
target assertions that a model checker can try to violate, i.e., find a program
execution that leads to an assertion violation [20,23,33,47]; in runtime verifica-
tion, they provide a basis for error recovery using data structure repair [11,13];
and in static analysis, they enable deep semantic checking [8,24,35,40,42,48].

Data structure invariants are often written manually by users who want to
utilize them for automated testing or verification. However, writing complex
invariants manually itself can be error-prone and errors in invariants can lead
to false alarms or undetected faults. To reduce the burden on the user to write
invariants, researchers have developed several techniques for automatically cre-
ating invariants using various forms of analyses. While a vast majority of the
techniques utilize static or dynamic analysis [10,12,14,26,29,32,35,40,42,43,48],
a few techniques have leveraged machine learning methods to characterize invari-
ants [16,30] and serve as a basis for our work.

This paper presents a controlled experiment on applying a suite of off-the-
shelf machine learning (ML) tools to learn invariants of dynamically allocated
data structures. Specifically, we use 6 ML methods that include four methods
based on decision trees [39], as well as support vector machines [9] and multi-
layer perceptrons [36]. As data structure subjects we use structural invariants of
10 data structures that have been studied before in several contexts [4,13,16],
including most recently for training binary classifiers using feed-forward artificial
neural networks [16].

The subjects were introduced in the public distribution of the automated
test input generator Korat [1,4] and were originally developed for the purpose
of evaluating Korat’s input generation. Each data structure contains a Java
method called repOk that implements an executable check for the properties
that represent the corresponding structural invariants (and a variety of other
methods). Given a repOk method and a bound on the input size, e.g., 5 nodes for
a binary search tree, Korat performs a backtracking search over the space of all
candidate inputs (up to the size bound) for repOk to systematically enumerate
all inputs for which repOk returns true. For increased efficiency, Korat only
considers non-isomorphic candidates. During its search, Korat typically inspects
each candidate by running repOk on it to get feedback for pruning the search,
and as a result outputs only the valid inputs, i.e., inputs for which repOk returns
true.

Our study methodology is as follows. For each data structure subject invari-
ant and ML model, we first create training and test data, then we train the ML
model using the training data, and finally we evaluate it using the test data. To
create the training/test data, we use Korat to exhaustively explore the bounded
input space and create every valid input. The set of all valid inputs forms the
positive samples and a subset of invalid inputs inspected by Korat forms the
negative samples. In general, for complex structural properties, the number of
valid structures is much smaller than the number of invalid structures. There-
fore, to avoid training an incorrect model that simply learns to predict false with
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high probability, we use balanced sets of samples such that there are the same
number of positive and negative samples. To study how learnable the invariants
are we vary the ratio of training and test data from 75 to 25 respectively, which
is common in the field of machine learning, to 10 to 90 respectively, which allow
us to study the setting where the training data is relatively scarce.

The study reveals two key findings. One, most of ML methods studied – with
off-the-shelf parameter settings and without fine tuning – achieve at least 90%
accuracy on all of the subjects. Two, the accuracy is achieved even when the size
of the training data is significantly smaller than the size of the test data. We
find the results quite encouraging and believe machine learning methods hold
much promise in developing new techniques for more effective software analysis.

The training and test/evaluation datasets used in our study are publicly
available at: https://github.com/muhammadusman93/Spin2019KoratML.

2 Background: Korat and Learning

This section provides the necessary background on the Korat test input genera-
tor [4] and basic machine learning models that we use in our study.

2.1 Korat

Korat is a framework for automatic test input generation for Java programs. It
takes as input a Java predicate, termed repOk method, and a finitization on the
input domain, and generates all possible inputs for which the predicate returns
true. Korat repeatedly executes repOk on candidate inputs, monitors the object
fields accessed by repOk for each input, and uses this information to create next
candidates to consider. Korat implements a backtracking search that prunes
large parts of the input space while preserving the completeness of the search
and correctness of the generated valid test input. Moreover, Korat generates
only non-isomorphic inputs and does not consider any isomorphic candidates
during search, which significantly reduces the number of generated inputs and
time overhead.

To illustrate, Fig. 1 shows the BinaryTree class, including the repOk predicate
and finitization finBinaryTree. The binary tree has a root field of type Node

and a size field that is a primitive integer. The Node class declares a left field
and a right field, representing the left child and the right child of the node. The
method repOk checks if its input does not have any cycle and has the correct value
for size. repOk returns true if the checked property holds and false otherwise.
The finitization method finBinaryTree specifies a bound on the total number of
nodes, and the min and max values for size.

The Korat search internally represents each candidate input structure using
a candidate vector of integer indices whose length depends on the finitization
and elements that represent object fields. Each element of the candidate vector
indexes into an appropriate domain of values for the corresponding field. To
illustrate, for a finitization of up to 3 nodes (Node 1, Node 2, and Node 3) and

https://github.com/muhammadusman93/Spin2019KoratML
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Fig. 1. BinaryTree repOk and finitization

size equal to 3, Korat creates a candidate vector of length 8: index 0 represents
the value of the root field; index 1 represents the size (and its value is fixed as
0 since size is allowed to take only one value, i.e., 3); indexes 2 and 3 represent
the left and right children of Node 1 respectively; likewise indexes 4, 5 and
6, 7 represent the left/right children of Node 2 and Node 3 respectively. The
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value of each index that represents a node ranges from 0 to 3, representing
4 possibilities: [null, Node 1, Node 2 and Node 3]. This finitization defines a
bounded exploration space of size 4 × 1 × (4 × 4)3 = 16, 384 since the tree root
and each of left and right fields of each of the 3 nodes have 4 possible values,
and the tree size is fixed to 1 value.

The Korat search generates the following candidate vectors for a binary tree
using this finitization:
0 0 0 0 0 0 0 0 :: 0 1

1 0 0 0 0 0 0 0 :: 0 2 3 1

1 0 0 1 0 0 0 0 :: 0 2 3

1 0 0 2 0 0 0 0 :: 0 2 3 4 5 1

1 0 0 2 0 1 0 0 :: 0 2 3 4 5

1 0 0 2 0 2 0 0 :: 0 2 3 4 5

1 0 0 2 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***

1 0 0 2 0 3 0 1 :: 0 2 3 4 5 6 7

...................................

1 0 2 3 1 0 0 0 :: 0 2 3 4

1 0 2 3 2 0 0 0 :: 0 2 3 4

1 0 2 3 3 0 0 0 :: 0 2 3 4

Each row shows two entities separated by ::. The first entity is the candidate
vector and is shown before ::. The second entity is field access ordering and is
shown after ::. Valid structures are marked by ***.

Fig. 2. Invalid binary tree Fig. 3. Valid binary tree

To illustrate, the candidate vector [1 0 0 2 0 2 0 0] represents an invalid
binary tree as shown in Fig. 2. The first index states that Node 1 is the root
node. The left child of Node 1 is null and the right child of Node 1 is Node 2.
Similarly, the left child of Node 2 is null and the right child of Node 2 is Node
2 itself. Both children of Node 3 are null. Thus, the candidate vector represents
an invalid binary tree because Node 2 has a self-loop (cycle).

Another example candidate vector [1 0 0 2 0 3 0 0] represents a valid binary
tree as shown in Fig. 3. This candidate vector shows that Node 1 is the root
node. The left child of Node 1 is null and the right child of Node 1 is Node 2.
Similarly, the left child of Node 2 is null and the right child of Node 2 is Node



A Study of Learning Data Structure Invariants Using Off-the-shelf Tools 231

3. Both children of node 3 are null. Since the binary tree has no cycle, and it
has size 3 with 3 nodes reachable from the root, the binary tree is valid.

For this finitization, Korat creates and inspects 63 candidate structures (out
of 16384 total candidates while pruning the rest), and outputs 5 of them as valid
binary trees with 3 nodes. Korat search breaks isomorphisms, which helps to
reduce the number of structures to be explored and generated, thus speeding
up the search – note, none of the structures explored by Korat are isomorphic.
To illustrate Korat’s backtracking search, when Korat finds that the candidate
vector [1 0 0 2 0 2 0 0] makes the repOk returns false and the last accessed field
is the right child of Node 2, it simply increases the value of index 5 (from 2 to
3) and point the right child of Node 2 to Node 3. Korat knows that the left
and right children of Node 3 do not affect the result of repOk since those fields
are not read by repOk for the given candidate and thus can be ignored for this
combination of values for fields accessed. This pruning helps Korat remove a lot
of invalid structures in practice.

2.2 Machine Learning Models

The machine learning models used in the study are Decision Tree (DT) Classi-
fier [39], ensemble Decision Tree Classifiers (including Random Forest Tree Clas-
sifier (RFT) [22], Gradient Boosting Tree Classifier (GBDT) [18] and Adaboost
Decision Tree Classifier (ADT) [17]), Support Vector Machine (SVM) [9], and
Multi-Layer Perceptron (MLP) [36]. We used Python programming language
and Scikit-Learn library [2] to implement these machine learning models.

2.2.1 Decision Tree Classifiers
DT classifier takes a tree as a classifier where each leaf node represents the label
of the class, and each intermediate node represents a test on a feature. DT is
easy to train and can handle qualitative features without using dummy encod-
ing. However, DT is not good in understanding complex relationships between
features and is sensitive to the changes in training data.

2.2.2 Ensemble Decision Tree Classifiers
RFT classifier is based on the bootstrap aggregating (Bagging) technique. The
underlying idea is to create multiple decision trees and then combine their results
to predict the final classification labels. This technique reduces variance of the
model and also does not increase bias, and usually overcomes the problem of
over-fitting if sufficient number of decision trees are used. GBDT classifier uses
a differentiable loss function and creates a strong model using many weak models.
ADT classifier makes use of the results of previous trees to select the next trees
so that the focus can be shifted on samples which are much harder to classify.
Here, multiple weak learners work together to make a strong classifier. After
every iteration, weights are assigned to the training samples and higher weight
samples get more priority in later trees.
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Fig. 4. Architecture of the experimental setup

2.2.3 Support Vector Machine
SVM is a non-probabilistic binary linear classifier and assigns each training sam-
ple to one of the two categories. They use a technique called kernel trick in
which the data is mapped to a higher dimension making it linearly separable.
This makes SVM useful in high dimensional spaces, and flexible with different
kernel functions. However, when the number of features is more than the train-
ing samples, it is critical to choose the right kernel function and regularization
parameters.

2.2.4 Multi-layer Perceptron
MLP is a type of artificial neural network consisting of multiple layers. The first
layer is called the input layer and the last layer is called the output layer, with
at least one hidden layer in between. The algorithm applies back propagation
technique for training, using different non-linear activation functions like tanh
and relu. MLP are fully connected and each connection has a weight which is
updated during the training phase usually by Stochastic Gradient Descent [41]
approach. The main advantage of MLP is its excellent performance in classifi-
cation, although more training data is needed which makes the training phase
time-consuming.

2.3 Encoding Data Structures as Inputs to ML Models

The Korat candidate vector representation provides an immediate encoding for
input structures as inputs for binary classification using machine learning models
as shown in recent work [16]. Once the finitization is defined, the length of the
candidate vector and the ranges of values each element in the vector are precisely
defined. Thus, if the candidate vector has length n, the machine learning model
for binary classification has n input features and one output (in {0, 1}), which
represents whether the input structure is valid (1) or not (0).

Figure 4 illustrates the experimental setup.
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3 Study Subjects

As data structure subjects we select 10 subjects from the standard Korat distri-
bution [1,4]. The subjects include a variety of textbook data structures imple-
mented in Java: singly-linked lists (SLL), sorted lists (SL), binary trees (BT ),
binary search trees (BST ), red-black trees (RBT ), binary heaps (BH ), heap
arrays (HA), Fibonacci heaps (FH ), disjoint sets (DS ), and directed acyclic
graphs (DAG).

4 Study Methodology

In this section, we present our study methodology including generation of train-
ing and test data using Korat, selection of finitization bounds for Korat, selection
of positive and negative samples, and learning with machine learning classifiers.

4.1 Generation of Training and Test Data

For each data structure invariant, we use Korat to generate the training and
test data for the machine learning models. Inputs that satisfy the invariants are
termed positive data and inputs that violate the property are termed negative
data. The inputs generated by Korat serve as positive data and the candidates
explored by Korat but found to violate an invariant serve as a pool for selecting
negative data. Given the structural complexity of all our subjects, the number of
valid structures is much smaller than the number of invalid structures. For each
subject, we create balanced [38] pools of positive and negative data. Section 4.2
explains how we select the finitization bounds in view of the learning quality of
the ML models. Section 4.3 further describes how we select positive and negative
data.

Each data sample consists of a candidate vector whose elements serve as
features, and a binary label that specifies whether the candidate is valid or
invalid. Since different data structures have different fields and may have different
finitizations, the positive and negative data for different subjects may vary in
length. However, for one subject, each data sample has the same length. To
illustrate, for the binary tree subject, for a finitization that allows 10 nodes, the
candidate vector has length 22 where the first two fields are root and size of the
tree and each of the subsequent two fields represent left and right child of one of
the 10 nodes. Thus, each data sample has 23 entries, 22 that are features defined
by the Korat candidate vector and 1 that defines whether the candidate is valid
or invalid.

4.2 Selection of Finitization Bounds

The finitization bound chosen for each structure determines the space of input
candidates that Korat searches and the number of valid structures it creates.
Note that different data structures can have very different numbers of valid
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structures for the same size, e.g., the number of binary search trees with n nodes
is much greater than the number of red-black trees for n nodes due to the height-
balance property of red-black trees.

Our main criteria for setting the finitization bound for Korat was to select
the smallest bound such that there were sufficient amount of training and test
data for the application of machine learning models and at the same time if
manual tuning of parameters is needed, the amount of data does not create an
impractical problem. Specifically, we chose the bound of at least 10,000 positive
data, i.e., valid structures, for all but one of our subjects.

As we explain in Sect. 4.3, we select the same number of negative samples
as positive samples, so we have at least 20,000 samples for each data structure
invariant (except one). To illustrate, we have to set the finitization bound of
Binary-Tree property to 10 nodes, which generates 16796 positive samples.

For one of our subjects, namely red-black trees, we chose a finitization bound
of 9 nodes, which gave fewer than 10,000 valid solutions since generation for a
higher bound timed out. Specifically, we used the bound of 9,0,9,9, which specifies
the number of nodes, the minimum size of the tree, the maximum size of tree
and the number of unique integer keys in the tree respectively. For this bound,
there are 6753 positive samples and 2262280 negative samples. The positive
samples consist of all non-isomorphic red-black trees that can be formed with
up to 9 nodes where each node contains a key from a set of 9 unique integer
values. Table 1 shows for each subject, the finitization bound (as provided to the
finitization method of the subject using --args command line option), the size
of the state space for the given finitization, the number of valid structures found
by Korat, the number of invalid structures explored by Korat, and finally the
total number of structures explored by Korat.

Table 1. Candidate structures explored by Korat for each data structure subject.

Subject Finitization
bound

State
space

Valid
explored

Invalid
explored

Total
explored

SLL 0,9,10,10 275 26443 500868 527311

BST 8,0,8,0,7 281 12235 3613742 3625977

BH 7 2109 107416 154372 261788

BT 10 272 16796 798304 815100

SL 0,8,9,9 296 24310 150962 175272

HA 6 223 13139 51394 64533

DS 5 239 41546 372309 413855

RBT 9,0,9,9 2135 6753 2262280 2269033

FH 5 282 52281 112084 164365

DAG 6 2108 19696 185197 204893
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4.3 Selection of Positive and Negative Samples

The positive samples consist of every (non-isomorphic) valid structure generated
by Korat for the chosen finitization bound. To balance the dataset, we randomly
select the same amount of negative samples as the positive ones from the full
negative dataset that consists of each candidate Korat explored but found to
be invalid. To illustrate, the Disjoint-Set invariant had 41546 positive samples
and 372309 negative samples. We kept all of the 41546 positive samples and
randomly selected 41546 samples from 372309 negative samples.

4.4 Learning with Machine Learning Classifiers

A key factor in applications of machine learning models is the ratio of training
and test data. Traditionally, ratios of 80:20 or 75:25 for training:test are com-
monly used. We use 4 different ratios in our study. Specifically, we performed
experiments using each of the following training:test ratios – 75:25, 50:50, 25:75,
and 10:90. Thus, on one extreme, we explore the more traditional setting where
75% of data are used for training and 25% are used for evaluation, and on the
other extreme, we explore the unconventional setting of using just 10% data
for training and 90% for evaluation. As is common practice in evaluating ML
models, our training and test data had no overlap. Moreover, due to the use of
Korat, not only is there no intersection in the training and test datasets but also
the two datasets don’t contain isomorphic structures.

We ran experiments using base ML models taken off-the-shelf, and also using
manually tuned models. The tuned models performed only slightly better than
base models but the overhead in finding tuned hyper-parameters outweighed
the increase in accuracy. Therefore, we report the results of base models only in
Tables 2 and 3.

We report counts of True Negatives (TN), False Positives (FP), False Neg-
atives (FN) and True Positives (TP) in Tables 2 and 3. True Negative is when
the ground truth label is 0 and the classifier correctly predicted label 0. False
Positive is when the ground truth label is 0 but the classifier wrongly predicted
label 1. False Negative is when the ground truth label is 1 but the classifier
wrongly predicted label 0. True Positive is when the ground truth label is 1
and the classifier correctly predicted label 1. In addition, we use four metrics to
report the results of the classification: Precision, Recall, Accuracy and F1 score.
Precision is calculated as TP

TP+FP . Recall is calculated as TP
TP+FN . Accuracy is

calculated as TP+TN
TP+TN+FP+FN . F1 score is calculated as 2∗Precision∗Recall

Precision+Recall .

5 Experimental Results

Experiments were performed with training data percentage of 10%, 25%, 50%,
and 75%, and in each case the rest of the data was used for testing, i.e., evaluation
of accuracy. In this section, we included detailed results obtained using 10%
training data (Tables 2 and 3) and the remaining detailed results are included in
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Table 2. Classification results for 10:90 training:test ratio

Property Model TN FP FN TP Accuracy Precision Recall F1

SLL DT 23728 37 39 23794 0.9984 0.9984 0.9984 0.9984

RFT 23659 106 25 23808 0.9972 0.9956 0.9990 0.9973

GBDT 23729 36 24 23809 0.9987 0.9985 0.9990 0.9987

ABT 22402 1363 396 23437 0.9630 0.9450 0.9834 0.9638

SVM 23196 569 24 23809 0.9875 0.9767 0.9990 0.9877

MLP 23691 74 24 23809 0.9979 0.9969 0.9990 0.9979

BST DT 10092 921 865 10145 0.9189 0.9168 0.9214 0.9191

RFT 10258 755 580 10430 0.9394 0.9325 0.9473 0.9399

GBDT 10149 864 192 10818 0.9521 0.9260 0.9826 0.9535

ABT 10030 983 324 10686 0.9407 0.9158 0.9706 0.9424

SVM 10325 688 1630 9380 0.8947 0.9317 0.8520 0.8900

MLP 10337 676 380 10630 0.9521 0.9402 0.9655 0.9527

BH DT 96447 211 155 96536 0.9981 0.9978 0.9984 0.9981

RFT 96258 400 215 96476 0.9968 0.9959 0.9978 0.9968

GBDT 95902 756 382 96309 0.9941 0.9922 0.9960 0.9941

ABT 93536 3122 1958 94733 0.9737 0.9681 0.9797 0.9739

SVM 96391 267 50 96641 0.9984 0.9972 0.9995 0.9984

MLP 96523 135 123 96568 0.9987 0.9986 0.9987 0.9987

BT DT 14979 180 51 15023 0.9924 0.9882 0.9966 0.9924

RFT 14520 639 607 14467 0.9588 0.9577 0.9597 0.9587

GBDT 14774 385 194 14880 0.9808 0.9748 0.9871 0.9809

ABT 13369 1790 0 15074 0.9408 0.8939 1.0000 0.9440

SVM 10467 4692 4996 10078 0.6796 0.6823 0.6686 0.6754

MLP 14323 836 499 14575 0.9558 0.9458 0.9669 0.9562

SL DT 21687 154 83 21834 0.9946 0.9930 0.9962 0.9946

RFT 21306 535 216 21701 0.9828 0.9759 0.9901 0.9830

GBDT 21262 579 160 21757 0.9831 0.9741 0.9927 0.9833

ABT 18212 3629 3476 18441 0.8376 0.8356 0.8414 0.8385

SVM 21345 496 12 21905 0.9884 0.9779 0.9995 0.9885

MLP 21537 304 15 21902 0.9927 0.9863 0.9993 0.9928

the GitHub repository and summarized here due to space limitation. We choose
to include 10% here because it is the most interesting case as we train on a
relatively small percentage of data and still are able to classify the data structure
invariants with surprisingly high accuracy. The key results are as follows.

For 10% training data ratio (i.e., 90% test data), the maximum accuracy for
the subject invariants was 99.87%, which was achieved for the binomial heap
invariant using multi-layer perceptrons (MLPs). The minimum accuracy was
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Table 3. Classification results for 10:90 training:test ratio

Property Model TN FP FN TP Accuracy Precision Recall F1

HA DT 11735 99 46 11771 0.9939 0.9917 0.9961 0.9939

RFT 11523 311 351 11466 0.9720 0.9736 0.9703 0.9719

GBDT 11218 616 95 11722 0.9699 0.9501 0.9920 0.9706

ABT 8852 2982 2812 9005 0.7550 0.7512 0.7620 0.7566

SVM 9993 1841 536 11281 0.8995 0.8597 0.9546 0.9047

MLP 10439 1395 576 11241 0.9167 0.8896 0.9513 0.9194

DS DT 33595 3700 3053 34435 0.9097 0.9030 0.9186 0.9107

RFT 33730 3565 2820 34668 0.9146 0.9068 0.9248 0.9157

GBDT 31978 5317 2623 34865 0.8938 0.8677 0.9300 0.8978

ABT 30079 7216 8561 28927 0.7890 0.8003 0.7716 0.7857

SVM 30595 6700 2352 35136 0.8790 0.8399 0.9373 0.8859

MLP 32849 4446 2350 35138 0.9091 0.8877 0.9373 0.9118

RBT DT 5807 276 107 5966 0.9685 0.9558 0.9824 0.9689

RFT 5865 218 65 6008 0.9767 0.9650 0.9893 0.9770

GBDT 5826 257 17 6056 0.9775 0.9593 0.9972 0.9779

ABT 5836 247 32 6041 0.9770 0.9607 0.9947 0.9774

SVM 5849 234 155 5918 0.9680 0.9620 0.9745 0.9682

MLP 5848 235 84 5989 0.9738 0.9622 0.9862 0.9741

FH DT 45893 1063 1217 45933 0.9758 0.9774 0.9742 0.9758

RFT 44078 2878 3489 43661 0.9323 0.9382 0.9260 0.9320

GBDT 42326 4630 2913 44237 0.9198 0.9053 0.9382 0.9214

ABT 37152 9804 9024 38126 0.7999 0.7955 0.8086 0.8020

SVM 40973 5983 2187 44963 0.9132 0.8826 0.9536 0.9167

MLP 45885 1071 1100 46050 0.9769 0.9773 0.9767 0.9770

DAG DT 16162 1579 966 16746 0.9282 0.9138 0.9455 0.9294

RFT 15708 2033 1852 15860 0.8904 0.8864 0.8954 0.8909

GBDT 15000 2741 1638 16074 0.8765 0.8543 0.9075 0.8801

ABT 14560 3181 3266 14446 0.8182 0.8195 0.8156 0.8176

SVM 14296 3445 2013 15699 0.8460 0.8200 0.8863 0.8519

MLP 15677 2064 2010 15702 0.8851 0.8838 0.8865 0.8852

75.50% for the heap array invariant using Adaboost trees. Overall, decision trees
(DTs) performed the best on data structure invariants whereas Adaboost trees
(ABTs) performed the worst for the invariants studied. DT average accuracy is
96.79%; random forest (RFT) average accuracy is 95.61%; gradient boosting tree
(GBDT) average accuracy is 95.46%; ABT average accuracy is 87.95%; support
vector machine (SVM) average accuracy for Korat is 90.54%; and MLP average
accuracy is 95.59%.
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For 25% training data ratio (i.e., 75% test data), the results observed were as
follows. The maximum accuracy for the subject invariant was 99.99%, which was
achieved for the Singly-linked list invariant using MLP. The minimum accuracy
was 71.60% for the sorted list invariant using SVM. Overall, decision trees per-
formed the best on data structure invariants whereas Adaboost Trees performed
the worst of the models studied. DT average accuracy is 98.33%; RFT average
accuracy is 97.34%; GBDT average accuracy is 95.55%; ABT average accuracy is
88.14%; SVM average accuracy is 92.30%; and MLP average accuracy is 97.87%.

For 50% training data ratio (i.e., 50% test data), the results observed were as
follows. The maximum accuracy for the subject invariant was 99.98%, which was
achieved for the heap array invariant using DT and binomial heap invariant using
MLP. The minimum accuracy was 75.13% for the binary tree invariant using
SVM. Overall, decision trees performed the best on data structure invariants
whereas Adaboost trees performed the worst of the models studied. DT average
accuracy is 98.96%; RFT average accuracy is 98.16%; GBDT average accuracy
is 95.78%; ABT average accuracy is 88.16%; SVM average accuracy is 93.64%;
and MLP average accuracy is 98.92%.

For 75% training data ratio (i.e., 25% test data), results observed as follows.
The maximum accuracy for the subject invariant was 100%, which was achieved
for the heap array invariant using DT and sorted list using MLP. The minimum
accuracy was 78.08% for the binary tree invariant using Adaboost Tree. Overall,
decision trees performed the best on data structure invariants whereas Adaboost
Trees performed the worst of the models studied. DT average accuracy is 99.27%;
RFT average accuracy is 98.58%; GBDT average accuracy is 95.65 %; ABT
average accuracy is 88.28%; SVM average accuracy is 94.45%; and MLP average
accuracy is 99.24%.

Overall, from the study we conclude that decision trees are quite good in
predicting structurally complex properties whereas Adaboost trees have the least
accuracy. We also observe that overall the accuracy ranges from a low of 71.60%
to a high of 100.00%.

All experiments were performed on an Intel i7-4700MQ (2.40 GHz) processor
with 8 GB of RAM.

6 Threats to Validity

In our experiments, we use a fixed size for each subject. The ML classifiers may
perform worse for smaller sizes of subjects due to less available training data
and better for larger sizes of subjects due to more available training data.

The negative examples generated by Korat makes the irrelevant fields their
default values because setting those fields to any value does not change the false
result of repOk. So those examples are canonical compared to the entire negative
example space. As a consequence, our results may not hold for other negative
examples.

As explained in Sect. 2.1, the training data from Korat was always correctly
labeled.Thus, this data had no noise. However, in practical situations, the train-
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ing data does not have this quality. Normally, training data has some samples
which are labeled wrong or have missing values. This situation did not occur
here and this is one of the main reason behind high accuracy values observed
during the course of this study.

Another threat to validity is the undersampling technique used in this study.
We can see that the negative cases had a much larger state space and we have to
do undersampling to make the classes balanced. Also it is impossible to generate
all the negatives in some cases. For example, the structures explored for the Red-
Black Tree invariant were 2269033. We tried to randomly sample the negative
samples but more work should be done in future to find a better way of dealing
with imbalanced classes and dealing with large state space.

7 Related Work

A number of research projects introduced the use of machine learning meth-
ods in learning properties of software systems [5,7,16,19,30,44]. In the specific
context of structural properties of data structures, to our knowledge, Malik [30]
first introduced the use of a machine learning method, namely support vector
machines, for characterizing the properties, specifically by utilizing graph spec-
tra [6]. Most recently, Molina et al. [16] introduced the first use of feed-forward
artificial neural networks as binary classifiers for data structure properties and
showed their trained networks had high accuracy and worked better than an
approach [14] for using dynamic analysis for detecting likely program invariants.

Our study is closest to Molina et al.’s work and extends it in three important
directions. One, we evaluate 6 machine learning models, including decision trees
and support vector machines, that were not studied in their work that only used
neural networks. Two, we use 4 data structure subjects that were not in their
study as well as 6 subjects that were in their study. Three, we study several
different ratios of test/training data whereas their study did not consider any
specific test/training ratio, rather the ratio in their study was driven by the
training data generated by the test generation tool Randoop [37]. Moreover, we
have no overlap between test and training data whereas in their study there
was up to >50% overlap for positive cases (e.g., for binary search trees and
red-black trees) and for each subject the test data contained all of the training
data. Overall, the results of our study generally corroborate their findings, but
in addition, enhance them along new dimensions.

There is a rich body of work on using dynamic analysis and static analysis in
detecting and generating (likely) program invariants [12,14,26,32,35,40,42,43,
48]. Ernst [14,15] is a widely studied tool for generating likely program invariants.
The key idea in Daikon is to use a collection of pre-defined property templates
and observe program states at control points of interest to check which of the
properties consistently hold at those points, and then to consider those as likely
invariants. While Daikon is quite effective at properties over integers and arrays,
its effectiveness is relatively low for structural properties. Deryaft [29] followed
Daikon’s spirit to introduce a technique for generating likely structural invariants
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and can handle complex data structures. However, a key issue with the Daikon
family of techniques is that they require a collection of property templates and
can only create invariants based on those properties (and boolean connections
among them).

There is a large body of work on program synthesis [3,21,31] and sketch-
ing [46] that is applicable to invariant generation in principle. We believe machine
learning methods can also be helpful in improving some of these techniques, e.g.,
by guiding the search in the space of candidate programs [25,45].

8 Conclusion

This paper presented a controlled experiment on applying a suite of off-the-
shelf machine learning (ML) tools to learn properties of dynamically allocated
data structures that reside on the program heap. Specifically, we used 10 data
structure subjects, and systematically created training and test data for 6 ML
methods, which include decision trees, support vector machines, and neural net-
works, for binary classification, e.g., to classify input structures as valid binary
search trees. The study had two key findings. One, most of ML methods – with
off-the-shelf parameter settings and without fine tuning – achieves at least 90%
accuracy on all of the subjects. Two, the accuracy is achieved even when the
size of the training data is significantly smaller than the size of the test data.
We believe machine learning models offer a promising approach to characterize
data structure invariants.

Acknowledgments. This research was partially supported by the US National Sci-
ence Foundation under Grant Nos. CCF-1704790 and CCF-1718903.
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Abstract. One of the applications of Vehicular Ad-hoc NETworks,
known as VANETs, is warning message dissemination among vehicles in
dangerous situations to prevent more damage. The only communication
mechanism for message dissemination is multi-hop broadcast; in which,
forwarding a received message has to be regulated using a scheme regard-
ing the selection of forwarding nodes. When analyzing these schemes,
simulation-based frameworks fail to provide guaranteed analysis results
due to the high level of concurrency in this application. Therefore, there
is a need to use model checking approaches for achieving reliable results.
In this paper, we have developed a framework called VeriVANca, to pro-
vide model checking facilities for the analysis of warning message dissem-
ination schemes in VANETs. To this end, an actor-based modeling lan-
guage, Rebeca, is used which is equipped with a variety of model checking
engines. To illustrate the applicability of VeriVANca, modeling and anal-
ysis of two warning message dissemination schemes are presented. Some
scenarios for these schemes are presented to show that concurrent behav-
iors of the system components may cause uncertainty in both behavior
and performance which may not be detected by simulation-based tech-
niques. Furthermore, the scalability of VeriVANca is examined by ana-
lyzing a middle-sized model.
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1 Introduction

VANETs have attracted much attention in both academia and industry during
the last years. The emergence of autonomous vehicles and the safety concerns
regarding the use of these vehicles in the near future have highlighted the pos-
sible use of VANETs in safety enhancement of future transportation system.
Using VANETs in such mission critical applications, calls for reliability assur-
ance of algorithms. One of the applications in this domain is the use of vehicle to
vehicle communication for Warning Message Dissemination (WMD) in danger-
ous situations to prevent further damage. In this application, vehicles broadcast
warning messages to inform each other of the upcoming hazard. To increase the
number of vehicles receiving the warning message, the receiving nodes should
forward the message. To hold the trade-off between the traffic in the network
and maximum number of vehicles receiving the message, a number of schemes
regarding the selection of forwarding nodes has been proposed [14]. More details
about WMD in VANETs are presented in Sect. 2.

A number of simulation-based tools and techniques have been used for the
analysis of these WMD schemes. However, concurrent execution of system com-
ponents reduces the effectiveness of simulation-based approaches for such mission
critical applications. This is because simulation-based approaches cannot provide
high level of confidence for the correct behavior of the system. In such cases,
there is a need to apply formal verification for achieving reliable results. For-
mal verification is used in applications of VANETs such as cooperative collision
avoidance [7], intersection management using mutual exclusion algorithms [2],
and collaborative driving [10]. However, to the best of our knowledge, there is
no work on formal verification of WMD application in VANETs.

In this paper, we introduce VeriVANca as a framework for the analysis
of WMD schemes in VANETs. To this end, we develop VeriVANca in Timed
Rebeca [9], a real-time extension of Rebeca [15]. Rebeca is an operational inter-
pretation of the actor model with formal semantics, supported by a variety of
analysis tools [8]. In the actor model, all the elements that are running concur-
rently in a distributed system are modeled as actors. Communication among
actors takes place by asynchronous message passing. These structures and fea-
tures match the needs of VANETs as they consist of autonomous nodes which
communicate by message passing. This level of faithfulness helps in having a
more natural mapping between the actor model and VANETs, making models
easier to develop and understand. In Sect. 3 Timed Rebeca is briefly introduced
using the counting-based scheme example.

To illustrate the applicability of this approach, we have modeled a distance-
based scheme [16] and a counting-based scheme [17] using VeriVANca. Results
of model checking for the distance-based scheme show that concurrent execu-
tion of the system components enables multiple execution traces some of which
cause starvation and may not be detected using simulation-based techniques
(Sect. 4.1). We also observed that, in a given scenario, multiple values may be
achieved for the performance when considering the interleaving of concurrently
executing components. Our further investigations yield that having multiple per-
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formance results is not limited to one scenario but is common. More details on
these cases are presented in Sect. 4.2. Furthermore, to examine the scalability
of VeriVANca, a middle-sized model of a four-lane street with about 40 vehicles
is analyzed. We observed that if scaling up the number of vehicles results in
creation of very congested areas, the size of the state space and analysis time is
increased dramatically. However, scaling up the model without creation of new
congested areas, results in smooth increase in the size of the state space and
analysis time as presented in Sect. 4.3.

2 Warning Message Dissemination in VANETs

WMD is an application developed for VANETs that tends to increase the safety
and riding experience of passengers. In this application, a warning message is
disseminated between vehicles in the case of any abnormal situations such as car
accidents or undesirable road conditions. Received warning messages are used
either to activate an automatic operation such as reducing speed to avoid chained
accidents (increasing safety) or are shown as alerts to inform the driver of the
upcoming hazard so that the driver can do operations such as changing their
route (improving the riding experience).

Using WMD in safety-critical applications, requires providing high reliabil-
ity for the application in developed solutions. Besides, some characteristics of
VANETs such as high mobility of the nodes and fast topology changes, makes
routing algorithms commonly used in MANETs (Mobile Ad-hoc NETworks)
inapplicable to VANETs [20]. Therefore, the only approach for implementation
of message dissemination in VANETs is multi-hop broadcast of the message.
In this approach, the receiving nodes are responsible for re-broadcasting the
message to the others. However, this can result in broadcast storm problem in
the network. In order to tackle this problem, a number of schemes have been
proposed for WMD as described in the following subsection.

2.1 Message Dissemination Schemes

Message dissemination schemes are algorithms that specify how a forwarding
node is selected in a VANET. The selection of a forwarding node is performed
based on some criteria such as distance between senders and receivers, number
of received messages by a node, probabilities associated with nodes, topology
of the network, etc. [14]. In this paper, two schemes—a distance-based and a
counting-based scheme—are modeled using the proposed framework.

The distance-based scheme, called TLO (The Last One) [16], makes use of
location information of the vehicles to select the forwarding node. In this scheme,
upon a message broadcast, the farthest receiver in the range of the sender is
selected as the forwarding TLO node. Other vehicles in the range know that they
are not the farthest node and do not forward the received message. However,
they wait for a while to make sure of successful broadcast of the TLO node.
Receiving the warning message from the TLO node, means that the sending of
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the message has been successful and they do not forward the warning message.
Otherwise, the algorithm is run once again to select the next TLO forwarding
node.

In the counting-based scheme [17], an integer number is defined as counter
threshold. Each receiving node counts the number of received messages in a
time interval. At the end of that time interval, the receiver decides on being
a forwarding node based on the comparison of the value of its counter and
the value of counter threshold. If the value of the counter is greater than the
value of counter threshold, the receiver assumes that enough warning messages
are disseminated in its vicinity; therefore, it avoids forwarding the message.
Otherwise, the receiver forwards the warning message.

2.2 Analysis Techniques

Different analysis techniques have been developed for the analysis of message dis-
semination schemes in VANETs. Simulation-based approaches are widely used
for the analysis of applications of in this domain. Gama et al. developed a model
and analyzed three different message dissemination schemes using Veins simu-
lator [4]. Sanguesa et al. have used ns-2 simulator in two independent works
regarding the selection of optimal message dissemination scheme. In [12], they
aim to select the optimal broadcasting scheme for the model in each scenario
and in [13], the selection of the optimal scheme is performed for each vehicle
based on vehicular density and the topological characteristics of the environ-
ment where the vehicle is located in. In a more comprehensive work [14] authors
have developed a framework in ns-3 simulator for comparing different schemes.
Note that although this approach is used in many applications, it does not guar-
antee correctness of results as it does not consider concurrent execution of system
components.

Another technique used for the analysis of WMD in VANETs is the analytical
approach. In this approach, a system is modeled by mathematical equations and
the analysis is performed by finding solutions to the equation system. For exam-
ple, in [11], Saeed et al. have derived difference equations that their solutions
yield the probability of all vehicles receiving the emergency warning message.
This value is computed as a function of the number of neighbors of each vehicle,
the rebroadcast probability, and the dissemination distance. In another work,
a probabilistic multi-hop broadcast scheme is mathematically formulated and
the packet reception probability is reported for different configurations, taking
into account the topology of the network and as a result, major network charac-
teristics such as vehicle density and the number of one-hop neighbors [6]. This
approach guarantees achieving correct results but it is not modular and devel-
oping mathematical formula needs a high degree of user interaction and a high
degree of expertise.

As the third technique, model checking is a general verification approach
which provides ease of modeling similarly to simulation-based approaches in
addition to guaranteeing the correctness of results due to its mathematical foun-
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dation. To the best of our knowledge, there is no framework which provides
model checking facilities for the analysis of WMD schemes in VANETs.

3 Rebeca Language

Rebeca is a modeling language based on Hewitt and Agha’s actors [1]. Actors
in Rebeca are independent units of concurrently running programs that com-
municate with each other through message passing. The message passing is an
asynchronous non-blocking call to the actor’s corresponding message server. Mes-
sage servers are methods of the actor that specify the reaction of the actor to
its corresponding received message. In the Java-like syntax of Rebeca, actors
are instantiated from reactive class definitions that are similar to the concept
of classes in Java. Actors in this sense can be assumed as objects in Java. Each
reactive class declares the size of its message buffer1, a set of state variables, and
the messages to which it can respond. Reactive classes have constructors with
the same name as their reactive class, that are responsible for initializing the
actor’s state.

Basically, in Rebeca the concept of known rebecs was introduced for an actor
to specify the actors to which it can send messages. However, to implement
applications in ad-hoc networks, a more flexible sending mechanism is needed.
Two Rebeca extensions b-Rebeca [18] and w-Rebeca [19] have been proposed to
provide more complex sending mechanism. In b-Rebeca the concept of known
rebecs is eliminated and it is assumed that the only communication mechanism
among actors is broadcasting; hence, only a fully connected network can be mod-
eled. Note that the type of broadcasting introduced in b-Rebeca is not the same
as the location-based broadcasting in VANETs. In location-based broadcasting,
only the actors in the range of each other are connected in the Rebeca model.
Regarding this assumption, a counter-based reduction technique is used in b-
Rebeca to reduce the state space size of the model making it impossible to send
messages to a subset of actors.

The other extension w-Rebeca, which is developed for model checking of wire-
less ad-hoc networks, uses an adjacency matrix in the model checking engine,
to consider connectivity of actors. In this approach, by random changes in the
value of adjacency matrix, all the possible topologies of the network are con-
sidered in the model checking. Note that users are allowed to define a set of
topological constraints and the topologies that do not fulfill the constraints are
not considered in the model checking. w-Rebeca does not support timing in the
model which is essential for developing models in the domain of VANET, since
there are some real-time properties that need to be considered. Besides, consid-
ering all possible topologies—some of which may not be possible in the reality
of the model—results in a bigger state space for the model. In addition, consid-
ering these infeasible topologies, may cause false-negative results when checking
correctness properties.

1 Message queue in Rebeca and message bag in Timed Rebeca.
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3.1 Explaining Rebeca by the Example of Counting-Based Scheme

In this subsection, we introduce Timed Rebeca [9] using the example of the
counting-based scheme presented in the previous section. A Timed Rebeca model
consists of a number of reactive class definitions which provide type and behav-
ior specification for the actors instantiated from them. There are two reactive
classes BroadcastingActor and Vehicle in the implementation of counting-
based WMD in VeriVANca as shown in Listing 1.

Each reactive class consists of a set of state variables and a message bag
with the size specified in parentheses after the name of the reactive class in
the declaration. For example, reactive class Vehicle has state variables isAv,
direction, latency, counter, etc. The size of the message bag for this reactive
class is set to five. The local state of each actor consists of the values of its state
variables and the contents of its message bag. Being an actor-based language,
Timed Rebeca benefits from asynchronous message passing among actors. Upon
receiving a message, the message is added to the actor’s message bag. Whenever
the actor takes a message from the message bag, the routine which is associated
with that message is executed. These routines are called message servers and are
implemented in the body of reactive classes.

1 env int RANGE = 10;

2 env int THRESHOLD_WAITING = 4;

3 env int MESSAGE_SEND_TIME = 1;

4 env int C_THRESHOLD = 3;

5 abstract reactiveclass BroadcastingActor (5) {

6 statevars { int id, x, y; }

7 abstract msgsrv receive(int data);

8 void broadcast(int data) { ... }

9 double distance(BroadcastingActor bActor, BroadcastingActor cActor){...}

10 }

11 reactiveclass Vehicle extends BroadcastingActor(5){

12 statevars{

13 boolean isAV;

14 int direction, latency, destX, destY, counter;

15 }

16 Vehicle (/*List of Parameters*/){

17 /*Variables Initializations*/

18 if (isAV) {

19 self.alertAccident();

20 } else

21 self.move() after(latency);

22 }

23 msgsrv alertAccident(){ ... }

24 msgsrv move() { ... }

25 msgsrv stop () { ... }

26 msgsrv finishWait(int hop) { ... }

27 msgsrv receive(int hopNum) { ... }

28 }

29 main {

30 Vehicle v1():(0,0,10,RIGHT,1,10,10,true), v2():(1,10,0,UP,2,10,10,false),
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31 v3():(2,-1,0,RIGHT,1,10,0,false), v4():(3,0,1,DOWN,2,0,-10,false),

32 v5():(4,3,0,LEFT,1,-10,0,false);

33 }

Listing. 1. Counting-based scheme in Timed Rebeca

As depicted in Listing 1, the message servers of the reactive class Vehicle are
move, receive, alertAccident, stop, and finishWait. In order for an actor to
be able to send a message to another actor, the sender has to have a direct refer-
ence to the receiver actor. For example, in Line 19, the message alertAccident
is sent to self which represents a reference to the actor itself. However, in order
to model a WMD scheme in VANETs, the warning message should reach actors
which are in the range of the sender actor. In other words, actors should receive
messages based on some criteria, i.e., their location in this application. We used
the inheritance mechanism of Timed Rebeca to implement this customized send-
ing strategy.

3.2 Customized Message Sending in VeriVANca

In object-oriented design, inheritance mechanism enables classes to be derived
from another class and form a hierarchy of classes that share a set of attributes
and methods. Using this approach, we encapsulated a broadcasting mecha-
nism in a reactive class called BroadcastingActor and all other behaviors
of vehicles are implemented in Vehicle reactive class which is derived from
BroadcastingActor. In BroadcastingActor, the broadcast method shown in
Listing 2 mimics the sending mechanism of vehicles in VANET.

As mentioned before, broadcasting data results in receiving a message con-
taining that data by the vehicles in the range of the sender actor. In the body of
this method, all actors—that are derived from BroadcastingActor—are exam-
ined in terms of their distance to the sender (Line 5). If the distance between an
actor and the sender is less than the specified threshold, called RANGE (Line 6),
the data is sent to the actor by an asynchronous message server call of receive
(Line 7). As BroadcastingActor has no idea about the behavior of vehicles, upon
receiving the receive message, the template method design pattern [5] is used in
the implementation of receive. So, the receive message server is defined as an
abstract message server in BroadcastingActor and its body is implemented in
Vehicle. The behavior of the WMD scheme is implemented in Vehicle.

1 void broadcast(int data) {

2 ArrayList<ReactiveClass> allActors = getAllActors();

3 for(int i = 0; i < allActors.size(); i++) {

4 BroadcastingActor ba = (BroadcastingActor)allActors.get(i);

5 double distance = distance (ba , self);

6 if(distance < RANGE) {

7 ba.receive(data) after (MESSAGE_SEND_TIME);

8 }

9 }

10 }
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11 double distance(BroadcastingActor bActor , BroadcastingActor

cActor){

12 return sqrt(pow(cActor.x - bActor.x, 2) + pow(cActor.y -

bActor.y, 2));

13 }

Listing. 2. Body of broadcast Method in Broadcasting Actor

3.3 Counting-Based Scheme in VeriVANca

For the case of counting-based scheme, three message servers alertAccident,
finishWait, and receive provide the behavior of the scheme. When Vehicle
actors are instantiated, their constructor methods are executed resulting in send-
ing one of the following messages to themselves:

– alertAccindent: sent by the accident vehicle to start the WMD algorithm
(Line 8)

– move: sent by the other actors to begin moving with their pre-defined latency;
an actor performs this through sending move message periodically to itself
(Line 10).

1 reactiveclass Vehicle extends BroadcastingActor(5){

2
3 statevars{ ... }

4 Vehicle (...){

5 ...

6 counter = 0;

7 if (isAV) {

8 self.alertAccident();

9 } else

10 self.move() after(latency);

11 }

12 msgsrv alertAccident(){

13 broadcast(0);

14 }

15 msgsrv finishWait(int hop){

16 if (counter < C_THRESHOLD)

17 broadcast(hop++);

18 }

19 msgsrv receive(int hopNum) {

20 if (counter == 0) {

21 self.finishWait(hopNum) after (THRESHOLD_WAITING);

22 counter = 1;

23 } else {

24 counter++;

25 }

26 }

27 }

Listing. 3. Body of message servers in Vehicle Actor
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The algorithm of counting-based scheme, as implemented in Listing 3, begins
by serving alertAccident message in the accident vehicle. Upon the execu-
tion of receive, if the counter, which is initially set to zero for all actors
(Line 6), is zero—meaning that it is the first time the actor is receiving
the warning message—a watchdog timer is started. This is implemented by
sending the finishWait message to the actor itself with the arrival time of
THRESHOLD WAITING. In addition, the value of counter is set to one to indicate
that this is the first call of receive (Lines 20–22). The next calls of receive
result in increasing the value of counter, which represents the number of received
warning messages. When message server finishWait is executed by an actor,
showing that the watchdog timer is expired, the value of counter is compared
with the threshold considered for the counter (C THRESHOLD). By not exceeding
the threshold, i.e., the area around the actor is not covered by enough number
of warning messages, the actor broadcasts the warning message (Lines 16 and
17).

3.4 Reusability of VeriVANca

To illustrate the reusability of VeriVANca, we show how the model of the
counting-based scheme can be altered to present another scheme (the TLO
scheme) by making minor modifications to the code. At the first step, we imple-
mented the algorithm in a method called runTLO. As shown in Listing 4, the
bodies of the message servers finishWait and receive are rewritten to mimic
the behavior of the scheme in the event of expiration of the watchdog timer and
receiving a warning message respectively.

1 msgsrv finishWait(int hopNum) {

2 if (isWaiting)

3 runTLO(hopNum);

4 }

5 msgsrv receive(int hopNum) {

6 if(!isWaiting)

7 runTLO(hopNum);

8 else

9 isWaiting = false;

10 }

11 void runTLO(int hopNum) {

12 if (!received) {

13 if (isTLO()) {

14 broadcast(hopNum++);

15 received = true;

16 } else {

17 isWaiting = true;

18 self.finishWait(hopNum)

after(THRESHOLD_WAITING);

19 }

20 }

21 }

Listing. 4. Needed modifications for TLO
scheme

In the TLO scheme, explained in Sect. 2.1, upon receiving the warning mes-
sage for the first time, the runTLO method is called. In the body of this method,
if the value of state variable received is false—meaning that the actor has not
received the duplicate warning message from a selected TLO node as a sign of its
successful broadcast—, the isTLO method is called. This method is implemented
in the BroadcastingActor and checks if the actor is the furthest node in the
range of the sender and returns the result as a boolean value. If the return value
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is true, the actor is the last one in the range and is selected as the TLO node
to forward the warning message; so, it broadcasts the message by increasing the
value of hopNum by one (Line 15). Then the value of received is set to true
to show that broadcasting has been successful. In case the actor is not the last
one in the range (Line 17), the actor should wait for a while to make sure that
the selected TLO node has successfully broadcasted the warning message. To
this end, the actor sets the value of isWaiting to true to show that the actor
is in the waiting mode, and then sets the watchdog timer by sending message
finishWait to itself by execution time of THRESHOLD WAITING (Line 19). The
message server receive, like in the previous scheme, mimics receiving the warn-
ing message. In the body of this message server, if the value of isWaiting is false,
meaning that the actor is not in the waiting mode, isTLO is executed to select
the TLO forwarding node. Otherwise, isWaiting is set to false since this mes-
sage is interpreted as a successful broadcast of the TLO node. The finishWait
message server is executed upon expiration of the watchdog timer and it checks
the value of isWaiting. In the case of false value for finishWait, the actor has
not received the warning message from the selected TLO node, so, runTLO is
called to select the next TLO forwarding node.

4 Experimental Results

To demonstrate the applicability of VeriVANca, both of the schemes presented
in the former section are analyzed in different configurations. As mentioned
before, concurrent behaviors of the system components may cause uncertainty
which is clearly observable in the presented scenarios, but may not be detected
using simulation-based techniques. For the case of the TLO scheme, we show
that nondeterminism causes starvation and for the case of the counting-based
scheme, it causes different results in the performance of the algorithm. Further-
more, we illustrate that the approach is scalable regarding the number of cars
with traffic patterns that do not contain congested areas. Note that the following
experiments have been executed on a Macbook Air with Intel Core i5 1.3 GHz
CPU and 8 GB of RAM, running macOS Mojave 10.14.2 as the operating sys-
tem. Development of these experiments are performed in Afra, modeling and
verification IDE of Rebeca family languages [3].

4.1 Starvation Scenario in TLO Scheme

In this section, we present an observed scenario that using the TLO scheme
causes starvation and affects the reliability of the scheme in some executions.
The steps of the scenario is depicted in Fig. 1. In 1(a), position of the vehicles
is shown in the time of the accident between vehicles A and B. In the next
step, vehicle B starts broadcasting the warning message and vehicles C and D
receive the message as they are in the range of B (Fig. 1(b)). Upon receiving the
warning message, these vehicles execute the TLO algorithm and since they both
have the same distance from B, they forward the received warning message and
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the vehicles E and F receive the warning message from these two vehicles. When
vehicles E and F execute the TLO algorithm, racing between the following two
scenarios happen.

1. E broadcasts before F: vehicles G and H receive the warning message
from E. Upon execution of TLO algorithm by G and H, Vehicle H is selected
as the TLO forwarding node and forwards the message. Meanwhile, vehicle
G is waiting for receiving the warning message from H to make sure that
the broadcasting has been successful. If in the waiting time of G, vehicle H
forwards the warning message, the message will be interpreted as acknowl-
edgement of the successful broadcast of H and although G is TLO node in
this step, it will not forward the message. In this case, the vehicle J does not
receive the warning message.

2. F broadcasts before E: vehicle G receive the warning message from F and
after the execution of TLO algorithm, it forwards the message as the selected
TLO node and vehicle J will receive the warning message in this scenario.

Fig. 1. A scenario of TLO scheme which results in two execution alternatives that one
of them causes starvation for vehicle J

This example shows that concurrent execution of the algorithm in nodes
causes nondeterministic behavior which may violate correctness properties of
the application. To avoid such cases, all the possible nondeterministic behaviors
have to be considered in any analysis framework. However, simulation-based
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techniques, commonly used for the analysis of these systems, fail to report a
result by considering all the possible execution traces. This highlights the neces-
sity of applying formal methods in the development of applications of VANETs
with critical mission.

4.2 Nondeterminism in Performance of the Counting-Based Scheme

The configuration depicted in Fig. 2(a) is used for the analysis of the counting-
based scheme (explained in Sect. 3.1). In this scenario, the value of C THRESHOLD
is set to 2 and the RANGE is set to 4. The scenario begins with the vehicle A
broadcasting the warning message (Fig. 2(b)). This broadcast results in increas-
ing the counters of the vehicles A, B, C, and E by one. In the next round two
following cases may happen.

1. The watchdog timer of vehicle E expires after receiving the message
from B: In this case, as the counter has reached the threshold, E does not
forward the warning message as shown in Fig. 2(c). Following this case, the
algorithm continues with vehicles D, H, and F being selected as forwarding
nodes and rebroadcasting the message Figs. 2(d)–(f). As a result, it takes 5
hops for all the vehicles to get informed of the warning message. Note that the
same scenario happens when C forwards the message before the expiration of
the watchdog timer of E.

2. The watchdog timer of vehicle E expires before receiving warning
message from B and C: In this case, since the counter of E is less than
the threshold, E must forward the warning message (Fig. 3(a)). In the next
step, vehicle F broadcasts the message and all non-informed vehicles receive
the warning message and algorithm finishes in 3 hops.

Achieving two different numbers for performance of this algorithm shows that
beside correctness properties, providing guaranteed values for performance
results requires applying formal verification techniques as well. We analyzed
this scenario with different values for range and counter threshold, the result of
three of them are shown in Fig. 4. The results show that this phenomenon is not
rare and can be observed in many cases.

4.3 Scalability Analysis

For the purpose of scalability analysis, we have modeled a four-lane street which
contains about 30 vehicles. These vehicles are distributed in a way that there
is no congested area in the street as shown in Fig. 5(a). The execution time of
this model is 11 s and the number of reached states and transitions are 19,588
and 110,627 respectively. To determine the scalability, we added new cars in two
ways. First, we increased the length of the street and added new vehicles to the
tail of the street of Fig. 5(a). To avoid creating congested areas, we kept the
same distribution while adding new vehicles. This way of scaling resulted in 15 s,
23,734 states, and 133,255 transitions for 35 vehicles and 18 s, 25,872 states, and
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Fig. 2. A case of the scenario for the counting-based scheme

Fig. 3. Another case of the scenario for the counting-based scheme
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Fig. 4. Analysis results of the counting-based scheme with different values for the
range and counter threshold (Note that Y axis shows the number of hops required for
termination of the algorithm)

143,727 transitions for 40 vehicles (i.e. about 1.3 times more than the first case).
As an estimation of the supported maximum size of the model regarding the
state space size limit of Afra, the number of vehicles can be increased up to 100
if having distribution which does not create congested areas. In the second way,
new vehicles were added in a way to increase congestion in some areas (Fig. 5(b)).
Scaling in this way increases the execution time of the model to 120 s and the
number of reached states and transitions to 157,086 and 1,265,839, respectively
(i.e. about 10 times more than the previous case). This is because of the fact
that in a congested area, the number of delivered warning messages to each
vehicle grows rapidly and all the possible orders of execution for messages with
the same execution time are considered in the model checking. This results in a
sharp growth in the size of the state space and model checking time consumption.

Fig. 5. Configuration of the scenario used for scalability analysis

5 Conclusion and Future Work

Lack of a framework for formal modeling and efficient verification of warn-
ing message dissemination schemes in VANETs is the main obstacle in using
these schemes in real-world applications. In this paper, we presented VeriVANca,
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an actor-based framework, developed using Timed Rebeca for modeling warn-
ing message dissemination schemes in VANETs. Model of schemes developed
in VeriVANca can be analyzed using Afra, the model checking tool of Timed
Rebeca. We showed how warning message dissemination schemes can be mod-
eled using VeriVANca by implementing two of these schemes. Scenarios in these
schemes were explored to illustrate the effectiveness of the approach in check-
ing correctness properties and performance evaluation of the schemes. We fur-
ther explained how easily the model of a scheme can be transformed to present
another scheme by making minor modifications. Providing this level of guaran-
tee in correctness and performance of warning message dissemination schemes,
enables engineers to benefit from these schemes in the development of smart
cars.

Considering different members of Rebeca family modeling language,
VeriVANca can be used for addressing other characteristics of schemes such
as their probabilistic behavior. Since Afra supports different members of Rebeca
family, models with these characteristics can be analyzed using Afra.

VeriVANca can be used for the analysis of scenarios with limited congested
areas. However, to be able to use the framework for large-scale models containing
congested areas, we are going to develop a partial order reduction technique.
This reduction relies on the fact that reaction of a vehicle to received warning
messages is independent of their sender; therefore, different orders of execution
(interleaving) for messages received at the same time can be ignored without
affecting the result of model checking.
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