
Towards Integrated Correctness Analysis
and Performance Evaluation of Software

Systems (Doctoral Forum Paper)

Ioannis Stefanakos(B)

Department of Computer Science, University of York, York, UK
is742@york.ac.uk

Abstract. In recent times, the involvement of computer systems in our
lives has been drastically increasing, as has the need of improving the
resilience of these systems, e.g. so they can withstand errors and changes
in their environment. Techniques such as testing and simulation are often
used to ensure this, but in the case of complex, real-time systems, these
techniques can only provide coverage for a limited set of possible sys-
tem behaviours. Software model checking and stochastic verification are
alternative techniques that formally and exhaustively verify whether soft-
ware meets its functional requirements and establish the performance
and dependability properties of software, respectively. The two formal
techniques are often used in isolation, yet software must simultaneously
ensure a combination of functional and non-functional requirements. The
doctoral project described in this paper aims to bring these two areas of
software verification together by enabling the joint analysis of functional
and non-functional properties of software systems.

1 Introduction

It has long been known that computer systems, both hardware and software,
exhibit errors. In order to increase the reliability of these systems, software engi-
neers may devote a substantial amount of time on testing and debugging. There
has always been research focusing on developing new or improving the existing
verification methods [1]. Verification is the area that includes all the techniques
aiming to improve software quality and its main focus is to provide evidence
that the final product conforms to the specified requirements during all of its
life cycle processes [2]. Some of the techniques subsumed under verification are
formal verification, testing and simulation.

Testing is considered an essential activity in software engineering. It is defined
as the process of validation of the system’s intended behaviour and identification
of potential malfunctions [3]. With the increase of involvement of software and
hardware systems in our everyday lives, testing has become more complex but
at the same time necessary to ensure the correct functionality of these systems.

Work supported by Microsoft Research through its PhD Scholarship Programme.

c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 109–117, 2019.
https://doi.org/10.1007/978-3-030-30856-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_8


110 I. Stefanakos

Although successful testing identifies a significant amount of errors, it is still
impossible to capture all of them [4], especially in dynamic environments. As a
result, computer systems can still be afflicted by errors which could potentially
lead to severe consequences, e.g. safety critical systems.

Stochastic verification and model checking are techniques able to address
issues that testing is not able to identify. Both of these techniques are also
known as formal methods, which is a line of study that depends on the fact that
computer systems can be depicted as mathematical objects whose behaviour is
in principle well-determined [1].

Model checking provides an automated method for verifying concurrent
finite-state systems in which the system’s intended behaviour is represented by a
state-graph model checked to confirm it satisfies properties formalized in tempo-
ral logic [5]. The system semantics are given by means of a Kripke structure and
the specification is expressed using temporal logic. Temporal logic is a formalism
for reasoning about time without introducing it explicitly [6].

A Kripke structure (KS) is a labeled graph that contains all the possible
states of a system and the transitions between them. The states are represented
by the vertices of the graph and the transitions by its edges. In more detail, a
tuple M = (S, S0, R,AP,L) is the representation of a Kripke structure where
S is a set of states, S0 ⊆ S is a set of the initial states, R ⊆ S × S is a
transition relation, AP is a set of atomic propositions and L : S → 2AP is
a labeling function that maps each state to the set of propositional variables
that hold in it [7]. The states represent the different states of a system. The
main difference between Kripke structures and labelled transition systems (LTS),
which is another popular basis for many formal modelling languages, is that
transitions in LTS are labelled to describe the actions which cause a state change
while the states in KS are labelled to describe how they are modified by the
transitions [8].

Stochastic verification (also known as probabilistic model checking) is a for-
mal verification method that can establish quality properties of software sys-
tems that exhibit stochastic behaviour [9]. Software systems of this nature can
be found in applications used in aircrafts and vehicles, as well as in personal
devices such as mobile phones. In order to be able to verify the correctness of
the systems operating under uncertain environments, it is necessary to analyze
quantitative properties such as performance and reliability.

Probabilistic model checking uses models that can be categorized as contin-
uous and discrete time, deterministic and non-deterministic, and compositional.
The simplest type of all probabilistic models is the Discrete-Time Markov Chains
(DTMCs) [10]. DTMCs are Kripke structures that all their transitions are linked
to a specific probability. The sum of all out-going transition probabilities, that
each state has, is equal to one.

Model checking and probabilistic model checking are necessary to ensure that
the produced software meets both functional and non-functional requirements.
While their importance is recognized, software engineers often only consider one
or the other during their software analysis and this has mainly to do with the



Towards Integrated Correctness Analysis and Performance Evaluation 111

Fig. 1. High-level diagram of the proposed approach

fact that these techniques use disjoint models, different formalisms, etc. This
project aims to bring together the two areas of verification by (a) extending
existing modelling paradigms in order to integrate the verification of both func-
tional and non-functional requirements, and (b) achieving this integration with
an acceptable cost and good scalability that enables the application of the new
verification techniques to real-world systems.

2 Objectives and Proposed Solution

The project focuses on constructing state-transition models (e.g., Kripke struc-
tures and discrete-time Markov chains or DTMCs [10]) of the source code
under verification, through the implementation of a code-to-model transforma-
tion method. This method will be implemented as a hybrid verification tool.
Additionally, a list of properties to be verified will be given as input to the tool.
To enable the analysis of non-functional properties, the tool will also use as input
preprocessed logs of the system. These logs will capture the operational profile of
the software, and will be used to calculate the probability of executing different
branches within the code, based on previous use. The resulting probabilities will
be assigned to the respective state transitions of the generated DTMC model



112 I. Stefanakos

which, finally, together with the source code will be analyzed by model checkers,
to verify both functional and non-functional properties of interest. When fully
developed, the approach may use model checkers and verification tools such as
Storm [11], NuSMV [12], Java PathFinder (JPF) [13], FACT [14,15], ePMC
[16] and OMNI [17,18]. The joint analysis of functional (e.g. deadlock freeness,
reachability) and non-functional requirements (e.g. response time, energy con-
sumption) will provide insight to software engineers and the ability to inspect
the impact of different changes to the system.

Moreover, our project was planned with an emphasis on resilience, which can
be defined as the ability to provide required capability in the face of adversity [19,
20]. Specifically, the analysis provided by our approach will enable the selection,
at design time or runtime, of method implementations (code) that can withstand
the actual workload and other aspects of the environment of a system without
violating the system requirements. To achieve the project goals, we propose an
approach that comprises the following key components:

– The implementation of a code-to-model transformation method that will
enable the conversion of Java source code into Kripke structures and DTMC
models. For the implementation of this method, we used JavaParser1, a set of
libraries that supports code generation, code analysis and code refactoring.

– A list of input parameters for our tool, i.e. source code, properties of interest
and pre-processed logs of user data.

– A communication channel between our tool and popular model checkers, some
of them mentioned earlier, for the verification of both functional and non-
functional requirements.

Figure 1 depicts the high-level architecture of our solution. In the first step,
the software engineer/domain expert will submit the required inputs to our tool.
In the next step, the tool will generate the formal models based on the input
data, and will communicate with the model checkers to initiate the verifica-
tion procedure. As soon as this process finishes, the tool will receive the results
and will produce an output file, which can be used by the engineer to detect
requirement violations.

To achieve the project objectives, we have organized the research work into
the following tasks:

1. Review existing literature on joint verification of functional and non-
functional requirements to learn the current state of research. The outcome
of this literature review is summarized in Sect. 4.

2. Based on the identified limitations, form a theoretical method as a potential
solution. A first version of this solution was described earlier in this section.

3. Proceed with the implementation of the proposed theoretical method. The
preliminary implementation work carried out so far is presented in Sect. 3.

4. Evaluate the method using case studies taken from model checking bench-
marks and real-world applications (e.g. Android code).

1 https://javaparser.org.

https://javaparser.org


Towards Integrated Correctness Analysis and Performance Evaluation 113

Fig. 2. Example of input source code (left) and output DTMC model (right)

5. Extend the approach to support further automation of the method and apply
additional techniques (e.g. parametric model checking).

6. Further evaluate and refine our framework, making any necessary improve-
ments based on the evaluation results.

3 Preliminary Work

So far, the project has developed a preliminary version of the approach from
Fig. 1. This version of our verification tool supports only the transformation of
Java source code into a DTMC model. Thus, the verification process is cur-
rently performed manually, using the probabilistic model checker PRISM (www.
prismmodelchecker.org) after the automated generation of the DTMC.

Figure 2 presents an example of the tool’s input and output. At this stage,
the tool is only able to extract a DTMC model from a given source code (with
transition probabilities represented as parameters of the DTMC model). We
still need the logs of user data to reason about them, which is one of the future
steps of the project, along with the choice of appropriate model checkers (some
mentioned earlier) to complete the verification process.

Focusing on this example, every variable assignment in the code is repre-
sented by a new state in the DTMC model and can lead to a another state with
probability P = 1. The if statements on the other hand, also represented by a
new state in the model, lead to two possible states. One with probability P if
the condition is satisfied and a second one with probability 1 − P , in the case

www.prismmodelchecker.org
www.prismmodelchecker.org


114 I. Stefanakos

the condition is not satisfied. In the latter case, we move to the else branch, if it
exists, or to the next expression. For instance, consider the if statement starting
in line 3 of the Java code from Fig. 2; the if branch of this conditional statement
is executed for i > 3. Therefore, if the log of an application that uses this code
shows that i is equally likely to take the values 0, 1, . . . , 9, the probability that
the if branch is executed will be 0.7, and the probability that the else branch is
executed will be 0.3. Of course, in real systems, the conditions are often more
complex, and the values of variables are rarely uniformly distributed like in this
simple example.

The method shows some promising preliminary results. In preliminary test-
ing, we allocated a time counter under specific branches of the source code
and then performed simulation to calculate the average response time. Next,
we added reward structures in the DTMC model (e.g. rewards “execT ime”
s = 1 : 2; s = 3 : 1; endrewards), to assign the corresponding states with the
same time values used in the source code. To deal with probabilities at this
stage, we created a uniform distribution of values ranging between −1 and 1.
The final results derived from the model were finally obtained by establishing
and verifying properties in Probabilistic Computation Tree Logic (PCTL) [21],
e.g. R {“execTime”}=? [F s = 7 ]. This property specification translates to
what is the total execution time by the time we reach program termination. The
simulation and probabilistic model checking produced the same results in these
preliminary experiments.

4 Related Work

While several studies have been conducted in the areas of model checking and
probabilistic model checking, with notable advances in both [6,9,22,23], there are
significantly fewer approaches when it comes to combining these two techniques.

Cortellessa et al. [24] build an XML-based framework that consists of soft-
ware models and formal relations among them, to support the integration of
functional and non-functional analysis of software systems. The XML repre-
sentation is translated by an Analysis filter as input of the desired analysis
methodology. The two considered methodologies are CHARMY and TwoTow-
ers. The former specifies software architectures and their behavioural properties
by using state machines and scenarios as the source notation. Model checking is
then performed to these notations in order to evaluate the consistency between
the software architecture and the functional requirements. The latter supports
the validation of performance requirements at an architectural level. It takes as
input an AEmilia textual description (ADL), builds the corresponding Markov
model and evaluates the performance indices of interest. Feedback is then pro-
vided whether the model should be modified. Despite the joint functional and
non-functional analysis, this work is limited at architectural level and to the
integration of only two methodologies.

Nostro et al. [25] present an approach for the automated synthesis of appli-
cation layer connectors between heterogeneous networked systems, addressing



Towards Integrated Correctness Analysis and Performance Evaluation 115

functional and non-functional interoperability that takes place both at pre-
deployment and run-time. During pre-deployment time, an analysis module
receives the applications’ specifications and through their analysis, synthesizes
a mediator that enables the functional inter-operation among them. Following,
a connector analysis module takes as input the synthesized mediator and the
non-functional requirements and performs a stochastic model-based analysis to
evaluate the desired non-functional properties. Feedback is provided back to the
connector synthesis module about the system’s expected operation and how to
improve the synthesized mediator in the case that the non-functional require-
ments are not met. Pre-deployment time’s output is a connector that satisfies
both functional and non-functional requirements. At run-time, probes are used
on the applications and the synthesized mediator to monitor the connected sys-
tem. When a violation occurs, the probes identify it and trigger the adaptation
process, re-evaluating the new specification. Similarly to the previous approach,
this one is limited at architectural level and needs to address open issues such
as analysis optimization and scalability aspects.

Filieri et al. [26,27] introduce a general methodology that uses symbolic exe-
cution of source code for extracting failure and success paths that can be used for
probabilistic reliability assessment. The result of symbolic execution is a finite
set of paths, each with a path condition. These paths can either lead to success,
failure or can be interrupted by the bounded exploration. These approaches per-
form reliability analysis directly on source code, in contrast with most of the
current approaches that are limited on architectural level. However, only relia-
bility has been addressed, and the bounded exploration can potentially lead to
loss of information necessary for non-functional property analysis. Our research
aims to address the problem of bounded exploration of loops, and to consider
additional non-functional properties, e.g. performance.

5 Conclusion

Model checking and probabilistic model checking are techniques widely used
to verify functional properties of software systems and to establishing perfor-
mance and dependability properties of these systems, respectively. However, the
two techniques are often used in isolation. Their integration is difficult due to
the different formalisms and models they use. Additionally, most of the current
approaches are limited at architectural level, and the ones focused on source
code have limitations in both exploration depth and variety of non-functional
properties. In this doctoral paper, we proposed an approach that combines the
two techniques at source code level, with the aim to provide insight to soft-
ware engineers about violations of functional and non-functional requirements
of software systems.

References

1. Emerson, E.A.: The beginning of model checking: a personal perspective. In: 18th
International Conference on Computer Aided Verification, pp. 27–45 (2008)



116 I. Stefanakos

2. IEEE Standard for System and Software Verification and Validation. In: IEEE Std
1012–2012, pp. 1–223 (2012)

3. Bertolino, A.: Software testing research: achievements, challenges, dreams. In:
FOSE 2007, pp. 85–103 (2007)

4. Lee, P., Verma, S., Harris, I.G.: A Comparison of Error Detection between
Simulation-based Validation and Model Checking. University of California, Center
for Embedded Computer Systems (2013)

5. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: LICS
1990, pp. 414–425 (1990)

6. Clarke, E.M., Lerda, F.: Model Checking: Software and Beyond. J. Universal Com-
puter Science 13, 639–649 (2007)

7. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0 1

8. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.), Semantics of Systems of Concurrent Processes, pp.
407–419 (1990)

9. Kwiatkowska, M., Norman, G., Parker, D.: Advances and challenges of probabilistic
model checking. In: Allerton 2010, pp. 1691–1698 (2010)

10. Norman, G., Parker, D., Kwiatkowska, M., et al.: Using probabilistic model check-
ing for dynamic power management. Formal Aspects Comput. 17(2), 160–176
(2005)

11. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: CAV 2017, pp. 592–600, (2017)

12. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

13. Brat, G., Havelund, K., Park, S., Visser, W.: Java PathFinder - second generation
of a Java model checker, Advances in Verification Workshop (2000)

14. Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Transact. Reliab. 65(1), 107–125 (2015)

15. Calinescu, R., Johnson, K., Paterson, C.: FACT: a probabilistic model checker for
formal verification with confidence intervals. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 540–546. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 32

16. Calinescu, R., Paterson, C.A., Johnson, K.: Efficient parametric model checking
using domain knowledge. In: IEEE Transactions on Software Engineering (2018).
https://doi.org/10.1109/TSE.2019.2912958

17. Paterson, C.A., Calinescu, R.: Accurate analysis of quality properties of software
with observation-based Markov chain refinement. In: ICSA 2017, pp. 121–130
(2017)

18. Paterson, C.A., Calinescu, R.: Observation-enhanced QoS analysis of component-
based systems. In: IEEE Transactions on Software Engineering (2018). https://
doi.org/10.1109/TSE.2018.2864159

19. INCOSE, Resilient Systems Homepage. https://www.incose.org/incose-member-
resources/working-groups/analytic/resilient-systems. Accessed 11 June 2019

20. Bennaceur, A., et al.: Modelling and analysing resilient cyber-physical systems. In:
SEAMS SEAMS 2019, pp. 70–76 (2019)

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-662-49674-9_32
https://doi.org/10.1007/978-3-662-49674-9_32
https://doi.org/10.1109/TSE.2019.2912958
https://doi.org/10.1109/TSE.2018.2864159
https://doi.org/10.1109/TSE.2018.2864159
https://www.incose.org/incose-member-resources/working-groups/analytic/resilient-systems
https://www.incose.org/incose-member-resources/working-groups/analytic/resilient-systems


Towards Integrated Correctness Analysis and Performance Evaluation 117

22. Calinescu, R., Kikuchi, S.: Formal methods @ runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21292-5 7

23. Calinescu, R., et al.: Synthesis and verification of self-aware computing systems.
Self-Aware Computing Systems, pp. 337–373. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-47474-8 11

24. Cortellessa, V., et al.: A framework for the integration of functional and non-
functional analysis of software architectures. Electron. Notes Theoret. Comput.
Sci. 116, 31–44 (2005)

25. Nostro, N., et al.: Achieving functional and non functional interoperability through
synthesized connectors. J. Syst. Softw. 111, 185–199 (2016)

26. Filieri, A., Pasareanu, C.S., Yang, G.: Quantification of software changes through
probabilistic symbolic execution. In: ASE 2015, pp. 703–708 (2016)

27. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder.
In: ICSE 2013, pp. 622–631 (2013)

https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-319-47474-8_11
https://doi.org/10.1007/978-3-319-47474-8_11

	Towards Integrated Correctness Analysis and Performance Evaluation of Software Systems (Doctoral Forum Paper)
	1 Introduction
	2 Objectives and Proposed Solution
	3 Preliminary Work
	4 Related Work
	5 Conclusion
	References




