®

Check for
updates

JARVIS, A Hardware/Software
Framework for Resilient Industry 4.0
Systems

Jacopo Parri®, Fulvio Patara®, Samuele Sampietro®,
and Enrico Vicario®)

Department of Information Engineering, University of Florence, Florence, Italy
{jacopo.parri,fulvio.patara,samuele.sampietro,enrico.vicario}Qunifi.it

Abstract. JARVIS is a Research & Development project, jointly devel-
oped by industrial SME partners and by the University of Florence,
aimed at development of a hardware/software framework supporting
integration among physical IoT devices, data analytic software agents,
and human operators involved in operation and maintenance of resilient
Industry 4.0 systems. At the heart of the JARVIS architecture, a suite of
software digital twins deployed in a Java EE environment supports run-
time monitoring and control of the hierarchy of hardware configuration
items of the system, capturing their composition and representing their
failure modes through a reflection architectural pattern enabling agile
adaptation to the evolution of configurations. Besides, analytic modules
can be deployed as micro-services leveraging both the knowledge base
provided by digital twins and the data flowing from the ingestion layer.
This enables agile development of advanced monitoring and control ser-
vices supporting maintainability and resilience. We describe the JARVIS
architecture, outlining responsibilities and collaborations among its mod-
ules, and we provide details on the structure of representation of digital
twins, showing how this is exploited in a data analytic agent providing
an executable representation of fault trees associated with failure modes
of configuration items.

Keywords: 14.0 System of Systems - Digital twins + Fault tree

1 Introduction

In the agenda of Industry 4.0 (I4.0), Information Technology and Operational
Technology are expected to provide facilities for conduction and maintenance of
cyber-physical systems, developing on various pillars, including industrial IoT,
big data and analytics, horizontal and vertical integration, cloud computing [23].
This gives rise to a class of software controlled distributed systems, for which
resilience comprises a core requirement [1,19,24] shaping software engineering
processes and architectural solutions.

© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 85-93, 2019.
https://doi.org/10.1007/978-3-030-30856-8_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_6&domain=pdf
http://orcid.org/0000-0001-5109-4375
http://orcid.org/0000-0002-9050-088X
http://orcid.org/0000-0001-6684-1150
http://orcid.org/0000-0002-4983-4386
https://doi.org/10.1007/978-3-030-30856-8_6

86 J. Parri et al.

JARVIS (Just-in-time ARtificial intelligence for the eValuation of Industrial
Signals) is a project co-funded by the Tuscany regional government (Italy) in
the POR FESR 2014-2020 program, developed by the industrial SME partners
LASCAUX, SISMIC SISTEMI, JAEWA, and BEENOMIO, with the scientific
support of the labs of Software Technologies, Artificial Intelligence, and Global
Optimization of the University of Florence.

JARVIS aims at developing a hardware/software framework for integration,
operation, and maintenance of Industry 4.0 systems, leveraging a software archi-
tecture that facilitates interaction among physical IoT devices, enterprise scale
software agents, data analytics, and human operators, so as to support planning
and scheduling of predictive maintenance and assets analysis, both offline and
at runtime. On the one hand, a suite of software digital twins [25] deployed in
the domain logic of a Java EE environment mirrors the hierarchical structure
of physical devices in an IoT layer, enabling runtime monitoring and control
of system hardware configuration items. On the other hand, a variety of data
analytics and software agents drives agile development of advanced monitoring
and control services for maintainability and resilience.

The project develops a framework open to reuse in the general context of
Industry 4.0 systems, and validates its applicability through a concrete instance
in a real operative scenario, addressing the case of a gate system for speed control
and access regulation to limited traffic zones (ZTL), produced and manufactured
by SISMIC SISTEMI, and installed in several Italian municipalities.

In this paper, we report a general description of the JARVIS project, outlin-
ing its major requirements (Sect. 2) and describing the architecture as a System
of Systems (Sect. 3), and we then provide details, focusing on the structure of
representation of digital twins and showing how this is exploited in a micro-
service providing an executable representation of fault trees associated with fail-
ure modes of configuration items (Sect. 4). Conclusions are drawn in Sect. 5.

2 System Requirements Specification

JARVIS is an architecture-driven project, developed along a V-model process [9],
documented according to the MIL-STD-498 [20].

Main system requirements and their consequent structural choices include:
(i) the system must be able to ingest Big Data from a plethora of IoT devices,
which led to the adoption of an IoT broker; (ii) the system must manage the
persistence of raw and semi-structured data into a high capacity data-store,
which led to the adoption of a schema-less NoSQL column-oriented DBMS [12];
(iii) the system must promote inversion of responsibility, by allowing actions
and end-users notifications be triggered by edge and unmanned components
on occurrence of faulty conditions; (iv) the system must provide an executable
software representation of physical field devices with monitoring capabilities,
which led to the design of a digital twins domain logic; (v) the system must
exhibit elasticity in scaling up/down the computational power of single mod-
ules, which led to a micro-service oriented architecture [6]; (vi) the system must



JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 87

Chatbot Services User Terminal

- Chatbot Logic User Interface
Field Data Server o -
FDS Serving Layer Event L
Mapper H H H

i, +subscribe +rd b+rd

. % loT Broker

+rd Vawr 4rd

Mid-term DBMS

Enterprise Integration

L Hwr

’ Enterprise Service Bus ‘

Stream Processor ‘ l Consumer

Enterprise Information Server

Field System Data Analytics Server EIS Serving Layer
7 o home :
H 3 Domain Model
DAS Serving Layer ORM LowLevel
-2 Gateway

' -
Agent Logic
,,,,, Long-term DBMS

Fig. 1. UML deployment diagram of JARVIS architecture as a System of Systems.

be able to integrate applications, horizontally and vertically, along the produc-
tion chain and among domains of authority, clients, customers, and tertiary
manufacturers, which led to the adoption of Enterprise Application Integration
(EAI) principles [15]; (vii) the system must integrate a swarm of data analytics
and agents, supporting operations management and just-in-time maintenance
processes, developed independently by different parties through paradigms of
polyglot programming and polyglot persistence; (viii) the system must support
push communications, providing an alternative multi-platform user interface,
which led to the adoption of an ecosystem of chatbots [5].

In the specific focus of this paper, requirements (iv) and (vii) play a major
role in the discussion.

3 System/Subsystem Design Description

JARVIS is developed around a System of Systems architecture (see Fig.1),
designed so as to promote high-levels of data ingestion, fault-tolerance, portabil-
ity, and adaptability. Roles and responsibilities of subsystems are here explained
in the general perspective of the project.

Field System (FS) acquires and generates IoT data flows, playing the role of
perception layer [14] of an IoT architectural stack. An FS instance is a physical
device composed of hardware components (e.g. motherboard, sensors and actua-
tors) and software controllers (e.g. embedded firmware). In the JARVIS specific
prototype, each FS represents a ZTL gate.



88 J. Parri et al.

Field Data Server (FDS) stores raw data coming from the FS in a mid-term
database, also applying analytic processes to filter, fix, and synthesise data.
The IoT broker component, which acts as an asynchronous Message Oriented
Middleware [3] based on the Publish-Subscribe EIP [13], performs ingestion of
the IoT data streams.

Enterprise Information Server (EIS) maintains status information about mon-
itored FSs, adopting the abstraction of digital twins, in order to maintain a
long-term consistent knowledge base of field devices, interpreting and refining
the mid-term FDS raw-data into a high level semantics.

Data Analytics Server (DAS) is composed by a plurality of agents executing
dynamic context interpretation and processing, enabling descriptive, predictive,
and prescriptive analysis (e.g. failure prediction and diagnoses), through artificial
intelligence, machine learning mechanisms, and stochastic model techniques.

User Terminal (UT) interprets the role of decoupled presentation layer for the
end-users. In the JARVIS specific prototype, this manages municipal authorities,
municipal police officers, help desk operators and maintenance technicians.

Chatbot Services (CS) implements the internal logic of real-time messaging
assistants, so as to expose an alternative Ul which allows both push and pull
duplex communications among human operators and physical devices, enabling
inversion of responsibility mechanisms (i.e. machine-to-human and machine-to-
machine interactions).

Enterprise Integration (EI) is responsible of subsystems interoperability, orches-
trates services, and handles dynamic dependencies, authorizing and securing
accesses to field devices. The core component is represented by the Enterprise
Service Bus (ESB) [2], which guarantees high decoupling and push communi-
cations, also implementing some major micro-services patterns [16] to enhance
availability and reliability, notably including: Circuit Breakers to limit fault prop-
agations, Service Discovery and Gateways to route messages.

Overall, all these subsystems give rise to a so-called Lambda architecture [18],
where the EIS implements the batch layer, the FDS serves as the speed layer, and
the FDS, EIS and DAS jointly represent the serving layer. In the specific focus
of this paper, EIS and DAS are the subsystems which cover the requirements
(iv) and (vii), respectively.

4 Digital Twins as Knowledge Base

The combination of EIS and DAS comprises a Knowledge Base supporting mon-
itoring and control of resilience: the EIS provides a digital representation of
structure and components of managed physical devices; besides the DAS hosts
a variety of micro-services supporting operation and maintenance processes.



JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 89

MetaDigitalSy icComponent

MetaDigitalRole

.-~ component

«abstract»
MetaDigitalTwin

[AN
FailureMode METALEVEL

BOUNDARY MY oo < Reflection__’
R e

é ) BASELEVEL =

1.% «abstract»
DigitalTwin
+addComponent(DigitalTwin c)
DigitalRole f------ component
DigitalSystem BasicComponent X

+addComponent(DigitalTwin c) |.__

composite

Fig.2. UML class diagram of the domain model of EIS, showing the reflective and
composite structure of digital twins. The association class DigitalRole (and its coun-
terpart in the meta level) has been introduced to support same-typed and reusable
components among different instances of DigitalSystem (and MetaDigitalSystem).

4.1 EIS Subsystem

The EIS subsystem is based on a domain logic, explicitly oriented toward relia-
bility requirement, and populated by digital twins instances, whose focus is on
capturing significant macroscopic events and failure modes, exhibited by whole
physical systems or devices. Digital twin abstraction enables a two-way interac-
tion on physical counterparts providing an interface to collect and query teleme-
tries as well as to control remote actuators (e.g. reset command).

The domain model, depicted in Fig.2, combines two software design pat-
terns. The Reflection [22] pattern provides a mechanism to modify dynamically,
at runtime, the structure and behaviour of modeled digital twins, by splitting the
domain logic in two parts: the meta level captures the types of devices and their
interconnections; the base level identifies concrete instances of physical compo-
nents and their interfaces in the actual configuration of the system. Besides, the



90 J. Parri et al.

«block» +main «block»
FieldSystem PowerSupply
+spare
«block» «block»
Motherboard Camera
«block»
Connector / T
«block»
Sensor «block» «block»
A AutofocusEngine Lens
«block» «block» oo «block»

TemperatureS SmokeS CabinetDoorS

Fig. 3. SysML bdd of the field system of the ZTL gate comprising the specific prototype
of the JARVIS project.

Composite [11] pattern is used to represent the hierarchical compositions of FS
instances, in both the meta and base levels of the Reflection pattern.

The patterns combination enables the model to evolve so as to cope with dif-
ferent configurations of a product line and reliably adapt to changes in operation
conditions. In particular, this permits to modify the compositional structure of
some FS digital replica, allowing to plug new FS instances at runtime into the
system, avoiding service unavailability due to EIS reboot.

The resulting software architecture promotes an engineering process where a
specification of the structure of the system can be translated into an executable
representation made of software digital twins.

Figure 3 illustrates the concept with reference to the configuration of the FS
of a ZTL gate, here modeled as a SysML [10] Block Definition Diagram (bdd).
Each block element of the bdd results into a DigitalTwin instance at runtime:
basic and composed blocks are implemented as objects of type BasicComponent
and DigitalSystem, respectively; Digital Twin components of a DigitalSystem and
their DigitalRoles can be derived from compositions and association role names,
respectively; in so doing, roles permit to give identity to multiple instances of
subsystems of the same type, as occurring in redundant configurations (e.g. the
power supply in the example).

4.2 DAS Subsystem

DAS hosts a swarm of micro-services consuming information provided by the
EIS Knowledge Base to support operation and maintenance processes through
a variety of context-dependent techniques.



JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 91

FailureMode
In the Fault
Tree, the root
node is the
Top Event
MetaDigitalTwin FT_Node
*
DigitalTwin FT_BasicEvent FT_Gate

Fig. 4. UML class diagram of the F'T-agent domain logic as p; bounded contexts.

We illustrate the concept with reference to an agent, termed FT-agent, which
implements Fault Tree Analysis (FTA) [7] so as to enable diagnoses and predic-
tions over system failures [21].

The FT-agent is partitioned in 3 micro-services: u; performs analyses over a
Fault Tree (FT), combining the outputs provided by the other two micro-services
(in the specific project prototype, the task is achieved exploiting the modeling
and analysis capabilities offered by the SIRIO Java library included in the ORIS
Tool [17], a toolbox for quantitative evaluation of stochastic models); ps exposes
a collection of FTs capturing different failure modes of the FS, designed and
managed by domain experts and maintenance technicians; u3 computes minimal
cut-sets and importance measures (e.g. Birnbaum, Fussel-Vesely) over a FT.

Figure 4 represents the domain model of the F'T-agent, distributed among the
three micro-services following the Bounded Context pattern [8]. In the represen-
tation, the role of top, basic, or intermediate events in the FT is implemented
by an object of type FailureMode.

Also in this case, the software architecture promotes an engineering process
where models for reliability can be translated into an executable software rep-
resentation. Specifically, identification of failure modes and their associations
with digital twins can be conveniently guided by the artifacts of Failure Mode
and Effects Analysis (FMEA) [4]. Additional concepts captured in Failure Mode,
Effects, and Criticality Analysis (FMECA), may provide information about crit-
icalities and probabilities, opening the way to the construction of executable
quantitative models as data analytics.



92 J. Parri et al.

5 Conclusions and Future Works

JARVIS is a hardware/software framework supporting operation and mainte-
nance of Industry 4.0 systems. The framework is designed to integrate a System
of Systems, allocating roles and responsibilities to components in a dynamic IoT
scenario, where multiple operational devices need to be monitored at runtime to
enable just-in-time maintenance.

Digital twins have been designed and adopted for representing conceptual
composite structures of physical components, offering facilitation to monitor,
manage and interact with operating instances, whose telemetries are ingested
as IoT data streams and interpreted by analytic agents in order to detect and
predict critical failures at runtime. Specifically, detected failures are collected
into a high-level events register, held in the digital twins domain logic, and noti-
fied to maintenance technicians; instead, predicted failures enable self-healing
mechanisms or extraordinary maintenance activities.

The JARVIS architecture promotes an engineering process for resilient sys-
tems from two orthogonal perspectives: on the one hand, a specification of the
knowledge base of the system is mapped into an executable domain model made
of software digital twins; on the other hand, reliability artifacts are translated
into runnable failure models. These representations open the way to a vari-
ety of runtime monitoring and control services supporting maintainability and
resilience.

The project will be completed by mid 2020 with experimentation in a concrete
operation scenario, addressing the case of smart city gates for speed control and
access regulation to limited traffic zones.

References

1. Abreu, D.P., Velasquez, K., Curado, M., Monteiro, E.: A resilient internet of things
architecture for smart cities. Ann. Telecommun. 72(1-2), 19-30 (2017)

2. Chappell, D.A.: Enterprise Service Bus. O’Reilly Media Inc., Sebastopol (2004)

3. Curry, E.: Message-oriented middleware. In: Middleware for Communications, pp.
1-28 (2004)

4. Department of Defense: MIL-STD-1629A - Procedures for performing a failure
mode, effects and criticality analysis. Military Standard, Washington, DC (1980)

5. Di Prospero, A., Norouzi, N., Fokaefs, M., Litoiu, M.: Chatbots as assistants: an
architectural framework. In: Proceedings of the 27th Annual International Con-
ference on Computer Science and Software Engineering, pp. 76-86. IBM Corp.
(2017)

6. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, pp. 195-216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4_12

7. Ericson, C.A.: Fault tree analysis. Syst. Saf. Conf. Orlando, Florida 1, 1-9 (1999)

8. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, Boston (2004)


https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 93

Forsberg, K., Mooz, H.: The relationship of system engineering to the project cycle.
In: INCOSE International Symposium, vol. 1, pp. 57-65. Wiley Online Library
(1991)

Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann, Burlington (2014)

Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education India, New Delhi (1995)

Han, J., Haihong, E., Le, G., Du, J.: Survey on NoSQL database. In: 2011 6th
International Conference on Pervasive Computing and Applications, pp. 363—366.
IEEE (2011)

Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2004)
Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things
architecture, possible applications and key challenges. In: 2012 10th International
Conference on Frontiers of Information Technology, pp. 257-260. IEEE (2012)
Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley Professional,
Boston (2000)

Montesi, F., Weber, J.: Circuit breakers, discovery, and API gateways in microser-
vices. arXiv preprint arXiv:1609.05830 (2016)

Paolieri, M., Biagi, M., Carnevali, L., Vicario, E.: The ORIS tool: quantitative eval-
uation of non-markovian systems. In: IEEE Transactions on Software Engineering
(2019)

Parri, J., Sampietro, S., Vicario, E.: Deploying digital twins in a lambda architec-
ture for industry 4.0. ERCIM News 115, 30-31 (2018)

Pradhan, S., Dubey, A., Gokhale, A.: Designing a resilient deployment and reconfig-
uration infrastructure for remotely managed cyber-physical systems. In: Crnkovic,
I., Troubitsyna, E. (eds.) SERENE 2016. LNCS, vol. 9823, pp. 88-104. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45892-2_7

Radatz, J., Olson, M., Campbell, S.: Mil-std-498. Crosstalk J. Defense Softw. Eng.
8(2), 2-5 (1995)

Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. (CSUR) 42(3), 10 (2010)

Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, vol. 2. Wiley, Hobo-
ken (2013)

Shrouf, F., Ordieres, J., Miragliotta, G.: Smart factories in industry 4.0: a review
of the concept and of energy management approached in production based on the
internet of things paradigm. In: 2014 IEEE International Conference on Industrial
Engineering and Engineering Management, pp. 697-701. IEEE (2014)

Suciu, G., Vulpe, A., Halunga, S., Fratu, O., Todoran, G., Suciu, V.: Smart cities
built on resilient cloud computing and secure internet of things. In: 2013 19th
international conference on control systems and computer science. pp. 513-518.
IEEE (2013)

Weippl, E.R., Sanderse, B.: Digital twins - introduction to the special theme.
ERCIM News 2018(115), 6-7 (2018)


http://arxiv.org/abs/1609.05830
https://doi.org/10.1007/978-3-319-45892-2_7

	JARVIS, A Hardware/Software Framework for Resilient Industry 4.0 Systems
	1 Introduction
	2 System Requirements Specification
	3 System/Subsystem Design Description
	4 Digital Twins as Knowledge Base
	4.1 EIS Subsystem
	4.2 DAS Subsystem

	5 Conclusions and Future Works
	References




