
Radu Calinescu
Felicita Di Giandomenico (Eds.)

LN
CS

 1
17

32

11th International Workshop, SERENE 2019
Naples, Italy, September 17, 2019
Proceedings

Software Engineering
for Resilient Systems

Lecture Notes in Computer Science 11732

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Radu Calinescu • Felicita Di Giandomenico (Eds.)

Software Engineering
for Resilient Systems
11th International Workshop, SERENE 2019
Naples, Italy, September 17, 2019
Proceedings

123

Editors
Radu Calinescu
University of York
York, UK

Felicita Di Giandomenico
ISTI-CNR
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30855-1 ISBN 978-3-030-30856-8 (eBook)
https://doi.org/10.1007/978-3-030-30856-8

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2678-9260
https://orcid.org/0000-0002-8760-7299
https://doi.org/10.1007/978-3-030-30856-8

Preface

This volume contains the proceedings of the 11th International Workshop on Software
Engineering for Resilient Systems (SERENE 2019). SERENE 2019 took place in
Naples, Italy, on September 17, 2019. The SERENE workshop is an annual event that
brings together leading researchers and practitioners from academia and industry, to
advance the state of the art and to identify open challenges in the software engineering
of resilient systems.

The 2019 edition of SERENE provided a forum for the exchange of ideas on
advances in areas of software engineering for resilient systems, including, but not
limited to:

Development of resilient systems

– Engineering processes for resilient systems
– Requirements engineering and re-engineering for resilience
– Frameworks, patterns, and software architectures for resilience
– Engineering of self-healing autonomic systems
– Design of trustworthy and intrusion-safe systems
– Resilience at run-time (mechanisms, reasoning, and adaptation)
– Resilience and dependability (resilience vs. robustness, dependable vs. adaptive

systems)

Verification, validation and evaluation of resilience

– Modeling and model based analysis of resilience properties
– Formal and semi-formal techniques for verification and validation
– Experimental evaluations of resilient systems
– Quantitative approaches to ensuring resilience
– Resilience prediction

Case studies and applications

– Empirical studies in the domain of resilient systems
– Methodologies adopted in industrial contexts
– Cloud computing and resilient service provisioning
– Resilience for data-driven systems (e.g., big data-based adaption and resilience)
– Resilient cyber-physical systems and infrastructures
– Global aspects of resilience engineering: education, training, and cooperation

SERENE 2019 attracted 12 submissions, from which 5 submissions were accepted
as full papers and 4 submissions were accepted as short papers. Every submission
received at least three rigorous reviews. We would like to express our gratitude to the
Program Committee members and the additional reviewers, who actively participated
in reviewing and discussing the submissions.

In addition to the high-quality papers selected by the Program Committee, SERENE
2019 featured an enlightening keynote and an invited paper. The keynote addressed the
ethics and privacy of autonomous systems and was presented by Paola Inverardi,
professor at the University of L’Aquila, the recipient of the 2013 IEEE TCSE
Distinguished Service Award, and a leading expert in software engineering. The invited
paper, contributed by Jesper Andersson, Vincenzo Grassi, Raffaela Mirandola, and
Diego Perez-Palacin, introduced a unifying conceptual framework for the characteri-
zation of system resilience.

Since 2015 SERENE has become part of a major European dependability forum –

the European Dependable Computing Conference (EDCC). We would like to thank the
Organizing Committee of EDCC 2019 for their help in organizing the workshop. We
are also grateful to EasyChair for facilitating the SERENE 2019 submission, reviewing,
and proceedings generation.

September 2019 Radu Calinescu
Felicita Di Giandomenico

vi Preface

Organization

Steering Committee

Didier Buchs University of Geneva, Switzerland
Henry Muccini University of L’Aquila, Italy
Patrizio Pelliccione Chalmers University of Technology, Sweden
Alexander Romanovsky Newcastle University, UK
Elena Troubitsyna Royal Institute of Technology, Finland

Program Committee

Nuno Antunes University of Coimbra, Portugal
Luciana Arantes Universite Pierre et Marie Curie-Paris 6, France
Rami Bahsoon University of Birmingham, UK
Silvia Bonomi Sapienza University of Rome, Italy
Marsha Chechik University of Toronto, Canada
Catello Di Martino Bell Labs Alcatel-Lucent, USA
Giovanna Di Marzo

Serugendo
University of Geneva, Switzerland

Lars Grunske Humboldt University Berlin, Germany
Jérémie Guiochet LAAS-CNRS, France
Dubravka Ilic Space Systems Finland, Finland
Rolf Johansson Autonomous Intelligent Driving, Sweden
Linas Laibinis Åbo Akademi University, Finland
Raffaela Mirandola Politecnico di Milano, Italy
Henry Muccini University of L’Aquila, Italy
Roberto Natella University of Naples Federico II, Italy
Patrizio Pelliccione Chalmers University of Technology, Sweden
Genaina Rodrigues University of Brasilia, Brazil
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Cristina Seceleanu Mälardalen University, Sweden
Alin Stefanescu University of Bucharest, Romania
Elena Troubitsyna Royal Institute of Technology, Finland

Additional Reviewers

Eduard Paul Enoiu Mälardalen University, Sweden
Rong Gu Mälardalen University, Sweden

Contents

Keynote Paper

Ethics and Privacy in Autonomous Systems: A Software Exoskeleton
to Empower the User. 3

Paola Inverardi

Invited Paper

A Distilled Characterization of Resilience and Its Embraced Properties
Based on State-Spaces . 11

Jesper Andersson, Vincenzo Grassi, Raffaela Mirandola,
and Diego Perez-Palacin

Resilience Engineering in Complex and Critical Applications

Modelling Autonomous Resilient Multi-robotic Systems 29
Inna Vistbakka and Elena Troubitsyna

Reactive Middleware for Effective Requirement Change Management
of Cloud-Based Global Software Development . 46

David Ebo Adjepon-Yamoah

Fault-Tolerant IoT: A Systematic Mapping Study . 67
Mahyar Tourchi Moghaddam and Henry Muccini

JARVIS, A Hardware/Software Framework for Resilient
Industry 4.0 Systems . 85

Jacopo Parri, Fulvio Patara, Samuele Sampietro, and Enrico Vicario

Testing and Validation Methods

Toward Testing Self-organizations in Multi-Embedded-Agent Systems. 97
Arthur Baudet, Oum-El-Kheir Aktouf, Annabelle Mercier,
and Jean-Paul Jamont

Towards Integrated Correctness Analysis and Performance Evaluation
of Software Systems (Doctoral Forum Paper) . 109

Ioannis Stefanakos

Security, Trust and Privacy Management

An Energy Aware Approach to Trust Management Systems for Embedded
Multi-Agent Systems . 121

Arthur Darroux, Jean-Paul Jamont, Oum-El-Kheir Aktouf,
and Annabelle Mercier

Addressing Security Properties in Systems of Systems: Challenges
and Ideas . 138

Miguel Angel Olivero, Antonia Bertolino,
Francisco José Dominguez-Mayo, María José Escalona,
and Ilaria Matteucci

On the Use of Quality Models to Characterize Trustworthiness Properties . . . 147
Tania Basso, Hebert Silva, and Regina Moraes

Author Index . 157

x Contents

Keynote Paper

Ethics and Privacy in Autonomous
Systems: A Software Exoskeleton

to Empower the User

Paola Inverardi(B)

Department of Information Engineering Computer Science
and Mathematics, University of L’Aquila, L’Aquila, Italy

paola.inverardi@univaq.it

Abstract. Software systems are increasingly autonomous in making
decisions on behalf of potential users. In these systems, the power of
self goes beyond the ability of substituting human agents operating on
software systems and exceeds the system boundaries invading the user
prerogatives. Privacy and ethical issues are at the top of the research
agenda in (big) data management and AI, that offer a wide range of tech-
niques often used as key (black-box) components of autonomous systems.
In this extended abstract, I discuss these issues from the software system
developer perspective that uses such black-box components and outline a
new approach based on a partially synthesized software exoskeleton that
empowers the user by mediating her interactions in order to preserve her
privacy and ethical preferences.

Keywords: Ethics · Privacy · Software exoskeleton

1 The Digital Society

In our current world, citizens continuously interact with software systems, e.g.,
by using a mobile device or from on board of a (autonomous) car. This will
happen more and more in the future, while we embed digitalizations in the
fabric of society thus impacting the social, economic, and political spheres.

The digital world, denoted with the powerful metaphor of the mangrove soci-
eties by Floridi [8] will be increasingly dominated by autonomous systems that
make decisions over and above the users or on behalf of them. Automatizing
larger and larger portions of services and functionalities of the society inevitably
impacts on user prerogatives and puts at danger the ethical and privacy sphere
of citizens. Besides the known risks represented by, e.g., unauthorized disclosure
and mining of personal data or access to restricted resources, and that are receiv-
ing a huge amount of attention there is a less evident but even more serious risk
that is at the core of the fundamental rights of human being [9].

Supported by the University of L’Aquila - Italy.

c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 3–8, 2019.
https://doi.org/10.1007/978-3-030-30856-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_1

4 P. Inverardi

Indeed, autonomous machine may tend to restrict the free space in a demo-
cratic society in which a human being can exercise her freedom of choice. That
is the space of decisions that are left to any individuals when such decisions do
not break fundamental rights and laws but are the expression of personal ethic.
There is therefore the risk of massification and loss of individualities in a digi-
tal society where individuals are unpaired with respect to machines beyond the
basic choice of accepting or not accepting the interaction with a machine with
all the consequences this might imply. From the case of privacy preferences in
the app domain [11] to the more complex case of autonomous driving cars [7]
the potential user is left unprotected and inadequate in her interaction with the
digital world.

The goal of the talk is to motivate and introduce the project EXOSOUL [5]
that aims at equipping humans with an automatically generated exoskeleton, a
software shield that protects them and their personal data via the mediation
of all interactions with the digital world that would result in unacceptable or
morally wrong behaviors according to their ethical and privacy preferences.

2 The Exosoul Vision and Challenges

The goal of EXOSOUL is to empower the users with a personalized exoskeleton
that permits to control and mediate interactions according to the ethic profile
of user. In the EXOSOUL approach privacy is considered, as it is in the philo-
sophical setting, a dimension of ethics. Therefore, the exoskeleton is aware of the
ethical preferences of the user and can interact accordingly with the surrounding
systems.

The exoskeleton can take a whole spectrum of forms: from customized soft-
libraries that the individual may deploy on the devices and systems being used,
to a sophisticated software interface that an individual may wear, eventually
deployed on a body chip. Exoskeletons development may also open business
opportunities in the same way open source software did, which promoted the
ethical principles of free software against the monopoly proprietary software
producers. Indeed, building systems that embody ethical principles by design
may also permit acquiring a competitive advantage in the market, as predicted in
the recent Gartner Top 10 Strategic Technology Trends for 2019 [1]. Furthermore,
bringing back to the user part of the (digital) control helps to solve liability issues
in autonomous systems by readdressing responsibility to users according to their
specified ethics.

The automatic realization of an individual exoskeleton starting from the
ethics and privacy preferences of the user requires several challenges to face.
In the ethical sphere, this requires to: (i) identify a space of ethics and pri-
vacy preferences for users, that we recognize in the concept of soft ethics [8],
to assess their compatibility with regulations, and to orchestrate interactions of
users endorsing different preferences, so as to prevent deadlocks and to promote
best ethical practices in digital societies; (ii) infer ethics and privacy preferences
from the user, given that neither a person nor a society apply moral categories

Exosoul 5

separately, rather everyday morality is in constant flux among norms, utilitarian
assessment of consequences, and evaluation of virtues.

The exoskeleton deals with two classes of interactions (see Fig. 1). The first
one concerns interactions that involve the exchange of personal data, and as such
impact the privacy dimension, notably interactions with mobile apps through
mobile devices. The approach in EXOSOUL is to consider user data active,
that is provided with mechanisms that govern their creation, destruction, use,
and sharing according to the owner ethical preferences. Destruction is the basic
means to provide the right to be forgotten, which requires to equip data with an
apoptosis mechanism synthesized from the user’s ethical and privacy preferences
and whose enactment depends on the use the digital world makes of the data.
The second one concerns the interaction with systems that have some degree of
autonomy and that a user may want to ethically control. Autonomous vehicles
and the so-called trolley problem represent a well-known case as exemplified in
[7]. As part of the exoskeleton, there will be an ethical actuator synthesized out
of the user’s ethical preferences able to intercept the interactions between the
autonomous engine and the machine actuators and to prevent behaviors that
are not admissible by the ethical preferences.

Fig. 1. The structure of the exoskeleton

This approach can be possible if the systems that wants to interact with an
exoskeleton provided user, accept to disclose part of its interface. Although this
requirement might be considered strong, it is indeed very current practice in
system’s interoperability once we lift the system individual plus exoskeleton at
the systems interacting level. This means that together with the personalized
shield also the architecture and protocol requirements the systems producers
need to comply with are produced. EXOSOUL citizens will interact only with the
part of the digital world that accepts their requirements. This introduces more
symmetry in the producer/user roles and breaks the monopoly of producers.

6 P. Inverardi

3 The EXOSOUL Methodology

In this section, the methodology to obtain the exoskeletons is sketched (see
Fig. 2).

Fig. 2. The methodology

In RT1 logic theories and supporting techniques for enabling users to infer
and specify their ethical and privacy preferences are investigated. As mentioned
before, our starting point is the notion of Digital ethics [8] defined by Floridi
as the branch of ethics that aims at formulating and supporting morally good
solutions through the study of moral problems relating to personal data, (AI)
algorithms and corresponding practices and infrastructures. Digital ethics can be
divided into hard ethics and soft ethics. In EXOSOUL, we interpret hard ethics
as the (democratic) societal ethics, that is the one that is defined and enforced
by digital legislation. However, legislation does not cover everything, nor should
it. The inhabitants of the digital world, e.g., companies and citizens, assess their
role in the digital world by following their personal ethics, the soft ethics which
deals with all the (moral) decisions that can be taken without trying to by-pass
or change the hard ethics i.e. the existing regulation. Soft ethics is exactly what
EXOSOUL aims to support in the personal exoskeleton while we expect hard
ethics to be implemented by the systems/machine producers.

In Fig. 2, ‘Privacy (P) and Digital Ethics (DE) Principles and Guidelines’
refer to hard privacy and hard ethics that are defined and enforced by digital
legislation. Instead, ‘Instruments to Specify and Infer P and DE User Prefer-
ences’ enable the user to define her soft privacy and soft ethics. The ‘User-defined
Domain independent P and DE Preferences’ will be defined via a top-down app-
roach (�define� arrow), then refined and tuned up via a bottom- up approach
(�refine� arrow from ‘Demonstrators’). RT2 conceptually defines the exoskele-
ton together with the techniques for manipulating it. RT3 investigates innovative

Exosoul 7

synthesis techniques to generate exoskeletons so to reflect user privacy and ethi-
cal preferences. In the figure, artifacts provided by the users and domain experts
are in light-gray. More precisely, user-defined domain-independent P and DE
preferences are inferred and specified by end users of EXOSOUL through the
instruments produced by RT1. In turn, this artifact is the input of the domain-
independent exoskeleton synthesis. The other artifacts that are highlighted in
light gray (see the Domain-dependent Specifications box) are provided by domain
experts and contain the domain-dependent specifications that are given as input
to the exoskeleton specializations synthesis in order to produce exoskeletons
specialized for the accounted domains, e.g., mobile and automotive. These spec-
ifications will be provided by following the practical guidelines that will be estab-
lished while developing the project demonstrators in RT4. The demonstrators
will be used to assess the research and innovation outcomes of EXOSOUL.

The overall approach of EXOSOUL is defined at the architectural level.
Indeed, the exoskeletons operate at the systems interaction levels, therefore syn-
thesis techniques take the move from the research and practical experience mat-
urated by our group of research over the last decade [2–4,6,10,12,13].

4 Conclusions

In this extended abstract, I have shortly described the EXOSOUL project.
EXOSOUL addresses a problem of utmost concern nowadays: the impact that
autonomous technologies have and will have on the ethical sphere of individuals
in the digital societies. EXOSOUL takes a specific and original approach that
is to protect and empower the citizen. Differently to most of the approches at
present advocated based on developers responsability, accountability and trans-
parency see for example the Ethics Guidelines for Trustworthy AI produced by
the High-Level Expert Group on Artificial Intelligence set up by the European
Commission1, EXOSOUL focuses on the individual and proposes a user-driven
proactive approach to protect ethics. EXOSOUL recognizes that the human
being is unpaired in the digital society and proposes to equip her with a soft-
ware exoskeleton to make her resilient with respect to potential attacks to her
fundamental rights.

References

1. Gartner top 10 strategic technology trends for 2019 (2019). https://gtnr.it/
2CJJYGp

2. Autili, M., Inverardi, P., Spalazzese, R., Tivoli, M., Mignosi, F.: Automated synthe-
sis of application-layer connectors from automata-based specifications. J. Comput.
Syst. Sci. 104, 17–40 (2019)

3. Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies.
IEEE Softw. 32(1), 50–57 (2015)

1 https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines.

https://gtnr.it/2CJJYGp
https://gtnr.it/2CJJYGp
https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines

8 P. Inverardi

4. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018)

5. Autili, M., Di Ruscio, D., Inverardi, P., Pelliccione, P., Tivoli, M.: A software
exoskeleton to protect and support citizen’s ethics and privacy in the digital world.
IEEE Access 7, 62011–62021 (2019)

6. Autili, M., Di Salle, A., Tivoli, M.: Synthesis of resilient choreographies. In: Gor-
benko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol.
8166, pp. 94–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40894-6 8

7. Awad, E., et al.: The moral machine experiment. Nature 563, 59–64 (2018)
8. Floridi, L.: Soft ethics and the governance of the digital. Philos. Technol. 31(1),

1–8 (2018)
9. Inverardi, P.: The European perspective on responsible computing. Commun. ACM

62(4), 64–69 (2019)
10. Perucci, A., Autili, M., Tivoli, M.: A multipurpose framework for model-based

reuse-oriented software integration synthesis. In: 4th International Workshop on
Model-Driven Engineering for Component-Based Software Systems (ModComp),
pp. 41–47 (2017)

11. Scoccia, G.L., Ruberto, S., Malavolta, I., Autili, M., Inverardi, P.: An investiga-
tion into android run-time permissions from the end users’ perspective. In: 5th
IEEE/ACM International Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft) (2018)

12. Scoccia, G.L., Malavolta, I., Autili, M., Di Salle, A., Inverardi, P.: User-centric
android flexible permissions. In: Proceedings of the 39th International Conference
on Software Engineering, ICSE, pp. 365–367 (2017)

13. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based
architectures. Sci. Comput. Program. 71(3), 181–212 (2008)

https://doi.org/10.1007/978-3-642-40894-6_8
https://doi.org/10.1007/978-3-642-40894-6_8

Invited Paper

A Distilled Characterization of Resilience
and Its Embraced Properties Based on

State-Spaces

Jesper Andersson1, Vincenzo Grassi2, Raffaela Mirandola3(B),
and Diego Perez-Palacin1

1 Linnaeus University, Växjö, Sweden
{jesper.andersson,diego.perez}@lnu.se

2 University of Roma Tor Vergata, Rome, Italy
vincenzo.grassi@uniroma2.it

3 Politecnico di Milano, Milan, Italy
raffaela.mirandola@polimi.it

Abstract. In recent years, we have observed the increasing interest in
the system property resilience. We ascribe this increasing interest to the
rapidly growing number of deployed, complex, socio-technical systems,
which are facing uncertainty about changes they are expected to expe-
rience during their life-cycle and ways to deal with them. This paper
contributes to current resilience research by focusing on the different
definitions given for this system property, highlighting the risk that,
using different terms in different communities, this contributes to create
a “tower of Babel” problem, with the consequent difficulty in exchang-
ing ideas and working together towards a common goal. We adopt an
extended definition of dependability to define resilience. Based on that,
we identify features of resilient systems, capture properties falling under
the resilience umbrella, and define a conceptual framework for resilience
characterization including how changes affect the system, strategies to
design resilience, and discuss metrics for quantifying resilience at design
and runtime.

Keywords: Resilience · Conceptual framework ·
Strategies and metrics

1 Introduction

The complexity of socio-technical systems together with the need to manage the
inherent uncertainties related to anticipated and unanticipated changes in the
system’s environment, in the user needs and behaviors, and the system itself
are the drivers for the increased interest in the notion of resilience in the last
decade.

The concept of resilience was coined and developed in psychology to describe
the human ability to cope with a crisis and to recover from it rapidly. Several
c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 11–25, 2019.
https://doi.org/10.1007/978-3-030-30856-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_2

12 J. Andersson et al.

other disciplines adopted the term over the years, including system safety [4],
medicine [5] and human organization [2]. A wide-spread use in different disci-
plines has resulted in a situation where the term has several, sometimes incom-
patible, meanings. Woods [16] provides a comprehensive analysis of the different
nuances of the resilience term.

If we put the magnifier glass on the ICT domain, we find a plethora of related
terms that originate from different research communities such as dependability,
self-*, safety, and security, for example, resilience, robustness, adaptation, recov-
ery, absorption, and flexibility, often without crisply defined relationships.

The research questions motivating the work reported in this paper are:

– What are the different facets of a system that the different terms intend to
capture?

– Are some terms specializations (qualifications) of some other terms?
– Are some of them representing means for attaining a property indicated by

another term?

There is a vast body of related work [3,10,12,14–16] that contributes to the
general discussion on resilience. Many provide conceptual frameworks, which
assist in identifying the current state of the art, relationships among different
approaches, and the promising research avenues.

We contribute further in this direction, by distilling and presenting concepts
from that current body of works in a unified and concise way. In particular, we use
the ideas expressed in [3,10,14] as our starting point. These results of discussions
mainly belong to the dependability and self-organizing systems communities.
Besides, we also refer to the general discussion reported in [16].

In particular, we leverage on Laprie’s definition [10] that defines resilience
as an extension of dependability when facing changes. We analyze, classify, and
propose:

– a conceptual framework based on the principled definitions of terms that
concur with the resilience definition;

– a dynamic characterization of resilience in terms of change types the system
has to cope with;

– a characterization of the change types affecting the system resilience;
– a discussion about metrics and strategies to measure and realize resilience.

The paper is organized as follows. Section 2 introduces the proposed con-
ceptual framework and the types of changes impacting the system resilience
property, Sect. 3 presents a discussion about existing strategies and metrics for
resilience, and Sect. 4 concludes the work.

2 A Conceptual Framework for Characterizing Resilience
in ICT Systems

In this section, we introduce and briefly explain terms and concepts that capture
essential aspects of the ICT systems resilience discourse. Using a broad definition

A Distilled Characterization of Resilience and Its Embraced Properties 13

of resilience as a starting point, we characterize resilience using these terms and
concepts and describe the basic properties of the change types that affect system
resilience.

2.1 Basic Terms and Concepts

Resilience - In the following we conform to the Laprie’s definition [10]:

Definition. Resilience is defined as the persistence of dependability when facing
changes.

This definition refers to the dependability concept, which is a fundament in
a conceptual framework elaborated over several years within the dependable
computing community [3]. It defines dependability as: “The ability to deliver
service that can justifiably be trusted.” or, alternatively: “The dependability of a
system is the ability to avoid service failures that are more frequent and more
severe than acceptable.”

From these definitions, it is clear that resilience is a broader concept than
dependability due to an increase in the number of event types that may affect
the system property. Dependability concerns a system’s ability to deliver sat-
isfactory service in the presence of “negative” events, such as, faults and even
failures. Resilience is more general as it is concerned with a system’s ability to
delivering satisfactory service in the presence of changes. Changes are not nec-
essarily negative events, for example, in ubiquitous systems where a continuous
change in the number and type of interacting entities is a rule rather than an
exception.

System and Environment - By System we mean a broad notion encompassing
hardware and software systems, humans, and the physical world with its natural
phenomena in which the software and hardware systems are situated. In the
research reported herein, we focus on ICT systems consisting of hardware and
software components.

The systems we consider are self-similar or structured systems that consists
of a collection of interacting components, where each component by itself consti-
tutes a system. This definition is recursively applicable until we reach a decom-
position level where further decomposition is not relevant for the given context.
Besides interacting with other components that are part of the same system, a
system also interacts with systems in the system’s environment. The observers
perspective and context define the system-environment boundary. The system
interacts and affects the environment, and it is in the environment that observers
may evaluate the system effects on it.

System State - The system state is the collection of attributes required for
describing a system and its behavior.

Hence, a specific state can be modeled as a vector σ belonging to some n-
dimensional state space Σ. This simplified state notion encompasses parameters
and attributes characterizing both a system and its environment.

14 J. Andersson et al.

Fig. 1. States classification (adapted from [14]).

State Classification - An acceptance criterion θ is a set of constraints and rela-
tionships defined on the system state that allows the identification of the subset
of the system state space Σ consisting of all those states where the service deliv-
ered by the system can be considered correct and acceptable according to θ. We
call this subset the set of acceptable states with respect to θ, and denote it by
θ(Σ).

In general, a number of acceptance criteria θ0, θ1, · · · , θk could be defined for
a given system, such that θ0(Σ) ⊆ θ1(Σ) ⊆ · · · θk(Σ) ⊆ Σ. The case k ≥ 1 thus
allows considering a series of progressively less stringent acceptance criteria,
which can be used in situations where we want to distinguish different levels
of more or less degraded but still acceptable performance. Otherwise, the case
k = 0 represents an on-off situation, where the system state is either acceptable
or not acceptable. For a comparison, the discussion in [14] assumes k = 1, where
θ0(Σ) and θ1(Σ) are called target space and acceptable space, respectively. On
the other hand, the discussion in [3] basically assumes k = 0, with Σ \ θ0(Σ)
the set of error states.

To fully characterize the system behavior, we introduce two additional sub-
sets of Σ, denoted by θs(Σ) and θd(Σ), such that θ0(Σ) ⊆ · · · θk(Σ) ⊆ θs(Σ)
and θd(Σ) = Σ \θs(Σ). Following [14], we call them the survival space and dead
space, respectively.

The survival space θs(Σ) includes all those states where the service delivered
by the system may be not acceptable, but for which a sequence of internally or
externally initiated corrective actions exists, which bring the system back to a
state σ ∈ θi(Σ), 0 ≤ i ≤ k. The dead space θd(Σ) includes all states where the
delivered service is not acceptable and that preclude the possibility of returning
to an acceptable state. Figure 1 depicts the state classification.

A Distilled Characterization of Resilience and Its Embraced Properties 15

2.2 A Dynamic Characterization of Resilience

The resiliency definition given in the previous subsection (analogously to the
dependability definition from which it is derived) is intended to represent a gen-
eral and global concept that subsumes several more specific concepts concerning
one or more of its facets. In this section, we answer the question: what do we
expect from a “resilient system”? Any answer to this question reflects which
incarnation of the different resilience concepts it originates from. Further, it will
require the adoption of different design and implementation strategies to achieve
resilience and the application of different metrics for its measurement.

To this end, we revisit the general definition of resilience using the definitions
from the related domains as a prism. Further, we suggest an experimental char-
acterization of the resilience incarnations in terms of system dynamics defined
by state transitions and state trajectories.

For a start, the considered resilience definition stresses that it is a property
strongly related with the trust we can have in the system ability to remain
inside the boundary of some set θi(Σ), 0 ≤ i ≤ k, despite the occurrence of
events, generically called “changes”, that may challenge this ability. Changes
are called “disturbances” in [14], and “faults” in [3].

We can distinguish two main kinds of change events that may force a system
to cross the boundary of an acceptable states set:

– “structural changes”: changes that lead to a modification of the system and/or
environment state, denoted as a function δ : Σ → Σ. Examples of this kind
of events could be a change in the load and/or profile of service requests
addressed to a system, a fault of some internal component of the system,
the appearance/disappearance of resources in the system environment. Such
changes lead to a border crossing if, given a state σ ∈ θi(Σ), we have δ(σ) �∈
θi(Σ).

– “functional changes”: changes that lead to a modification of the acceptance
criterion, denoted as a function ρ : Θ → Θ, where Θ generically denotes the
set of possible acceptance criteria. Examples of this kind of events could be a
change in the user preferences or requirements, which causes the addition of
new criteria, and/or the removal or modification of old criteria. Such changes
lead to a border crossing if, given a state σ ∈ θi(Σ), we have σ �∈ ρ(θi)(Σ).

We may use these change types to identify several resilience variants. We
first consider resilience with respect to a given set SC of “structural changes”,
which could affect a system or its environment. Then, we consider resilience with
respect to a given set FC of “functional changes”.

The proposed resilience classification, with respect to SC and a given set of
acceptance criteria θ0, θ1, · · · , θk, depends on which kind of border crossing these
changes are able to induce. Besides ideas expressed in [3,14], this classification
is also inspired by the discussion in [16].

Definition. A system is robust with respect to SC and an acceptance criterion
θi, if for any δ ∈ SC and σ ∈ θi(Σ), it is δ(σ) ∈ θi(Σ).

16 J. Andersson et al.

Fig. 2. Resilience types with acceptable states

This means that a robust system with respect to SC never crosses the boundary
of the set of acceptable states θi(Σ). This property is called “strong robustness”
in [14], and “robustness” (alias “resilience(2)”) in [16]. An illustration of this
type of resilience is given in Fig. 2(a).

Definition. A system is gracefully degradable with respect to SC and an accep-
tance criterion θi, with i < k, if for any δ ∈ SC and σ ∈ θi(Σ), it is
δ(σ) ∈ θk(Σ).

Graceful degradability is thus a weaker property with respect to robustness,
however, it retains the idea that the system will always be able to deliver some
kind of minimally acceptable service and never enter a non acceptable state. This
property is called “weak robustness” in [14], but limited to the case i = 0 and k =
1. It also partially resembles the “graceful extensibility” (alias “resilience(3)”)
in [16]. Figure 2(b) depicts the states in case of graceful degradability.

Definition. A system is recoverable with respect to SC and an acceptance cri-
terion θi, if for any δ ∈ SC and σ ∈ θi(Σ), it is δ(σ) ∈ θk(Σ) ∪ θs(Σ).

Recoverability thus implies that the system could temporarily enter states where
the delivered service is not acceptable, but has access to sufficient capabilities
that enables it to return to an acceptable state by itself or by external control.
This property is called “adaptivity/adaptability” in [14]. It is also related to
the “rebound” (alias “resilience(1)”) property in [16]. This type of resilience is
illustrated in Fig. 3(a).

Let us now consider a given set FC of “functional changes”. We can distin-
guish some different scenarios:

Definition. FC is a relaxation of θk, when for any ρ ∈ FC it is:
θk(Σ)

⋂
ρ(θk)(Σ) = θk(Σ).

In this case, a system that is robust/gracefully degradable/recoverable with
respect to a given set of “structural changes” SC retains the same kind of
resilience in the new scenario generated by the introduction of FC.

A Distilled Characterization of Resilience and Its Embraced Properties 17

Definition. FC is a restriction of θk, when for any ρ ∈ FC it is:
θk(Σ)

⋂
ρ(θk)(Σ) = ρ(θk)(Σ).

In this case, a system that is robust for a given set of “structural changes”
SC loses this resilience property. It cannot guarantee that it can remain within
the boundary of the narrower set of acceptable states. On the other hand, a
system that is gracefully degradable/recoverable for SC retains the same kind
of resilience also for the new acceptance criteria defined by FC, as it has the
built-in capability of maintaining or returning to states where at least a degraded
version of FC holds.

Definition. FC is a variation of θk when for any ρ ∈ FC it is:
θk(Σ)

⋂
ρ(θk)(Σ) �= ρ(θk)(Σ) and θk(Σ)

⋂
ρ(θk)(Σ) �= θk(Σ). Therefore, a

variation introduces a partially or totally new set of acceptance criteria.

This implies that at least some of the new acceptable states are outside the
borders of the old set of acceptable states. In the extreme case, all the new
states are outside the borders of the old states, when θk(Σ)

⋂
ρ(θk)(Σ) = ∅. As

a consequence, in this scenario it does not make sense to try to achieve either
robustness or graceful degradation: it is an intrinsic property of this scenario
that a given system state that was acceptable before the change caused by FC
is no longer acceptable (not even as a “degraded” state). The system will thus
necessarily experience a permanence in a non-acceptable state for some time.
If the system after some time in this condition can change its operations and
thereby reach and stay within the new set of acceptable states, the system is
resilient to these changes. This behavior resembles recoverability discussed above.
However, it requires a different kind of capability compared to recoverability.
Recoverability realizes the idea that a system always can bounce back to a visited
condition, while the scenario we are considering requires a system that is capable
of reaching a previously unvisited condition.

Definition. A system is flexible when it is resilient to FC variations.

This property is similarly called “flexibility” in [14]. It is also related with the
“graceful extensibility” (alias “resilience(3)”) and “sustained adaptability” (alias
“resilience(4)”) properties in [16]. Figure 3(b) illustrates the system state space
in the case of flexible systems.

To conclude this characterization of the resilience concept, we note that our
discussion seems to define a hierarchy, with robustness at the top and recover-
ability and flexibility at the bottom. We want to point out that this hierarchy is
only apparent, as it actually holds only under the assumption of an invariant set
of changes for all the given definitions; the relative merit of each kind of resilience
depends instead on several factors that include, for example, a trade-off among
the cost to stay in degraded or non-acceptable states, the cost to provide a sys-
tem that may never enter these states, and the variety of changes the system is
able to cope with. This kind of considerations, where “cost” could encompass
several aspects including economic and human, could lead designers to consider

18 J. Andersson et al.

Fig. 3. Resilience types that reach non-acceptable states.

as more viable and effective an apparently weaker kind of resilience. Moreover,
as pointed out in [16], we should also consider that the over-provisioning implied
by robustness for some set of changes, may lead to increased vulnerability to
other changes not included in the set under consideration.

2.3 Basic Properties of Change that Affect the System Resilience

In the previous subsection, we have characterized resilience in terms of inter or
intra state-set transitions, triggered by generic “changes” that affect a system.
We want to make the characterization more precise to facilitate the assessment of
resilience. To this end, we can identify two dimensions, if we study change events
from the system perspective: readiness and persistence. These two dimensions
are orthogonal to the ones discussed in the previous section.

– the readiness of the system to handle a given change; in this case we distin-
guish between expected and unexpected changes, and, within the expected, we
further distinguish between handled and unhandled changes;

– the persistence of the impact of a given change on the system; in this case we
distinguish between transient and permanent changes.

Figure 4 depicts this classification of changes. We further discuss how this
characterization of changes fits into the resilience characterization introduced
above.

Expected vs. Unexpected Changes - Expected and handled changes are changes
that are part of a system’s “normal” operation, in the sense that the system
includes hardware and software resources that enable it to manage the changes.
These changes include those belonging to the system’s nominal behavior, for
example, changes in the value read within the working range of a sensor, and
“undesired” changes, for example failures. As a consequence, there are no “sur-
prises” (as named in [16]) in this change types. Depending on which design deci-
sions designers make, the system handles these changes differently. Aligned to

A Distilled Characterization of Resilience and Its Embraced Properties 19

Fig. 4. Changes according to the their persistence and readiness to be handled.

the classification presented herein, designers make the system robust, gracefully
degradable, or recoverable concerning the changes.

Expected unhandled changes are those changes that are foreseeable and iden-
tified, but for which no system provisioning is in place to manage them. The
consequence is that if such event occurs, it is likely it brings the system into an
unacceptable state, either in the survival θs(Σ) or the dead θd(Σ) space. Design-
ers may decide not to handle some types of changes during the system develop-
ment. The rationale for not handling a foreseeable change can be a relatively low
occurrence frequency or complicated and costly techniques to introduce system
mechanisms that handle the change type. The consequence of these decisions
is that the system will lack mechanisms that retain or return the system to an
acceptable state automatically. There may however exist protocols that system
operators may follow to return the system to an acceptable state.

If there is a protocol for recovering from an identified change, then the change
moves the system to a state in the survival space. If there is no such protocol,
the change moves the system to a state in the dead space.

If designers do not identify a possible change, it results in possible unexpected
changes at runtime, the so-called surprises. An unexpected change may move
the system to any subspace in the state space, acceptable, survival, or dead
spaces. The resilience classification discussed above is not equipped to manage
this type of change as it would require a system that can reason about the effect of
situations that it is unaware of and possibly identify a protocol for returning the
system to an acceptable state. In some cases, the system may already be resilient
(robust, gracefully degradable or recoverable, as defined in Sect. 2.2). Apart from
these cases, the additional design and development efforts that are required to
make the system able to cope with the new type of changes can be reduced if the
system has been designed and implemented with a good degree of flexibility, as
defined in Sect. 2.2, and as remarked also in [16] (“graceful extensibility” (alias
“resilience(3)”) and “sustained adaptability” (alias “resilience(4)”) properties).

Permanent vs. Transient Changes - Following the distinction of fault persis-
tence in [3], we can distinguish two types of change. Permanent changes are
changes that do not disappear unless some corrective action takes place. Tran-
sient changes are changes where the system eventually returns to an acceptable
state without taking any action. An example of transient change is a power
outage that affects a network router. When the power comes back, the router

20 J. Andersson et al.

returns to function. Another example is when a software component fails to
establish a connection to a database due to multiple concurrent requests. When
the load decreases, the component may connect to the database. An example of
permanent change is the addition of a new system requirement to be satisfied
that is not covered by the existing ones.

When a designer identifies a transient change, the decision of whether han-
dling it or not is a tradeoff between the cost and occurrence of the effect, and
the cost of handling the change. If the change is unhandled, the system is intrin-
sically recoverable (as defined in Sect. 2.2) for the change, with a recovery period
duration that corresponds to the duration of the change. A system should always
handle permanent changes; that is, it should to be resilient for such changes.

3 Design Strategies and Metrics for Resilience
in ICT Systems

Resilience introduces many challenges from a design and implementation per-
spective. In this section, we briefly discuss strategies for enabling resilience in a
system and resilience metrics and measurement strategies for design time and
runtime.

3.1 Resilience Strategies

In this section we briefly discuss strategies that achieve the kinds of resilience
characterized in Sect. 2.

Resilience as Robustness: We may achieve this property by utilizing redundancy
techniques. These do not require explicit detection mechanisms for the occur-
rence of changes or mechanisms that identify the change type (e.g., fault masking
using parallel active redundancy with majority voting).

An alternative strategy is intrinsic algorithmic and structural system prop-
erties that can manage the change within the system’s “normal flow” of events.
One example of such systems is the self-organizing systems [7] that do not require
a mechanism that detects the occurrence of a change.

A third strategy is proactive (self-)adaptation that uses forecasting to antici-
pate possible changes before their occurrence and enacts corrective actions that
prevent undesired state changes; as a consequence, these latter techniques do
require the identification of the type of change will occur;

Resilience as Graceful Degradability : This is another property where designers
may utilize redundancy techniques. These techniques are different from the tech-
niques discussed above for robustness, but they have the same advantages of not
requiring explicit detection and identification of a change occurrence (e.g., a
servers cluster that continues to work at reduced capacity when some server
fails, irrespective of the actual cause of server failure).

An alternative strategy is reactive (self-)adaptation that in this instance,
identifies the change that has occurred and adapts the service or service quality.

A Distilled Characterization of Resilience and Its Embraced Properties 21

For example, a video streaming service detects a change in the available band-
width and reduces the frame rate to be able to continue the service delivery;

Resilience as Recoverability : The recoverability property is generally achieved
utilizing reactive (self-)adaptation techniques, which span commoditized tech-
niques like checkpoint-rollback-recovery in database systems and alternative
strategies based on, for example, machine-learning methodologies to identify a
suitable adaptation plan that restores the system to a correct operational status;

Resilience as Flexibility : There are no well-established strategies for a general
flexibility property. Flexibility requires that large parts of a system’s behavior
change and are verified dynamically. Such radical behavioral changes require a
holistic approach that enables online behavior to utilize offline automated devel-
opment techniques [1]. The practical implications of this strategy are, however,
not sufficiently studied. Three critical factors for this strategy are: model avail-
ability, tool-chain automation, and decision-making.

Model-availability and the model-quality are essential for a successful real-
ization of general flexibility. The automated tool-chain and decision making
mechanisms such as comparisons and reasoning require that the models, which
describe the system, are readily available, accurate, and updated. Flexibility also
requires that the tools that work on the models are fully automated and con-
figured in tool-chains that reflects development work-flows. An illustration of
one such tool-chain is a continuous integration-deployment pipe-line. We conjec-
ture that general flexibility, in some instances, requires updates to the models,
tools, and tool-chains in response to radical changes. This meta-adaptation level
is currently uncharted territory in research. The final corner-stone in a general
flexibility mechanism is support for decision-making. Flexibility requires iden-
tification of new acceptable states, generation of correct behavior for the new
state-space, and the verification of overall system behavior. This complex process
involves several decision types that require support from different reasoning and
comparisons strategies for evaluating alternatives, ranking, and decision selec-
tion. For example, flexibility may require that the system provides for dynamic
assurances, that is assurance structures that describe and argue for the fulfill-
ment of a specific system property. We conjecture that systems with flexibility
must be able to communicate and explain the rationale for the decisions it makes.
One example of research in this direction is explainable Artificial Intelligence [9].

3.2 Resilience Metrics

The critical role resilience plays in ICT systems elevates the importance of met-
rics and indicators that provide a quantitative evaluation of resilience. These
metrics assist designers and other decision-making stakeholders in obtaining an
understanding of a system’s resilience status. Hence, they are better prepared
to identify, plan, and prioritize activities that improve system resilience. In the
past, several efforts have addressed this area and proposed several approaches.
We outline some issues concerning the definition of suitable metrics below, dis-
tinguishing between runtime and design time metrics.

22 J. Andersson et al.

Runtime Metrics. Runtime metrics measure to what extent a system is
resilient to changes that occur during its operational life. Referring to the
resilience characterization given in Sect. 2.2, these metrics are observation-based;
that is, they monitor the system’s operational state trajectories. The trajecto-
ries may visit different parts of the system’s state space. With these mechanisms
in place, we may collect information and express system resilience in terms of
whether or not it has visited a state space, and if so the duration of the visit
and which states it visited in θi(Σ), for some i ∈ {0, 1, · · · , k}, or in θs(Σ) or
θd(Σ).

As a consequence, we conjecture that runtime metrics are best suited to
assess the system resilience for expected changes as the evaluation require at
least a partial knowledge of the system dynamics before, during and after a
change occurs.

We describe several runtime metrics below that are useful for the different
instantiations of the general resilience concept in Sect. 2.2.

– metrics that measure the continuity of correct service can be used to asses the
robustness of the system; referring to the dependability domain, metrics of
this kind are those measuring the system reliability (e.g., mean time to failure
(MTTF), or probability of never leaving some θi(Σ) in some time interval
[0, T], where T is the length of the system mission time);

– metrics that measure the readiness for correct service can be used to asses the
recoverability of the system; referring to the dependability domain, metrics
of this kind are those measuring the system availability (e.g., ratio of time
spent in acceptable states with respect to the total length of the observation
interval);

– metrics that measure the overall accumulated “quality” of the delivered ser-
vice can be used to assess the degradability of the system; referring to the
dependability domain, metrics of this kind are those measuring the system
performability (e.g., average quality accumulated in a time interval, assuming
that different quality levels are associated with states in different sets θi(Σ)).

These metrics could then be evaluated starting from the definition of the
following quantity:

μ(T) =
∫ T

0

f(σ(t))dt (1)

where T denotes the system observation time (it could also be T = ∞), σ(t)
denotes the system state at time t, and f : Σ → � is a function that maps the
system state space to the set of real numbers. By suitably defining f(σ) (e.g., in
the simplest case, as the indicator function that holds 1 when σ ∈ θi(Σ), and
0 otherwise) we can thus use μ(T) to get measures based on the system states
history.1 A summary of resilience metrics defined in this way can be found in
[11].
1 If the system dynamics is described by means of some stochastic model, µ(T) is a

random variable, whose moments or probability distribution can be used as actual
resilience metrics.

A Distilled Characterization of Resilience and Its Embraced Properties 23

Design Time Metrics. A design-time resilience metric provides a measure of
to what extent the system design makes it prone to structural or behavioral mod-
ifications. As a consequence, we argue that design time metrics are best suited to
assess the system resilience to unexpected changes, as they do not require apri-
ori knowledge of the system dynamics when these changes occur. The resilience
characterization in Sect. 2 points out one type, flexibility, to manage unexpected
changes. Hence, design metrics in general targets resilience by flexibility.

The flexibility property is in many aspects similar to the software architecture
properties adaptability and extensibility. Eden and Mens [8], propose a reference
framework to measure software flexibility, where they adopt a view in which they
define complexity from different points of views and consider it as the antipole
of flexibility. Besides, they describe a set of indices that can be used to this end
and provide a classification of available design paradigms and design patterns
well-aligned with their flexibility metrics. Other works, for instance, Cossentino
et al. [6] define flexibility and extensibility metrics using classical coupling and
cohesion software. The software product line community has defined extensibility
metrics. Based on an analysis of the features in a product-line, they have devel-
oped some feasible quantitative indicators for extensibility. More recently, as a
result of the increasing interest in self-adapting systems, we have seen adaptivity
metrics [13] based on the availability of equivalent components on the market
for a given application.

4 Discussion and Future Works

Our primary motivation for the work reported herein is to bring structure to
the general concept of resilience. Resilience is used and defined in many related
knowledge areas in the ICT domain, which has resulted in a multitude of terms
and definitions with unclear semantics. A universal nomenclature with well-
defined semantics will nourish research in several domains, which will contribute
new knowledge to an area that is a corner-stone in modern ICT systems.

To this end, we propose a structure with four types of resilience that manage
structural and functional changes in different ways: robustness, graceful degrad-
ability, recoverability, and flexibility. The structure forms a basis for a conceptual
framework and a dynamic characterization of each resilience type. Besides, we
briefly discuss alternative design strategies and design-time and runtime metrics
that enable quantitative assessment of the resilience types and corresponding
strategies.

Among the resilience types included in the proposed framework, flexibility
is probably the type that deserves the most attention in the future. Flexibility
targets change types that developers are not able to anticipate, identify, and han-
dle. We may, however, require that the system is resilient to these unexpected
changes (“surprises”), which is the most intriguing and most demanding system
property according to Woods [16]. We conjecture that flexibility requires a con-
certed interdisciplinary research effort that tackles challenging research avenues
such as, among others, model availability and quality, tool-chain automation and
adaptation, and decision-making and explainability.

24 J. Andersson et al.

More specifically, we plan to investigate some specific areas such as:

1. Strategies and metrics for surprises.
2. Artificial intelligence-based strategies for system resilience.
3. Architectural patterns and tactics for flexibility.
4. Design-time and runtime metrics that capture facets of resilience.
5. A reasoning framework for engineering resilient ICT systems.

In pursuing these lines of research, we plan to adopt a multidisciplinary app-
roach and bring in knowledge areas outside of ICT and leverage advances in, for
instance, biology, psychology, and social sciences when tackling the challenges
above.

Acknowledgments. Raffaela Mirandola has been partially supported by the Swedish
KK-Stiftelsens project No. KKS - 20170232.

References

1. Andersson, J., et al.: Software engineering processes for self-adaptive systems. In:
de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for
Self-Adaptive Systems II. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 3

2. Annarelli, A., Nonino, F.: Strategic and operational management of organizational
resilience: current state of research and future directions. Omega 62(C), 1–18
(2016)

3. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.E.: Basic concepts and tax-
onomy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

4. Bergström, J., van Winsen, R., Henriqson, E.: On the rationale of resilience in the
domain of safety: a literature review. Reliab. Eng. Syst. Saf. 141, 131–141 (2015).
Special Issue on Resilience Engineering

5. Braithwaite, J., Wears, R., Hollnagel, E.: Resilient health care: turning patient
safety on its head. Int. J. Qual. Health Care 27, 08 (2015)

6. Cossentino, M., Lodato, C., Lopes, S., Ribino, P., Palermo, V.: Metrics for
evaluating modularity and extensibility in HMAS systems. In: Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2015, Richland, SC, pp. 1061–1069. International Foundation for
Autonomous Agents and Multiagent Systems (2015)

7. Marzo Serugendo, G.: Robustness and dependability of self-organizing systems - a
safety engineering perspective. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS,
vol. 5873, pp. 254–268. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05118-0 18

8. Eden, A., Mens, T.: Measuring software flexibility. IEE Proc. - Softw. 153, 113–125
(2006)

9. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research
Projects Agency (DARPA), nd Web, 2 (2017)

10. Laprie, J.-C.: From dependability to resilience. In: DSN 2008 (2008)
11. Najarian, M., Lim, G.J.: Design and assessment methodology for system resilience

metrics.RiskAnalysis. https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13274

https://doi.org/10.1007/978-3-642-35813-5_3
https://doi.org/10.1007/978-3-642-05118-0_18
https://doi.org/10.1007/978-3-642-05118-0_18
https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13274

A Distilled Characterization of Resilience and Its Embraced Properties 25

12. Patriarca, R., Bergström, J., Gravio, G.D., Costantino, F.: Resilience engineering:
current status of the research and future challenges. Saf. Sci. 102, 79–100 (2018)

13. Perez-Palacin, D., Mirandola, R., Merseguer, J.: On the relationships between QoS
and software adaptability at the architectural level. J. Syst. Softw. 87, 1–17 (2014)

14. Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and
self-organization in organic computing systems. ACM Trans. Auton. Adapt. Syst.
5(3), 10:1–10:32 (2010)

15. Wiig, S., Fahlbruch, B.: Exploring Resilience: A Scientific Journey from Practice to
Theory. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-03189-3

16. Woods, D.D.: Four concepts for resilience and the implications for the future of
resilience engineering. Reliab. Eng. Syst. Saf. 141, 5–9 (2015). Special Issue on
Resilience Engineering

https://doi.org/10.1007/978-3-030-03189-3

Resilience Engineering in Complex
and Critical Applications

Modelling Autonomous Resilient
Multi-robotic Systems

Inna Vistbakka1(B) and Elena Troubitsyna1,2

1 Åbo Akademi University, Turku, Finland
inna.vistbakka@abo.fi

2 KTH – Royal Institute of Technology, Stockholm, Sweden
elenatro@kth.se

Abstract. Resilience is an ability of the system to deliver its services
in a dependable way despite the changes. In this paper, we propose a
multi-agent based formal outlook on ensuring resilience of multi-robotic
systems. We represent system functions as collaborative activities per-
formed by the agents with different capabilities. Changes invoke either
structural reconfigurations – forming different collaborations or compen-
sative activities – introducing into the system agents with additional
capabilities. We formalize the resilience mechanisms and demonstrate
their use by a case study – a coordination of a swarm of drones.

1 Introduction

Resilience is an ability of the system to deliver its services in a dependable
way despite the changes [15]. The changes might be internal, i.e., caused by
the failures of the system components or external – unexpected changes in the
operating environment of the system. In both cases, the system should cope with
them by reconfiguring itself to enable delivery of its services in a dependable way.

In this paper, we adopt a multi-agent view for reasoning about system
resilience. Namely, with each component – agent – of the system we associate
a set of functional capabilities. System functions are defined as collaborations
of agents. This is a suitable formalisation because it allows us to establish a
correspondence between the capabilities required for a dependable function pro-
visioning and capabilities of operational (i.e., not failed and available) agents.
The changes in the environment can also be modelled as the demands for certain
capabilities.

Such a formalisation offers a suitable basis for modelling different resilience
mechanisms. On the one hand, we can define the structural resilience mecha-
nisms, i.e., forming the new collaborations corresponding to the dependability
requirements as well as current system and environment state. On the other
hand, we can define the compensating resilience mechanisms, i.e., introducing
new agents and agent capabilities into the system.

Reasoning about resilience is a complex task that requires a formal basis.
In this paper, we rely on Event-B [1] and the associated Rodin Platform [2] as
c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 29–45, 2019.
https://doi.org/10.1007/978-3-030-30856-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_3&domain=pdf
http://orcid.org/0000-0001-8783-6879
https://doi.org/10.1007/978-3-030-30856-8_3

30 I. Vistbakka and E. Troubitsyna

our formal automated framework. The formalism allows us to define the complex
interactions between agents at different levels of abstraction. It supports correct-
by-construction development paradigm, which enables a derivation of a resilient
system architecture in a number of correctness-preserving refinement steps. We
rely on formal specification and refinement in Event-B to define and verify the
properties of complex agent collaborations and derive the corresponding agent
collaborative and resilience mechanisms.

To demonstrate an application of the proposed formal framework, we present
a case study – a coordination of a resilient swarm of drones. We demonstrate
how the proposed formalisation can facilitate introducing the patterns for coping
with drone failures and environment changes. It allows us to rigorously define
resilience mechanisms at different levels of abstraction.

2 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-
construction development paradigm and formal verification by theorem proving.
In Event-B, a system model is specified using the notion of an abstract state
machine [1]. An abstract state machine encapsulates the model state, repre-
sented as a collection of variables, and defines operations on the state, i.e., it
describes the dynamic behaviour of a modelled system. The important system
properties that should be preserved are defined as model invariants. Usually
a machine has the accompanying component, called context. A context is the
static part of a model and may include user-defined carrier sets, constants and
their properties (defined as model axioms).

The system dynamic behaviour is described by a collection of atomic events
defined in a machine part. Generally, an event has the following form:

evente =̂ any xe where Ge then Re end

Here evente is the unique event’s name, xe is the list of local variables, and Ge

is the event guard – a predicate over the model state. The body of an event
is defined by a multiple (possibly nondeterministic) assignment to the system
variables. In Event-B, this assignment is semantically defined as the next-state
relation Re. The event guard defines the conditions under which the event is
enabled, i.e., its body can be executed. If several events are enabled at the same
time, any of them can be chosen for execution nondeterministically.

System development in Event-B is based on a top-down refinement-based
approach. A development starts from an abstract specification that nondetermin-
istically models the most essential functional system behaviour. In a sequence
of refinement steps, we gradually reduce nondeterminism and introduce detailed
design decisions. In particular, we can add new events, refine old events as well as
replace abstract variables by their concrete counterparts. The gluing invariants
are used to link the abstract and concrete state variables. A correct refinement
ensures that the abstract system’s properties are preserved in the concrete one.

Modelling Autonomous Resilient Multi-robotic Systems 31

The consistency of Event-B models – verification of model well-formedness,
invariant preservation as well as correctness of refinement steps – is demonstrated
by discharging the relevant proof obligations. Rodin platform [2] provides tool
support for modelling and verification in Event-B. In particular, it automatically
generates all required proof obligations and attempts to discharge them. When
the proof obligations cannot be discharged automatically, the user can attempt
to prove them interactively using a collection of available proof tactics.

3 Autonomous Behaviour of a Resilient Multi-robotic
System

Multi-robotic systems belong to a large class of distributed systems composed
of asynchronously communicating heterogeneous components. In our work we
particularly focus on studying a behaviour of multi-robotic systems that should
function autonomously, i.e., without human intervention. Such a kind of sys-
tems are often deployed in hazardous areas, e.g., disaster areas, minefields,
remote locations, etc. Typically, the autonomic aspect assumes that a system
is able to monitor its behaviour and dynamically adapt it, if needed. From the
resilience perspective, system autonomy of multi-robotic systems can be achieved
via dynamic reconfiguration.

Essentially, a system configuration is a specific arrangement of the elements
(components) that compose the system [21]. A configuration can be defined by
relationships and dependencies between system elements that are established to
support achieving system missions. In its turn, dynamic reconfiguration implies
that the system is capable to evolve from its current configuration to another
one. Dynamic system reconfiguration may imply substitution, introducing new,
or even removal of configurable components, which consequently leads to chang-
ing of interdependencies between components. Reconfiguration may also affect
component interactions. The purpose of reconfiguration is to ensure that the sys-
tem remains operational, i.e., enables delivery of services in a dependable way
[21].

In our work, we adopt the agent-based paradigm to demonstrate how to rea-
son about collaborative component activities and resilience of component inter-
actions. We view the system components as agents and the overall system as a
multi-agent system, correspondingly. Next we present our reasoning on resilience-
explicit modelling of agent interactions in multi-agent systems.

3.1 Resilience-Explicit Modelling of Multi-agent Interactions

In this section we present a formal reasoning about a resilient multi-agent sys-
tem. In particular, we introduce agents, their attributes and as well as agent
relationships and interactions. The formalisation allows us to establish logical
connections between agents and define the conditions under which agent inter-
actions result in correct execution of a cooperative activity to ensure system
resilience. The established dynamic relationships between agents allow us to
reason about resilience of complex agent interactions.

32 I. Vistbakka and E. Troubitsyna

Definition 1. A multi-agent system MAS is a tuple (A,C,R,Active,Rel), where

– A is a set of all the system agents,
– C is a set of agent capabilities,
– R is a set of all possible relationships between agents in a MAS.
– Moreover, the dynamic system attribute Active defines a set of the active

(healthy) system agents and the dynamic attribute Rel defines a set of dynamic
relationships between the agents.

We call active those agents which can carry out the tasks in order to achieve
the system missions. In its turn, inactive agents are those agents that are not
currently in the system or those that are failed and thus incapable to carry out
any tasks.

The dynamic system attribute Rel defines dynamic relationships – logical
connections – between agents. Several system agents being in a dynamic rela-
tionship means that these agents might be or are currently engaged in a certain
collaboration required to provide a predefined system function.

We assume that a system consists of a number of agents with different func-
tionalities (capabilities). The agents utilise their capabilities in order to achieve
the system missions. For each agent, we can define the set of its capabilities as
a structure AC:

∀ ai : ai ∈ A ⇒ AC(ai) ⊆ C.

All possible environment changes as well as agent failures make their capabil-
ities unavailable. Thus agent capabilities AC is a dynamic structure, i.e., during
system execution a set of current agent capabilities might vary.

AC represents a partitioning of the system agents into different groups accord-
ing to their capabilities. We can also define agent classes, where each system
agent belongs to a particular agent class. In general, there can be many agent
classes Ai, i ∈ 1..n, such that Ai ⊆ A.

All possible dynamic relationships between system agents of the same or
different classes are define in R. We can additionally assume that there are a
number of data constructor functions to create elements of R (similarly as we
proposed in our work [21]). Any relationship r ∈ R, r can be modelled as a result
of an application of some data constructor function

r = R Constrr(a1, a2, . . . , am),

where R Constrr : A∗
i1

×A∗
i2

× . . .×A∗
im

� R. Here m, m ∈ N, defines a number
of agents participating in a relation r and each A∗

ij
= Ak ∪ {?} for some agent

type Ak. Moreover, � symbol designates an injection function and “?” stands
for an unknown agent of the corresponding class.

We distinguish between two types of relationships: pending (i.e., incomplete)
and resolved (complete). Pending relationships are often caused by a failure
or disappearance of the agents previously involved in a relationship. Moreover,
an existing active agent may initiate a new pending relationship. A pending

Modelling Autonomous Resilient Multi-robotic Systems 33

relation is marked by putting the question marks instead of a concrete agent
(e.g., R Constrr(a1, ?, a3, ?, a5)). As soon as a pending relationship is resolved,
the question mark is replaced by a concrete agent (similarly, as we did in [21]).

R represents all possible agent relationships and Rel stores the currently active
(both pending and complete) relationships. For a relationship to be active, all
the involved in it agents should be active as well. In other words, if a concrete
agent ai is involved in r, it should be an active one, i.e., ai ∈ Active.

Next we formulate a number of required properties that should be preserved
for correct agents interactions.

Property 1. Let EAA be all interaction activities defined between agents and
let EAl be all local agent activities. Moreover, for each agent a ∈ A, let E(a) be
a set of activities in which the agent a can be involved. Then

∀ a · a ∈ Active ⇒ E(a) ∈ EAA ∪ EAl and ∀ a · a /∈ Active ⇒ E(a) ∈ EAl.

This property regulates agent interactions with respect to the agent health sta-
tus. For example, this property implies that when an agent has failed, it cannot
be involved into any cooperative activities with other agents. Therefore, while
modelling agent interactions, we have to take into account the agent status.

Now we will briefly discuss how the notions defined above can be transferred
and incorporated into an Event-B model. We introduce static system notions
(such as A, C, etc.) as sets and constants in a model context and define their
properties as a number of context axioms. Dynamic system attributes (such as
Active, Rel, etc.) are formalised as model variables in a machine part.

Then, in the machine part, we define events modelling agent local activities
– joining and leaving the system. Those activities are modelled by the corre-
sponding events Activation and Deactivation:

Activation =̂
any a
where a ∈ A ∧ a /∈ Active
then Active := Active ∪ {a}
end

Deactivation =̂
any a
where a ∈ Active
then Active := Active \ {a}
end

Interactionk =̂
any ai, aj , ci, cj
where ai ∈ Active ∧ aj ∈ Active ∧

ci ⊆ AC(ai) ∧ cj ⊆ AC(aj) ∧
Elig k(ci, cj) = TRUE ∧ ...

then ...
end

The event Interactionk abstractly models a possible interaction between two
agents. Here, in the event guard, we specify conditions when this interaction can
happen. We require that only active agents can interact with each other. We
additionally assume that each agent should also have a number of capabilities to
participate in this interaction. Thus Elig k(ci, cj) = TRUE abstractly models
a specific eligibility condition on the agent capabilities that should be checked
before this agent interaction.

The next property concerns collaborative activities between the agents and
how these activities are linked with the inter-agent relationships.

34 I. Vistbakka and E. Troubitsyna

Property 2. Let EAA be all the interactions in which active agents may be
involved. Moreover, for each active agent a, let Ra be all the relationships it may
be involved in. Finally, for each collaborative activity ca ∈ EAA, let Aca be a set
of all agents involved in it. Then, for each ca ∈ EAA,

⋂

a∈Aca

Ra �= ∅.

This property regulates the interaction activities between the agents – only the
agents that are linked by dynamic relationships can be involved into cooperative
activities. In general, some of the relationships might be pending.

In Event-B we can abstractly specify a collaborative activity between two
agents by introducing a generic event CollaborativeActivityca. In the event guard
we define the conditions on this activity: both agents, participating in a collabo-
ration, are active, eligible to be involved, and there is a pre-existing relationships
that permits their interactions:

CollaborativeActivityca =̂
any ai, aj , ci, cj
where ai ∈ Active ∧ aj ∈ Active ∧

ci ⊆ AC(ai) ∧ cj ⊆ AC(aj) ∧
Elig ca(ci, cj) = TRUE ∧
R Constca(ai �→ aj) ∈ Rel

then ...
end

Initiation of a new relationship between agents can be specified by the follow-
ing event InitiateCollaborationc given below. In the event guards we checked that
all the required agents are active, eligible and ready to enter the relationship:

InitiateCollaborationc =̂
any ai, aj , ci, cj
where ai ∈ Active ∧ aj ∈ Active ∧

ci ⊆ AC(ai) ∧ cj ⊆ AC(aj) ∧
Elig c(ci, cj) = TRUE ∧ ...

then Rel := Rel ∪ R Constc(ai �→ aj)
...

end

The behaviour modelled by CollaborativeActivityca and InitiateCollaborationc
events describe generic cases of interactions between agents. Next we will discuss
how such agent interactions allow us to build different mechanisms to ensure
system resilience.

Modelling Resilience Mechanisms in MAS. The introduced notions
and properties discussed above offer a suitable basis for modelling different
resilience mechanisms in the context of multi-agent systems. We can define the
structural resilience mechanisms (i.e., forming the new collaborations) and the
compensating resilience mechanisms (i.e., introducing new agents or capabili-
ties into the system). Moreover, we also can define a simple case of a resilience

Modelling Autonomous Resilient Multi-robotic Systems 35

mechanism – local agent mechanism. Essentially, it is an agent’s actions that
are performed to deal with local failures or distractions (e.g., obstacle avoidance
mechanisms, etc.). Next we will discuss how we can model these mechanisms in
Event-B.

A local resilient mechanism can be modelled in Event-B as the following
generic event LocalResilientMechanismlm given below. Upon detection a change
in system or environment, an agent performs the required remedy actions to
tolerate this disturbance. Here we should check that an agent is healthy, has
required capabilities and eligible to perform these actions.

LocalResilientMechanismlm =̂
any ai, ci, dlm
where disturb condition(dlm) = TRUE

ai ∈ Active ∧ ci ⊆ AC(ai) ∧
Elig lm(ci) = TRUE ∧ ...

then ... // core agent functionality
end

In its turn, reconfiguration mechanism is supported by collaborative agent
behaviour, where agent collaborations are regulated by relationships between
agents. As we discussed before, we can specify initiation of a new relationship
between agents by the event InitiateCollaborationc. However, when some agent of
the initiated relationship is still unknown (e.g., should be elected), this situation
can be defined by the following event InitiatePendingRelationshippc.

InitiatePendingRelationshippc =̂
any ai, ci
where ai ∈ Active ∧ ci ⊆ AC(ai) ∧

Elig pc(ci) = TRUE ∧ ...
then Rel := Rel ∪ R Constca(ai �→ none)
...
end

Here we use the pre-defined element none to designate a missing agent in the
pending relationship. In this event, an agent ai initiates a new pending relation-
ship, where the place for a second agent of the particular type is currently vacant
(i.e., is marked by none). The resulting pending relationships is added to Rel.

The pending relationship R Constca(ai �→ none) is resolved, when the corre-
sponding agent “joins” this collaborative activity. The event AcceptRelationshipca
abstractly models this situation.

AcceptRelationshipca =̂
any ai, aj , ci, cj
where ai ∈ Active ∧ aj ∈ Active ∧

ci ⊆ AC(ai) ∧ cj ⊆ AC(aj) ∧
Elig ca(ci, cj) = TRUE ∧
R Constca(ai �→ none) ∈ Rel ∧ ...

then Rel := (Rel \ R Constca(ai �→ none)) ∪ R Constca(ai �→ aj)
...

end

36 I. Vistbakka and E. Troubitsyna

The system reconfiguration mechanisms can be based on reallocation of exe-
cution of certain functional tasks from some components (e.g., failed) to the
another (e.g., healthy) ones. Such a mechanism guarantees system resilience in
the presence of agent failures. If reallocation of agents is required, a reconfigu-
ration can be defined in general case as follows:

ReallocReconfigurationr =̂
any ai, aj , am, ci, cj , cm
where ai ∈ Active ∧ am ∈ Active ∧ ...

Elig r(ci, cj , cm) = TRUE ∧
R Constr(ai �→ aj) ∈ Rel ∧ ...

then Rel := (Rel \ R Constr(ai �→ aj)) ∪ R Constr(ai �→ am)
...
end

Let us note, that in a similar way, we can model all collaborating activities
involving any number of agents.

Next we will demonstrate an application of the proposed formal framework
and present a case study – a coordination of a resilient swarm of drones. We will
show how relying on the proposed principles presented in this Section develop a
correct system specification. We will discuss the coordination of drones and their
collaborative behaviour as well as the resilience aspect of the swarm control. We
demonstrate also how refinement process in Event-B can facilitate modelling and
verification of inter-tangled agent interactions at different levels of abstraction.

4 Modelling of a Resilient Swarm of Drones

4.1 Case Study Description

Nowadays swarms of drones are rapidly gaining popularity and widely used for
surveillance, shipping, rescue etc. In general, a swarm is a distributed system
composed of multiple autonomous drones that can be used to accomplish a
specific mission. An example of such a mission can be “areal monitoring of a
certain area”.

The swarms of drones should operate safely, i.e., avoid collisions with each
other and unforeseen objects appearing in the flight zones [25]. Moreover, while
planning a mission for a swarm, we should determine a balance between the
quality of produced payload data by drones and their energy consumption.
Essentially, we have to guarantee that the travel distance of the drones is min-
imised together with the risk of their collision with each other and the unforeseen
dynamically appearing objects [26].

A multi-layered architecture of the swarm system [24,26] is presented in
Fig. 1(a). The Navigation Coordination Centre (NCC) is responsible for gener-
ating the efficient navigation plan according to the mission goals and preventing
unsafe behaviour. In our previous work [17,18] we proposed high-performance
machine learning and evolutionary algorithms. These algorithms allow NCC to
safely navigate the drones and optimise travel distance, resource consumption

Modelling Autonomous Resilient Multi-robotic Systems 37

and quality of payload data ratio. They also ensure collision avoidance between
drones as well as between drones and predictable obstacles.

The primary responsibility of Monitoring Centre (MC) is to communicate
with the drones and send them the flight routes received from NCC. In their turn,
the drones periodically send their payload data (e.g., imaging) and telemetry
data (status, position, battery level, etc.) to MC, which sends them to NCC.

Fig. 1. Overview of a system architecture [24,26]

Periodically, NCC receives the payload and telemetry data from the drones,
analyses this information, and if required, generates a new routing for the entire
swarm. Based on received information NCC is able detect the changes in the
swarm and in the flying zone. If the required safety level is not reached, NCC
invokes recalculation of the drone routes and reconfiguration in the swarm.

During a mission execution drones communicate with each other and MC.
Communication with MC is typically long range and might consume significant
energy. To solve the problem of fast energy depletion, the swarm of the drones can
be organised hierarchically and form a tree-structure depending on its different
capabilities: more powerful drones – the leaders and less powerful drones – the
slaves – that communicate with their leaders using less power consuming means.
Moreover, a dedicated leader drone – sink drone – establishes communication
and transmits data between MC and drones at the leader level. In its turn, the
drones of the leader level send data to this sink. Each leader has a number of
slave drones and periodically collects information from its slaves. Slaves exchange
information with their leaders and might receive new commands generated by
NCC. All the layers of the architecture are shown in Fig. 1(b).

During a mission execution some drones might deviate from their predefined
routes or even fail. To maintain an efficient drone configuration, NCC periodi-
cally assesses the current state of the swarm and might reconfigure the tree.

38 I. Vistbakka and E. Troubitsyna

Fig. 2. A slave drone behaviour

Moreover, to implement local resilience mechanisms, each drone has its own
local collision avoidance mechanism – drone reflexes computation module. This
module overrides the commands received from NCC and executes safe maneuver
when an unexpected obstacle is detected. The drone reflexes computation module
locally calculates a reflex movement for the drone to prevent the collision [26].

Normally, the drones fly according to the routing plan issued by NCC. Peri-
odically, upon receiving new commands the drones change their current routes
as well as perform reconfiguration if it is commanded by NCC. In this case, the
logical relationships between the drones (i.e., sink-leader and leader-slave rela-
tionships) might be changed according to a new update of a drone tree-structure
recalculated by NCC.

We distinguish different cases of behaviour of a collaborative swarm of drones
at every architectural level (for more details see [24]):

– When a drone (of any layer) detects a possible collision with an unforeseen
obstacle or other drone, its reflexes computation module quickly computes a
reflex movement to avoid the collision.

– If MC detects a sink failure, MC triggers a reconfiguration to substitute the
failed sink drone by the predefined drone among the leaders. In case, if any
leader drone detects a sink failure before MC does it, the similar reconfigu-
ration procedure is triggered to substitute the failed sink drone.

– In case of a leader failure, detectable by the sink, the sink drone tries to re-
establish connection with the failed leader drone and, in case of unsuccessful
outcome considers this leader as failed. The reconfiguration procedure is trig-
gered to substitute the failed leader drone by the predefined slave drone of
the failed leader.

– In case of a slave failure, detectable by its leader, the leader drone tries to
re-establish connection with the failed slave drone. If it fails, then the failed
slave “leaves” the swarm.

– When a drone (of any layer) detects its local communication failure, a drone
should try to reconnect with a drone of the upper layer or MC and thus
reunite with the swarm.

Modelling Autonomous Resilient Multi-robotic Systems 39

The described system characterised by complex logic due to the highly non-
deterministic nature of the conditions triggering drones behavioural transitions
(e.g., see a slave drone state diagram depicted Fig. 2). Ensuring correctness of
collaborative behaviour of a swarm of drones is a complex engineering task. Next
we demonstrate how Event-B refinement process can facilitate modelling of the
multi-layered drone coordination and intertangled drone interactions. Perform-
ing this development we apply our modelling principles for a design of a resilient
MAS proposed in Sect. 3.

4.2 Event-B Development of a Swarm of Drones

The main focus of our Event-B development is a specification of a complex
collaborative behaviour of drones in a swarm-based system. While modelling,
we use our formalisation presented in Sect. 3 that covers the notions of system
agent, agent capabilities and statuses as well as agent relationships.

Modelling Drones and Their Interdependencies. In our initial speci-
fication, we model drones and required relationships between them. Thus we
define the elements of the Definition 1. In the context part of our Event-B spec-
ification, we represent the swarm by a finite non-empty set of drones SWARM .
This set might contain the ids of all drones in the swarm. Then we define vari-
ables to specify the set of all drones, leaders and slaves drones, as well as the
sink drone (by the variables cur drones, leaders, slaves, sink , correspondingly):

{sink} ∪ leaders ∪ slaves = cur drones, cur drones ⊆ SWARM .

To model the health status of the drones, we introduce a variable status. It
is defined as a total function:

status ∈ cur drones → {OK ,FAILED ,DISCON }.

Here the constants OK , FAILED and DISCON represent correspondingly the
nominal, failed and disconnected drone status. Then, Active notion (from the
Definition 1) will be represented as a set comprehension:

{a | a ∈ cur drones ∧ status(a) = OK} = Active.

Let us note that we intentionally introduce only drone statuses and partition
of all drones and do not introduce the notion of drone’s capabilities here. Such an
abstraction of drone statuses allows us to avoid introducing all drones capabilities
of the different layers and to have only three states covering all the cases that
might effect drone functionality and thereby mission achievement.

Next, we define possible relationships between drones, thereby we specify the
elements of the system attribute Rel. First, slaves of leaders variable establishes
the relationship between a leader and slaves it supervises:

slaves of leaders ∈ leaders → P(slaves).

40 I. Vistbakka and E. Troubitsyna

Here → denotes a total function relation, P denotes powerset of a set.
Moreover, we define sink alt and leader alt variables to model the next sink

candidate and leader candidates, respectively.
Performing this modelling step we further apply our modelling rules (prop-

erties) proposed in Sect. 3. In the machine part, we specify events to model pos-
sible drones failures as well as system reaction on them. We define SINK Failure,
LEADER Failure and SLAVE Failure events modelling a permanent failure of the
sink, a leader or slave, correspondingly, as well as SINK discon, LEADER discon
and SLAVE discon events modelling their transient failures. Upon execution of
these events, the value of status variable is changed. These events are modelled
in the same way as the generic events presented in Sect. 3.

The new event LEADER Failure Detection models detection of a sink failure,
while SINK Failure Reconfiguration event models an election of a “new” sink from
one of leader drones. In this case, slaves of leaders as well as leaders, slaves,
sink alt , leader alt variables are updated. Similarly, new events are introduced
to model slave and sink failures as well as the required reconfigurations. An
excerpt from this modelling step is presented in Fig. 3.

While our modelling, we formulate and prove the correctness of the recon-
figuration mechanisms involving changes all the layers of the architecture. For
instance, we prove that no slaves become dispatched from some leader. However,
in general, not every leader might have slaves:

∀ sl. sl ∈ slaves ⇒ (∃ ld. ld ∈ leaders ∧ sl ∈ slaves of leaders(ld)).

Modelling Agent Interactions. In next refinement step, we model the
remaining agents interactions and, in particular, focus on drones communica-
tion model. Communication is a critical aspect in ensuring resilient coordination
of the autonomous swarm of drones. The drones communicate with each other to
distribute the commands received from MC and NCC and send collected data.

While modelling drones interactions, we should introduce restrictions on
these activities to happen, e.g., only the drones that are linked by specific
dynamic relationships can be involved in an interaction. The routes transfer
is an example of a collaborative activity between two drones of different layers.
It can be modelled according to the generic event CollaborativeActivity presented
in Sect. 3. In Fig. 4, the event LeaderToSlave RoutesTransfer models sending new
routes from a leader to its corresponding slave drone. The data transmission
between all the other layers in the swarm can be modelled in a similar way.

Modelling Local Drone Behaviour. Next we extend our specification by
refining it to introduce a drone obstacle avoidance mechanism that contributes to
overall system resilience. The event Unpredictable Obstacle models possibility of
appearing an obstacle in a drone flying zone. Then, upon detection an obstacle,
a drone computes the best safe position and moves there. This behaviour is
covered in the event Reflection Activation. The nominal behaviour of drone is
restored after NCC receives the update about the current drone positions and
calculates the new routing for the swarm. To model this required behaviour, we
introduce the new event Reunite Swarm and refine the number of old events (e.g.,
Update Local Routes).

Modelling Autonomous Resilient Multi-robotic Systems 41

Fig. 3. The machine ResilientSD m1

Fig. 4. The event LeaderToSlave RoutesTransfer

42 I. Vistbakka and E. Troubitsyna

5 Conclusions and Related Work

In this paper, we have proposed a formal approach to development of resilient
multi-robotic systems. We have proposed a multi-agent based formalisation of
reasoning about system resilience by introducing the notions of collaborations
and capabilities. It has allowed us to rigorously define different resilience mecha-
nisms and facilitate the design of system reconfiguration as the main mechanism
for achieving system resilience.

In this paper, we have also demonstrated the application of the proposed for-
malisation to the development of a resilient multi-robotic system – a swarm of
drones. Our approach allowed us to rigorously define the reconfiguration mecha-
nisms at different levels of abstraction in a swarm. It facilitated the development
of complex reconfiguration procedures and deriving the associated coordination
mechanisms.

In this paper, we relied on formal modeling and verification in Event-B and
associated Rodin platform. Event-B adopts proof-based approach to verification.
We believe that it is a promising direction in formal modelling and verification of
multi-robotic systems, since it allows us to achieve scalability both in terms of the
number of the agents as well as reconfiguration scenarios. The automated tool
support – Rodin platform – facilitated derivation of complex system architecture
in a disciplined structured way.

In this paper, we have taken a qualitative logic view on system resilience
and focused on development and verification of different resilience mechanism.
As a future work, it would be interesting to combine the proposed approach
with quantitative stochastic reasoning [23]. This would enable not only design
but also the assessment of different reconfiguration strategies as well as different
system resilience attributes.

Autonomous systems, such as unmanned aerial and marine vehicles, robotic
and drone systems, have been widely studied from different perspectives in the
software engineering community. In particular, a great number of research in
autonomous robotic systems has focused on a development of underling system
architectures, robot control and navigation [5,12,16].

A variety of software engineering techniques and tools are used to design
dependable robotic systems [16,22,27], including model-checking [13], theorem
proving techniques [19], runtime verification [8], simulation [30], etc. Winfield
et al. [28] used a linear temporal logic (LTL) to formally specify and verify the
behaviour of a swarm robotic system performing aggregation.

A formal verification approach for the design of collective robotic systems is
discussed in [10]. In this work the formal language Klaim and related analysis
tools are used to model aspects of both the robot hardware and behaviour, as well
as relevant aspects of the environment. In our approach we do not only derive an
architecture of controlling software of a swarm of drones but also verify motion
safety properties of drone navigation.

MAS represents a popular paradigm for modelling complex and distributed
systems. Various methodologies and tools have been proposed for design, devel-
opment and verification of MAS: AUML [3], Gaia [29], MaSE [7], ADELFE [4],

Modelling Autonomous Resilient Multi-robotic Systems 43

Tropos [6], etc. However these approaches are limited to provide rigorous reason-
ing about agent behaviour as well as agent interactions. In our work we attempt
to formally model each individual agent as well as the dynamic behaviour of the
overall system. Moreover, employed Event-B modelling method was capable of
rigorously describing all the essential aspects of collaborative behaviour in MAS.

Similar to our work, Ferber et al. [9] propose a set of general principles from
which MAS may be designed (in particular, for capturing the organisational
structure of MAS). However, our formalisation covers a more wide range of
aspects of MAS and agent behaviour (agents capabilities, statuses, relationships,
interactions, etc.).

The cooperative motion and task planning scheme for MAS is discussed in
[11]. The presented approach is applicable to MAS where the agents have inde-
pendently assigned local tasks. In contrast, in our work we consider cooperative
agent behaviour, where an agent might take responsibility for a specific task
depending on its available capabilities.

Reconfiguration in MAS is studied also in work [20]. In this work, the recon-
figuration is triggered as soon as real-time requirements are not satisfied (e.g.,
a certain deadline for task accomplishment is expired). In contrast, in our app-
roach, reconfiguration is triggered as soon as changes in system and its environ-
ment violate safety issues associated with a system behaviour.

In our formalisation we focused on providing the logical reasoning of the rela-
tionships between agents, their interactions and dynamic reconfiguration. How-
ever, we still have abstracted away from some features that could be interesting
to study in the future. As a possible future direction, it would be interesting to
combine the presented approach with the resilient-explicit goal-oriented refine-
ment process that we proposed in [14]. In this work, the goal-oriented framework
provided us with a suitable basis for reasoning about reconfigurability. Com-
bined view would allow us to define reconfigurability as an ability of agents to
redistribute their responsibilities via correct interactions and collaborations to
ensure goal reachability. The resulting formal systematisation can be used then
as generic guidelines for formal development of reconfigurable systems.

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010). https://doi.org/10.1007/s10009-010-0145-y

3. Bauer, B., Müller, J.P., Odell, J.: Agent UML: a formalism for specifying multi-
agent software systems. Int. J. Softw. Eng. Knowl. Eng. 11(3), 207–230 (2001).
https://doi.org/10.1142/S0218194001000517

4. Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: a methodology
for adaptive multi-agent systems engineering. In: Petta, P., Tolksdorf, R., Zam-
bonelli, F. (eds.) ESAW 2002. LNCS, vol. 2577, pp. 156–169. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-39173-8 12

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1142/S0218194001000517
https://doi.org/10.1007/3-540-39173-8_12

44 I. Vistbakka and E. Troubitsyna

5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

6. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agents Multi-Agent
Syst. 8(3), 203–236 (2004). https://doi.org/10.1023/B:AGNT.0000018806.20944.
ef

7. DeLoach, S.A.: Multiagent systems engineering of organization-based multiagent
systems. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005). https://doi.org/10.
1145/1082983.1082967

8. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime verifica-
tion of component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.)
SEFM 2011. LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24690-6 15

9. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24620-6 15

10. Gjondrekaj, E., et al.: Towards a formal verification methodology for collective
robotic systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635,
pp. 54–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-
3 7

11. Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local LTL
specifications. I. J. Robot. Res. 34(2), 218–235 (2015). https://doi.org/10.1177/
0278364914546174

12. Iocchi, L., Nardi, D., Salerno, M.: Reactivity and deliberation: a survey on multi-
robot systems. BRSDMAS 2000. LNCS, vol. 2103, pp. 9–32. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44568-4 2

13. Konur, S., Dixon, C., Fisher, M.: Formal verification of probabilistic swarm
behaviours. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 440–447.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4 42

14. Laibinis, L., Pereverzeva, I., Troubitsyna, E.: Formal reasoning about resilient goal-
oriented multi-agent systems. Sci. Comput. Program. 148, 66–87 (2017). https://
doi.org/10.1016/j.scico.2017.05.008

15. Laprie, J.: From dependability to resilience. In: 38th IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. G8–G9 (2008)

16. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification
and verification of autonomous robotic systems: a survey. CoRR abs/1807.00048
(2018). http://arxiv.org/abs/1807.00048

17. Majd, A., Ashraf, A., Troubitsyna, E., Daneshtalab, M.: Integrating learning, opti-
mization, and prediction for efficient navigation of swarms of drones. In: PDP 2018,
pp. 101–108. IEEE Computer Society (2018). https://doi.org/10.1109/PDP2018.
2018.00022

18. Majd, A., Troubitsyna, E.: Integrating safety-aware route optimisation and run-
time safety monitoring in controlling swarms of drones. In: ISSRE Workshops, pp.
94–95. IEEE Computer Society (2017). https://doi.org/10.1109/ISSREW.2017.63

19. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for
autonomous robotic ground vehicles. In: Robotics: Science and Systems IX (2013).
http://www.roboticsproceedings.org/rss09/p14.html

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1145/1082983.1082967
https://doi.org/10.1145/1082983.1082967
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1007/978-3-642-34281-3_7
https://doi.org/10.1007/978-3-642-34281-3_7
https://doi.org/10.1177/0278364914546174
https://doi.org/10.1177/0278364914546174
https://doi.org/10.1007/3-540-44568-4_2
https://doi.org/10.1007/978-3-642-15461-4_42
https://doi.org/10.1016/j.scico.2017.05.008
https://doi.org/10.1016/j.scico.2017.05.008
http://arxiv.org/abs/1807.00048
https://doi.org/10.1109/PDP2018.2018.00022
https://doi.org/10.1109/PDP2018.2018.00022
https://doi.org/10.1109/ISSREW.2017.63
http://www.roboticsproceedings.org/rss09/p14.html

Modelling Autonomous Resilient Multi-robotic Systems 45

20. Moscato, F., Venticinque, S., Aversa, R., Martino, B.D.: Formal modeling and
verification of real-time multi-agent systems: the REMM framework. In: Badica,
C., Mangioni, G., Carchiolo, V., Burdescu, D.D. (eds.) IDC 2008. SCI, vol. 162, pp.
187–196. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85257-
5 19

21. Pereverzeva, I.: Formal development of resilient distributed systems. Ph.D. thesis
No. 203. Turku Centre for Computer Science (2015). http://urn.fi/URN:ISBN:978-
952-12-3253-4

22. Rouff, C.A., Hinchey, M.G., Peña, J., Cortés, A.R.: Using formal methods and
agent-oriented software engineering for modeling NASA swarm-based systems. In:
2007 IEEE Swarm Intelligence Symposium, SIS 2007, pp. 348–355. IEEE (2007).
https://doi.org/10.1109/SIS.2007.367958

23. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Integrating stochastic reasoning into
Event-B development. Formal Asp. Comput. 27(1), 53–77 (2015). https://doi.org/
10.1007/s00165-014-0305-z

24. Vistbakka, I., Majd, A., Troubitsyna, E.: Deriving mode logic for autonomous
resilient systems. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol. 11232, pp.
320–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5 19

25. Vistbakka, I., Majd, A., Troubitsyna, E.: Multi-layered approach to safe naviga-
tion of swarms of drones. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 112–125. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99229-7 11

26. Vistbakka, I., Troubitsyna, E., Majd, A.: Multi-layered safety architecture of
autonomous systems: formalising coordination perspective. In: HASE 2019, pp.
58–65. IEEE (2019). https://doi.org/10.1109/HASE.2019.00019

27. Webster, M., et al.: Toward reliable autonomous robotic assistants through formal
verification: a case study. IEEE Trans. Hum.-Mach. Syst. 46(2), 186–196 (2016).
https://doi.org/10.1109/THMS.2015.2425139

28. Winfield, A.F., Sa, J., Fernandez-Gago, M.C., Dixon, C., Fisher, M.: On formal
specification of emergent behaviours in swarm robotic systems. Int. J. Adv. Robot.
Syst. 2(4), 363–370 (2005). https://doi.org/10.5772/5769

29. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Developing multiagent systems:
the Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003).
https://doi.org/10.1145/958961.958963

30. Zhu, X., Liu, Z., Yang, J.: Model of collaborative UAV swarm toward coordination
and control mechanisms study. Proc. Comput. Sci. 51(C), 493–502 (2015). https://
doi.org/10.1016/j.procs.2015.05.274

https://doi.org/10.1007/978-3-540-85257-5_19
https://doi.org/10.1007/978-3-540-85257-5_19
http://urn.fi/URN:ISBN:978-952-12-3253-4
http://urn.fi/URN:ISBN:978-952-12-3253-4
https://doi.org/10.1109/SIS.2007.367958
https://doi.org/10.1007/s00165-014-0305-z
https://doi.org/10.1007/s00165-014-0305-z
https://doi.org/10.1007/978-3-030-02450-5_19
https://doi.org/10.1007/978-3-319-99229-7_11
https://doi.org/10.1109/HASE.2019.00019
https://doi.org/10.1109/THMS.2015.2425139
https://doi.org/10.5772/5769
https://doi.org/10.1145/958961.958963
https://doi.org/10.1016/j.procs.2015.05.274
https://doi.org/10.1016/j.procs.2015.05.274

Reactive Middleware for Effective
Requirement Change Management
of Cloud-Based Global Software

Development

David Ebo Adjepon-Yamoah1,2(B)

1 Ashesi University, 1 University Avenue, Berekuso E/R, PMB 3 CT Cantonment,
00233 Accra, Ghana

dadjepon@ashesi.edu.gh
2 School of Computing, Urban Sciences Building, Science Central,

Newcastle-upon-Tyne NE4 5TG, UK
d.e.adjepon-yamoah@ncl.ac.uk

Abstract. Requirement change management (RCM) for global software
development (GSD), facilitated by the cloud platform, faces communica-
tion, coordination and control issues especially when there is no effective
information and knowledge-sharing mechanisms. This paper describes a
reasonably effective requirement change management approach for cloud-
based GSD.

Objective: In this regard, we contribute a Reactive Middleware
which facilitates a set of guidelines defined to manage change and trace-
ability.

Methods: This Reactive Middleware provides services for user man-
agement, requirement management, change management, and traceabil-
ity of cloud-based GSD projects. We present (1) a process model for
change management and traceability (CM-T) for cloud-based GSD, and
then (2) detail our management approach for system engineering pro-
cesses as part of the presented GSD guidelines.

Results: To ensure that the defined CM-T process model complies
with the CMMI Level 2 (Baseline) Capability, the process model is
validated using an expert panel review process where a total average,
85.58% of the experts support the maturity of the process model. Also,
we demonstrate the continual tight linkage of stakeholders’ requirements
and system engineering processes towards change management and trace-
ability, with an Airlock Control System case study.

Keywords: Requirements change management · Traceability ·
CMMI Level 2 · Global software development · Cloud computing

1 Introduction

Many software development projects are globally distributed in nature [18],
resulting in the evolution of the term Global Software Development (GSD)
c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 46–66, 2019.
https://doi.org/10.1007/978-3-030-30856-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_4&domain=pdf
http://orcid.org/0000-0002-9680-3646
https://doi.org/10.1007/978-3-030-30856-8_4

Reactive Middleware for Effective RCM of Cloud-Based GSD 47

[3,10]. It is for this reason why cloud computing is well fit as a facilitating deliv-
ery model for GSD [8]. This model enables ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, services, storages, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action [16]. GSD seems to have become a business necessity for various reasons,
including cost, scarcity of resources, and the need to locate development closer
to customers [9]. Fundamentally, GSD involves communication for information
exchange, coordination of teams, activities and artefacts so they contribute to
the overall objective, and the control of teams [8].

Communication, coordination and control issues arise largely when there is no
effective information and knowledge-sharing mechanisms [5]. In GSD, due to lack
of common understanding between geographically dispersed teams, requirements
management is particularly difficult [14]. Here, changes to requirements that are
inadequately managed affect product quality [13]. Hence, the requirement change
management plays a vital part of software requirements engineering process in
GSD. However, the communication issue and requirement change management
in GSD are given very little consideration as compared to localised software
development [6,12]. In order to make any meaningful headway for GSD, the con-
cepts of requirements change management, and traceability of these requirements
through the development life-cycle in the context of the distributed development
resources, need to be appropriately considered. Our research contributes a Reac-
tive Middleware that manages change and traceability for cloud-based GSD. This
contribution satisfies four objectives: (O1) - define a change management and
treaceabily (CM-T) process model, which applies a software process improve-
ment method to ensure the maturity of the requirement change management
(RCM) and traceability processes, (O2) - identify a standard quality manage-
ment framework to facilitate a significant level of quality for the proposed CM-T
process model, (O3) - validate the CM-T process model using an expert panel
review process, and (O4) - demonstrate the defined management guidelines by
applying it to an Airlock Control System case study.

2 Related Work

Two similar works (i.e. [4] and [5]) representing the identified discourse of the
state-of-the-art are described briefly. In [4], the authors present a method con-
sisting of three stages: (i) an understanding of the changes required between
different GSD sites is to be established; (ii) a change analysis is to be performed
with respect to the development work, which might be either directly or indi-
rectly affected by the changes; and (iii) a finalization of the changes will be made
between GSD sites. They validate their method by applying it to a case study
of an online shopping system, where the roles of stakeholders were played by a
group of students. The limitation is largely in terms of the lack of rigour in the
validation process, as it is not validated by experts. Also, [5] aims to provide
a framework to manage RCM using Cased-Based Reasoning technique (CBR).

48 D. E. Adjepon-Yamoah

Table 1. Mapping the steps for effective requirements management & traceability
processes with proposed change management & traceability services

5 key steps Proposed change management and traceability services

Trace creation and
maintenance

The PSS facilitates the initiation of change requests and
receiving change notifications

Detect change The AMS monitors the relevant artefacts for changes, and
then triggers the PSS to notify appropriate stakeholders or
change agents

Analyse change
impact

The GSD Team Members manage the development process
and change with its impact using the GSD guidelines

Check for
consistency

When there are change requests that are related to the
high priority requirements, the GSD change managers
apply the change management and traceability process
(CM-T) model to approve, note or disapprove the request

Propagate change This CM-T model takes into consideration the bidirectional
traceability of the change agents (i.e. system stakeholders,
artefacts and tools) involved in the change request

CBR is used to effect change in requirements based on previous knowledge and
experience. This work defines a form of artificial intelligence to manage require-
ment changes. Their proposed framework is evaluated using an experimental
study.

3 Reactive Middleware

Our position paper [2], introduces the Reactive Middleware (RM), which is a
critical component of the Reactive Architecture [1]. It is composed of the Pub-
lish/Subscribe system(PSS) and the Artefacts Monitoring system (AMS). The
RM interacts with system stakeholders, and other components of the Reactive
Architecture (i.e. System Engineering Tools, and a Shared Artefacts Repository).
The RM facilitates management guidelines for GSD projects that applies quality
process management, to a change management and traceability process model.
In Table 1, we provide a mapping of a literature-based focus of five key steps for
effective requirements management and traceability processes to our proposed
approach facilitated as services by the Reactive Middleware.

3.1 Publish/Subscribe System

This system implements a Publish/Subscribe mechanism. Here, all actors (i.e.
system stakeholders and tools) involved in the development and evolution of an
artefact subscribe to that artefact (see Table 7). Artefacts can only be accessed
by specific authorised actors. The PSS identifies “change” and notifies all the
actors that have registered their interest in the artefact. That said, the Pub-
lish/Subscribe System specifically provides services for user management as the

Reactive Middleware for Effective RCM of Cloud-Based GSD 49

stakeholders register to use the Reactive Middleware, and roles and privileges
are assigned to them. Also, the system provides services for requirements man-
agement.

3.2 Artefacts Monitoring/Interpretation System

The AMS interacts with the Shared Artefacts Repository to monitor changes
made to artefacts. The Open Services for Lifecycle Collaboration (OSLC) tech-
nology [15] used for monitoring in AMS provides standardised methods to rep-
resent, access, and link to resources. With OSLC specifications, tools can freely
understand each other’s data and artefacts. This makes it easy to better anal-
yse, track, and explore that data to make better decisions. There are features
to support change management, traceability, etc. Projects and their composing
elements being developed in development environments are tagged with OSLC
annotations, to reveal their artefacts (see Table 7) to client plug-ins.

3.3 Management Guidelines for System Engineering

We introduce the defined management guidelines for GSDs (see Table 8). The
GSD guideline defines a generic development policy for software engineering
projects. As part of the GSD guidelines, we present our derivative of PMBOK
[17] process group for managing quality system engineering processes, and then a
CM-T process model. The PMBOK process group for managing quality system
processes (see Fig. 6), plays an overarching role in the GSD guidelines. This
management approach is applied to the CM-T process model.

PMBOK 5-Step Process Group for System Engineering Life-Cycle.
The PMBOK is a project management guide that is a well accepted standard
which provides a general framework for project management. The PMBOK con-
tains 42 project management (PM) practices organised by two orthogonal cate-
gories: Process Groups (PG) and Knowledge Areas (KA). Here, each of the 42
processes belongs to exactly one process group and to exactly one knowledge
area. The PG organisation shows the project’s life cycle (see Fig. 6), involving 5
groups: Initiating, Planning, Executing, Monitoring & Control, and Closing.

Change Management and Traceability Process Model. The CM-T pro-
cess model is expected to ensure a matured change management and traceability
processes relative to the specific practices of the CMMI Level 2 [7]. To begin
the definition of the process model, we indicate the main processes involved in
validating the CM-T process model as to:

A. Provide objective(s) for building the model
We aim to develop a model that represents key practices in RE within a maturity
framework (see Fig. 7). Here, our objectives are:

50 D. E. Adjepon-Yamoah

– A primary objective of our CM-T model is to guide software stakeholders to
relate key change management and traceability processes to goals in order to
prioritise their requirements process improvement activities.

– The CM-T process model should strengthen components of the CMMI
(involving software requirements) to clearly focus on the change management
and traceability processes.

– Our model should complement the CMMI (Level 2) so that practitioners are
not required to learn another software process improvement methodology.

– Finally, we aim to link theory to practice through a model that is easy to use
and interpret.

B. Show the criteria identified during the initial stages of model devel-
opment
We initially identify six relevant success criteria based on CMMI Level 2 base-
line capability (see Fig. 7) to guide the development of the CM-T model. Success
criteria were established per evaluation question. These success criteria are pre-
sented in Table 2. The criteria were identified using a method similar to that
used in the SPICE trials to support the ISO/IEC 15504 emerging standard. The
resulting CM-T process model (see Fig. 8) considers the development teams and
system engineering tools as the main agents of change. From the point where an
accepted change is being effected till the point where it has been implemented
successfully, a process to trace all the change with regards to participating stake-
holders, associated software development life-cycle (SDLC) phase, corresponding
system engineering tools, impact on other artefacts, etc. is undertaken in paral-
lel. This period also sees the creation or modifications to system documentations.
At this point, the change managers accept the change and it is marked as suc-
cessful. Then a generation of notification to all stakeholders of the change, and
finally the change request is closed.

C. Design a validation instrument to test the success criteria (to
include methods for reporting/analysing responses)
We design a validation instrument to test the success criteria provided in Fig. 7.
We choose a questionnaire as a validation instrument since it mainly provide rel-
atively precise responses for evaluations,compared with interviews. We consider
a set of experts who provides their responses to the questionnaire for validation
(Table 4).

The validation process meeting objective (i.e. D. Select an expert panel
to reflect the population of experts in Software Engineering, Require-
ments Engineering (RE), and CMMI), and the reporting process meet-
ing objective (i.e. E. Present results of the validation instrument) are
presented as the validation of the CM-T process model by the expert panel
and evaluation of Reactive Middleware with regards to the services it provides
respectively in Sect. 4.

Reactive Middleware for Effective RCM of Cloud-Based GSD 51

Table 2. CM-T process model validation

Criterion Purpose Rule Source

Adherence to

CMM

characteristics

The new model should be

recognisable as a derivative

of established models -

both in structure and

concept. By tapping into

the established models, the

CM-T model takes the

strengths of a proven

improvement structures and

becomes more accessible

and compatible, avoiding

redundant activities

- CMM maturity level concepts

must be implemented

- Each level should have a theme

consistent with CMM

- Requirement engineering (RE)

processes must be integrated

- The model should be

recognisable as a CMM offshoot

- The CM-T must be systematic

and sequential

Where possible we should

adapt existing models rather

than create new ones

Maturity levels help

characterise a process and set

out a strategy for its

improvement

Limit scope CMM goals, RE phases and

RE processes define the

boundaries of the model.

The model does not include

all RE processes

- Key activities relating to

technical and organisational RE

processes are included

- Processes are prioritised

- Processes relate directly to the

CM-T process areas

- The scope/level of detail should

be appropriate (i.e. depth and

breadth of processes presented)

It is important to know the

scope of the model, i.e. what

the model includes and

excludes

Consistency Having an acceptable level

of ‘construct’ validity will

help users navigate within

levels of maturity as well as

between different levels of

process maturity. Model

development and

adaptation depends on an

acceptable level of

consistency

- There should be consistent use

of terms and CMM features at

this level of development

- There will be a consistency in

structure between model

components at the same level of

granularity that are modelling

different maturity levels

To understand a model it is

important that there is a

common language. Each

stage of development should

describe processes at similar

levels of granularity

Understandable All users of the model

should have a shared

understanding of the RE

process in order to identify

where improvement is

needed. There should be no

ambiguity in interpretation,

especially when goals are

set for improvement

- All terms should be clearly

defined (i.e. have only one

meaning)

- All relationships between

processes and model architecture

should be unambiguous and

functional

The importance of clear

definitions. Understanding is

a prerequisite for effective

process improvement and

management

Ease of use Over-complex models are

unlikely to be adopted as

they require extra resources

and may be too challenging

for the user to interpret

without extensive training.

The model will have

differing levels of

decomposition starting

with the most high level in

order to gradually lead the

user through from a

descriptive model towards a

more prescriptive solution

- The model should be

decomposed to a level that is

simple to understand

- The model should be simple yet

retain meaning

- The chunks of information

should clearly relate as they

develop into more complex

structures

- The model should require little

or no training to be used

Usability is a key

requirement of any process

improvement model

Verifiable Model strengths and

weaknesses need to be

tested to help direct future

model development.

Validation of the model will

help to improve the model,

add confidence in its

representation and help

with research in this area

- The model must be verifiable,

i.e. we must be able to

test/measure how well model

meet its objectives and whether

meeting these objectives leads to

a high quality CM-T process

model

To assess whether a process is

useful, well implemented the

model needs to be verifiable

52 D. E. Adjepon-Yamoah

Table 3. Meeting the high level requirements of an effective GSD framework

GSD requirements Description of approaches

Effective information
and knowledge sharing:

R1 : Artefact
independence

Artefacts in the Shared Artefacts Repository are saved in
their original formats, some generic XML derivatives are
generated for interoperability, as well as the generation of
metadata for each artefact in XML format to facilitate
change management and traceability. (GS6)

R2 : Supports globally
distributed
development

The Reactive Middleware is deployed to the cloud
environment to facilitate global accessibility. Also, it
provides GSD services towards user management,
requirement management, change management, and
traceability. (GS1, GS2, GS3, GS4, GS5, GS7)

R3 : Ability to handle
different and large
numbers of changing
artefacts

The Shared Artefacts Repository has a high scalable
capacity for varying formats of artefacts. Also, the CM-T
process model has been designed to keep up with large
volumes of changing to artefacts. An Airlock Control
System case study has been provided in Sect. 4.2 to assess
this. (GS9, GS10, and GS11)

Automation:

R4 : Automated as far
as possible

The Reactive Middleware has been developed as a set of
cloud-based REST web services to provide the mentioned
set of GSD services. It mainly minimizes the manual
effort involved in artefact consistency management
involving change management and traceability. (GS8,
GS11, GS12, and GS13)

Diversity of tools:

R5 : Tool integration The System Engineering Toolbox provides a set of tools
with different versions. These tools are integrated using
the OSLC technology such that a workflow can be
created. Also, outputs of one tool is reformated as an
input for another. Plug-in for the toolbox is provided for
variations of the Eclipse development environment.
(GS5)

4 Reactive Middleware Evaluation

First, we validate the CM-T process model by conducting an “expert panel review
process”. This is used to assess the maturity of the CM-T process model in light of
the CMMI Level 2 specific practices - requirements change management. Secondly,
we demonstrate the continuous tight linkage between requirements and system
engineering processes provided by the introduced GSD guidelines, by an Airlock
Control System case study. At this point, we present our research question as “How

Reactive Middleware for Effective RCM of Cloud-Based GSD 53

Table 4. Constitution of the expert panel

Name of
participant

Current institution Position/relevant experience

1. M. Mehr
(Ph.D.)

School of Computer Science,
Newcastle University, UK

Researcher (expert in RE
methods and Security)

2. S. Alajrami
(Ph.D.)

Praqma, Norway DevOps Consultant, and trained
SPICE Assessor

3. R. Ebrahimy
(Ph.D.)

DTU, Denmark Post-Doc (expert in RE
methods)

4. D. M. Dias
(Ph.D.)

KernKonzept, Germany Systems Verification Engineer
and Programmer

5. R. Materre
(Ph.D.)

School of Computer Science,
Newcastle University, UK

Post-Doc (expert in RE
methods)

6. S. F.
Shahandashti
(Ph.D.)

Department of Computer
Science, University of York,
UK

Lecturer (expert in RE methods
and Security)

7. L. L. Bastos Accenture, Newcastle, UK Software Engineer and trained
ISO 9001 Auditor

8. P. B. Mahama Blue Oak System Ltd.,
Ghana

Quality Manager, IT Business
Analyst - requirements, and
Programmer

9. E. Dadzie IT Systems Quality Control,
United States Department of
Agriculture, USA

Quality Manager and SPICE
Assessor

10. E. Toreini
(Ph.D.)

School of Computer Science,
Newcastle University, UK

Post-Doc (expert in RE
methods)

11. R. Ahmed Department of Computer
Science, Sulaimani
Polytechnic University, Iraq

Lecturer (expert in RE methods
and Security)

12. Z. Wen
(Ph.D.)

School of Computer Science,
Newcastle University, UK

Post-Doc (expert in RE
methods)

13. M. Dzandu School of Computer Science,
University of Reading, UK

Ph.D. Student and Lecturer
(expert in RE methods)

14. Anonymous TalkTalk, UK SCRUM Master and Quality
Manager

15. Anonymous School of Computer Science,
Tallinn University, Estonia

Senior Lecturer (expert in RE
methods)

16. Anonymous Institute for Applied
Software Systems
Engineering, Clausthal
University of Technology,
Germany

Senior Research Associate
(expert in RE methods)

54 D. E. Adjepon-Yamoah

can the Reactive Middleware guide system engineering to ensure the continual
tight linkage of stakeholders’ requirements and system engineering processes?”.

4.1 Analysis of Expert Review

At this stage, we evaluate whether the motivation for building the Reactive Mid-
dlware’s CM-T process model is justified, and if the process model is matured in
relation to the CMMI Level 2 practice for managing change and traceability. We
consider the use of expert panels to validate a software process model, and the
constitution of this panel is presented in Table 4. Then, we present our analysis
of the feedback from the experts on the maturity of the CM-T model processes
in light of the CMMI Level 2 (baseline) capability. In this expert review, a panel
of sixteen experts are constituted to validate the change management and trace-
ability (CM-T) process model. Here, seven experts are from the industry, while
nine are from academia. Experts from the industry are selected based on their
experience in requirements engineering (RE) and software process improvement
(SPI). Also, the research focus (i.e. RE and SPI) and publications of academics
informed their selection. To facilitate the collection of data from the panel, a
designed questionnaire is used as our data collection method. We classify the
questionnaire in relevant sections covering the “assessment of expertise” and the
six relevant success criteria for validating the CM-T model. The responses from
the experts are expected to be classified as “Strongly agree”, “Agree”, “Neu-
tral”, “Disagree”, “Strongly disagree”. The “Neutral” option caters for both
“uncertainty” and “no opinion” or “unwillingness to answer”.

Fig. 1. Adherence to CMMI characteristics: the CMMI processes have been adequately
mapped to the identified questions?

Considering Success Criteria One - “Adherence to CMMI Characteristics” -
(see Fig. 1), all the sixteen (16) experts agree that the CMMI processes have been
adequately mapped to the identified questions. Here, four (4) experts “strongly
agree”, and twelve (12) “agree”.

In the assessment of the expertise of the panel, we identified that 100% of
the experts indicated their expertise in both “Software” or “System Engineer-
ing”, “RE” and in “SPI”. However out of the sixteen experts, one indicated no

Reactive Middleware for Effective RCM of Cloud-Based GSD 55

Fig. 2. The airlock control system

expertise in “CMMI”. In terms of validating the CM-T model, a total average
of 84.38% of the experts at least agree (i.e. indicating “Strongly agree” and
“Agree”) to the six (6) success criteria of the CM-T model. This high percent-
age of acceptance indicates the high level of conformance of the CM-T model to
the CMMI Level 2 baseline processes. The composition of this high percentage is
that, an average of 60.94% of the experts “strongly agree”, and also an average
of 23.44% of the experts “agree” to the questions in the questionnaire relating
to the success criteria of the CM-T model. That said, 100% of the experts “dis-
agree” that “a considerable amount of prior knowledge of CMMI is needed to
be able to interpret the CM-T model” under the “ease of use” success criteria.
With this supportive choice, a new total average of 85.58% of the experts accept
the maturity of the CM-T model. It must also be mentioned that an average
of 14.42% chose to remain “neutral” on the questions. For those who remained
“neutral”, we gathered three general comments from them, that we will consider
in future work:

1. Ambiguous process definitions for the “Consistency” criteria.
2. The CM-T process model is incomplete for the “Adherence to CMMI Char-

acteristics” criteria.
3. The assessment component is not self-explanatory for the “Verification” cri-

teria.

4.2 Airlock Control System Case Study

An airlock control system (ACS) (see Fig. 2) case study from [11] is used to
demonstrate the proposed management guidelines provided by the Reactive Mid-
dleware. The main function of the ACS is to separate two areas (i.e. external and
internal) with different air pressures and allow users to pass safely between the
areas. Let us assume that the pressure outside is lower than inside. The system
is equipped with a number of actuators - door motors, a pressure pump, as well
as sensors - pressure sensors, door positions sensors and buttons. The goal of the
GSD Team members spread over three geographical areas (i.e. Europe, Africa
and Australia), is to develop control software that would allow a user to safely

56 D. E. Adjepon-Yamoah

Table 5. Classified requirements of the airlock control system

Airlock Control System Requirements (Resilient Quality Attribute - SAFETY)

Requirements
classification

ID Requirements

Environment ENV1 The airlock system separates two different
environments. The pressure of the external environment
is lower than that of the internal one

ENV2 In order to maintain different pressures, the two
environments must be physically separated

ENV3 The system has two doors and a chamber. Each door
when closed separates the chamber from the
appropriate environment

ENV4 Each door is equipped with three positioning sensors
and a two-way motor. The sensors consist of two
boolean sensors representing the fully closed
(SNS CLOSED) and opened (SNS OPENED) door
states, and a range-value position sensor (SNS POS)
that returns values in a range between the fully closed
and the fully opened states inclusively. The two-way
motor (ACT MOTOR) is the actuator that can open
and close the door within its physical range of
movement

ENV5 There is a pressure sensor in each of the areas, three
in total (SNS PRESSURE OUT,
SNS PRESSURE CHAMBER, SNS PRESSURE IN)

ENV6 The pressure in the chamber can be changed by the
pump actuator (ACT PUMP)

ENV7 Any of the sensors and actuators may fail to provide a
correct function

Safety SAF1 The pressure in the chamber must always be between
the lower external pressure and the higher internal one

SAF2 A door can only be opened if the pressure values in the
chamber and the conjoined environment are equal

SAF3 Only one door is allowed to be opened at any moment
of time

SAF4 The pressure in the chamber shall not be changed
unless both doors are closed

Function FUN1 When in operation, the airlock system must be able to
let users pass safely between the two environments via
the airlock

pass through the airlock. The GSD teams at Europe, Africa and Asia prioritise
the safety properties (i.e. SAF1, SAF2, SAF3 and SAF4) of the ACS, leaving
aside issues of its usability, operation speed, reliability and maintainability. It

Reactive Middleware for Effective RCM of Cloud-Based GSD 57

must be mentioned that safety properties described in this section do not com-
pletely cover all safety concerns that would arise for a real system. We only focus
on a part of system properties described in this section to limit the context of the
case study. The high-level requirements of the system are presented in Table 5.

Table 6. Classified steps of GSD guidelines

Classification of the steps of GSD guidelines into services

Services GSD Guidelines Steps ID

User management GS1 and GS2

Requirement management GS3 and GS4

Change management GS5, GS6, GS7, GS8, GS10, GS11, and GS12

Traceability GS9 and GS13

Fig. 3. Class diagram of the airlock control system case study

GSD Guidelines for ACS Development. The ACS case study is used as a
running example of the Reactive Middleware’s GSD guidelines. We implement a
prototype of the Reactive Middleware and use it to demonstrate its set of services
(see Fig. 3). Here, the development of Company X’s (i.e. an assumed owning
company name with simulated developers) ACS case study is guided by this
set of guidelines. These guidelines can be classified with respect to the Reactive
Middleware’s services (see Table 6). However, the ACS case study presents the
above classification under the five basic “process groups” (PG) (refer to Fig. 6) of
the PMBOK specific “knowledge area” (KA) of “project quality management”.
Company X expects that an effective change management and traceability in
the development process of the ACS will improve the quality of the management
of the project.

58 D. E. Adjepon-Yamoah

Initiating the ACS Project. The ACS is the core product of Company X.
Company X sends some of its development activities offshore, but maintains a
team of practitioners (i.e. Team Europe) in the European based central office
who work mainly from 9 am to 5 pm five days a week. This team focuses on
requirements gathering, prioritising requirements (and focus on “safety-related
requirements”), developing their core product, managing the offshore or GSD
teams, and testing the bespoke software. The other GSD teams are more focused
on product deployment and integration. This approach ensures a continuous and
around the clock development of the ACS. As part of Company X’s ACS develop-
ment policy, the Reactive Middleware is used to aid the effective management of
the project, as well as to provide an automated facility to ensure that a matured
(i.e. CMMI-compliant) change management and traceability process model is
applied.

Planning the ACS Project. Team Europe focuses on the development of the
airlock chamber (see Fig. 2) of the ACS. Since the airlock chamber interfaces
with both the external environment and internal environment, the team can
manage the changes that affect the “safety properties” of the ACS, and their
traceability. Also, Team Africa and Team Asia are responsible for developing
the external and internal environments respectively. Here, the GSD teams use
the cloud-based Reactive Middleware to manage the changes and traceability
affecting the “safety properties” of the ACS during development, and that the
development processes meet the “CMMI Level 2 practice”. Company X decides
to apply the GSD guidelines to its development process. Before the execution
of the ACS project, Team Europe generates some project diagrams (i.e. class
diagram - Fig. 3, package diagram, interaction diagram) to guide the execution
process.

Executing the ACS Project. At this point, team leaders are appointed for
the three respective GSD teams. These activities are guided by the user man-
agement set of guidelines (i.e. GS1 and GS2). Here, team leaders play the role
of “Team Leader” with an associated privilege of “Own” where they have permis-
sion to perform any activities on development artefacts. Also, team leaders assign
roles (e.g.“Reviewer”, “Modifier”, “Pawn”, etc.) and privileges (i.e.“Review”,
“Modify”, “View” respectively) to team members. Then the team leaders form
the development supervisory team referred to as the “GSD Change Managers”.
This GSD Change Managers perform a crucial role of managing changes that
affects prioritised ACS “safety requirements”, and “trace” the changes’ cause-
and-effect on requirements and associated artefacts. The next set of activities
relating to the ACS requirements are guided by the requirements manage-
ment set of guidelines (i.e. GS3 and GS4). Firstly, the ACS requirements
are assigned as either a priority or not, and then they are uniquely identified.
The GSD Change Managers set the safety requirements as the priority for this
project. After all these activities have been undertaken, the three GSD teams

Reactive Middleware for Effective RCM of Cloud-Based GSD 59

begin the development of the ACS. Here, the development of the three ACS
environments are developed as well as the doors, sensors and actuators.

Monitoring and Controlling the ACS Project. The GSD Change Man-
agers together with some project stakeholders at the central office in Europe,
“monitor and control” the development process to meet the project requirements
(i.e. safety). In this activity, a set of the GSD guidelines are for change manage-
ment (i.e.GS5, GS6, GS7, GS8, GS10, GS11, and GS12) and traceability
(i.e.GS9 and GS13).

Fig. 4. Snippet of the terminal output for the reactive middleware change management
service for the airlock control system case study

During the development process, a set of “change requests” relative to the
ACS requirements are raised. This process requires the CM-T process model of
the Reactive Middleware. The steps of the CM-T process model are followed to
resolve all “change requests”. Change requests are expected to contain informa-
tion about the artefact involved, the identification of the initiating stakeholder,
the relevant requirement identification, and the change request details. Here,
two change requests are submitted to the change request pool (see Fig. 4). The
GSD Change Managers consider the change requests based on their priority,
and then select which one to make a decision on. At this point, GSD Change
Managers decide that the change request with identification CR1685232414 is
of high priority (SAF3) and needs to be considered first.

The team leader for Team Asia that presented the change request defends the
criticality of the request, and leads the decision-making process. As a result of
the need for such a change, the change request is approved by the GSD Change

60 D. E. Adjepon-Yamoah

Fig. 5. Snippet of the terminal output for the reactive middleware traceability service
for the airlock control system case study

Managers. The decision taken for CR1685232414 is logged as part of the docu-
mentation of the change request. The initiator (i.e. R003) of the change request
is notified to “effect the change”. Effecting this change requires a close moni-
toring by the team leader of Team Asia to make sure that it is undertaken as
expected. The team leader assesses the process, and then “verifies and validates”
the change. The next step involves a detailed assessment of the “cause-and-effect”
of the change on project artefacts, and all minor conflicts are resolved within the
local GSD team. A process to “trace” the change with regards to participating
stakeholders, associated software processes, system engineering tools, impact on
other artefacts, etc. is undertaken in parallel with development (see Fig. 5). The
activities for tracing changes also facilitates “roll-back” of actions. This activ-
ity is guided by the set of GSD guidelines (i.e. GS9 and GS13). Finally, the
GSD Change Managers accept the change and the change process is marked as
successful. All relevant stakeholders in Team Asia are sent a notification of the
change. The change request is then “closed”.

Reactive Middleware for Effective RCM of Cloud-Based GSD 61

Closing the ACS Project. Here, the system is demonstrated to the project
stakeholders (i.e. Project Approval Board of Company X, relevant users). The
stakeholders qualitatively evaluate the ACS according to the prioritised require-
ments and expectations. In this process, highlights of the ACS development
process are identified, discussed, and lessons learnt.

5 Threats to Validity

5.1 Ensuring Traceability

The CM-T process model is facilitated in terms of change management and
traceability by the OSLC approach. Here, the limitation of this process model
is that the correctness of each consistency management stage is heavily reliant
upon the correctness of trace links. OSLC is very effective in identifying artefacts
and resources within artefacts. The dependence on trace links between artefacts
raises the question of how CM-T process model could be more tolerant to errors
introduced during trace creation, especially for a GSD service (i.e. CM-TaaS)
based on the rapidly evolving cloud platform. This is a significant issue consider-
ing that the current approach to creating trace links using the OSLC, by nature,
is not likely to provide 100% accuracy. Thus, user intervention is required to
ensure correct links are established prior to consistency management.

5.2 Constitution of the Expert Panel

The constitution of the expert panel is from colleagues at Newcastle University,
researchers and practitioners from conferences attended, and other experts who
were identified through their research or industrial work. These experts were
selected exclusively based on their expertise. That said, the varying levels of
the relationship between some of the experts and the author could be perceived
as a source of bias. Despite some polarisation of views, there was relatively
strong agreement that the requirement engineering process is in need of further
support and hence, the CM-T process model has a high potential of enhancing
this process.

6 Conclusion

We mainly contribute a Reactive Middleware that applies our defined CM-T
process model (see objective O1), within the context of an adapted PMBOK
quality process management approach to cloud-based GSD (see objective O2).
The Reactive Middleware provides services for user management, requirement
management, change management and traceability, and are facilitated by our
GSD management guidelines. To ensure that the defined CM-T process model
complies with the CMMI Level 2 (Baseline) Capability, the CM-T process model
is validated using an expert panel review process where a total average 85.58%
of the experts supported the maturity of the CM-T process model (see objective

62 D. E. Adjepon-Yamoah

O3). Also, we demonstrate the application of the GSD management guidelines
provided by the Reactive Middleware with an Airlock Control System case study
(see objective O4). By this, we highlight the continual tight linkage of stakehold-
ers’ requirements and system engineering processes towards change management
and traceability.

Appendix

Table 7. Description of artefacts in the shared artefacts repository

SDLC phases Artefacts description

Requirements System requirements documents are obtained from tools such as
ProR

Specification System model specifications as artefacts contain elements such as
invariants, guards, actions, etc. Such elements are also extracted
as dependent artefacts

Implementation Implementable source codes of model specifications are generated
with appropriate tools such as EB2ALL. It supports automatic
code generation from Event-B to C, C++, Java and C#.
Another tool example is EventB2Dafny. This tool extends the
Boogie and Dafny tools, and allows the use of Dafny static
analysis machinery based on design-by-contract principles. This
yields artefacts in the form of executable input code for Boogie
and Dafny tools

Documentation Documentation artefacts are in the form of: (1) traceability logs,
(2) incident reports, and (3) others such as designs, test plans,
execution results, etc.

Fig. 6. PMBOK R© process group for system engineering life-cycle

Reactive Middleware for Effective RCM of Cloud-Based GSD 63

Table 8. Global software development management guidelines

Guidelines steps ID Guidelines

GS1 System development teams should appoint
team leaders

GS2 These team leaders will constitute the GSD
change managers

GS3 System requirements should be classified based
on identified dependability quality attributes
(i.e. safety, reliability, robustness, etc.), and are
then prioritised relative to their importance to
the system stakeholders

GS4 Team leaders must assign roles to all team
members with the prioritised requirements in
mind, and manage the development process
with the adapted PMBOK guide

GS5 All other change agents especially the system
engineering tools should be assigned a default
privilege of review

GS6 All system artefacts should be saved in a
shared artefacts repository

GS7 The privileges (i.e. none, view, modify, review,
own) of system stakeholders or change agents
will determine the access privileges to system
artefacts

GS8 Change agents must subscribe to relevant
artefacts after they are created, in order to
receive notifications when they are changed

GS9 All related artefacts must be linked together to
facilitate traceability

GS10 Changes made to any system artefacts must be
logged

GS11 When changes affect the high priority set of
requirements, appropriate local team leader
must lead the change request review process
(i.e. involving the CM-T model) of the GSD
change managers

GS12 On the other hand, conflicts arising from
changes to low priority set of requirements are
resolved locally, lead by the local team leader

GS13 Changes in system artefacts should be
traceable to manage its impact on
related/linked requirements or artefacts

64 D. E. Adjepon-Yamoah

Fig. 7. Candidate processes reflecting a CMMI level 2 (baseline) capability

Fig. 8. Change management and traceability process model

Reactive Middleware for Effective RCM of Cloud-Based GSD 65

References

1. Adjepon-Yamoah, D., Romanovsky, A., Iliasov, A.: A reactive architecture for
cloud-based system engineering. In: Proceedings of the 2015 International Con-
ference on Software and System Process, ICSSP 2015, pp. 77–81. ACM, New York
(2015). https://doi.org/10.1145/2785592.2785611

2. Adjepon-Yamoah, D.E.: Towards dependable change management and traceability
for global software development. arXiv preprint arXiv:1608.05981 (2016)

3. Akbar, M.A., et al.: Success factors influencing requirements change management
process in global software development. J. Comput. Lang. 51, 112–130 (2019).
https://doi.org/10.1016/j.cola.2018.12.005. http://www.sciencedirect.com/scien
ce/article/pii/S1045926X18301411

4. Ali, N., Lai, R.: A method of requirements change management for global software
development. Inf. Softw. Technol. 70, 49–67 (2016). https://doi.org/10.1016/j.
infsof.2015.09.005. http://www.sciencedirect.com/science/article/pii/S095058491
5001640

5. Ali, S., Iqbal, N., Hafeez, Y.: Towards requirement change management for
global software development using case base reasoning. Mehran Univ. Res. J.
Eng. Technol. 37(3), 639–652 (2018). https://doi.org/10.22581/muet1982.1803.17.
http://publications.muet.edu.pk/index.php/muetrj/article/view/511

6. Bibi, S., et al.: Requirement change management in global software environment
using cloud computing. J. Softw. Eng. Appl. 7(8), 694–699 (2014)

7. Capability Maturity Model Integration Product Team: CMMI for Development,
Version 1.3. Technical report CMU/SEI-2010-TR-033, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA (2010). http://resources.sei.cmu.
edu/library/asset-view.cfm?AssetID=9661

8. Cocco, L., Mannaro, K., Concas, G.: A model for global software development with
cloud platforms. In: 38th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), Cesme, Izmir, Turkey, pp. 446–452, September
2012. https://doi.org/10.1109/SEAA.2012.67

9. Damian, D., Moitra, D.: Guest editors’ introduction: global software development:
how far have we come? IEEE Softw. 23(5), 17–19 (2006). https://doi.org/10.1109/
MS.2006.126

10. Herbsleb, J., Moitra, D.: Global software development. IEEE Softw. 18(2), 16–20
(2001). https://doi.org/10.1109/52.914732

11. Iliasov, A., et al.: Supporting reuse in event B development: modularisation app-
roach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11811-1 14

12. Khan, A., Basri, S., Dominic, P.: A propose framework for requirement change
management in global software development. In: 2012 International Conference
on Computer Information Science (ICCIS), Kuala Lumpur, Malaysia, vol. 2, pp.
944–947, June 2012. https://doi.org/10.1109/ICCISci.2012.6297161

13. Kumar, S.A., Kumar, T.A.: Study the impact of requirements management char-
acteristics in global software development projects: an ontology based approach.
Int. J. Softw. Eng. Appl. 2(4), 107 (2011)

14. Niazi, M., El-Attar, M., Usman, M., Ikram, N.: GlobReq: a framework for improv-
ing requirements engineering in global software development projects: preliminary
results. In: 16th International Conference on Evaluation Assessment in Software
Engineering (EASE 2012), pp. 166–170, May 2012. https://doi.org/10.1049/ic.
2012.0021

https://doi.org/10.1145/2785592.2785611
http://arxiv.org/abs/1608.05981
https://doi.org/10.1016/j.cola.2018.12.005
http://www.sciencedirect.com/science/article/pii/S1045926X18301411
http://www.sciencedirect.com/science/article/pii/S1045926X18301411
https://doi.org/10.1016/j.infsof.2015.09.005
https://doi.org/10.1016/j.infsof.2015.09.005
http://www.sciencedirect.com/science/article/pii/S0950584915001640
http://www.sciencedirect.com/science/article/pii/S0950584915001640
https://doi.org/10.22581/muet1982.1803.17
http://publications.muet.edu.pk/index.php/muetrj/article/view/511
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
https://doi.org/10.1109/SEAA.2012.67
https://doi.org/10.1109/MS.2006.126
https://doi.org/10.1109/MS.2006.126
https://doi.org/10.1109/52.914732
https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1109/ICCISci.2012.6297161
https://doi.org/10.1049/ic.2012.0021
https://doi.org/10.1049/ic.2012.0021

66 D. E. Adjepon-Yamoah

15. Object Management Group Inc.: Open Services for Lifecycle Collaboration (OSLC)
(2019). http://open-services.net/

16. Pan, Y., Hu, N.: Research on dependability of cloud computing systems. In:
2014 International Conference on Reliability, Maintainability and Safety (ICRMS),
Guangzhou, China, pp. 435–439, August 2014. https://doi.org/10.1109/ICRMS.
2014.7107234

17. Project Management Institute: Adoption of the Project Management Institute
(PMI) Standard: A Guide to the Project Management Body of Knowledge
(PMBOK Guide)-2008 (4th edn.) IEEE P1490/D1, May 2011, pp. 1–505, June
2011. https://doi.org/10.1109/IEEESTD.2011.5937011

18. Ramasubbu, N., Balan, R.K.: Globally distributed software development project
performance: an empirical analysis. In: Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on The Foundations of Software Engineering, ESEC-FSE 2007, pp. 125–134.
ACM, New York (2007). https://doi.org/10.1145/1287624.1287643

http://open-services.net/
https://doi.org/10.1109/ICRMS.2014.7107234
https://doi.org/10.1109/ICRMS.2014.7107234
https://doi.org/10.1109/IEEESTD.2011.5937011
https://doi.org/10.1145/1287624.1287643

Fault-Tolerant IoT
A Systematic Mapping Study

Mahyar Tourchi Moghaddam(B) and Henry Muccini

University of L’Aquila, Via Vetoio 1, L’Aquila, Italy
{mahtou,henry.muccini}@univaq.it

Abstract. A failure may occur at all architectural levels of the Internet
of Things (IoT) applications: sensor and actuator nodes can be missed,
network links can be down, and processing and storage components can
fail to perform properly. That is the reason for which fault-tolerance
(FT) has become a crucial concern for IoT systems.

Our study aims at identifying and classifying the existing FT mecha-
nisms that can tolerate the IoT systems failure. In line with a systematic
mapping study selection procedure, we picked out 60 papers among over
2300 candidate studies. To this end, we applied a rigorous classifica-
tion and extraction framework to select and analyze the most influential
domain-related information. Our analysis revealed the following main
findings: (i) whilst researchers tend to study fault-tolerant IoT (FT-IoT)
in cloud level only, several studies extend the application to fog and
edge computing; (ii) there is a growing scientific interest on using the
microservices architecture to address FT in IoT systems; (iii) the IoT
components distribution, collaboration and intelligent elements location
impact the system resiliency. This study gives a foundation to classify
the existing and future approaches for fault-tolerant IoT, by classifying a
set of methods, techniques and architectures that are potentially capable
to reduce IoT systems failure.

Keywords: Fault-tolerance · Internet of Things ·
Software architecture · Systematic mapping study

1 Introduction

IoT is the internal/external communication of intelligent elements via internet to
provide smart services [1]. A dependable IoT system should provide reliable and
fault-free services. A fault is a defect within the hardware or software systems that
impacts the correct functionality. It is particularly difficult to establish a pattern
for FT in IoT, since the IoT devices are heterogeneous, highly distributed, pow-
ered on battery, relied upon wireless communication and affected by scalability.
The distribution of IoT devices cause the system to suffer from, e.g., server crash,
server omission, incorrect response and arbitrary failure. The wireless and bat-
tery dependency makes the IoT devices barely recoverable. Furthermore, being
exposed to new devices and services impacts the system performance.
c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 67–84, 2019.
https://doi.org/10.1007/978-3-030-30856-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_5

68 M. T. Moghaddam and H. Muccini

Although the IoT has been introduced more than one decade ago, the research
and industry communities are still trying to define its different aspects and Qual-
ity of Services (QoS) such as FT. Hence, the goal of this research is to identify
and classify the domain state of the art and to highlight the methods, techniques
and architectures that are potentially suitable to model a FT-IoT. In order to
achieve this goal, a systematic mapping study has been performed. The primary
studies have been chosen based on an accurate inclusion and exclusion criteria
and a deep analysis. The main contributions of this study are: (i) addressing to
an up to date state of the art class for Fault-tolerant IoT modeling, which can
be used as a future research and implementation reference; (ii) investigating on
an IoT reference architecture and assessing the impact of such a software design
on FT; (iii) identifying current characteristics, challenges and publication trends
with respect to FT-IoT approach.

The audience of this study are both research and industry communities inter-
ested to improve their knowledge and select suitable methods to design their IoT
systems.

The paper is organized as follows. Section 2 reveals the design of this systematic
study. Section 3 presents a reference IoT architecture and analyzes its associated
FT aspects. Sections 4, 5, 6, 7 and 8 elaborate on the obtained results while Sect. 9
analyses threats to validity. Section 10 closes the paper and discusses future work.

2 Research Method

The goal of this research is formulated based on the Goal-Question-Metric per-
spectives [2,3] as follow:

Purpose: to provide a deep understanding on Fault-tolerant IoT systems
Issue: by identifying, classifying and analyzing different methods, techniques
and architectures
Object: based on existing IoT systems approaches
Viewpoint: from both research and industry viewpoints.

2.1 Search Strategy

To achieve the aforementioned goal, we arranged for a set of questions:

– RQ1: What IoT architectural styles and patterns are able to make the system
prone to fault?

– RQ2: What traditional and novel techniques and methods can protect IoT
systems against failure?

– RQ3: What are the quality attributes associated with Fault-tolerance in IoT
systems?

– RQ4: What are the trends and evolution that can be deduced from the scien-
tific publications on FT-IoT?

Furthermore, a good search strategy should provide effective solutions to the
following questions [4]:

Fault-Tolerant IoT A Systematic Mapping Study 69

Which approaches? The search strategy consists of two phases: (i) an
automatic search on academic database; and (ii) a snowballing. The first step
has been performed using the search string below. A selection criteria has been
subsequently applied on the set of results. Then a snowballing procedure on the
included results of the automatic search has been applied to structure the final
set of primary studies.

(IoT OR “ternet of Things” OR “Internet-of-Things”) AND (“Fault tolerant”
OR “Fault-tolerant” OR “Fault tolerance” OR “Fault-tolerance”)

Where to search? The electronic databases that we used for the automatic
search (ACM, IEEE, Elsevier, Springer, ISI Web of Science, and Wiley Inter Sci-
ence) are known as the main source of literature for potentially relevant studies
on software engineering.

When and what time span to search? We did not consider publication
year as a criterion for the search and selection steps. Thus, all studies com-
ing from the selection steps, until May 2019, were included regardless of their
publication time.

2.2 Selection Strategy

A multi-stage selection process (Fig. 1) has been designed to give a full control
on the number and characteristics of the studies coming from different stages1.

ACM Digital
Library

IEEE Xplore

Springer

ISI Web of
Science

Wiley Inter
Science

Science
Direct

Initial Search Merge & Duplicates
Removal

Selection Criteria
Application Snowballing

236

334

205

228

345

1288

2374 54 Total:
60

Fig. 1. Search and selection process.

1 It is worth mentioning that we considered “Software Engineering” as the Search
Topic, since the original search leaded to 193,000 results.

70 M. T. Moghaddam and H. Muccini

Afterwards, we considered all the selected studies, and filtered them according
to a set of well-defined inclusion and exclusion criteria (Table 1). According to the
standards, the definition of inclusion/ exclusion criteria has been guided by two
main drivers: (i) keeping the focus of the selected papers on the scope of the study;
and (ii) avoiding gray or not scientific works. Thus, Inclusion/exclusion criteria
shall be aligned with the research questions. We included studies that satisfied all
inclusion criteria, and discarded studies that met any exclusion criterion.

On the 2,374 potentially relevant papers, we performed a first manual step
applying the selection criteria on title and abstract of the papers. Afterwards,
a second manual step of reading the full text of firstly selected papers has been
performed and followed by snowballing. The reasons for which we obtained only
60 primary studies over 2,374 potentially relevant papers are that: (i) our search
string was quite inclusive (to avoid ignoring any potentially relevant paper); (ii)
however, selection criteria application has been carefully performed in a way to
avoid including the papers that fall out of the scope of the research. In order to
minimize bias, the procedure has been performed by the first researcher and the
results have been double-checked by the other researcher.

Table 1. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Studies that propose, leverage, or analyze
software and hardware solutions,
methods, techniques and architectures to
design fault-tolerant IoT systems

Studies that, while focusing on IoT, do
not focus on its fault-tolerance aspects
(e.g., studies focusing only on
technological aspects of IoT) or vice
versa

Studies subject to peer review (e.g.,
journal papers, papers published as part
of conference proceedings, workshop
papers, and book chapters)

Secondary or tertiary studies (e.g.,
systematic literature reviews, surveys,
etc.)

Studies written in English language and
available in full-text

Studies in the form of tutorial papers,
editorials, etc. because they do not
provide enough information

After selection of a final set of primary studies, the data has been extracted
to answer the research questions.

Study Replicability. A replication package is provided to tackle the page lim-
its of a workshop paper: https://www.dropbox.com/s/ansb75ncdoqpc9f/DATA-
SERENE-2019.xlsx?dl=0. The package is available as an excel file with differ-
ent sheets that include all necessary information such as search results, primary
studies distribution, data extraction and validity examination.

3 Background on IoT Architectures

In this section, we present a reference software architecture for the internet of
things applications [5–7]. IoT applications typically consist of a set of software

https://www.dropbox.com/s/ansb75ncdoqpc9f/DATA-SERENE-2019.xlsx?dl=0
https://www.dropbox.com/s/ansb75ncdoqpc9f/DATA-SERENE-2019.xlsx?dl=0

Fault-Tolerant IoT A Systematic Mapping Study 71

CLOUD

MPUMPUMPU MPUMPUMPU

FOG FOG

Fig. 2. IoT reference architecture (MPU refers to microprocessor unit).

components including perception, data processing and storage (P&S) and actu-
ation, which are distributed across network(s). For the purposes of this paper
that has its focus on fault-tolerant data transmission and analysis, we define our
architecture based on the following P&S modeling characteristics:

– Distribution: this aspect specifies whether data analysis software ought to be
deployed on a single node or on several nodes that are distributed across the
IoT system. In other words, the distribution is referred to the deployment of
the IoT P&S software to hardware. By using a distributed style, the latency
will potentially be reduced due to data traffic and bandwidth consumption
minimization. Such rapid response time facilitates real-time and fault-tolerant
IoT applications. Furthermore, in distributed systems, a faulty P&S will still
hold IoT system available since the faulty component can be replaced by
another one.

– Localization: depending on data size and required analysis complexity, P&S
can be executed locally or remotely. Here is the point in which centralized
cloud and distributed edge and fog concepts become relevant. The advantage
of using a central cloud is that, processing on a cloud component facilitates
long-term data analysis for systems that have no constraints on response time.
For applications with massive P&S requirement, executing the task on the
powerful cloud is the only solution.
Fog nodes are the intermediate P&S, which bring a degree of cloud function-
ality to the network edge. Fog is not limited to perform on a particular device,
so that it can freely be located between device edge and cloud. The analysis
capacity of fog is lower than cloud, but it reduces a significant point of failure
by shifting towards more than one computational component. However, fog
only performs locally so that it does not have a global coverage over a major
IoT system. It is worth mentioning that, some IoT devices are able to per-
form simple P&S by themselves. Performing P&S on IoT device edge, refers

72 M. T. Moghaddam and H. Muccini

to computation capabilities embedded on a smart device to be able to gather
and analyze environmental data.

– Collaboration: the aforementioned computation components may interact to
form and empower IoT services. This collaboration may appear as a level of
information sharing, coordinated analysis and/or planning or synchronized
actuation. Each IoT sensor network may provide data for many collaborative
P&S components, both locally and remotely. Here the advantage is that if
the local P&S node fails, local service is still in access.

Considering above definitions, we further design our reference IoT architec-
ture (Fig. 2). The architecture is composed of a physical layer and several P&S
layers. The physical layer is made up of two sub-layers, namely perception and
application. The perception sub-layer hosts a large number of heterogeneous
sensors and the application sub-layer consists of various types of actuators. The
P&S layers store and analyze data gathered by the perception components to
provide the required IoT service.

Looking through primary studies, each of them address the FT for specific
layer(s) of the IoT architecture. As shown in Fig. 3, whilst the faults usually
occur in sense (26/60) and actuation (12/60) sub-layers, the primary studies
realized the importance of network (38/60) and P&S (33/60) layers for FT-IoT
systems. The reason is that, handling FT is under the responsibility of P&S
nodes and is based on the transmitted data coming from the physical layer. In
Sect. 5, we discuss various FT strategies and techniques for IoT systems.

P1, P2, P3, P4, P5, P6, P9, P11, P12, P14, P15, P17, P20, P24, P26, P27, P28, P29, P30, P31, P33, P34, P40, P41, P42, P43, P44, P45, P46, P47, P48, P51, P54, P56, P57, P58, P59, P60

P1, P2, P3, P6, P8, P10, P11, P13, P16, P19, P21, P22, P23, P31, P33, P35, P36, P37, P38, P39, P40, P41, P44, P45, P48, P49, P50, P51, P53, P55, P56, P58, P59

P1, P4, P5, P6, P7, P9, P10, P12, P13, P14, P15, P16, P17, P19, P20, P28, P32, P35, P36, P42, P45, P50, P52, P55, P58, P59

P1, P6, P7, P13, P19, P21, P25, P32, P35, P55, P57, P58

0 5 10 15 20 25 30 35 40

Network

Processing and Storage

Sense

Actuate

PRIMARY STUDIES #

TH
E

FO
CU

SE
D

 A
RC

H
IT

EC
TU

RA
L L

AY
ER

Fig. 3. The primary studies focus on each architectural layer.

Fault-Tolerant IoT A Systematic Mapping Study 73

4 Fault-Tolerant IoT Architectural Patterns
and Styles (RQ1)

This section discusses the specific characteristics of primary studies related to
FT-IoT architectural design. The primary studies used one or more overlaid
style(s) to design their software system. However, among the various IoT archi-
tectural styles, layered architecture (32/60) was the clear winner as reported in
Fig. 4. In the layered view the system is viewed as a complex heterogeneous entity
that can be decomposed into interacting parts. The primary studies designed
their layered architecture in different ways, ranged from 3 (with a central P&S
component only) to 5 (including edge and fog) layers (see Fig. 2).

Cloud-based architecture (28/60) won the second position. Fog that is a
significant extension to cloud environment is addressed in 15 studies as well. Few
studies (4/60) used the device edge concept to design their FT-IoT architecture.
Minimizing the impact of a failed component within an integrated fog-cloud
platform needs a common agreement protocol that is able to uniform the system
with the minimum rounds of message exchange.

P2, P3, P6, P8, P13, P14, P16, P17, P22, P25, P28, P31, P33, P35, P36, P37, P39, P40, P42, P43, P44, P47, P48, P49, P50, P51, P53, P54, P55, P57, P58, P60

P2, P3, P6, P7, P8, P12, P15, P16, P19, P21, P22, P23, P24, P27, P31, P33, P35, P39, P41, P44, P45, P48, P50, P51, P52, P53, P56, P57

P6, P8, P10, P11, P13, P23, P27, P32, P45

P7, P21, P40, P56

P2

P2, P3, P4, P5, P6, P8, P9, P11, P15, P16, P21, P22, P23, P24, P28, P29, P30, P31, P33, P34, P36, P40, P41, P42, P44, P45, P46, P47, P48, P50, P51, P52, P53, P58

P7, P13, P14, P19, P25, P26, P27, P36, P37, P39, P55, P56, P57

P10, P17, P18, P20, P24, P32, P35, P38, P43, P49, P59, P60

0 5 10 15 20 25 30 35

Layered

Cloud-based

Service oreiented (SOA)

Microservices

Publish/Subscribe

Hybrid

Centralized

Distributed Collabora ve

Architectural Styles Architectural Pa erns

Fig. 4. FT-IoT architectural styles and patterns.

Service oriented architectures (SOA) (9/60) put the service at the centre
of their IoT application design. In fact, the core application component makes
the service available for other IoT components over a network. Microservices
(4/60) and SOA have the same goal in IoT sytems, that is building one or
multiple applications from a set of different services. A microservice is a small
application with single responsibility, which can be deployed, scaled and tested
independently.

74 M. T. Moghaddam and H. Muccini

P21 proposes a pluggable framework based on a microservices architecture
that implements FT support as two complementary microservices: one that uses
complex event processing for real-time FT detection, and another that uses
online machine learning to detect fault patterns and preemptively mitigate faults
before they are activated. P7 propose a system based on container virtualisation
that allows IoT clouds to carry out fault-tolerance when a microservice running
on an IoT device fails. A reactive microservices architecture and its application
in a fog computing case study to investigate FT challenges at the edge of the
network is presented in P40. P56 present a microservices-based mobile cloud plat-
form by exploiting containerization which replaces heavyweight virtual machines
to guarantee run-time FT.

On the other hand, as explained in Sect. 3, IoT distribution patterns clas-
sify the architectures according to edge intelligence and elements collaboration.
Figure 4 shows the distribution patterns that are used by the primary stud-
ies. Most of studies used a Hybrid pattern (34/60) followed by the Centralized
(13/60) and the Distributed Collaborative (12/60) patterns.

In this section we showed that edge/cloud-based distributed architectures
are extensively used by primary studies. The results confirm that: a distributed
architecture provides a rapid response time and high availability, and makes the
system prone to fault.

5 Fault-Tolerance Techniques for Resilient IoT (RQ2)

As shown in Fig. 5, the primary studies adopt various techniques to make their
IoT system fault-tolerant. These techniques are explained below.

5.1 Replication

Replication is the process of sharing the data between redundant IoT HW/SW
components. Replication guarantees the data consistency, so that failure of a
component will not result in system failure. The main replication schemes are
known as active and passive [8].

In active replication scheme (22/60), processes are replicated in multiple pro-
cessors to provide fault-tolerance. In IoT context, active replication continuously
pushes the group of IoT resources (such as fog or cloud) to execute the same
process concurrently. In case of fault, failover can have in very short period to
other active resources [P33]. In this way, an extra processing is occurred and
redundant and duplicated dataset it sent to endpoint. Despite that active repli-
cation takes a lot of processing resources, it is failure transparent and its failure
discovery time is deterministic.

In passive replication (24/60), the primary processor performs and the extra
IoT components remain idle until a failure occurs. The idle components, however,
contact the primary processor in order to be updated and keep consistency. The
passive replication scheme imposes additional cost of resources and suffers from
slow response to failure.

Fault-Tolerant IoT A Systematic Mapping Study 75

5.2 Network Control

In network control scheme (19/60), the IoT network is generally divided into var-
ious clusters. A chosen cluster head (CH) periodically makes roll call requests
to the other nodes and if it does not receive a reply message, the failure will be
confirmed. However, the CH itself makes a single point of failure. Several cluster-
based routing protocols have been proposed by the primary studies. Some pri-
mary studies took advantage of bio-inspired particle multi-swarm optimization
routing algorithm to construct, recover, and select disjoint paths that tolerate
the failure while satisfying the quality of service parameters. Some other studies
used the virtual CH formation and flow graph modeling to efficiently tolerate the
failures of CHs. Multiple traveling salesman is also among the routing algorithms
that are addressed by the primary studies.

5.3 Distributed Recovery Block

In this method (8/60), a single program is concurrently executed on a node
pair, from which one is active and the other is inactive. In no-fault situation,
the main (active) node performs the task and the other node performs the same
task in shadow. Afterwards, both results will be tested and if the test is properly
passed, the results associated with the main node will be delivered as the output.
If the primary node test fails, the shadow node becomes active and produces the
outputs. This method can protect the system only against a single point of
failure.

5.4 Time Redundancy

Time redundancy (1/60) can be performed at both instruction and task levels.
At instruction level, the program is duplicated and subsequently the results are
compared to discover a potential error. In task level, a software is run twice (or
more) to mitigate dynamic faults. Despite that this method does not impose the
cost of additional hardware, it increases the time needed to assure redundancy.
The method reduces the computing performance and consumes more energy as
well.

It is worth mentioning that, the whole IoT system can follow a Reactive or
Proactive strategy. Reactive FT starts to recover the system after the detection
of an error (using event processing methods). In proactive FT, the recovery
strategy is started even before the detection of an error (using machine learning
methods).

76 M. T. Moghaddam and H. Muccini

P3, P7, P10, P13, P14, P18, P19, P20, P21, P22, P23, P25, P26, P29, P34, P35, P39, P40, P41, P43, P45, P48, P50, P56

P2, P3, P6, P8, P11, P15, P16, P17, P21, P24, P27, P32, P36, P37, P41, P46, P47, P51, P54, P55, P57, P58

P4, P5, P9, P10, P12, P13, P28, P31, P34, P42, P44, P45, P46, P47, P48, P51, P53, P59, P60

P3, P6, P7, P29, P30, P33, P38, P52

P52

0 5 10 15 20 25

Passive

Ac ve

Network Control

Distributed Recovery Block

Time Redundancy

PRIMARY STUDIES #

FA
U

LT
-T

O
LE

RA
N

CE
 T

EC
H

N
IQ

U
ES

Fig. 5. Fault-tolerance techniques.

6 Quality of IoT Service Associated with Fault-Tolerance
(RQ3)

The standard used to categorize quality attributes comes from ISO 25010 and
some specific IoT attributes derived from the primary studies keywording.

An IoT system brings many challenges from QoS perspective when takes
into account FT. As shown in Fig. 6, the most recognized quality challenges

P2, P3, P4, P5, P6, P7, P9, P11, P13, P16, P18, P19, P22, P23, P26, P31, P43, P44, P47, P48, P49, P52, P56, P58, P60

P2, P3, P5, P6, P10, P14, P15, P17, P18, P19, P21, P25, P27, P33, P35, P36, P39, P41, P44, P53

P1, P6, P7, P8, P11, P12, P14, P16, P17, P20, P21, P26, P36, P39, P40, P44, P45, P51, P53, P58

P5, P6, P9, P11, P14, P15, P16, P17, P19, P21, P23, P27, P40, P41, P47, P52

P8, P9, P11, P21, P24, P40, P41, P47

P5, P41

0 5 10 15 20 25

Performance

Availability

Security

Scalability

Interoperability

Energy Consump on

PRIMARY STUDIES #

Q
U

AL
IT

Y
AT

TR
IB

U
TE

S

Fig. 6. QoS associated with FT-IoT.

Fault-Tolerant IoT A Systematic Mapping Study 77

are related to performance (25/60), availability (20/60), security (20/60) and
scalability (16/60), whilst interoperability (8/60) and energy efficiency (2/60)
are positioned in a lower degree of concern.

The level of performance depends on how much the processing and storage
components are pushed to the edge in a decentralized way. Availability is the
ability of a system to be fully or partly operational as and when required. Clearly,
FT and availability are not identical since a fault-tolerant system is supposed
to maintain the system operational without interruption, but a highly available
system may have service interruption. However, A fault-tolerant system should
maintain a high level of system availability and performance as well.

In IoT systems that different components and entities are connected to each
other through a network, security gains a high concern. Scalability is also an
essential attribute as IoT systems should be capable to perform properly con-
sidering a huge number of heterogeneous devices. Commenting on scalability of
IoT as a whole system is difficult, however, it depends on how new resources can
be added on demand. A fault-tolerant system also requires enormous computa-
tional efforts to be run in distributed P&S components. Device heterogeneity
and P&S elements distribution make the system resistive to scalability.

Interoperability helps IoT heterogeneous components to work together effi-
ciently. It actually depends on how much IoT large-scale heterogeneous devices
can communicate directly among each other to gather the required data with-
out having to go through the central/remote components. Since most of IoT
devices are battery powered, energy efficiency that is tied to many other quality
attributes (such as performance) becomes essential. However, wireless and bat-
tery dependency make the IoT devices barely recoverable, flexible to scalability
and performant.

7 Horizontal Analysis

This section reports the results orthogonal to the vertical analysis presented
in the previous sections. For the purpose of this section, we cross-tabulated
and grouped the data, we made comparisons between pairs of concepts of our
classification framework and identified perspectives of interest.

7.1 FT Techniques vs Architectural Patterns

Here the question is, which architectural pattern is more often used for each FT
technique? As shown in Fig. 7, (11/60) studies used hybrid pattern to facilitate
their passive FT techniques, whilst (15/60) used hybrid for active FT. In con-
trary, centralized and collaborative architectural patterns are more suitable to
address passive FT. Obviously, network control FT technique is better to be
addressed by a hybrid architectural pattern. In general, a hybrid architecture
guarantees FT-IoT, since if one fog node fails, the IoT system can shift the
computation to another fog to avoid the single point of failure.

78 M. T. Moghaddam and H. Muccini

Passive Active Network
Control

Distributed
Recovery

Time
Redundancy

Hybrid

Distributed
Collaborative

Centralized

1

2

5

11 15 6

8 1

13

5

14

3

A
rc

hi
te

ct
ur

al
 P

at
te

rn
s

Fault-tolerance Techniques

Fig. 7. FT techniques vs patterns.

7.2 FT Techniques vs Quality Attributes

What quality attributes are satisfied when a specific FT technique is adopted?
As shown in Fig. 8, passive technique mostly takes into account performance
and availability, whilst the active technique gives more weight to security and

Passive Active Network
Control

Distributed
Recovery

Time
Redundancy

Performance

Availability

Security

Q
ua

lit
y

A
tt

ri
bu

te
s

Fault-tolerance Techniques

Scalability

Interoperability

Energy
Consumption

411 7 9 1

34810

258 9

26 9 13

23 6

111

Fig. 8. Techniques vs quality attributes.

Fault-Tolerant IoT A Systematic Mapping Study 79

scalability. Furthermore, network control enhances the performance beside the
fault-tolerance. Regarding the rapid development and extension of devices in the
edge of the network, performance of IoT should be maintained in an appropriate
level. Performance highly depends on the data storage and application logic
distribution among edge and central servers. As mentioned before, fog computing
can pave the way to improve IoT systems performance level.

8 Challenges and Emerging Trends (RQ4)

In this section the emerging trends in resilience for FT-IoT are presented. To
this end, publication year, type and venue are firstly extracted and an overall
discussion is subsequently provided.

8.1 Publication Year

Figure 9 shows the distribution of FT-IoT literature. It noticeably indicates that
the number of papers grows by time and there is just one related paper published
before 2014. This result confirms the scientific interest and research necessity on
FT-IoT issues in the last few years.

2012 2013 2014 2015 2016 2017 2018 2019

Journal

Conference

Workshop 1 2

3

4

5

12

7

101

1 1

10 3

Fig. 9. Primary studies distribution by publication type.

8.2 Publication Type

The most common publication type is conference paper (40/60), followed by
journal (17/60), and workshop paper (3/60). Such a high number of journal and
conference papers may point out that FT-IoT is maturing as a research topic
despite that it is still relatively young.

80 M. T. Moghaddam and H. Muccini

8.3 Publication Venues

From the extracted data we can notice that research on FT-IoT is spread across
many venues mostly in the span of IoT (e.g. WF-IoT), computing (e.g. ICAC)
and networking (e.g. ICOIN) communities. The complete list of venues can be
found in the data extraction file. However, the focus on the aforementioned
aspects can prove the significance of distributed computing and networking for
FT-IoT systems.

8.4 Emerging Trends in Resilience for FT-IoT

Our study reveals that some of the different Ft-IoT techniques are more rarely
covered with respect to others, specifically, distributed recovery block and time
redundancy. We clarify that this result by no means implies that there is lim-
ited literature or support on such FT techniques, but they appear to have a
more limited application on IoT. In architectural level, we observed a significant
move toward adopting hybrid architectures, which make the IoT system prone to
fault. Furthermore, whilst a growth on using service-oriented and microservices
architectures is perceived, their various aspects need to be better investigated
regarding FT. The study showed that for FT-IoT architectural layers, the atten-
tion especially goes to network and processing and storage components.

What our study reveals is also that performance and availability are tied up
with IoT systems fault-tolerance. However, assessing the trade-off between FT
and other IoT quality attributes such as scalability, interoperability and energy
consumption shall be further investigated. Another result to be further evaluated
through a state of the practice analysis, is that only few studies support the
interplay between FT techniques and collaborative architectures. The mentioned
aspects are to be considered by the domain future work.

9 Threats to Validity

According to Peterson et al. [9], the quality rating for this systematic mapping
study assessed and scored as 73%. This value is the ratio of the number of
actions taken in comparison to the total number of actions reported in the quality
checklist. The quality score of our study is far beyond the scores obtained by
existing systematic mapping studies in the literature, which have a distribution
with a median of 33% and 48% as absolute maximum value. However, the threats
to validity are unavoidable. Below we shortly define the main threats to validity
of our study and the way we mitigated them.

External validity: in our study, the most severe threat related to external
validity may consist of having a set of primary studies that is not representative
of the whole research on FT-IoT. We mitigated this potential threat by (i) fol-
lowing a search strategy including both automatic search and backward-forward
snowballing of selected studies; and (ii) defining a set of inclusion and exclusion
criteria. Along the same lines, gray and non-English literature are not included

Fault-Tolerant IoT A Systematic Mapping Study 81

in our research as we want to focus exclusively on the state of the art presented
in high-quality scientific studies in English.

Internal validity: it refers to the level of influence that extraneous variables
may have on the design of the study. We mitigated this potential threat to
validity by (i) rigorously defining and validating the structure of our study, (ii)
defining our classification framework by carefully following the keywording pro-
cess, and (iii) conducting a well-structured vertical analysis. Construct validity:
It concerns the validity of extracted data with respect to the research questions.
We mitigated this potential source of threats in different ways. (i) performing
automatic search on a couple of databases to avoid potential biases; (ii) having a
strong and tested search string; (iii) complementing the automatic by the snow-
balling activity; and (iv) rigorously screen the studies according to inclusion and
exclusion criteria.

Conclusion validity: it concerns the relationship between the extracted data
and the obtained results. We mitigated potential threats to conclusion validity
by applying well accepted systematic methods and processes throughout our
study and documenting all of them in the excel package.

10 Conclusion

In this paper we present a systematic mapping study with the goal of classifying
and identifying the domain state-of-the-art and extract a set of FT-IoT methods
and techniques. Starting from over 2300 potentially relevant studies, we applied
a rigorous selection procedure resulting in 60 primary studies. The results of
this study are both research and industry oriented and are intended to make a
framework for future research in FT-IoT related fields. As a future work, we will
assess the potential integration of existing research to an industrial level of IoT.

Primary Studies

• P1: Toward a New Approach to IoT Fault Tolerance, https://doi.org/10.1109/MC.
2016.238

• P2: CEFIoT: A fault-tolerant IoT architecture for edge and cloud, https://doi.org/
10.1109/WF-IoT.2018.8355149

• P3: Reliable and Fault-Tolerant IoT-Edge Architecture, https://doi.org/10.1109/
ICSENS.2018.8589624

• P4: Efficient Fault-Tolerant Routing in IoT Wireless Sensor Networks Based on
Bipartite-Flow Graph Modeling, https://doi.org/10.1109/ACCESS.2019.2894002

• P5: Optimizing Multipath Routing With Guaranteed Fault Tolerance in Internet
of Things, https://doi.org/10.1109/JSEN.2017.2739188

• P6: Brume - A Horizontally Scalable and Fault Tolerant Building Operating Sys-
tem, https://doi.org/10.1109/IoTDI.2018.00018

• P7: A Watchdog Service Making Container-Based Micro-services Reliable in IoT
Clouds, https://doi.org/10.1109/FiCloud.2017.57

https://doi.org/10.1109/MC.2016.238
https://doi.org/10.1109/MC.2016.238
https://doi.org/10.1109/WF-IoT.2018.8355149
https://doi.org/10.1109/WF-IoT.2018.8355149
https://doi.org/10.1109/ICSENS.2018.8589624
https://doi.org/10.1109/ICSENS.2018.8589624
https://doi.org/10.1109/ACCESS.2019.2894002
https://doi.org/10.1109/JSEN.2017.2739188
https://doi.org/10.1109/IoTDI.2018.00018
https://doi.org/10.1109/FiCloud.2017.57

82 M. T. Moghaddam and H. Muccini

• P8: Towards Fault Tolerant Fog Computing for IoT-Based Smart City Applications,
https://doi.org/10.1109/CCWC.2019.8666447

• P9: Device clustering for fault monitoring in Internet of Things systems, https://
doi.org/10.1109/WF-IoT.2015.7389057

• P10: Decentralized fault tolerance mechanism for intelligent IoT/M2M middleware,
https://doi.org/10.1109/WF-IoT.2014.6803115

• P11: Application of Blockchain in Collaborative Internet-of-Things Services,
https://doi.org/10.1109/TCSS.2019.2913165

• P12: A Review of Aggregation Algorithms for the Internet of Things, https://doi.
org/10.1109/ICSEng.2017.43

• P13: Supporting Service Adaptation in Fault Tolerant Internet of Things, https://
doi.org/10.1109/SOCA.2015.38

• P14: Fault tolerant and scalable IoT-based architecture for health monitoring,
https://doi.org/10.1109/SAS.2015.7133626

• P15: Fault tolerance capability of cloud data center, https://doi.org/10.1109/ICCP.
2017.8117053

• P16: Reaching Agreement in an Integrated Fog Cloud IoT, https://doi.org/10.
1109/ACCESS.2018.2877609

• P17: Byzantine Resilient Protocol for the IoT, https://doi.org/10.1109/JIOT.2018.
2871157

• P18: DRAW: Data Replication for Enhanced Data Availability in IoT-based Sensor
Systems, https://doi.org/10.1109/DASC/PiCom/DataCom

• P19: Power efficient, bandwidth optimized and fault tolerant sensor management
for IOT in Smart Home, https://doi.org/10.1109/IADCC.2015.7154732

• P20: Energy efficiency and robustness for IoT: Building a smart home security
system, https://doi.org/10.1109/ICCP.2016.7737120

• P21: A Microservices Architecture for Reactive and Proactive Fault Tolerance in
IoT Systems, https://doi.org/10.1109/WoWMoM.2018.8449789

• P22: Management of solar energy in microgrids using IoT-based dependable control,
https://doi.org/10.1109/ICEMS.2017.8056441

• P23: A hierarchical cloud architecture for integrated mobility, service, and trust
management of service-oriented IoT systems, https://doi.org/10.1109/INTECH.
2016.7845021

• P24: Fault-Tolerant Real-Time Collaborative Network Edge Analytics for Indus-
trial IoT and Cyber Physical Systems with Communication Network Diversity,
https://doi.org/10.1109/CIC.2018.00052

• P25: Fault-Tolerant mHealth Framework in the Context of IoT-Based Real-Time
Wearable Health Data Sensors, https://doi.org/10.1109/ACCESS.2019.2910411

• P26: SCONN: Design and Implement Dual-Band Wireless Networking Assisted
Fault Tolerant Data Transmission in Intelligent Buildings, https://doi.org/10.1109/
VTCFall.2018.8690787

• P27: Fault-tolerant application placement in heterogeneous cloud environments,
https://doi.org/10.1109/CNSM.2015.7367359

• P28: A reliable and energy efficient IoT data transmission scheme for smart cities
based on redundant residue based error correction coding, https://doi.org/10.1109/
SECONW.2015.7328141

• P29: Distributed Continuous-Time Fault Estimation Control for Multiple Devices
in IoT Networks, https://doi.org/10.1109/ACCESS.2019.2892905

• P30: Trend-adaptive multi-scale PCA for data fault detection in IoT networks,
https://doi.org/10.1109/ICOIN.2018.8343217

https://doi.org/10.1109/CCWC.2019.8666447
https://doi.org/10.1109/WF-IoT.2015.7389057
https://doi.org/10.1109/WF-IoT.2015.7389057
https://doi.org/10.1109/WF-IoT.2014.6803115
https://doi.org/10.1109/TCSS.2019.2913165
https://doi.org/10.1109/ICSEng.2017.43
https://doi.org/10.1109/ICSEng.2017.43
https://doi.org/10.1109/SOCA.2015.38
https://doi.org/10.1109/SOCA.2015.38
https://doi.org/10.1109/SAS.2015.7133626
https://doi.org/10.1109/ICCP.2017.8117053
https://doi.org/10.1109/ICCP.2017.8117053
https://doi.org/10.1109/ACCESS.2018.2877609
https://doi.org/10.1109/ACCESS.2018.2877609
https://doi.org/10.1109/JIOT.2018.2871157
https://doi.org/10.1109/JIOT.2018.2871157
https://doi.org/10.1109/DASC/PiCom/DataCom
https://doi.org/10.1109/IADCC.2015.7154732
https://doi.org/10.1109/ICCP.2016.7737120
https://doi.org/10.1109/WoWMoM.2018.8449789
https://doi.org/10.1109/ICEMS.2017.8056441
https://doi.org/10.1109/INTECH.2016.7845021
https://doi.org/10.1109/INTECH.2016.7845021
https://doi.org/10.1109/CIC.2018.00052
https://doi.org/10.1109/ACCESS.2019.2910411
https://doi.org/10.1109/VTCFall.2018.8690787
https://doi.org/10.1109/VTCFall.2018.8690787
https://doi.org/10.1109/CNSM.2015.7367359
https://doi.org/10.1109/SECONW.2015.7328141
https://doi.org/10.1109/SECONW.2015.7328141
https://doi.org/10.1109/ACCESS.2019.2892905
https://doi.org/10.1109/ICOIN.2018.8343217

Fault-Tolerant IoT A Systematic Mapping Study 83

• P31: Adaptive and Fault-tolerant Data Processing in Healthcare IoT Based on Fog
Computing, https://doi.org/10.1109/TNSE.2018.2859307

• P32: Fault-Recovery and Coherence in Internet of Things Choreographies, https://
doi.org/10.1109/WF-IoT.2014.6803224

• P33: A Novel Data Reduction Technique with Fault-tolerance for Internet-of-things,
https://doi.org/10.1145/3018896.3018971

• P34: Performance Comparisons of Fault-Tolerant Rouging Approaches for IoT
Wireless Sensor Networks, https://doi.org/10.1145/3195106.3195168

• P35: Rivulet: A Fault-tolerant Platform for Smart-home Applications, https://doi.
org/10.1145/3135974.3135988

• P36: Censorship Resistant Decentralized IoT Management Systems, https://doi.
org/10.1145/3286978.3286979

• P37: Towards a Foundation for a Collaborative Replicable Smart Cities IoT Archi-
tecture, https://doi.org/10.1145/3063386.3063763

• P38: Responsible Objects: Towards Self-Healing Internet of Things Applications,
https://doi.org/10.1109/ICAC.2015.60

• P39: A Multi-agent System Architecture for Self-Healing Cloud Infrastructure,
https://doi.org/10.1145/2896387.2896392

• P40: Reactive Microservices for the Internet of Things: A Case Study in Fog Com-
puting, https://doi.org/10.1145/3297280.3297402

• P41: Fault Tolerance Techniques and Architectures in Cloud Computing - a Com-
parative Analysis, https://doi.org/10.1109/ICGCIoT.2015.7380625

• P42: Energy Efficient Fault-tolerant Clustering Algorithm for Wireless Sensor Net-
works, https://doi.org/10.1109/ICGCIoT.2015.7380464

• P43: Layered Fault Management Scheme for End-to-end Transmission in Internet
of Things, https://doi.org/10.1007/s11036-012-0355-5

• P44: An Architectural Mechanism for Resilient IoT Services, https://doi.org/10.
1145/3137003.3137010

• P45: Resilience of Stateful IoT Applications in a Dynamic Fog Environment,
https://doi.org/10.1145/3286978.3287007

• P46: The Optimal Generalized Byzantine Agreement in Cluster-based Wireless
Sensor Networks, https://doi.org/10.1016/j.csi.2014.01.005

• P47: A Reliable IoT System for Personal Healthcare Devices, https://doi.org/10.
1016/j.future.2017.04.004

• P48: Reliable Industrial IoT-based Distributed Automation, https://doi.org/10.
1145/3302505.3310072

• P49: Low-Cost Memory Fault Tolerance for IoT Devices, https://doi.org/10.1145/
3126534

• P50: Idea: A System for Efficient Failure Management in Smart IoT Environments,
https://doi.org/10.1145/2906388.2906406

• P51: Patterns for Things That Fail, https://www.hillside.net/plop/2017/papers/
proceedings/papers/07-ramadas.pdf

• P52: Fall-curve: A Novel Primitive for IoT Fault Detection and Isolation, https://
doi.org/10.1145/3274783.3274853

• P53: Multilevel IoT Model for Smart Cities Resilience, https://doi.org/10.1145/
3095786.3095793

• P54: Energy Efficient Device Discovery for Reliable Communication in 5G-based
IoT and BSNs Using Unmanned Aerial Vehicles, https://doi.org/10.1016/j.jnca.
2017.08.013

• P55: A Programming Framework for Implementing Fault-Tolerant Mechanism in
IoT Applications, https://doi.org/10.1007/978-3-319-27137-8 56

https://doi.org/10.1109/TNSE.2018.2859307
https://doi.org/10.1109/WF-IoT.2014.6803224
https://doi.org/10.1109/WF-IoT.2014.6803224
https://doi.org/10.1145/3018896.3018971
https://doi.org/10.1145/3195106.3195168
https://doi.org/10.1145/3135974.3135988
https://doi.org/10.1145/3135974.3135988
https://doi.org/10.1145/3286978.3286979
https://doi.org/10.1145/3286978.3286979
https://doi.org/10.1145/3063386.3063763
https://doi.org/10.1109/ICAC.2015.60
https://doi.org/10.1145/2896387.2896392
https://doi.org/10.1145/3297280.3297402
https://doi.org/10.1109/ICGCIoT.2015.7380625
https://doi.org/10.1109/ICGCIoT.2015.7380464
https://doi.org/10.1007/s11036-012-0355-5
https://doi.org/10.1145/3137003.3137010
https://doi.org/10.1145/3137003.3137010
https://doi.org/10.1145/3286978.3287007
https://doi.org/10.1016/j.csi.2014.01.005
https://doi.org/10.1016/j.future.2017.04.004
https://doi.org/10.1016/j.future.2017.04.004
https://doi.org/10.1145/3302505.3310072
https://doi.org/10.1145/3302505.3310072
https://doi.org/10.1145/3126534
https://doi.org/10.1145/3126534
https://doi.org/10.1145/2906388.2906406
https://www.hillside.net/plop/2017/papers/proceedings/papers/07-ramadas.pdf
https://www.hillside.net/plop/2017/papers/proceedings/papers/07-ramadas.pdf
https://doi.org/10.1145/3274783.3274853
https://doi.org/10.1145/3274783.3274853
https://doi.org/10.1145/3095786.3095793
https://doi.org/10.1145/3095786.3095793
https://doi.org/10.1016/j.jnca.2017.08.013
https://doi.org/10.1016/j.jnca.2017.08.013
https://doi.org/10.1007/978-3-319-27137-8_56

84 M. T. Moghaddam and H. Muccini

• P56: Transient fault aware application partitioning computational offloading algo-
rithm in microservices based mobile cloudlet networks, https://doi.org/10.1007/
s00607-019-00733-4

• P57: Channel Dependability of the ATM Communication Network Based on
the Multilevel Distributed Cloud Technology, https://doi.org/10.1007/978-3-319-
67642-5 49

• P58: Design of compressed sensing fault-tolerant encryption scheme for key sharing
in IoT Multi-cloudy environment(s), https://doi.org/10.1016/j.jisa.2019.04.004

• P59: Fault-Tolerant Temperature Control Algorithm for IoT Networks in Smart
Buildings, https://doi.org/10.3390/en11123430

• P60: Virtualization in Wireless Sensor Networks: Fault Tolerant Embedding for
Internet of Things, https://doi.org/10.1109/JIOT.2017.2717704

References

1. Muccini, H., Moghaddam, M.T.: IoT architectural styles. In: Cuesta, C.E., Garlan,
D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 68–85. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00761-4 5

2. Kitchenham, B., Brereton, P.: A systematic review of systematic review process
research in software engineering. Inf. Softw. Technol. 55(12), 2049–2075 (2013)

3. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical report, EBSE-2007-01 (2007)

4. Zhang, H., Babar, M.A., Tell, P.: Identifying relevant studies in software engineering.
Inf. Softw. Technol. 53(6), 625–637 (2011). https://doi.org/10.1016/j.infsof.2010.12.
010

5. Muccini, H., Spalazzese, R., Moghaddam, M.T., Sharaf, M.: Self-adaptive IoT archi-
tectures: an emergency handling case study. In: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings, p. 19. ACM (2018)

6. Muccini, H., Arbib, C., Davidsson, P., Tourchi Moghaddam, M.: An IoT software
architecture for an evacuable building architecture. In: Proceedings of the 52nd
Hawaii International Conference on System Sciences (2019)

7. Arbib, C., Arcelli, D., Dugdale, J., Moghaddam, M., Muccini, H.: Real-time emer-
gency response through performant IoT architectures. In: International Conference
on Information Systems for Crisis Response and Management (ISCRAM) (2019)

8. Fayyaz, M., Vladimirova, T.: Survey and future directions of fault-tolerant dis-
tributed computing on board spacecraft. Adv. Space Res. 58(11), 2352–2375 (2016)

9. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18
(2015)

https://doi.org/10.1007/s00607-019-00733-4
https://doi.org/10.1007/s00607-019-00733-4
https://doi.org/10.1007/978-3-319-67642-5_49
https://doi.org/10.1007/978-3-319-67642-5_49
https://doi.org/10.1016/j.jisa.2019.04.004
https://doi.org/10.3390/en11123430
https://doi.org/10.1109/JIOT.2017.2717704
https://doi.org/10.1007/978-3-030-00761-4_5
https://doi.org/10.1016/j.infsof.2010.12.010
https://doi.org/10.1016/j.infsof.2010.12.010

JARVIS, A Hardware/Software
Framework for Resilient Industry 4.0

Systems

Jacopo Parri , Fulvio Patara , Samuele Sampietro ,
and Enrico Vicario(B)

Department of Information Engineering, University of Florence, Florence, Italy
{jacopo.parri,fulvio.patara,samuele.sampietro,enrico.vicario}@unifi.it

Abstract. JARVIS is a Research & Development project, jointly devel-
oped by industrial SME partners and by the University of Florence,
aimed at development of a hardware/software framework supporting
integration among physical IoT devices, data analytic software agents,
and human operators involved in operation and maintenance of resilient
Industry 4.0 systems. At the heart of the JARVIS architecture, a suite of
software digital twins deployed in a Java EE environment supports run-
time monitoring and control of the hierarchy of hardware configuration
items of the system, capturing their composition and representing their
failure modes through a reflection architectural pattern enabling agile
adaptation to the evolution of configurations. Besides, analytic modules
can be deployed as micro-services leveraging both the knowledge base
provided by digital twins and the data flowing from the ingestion layer.
This enables agile development of advanced monitoring and control ser-
vices supporting maintainability and resilience. We describe the JARVIS
architecture, outlining responsibilities and collaborations among its mod-
ules, and we provide details on the structure of representation of digital
twins, showing how this is exploited in a data analytic agent providing
an executable representation of fault trees associated with failure modes
of configuration items.

Keywords: I4.0 System of Systems · Digital twins · Fault tree

1 Introduction

In the agenda of Industry 4.0 (I4.0), Information Technology and Operational
Technology are expected to provide facilities for conduction and maintenance of
cyber-physical systems, developing on various pillars, including industrial IoT,
big data and analytics, horizontal and vertical integration, cloud computing [23].
This gives rise to a class of software controlled distributed systems, for which
resilience comprises a core requirement [1,19,24] shaping software engineering
processes and architectural solutions.

c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 85–93, 2019.
https://doi.org/10.1007/978-3-030-30856-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_6&domain=pdf
http://orcid.org/0000-0001-5109-4375
http://orcid.org/0000-0002-9050-088X
http://orcid.org/0000-0001-6684-1150
http://orcid.org/0000-0002-4983-4386
https://doi.org/10.1007/978-3-030-30856-8_6

86 J. Parri et al.

JARVIS (Just-in-time ARtificial intelligence for the eValuation of Industrial
Signals) is a project co-funded by the Tuscany regional government (Italy) in
the POR FESR 2014–2020 program, developed by the industrial SME partners
LASCAUX, SISMIC SISTEMI, JAEWA, and BEENOMIO, with the scientific
support of the labs of Software Technologies, Artificial Intelligence, and Global
Optimization of the University of Florence.

JARVIS aims at developing a hardware/software framework for integration,
operation, and maintenance of Industry 4.0 systems, leveraging a software archi-
tecture that facilitates interaction among physical IoT devices, enterprise scale
software agents, data analytics, and human operators, so as to support planning
and scheduling of predictive maintenance and assets analysis, both offline and
at runtime. On the one hand, a suite of software digital twins [25] deployed in
the domain logic of a Java EE environment mirrors the hierarchical structure
of physical devices in an IoT layer, enabling runtime monitoring and control
of system hardware configuration items. On the other hand, a variety of data
analytics and software agents drives agile development of advanced monitoring
and control services for maintainability and resilience.

The project develops a framework open to reuse in the general context of
Industry 4.0 systems, and validates its applicability through a concrete instance
in a real operative scenario, addressing the case of a gate system for speed control
and access regulation to limited traffic zones (ZTL), produced and manufactured
by SISMIC SISTEMI, and installed in several Italian municipalities.

In this paper, we report a general description of the JARVIS project, outlin-
ing its major requirements (Sect. 2) and describing the architecture as a System
of Systems (Sect. 3), and we then provide details, focusing on the structure of
representation of digital twins and showing how this is exploited in a micro-
service providing an executable representation of fault trees associated with fail-
ure modes of configuration items (Sect. 4). Conclusions are drawn in Sect. 5.

2 System Requirements Specification

JARVIS is an architecture-driven project, developed along a V-model process [9],
documented according to the MIL-STD-498 [20].

Main system requirements and their consequent structural choices include:
(i) the system must be able to ingest Big Data from a plethora of IoT devices,
which led to the adoption of an IoT broker; (ii) the system must manage the
persistence of raw and semi-structured data into a high capacity data-store,
which led to the adoption of a schema-less NoSQL column-oriented DBMS [12];
(iii) the system must promote inversion of responsibility, by allowing actions
and end-users notifications be triggered by edge and unmanned components
on occurrence of faulty conditions; (iv) the system must provide an executable
software representation of physical field devices with monitoring capabilities,
which led to the design of a digital twins domain logic; (v) the system must
exhibit elasticity in scaling up/down the computational power of single mod-
ules, which led to a micro-service oriented architecture [6]; (vi) the system must

JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 87

Fig. 1. UML deployment diagram of JARVIS architecture as a System of Systems.

be able to integrate applications, horizontally and vertically, along the produc-
tion chain and among domains of authority, clients, customers, and tertiary
manufacturers, which led to the adoption of Enterprise Application Integration
(EAI) principles [15]; (vii) the system must integrate a swarm of data analytics
and agents, supporting operations management and just-in-time maintenance
processes, developed independently by different parties through paradigms of
polyglot programming and polyglot persistence; (viii) the system must support
push communications, providing an alternative multi-platform user interface,
which led to the adoption of an ecosystem of chatbots [5].

In the specific focus of this paper, requirements (iv) and (vii) play a major
role in the discussion.

3 System/Subsystem Design Description

JARVIS is developed around a System of Systems architecture (see Fig. 1),
designed so as to promote high-levels of data ingestion, fault-tolerance, portabil-
ity, and adaptability. Roles and responsibilities of subsystems are here explained
in the general perspective of the project.

Field System (FS) acquires and generates IoT data flows, playing the role of
perception layer [14] of an IoT architectural stack. An FS instance is a physical
device composed of hardware components (e.g. motherboard, sensors and actua-
tors) and software controllers (e.g. embedded firmware). In the JARVIS specific
prototype, each FS represents a ZTL gate.

88 J. Parri et al.

Field Data Server (FDS) stores raw data coming from the FS in a mid-term
database, also applying analytic processes to filter, fix, and synthesise data.
The IoT broker component, which acts as an asynchronous Message Oriented
Middleware [3] based on the Publish-Subscribe EIP [13], performs ingestion of
the IoT data streams.

Enterprise Information Server (EIS) maintains status information about mon-
itored FSs, adopting the abstraction of digital twins, in order to maintain a
long-term consistent knowledge base of field devices, interpreting and refining
the mid-term FDS raw-data into a high level semantics.

Data Analytics Server (DAS) is composed by a plurality of agents executing
dynamic context interpretation and processing, enabling descriptive, predictive,
and prescriptive analysis (e.g. failure prediction and diagnoses), through artificial
intelligence, machine learning mechanisms, and stochastic model techniques.

User Terminal (UT) interprets the role of decoupled presentation layer for the
end-users. In the JARVIS specific prototype, this manages municipal authorities,
municipal police officers, help desk operators and maintenance technicians.

Chatbot Services (CS) implements the internal logic of real-time messaging
assistants, so as to expose an alternative UI which allows both push and pull
duplex communications among human operators and physical devices, enabling
inversion of responsibility mechanisms (i.e. machine-to-human and machine-to-
machine interactions).

Enterprise Integration (EI) is responsible of subsystems interoperability, orches-
trates services, and handles dynamic dependencies, authorizing and securing
accesses to field devices. The core component is represented by the Enterprise
Service Bus (ESB) [2], which guarantees high decoupling and push communi-
cations, also implementing some major micro-services patterns [16] to enhance
availability and reliability, notably including: Circuit Breakers to limit fault prop-
agations, Service Discovery and Gateways to route messages.

Overall, all these subsystems give rise to a so-called Lambda architecture [18],
where the EIS implements the batch layer, the FDS serves as the speed layer, and
the FDS, EIS and DAS jointly represent the serving layer. In the specific focus
of this paper, EIS and DAS are the subsystems which cover the requirements
(iv) and (vii), respectively.

4 Digital Twins as Knowledge Base

The combination of EIS and DAS comprises a Knowledge Base supporting mon-
itoring and control of resilience: the EIS provides a digital representation of
structure and components of managed physical devices; besides the DAS hosts
a variety of micro-services supporting operation and maintenance processes.

JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 89

Fig. 2. UML class diagram of the domain model of EIS, showing the reflective and
composite structure of digital twins. The association class DigitalRole (and its coun-
terpart in the meta level) has been introduced to support same-typed and reusable
components among different instances of DigitalSystem (and MetaDigitalSystem).

4.1 EIS Subsystem

The EIS subsystem is based on a domain logic, explicitly oriented toward relia-
bility requirement, and populated by digital twins instances, whose focus is on
capturing significant macroscopic events and failure modes, exhibited by whole
physical systems or devices. Digital twin abstraction enables a two-way interac-
tion on physical counterparts providing an interface to collect and query teleme-
tries as well as to control remote actuators (e.g. reset command).

The domain model, depicted in Fig. 2, combines two software design pat-
terns. The Reflection [22] pattern provides a mechanism to modify dynamically,
at runtime, the structure and behaviour of modeled digital twins, by splitting the
domain logic in two parts: the meta level captures the types of devices and their
interconnections; the base level identifies concrete instances of physical compo-
nents and their interfaces in the actual configuration of the system. Besides, the

90 J. Parri et al.

Fig. 3. SysML bdd of the field system of the ZTL gate comprising the specific prototype
of the JARVIS project.

Composite [11] pattern is used to represent the hierarchical compositions of FS
instances, in both the meta and base levels of the Reflection pattern.

The patterns combination enables the model to evolve so as to cope with dif-
ferent configurations of a product line and reliably adapt to changes in operation
conditions. In particular, this permits to modify the compositional structure of
some FS digital replica, allowing to plug new FS instances at runtime into the
system, avoiding service unavailability due to EIS reboot.

The resulting software architecture promotes an engineering process where a
specification of the structure of the system can be translated into an executable
representation made of software digital twins.

Figure 3 illustrates the concept with reference to the configuration of the FS
of a ZTL gate, here modeled as a SysML [10] Block Definition Diagram (bdd).
Each block element of the bdd results into a DigitalTwin instance at runtime:
basic and composed blocks are implemented as objects of type BasicComponent
and DigitalSystem, respectively; DigitalTwin components of a DigitalSystem and
their DigitalRoles can be derived from compositions and association role names,
respectively; in so doing, roles permit to give identity to multiple instances of
subsystems of the same type, as occurring in redundant configurations (e.g. the
power supply in the example).

4.2 DAS Subsystem

DAS hosts a swarm of micro-services consuming information provided by the
EIS Knowledge Base to support operation and maintenance processes through
a variety of context-dependent techniques.

JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 91

Fig. 4. UML class diagram of the FT-agent domain logic as µi bounded contexts.

We illustrate the concept with reference to an agent, termed FT-agent, which
implements Fault Tree Analysis (FTA) [7] so as to enable diagnoses and predic-
tions over system failures [21].

The FT-agent is partitioned in 3 micro-services: µ1 performs analyses over a
Fault Tree (FT), combining the outputs provided by the other two micro-services
(in the specific project prototype, the task is achieved exploiting the modeling
and analysis capabilities offered by the SIRIO Java library included in the ORIS
Tool [17], a toolbox for quantitative evaluation of stochastic models); µ2 exposes
a collection of FTs capturing different failure modes of the FS, designed and
managed by domain experts and maintenance technicians; µ3 computes minimal
cut-sets and importance measures (e.g. Birnbaum, Fussel-Vesely) over a FT.

Figure 4 represents the domain model of the FT-agent, distributed among the
three micro-services following the Bounded Context pattern [8]. In the represen-
tation, the role of top, basic, or intermediate events in the FT is implemented
by an object of type FailureMode.

Also in this case, the software architecture promotes an engineering process
where models for reliability can be translated into an executable software rep-
resentation. Specifically, identification of failure modes and their associations
with digital twins can be conveniently guided by the artifacts of Failure Mode
and Effects Analysis (FMEA) [4]. Additional concepts captured in Failure Mode,
Effects, and Criticality Analysis (FMECA), may provide information about crit-
icalities and probabilities, opening the way to the construction of executable
quantitative models as data analytics.

92 J. Parri et al.

5 Conclusions and Future Works

JARVIS is a hardware/software framework supporting operation and mainte-
nance of Industry 4.0 systems. The framework is designed to integrate a System
of Systems, allocating roles and responsibilities to components in a dynamic IoT
scenario, where multiple operational devices need to be monitored at runtime to
enable just-in-time maintenance.

Digital twins have been designed and adopted for representing conceptual
composite structures of physical components, offering facilitation to monitor,
manage and interact with operating instances, whose telemetries are ingested
as IoT data streams and interpreted by analytic agents in order to detect and
predict critical failures at runtime. Specifically, detected failures are collected
into a high-level events register, held in the digital twins domain logic, and noti-
fied to maintenance technicians; instead, predicted failures enable self-healing
mechanisms or extraordinary maintenance activities.

The JARVIS architecture promotes an engineering process for resilient sys-
tems from two orthogonal perspectives: on the one hand, a specification of the
knowledge base of the system is mapped into an executable domain model made
of software digital twins; on the other hand, reliability artifacts are translated
into runnable failure models. These representations open the way to a vari-
ety of runtime monitoring and control services supporting maintainability and
resilience.

The project will be completed by mid 2020 with experimentation in a concrete
operation scenario, addressing the case of smart city gates for speed control and
access regulation to limited traffic zones.

References

1. Abreu, D.P., Velasquez, K., Curado, M., Monteiro, E.: A resilient internet of things
architecture for smart cities. Ann. Telecommun. 72(1–2), 19–30 (2017)

2. Chappell, D.A.: Enterprise Service Bus. O’Reilly Media Inc., Sebastopol (2004)
3. Curry, E.: Message-oriented middleware. In: Middleware for Communications, pp.

1–28 (2004)
4. Department of Defense: MIL-STD-1629A - Procedures for performing a failure

mode, effects and criticality analysis. Military Standard, Washington, DC (1980)
5. Di Prospero, A., Norouzi, N., Fokaefs, M., Litoiu, M.: Chatbots as assistants: an

architectural framework. In: Proceedings of the 27th Annual International Con-
ference on Computer Science and Software Engineering, pp. 76–86. IBM Corp.
(2017)

6. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

7. Ericson, C.A.: Fault tree analysis. Syst. Saf. Conf. Orlando, Florida 1, 1–9 (1999)
8. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley, Boston (2004)

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12

JARVIS, A HW/SW Framework for Resilient Industry 4.0 Systems 93

9. Forsberg, K., Mooz, H.: The relationship of system engineering to the project cycle.
In: INCOSE International Symposium, vol. 1, pp. 57–65. Wiley Online Library
(1991)

10. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann, Burlington (2014)

11. Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education India, New Delhi (1995)

12. Han, J., Haihong, E., Le, G., Du, J.: Survey on NoSQL database. In: 2011 6th
International Conference on Pervasive Computing and Applications, pp. 363–366.
IEEE (2011)

13. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2004)

14. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things
architecture, possible applications and key challenges. In: 2012 10th International
Conference on Frontiers of Information Technology, pp. 257–260. IEEE (2012)

15. Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley Professional,
Boston (2000)

16. Montesi, F., Weber, J.: Circuit breakers, discovery, and API gateways in microser-
vices. arXiv preprint arXiv:1609.05830 (2016)

17. Paolieri, M., Biagi, M., Carnevali, L., Vicario, E.: The ORIS tool: quantitative eval-
uation of non-markovian systems. In: IEEE Transactions on Software Engineering
(2019)

18. Parri, J., Sampietro, S., Vicario, E.: Deploying digital twins in a lambda architec-
ture for industry 4.0. ERCIM News 115, 30–31 (2018)

19. Pradhan, S., Dubey, A., Gokhale, A.: Designing a resilient deployment and reconfig-
uration infrastructure for remotely managed cyber-physical systems. In: Crnkovic,
I., Troubitsyna, E. (eds.) SERENE 2016. LNCS, vol. 9823, pp. 88–104. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45892-2 7

20. Radatz, J., Olson, M., Campbell, S.: Mil-std-498. Crosstalk J. Defense Softw. Eng.
8(2), 2–5 (1995)

21. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. (CSUR) 42(3), 10 (2010)

22. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, vol. 2. Wiley, Hobo-
ken (2013)

23. Shrouf, F., Ordieres, J., Miragliotta, G.: Smart factories in industry 4.0: a review
of the concept and of energy management approached in production based on the
internet of things paradigm. In: 2014 IEEE International Conference on Industrial
Engineering and Engineering Management, pp. 697–701. IEEE (2014)

24. Suciu, G., Vulpe, A., Halunga, S., Fratu, O., Todoran, G., Suciu, V.: Smart cities
built on resilient cloud computing and secure internet of things. In: 2013 19th
international conference on control systems and computer science. pp. 513–518.
IEEE (2013)

25. Weippl, E.R., Sanderse, B.: Digital twins - introduction to the special theme.
ERCIM News 2018(115), 6–7 (2018)

http://arxiv.org/abs/1609.05830
https://doi.org/10.1007/978-3-319-45892-2_7

Testing and Validation Methods

Toward Testing Self-organizations
in Multi-Embedded-Agent Systems

Arthur Baudet, Oum-El-Kheir Aktouf(B), Annabelle Mercier,
and Jean-Paul Jamont

Univ. Grenoble Alpes, Grenoble INP, LCIS, Valence, France
arthur.baudet@grenoble-inp.org,

{oum-el-kheir.aktouf,annabelle.mercier,
jean-paul.jamont}@lcis.grenoble-inp.fr

Abstract. This paper presents a testing approach for validating global
adaptation in multi-embedded-agent systems. Those systems are gain-
ing increasing attention due to their high adaptability and resilience.
They differ from software multi-agent systems because embedded agents
have additional constraints, like energy management that software agents
don’t. Those constraints and other specificities, like the tight link with
the physical environment, require the use of specific methods and tools
for testing these systems. The proposed approach aims at validating at
run-time the adaptation of those systems when the entities compos-
ing them, the agents, are able to change their global behaviors with
self-organization processes. Self-organization processes are not specific
to multi-agent systems but in their case, they allow agents to change
their organization, i.e. their way of interacting, at runtime. The proposed
approach and tool are designed to support lifelong monitoring of multi-
embedded-agent systems. In such systems, agents have self-organization
behaviors resulting in complex and ever adapting systems, which are
challenging to test and monitor.

Keywords: Embedded multi-agent systems · Run-time validation ·
Multi wireless agent communication · Self-organization testing

1 Introduction

To tackle the problem of over increasing complexity, software engineers are using
new and innovative ways of thinking, with more distributed data and/or compu-
tation. In this context, agent oriented software engineering is gaining increasing
attention thanks to some interesting characteristics of multi-agents systems, like
high fault-tolerance, flexibility and capacity to adapt to the environment or pre-
vious experiences.

There are many definitions of multi-embedded-agent systems (MEAS) or
multi-agents systems as they are used in many different scientific fields [14].
From the software engineering point of view [10,13,23] MEAS are seen as systems
c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 97–108, 2019.
https://doi.org/10.1007/978-3-030-30856-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_7

98 A. Baudet et al.

revolving around the cooperation of physical autonomous entities called agents.
Those agents use cognitive characteristics, like reactivity or proactivity, and
cooperation to achieve their goals, known as the local goals. While they are
aware of their local goals, agents are not fully aware of the complete system
they belong to, and especially the system’s goal, known as the global objective.
Such systems allow simple or low capability agents to work on simple tasks but
achieve, as a whole system, a much more complex objective. A particularity
of a multi-agent system, embedded or not, is the absence of a central entity
coordinating the agents, so that the system-level decisions are distributed among
the agents. The differences due to the embedded feature are related to constraints
like energy management, safety management, or other issues related to mobility,
communications and integrity of the agents in a physical environment [2]. Those
constraints need to be considered in the testing phase. As a consequence, MEAS
are not considered as a subpart of multi-agent systems but as a different kind of
systems, at least from the testing point of view.

In this context, we are interested in testing the achievement of the global
objective, which could be considered as be acceptance testing, from the software
engineering perspective. Testing in MEAS is quite challenging because MEAS
are asynchronous complex1 systems of intelligent agents [19]. Very few existing
works focus on MEAS, most of them focus only on MAS independently from
the implementation of the system under test (SuT). In the following, we will
only consider works with hypothesis on the SuT that do not conflict with the
constraints added by the embedded feature of MEAS.

Testing the achievement of the global objective is to test if the agents, when
working together, produce the expected global output. As there is no central
control over the cooperation of the agents, the cooperation is structured by an
organization. This organization is known to every agent and is implemented
inside the agents. Testing the global objective can then be done by assessing
that the organization is correct. In this paper, we will be focusing on the self-
organization behaviors. This kind of behavior is the capacity of the agents to
create or change the organizations they are in during the execution [5]. It gives
the agents the ability to adapt the whole system so it can fit at the best its
specifications in a changing environment. Therefore, the organization depends
on the agents’ autonomy, which increases the difficulty to test it.

Next section introduces challenges of testing self-organization in MEAS. Then
a review of existing testing techniques applied to this problem is provided in
Sect. 2. In Sect. 3 we provide the adaptation of a MAS testing method to a
MEAS through a real life example, and we conclude with main learned aspects
and some perspectives for future work in Sect. 4.

2 Review of Testing Methods for Self-organizations

From a testing point of view, MEAS are different from other distributed sys-
tems due to the autonomy of the agents. These are intelligent entities which are
1 In the number of variables considered and inter-dependencies between agents.

Toward Testing Self-organizations in Multi-Embedded-Agent Systems 99

hard to test [17], mainly due to some cognitive features such as the ability to
autonomously make decisions in situations that were not planed. Furthermore,
the whole decision process is distributed among them, making the determination
and the control of the whole system’s behavior very hard, not to say unfeasible.

Self-organizations share those difficulties because the organizations result
from the autonomy of the agents. They also add challenges like the error masking.
Indeed, errors can be hidden from the tester if the system adapts when agents
fail. Not only agents are capable of adapting but the way they globally behave is
also adapted, increasing the number of states to consider when testing MEAS [7].

Very few works have been done to test specifically MEAS and even less
for testing self-organization in MEAS. In this section we will present the main
methods used to test self-organizations in MAS and we’ll discuss to what extent
they can be applied to MEAS.

2.1 Formal Methods

Formal methods offer systemic ways to check if the self-organization process will
work as intended by studying models of the system and its specifications. These
methods mainly comprise model-checking, model-based testing and simulation-
based testing.

Model checking is one of the most widespread techniques [8,16,20,21]. It
consists of modelling the system into a known model and using mathematical
tools to prove that the system is correct, based on the model.

Model-based testing methods [15] use modelled specifications to automati-
cally generate test cases with large coverage.

Simulation methods [4,6,18] use modelled system and specifications to run
the modelled system through the modelled specifications and analyze results to
ensure that the system will behave as expected.

2.2 Run-Time Validation Methods

Run-time validation methods aim to complete the work done at design time
assuming that it is really hard to anticipate every external stimuli and mutation
of the system. Moreover, they offer tools to help the supervision process through
monitoring the system, either by only presenting a more usable view of the sys-
tem [22] or analyzing the system to highlight possible errors [3,12]. Nevertheless,
those systems do not prevent errors from occurring and some work like in [1] try
to support the system to prevent it from mutating in wrongful ways.

Generally, formal methods are widely used to guide the developers at design
time. However, it is also relevant to add run-time testing to ensure that the
system will not misbehave at run-time since MEAS have strong constraints on
safety, integrity, and it would require a very complex model to validate those
constraints for every possible events during the design phase.

Moreover, automating the validation process at run-time is relevant in our
case because we aim at providing a tool for software testers whether they have

100 A. Baudet et al.

the mathematical knowledge to use formal methods or not. We do not look for
a fully automated system since it will make the testing process complex. Also,
we will have to validate the testing approach so keeping it as simple as possible
is helping not creating a dependency of complex systems, needing to be able to
test another complex system.

3 Testing Multi Wireless Agent Communication

In this section, we develop a run-time system validation method and we show
how to apply it to a real life example. To do so, we use the Multi Wireless Agent
Communication model (MWAC) described below.

3.1 Definitions

MWAC [11] provides a routing solution for wireless MEAS where no infrastruc-
ture for communication exists. Its objective is simple: giving every agent a way
to communicate with every other agent. This solution relies on the execution
of a routing protocol on a specific organization. This organization is done at
run-time via a self-organization mechanism. In our study, we only consider the
organization and the self-organization processes.

MWAC defines three roles that can be assigned to the agent. A representative
(r) manages and routes the messages of nodes that are directly connected to it.
To achieve this task, it broadcasts, relays, and responds to route search requests.
A link (l) enables message exchange between the representative nodes that are
directly connected to it. A simple member (s) communicates only with the rep-
resentative node to which it is directly connected. It does not have any routing
task to ensure, unless it is the first sender or the final receiver of a message.

Definition 1 (MAS). Let n be the number of agents, At = (ai)i∈�1,n� be the
set of agents of the MAS at time t ∈ T ≡ N (the ordered set of dates), a MAS
can be modeled as an undirected graph Gt = (At, ω t) whose vertices correspond
to the agents and the edges represent the connections between agents.

This graph is called the organizational graph.

Definition 2 (Neighborhood). Let t ∈ T and a ∈ At, the neighborhood of a
is

Vt(a) = {ai | i ∈ �1, n�, {a, ai} ∈ ω}
Remark 1. Suppose t ∈ T then forall a0, a1 ∈ At a0 adjacent to a1 ⇐⇒ a0 ∈
V (a1) ⇐⇒ a1 ∈ V (a0)

Agents determine their roles after analyzing their neighborhood. MWAC uses
a specialization of the agents to select the eligible links.

Definition 3 (Role). Let R = {r, l, s} the set of roles, we define role : At → R
as being the function assigning a role to an agent.

Toward Testing Self-organizations in Multi-Embedded-Agent Systems 101

Definition 4 (Group organization correctness). The organization inside
the groups is considered correct if and only if the following properties are met:

Let t ∈ T,
1. ∀ a ∈ At role(a) = s ⇐⇒ ∃! b ∈ V (a) role(b) = r

This organization allows the characterization of groups composed by a repre-
sentative agent together with the agents of its neighborhood. It is worth noting
that:

1. each representative agent determines a unique group;
2. each link agent belongs to at least two groups;
3. every simple member belongs to a unique group.

The management of messages is assigned to representative agents that commu-
nicate using link agents. An example of this organization is given in Fig. 1.

Fig. 1. Simulation of an MEAS executing MWAC. Red= representative, Green = link,
Yellow = simple member (Color figure online)

Note 1. When an agent changes role, it broadcasts its new role and groups to
its neighborhood.

3.2 Approach Validation

Validation of the self-organization is done in three steps, where each step depends
on the validation of the previous one:

1. Stability validation
2. Groups validation
3. Connectivity validation

102 A. Baudet et al.

Stability issues have to be resolved first. The organization can not be fixed
just once, it needs to be re-organized, for example to allow agents with low
energy level to be replaced. However, the monitoring system should wait for
a given time (which depends on the specification) to allow the system to first
organize itself or re-organize. This time represents the time given to the system
to re-organize. Should it exceed this time, an error will be sent to the operator.

Groups validation is done through the verification of the three properties of
Definition 4.

To study connectivity, let’s first define an undirected graph G′
t = (A′

t, ω
′) at

time t ∈ T where

∀ t ∈ T A′
t = {ai | i ∈ �1, n�, role(ai) = r}

ω′ = {{ai, aj} | i, j ∈ �1, n�, ∃ a ∈ At, {ai, a}, {aj , a} ∈ ω, role(a) = l}
The graph represents the groups in the organization. Hence, if the graph is con-
nected, the groups are all connected. If not, there is an error in the organization.
An example of organization modelling is given in Fig. 2. This graph is called the
groups graph.

S0

R0

S1 G0

S2
R1

G1 R2

G2

R3

S3

S4

S5R4

−→

R0

R1

R2

R3

R4

G0

G0,G1

G1

G0,G2

G1

Fig. 2. Example of organization modelling. Red = representative, Green = link, Yel-
low = simple member (Color figure online)

The Validation Approach. As the SuT is a MEAS, several constraints, mainly
due to the embedded dimension, have been considered during the design of the
validation approach:

C0: The SuT has a finite amount of energy, so the validation approach must
not to put any strains on it.

C1: The SuT is physically distributed, so the validation tool needs to be able
to monitor agents on a possibly wide area.

C2: The SuT can have a huge number of agents, so the validation tool needs
to be easily scalable.

Toward Testing Self-organizations in Multi-Embedded-Agent Systems 103

C0 makes it necessary to only listen to the agent communications and see
agents as black boxes. C1 forces the monitoring system to be distributed to
cover the SuT. At last, C2 requires the monitoring system to be scalable, since
the organization and the group graph can be very large. A solution is to use
decentralized computation, the part of the monitoring system will only know a
part of the graph and cooperate to validate the whole graph but without one
entity knowing the totality of each graph.

The validation approach is therefore a degraded multi-embedded-agent sys-
tem where the agents are not highly adaptable and where only a fixed plane
organization is used. Also, the agents only have basic behavior since they only
have to detect errors and not correct them. Each agent knows only a part of
the system and may or may not exchange their knowledge to validate the whole
system. The cooperation between the testing agents should be minimized; thus
lowering the number of messages needed to exchange and so minimizing the
impact of the testing system on the SuT.

In the following, we will make the hypothesis that the monitoring system is
fully covering the SuT, each agent of the SuT is a neighbor of at least one testing
agent.

Stability Validation. To achieve this task, the testing agents do not need to
cooperate. Every agent will run the algorithm below.

Algorithm 1. Stability validation
Input: d0, d1 two durations defined from the specifications
/* d0 is the maximum duration for one (re-)organization */

/* d1 is the deadline for the system to be stable */

Output: An error can be detected. The Sut can be considered stable. The Sut
graph is constructed

1 while Testing agent is alive do
2 when first organization message is received from sut do
3 t ←− start timer()
4 sut graph ←− add message info()

5 when organization message is received from sut do
6 if t < d0 then
7 sut graph ←− add message info()
8 else if d0 < t < d1 then
9 trigger error()

10 else
11 t ←− start timer()
12 sut stable ←− false

13 when t > d0 do
14 sut stable ←− true

104 A. Baudet et al.

Groups Validation. As the monitoring system relies on listening the commu-
nication inside the SuT, and the MWAC agents do not send their position, the
monitoring system can not compute their neighborhood. It could be done by
triangulation with the testing agents but this would increase significantly com-
plexity of the monitoring system and generate a huge amount of messages to
exchange between the monitoring agents.

Testing the algorithm of group formation needs to be done beforehand.

Connectivity Validation. This task is the most complex one and cooperation
between testing agents is necessary. We need to define a distributed decentral-
ized algorithm to determine if the SuT graph is connected when no agent can
construct the whole graph (see Algorithm 2).

Note 2. Agent behavior is mostly reactive, so all the algorithms will run simul-
taneously. Consequently, the when statement from different algorithms may refer
to the same event.

The main difficulty arises when a validation agent computes two components
as being not connected. Indeed, to construct the path between the two compo-
nents, the validation agent will broadcast a first request and the receiving agents
will then broadcast every possible path until a path is created between the two
components. This is done by sending a message containing the components and,
for each known group not in the received components, if a path exists between
one of the agent of the components, a message is broadcast. This message is the
start of a possible path. When an agent is able to connect the two components
using its knowledge and the knowledge accumulated by the previous agents, it
will send a response to the first requester.

As cooperation between agents requires message exchanging, we need to
define the messages structure.

Message Structure. The messages are formed as shown in Fig. 3.

message type id sender id destination id message id sut graph

Fig. 3. Message structure

Where:

message type id indicates the type of the message, see next paragraph from
message type description

sender id indicates the id of the first agent which sent the message
destination id is most of the time a broadcast id. It is used in the response

type message (see next paragraph for message type description)
message id is used to differentiate messages from the same sender
sut graph is the known SuT graph of the sender

Toward Testing Self-organizations in Multi-Embedded-Agent Systems 105

Algorithm 2. Connectivity validation
Data: d a duration
/* d is maximum duration an agent waits for a response before

considering that there is no path between its connected

components and triggering an error */

Result: An error can be detected, otherwise the organization is considered
valid until the next re-organization

1 while Testing agent is alive do
2 when groups are valid do
3 share sut graph with(neighborhood)

4 when receiving request from neighbor do
5 if is connected(sut graph + neighbor graph) then
6 send response to(neighbor, sut graph)
7 else
8 foreach connected agent to neighbor graph do
9 send request to(neighborhood, neighbor graph + connected

agent)

10 when receiving sharing message from neighbor do
11 if not is connected(sut graph + neighbor graph) then
12 send request to(neighborhood, sut graph + neighbor graph)
13 t ←− start timer()

14 when receiving response from neighbor do
15 if response destination = me and is connected(sut graph +

response graph) then
16 add to sut graph(response graph)
17 t ←− 0

18 else
19 send response to(response destination, response graph)

20 when t > d do
21 trigger error()

Message Types. There are four message types:

sharing is used to first share the SuT graph with the agent neighborhood,
resulting in overlapping graphs which are easier to test.

request is used when the SuT graph of an agent is not connected, it will broad-
cast a request waiting for an other agent to respond with a path between
its connected sub-graphs. The sender id is never changed. To know to
which an agent should respond, it will have to keep the couple sender id,
message id linked with the id of the agent which really sent the message.

response is used to respond to a request. The destination id must corre-
spond to the requester’s id so the response can be forwarded back to it.

wait is used to help the agents synchronize. Every agents may not reach the
third step at the same time, the wait message is used when a request is sent

106 A. Baudet et al.

to an agent in the first two steps. It will tell the requester to wait a response
without starting the timer and put the requester in waiting mode. An agent
in waiting mode receiving a request to which it does not know the response
will also send a wait message. This does not create deadlock since even if
an agent never reaches the third step it will itself eventually timeout.

Note 3. To avoid the count to infinity problem [9], every received graph will be
linked with the agent sending them.

Experimentation and Results. As first results, we were able to detect a
known error in the MWAC self-organization process: as it can be seen in the
Fig. 1, the group of agents 3 and 37 (left of the picture) is not connected to
the other groups. This error can happen when the density of agents is low.
With a hexagonal covering of the SuT shown in Fig. 4 we could detect this error
in several layouts and with a population ranging from low population with a
layout inclined to make the error occur to randomized layouts of population
up to hundreds of tested agents.

Fig. 4. Example of use of our approach. Red = representative, Green = link, Yel-
low = simple member, Cyan= validation agent (Color figure online)

From all tested layouts, we detected the known error but there were also false
positives when the path between components observed as disconnected could not
be found by the validation system even if it existed. This is due to the solution
used to reduce the number of broadcast messages. When the layout and the
self-organization algorithm lead to components with very few and long paths
between them, the computation of those paths may be impaired by the solution
used to prevent broadcast tempests, leading to the detection of an error when
there is none.

A solution to this problem would be to add some routing capabilities to the
validation agents to reduce the number of broadcast messages and enhance the
path finding between components.

Toward Testing Self-organizations in Multi-Embedded-Agent Systems 107

4 Conclusion and Future Work

We motivated the need of specific methods to test self-organizations in embedded
multi-agent systems and highlighted the differences between MEAS and software
MAS. After a presentation of methods that could be adapted to embedded multi-
agents, we proposed applying run-time monitoring to validate organization as
they are changed by the agents. Last, we presented a case study to apply this
method, the associated challenges and some encouraging results.

Future Work includes working on the distributed algorithm computing whether
or not the routing graph is connected, thoroughly validate the testing approach
with different varieties of layouts and high population SuT. Finally, we are aiming
to apply this approach to other similar MEAS.

References

1. Abbass, H.A., Harvey, J., Yaxley, K.: Lifelong testing of smart autonomous sys-
tems by shepherding a swarm of watchdog artificial intelligence agents. CoRR
abs/1812.08960 (2018)

2. Barnier, C., Aktouf, O., Mercier, A., Jamont, J.: Toward an embedded multi-agent
system methodology and positioning on testing. In: 2017 IEEE International Sym-
posium on Software Reliability Engineering Workshops (ISSREW) (2017). https://
doi.org/10.1109/ISSREW.2017.57

3. Bulling, N., Dastani, M., Knobbout, M.: Monitoring norm violations in multi-agent
systems. In: Proceedings of the 2013 International Conference on Autonomous
Agents and Multi-Agent Systems (2013)

4. De Wolf, T., Holvoet, T., Samaey, G.: Engineering self-organising emergent sys-
tems with simulation-based scientific analysis. In: Proceedings of the Fourth Inter-
national Workshop on Engineering Self-Organising Applications (2005)

5. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organization in
multi-agent systems. Knowl. Eng. Rev. 20, (2005). https://doi.org/10.1017/
S0269888905000494

6. Dikenelli, O., Gürcan, Ö., Çakırlar, I., Bora, Ş.: Ratkit: a repeatable automated
testing toolkit for agent-based modeling and simulation. In: The 15th International
Workshop on Multi-Agent Simulation (MABS 2014), 13th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2014) (2014)

7. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Knapp, A., Reif, W.: An
approach for isolated testing of self-organization algorithms. In: de Lemos, R.,
Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive
Systems III. Assurances. LNCS, vol. 9640, pp. 188–222. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-74183-3 7

8. El Fallah-Seghrouchni, A., Degirmenciyan Cartault, I., Marc, F.: Modelling, con-
trol and validation of multi-agent plans in dynamic context. In: Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems - Volume 1 (2004). https://doi.org/10.1109/AAMAS.2004.175

9. Elmeleegy, K., Cox, A.L., Ng, T.S.E.: Understanding and mitigating the effects
of count to infinity in ethernet networks. IEEE/ACM Trans. Netw. 17 (2009).
https://doi.org/10.1109/TNET.2008.920874

https://doi.org/10.1109/ISSREW.2017.57
https://doi.org/10.1109/ISSREW.2017.57
https://doi.org/10.1017/S0269888905000494
https://doi.org/10.1017/S0269888905000494
https://doi.org/10.1007/978-3-319-74183-3_7
https://doi.org/10.1109/AAMAS.2004.175
https://doi.org/10.1109/TNET.2008.920874

108 A. Baudet et al.

10. Greenberg, M.S., Byington, J.C., Harper, D.G.: Mobile agents and security. IEEE
Commun. Mag. 36 (1998). https://doi.org/10.1109/35.689634

11. Hamani, N., Jamont, J., Occello, M., Ben-Yelles, C., Lagreze, A., Koudil, M.: A
multi-cooperative-based approach to manage communication in wireless instru-
mentation systems. IEEE Syst. J. 12, (2018). https://doi.org/10.1109/JSYST.
2017.2721220

12. Helsinger, A., Lazarus, R., Wright, W., Zinky, J.: Tools and techniques for per-
formance measurement of large distributed multiagent systems. In: Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent
Systems (2003). https://doi.org/10.1145/860575.860711

13. Huhns, M.N., Stephens, L.M.: Multiagent systems and societies of agents. Multia-
gent Syst. Mod. Approach Distrib. Artif. Intell. 1, 79–114 (1999)

14. Jamont, J., Occello, M.: Meeting the challenges of decentralised embedded appli-
cations using multi-agent systems. IJAOSE 5(1), 22–68 (2015). https://doi.org/
10.1504/IJAOSE.2015.078435

15. Kerraoui, S., Kissoum, Y., Redjimi, M., Saker, M.: MATT: multi agents testing
tool based nets within nets. J. Inf. Organ. Sci. 40 (2016). https://doi.org/10.31341/
jios.40.2.1

16. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
theverification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19
(2017). https://doi.org/10.1007/s10009-015-0378-x

17. Meziane, F., Vadera, S.: Artificial Intelligence Applications for Improved Software
Engineering Development: New Prospects. IGI Global, Hershey (2009)

18. Niazi, M.A., Hussain, A., Kolberg, M.: Verification & validation of agent based sim-
ulations using the VOMAS (virtual overlay multi-agent system) approach. CoRR
abs/1708.02361 (2017)

19. Rouff, C.: A test agent for testing agents and their communities. In: Proceedings,
IEEE Aerospace Conference, vol. 5 (2002). https://doi.org/10.1109/AERO.2002.
1035446

20. Rouff, C., Buskens, R., Pullum, L., Cui, X., Hinchey, M.: The adaptiv approach
to verification of adaptive systems. In: Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering (2012). https://doi.
org/10.1145/2347583.2347600

21. Samaey, G., Holvoet, T., Wolf, T.D.: Using equation-free macroscopic analysis for
studying self-organising emergent solutions. In: 2008 Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (2008). https://doi.org/
10.1109/SASO.2008.30

22. Tonn, J., Kaiser, S.: ASGARD - a graphical monitoring tool for distributed agent
infrastructures. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.)
Advances in Practical Applications of Agents and Multiagent Systems. AINSC,
vol. 70. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12384-9 21

23. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.
Eng. Rev. 10 (1995). https://doi.org/10.1017/S0269888900008122

https://doi.org/10.1109/35.689634
https://doi.org/10.1109/JSYST.2017.2721220
https://doi.org/10.1109/JSYST.2017.2721220
https://doi.org/10.1145/860575.860711
https://doi.org/10.1504/IJAOSE.2015.078435
https://doi.org/10.1504/IJAOSE.2015.078435
https://doi.org/10.31341/jios.40.2.1
https://doi.org/10.31341/jios.40.2.1
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1109/AERO.2002.1035446
https://doi.org/10.1109/AERO.2002.1035446
https://doi.org/10.1145/2347583.2347600
https://doi.org/10.1145/2347583.2347600
https://doi.org/10.1109/SASO.2008.30
https://doi.org/10.1109/SASO.2008.30
https://doi.org/10.1007/978-3-642-12384-9_21
https://doi.org/10.1017/S0269888900008122

Towards Integrated Correctness Analysis
and Performance Evaluation of Software

Systems (Doctoral Forum Paper)

Ioannis Stefanakos(B)

Department of Computer Science, University of York, York, UK
is742@york.ac.uk

Abstract. In recent times, the involvement of computer systems in our
lives has been drastically increasing, as has the need of improving the
resilience of these systems, e.g. so they can withstand errors and changes
in their environment. Techniques such as testing and simulation are often
used to ensure this, but in the case of complex, real-time systems, these
techniques can only provide coverage for a limited set of possible sys-
tem behaviours. Software model checking and stochastic verification are
alternative techniques that formally and exhaustively verify whether soft-
ware meets its functional requirements and establish the performance
and dependability properties of software, respectively. The two formal
techniques are often used in isolation, yet software must simultaneously
ensure a combination of functional and non-functional requirements. The
doctoral project described in this paper aims to bring these two areas of
software verification together by enabling the joint analysis of functional
and non-functional properties of software systems.

1 Introduction

It has long been known that computer systems, both hardware and software,
exhibit errors. In order to increase the reliability of these systems, software engi-
neers may devote a substantial amount of time on testing and debugging. There
has always been research focusing on developing new or improving the existing
verification methods [1]. Verification is the area that includes all the techniques
aiming to improve software quality and its main focus is to provide evidence
that the final product conforms to the specified requirements during all of its
life cycle processes [2]. Some of the techniques subsumed under verification are
formal verification, testing and simulation.

Testing is considered an essential activity in software engineering. It is defined
as the process of validation of the system’s intended behaviour and identification
of potential malfunctions [3]. With the increase of involvement of software and
hardware systems in our everyday lives, testing has become more complex but
at the same time necessary to ensure the correct functionality of these systems.

Work supported by Microsoft Research through its PhD Scholarship Programme.

c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 109–117, 2019.
https://doi.org/10.1007/978-3-030-30856-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_8

110 I. Stefanakos

Although successful testing identifies a significant amount of errors, it is still
impossible to capture all of them [4], especially in dynamic environments. As a
result, computer systems can still be afflicted by errors which could potentially
lead to severe consequences, e.g. safety critical systems.

Stochastic verification and model checking are techniques able to address
issues that testing is not able to identify. Both of these techniques are also
known as formal methods, which is a line of study that depends on the fact that
computer systems can be depicted as mathematical objects whose behaviour is
in principle well-determined [1].

Model checking provides an automated method for verifying concurrent
finite-state systems in which the system’s intended behaviour is represented by a
state-graph model checked to confirm it satisfies properties formalized in tempo-
ral logic [5]. The system semantics are given by means of a Kripke structure and
the specification is expressed using temporal logic. Temporal logic is a formalism
for reasoning about time without introducing it explicitly [6].

A Kripke structure (KS) is a labeled graph that contains all the possible
states of a system and the transitions between them. The states are represented
by the vertices of the graph and the transitions by its edges. In more detail, a
tuple M = (S, S0, R,AP,L) is the representation of a Kripke structure where
S is a set of states, S0 ⊆ S is a set of the initial states, R ⊆ S × S is a
transition relation, AP is a set of atomic propositions and L : S → 2AP is
a labeling function that maps each state to the set of propositional variables
that hold in it [7]. The states represent the different states of a system. The
main difference between Kripke structures and labelled transition systems (LTS),
which is another popular basis for many formal modelling languages, is that
transitions in LTS are labelled to describe the actions which cause a state change
while the states in KS are labelled to describe how they are modified by the
transitions [8].

Stochastic verification (also known as probabilistic model checking) is a for-
mal verification method that can establish quality properties of software sys-
tems that exhibit stochastic behaviour [9]. Software systems of this nature can
be found in applications used in aircrafts and vehicles, as well as in personal
devices such as mobile phones. In order to be able to verify the correctness of
the systems operating under uncertain environments, it is necessary to analyze
quantitative properties such as performance and reliability.

Probabilistic model checking uses models that can be categorized as contin-
uous and discrete time, deterministic and non-deterministic, and compositional.
The simplest type of all probabilistic models is the Discrete-Time Markov Chains
(DTMCs) [10]. DTMCs are Kripke structures that all their transitions are linked
to a specific probability. The sum of all out-going transition probabilities, that
each state has, is equal to one.

Model checking and probabilistic model checking are necessary to ensure that
the produced software meets both functional and non-functional requirements.
While their importance is recognized, software engineers often only consider one
or the other during their software analysis and this has mainly to do with the

Towards Integrated Correctness Analysis and Performance Evaluation 111

Fig. 1. High-level diagram of the proposed approach

fact that these techniques use disjoint models, different formalisms, etc. This
project aims to bring together the two areas of verification by (a) extending
existing modelling paradigms in order to integrate the verification of both func-
tional and non-functional requirements, and (b) achieving this integration with
an acceptable cost and good scalability that enables the application of the new
verification techniques to real-world systems.

2 Objectives and Proposed Solution

The project focuses on constructing state-transition models (e.g., Kripke struc-
tures and discrete-time Markov chains or DTMCs [10]) of the source code
under verification, through the implementation of a code-to-model transforma-
tion method. This method will be implemented as a hybrid verification tool.
Additionally, a list of properties to be verified will be given as input to the tool.
To enable the analysis of non-functional properties, the tool will also use as input
preprocessed logs of the system. These logs will capture the operational profile of
the software, and will be used to calculate the probability of executing different
branches within the code, based on previous use. The resulting probabilities will
be assigned to the respective state transitions of the generated DTMC model

112 I. Stefanakos

which, finally, together with the source code will be analyzed by model checkers,
to verify both functional and non-functional properties of interest. When fully
developed, the approach may use model checkers and verification tools such as
Storm [11], NuSMV [12], Java PathFinder (JPF) [13], FACT [14,15], ePMC
[16] and OMNI [17,18]. The joint analysis of functional (e.g. deadlock freeness,
reachability) and non-functional requirements (e.g. response time, energy con-
sumption) will provide insight to software engineers and the ability to inspect
the impact of different changes to the system.

Moreover, our project was planned with an emphasis on resilience, which can
be defined as the ability to provide required capability in the face of adversity [19,
20]. Specifically, the analysis provided by our approach will enable the selection,
at design time or runtime, of method implementations (code) that can withstand
the actual workload and other aspects of the environment of a system without
violating the system requirements. To achieve the project goals, we propose an
approach that comprises the following key components:

– The implementation of a code-to-model transformation method that will
enable the conversion of Java source code into Kripke structures and DTMC
models. For the implementation of this method, we used JavaParser1, a set of
libraries that supports code generation, code analysis and code refactoring.

– A list of input parameters for our tool, i.e. source code, properties of interest
and pre-processed logs of user data.

– A communication channel between our tool and popular model checkers, some
of them mentioned earlier, for the verification of both functional and non-
functional requirements.

Figure 1 depicts the high-level architecture of our solution. In the first step,
the software engineer/domain expert will submit the required inputs to our tool.
In the next step, the tool will generate the formal models based on the input
data, and will communicate with the model checkers to initiate the verifica-
tion procedure. As soon as this process finishes, the tool will receive the results
and will produce an output file, which can be used by the engineer to detect
requirement violations.

To achieve the project objectives, we have organized the research work into
the following tasks:

1. Review existing literature on joint verification of functional and non-
functional requirements to learn the current state of research. The outcome
of this literature review is summarized in Sect. 4.

2. Based on the identified limitations, form a theoretical method as a potential
solution. A first version of this solution was described earlier in this section.

3. Proceed with the implementation of the proposed theoretical method. The
preliminary implementation work carried out so far is presented in Sect. 3.

4. Evaluate the method using case studies taken from model checking bench-
marks and real-world applications (e.g. Android code).

1 https://javaparser.org.

https://javaparser.org

Towards Integrated Correctness Analysis and Performance Evaluation 113

Fig. 2. Example of input source code (left) and output DTMC model (right)

5. Extend the approach to support further automation of the method and apply
additional techniques (e.g. parametric model checking).

6. Further evaluate and refine our framework, making any necessary improve-
ments based on the evaluation results.

3 Preliminary Work

So far, the project has developed a preliminary version of the approach from
Fig. 1. This version of our verification tool supports only the transformation of
Java source code into a DTMC model. Thus, the verification process is cur-
rently performed manually, using the probabilistic model checker PRISM (www.
prismmodelchecker.org) after the automated generation of the DTMC.

Figure 2 presents an example of the tool’s input and output. At this stage,
the tool is only able to extract a DTMC model from a given source code (with
transition probabilities represented as parameters of the DTMC model). We
still need the logs of user data to reason about them, which is one of the future
steps of the project, along with the choice of appropriate model checkers (some
mentioned earlier) to complete the verification process.

Focusing on this example, every variable assignment in the code is repre-
sented by a new state in the DTMC model and can lead to a another state with
probability P = 1. The if statements on the other hand, also represented by a
new state in the model, lead to two possible states. One with probability P if
the condition is satisfied and a second one with probability 1 − P , in the case

www.prismmodelchecker.org
www.prismmodelchecker.org

114 I. Stefanakos

the condition is not satisfied. In the latter case, we move to the else branch, if it
exists, or to the next expression. For instance, consider the if statement starting
in line 3 of the Java code from Fig. 2; the if branch of this conditional statement
is executed for i > 3. Therefore, if the log of an application that uses this code
shows that i is equally likely to take the values 0, 1, . . . , 9, the probability that
the if branch is executed will be 0.7, and the probability that the else branch is
executed will be 0.3. Of course, in real systems, the conditions are often more
complex, and the values of variables are rarely uniformly distributed like in this
simple example.

The method shows some promising preliminary results. In preliminary test-
ing, we allocated a time counter under specific branches of the source code
and then performed simulation to calculate the average response time. Next,
we added reward structures in the DTMC model (e.g. rewards “execT ime”
s = 1 : 2; s = 3 : 1; endrewards), to assign the corresponding states with the
same time values used in the source code. To deal with probabilities at this
stage, we created a uniform distribution of values ranging between −1 and 1.
The final results derived from the model were finally obtained by establishing
and verifying properties in Probabilistic Computation Tree Logic (PCTL) [21],
e.g. R {“execTime”}=? [F s = 7]. This property specification translates to
what is the total execution time by the time we reach program termination. The
simulation and probabilistic model checking produced the same results in these
preliminary experiments.

4 Related Work

While several studies have been conducted in the areas of model checking and
probabilistic model checking, with notable advances in both [6,9,22,23], there are
significantly fewer approaches when it comes to combining these two techniques.

Cortellessa et al. [24] build an XML-based framework that consists of soft-
ware models and formal relations among them, to support the integration of
functional and non-functional analysis of software systems. The XML repre-
sentation is translated by an Analysis filter as input of the desired analysis
methodology. The two considered methodologies are CHARMY and TwoTow-
ers. The former specifies software architectures and their behavioural properties
by using state machines and scenarios as the source notation. Model checking is
then performed to these notations in order to evaluate the consistency between
the software architecture and the functional requirements. The latter supports
the validation of performance requirements at an architectural level. It takes as
input an AEmilia textual description (ADL), builds the corresponding Markov
model and evaluates the performance indices of interest. Feedback is then pro-
vided whether the model should be modified. Despite the joint functional and
non-functional analysis, this work is limited at architectural level and to the
integration of only two methodologies.

Nostro et al. [25] present an approach for the automated synthesis of appli-
cation layer connectors between heterogeneous networked systems, addressing

Towards Integrated Correctness Analysis and Performance Evaluation 115

functional and non-functional interoperability that takes place both at pre-
deployment and run-time. During pre-deployment time, an analysis module
receives the applications’ specifications and through their analysis, synthesizes
a mediator that enables the functional inter-operation among them. Following,
a connector analysis module takes as input the synthesized mediator and the
non-functional requirements and performs a stochastic model-based analysis to
evaluate the desired non-functional properties. Feedback is provided back to the
connector synthesis module about the system’s expected operation and how to
improve the synthesized mediator in the case that the non-functional require-
ments are not met. Pre-deployment time’s output is a connector that satisfies
both functional and non-functional requirements. At run-time, probes are used
on the applications and the synthesized mediator to monitor the connected sys-
tem. When a violation occurs, the probes identify it and trigger the adaptation
process, re-evaluating the new specification. Similarly to the previous approach,
this one is limited at architectural level and needs to address open issues such
as analysis optimization and scalability aspects.

Filieri et al. [26,27] introduce a general methodology that uses symbolic exe-
cution of source code for extracting failure and success paths that can be used for
probabilistic reliability assessment. The result of symbolic execution is a finite
set of paths, each with a path condition. These paths can either lead to success,
failure or can be interrupted by the bounded exploration. These approaches per-
form reliability analysis directly on source code, in contrast with most of the
current approaches that are limited on architectural level. However, only relia-
bility has been addressed, and the bounded exploration can potentially lead to
loss of information necessary for non-functional property analysis. Our research
aims to address the problem of bounded exploration of loops, and to consider
additional non-functional properties, e.g. performance.

5 Conclusion

Model checking and probabilistic model checking are techniques widely used
to verify functional properties of software systems and to establishing perfor-
mance and dependability properties of these systems, respectively. However, the
two techniques are often used in isolation. Their integration is difficult due to
the different formalisms and models they use. Additionally, most of the current
approaches are limited at architectural level, and the ones focused on source
code have limitations in both exploration depth and variety of non-functional
properties. In this doctoral paper, we proposed an approach that combines the
two techniques at source code level, with the aim to provide insight to soft-
ware engineers about violations of functional and non-functional requirements
of software systems.

References

1. Emerson, E.A.: The beginning of model checking: a personal perspective. In: 18th
International Conference on Computer Aided Verification, pp. 27–45 (2008)

116 I. Stefanakos

2. IEEE Standard for System and Software Verification and Validation. In: IEEE Std
1012–2012, pp. 1–223 (2012)

3. Bertolino, A.: Software testing research: achievements, challenges, dreams. In:
FOSE 2007, pp. 85–103 (2007)

4. Lee, P., Verma, S., Harris, I.G.: A Comparison of Error Detection between
Simulation-based Validation and Model Checking. University of California, Center
for Embedded Computer Systems (2013)

5. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: LICS
1990, pp. 414–425 (1990)

6. Clarke, E.M., Lerda, F.: Model Checking: Software and Beyond. J. Universal Com-
puter Science 13, 639–649 (2007)

7. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0 1

8. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.), Semantics of Systems of Concurrent Processes, pp.
407–419 (1990)

9. Kwiatkowska, M., Norman, G., Parker, D.: Advances and challenges of probabilistic
model checking. In: Allerton 2010, pp. 1691–1698 (2010)

10. Norman, G., Parker, D., Kwiatkowska, M., et al.: Using probabilistic model check-
ing for dynamic power management. Formal Aspects Comput. 17(2), 160–176
(2005)

11. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: CAV 2017, pp. 592–600, (2017)

12. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

13. Brat, G., Havelund, K., Park, S., Visser, W.: Java PathFinder - second generation
of a Java model checker, Advances in Verification Workshop (2000)

14. Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Transact. Reliab. 65(1), 107–125 (2015)

15. Calinescu, R., Johnson, K., Paterson, C.: FACT: a probabilistic model checker for
formal verification with confidence intervals. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 540–546. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 32

16. Calinescu, R., Paterson, C.A., Johnson, K.: Efficient parametric model checking
using domain knowledge. In: IEEE Transactions on Software Engineering (2018).
https://doi.org/10.1109/TSE.2019.2912958

17. Paterson, C.A., Calinescu, R.: Accurate analysis of quality properties of software
with observation-based Markov chain refinement. In: ICSA 2017, pp. 121–130
(2017)

18. Paterson, C.A., Calinescu, R.: Observation-enhanced QoS analysis of component-
based systems. In: IEEE Transactions on Software Engineering (2018). https://
doi.org/10.1109/TSE.2018.2864159

19. INCOSE, Resilient Systems Homepage. https://www.incose.org/incose-member-
resources/working-groups/analytic/resilient-systems. Accessed 11 June 2019

20. Bennaceur, A., et al.: Modelling and analysing resilient cyber-physical systems. In:
SEAMS SEAMS 2019, pp. 70–76 (2019)

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-662-49674-9_32
https://doi.org/10.1007/978-3-662-49674-9_32
https://doi.org/10.1109/TSE.2019.2912958
https://doi.org/10.1109/TSE.2018.2864159
https://doi.org/10.1109/TSE.2018.2864159
https://www.incose.org/incose-member-resources/working-groups/analytic/resilient-systems
https://www.incose.org/incose-member-resources/working-groups/analytic/resilient-systems

Towards Integrated Correctness Analysis and Performance Evaluation 117

22. Calinescu, R., Kikuchi, S.: Formal methods @ runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21292-5 7

23. Calinescu, R., et al.: Synthesis and verification of self-aware computing systems.
Self-Aware Computing Systems, pp. 337–373. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-47474-8 11

24. Cortellessa, V., et al.: A framework for the integration of functional and non-
functional analysis of software architectures. Electron. Notes Theoret. Comput.
Sci. 116, 31–44 (2005)

25. Nostro, N., et al.: Achieving functional and non functional interoperability through
synthesized connectors. J. Syst. Softw. 111, 185–199 (2016)

26. Filieri, A., Pasareanu, C.S., Yang, G.: Quantification of software changes through
probabilistic symbolic execution. In: ASE 2015, pp. 703–708 (2016)

27. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder.
In: ICSE 2013, pp. 622–631 (2013)

https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-319-47474-8_11
https://doi.org/10.1007/978-3-319-47474-8_11

Security, Trust and Privacy
Management

An Energy Aware Approach to Trust
Management Systems for Embedded

Multi-Agent Systems

Arthur Darroux, Jean-Paul Jamont, Oum-El-Kheir Aktouf(B),
and Annabelle Mercier

Univ. Grenoble Alpes, Grenoble INP, LCIS, Valence, France
arthur.darroux@grenoble-inp.org, {jean-paul.jamont,oum-el-kheir.aktouf,

annabelle.mercier}@lcis.grenoble-inp.fr

Abstract. With the growing interest toward pervasive systems such as
the Internet of Things or Cyber-Physical Systems, embedded multi-agent
systems have been increasingly investigated. In these systems, agents
cooperate to achieve their local goals and a global goal that would be
impossible for an isolated agent to achieve. However, the dark side of
this collaboration is that agents can easily be victim of malicious attacks
coming from untrustworthy agents. Consequently, trust management sys-
tems are designed to help agents choosing trustworthy counterparts to
cooperate based on available information. But gathering the necessary
information may be too expensive in terms of energy for small embedded
agents and not relevant in all contexts. We propose a solution that allows
agents to manage the energy consumption associated with information
gathering. Our solution uses a Multi-Armed Bandit algorithm, which is a
reinforcement learning technique to allow the agents to adapt themselves
and their energy consumption to the context.

Keywords: Embedded multi-agent systems · Security ·
Trust management · Energy awareness · Multi-armed bandit

1 Introduction

Agent-Oriented Software Engineering (AOSE) aims at developing distributed
and decentralised systems where entities (called agents) autonomously interact
with each others. Agents only have a local view of their environment and other
agents of the system. Thus, in order to fulfil the goal of the system, agents have
to work in collaboration. Agents can make decisions in situations that weren’t
planed and without the help of an operator (decision autonomy). Agents are
also flexible, meaning that their decisions are based on what they perceive of
their environment (reactivity), their goals (proactivity) and their relationships
with other agents (social ability) [10]. Multi-agent systems (MAS) are used in
e-business contexts but also in ad-hoc networks, Internet of Things (IoT) and
Cyber-Physical Systems (CPSs).
c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 121–137, 2019.
https://doi.org/10.1007/978-3-030-30856-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_9

122 A. Darroux et al.

This paper focuses on Embedded Multi-Agents Systems (EMAS [8]). We
define an EMAS as a MAS that includes (but is not restricted to) agents that
can interact with the physical world (through sensors and actuators). Examples
of these systems are wireless sensor networks, IoT systems, Vehicular Ad Hoc
Networks (VANET), etc.

EMAS are also often open and heterogeneous systems. Heterogeneity is the
fact that all agents don’t have the same features (in terms of computational
power, energy constraints, etc.). This is often the case in EMAS since embedded
agents often interact with software agents running on computers with much more
computational power. The openness of the systems is the allowance to agents
to enter and leave the system dynamically [21]. Many EMAS are open systems
because of the nature of agents that work at a local scale and the wireless nature
of communications that are widely used in this domain, allowing new agents to
interact with agents from the system at any time.

Security has become a major concern in computing systems in general, espe-
cially open ones such as multi-agent systems. To ensure confidentiality, integrity,
availability, systems have to use secure communications and protect agents from
software and hardware attacks. In a multi-agent context, a drawback of relying
on a collective activity for a global task is that it increases the system vulnerabil-
ity to failures or malicious behaviours. If an agent does not behave as expected,
it will influence the outcome of the system’s global task. The autonomous nature
of agents and the necessity to cooperate with other agents bring some new chal-
lenges. Agents have to autonomously choose other agents to interact with. To
ensure the system’s security, decisions made by agents need to be reliable. This
means that trustworthy agents shouldn’t interact with agents that aim at break-
ing the system [16] (e.g. by disclosing private information, or refusing to cooper-
ate in a Denial of Service fashion.). In EMAS, this concern is reinforced because
not only malicious agents can enter the system because of its openness, but also
trustworthy agents can be corrupted. Indeed, corrupting agents can be performed
easily since embedded agents have (most of the time) low capabilities and can
be victim of software and hardware attacks. To tackle multi-agent systems’ secu-
rity issues, the concept of trust has been introduced and widely studied in the
literature. The rational from this concept is to help the agent’s decision making
process by making the agents choose other trustworthy agents to interact with.

In this paper, we propose a lightweight trust model to help agents to man-
age their energy consumption due to the trust management process. We use
Multi-Armed Bandit (MAB) learning algorithms to enable an agent to select
trustworthy neighbouring agents with whom to cooperate. The main originality
of our model is that it takes into account the energy cost of calculating trust
related values, thus helping each agent to answer the question: is it worth it to
spend energy to have better values of trust or not?

This paper is organised as follows. Section 2 introduces the general back-
ground of this work by further describing the concept of trust and its related
features (information sources, models and constraints). Section 3 describes the
proposed energy management process within a lightweight trust management

An Energy Aware Trust Management Systems for EMAS 123

system by using a Multi-Armed Bandit learning based approach. As far as we
know, this is an original approach for making trust management system energy-
aware. A case study is also introduced. Section 4 concludes this paper and sum-
marises future research directions.

2 Trust Management Systems for Embedded Multi-Agent
Systems

In this section, we first provide an overview the trust notion. Then, we analyze
existing trust management systems (TMS) in an EMAS context, following four
main features: (Sect. 2.2) information sources (Sect. 2.3) models of trust within
an agent (Sect. 2.4) vulnerability of TMS, and (Sect. 2.5) constraints, related to
limited resources in EMAS.

2.1 Security and Trust

Trust is a concept that we can intuitively understand but is hard to define
[5]. Nevertheless, the benefits of its application in computing and distributed
systems is widely agreed. Many works have been done to use it in distributed
systems and many TMS have been designed to help agents make a better decision
[7,15,16,19,22,23,29,30].

Due to the large interest given to TMS, very different approaches can be
found in the literature. The first major difference between existing approaches
comes from the presence or not of a central trusted entity that is in charge
of managing trust in the system. Systems where such an entity exists are called
centralised while the other ones other ones are called distributed or decentralised.
The second main difference comes from the fact that trust associated to an agent
can be global and shared by all agents, or subjective to each agent.

Furthermore, as stated by [19] TMS can be split into three main components:
trust management, trust modelling and decision making (see Fig. 1). Trust man-
agement describes how evidences are gathered from past interactions, contexts
and other agents. Trust modelling is the computational model used to repre-
sent trust in an agent. It describes how trust related values are represented (as
binary values trusted or not trusted or as multi-dimensional continuous values
representing different values of trust in different contexts) and how they are cal-
culated from evidences (using a probabilistic approach, or fuzzy logic). Decision
making describes how decisions are made based on trust values.

Since agents in EMAS only have a partial view of other members of the
system, they will not always be able to communicate with other agents; so we
cannot rely on a central trusted entity to manage the trust calculation and deci-
sion making. Besides, using a central entity will cause some scalability issues in
the system and contradict the distributed nature of multi-agent systems. Con-
sequently, our work is based on decentralised and subjective TMS. This means
that agents have to evaluate their possible partners themselves. This condition
implies some constraint on the trust management systems: TMS shouldn’t be

124 A. Darroux et al.

too resource consuming for embedded agents with low computational power and
energy limitation [24,30].

Trust
management

Trust
modelling

Decision
making

Fig. 1. Trust management system

2.2 Information Sources

Most information used to build trust with a system is related to past experiences
of the system. However, additional information can be considered. Three main
types of information can be distinguished according to their respective sources:

– Direct information: information that an agent can acquire by itself (self-
acquired) [22,23,27,29,30]. Direct information is the most reliable and used
one. However, it is the less available one, especially in open systems. Two
main types of direct information have been distinguished [23]: information
issued from direct experience of an agent, and information observed by an
agent from interactions between other agents.

– Indirect information: this type of information is still based on interactions
between agents. However, it is not directly observed as in the first case, but it
is transmitted to the agent by other intermediate agents. This type of infor-
mation is usually called “recommendation”. Trust models based on indirect
information are called reputation models [23]. This type of information is
more available than the preceding one, however it can be issued by malicious
agents.

– Socio-cognitive information: this type of information is derived from intrinsic
features of the agents [29].

2.3 Models

Trust models help in figuring out how trust is represented within an agent [22].
Two ways of classifying a trust model are:

– The trust scale: this may correspond to discrete or continuous values.
– The trust dimension: refers to the number of values associated to the trust.

Different values may be used to represent trust if different contexts.

[18] stresses the fact that both categories above are closely related to the asso-
ciated semantics.

An Energy Aware Trust Management Systems for EMAS 125

2.4 Vulnerability

As a security feature, a TMS may be prone to some weaknesses that allow
attackers to avoid protection provided by the TMS. Sabater [23] added this
criteria to features that should be considered when working on a TMS. The
authors [23] proposed a classification that goes from 0 to 2, where:

– 0: indicates that all agents in the system are considered reliable;
– 1: indicates that agents may hide or add a bias to the information but without

lying;
– 2: the TMS considers that agents may be malicious and lie intentionally.

Other studies such as [11,22] classify attacks against TMS as:

– “Bad mouthing” consists in spreading false information against some agents
in order to deny their reputation.

– By contrast the “good-mouthing” can be used to spread “faulty good” infor-
mation on a malicious agent (example: self-promoting).

– The “On-Off attack” consists for a node to alternate between normal and
malicious behaviour in order to enhance its own trust indicators between
attacks.

– The “selective attack” consists for an agent to behave normally with the
majority of agents in order to keep a positive reputation and then to be
malicious only against some selected agents.

– The “white washing” attack is made possible in systems where an agent can
make the most of the system. Then, when his reputation is too much low, he
quits the system and connects again under a new identity.

2.5 Constraints

Three main constraints can be identified for embedded EMAS: available energy,
computing power and memory space. These constraints should be taken into
account when designing a TMS for such systems.

2.6 Trust in Embedded and Distributed Pervasive Systems

This overview of existing solutions to TMS in embedded and distributed systems
is limited to completely distributed solutions. Indeed, such solutions are more
scalable and fit better the objectives of EMAS. They can be applied to sys-
tems like WSNs, IoT... These solutions can be classified into three main groups:
routing-based, data-centric and service-oriented solutions.

Routing-based solutions can use neighborhood monitoring approaches like
in [17] (TARP protocol) [12] (EMPIRE protocol) where each agent monitors
the ratio of received and sent messages from its neighbours. The EMPIRE solu-
tion tries to lower energy consumption by introducing periodic monitoring, and
considers white washing and good mouthing attacks.

126 A. Darroux et al.

In data-centric solutions, [14] presents a data aggregation-based solution,
RDAT, that aims at determining the number of malicious actions in the system.
Agent reputation is used to limit bad/good mouthing attacks. In RDAT, energy
used for computing trust levels is taken into account but not the energy necessary
for monitoring actions.

Service-oriented solutions are presented in [3,4,13] for service-based IoT sys-
tems. They use social interactions within such systems for determining agent
reputations. They can protect against On/Off attacks.

This overview of main types of existing TMS for pervasive systems shows
that energy consumption is seldom considered, although this can be an impor-
tant constraint for such systems. This is why, our approach, introduced below,
considers energy levels and energy management within TMS, providing what we
call an energy-aware TMS.

3 A Multi-Armed Bandit Learning Based Approach

The amount of information needed to allow an agent to make right trust decisions
depends on the context. TMS are widely used in wireless sensor networks in order
to allow sensor agents to choose which of their neighbours to cooperate with in
order to route messages (as in [26]). These sensor agents may have multiple ways
to get information about their neighbours. Indeed, a sensor agent can:

– listen that messages sent to a neighbour are forwarded to the next hop. This
approach doesn’t require a lot of energy but it only provides little information
about neighbours.

– monitor all messages received by its neighbours and verify that they are for-
warded correctly. This approach can give a lot more information to the agent
about his neighbours. However, it will require the agent him to continuously
listen and process all messages sent in its neighbourhood. As a consequence,
this approach may make the agent greatly consume its resources and reduce
its live time.

– exchange trust values with its neighbours. The information gathered this way
will have a cost in terms of energy depending on the number of queried neigh-
bours, and since this information can be manipulated by malicious agents it
may not always be worth it to gather and use it. When an agent is in a trust-
worthy environment (i.e. with few and naive malicious agents that always
behave badly) the agent will be able to identify the malicious agents only
based on its interactions with them. But in case malicious agents are more
intelligent (for example, they use selective or On-Off attacks) reliable agents
may need to communicate with each other in order to collect enough infor-
mation to avoid being betrayed. In addition, in situations where most of the
recommenders are also malicious, the agent may have to spend a lot of energy
to monitor other agents.

Our work aims at giving an agent the ability to adapt itself and its behaviour (in
gathering information) to an unknown context while being aware of the available

An Energy Aware Trust Management Systems for EMAS 127

amount of energy. In practice, the agent must learn which behaviour gives the
most reliable interactions with other agents before it runs out of energy. This
problem can easily me modelled as a learning problem. Indeed, the agent has
to choose between options (behaviours) that have unknown utilities (unknown
performances and costs). As a consequence, the agent can only learn which option
is the best. In order to easily model the different existing options to an agent,
one suited learning model is the multi-armed bandit model (as promoted in [2]).
We describe below how to use this model to solve our issue.

3.1 Budgeted Multi-Armed Bandit

The Multi-Armed Bandit (MAB) problem as described in [20] is a sequential
decision making problem where an agent has to choose sequentially between a
set of options (a set of slot machines). After making a choice (pulling the arm
of a slot machine), the agent gets a reward that depends on the chosen option.
The reward gain is random and unknown to the agent before his choice. The
budgeted version of the multi-armed bandit problem introduces a cost function
when choosing an option and a budget, thus limiting the number of plays for
a given agent, whereas in the original version the agent would have played an
infinite number of times. The goal of the budgeted multi-armed bandit algorithm
is to maximise the reward gain of the agent before its budget runs out.

More formally, the budgeted multi-armed bandit problem can be stated as
follow:

Definition 1 (Budgeted Multi-Armed Bandit Setup). Let K = �1, k�
with k ∈ N be a set of options (i.e. a set of arms),

T a set of rounds,
B ∈ R a budget,
∀i ∈ K,∀t ∈ T , let ri(t) be the reward value obtained for choosing choice i at

round t.
∀i ∈ K, ∀t ∈ T , rewards ri(t) are drawn independently. But given an option

j ∈ K, ∀t ∈ T , rewards rj(t) are drawn from random variables following the
same distribution.

∀i ∈ K,∀t ∈ T , let ci(t) be the cost value payed for choosing option i at
round t.

The budgeted MAB problem has been studied with different setups depend-
ing on the cost distributions of each option. For example, [25] studied a setup
where the cost of an option is fixed and an agent only needs to choose each
option once in order to know its cost. [6] worked on a setup where the costs of
the options are randomly drawn but can only take discrete values. Later, [28]
described a solution for random continuous costs.

Definition 2 (Budgeted Multi-Armed Bandit Algorithm). A budgeted
MAB algorithm A is a finite sequence of options (it)t∈T ′ (where T ′ is a finite
subset of T) that aim at maximising the expected reward:

128 A. Darroux et al.

EA = E

[∑
t∈T ′

rit(t)

]

such that ∑
t∈T ′

cit(t) ≤ B

In practice, budgeted MAB algorithm are not evaluated in terms of their
expected reward but in terms of the regret (see Definition 3 below) which is
defined as the difference with the expected reward of an optimal algorithm (an
optimal algorithm is an algorithm that can obtain the maximum reward knowing
the reward and cost distributions of each option).

Definition 3. The regret of a budgeted MAB algorithm is defined as:

RA = E∗ − EA

= E∗ − E

[∑
t∈T ′

rit(t)

]

where E∗ is the expected reward of the optimal algorithm.

3.2 Taking into Account TMS Energy Consumption in MAB

To model the energy saving in TMS as a budgeted MAB problem we need to
identify four elements: (i) the arms, (ii) the reward and (ii) the cost of pulling
an arm, and (iv) the budget.

The possible behaviours of an agent with regards to the TMS will be the
arms of our multi-armed bandit. A behaviour is defined as an ordered set of
actions that include all aspects of TMS, which are: gathering trust information
about other agents, evaluating them, selecting and interacting with other agents.
To come back to our WSN example, we identified three behaviours:

– a naive or one-by-one behaviour: the agent uses just its own experience;
– a cooperative behaviour: the agent exchanges trust information with other

agents;
– and a suspicious or checking behaviour: the agent monitors other agents.

Note that it is possible to identify more behaviours and more complex ones, but
for sake of simplicity, we consider only the behaviours described above.

As our approach aims at learning how to get the maximum number of good
interactions before the energy of the agent runs out, the reward given by a
behaviour will be the number of good interactions obtained while using this
behaviour, the cost of a behaviour will be the energy spent while using this
behaviour and last, the budget will be the total amount of energy of the agent
(see Table 1).

An Energy Aware Trust Management Systems for EMAS 129

Table 1. Identified elements of the used MAB

Arm Behaviour

Reward Number of good interactions

Cost Energy spend

Budget Energy supply

3.3 Case Study

Our case study is a multi-agent system toy problem. It consists of a set of
harvester agents that can collect resources located on a map and bring them
back to a base station. these agents can only carry one resource at a time. In
order to know where the resources are, they have access to several explorer agents
that provide the service of finding the resources. When a harvester agent selects
an explorer agent, the explorer will find one resource and gives its location to
the harvester so this one can collect it. Our agents only have a limited supply of
energy and must collect the maximum number of resources before running out
of energy.

We consider an attacker that wants to disrupt the system in a denial of service
fashion. The attacker can use malicious or corrupted explorer agents to indicate
a position where there is no resource to make harvester agents unnecessarily go
back and forth and waste their energy.

Trust Management System. In order to defend themselves from untrust-
worthy service providers, our agents use a TMS. We choose the TMS designed
for IoT devices in a service-oriented architecture described in [13]. The TMS
makes use of two information sources, which are direct information, and indirect
information. Direct information takes the form of a binary value based on the
result of a requested service (good or bad). Indirect information is obtained by
regularly sending all the trust values to other agents.

Trust values are ratings ranging from 1 to −1 and are updated as described
below:

– After agent A requested a service to a service provider agent SP , A evaluates
the service as good or bad and updates the trust value of SP using Eq. 1. Ws

is a weight factor depending on the requested service and the desired speed
of convergence of trust. In our example we choose Ws = 0.01 which is the
value used by the authors in [13].

NewTrustASP =

{
min(1, T rustASP + Ws) if service is good
max(−1, T rustASP − 2 ∗ Ws) if service is bad

(1)

130 A. Darroux et al.

– After agent A receives trust value from an agent R about service provider
agent SP , the trust value of SP is updated using Eq. 2 and trust value of R
is updated using Eq. 3. α, β and θ are thresholds used to filter bad recom-
mendations. We choose α = 0.2, β = 0.4 and θ = 0.5, which are again the
values used by the authors in [13].

NewTrustASP =

{
TrustASP + TrustRSP ∗ Qr if TrustAR > β ∩ Qr ≥ α

TrustASP otherwise
(2)

NewTrustAR =

{
min(1, T rustAR + Qr ∗ θ) if Qr ≥ α

max(1, T rustAR − Qr ∗ θ) otherwise
(3)

where Qr = 1 − |TrustASP − TrustRSP |.

Agent Behaviour. Our agent can implement three different behaviours that
we call one-by-one behaviour, cooperative behaviour and checking behaviour.

The one-by-one behaviour described in Fig. 2 consists, for an agent, in choos-
ing one service provider at a time based on direct experience, and collecting the
resources found by the service provider. This behaviour is the most efficient in a
context where most of the agents are trustworthy because all the energy spent
is used to collect resources. But if the agent selects a malicious agent, it loses all
the energy needed to go to the resource location and come back.

Compute trust
value

(direct information)

Start

Select one
service provider

Wait for resource
position

Go to ressource
position

Does ressource
exist?

Pick up
resource

Go back to
base

End

YES

NO

Fig. 2. Naive behaviour

An Energy Aware Trust Management Systems for EMAS 131

The checking behaviour consists for an agent, in selecting multiple service
providers at once and waiting for them to find resources. Then, instead of col-
lecting resources one by one, when collecting the first resource the agent makes
a detour to check if the other resources found by the service providers actu-
ally exit. Once the agent have checked all the resources, it can collect one by
one only the existing ones. This behaviour is described in Fig. 3. Note that this
behaviour is better than the first only in the case where the agent is facing a lot
of malicious agents that perform complex attacks such as the On-Off attack or
a selective attack.

Compute trust
value

(direct information)

Start

Select
service providers

Other unchecked
position?

Wait for resource
positions

Compute shortest
path between

resources

Go to next
resource position

Does
resource

exist?

Carrying
resource?

Pick up
resource

Save resource
position

Go back
to base

Other
saved resource

position?

Go to saved
resource position

Pick up
resource

End

YES

NO

NO

YES

NO

YES

YES

NO

Fig. 3. Checking behaviour

132 A. Darroux et al.

The last behaviour described in Fig. 4 is called the cooperative behaviour. In
this behaviour, the agent will again select the service providers one-by-one but
not only using its own experience, but also by asking recommendations to other
agents. If the decisions made by the agent with this behaviour aren’t better than
the naive behaviour, this behaviour will be less efficient due to the energy cost
needed for communications.

Ask other agents
for trust information

Start

Select one
service provider

Wait for resource
position

Go to ressource
position

Does ressource
exist?

Pick up
resource

Go back to
base

End

YES

NO

Compute trust
value (direct &

indirect information)

Fig. 4. Cooperative behaviour

b-GREEDY Multi-Armed Bandit Algorithm. In order to allow an agent
to choose between the behaviours, we implemented the b-GREEDY algorithm
described in [28]. We made this choice because this algorithm is designed for
dealing with continuous random cost. To our knowledge, only [1,28] deal with
this kind of cost. We have chosen the b-GREEDY algorithm over the other
possibilities because of its simplicity and the fact that it doesn’t involve a lot of
calculations (square root and logarithm) as the others do. Also [28] shows that
its performance in terms of regret are equivalent to other algorithms.

An Energy Aware Trust Management Systems for EMAS 133

The b-GREEDY algorithm works as shown in Algorithm1.

Algorithm 1: b-GREEDY [28]
Input: Hyper parameter α(> 0)

1 t ← 1;
2 while Budget has not been run out do
3 εt ← min{1, αK/t};
4 r ← rand([0, 1]);

/* r is drawn from a continuous uniform distribution with
support in [0, 1] */

5 if r < 1 − εt then
6 i ← arg max

k∈[1,K]

(r̄k(t)/c̄k(t));

/* r̄k(t) (respectively c̄k(t)) is the average reward
received (respectively cost payed) from arm k at
round t, so i is the arm with the best average
reward-to-cost ratio */

7 else
8 i ← rand int(K);

/* i is a randomly chosen arm */

9 end
10 Play arm i;
11 Update r̄i(t), c̄i(t) and the budget;
12 t ← t + 1;
13 end

3.4 Results

In order to give a proof of concept of our solution, we simulated our case study
using the Multi-Agent Software Hardware simulator (MASH) platform [9].

The setup used in the simulation was the following:

– Resources were randomly placed on a square map of 50 m by 50 m;
– Moving 1 m costs a harvester agent 0.03% of its total energy;
– Sending and receiving one message from an other agent costs the harvester

agent 0.01% of its total energy.

We evaluated the three different behaviours considered in this work and our
solution in two different situations:

– The first situation consisted of 30 harvester agents and 50 honest explorer
agents;

– The second situation consisted of 30 harvester agents, 25 honest explorer
agents and 25 malicious explorer agents. In this situation malicious explorer
were lying every time they were selected to find resources.

134 A. Darroux et al.

Table 2 shows the average number of resources collected by the agents in each
situation using respectively the naive behaviour, the cooperative behaviour, the
checking behaviour, and the proposed learning MAB algorithm. Figures 5 and
6 show respectively, in situation 1 and situation 2, how the agents choose their
behaviours using our solution.

Table 2. Average number of resources collected per harvester agent

Naive Cooperative Checking MAB

Situation 1 57 28 34 40

Situation 2 27 40 34 32

In situation 1, we can see from Table 2 that the naive behaviour performs
better than the two others. This is due to the fact that in this situation, there
are no malicious agents; so all the energy of the agents can be used to collect
resources and using an amount of energy for the TMS will reduce their perfor-
mances. We can see from Fig. 5 that in situation 1, agents using our solution
learn that the naive behaviour is the best and choose it more often as the time
passes.

In situation 2, the cooperative behaviour becomes better than the two others
because agents need to rapidly identify the malicious agents. But we can see from
Fig. 6 that the advantages given by the cooperative behaviour aren’t enough to
let the agents learn which behaviour is the best.

Fig. 5. Number of agents using each behaviour as a function of time in situation 1

An Energy Aware Trust Management Systems for EMAS 135

Fig. 6. Number of agents using each behaviour as a function of time in situation 2

4 Conclusion and Future Work

After motivating the need for a TMS in embedded MAS, we showed that such
a TMS would have to deal with energy limitations of embedded agents. We
then proposed a solution to help agents manage their energy consumption due
while using trust management by making them learn when and how to gather
information about potential interaction partners.

In order to make our solution really applicable, we still need to test it in more
complex situations where malicious agents can launch more complex attacks such
as On-Off attacks. But we also need to consider situations were recommenders
(other harvester agents) can be malicious too.

References

1. Badanidiyuru, A., Kleinberg, R., Slivkins, A.: Bandits with knapsacks. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 207–216.
IEEE (2013)

2. Bonnefoi, R., Besson, L., Moy, C., Kaufmann, E., Palicot, J.: Multi-armed bandit
learning in IoT networks: learning helps even in non-stationary settings. In: Mar-
ques, P., Radwan, A., Mumtaz, S., Noguet, D., Rodriguez, J., Gundlach, M. (eds.)
CrownCom 2017. LNICST, vol. 228, pp. 173–185. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76207-4 15

3. Chen, R., Bao, F., Guo, J.: Trust-based service management for social internet of
things systems. IEEE Trans. Dependable Secure Comput. 13(6), 684–696 (2016)

4. Chen, R., Guo, J., Bao, F.: Trust management for SOA-based IoT and its appli-
cation to service composition. IEEE Trans. Serv. Comput. 9(3), 482–495 (2016)

5. Cho, J.H., Chan, K., Adali, S.: A survey on trust modeling. ACM Comput. Surv.
(CSUR) 48(2), 28 (2015)

6. Ding, W., Qin, T., Zhang, X.D., Liu, T.Y.: Multi-armed bandit with budget con-
straint and variable costs. In: Twenty-Seventh AAAI Conference on Artificial Intel-
ligence (2013)

https://doi.org/10.1007/978-3-319-76207-4_15
https://doi.org/10.1007/978-3-319-76207-4_15

136 A. Darroux et al.

7. Granatyr, J., Botelho, V., Lessing, O.R., Scalabrin, E.E., Barthès, J.P., Enembreck,
F.: Trust and reputation models for multiagent systems. ACM Comput. Surv.
(CSUR) 48(2), 27 (2015)

8. Jamont, J., Occello, M.: Meeting the challenges of decentralised embedded appli-
cations using multi-agent systems. IJAOSE 5(1), 22–68 (2015). https://doi.org/
10.1504/IJAOSE.2015.078435

9. Jamont, J.-P., Occello, M., Mendes, E.: Decentralized intelligent real world embed-
ded systems: a tool to tune design and deployment. In: Demazeau, Y., Ishida, T.,
Corchado, J.M., Bajo, J. (eds.) PAAMS 2013. LNCS (LNAI), vol. 7879, pp. 133–
144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38073-0 12

10. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Auton. Agent. Multi-Agent Syst. 1(1), 7–38 (1998)

11. Lopez, J., Roman, R., Agudo, I., Fernandez-Gago, C.: Trust management systems
for wireless sensor networks: best practices. Comput. Commun. 33(9), 1086–1093
(2010)

12. Maarouf, I., Baroudi, U., Naseer, A.R.: Efficient monitoring approach for reputa-
tion system-based trust-aware routing in wireless sensor networks. IET Commun.
3(5), 846–858 (2009)

13. Mendoza, C.V.L., Kleinschmidt, J.H.: A distributed trust management mechanism
for the internet of things using a multi-service approach. Wireless Pers. Commun.
103(3), 2501–2513 (2018)

14. Ozdemir, S.: Functional reputation based reliable data aggregation and transmis-
sion for wireless sensor networks. Comput. Commun. 31(17), 3941–3953 (2008)

15. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open
multi-agent systems: a review. Artif. Intell. Rev. 40(1), 1–25 (2013)

16. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. Knowl.
Eng. Rev. 19(1), 1–25 (2004)

17. Rezgui, A., Eltoweissy, M.: µRACER: a reliable adaptive service-driven efficient
routing protocol suite for sensor-actuator networks. IEEE Trans. Parallel Distrib.
Syst. 20(5), 607–622 (2009)

18. Ries, S.: Engineering trust in ubiquitous computing. In: Proceedings of Workshop
on Software Engineering Challenges for Ubiquitous Computing, Lancaster, UK
(2006)

19. Ries, S., Kangasharju, J., Mühlhäuser, M.: A classification of trust systems. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006. LNCS, vol. 4277, pp. 894–
903. Springer, Heidelberg (2006). https://doi.org/10.1007/11915034 114

20. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Am. Math.
Soc. 58(5), 527–535 (1952)

21. da Rocha Costa, A.C., Hübner, J.F., Bordini, R.H.: On entering an open society.
In: XI Brazilian Symposium on Artificial Intelligence, vol. 535, p. 546. Citeseer
(1994)

22. Ruan, Y., Durresi, A.: A survey of trust management systems for online social
communities-trust modeling, trust inference and attacks. Knowl.-Based Syst. 106,
150–163 (2016)

23. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

24. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust
in internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015)

25. Tran-Thanh, L., Chapman, A., de Cote, E.M., Rogers, A., Jennings, N.R.: Epsilon-
first policies for budget-limited multi-armed bandits. In: Twenty-Fourth AAAI
Conference on Artificial Intelligence (2010)

https://doi.org/10.1504/IJAOSE.2015.078435
https://doi.org/10.1504/IJAOSE.2015.078435
https://doi.org/10.1007/978-3-642-38073-0_12
https://doi.org/10.1007/11915034_114

An Energy Aware Trust Management Systems for EMAS 137

26. Vercouter, L., Jamont, J.P.: Lightweight trusted routing for wireless sensor net-
works. In: Demazeau, Y., Pěchoucěk, M., Corchado, J.M., Pérez, J.B. (eds.)
Advances on Practical Applications of Agents and Multiagent Systems. AINSC,
vol. 88, pp. 87–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19875-5 11

27. Vercouter, L., Jamont, J.: Lightweight trusted routing for wireless sensor networks.
Prog. AI 1(2), 193–202 (2012). https://doi.org/10.1007/s13748-012-0017-7

28. Xia, Y., et al.: Finite budget analysis of multi-armed bandit problems. Neurocom-
puting 258, 13–29 (2017)

29. Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.R.: A survey of multi-agent trust
management systems. IEEE Access 1, 35–50 (2013)

30. Yu, Y., Li, K., Zhou, W., Li, P.: Trust mechanisms in wireless sensor networks:
attack analysis and countermeasures. J. Netw. Comput. Appl. 35(3), 867–880
(2012)

https://doi.org/10.1007/978-3-642-19875-5_11
https://doi.org/10.1007/978-3-642-19875-5_11
https://doi.org/10.1007/s13748-012-0017-7

Addressing Security Properties in Systems
of Systems: Challenges and Ideas

Miguel Angel Olivero1,2(&) , Antonia Bertolino1 ,
Francisco José Dominguez-Mayo2,3 , María José Escalona2,3 ,

and Ilaria Matteucci4

1 Istituto di Scienza e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche, Pisa, Italy

{miguelangel.olivero,antonia.bertolino}@isti.cnr.it
2 Web Engineering and Early Testing (IWT2) Research Group,

Universidad de Sevilla, Seville, Spain
{fjdominguez,mjescalona}@us.es

3 Computer Languages and System Department,
Universidad de Sevilla, Seville, Spain
4 Istituto di Informatica e Telematica,

Consiglio Nazionale delle Ricerche, Pisa, Italy
ilaria.matteucci@iit.cnr.it

Abstract. Within growing pervasive information systems, Systems of Systems
(SoS) emerge as a new research frontier. A SoS is formed by a set of constituent
systems that live on their own with well-established functionalities and
requirements, and, in certain circumstances, they must collaborate to achieve a
common mission. In this scenario, security is one crucial property that needs to
be considered since the early stages of SoS lifecycle. Unfortunately, SoS
security cannot be guaranteed by addressing the security of each constituent
system separately. The aim of this paper is to discuss the challenges faced in
addressing the security of SoS and to propose some research ideas centered
around the notion of a mission to be carried out by the SoS.

Keywords: Mission-oriented modeling and testing � Security �
System of Systems

1 Introduction

The challenge of governing the cooperation among a set of independent systems
dynamically interconnected and working as a large complex system has been addressed
by researchers since the early 90’s [1, 2]. In recent years, this concept is referred to as a
“System of Systems” (SoS) [3]. In their extensive review of SoS concepts and tech-
niques, Nielsen and coauthors [3] provide several examples of domains where SoS
becomes prevalent, including transportation networks, smart energy grids, and e-
commerce applications, with emergency management remaining the most evident case
in which SoS are extensively used [4].

© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 138–146, 2019.
https://doi.org/10.1007/978-3-030-30856-8_10

http://orcid.org/0000-0002-6627-3699
http://orcid.org/0000-0001-8749-1356
http://orcid.org/0000-0003-3502-8858
http://orcid.org/0000-0002-6435-1497
http://orcid.org/0000-0002-5936-8470
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-30856-8_10

A SoS aims at achieving global goals that would be infeasible for its constituent
systems working in isolation. Such SoS goals have been named as missions [5]. The
conceptual model of a mission drives the representation of the SoS emergent behavior,
such as, among others, the involved tasks and constraints, the mission trigger, the
executor systems, and so on [6]. Indeed, SoS missions are a key component when
modeling or validating an SoS, as well as when defining its architecture.

Silva and coauthors have proposed mKAOS [5], which is both a mission-oriented
language and an approach for modeling and designing SoS. The approach is based on
the Goal Oriented Requirements Engineering, or GORE [7]. The mKAOS language
extends KAOS/SysML (a language provided by the Object Management Group) and
allows to assign a set of missions to each constituent system in the SoS. In this
language, the sum of all joint works of the systems describes the functionality of the
whole system.

However, the problem of modeling and addressing non-functional properties of
SoS is not covered by mKAOS so far, and still remains largely unexplored [8]. In
particular, concerning security, Ki-Aries and coauthors state that there exists “no clear
guidance or limited tool-support integrating different modelling elements to visualize
and assess the SoS security consequences” [9].

To address this need, we aim at modeling SoS security requirements in the context
of SoS missions. Once the security requirements have been established, we also aim at
validating the possible different SoS solutions, by means of an appropriate testing
campaign. In fact, also concerning SoS security testing we identified a gap in current
literature: to the best of our knowledge a specific approach addressing SoS security
testing does not yet exist.

Summarizing, our research tackles security challenges on SoS and considers using
a mission-oriented security modeling and testing approach that we refer to as Testing
for Security in System of Systems (TeSSoS). We briefly introduced all steps that
compose TeSSoS in [10] and stated the purposes of this method. In this paper, we lay
the wider scene for such research, providing motivations, and discussing relevant
challenges. In particular, we discuss the differences when addressing the security
among different SoS architectures and how these challenges could be addressed. For
completeness, we also include an outline of the on-going approach TeSSoS [10].

This paper is organized as follows: Sect. 2 revises existing SoS architectures by
distinguishing how the different constituent systems organize themselves to achieve a
common goal. It also discusses their particular security issues and describes the
identified challenges for each SoS architecture. Section 3 discusses about the depicted
scenarios and introduces the TeSSoS approach to assess the security in SoS that
includes modelling and testing. Finally, the conclusions of our work are in Sect. 4.

2 Security Issues in Systems of Systems

Security is among the most relevant and critical features of SoS. It is a special concern
for researchers in the military domain and in the Information Technology area as well
[11]. The main challenge in analyzing and testing security properties in SoS derives
from the non-compositional nature of security properties. In fact, guaranteeing the

Addressing Security Properties in Systems of Systems: Challenges and Ideas 139

security of each constituent component of the SoS does not guarantee that the SoS is
secure as a whole.

Indeed, one of the main aspects of SoS is that they are dynamically evolving. The
constituents that compose the SoS may change at any time, or some new systems may
be added to the environment or removed. Hence, when assessing the quality of a SoS
and its evolution, it is important to consider any mechanism able to guarantee security
and avoid as many vulnerabilities and weaknesses as possible, for example when new
systems join. the target SoS.

Every SoS has four general interdependency threats [12]:

(1) A constituent system failure;
(2) A constituent system impersonation;
(3) Communication channel failure;
(4) Communication channel infection.

Additionally, a fifth threat is introduced when constituents are sharing data. This
vulnerability arises because by merging partial results coming from different con-
stituent systems, more information becomes available and can be exploited for an SoS
attack. Perhaps the constituent systems are sharing data, that, taken in isolation, are
meaningless. However, when combining the set of data available from more systems,
valuable information can be generated in a synergic way that can compromise the SoS.

In the literature four different architectures of SoS have been defined: Directed,
Acknowledged, Collaborative, and Virtual [13, 14]. Figure 1 summarizes the process
for categorizing the system according to its key features. By knowing about the
existence of a central entity and the existence of guidelines, SoS can be organized in
any of the four categories. The key factor that distinguishes one architecture from
another is how they communicate and interact among them: the security issues that may
affect an SoS vary depending on its architecture. In a similar way, testing each SoS is
different depending on the architecture because of the nature, that require a different
responsible for managing the security. In the remainder of this section, we discuss such
security issues in the four different SoS architectures.

Are there any central en ty?

Do guidelines about the interac on
among cons tuents exist?

Do guidelines about the interac on
among cons tuents exist?

Directed Collabora ve Acknowledged Virtual

[No] [No]

[No]

[Yes] [Yes]

[Yes]

Fig. 1. SoS architecture decision tree

140 M. A. Olivero et al.

For the sake of understanding, using an airport as a fil rouge, for each architecture
we supply different scenarios related to distinct subsystems of an airport as examples of
SoS.

2.1 Directed SoS

Directed SoSs are managed by a central system that handles the success of the global
purpose. Each constituent system is independent, but prioritizes the tasks commanded
by the central. An example of a Directed SoS is the airport’s system of surveillance,
where each part, such as cameras infrastructures, or boarding pass scanners, are
independent on their own when disconnected from the SoS, however these systems
receive and execute commands according to precise guidelines when are integrated in
the SoS.

Security testing in Directed SoS is the simplest case. It relies on the communication
of each constituent system with the central one, which is responsible of security
negotiation among constituent systems.

Indeed, by having a central entity that manages all the communications, security
requirements and properties can be managed in a centralized way. The constituents can
be centrally organized not only to achieve the final goal, but also to satisfy security
requirements. The latter will require monitoring (in both, active and passive way) the
communications among constituents, and the behavior of each constituent as well. Note
that governing the set of security requirements of a Directed SoS may require a
negotiation phase among the constituents.

The main challenge for the security when using this kind of architecture is to
establish the common criteria that define the shared concept of security. In this sense,
every system that would coordinate with the central entity must agree with the security
requirements. Given the fact that every constituent system needs to communicate with
the central entity, a strategy based on access control may be helpful to avoid unau-
thorized use of resources.

2.2 Collaborative SoS

An SoS is Collaborative when, even being coordinated by a central authority, the
constituent systems retain self-control. The constituents are advised by the central
system, but the final decision upon their actions is taken by the constituent systems
themselves. Referring again to the Airport example, the landing track can be seen as an
Collaborative SoS. The central system is the command tower, each system knows
every other one; there are some passive systems, but there are others that maintain their
independence, the planes.

As in the case of the Directed SoS, the central entity can select and coordinate the
constituents in such a way that security requirements are satisfied by the emergent SoS.
Conversely with respect to the Directed SoS case, the central entity is not able to
monitor or correct potential insecure behaviors of the constituents.

Furthermore, the SoS lacks control on the behavior of each single constituent. The
data shared with the constituent systems may be manipulated by functionalities out of
the scope of the SoS, which introduces vulnerabilities on the privacy of the SoS data.

Addressing Security Properties in Systems of Systems: Challenges and Ideas 141

Challenges for this architecture include the ones defined for Directed SoS. How-
ever, since these systems retain independence, and are not strictly controlled by the
central system, it would be possible for a constituent system to use information from
other constituent systems for its own purposes, intentionally or unintentionally. This
problem introduces the need of clearly stating which are the essential data each con-
stituent requires, to avoid providing data that are not strictly necessary. In security-
related scientific literature the fact of not sharing more than strictly needed data, is
known as non-disclosure or data sharing agreement. Nevertheless, in the event of an
attack, the attacker could access data shared among the different constituents and
reconstruct sensitive information about the SoS, that may be used to exploit its security
in other attacks.

Testing the security in Collaborative SoS is like the Directed SoS security testing
since there is a central system that helps in the negotiation of the security among the
constituent systems. However, despite the architecture is similar, the number of vul-
nerabilities to test on the SoS increases. This is produced in part by the need of trusting
other constituents as well as testing the final purpose of the SoS. It is necessary to
define mechanisms for testing the communication that each constituent system per-
forms with other constituents, as well as the functionality or behavior of the systems
when processing data from the SoS. These tests should aim at discovering if there are
any potential data leaks that combined with other data can reveal information that
jeopardizes the security of SoS.

2.3 Acknowledged SoS

Acknowledged SoS are not controlled by a central system, but they may abide by an
agreement on performing certain tasks. Acknowledged SoS in the airport context could
be transport services such as the taxi company, or the autobuses. There is no common
entity that manages all of them, notwithstanding they know each other and know they
are somehow cooperating to allow people timely reach their destinations.

Managing the security in this kind of architecture requires a distributed and
decentralized organization. Each constituent oversees the mutual agreements and
should cooperate and coordinate with the others. In this architecture, a security
requirements negotiation phase is essential. Additionally, each constituent must guar-
antee to behave correctly, i.e., in a compliant way with respect to the set of agreed
requirements.

Challenges from Directed and Acknowledged architectures are also present in this
one. However, given the fact that there is not a central entity to coordinate, but a
common goal to achieve, individual interests of the systems may arise and create
security vulnerabilities. Privacy could be also affected in this architecture. Constituent
systems may change from a SoS to another according to their availability. When doing
joint work, systems share data and functionalities, however, some systems may make
an improper use of the collective data for their own or third parties’ profit. Thus, lack of
trust and/or lack of responsibilities among the constituent systems in an acknowledged
architecture could become a considerable risk as for the shared data and functionalities.

Hence testing acknowledged SoS is more complex than in the previous cases. The
lack of a central system helping in the negotiation of the security requirements makes

142 M. A. Olivero et al.

an extensive coordination process necessary, in which each system shall conduct this
negotiation on its own sake.

During a collaboration, the systems may generate a cascade problem [15], which
may occur when a system with high security levels is sharing data with a system with
lower security. In other words, a different level of security among constituent systems,
causes that the system with lower security level become the weakest link in the SoS. At
the time of working in this architecture, an extensive analysis of the constituent systems
must be executed to detect the weakest systems and determine if any of them could
create the cascade problem. The chain of systems may be extended to deeper levels,
analyzing also other SoS on which each constituent system is also working.

2.4 Virtual SoS

Virtual SoS emerge in unpredictable ways, as an outcome of the results coming from
individual systems. They are not coordinated by a central system and the systems may
not even know that they are working for a global purpose. An example of this archi-
tecture in the airport context is a set of shops in the duty-free section. These shops do
not know about each other if it is not necessary, and they do not have a common
purpose to achieve.

Managing the security in this architecture needs a distributed and decentralized
organization. There are no formal agreements among the shops, but they are providing
services for clients who may combine the items that these different shops offer. This is
the architecture that may present more difficulties when analyzing its vulnerabilities
with respect to security, because there is neither a central entity that may guarantee
security nor an agreement that describes which should be the correct behavior. On the
other hand, exactly because they collaborate loosely, the vulnerabilities might have
minimal impact on each single system on average. The trust is not considered on this
architecture, and the purpose of the global mission does not conditionate the func-
tionalities of each single constituent.

Security requirements cannot be easily tested in virtual SoS because there is
uncertainty about how the constituent systems would communicate in the future,
however it could be analyzed considering previous SoS collaborations. In SoS archi-
tectures, pieces of data from different systems may be put together and produce
information that exposes the security of another. Despite this, Virtual architecture
might provide the same challenges as the previous architectures and include an addi-
tional one, the inability of knowing what are those systems that could provide such
pieces of data. To the best of our knowledge, no defensive mechanisms can be clearly
defined for addressing this problem, but contingency plans can be defined to mitigate
an exploitation of the security.

3 Addressing Security

Our work aims at providing a method to address the security issues arising in the SoS
architecture. The method, named Testing for Security in System of Systems (TeSSoS)
[10], focuses in modeling the security requirements of the SoS and generating the test

Addressing Security Properties in Systems of Systems: Challenges and Ideas 143

cases to evaluate the security. TeSSoS is an ongoing work that has been designed as a
set of five stages. At each stage, guidelines are supplied to assess the security chal-
lenges emerging in the SoS under exam.

3.1 Modeling Security of System of Systems

Models in SoS are dynamic because an SoS is constantly evolving. Every new
incoming system arriving into the SoS needs to be analyzed to keep some standard
security level among the constituent systems.

To model the security in SoS, as in isolated systems, it is necessary to consider
threats, vulnerabilities, weaknesses, attackers, and attacks that affect the assets. In this
view, we are modeling the security and the synergic features of the constituent systems
in the SoS. To address the modeling of the security we consider an SoS already
modelled with its functional features. On this basis, to model the security properties, it
is mandatory to analyze the communication among each constituent system, channels,
and their contents, and study the activities that each system performs over these
communication channels.

The first three stages in the TeSSoS approach target the SoS modeling and the
security analysis. The first one is SoS Discovery that focuses on the SoS modeling,
eliciting the constituent systems agreements, and defining the assets. In the second
stage, called Red Requirements, the SoS model and its vulnerabilities are analyzed.
Red Requirements were designed to allow reusing the modeled vulnerabilities to be
addressed so these can be used as test cases. In this way, Red Requirements are also
used to evaluate if vulnerabilities have been solved. As a result, a catalog of potential
attacks is produced and written in Gherkin1 language, which is ready for testing stages.
Third, Blue Requirements supply counter-measures to avoid earlier identified vulner-
abilities to succeed. Human training is also considered as a countermeasure to avoid
attacks since the human factor is the one that affects the most security properties.

The SoS models, the detected vulnerabilities and proposed improvements are
defined in the three first phases of TeSSoS. The method continues with systems
development and the humans training. The Blue Requirements provide the catalog of
User Stories ready to be developed for the development team of each constituent
system according to their responsibilities in an agile environment [16]. However, some
difficulties may arise when developing or training, since systems in the SoS can be
managed by third parties.

3.2 Testing the Security of System of Systems

In the SoS context it is common to find third-party black-box systems among the
constituent systems.

Given that security is a non-compositional feature, and the security of the SoS does
not depend only on the security of the constituent systems, testing the security in SoS is

1 https://cucumber.io/docs/reference#gherkin.

144 M. A. Olivero et al.

https://cucumber.io/docs/reference#gherkin

not just testing the security on each single constituent system, but testing the com-
munication among the constituents.

The TeSSoS approach includes a testing phase after the development and training.
The design of the test cases is not necessary since it is possible to reuse the Red
Requirements definition as test cases. This fact allows reducing testing phase just to
execution and evaluation.

However, since some constituent systems may be black-box systems, we can only
rely on the behavior of these systems. The tester could for instance perform the same
actions an attacker or an accidental user would do in a Penetration testing [17]. Another
common security testing approach that behaves in this way is Fuzz testing [18, 19].
Fuzzing works by analyzing the output and behavior of the system under test when it is
stimulated with random input. This testing technique can be applied with different
perspectives by considering not only to randomly modify the content messages, but
also the sequence order of such messages, or apply some kind of knowledge instead of
full random generation. Alternatively, we could derive a model-based approach that is
based on the Red requirements model using penetration testing on which the attacker
behavior is replicated [20]. This testing strategy is carried out by the so-called Red
Team, which simulates an attacker.

4 Conclusions

In this work we have reviewed the security challenges over the four possible archi-
tectures of an SoSs. For each identified architecture we provide some examples of how
the joint work is managed using the environment of an airport.

Given their natures, each architecture has different security challenges and,
according to their architecture, different approaches are identified to be addressed. To
analyze the security, and to detect the potential vulnerabilities on the SoS, we introduce
an ongoing work named TeSSoS. This proposal organizes a set of ordered stages that
guide the process of analyzing the security in the SoS context through modeling and
testing.

Considering the challenges that face the security described in this work, future
work will focus in addressing the problem of modeling and testing security require-
ments for the SoS. To this end, the phases in the TeSSoS approach will be defined in
detail with the challenges of the different architectures in mind.

Acknowledgments. This work has been partially supported by the GAUSS National Research
Project (MIUR, PRIN 2015, Contract 2015KWREMX) and by the Spanish Ministry of Economy
and Competitiveness (POLOLAS, TIN 2016-76956-C3-2-R).

Addressing Security Properties in Systems of Systems: Challenges and Ideas 145

References

1. Richardson, J.D., Wheeler, T.J.: An object oriented methodology integrating design,
analysis, modelling, and simulation of systems of systems. In: 4th Annual Conference on AI,
Simulation and Planning in High Autonomy Systems, pp. 238–244 (1993)

2. Bodeau, D.J.: System-of-systems security engineering. In: Proceedings of the 10th Annual
Computer Security Applications Conference, pp. 228–235 (1994)

3. Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J.: Systems of systems
engineering: basic concepts, model-based techniques, and research directions. ACM
Comput. Surv. (CSUR) 48(2), 18 (2015)

4. Liu, S.: Employing system of systems engineering in China’s emergency management. IEEE
Syst. J. 5(2), 298–308 (2011)

5. Silva, E., Batista, T., Oquendo, F.: A mission-oriented approach for designing system-of-
systems. In: SoSE, pp. 346–351 (2015)

6. Silva, E., Cavalcante, E., Batista, T., Oquendo, F., Delicato, F.C., Pires, P.F.: On the
characterization of missions of systems-of-systems. In: European Conference on Software
Architecture Workshops, p. 26. ACM (2014)

7. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Proceed-
ings of the Fifth IEEE International Symposium on Requirements Engineering, pp. 249–262
(2001)

8. Chiprianov, V., Falkner, K., Gallon, L., Munier, M.: Towards modelling and analysing non-
functional properties of systems of systems. In: SOSE, pp. 289–294 (2014)

9. Ki-Aries, D., Faily, S., Dogan, H., Williams, C.: Assessing system of systems security risk
and requirements with OASoSIS. In: ESPRE, pp. 14–20. IEEE (2018)

10. Olivero, M.A., Bertolino, A., Dominguez-Mayo, F.J., Escalona, M.J., Matteucci, I.: Security
assessment of systems of systems. In: SESoS (2019)

11. Bianchi, T., Santos, D.S., Felizardo, K.R.: Quality attributes of systems-of-systems: a
systematic literature review. In: SESoS 2015, pp. 23–30 (2015)

12. Guariniello, C., DeLaurentis, D.: Communications, information, and cyber security in
systems-of-systems: assessing the impact of attacks through interdependency analysis.
Procedia Comput. Sci. 28, 720–727 (2014). CSER 2014

13. Halfond, W.G.J., Choudhary, S.R., Orso, A.: Penetration testing with improved input vector
identification. In: Proceedings of the 2nd International Conference on Software Testing
Verification and Validation, ICST 2009, pp. 346–355 (2009)

14. Dahmann, J.S., Baldwin, K.J.: Understanding the current state of US defense systems of
systems and the implications for systems engineering. In: SysCon 2008, pp. 99–105 (2008)

15. Horton, J.D., et al.: The cascade vulnerability problem. J. Comput. Secur. 2(4), 110–116
(1993)

16. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Profession, Boston (2004)

17. Beizer, B.: Black-box testing: techniques for functional testing of software and systems
(1995)

18. Shanmugam, B., Idris, N.B.: Improved intrusion detection system using fuzzy logic for
detecting anamoly and misuse type of attacks. In: 2009 ICSCPR, pp. 212–217 (2009)

19. Tian-yang, G., Yin-sheng, S., You-yuan, F.: Research on software security testing. World
Acad. Sci. Eng. Technol. 69, 647–651 (2010)

20. Bacudio, A.G., Yuan, X., Chu, B.T.B., Jones, M.: An overview of penetration testing. Int.
J. Netw. Secur. Appl. 3, 19–38 (2011)

146 M. A. Olivero et al.

On the Use of Quality Models
to Characterize Trustworthiness

Properties

Tania Basso(B), Hebert Silva(B), and Regina Moraes(B)

University of Campinas, Limeira, SP, Brazil
{taniabasso,hebert.oliveiras,regina}@ft.unicamp.br

Abstract. Making informed choices when designing or contracting a
system is yet a very challenging task. One of the biggest users’ con-
cern is to select the most trustworthy solution. However, it is difficult
to understand the trustworthiness of a system, because it encompasses
a large diversity of properties such as security, privacy, performance,
among others. Composing a measure that considers such a large num-
ber of properties, the relationship among them and their relevance in
the composition requires a well defined model, such as a quality model.
In this experience report, we study whether quality models can provide
scores that are useful to characterize those properties, helping users to
choose the most trustworthy of the available alternatives. Then, we have
chosen a property that is on the top of users concerns: data privacy.
Results showed a higher percentage of success of linkage attacks when
the privacy score is lower, indicating the usefulness of quality models in
measuring and improving data privacy and providing interesting insights
to the users.

Keywords: Trustworthiness · Privacy · Quality model

1 Introduction

Nowadays, most online services requires users to provide personal and payment
information, which often brings concern to them regarding trust. Trust is a bilat-
eral relationship and involves a trust subject (or trustor) and a trust object (or
trustee) [9]. A trust relationship between them is built on a trust matter within
specific trust circumstances, which together are a trust context. Trustworthi-
ness on the other hand has been used sometimes as a synonym for security and
sometimes for dependability, but in reality it is more than that and it is com-
monly complemented with user experience [10]. In practice, trustworthiness can
be understood as a multi-dimensional construct combining specific attributes,
properties and characteristics. According to The Industrial Internet Security
Framework, from The Industrial Internet Consortium (IIC)1, resilience is one of
1 https://www.iiconsortium.org.

c© Springer Nature Switzerland AG 2019
R. Calinescu and F. Di Giandomenico (Eds.): SERENE 2019, LNCS 11732, pp. 147–155, 2019.
https://doi.org/10.1007/978-3-030-30856-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30856-8_11&domain=pdf
https://www.iiconsortium.org
https://doi.org/10.1007/978-3-030-30856-8_11

148 T. Basso et al.

the key system characteristics which make the system trustworthy. Trustworthi-
ness is defined as “a degree of confidence one has that the system performs as
expected with characteristics including safety, security, privacy, reliability and
resilience in the face of environmental disruptions, human errors, system faults
and attacks”. We also advocate that trustworthiness is a much broader prop-
erty that involves other properties such as dependability, fairness, transparency,
scalability, just to name a few.

Trustworthiness and resilience are properties that have been considered
together to ensure that more complex systems, in different contexts, achieve their
goals. For example, the work of Henschke and Ford [4] highlights the importance
of trustworthiness for resilient cybersystems; Kreutz et al. [8] proposed a set of
tools and techniques for increasing the resilience and trustworthiness of identity
providers (IdPs) based on OpenID. Kort and Rudina [7] proposed a semiformal
model with trustworthiness properties definitions and their connections for IIoT
system behavior.

However, in these different contexts, specially in the view of cloud service
providers, it is difficult for the user to characterize trustworthiness from different
providers before choosing a service, if no tool is available to support this task.

One possibility is to use quality models, which are proposed in the ISO/IEC
25000 (SQuaRE) standard [6] as a way to formalize the interpretation of mea-
sures and the relationship among them. These models are built by a user/analyst,
who knows in advance the context, the final scores, their units and scales. This
way, it is possible to define how the measures should be aggregated in the anal-
ysis, and what procedures have to be used to homogenize their values, so they
can be aggregated. It is possible to define one quality model for each consid-
ered property, and then, these different perspectives can be aggregate following
a hierarchical structure, as proposed in the ATMOSPHERE project2.

In this paper, we investigate if quality models are useful to char-
acterize a service or system being used in different contexts where
the trustworthiness is key value. For this, we present diverse scenarios in
which quality models are used to characterize the privacy of data, considering re-
identification risk and information loss. Each of these scenarios is demonstrated
with real datasets and experiments, which allowed to exercise the quality models
and analyzed whether the scores they provide represent a good characterization
of a service or system regarding data privacy.

The results showed that the use of quality models to calculate privacy scores
can be useful to identify the best anonymity level considering the trade-off
between data privacy and data utility.

The paper is organized as follows. Section 2 presents the background on data
anonymization, measures and scores and the quality model concepts. Section 3
shows how to instantiate the quality model for data privacy and the applica-
tion of the instance to eight real datasets. Section 4 presents the lessons learned
through the experiments and the conclusions.

2 https://www.atmosphere-eubrazil.eu/.

https://www.atmosphere-eubrazil.eu/

On the Use of Quality Models to Characterize Trustworthiness Properties 149

2 Background and Quality Model Concepts

This section introduces key concepts addressed by the work regarding
anonymization and the Logic Score of Preferences (LSP) method, as well as
related work that support the motivation of the proposal.

2.1 Data Anonymization and PRIVAaaS Framework

Data Anonymization (or de-identification), consists of techniques that can be
applied on data to prevent the recovery of individual information. An anony-
mous record or transaction prevents data, individually or combined with other
data, to be associated with a particular subject. Three categories of attributes
can be found in each record in a database, in light of the disclosure risks: (i)
identifiers (attributes that uniquely identify individuals, e.g., ID, name, social
security number); (ii) quasi-identifiers (attributes that can be combined with
external information to expose some individuals, or to reduce uncertainty about
their identities, e.g., birth date, ZIP code, position, job, blood type); (iii) sensi-
tive attributes (attributes that contain sensitive information about individuals,
e.g., salary, medical examinations, credit card releases).

There are several anonymization techniques that can be applied on data in
order to protect the privacy of individual. The most used in the context of this
paper are generalization (attribute values are generalized to a range in order to
reduce the granularity of representation) and suppression (the key attributes or
the quasi-identifiers are removed completely to form the anonymized table). Also,
anonymization models (e.g., k-anonymity, l-diversity, t-closeness, b-likeness) can
be applied to avoid re-identification. The model used in this work is the k-
anonymity [11]. In this model, any combination of quasi-identifier appears at
least in k-records in an anonymity table. The k must be a positive integer value
(greater than or equal 2) and is defined by the owner of the data.

After data set is anonymized it is important to evaluate the risk of re-
identification, i.e, to analyze the proportion of records that are unique within a
particular population and identify the most vulnerable records in the data set.

This work relies on PRIVAaaS framework to apply the anonymization tech-
niques and to calculate the re-identification risk. This component is a free and
open source tool, developed in Java, and suitable to big data and cloud comput-
ing context. Basically, PRIVAaaS receives as input the data to be anonymized
and an anonymization policy (i.e., the file which specifies the anonymization
techniques/models that must be applied to each of the fields of input data).
It applies the techniques according to the policy and provides, as output, the
anonymized data set.

PRIVAaaS encapsulates the ARX tool3 to reuse its k-anonymity model imple-
mentation, to calculate the re-identification risk and data loss rates. Also, PRI-
VAaaS has a module that performs privacy attacks. We adopted it because it is
adaptable to different platforms, addressing interoperability issues. PRIVAaaS
was presented in previous work [1], where more details can be found.
3 https://arx.deidentifier.org/.

https://arx.deidentifier.org/

150 T. Basso et al.

2.2 The LSP Scoring Technique and Quality Model

As placed before, trustworthiness can be understood as a multi-dimensional con-
struct combining specific attributes, properties and characteristics (for exam-
ple, security, privacy, fairness, transparency, dependability, among others). All
of them have other sub-attributes that enlarge a lot the possibilities to be
addressed. Since several conflicting properties may be involved in the analy-
sis, a multi-criteria decision-making (MCDM) based technique can be useful.
It can be used to support and guide the comparison of the systems or com-
ponents fulfilling the system requirements for a particular application and the
selection among similar services or systems. So, using MCDM one can be able
to define how to compute the global score of a service considering the measures,
relationship among them and their relative importance considering a context of
use.

Considering multiple criteria implies a complex assessment process that needs
to consider, not only the individual metrics, but also their (sometimes conflict-
ing) combinations. In this work, Logic Score of Preferences (LSP) [2] was chosen
due to its previous use in the dependability field, the capability to assess and
compare complex systems, to deal with attributes tradeoffs and its simplicity
when compared with other similar techniques. The LSP approach, in our case,
comprises multiple aggregation blocks, including defining how the different ele-
ments should be used to produce a final score.

Usually, measures of a service or system present distinct scales and dimen-
sions, e.g., seconds or milliseconds, percentage, and so on. In order to apply
LSP, the measures should be brought to the same scale before the aggregation.
To do this, we used the normalization functions proposed in [3]. They use lower
thresholds (for example, a minimum throughput for a server) and higher thresh-
olds (that satisfy the requirements for which better values do not benefit the
requirements as they are already fully satisfied) within the definition of quality
criterion functions. The thresholds represent the range of acceptable input val-
ues (from Xmin to Xmax) of any given leaf-level attribute of the quality model.
This normalization procedure establishes an equivalence between the measured
value and the system quality requirements within a 0–100 quality scale. How-
ever, when normalizing an attribute, it must be considered whether it is a benefit
attribute (the higher the value, the better) like throughput, or a cost attribute
(the lower, the better) as memory usage. The normalization procedure uses this
information to guide the normalization (for the benefit attributes 0 corresponds
to the lower and 100 to the higher threshold and the inverse is applied to the
cost attribute).

To use the LSP technique, it is necessary to first define a Quality Model [5],
which is essentially a conceptual representation of attributes, weights, thresholds
and operators that should express the requirements that the system should meet
(for example, the tree structure in Fig. 1). The blocks, in this work, represent
(leaf or composite) attributes, which are aggregated (by the operators). Values at
the bottom level (leaf attributes) are aggregated to calculate upper level values

On the Use of Quality Models to Characterize Trustworthiness Properties 151

(composite attributes), towards the calculation of the final score of the system
through a single 0-to-100 score.

3 Privacy Quality Model: Anonymization and Linkage
Attacks

Data privacy is one of the properties that makes up a trustworthiness system.
In this work data privacy is obtained by anonymization techniques. Two main
attributes are considered to compose data privacy: the re-identification risk (the
probability of discovering an individual by matching anonymized data with pub-
licly available information) and the information loss (the amount of information
that can be obtained about the original values of variables in the input dataset).

Figure 1 presents a Quality Model that was instantiated for data privacy.
The goal is to calculate the privacy score of a system. As can be observed, data
privacy is one of the properties composing the System Trustworthiness. The
figure shows also the range of the normalization values (NormalMin and Normal
Max) considered in the normalization function applied on leaf attributes. This
means that the values received as metric will be normalized in this range (0 up to
1), maintaining the proportion between measures. Other information highlighted
in Fig. 1 are the thresholds for the attributes in any level of the model. For
example, the re-identification risk accepts thresholds between 1 up to 5% and in
this case it was defined based on the literature (it can rely on experts too). It
means that a re-identification risk metric will be accept if it complies with this
range, otherwise the anonymity level must be increased to reduce the risk.

Fig. 1. Quality model instance for privacy

Because there is a trade-off between data privacy and data utility in data
mining context, the other attribute that composes data privacy is the infor-
mation loss. Nevertheless, re-identification risk is considered in this work much
more important and it is the reason why its weight (wi.j) was configured as 90%

152 T. Basso et al.

while information loss receives only 10% in the composition and both are Cost
attributes (the lower the attribute value the better for the composed score - the
privacy score). The metrics can be collected several times during an experiment.
So, the set of same metrics collected during the experiment composes a score.
This score can be calculated considering average, sum, minimum or maximum
values among this set of metrics. Particularly, for this work the average was cho-
sen. The operation (op2) that aggregates both leaf attributes should be chosen
among neutrality (the weighted mean representing the combination of simul-
taneous satisfaction of requirements), simultaneity (all requirements must be
satisfied implying in an and operation) and replaceability (the requirement that
has a higher priority replaces the remaining ones implying in an or operation).
For the privacy model in this work neutrality operation was chosen.

We used eight datasets provided by UCI4 and Figure Eight platform5, that
are repositories used by the machine learning community. Due to space restric-
tions, we present the details of three of them (marked with * in Fig. 3), which
present similar results to the others and may represent generalized results. They
are: Medicine Sales (data referring to 1 month of medicines sales); Indian Terror-
ism Death (deaths mentioned in sentences from the South Asia Terrorism Por-
tal); New England Patriots Deflategate sentiment (sentiment expressed in the
Twitter, related to deflated footballs and whether the Patriots cheated, before
2015 Super Bowl). For the other five datasets, although we did not show all
the details, the amount of tuples and the highest privacy scores are included
in Fig. 3. These datasets are Adults (data sample extracted from the 1994 US
Census database); Internet (contains general demographic information on US
internet users collected from October through November,1997); CMC (subset of
the 1987 National Indonesia Contraceptive Prevalence Survey), Airlines (Air-
lines Twitter data was scraped from February of 2015) and Death (South Asia
Terrorism Portal counted the deaths mentioned in a sentence and whether they
were terrorists, civilians, or security forces).

The following steps were used for all datasets in the experiment: (i) the
identifiers and quasi-identifiers attributes were anonymized; (ii) in addition, the
sensitive attributes were anonymized; (iii) the k-anonymity model was applied
increasing k until the re-identification risk complies with the risk threshold. Risk
threshold is the maximum re-identification risk accepted to the dataset. This
anonymization process was performed through the PRIVAaaS framework.

After each previous described steps, the re-identication risk and information
loss were calculated as well as the score of privacy. Then, linkage attacks were
performed to understand if the graduation of the privacy score is aligned with
more/less facility to attack success. The linkage attacks were performed by the
PRIVAaaS framework on the k-anonymized datasets. In this type of attack, an
adversary using some auxiliary information about a certain individual can deter-
mine which record of the database corresponds to such individual. For example,
an attacker could easily use a public voter list (i.e. a public register) for cross-
referencing. Figure 2 shows the privacy results.

4 https://archive.ics.uci.edu/ml/datasets.html.
5 https://www.figure-eight.com/.

https://archive.ics.uci.edu/ml/datasets.html
https://www.figure-eight.com/

On the Use of Quality Models to Characterize Trustworthiness Properties 153

Fig. 2. Results for data privacy.

Fig. 3. Databases and respective privacy scores.

In Fig. 2, the anonymization and calculation of Re-Identification Risk, Data
Loss and Privacy Score were performed for different Steps: (i) only the identifiers
were suppressed (ID Suppress); (ii) the Quasi identifiers were also suppressed
(QuasiID Suppress); in the next steps the (Risk Threshold) was tuned from 100%
down to 0.1% (100%, 50%, 10%, 1%, 0.5% and 0.1%). For all databases, the two
first steps presented re-identification risk= 1 (100%), data loss = 0 and privacy
score = 0.1, which means that the data were not sufficiently anonymized and
can be easily re-identified. From the third step on, the k-anonymity was applied
and, as expected, the re-identification risk decreases while data loss increases
(the value of k increases, implying that the dataset anonymity level increases).

There are some steps that, even defining different risk threshold, present the
same results (e.g., in Medicine Sales Dataset, the results for 100% and 50% risk

154 T. Basso et al.

threshold). It happens because the k-anonymity needs to provide a value of k
whose respective re-identification risk is lower than the acceptable one. In some
cases, the value of k satisfies this condition for more than one risk threshold.

The privacy scores were calculated according to the quality model and the
highest privacy scores for each dataset are highlighted (the same reason men-
tioned above is responsible for the identical scores for more than one risk
threshold). It is important to observe that, at these highlighted scores, the re-
identification risk reached a value lower than the established threshold in the
quality model (0.05) and also the data loss is lower than its threshold (0.7).
These results give an indication that, to these datasets, the highest privacy score
represents the scenario where the thresholds are respected and the best result is
obtained considering the trade-off between data privacy and data utility.

Still in Fig. 2, regarding the attacks, Possibilities shows the lowest number of
possibilities that a unique known record could find a match in the anonymized
table. The # Attacks is the amount of records that presented the lowest number
of possibilities of a match in the anonymized table. So, the higher the Possibili-
ties, the lower the re-identification risk. Also, the possibilities can not be lower
than the k-value. It means that, for the highest privacy score, the best k-value
is applied and guarantees that the possibilities of re-identifying individuals (i.e.,
de-anonymize the data) is according to this k.

Regarding the overall results in Fig. 3, although the datasets are quite diverse
in terms of quantity of records, context and data composition (semi identifiers
and data sensitivity), we obtained, for the experiments, similar results for the
best score of each dataset.

4 Lessons Learned and Conclusions

This work presented a study on the usefulness of a Quality Model (QM) as a
way to characterize a system/service attribute. We presented a quality model
instance, i.e., a quality model for privacy, and we analyzed whether the model
guides the configuration of the attributes in terms of normalization ranges,
thresholds and weights and whether their scores (a quality model result) repre-
sent a good characterization of a system considering eight diverse datasets.

We got some interesting observations while calculating privacy scores using
the privacy quality model. The first one is that quality models are structures that
can be adequate and flexible to represent trustworthiness properties, specially
because we could define it for privacy. We believe that, as well as for privacy, it
is possible to easily define quality models for other trustworthiness properties,
composing them to have a more complete trustworthiness score.

Also, we observed that the privacy quality model allowed to define weights
and thresholds for the properties, which provided more flexible configurations
and, consequently, a better way to handle the trade-off between anonymization
and data utility. This was demonstrated through the experiments, where the
highest privacy score was reached when both thresholds (risk and data loss)
were respected (see Fig. 2), i.e., those scores represent the best balance between
anonymity level and data loss for the dataset.

On the Use of Quality Models to Characterize Trustworthiness Properties 155

Regarding the use of PRIVAaaS, it was possible to observe that k-anonymity
can deal with thresholds and it is adequate to assure the control over the re-
identification risk level that is supposed to be tolerated by the dataset. This was
demonstrated through the attacks: when the best k-value (i.e., the k that attends
the risk threshold) is applied, the possibilities of re-identifying individuals is
according to this k. Furthermore, increasing k is a good solution to be used in
the trustworthiness adaptive control loop and improve data privacy protection,
contributing to improve the overall trustworthiness of the system.

For future work, other quality models will be created to characterize other
trustworthiness properties. Additionally, the scores will be incorporated to the
system so it can dispatch adaptations when the score does not meet any expected
level.

Acknowledgment. This work has been partially supported by the ATMOSPHERE
project, funded by Brazilian MCTI/RNP and by the European Commission under the
Horizon 2020 grant agreement.

References

1. Basso, T., Matsunaga, R., Moraes, R., Antunes, N.: Challenges on anonymity,
privacy, and big data. In: 2016 Seventh Latin-American Symposium on Dependable
Computing (LADC), pp. 164–171. IEEE (2016)

2. Dujmovic, J., Elnicki, R.: A DMS cost/benefit decision model: mathematical mod-
els for data management system evaluation, comparison, and selection, pp. 82–374.
National Bureau of Standards, Washington DC, No. GCR (1982)

3. Friginal, J., Mart́ınez, M., de Andres, D., Ruiz, J.C.: Multi-criteria analysis of
measures in benchmarking: dependability benchmarking as a case study. J. Syst.
Softw. 111, 105–118 (2016)

4. Henschke, A., Ford, S.B.: Cybersecurity, trustworthiness and resilient systems:
guiding values for policy. J. Cyber Policy 2(1), 82–95 (2017)

5. ISO/IEC: Software product quality requirements and evaluation - SQUARE. User
guide. ISO/IEC (2005)

6. International Organization for Standardization: When the world agrees (ISO/IEC)
(2014). https://www.iso.org/standard/64764.html

7. Kort, S., Rudina, E.: The resilience model supporting IIoT system trustworthiness.
IIC J. Innov. 1(1), 1–16 (2018)

8. Kreutz, D., Feitosa, E., Cunha, H., Niedermayer, H., Kinkelin, H.: Increasing the
resilience and trustworthiness of openid identity providers for future networks and
services. In: 2014 Ninth International Conference on Availability, Reliability and
Security, pp. 317–324. IEEE (2014)

9. Medeiros, N.P.D.S., Ivaki, N.R., Da Costa, P.N., Vieira, M.P.A.: Towards an app-
roach for trustworthiness assessment of software as a service. In: 2017 IEEE Inter-
national Conference on Edge Computing (EDGE), pp. 220–223. IEEE (2017)

10. Mei, H., Huang, G., Xie, T.: Internetware: a software paradigm for internet com-
puting. Computer 45(6), 26–31 (2012)

11. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)

https://www.iso.org/standard/64764.html

Author Index

Adjepon-Yamoah, David Ebo 46
Aktouf, Oum-El-Kheir 97, 121
Andersson, Jesper 11

Basso, Tania 147
Baudet, Arthur 97
Bertolino, Antonia 138

Darroux, Arthur 121
Dominguez-Mayo, Francisco José 138

Escalona, María José 138

Grassi, Vincenzo 11

Inverardi, Paola 3

Jamont, Jean-Paul 97, 121

Matteucci, Ilaria 138
Mercier, Annabelle 97, 121
Mirandola, Raffaela 11
Moghaddam, Mahyar Tourchi 67
Moraes, Regina 147
Muccini, Henry 67

Olivero, Miguel Angel 138

Parri, Jacopo 85
Patara, Fulvio 85
Perez-Palacin, Diego 11

Sampietro, Samuele 85
Silva, Hebert 147
Stefanakos, Ioannis 109

Troubitsyna, Elena 29

Vicario, Enrico 85
Vistbakka, Inna 29

	Preface
	Organization
	Contents
	Keynote Paper
	Ethics and Privacy in Autonomous Systems: A Software Exoskeleton to Empower the User
	1 The Digital Society
	2 The Exosoul Vision and Challenges
	3 The EXOSOUL Methodology
	4 Conclusions
	References

	Invited Paper
	A Distilled Characterization of Resilience and Its Embraced Properties Based on State-Spaces
	1 Introduction
	2 A Conceptual Framework for Characterizing Resilience in ICT Systems
	2.1 Basic Terms and Concepts
	2.2 A Dynamic Characterization of Resilience
	2.3 Basic Properties of Change that Affect the System Resilience

	3 Design Strategies and Metrics for Resilience in ICT Systems
	3.1 Resilience Strategies
	3.2 Resilience Metrics

	4 Discussion and Future Works
	References

	Resilience Engineering in Complex and Critical Applications
	Modelling Autonomous Resilient Multi-robotic Systems
	1 Introduction
	2 Modelling and Refinement in Event-B
	3 Autonomous Behaviour of a Resilient Multi-robotic System
	3.1 Resilience-Explicit Modelling of Multi-agent Interactions

	4 Modelling of a Resilient Swarm of Drones
	4.1 Case Study Description
	4.2 Event-B Development of a Swarm of Drones

	5 Conclusions and Related Work
	References

	Reactive Middleware for Effective Requirement Change Management of Cloud-Based Global Software Development
	1 Introduction
	2 Related Work
	3 Reactive Middleware
	3.1 Publish/Subscribe System
	3.2 Artefacts Monitoring/Interpretation System
	3.3 Management Guidelines for System Engineering

	4 Reactive Middleware Evaluation
	4.1 Analysis of Expert Review
	4.2 Airlock Control System Case Study

	5 Threats to Validity
	5.1 Ensuring Traceability
	5.2 Constitution of the Expert Panel

	6 Conclusion
	References

	Fault-Tolerant IoT
	1 Introduction
	2 Research Method
	2.1 Search Strategy
	2.2 Selection Strategy

	3 Background on IoT Architectures
	4 Fault-Tolerant IoT Architectural Patterns and Styles (RQ1)
	5 Fault-Tolerance Techniques for Resilient IoT (RQ2)
	5.1 Replication
	5.2 Network Control
	5.3 Distributed Recovery Block
	5.4 Time Redundancy

	6 Quality of IoT Service Associated with Fault-Tolerance (RQ3)
	7 Horizontal Analysis
	7.1 FT Techniques vs Architectural Patterns
	7.2 FT Techniques vs Quality Attributes

	8 Challenges and Emerging Trends (RQ4)
	8.1 Publication Year
	8.2 Publication Type
	8.3 Publication Venues
	8.4 Emerging Trends in Resilience for FT-IoT

	9 Threats to Validity
	10 Conclusion
	References

	JARVIS, A Hardware/Software Framework for Resilient Industry 4.0 Systems
	1 Introduction
	2 System Requirements Specification
	3 System/Subsystem Design Description
	4 Digital Twins as Knowledge Base
	4.1 EIS Subsystem
	4.2 DAS Subsystem

	5 Conclusions and Future Works
	References

	Testing and Validation Methods
	Toward Testing Self-organizations in Multi-Embedded-Agent Systems
	1 Introduction
	2 Review of Testing Methods for Self-organizations
	2.1 Formal Methods
	2.2 Run-Time Validation Methods

	3 Testing Multi Wireless Agent Communication
	3.1 Definitions
	3.2 Approach Validation

	4 Conclusion and Future Work
	References

	Towards Integrated Correctness Analysis and Performance Evaluation of Software Systems (Doctoral Forum Paper)
	1 Introduction
	2 Objectives and Proposed Solution
	3 Preliminary Work
	4 Related Work
	5 Conclusion
	References

	Security, Trust and Privacy Management
	An Energy Aware Approach to Trust Management Systems for Embedded Multi-Agent Systems
	1 Introduction
	2 Trust Management Systems for Embedded Multi-Agent Systems
	2.1 Security and Trust
	2.2 Information Sources
	2.3 Models
	2.4 Vulnerability
	2.5 Constraints
	2.6 Trust in Embedded and Distributed Pervasive Systems

	3 A Multi-Armed Bandit Learning Based Approach
	3.1 Budgeted Multi-Armed Bandit
	3.2 Taking into Account TMS Energy Consumption in MAB
	3.3 Case Study
	3.4 Results

	4 Conclusion and Future Work
	References

	Addressing Security Properties in Systems of Systems: Challenges and Ideas
	Abstract
	1 Introduction
	2 Security Issues in Systems of Systems
	2.1 Directed SoS
	2.2 Collaborative SoS
	2.3 Acknowledged SoS
	2.4 Virtual SoS

	3 Addressing Security
	3.1 Modeling Security of System of Systems
	3.2 Testing the Security of System of Systems

	4 Conclusions
	Acknowledgments
	References

	On the Use of Quality Models to Characterize Trustworthiness Properties
	1 Introduction
	2 Background and Quality Model Concepts
	2.1 Data Anonymization and PRIVAaaS Framework
	2.2 The LSP Scoring Technique and Quality Model

	3 Privacy Quality Model: Anonymization and Linkage Attacks
	4 Lessons Learned and Conclusions
	References

	Author Index

