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18.1	 �Introduction

The endoplasmic reticulum (ER) is an important 
organelle responsible for protein folding and 
modification and disturbances in the ER environ-
ment will lead to ER stress and subsequently 
causes accumulation of unfolded or misfolded 
proteins. Although ER stress activates the 
unfolded protein response (UPR) mechanism to 
reestablish ER homeostasis, unresolved ER stress 
can lead to cellular processes such as apoptosis or 
autophagy. In cancer, tumor cells are dependent 
on these processes to combat and neutralize the 
chronic stress and harsh conditions of the tumor 
microenvironment, leading to tumor survival and 
tumor expansion; hence, the ER stress response 
is thought to be cytoprotective. It is now known 
that ER stress, apoptosis, and autophagy share 
overlapping molecular pathways and can occur in 
parallel under similar conditions. Fundamental 
knowledge in these processes has also generated 
a great deal of insight into the pathophysiological 
aspects of cancer, and has provided important 
considerations in strategizing cancer pharmaco-
therapy. A number of drugs targeting these pro-
cesses have been developed and were proven to 
be promising in both preclinical and clinical 
studies.

18.2	 �Endoplasmic Reticulum 
Stress (ER Stress)

The ER is an intracellular organelle that provides 
crucial biosynthetic, stress-sensing, and signal-
ing functions in eukaryotic cells [1, 2]. It is the 
main subcellular compartment for the synthesis, 
folding, modification, and transport of proteins 
which are destined to be secreted or embedded in 
the plasma membrane [3, 4]. The ER is also the 
major site for the biosynthesis of steroid, choles-
terol, and lipid. It is the major intracellular cal-
cium (Ca2+) storage organelle in the cell, and thus 
plays an important role in calcium homeostasis 
and calcium-mediated signaling pathways [5]. 
Nascent proteins are folded and modified cor-
rectly in the ER before being transported via the 
Golgi apparatus to the cell surface or other desti-

nation. It is an orchestrated process involving 
folding, assembly, modification, quality control, 
and recycling of proteins in a highly oxidizing 
and calcium-rich ER environment. Proteins 
translocated into the ER lumen are folded into 
their proper three-dimensional shapes and modi-
fied and assisted by ER-resident enzymes, such 
as chaperones, glycosylating enzymes, and oxi-
doreductases [6–8]. Incomplete or misfolded 
forms are eliminated by quality control systems, 
including the ER-associated degradation (ERAD) 
pathway and autophagy [7, 9, 10].

Physiological and pathological conditions 
such as hypoxia, nutrient fluctuations, altered 
ER-calcium levels, oxidative injury, inflamma-
tion, and viral infections may disrupt the protein 
folding environment in the ER, causing the accu-
mulation of unfolded or misfolded proteins in the 
ER lumen [3]. This cellular condition is known as 
ER stress. ER stress leads to a complex intracel-
lular signal transduction pathway, known as 
unfolded protein response (UPR), an adaptive 
mechanism to reestablish ER homeostasis [5, 
11]. The UPR primarily aims at reestablishing 
ER homeostasis by coordinating temporal shut 
down in protein translation, upregulating ER 
chaperone genes to increase protein-folding 
capacity in the ER, and promoting ERAD path-
way to remove misfolded proteins [4, 5]. 
However, when the initial cellular responses fail 
to restore ER homeostasis, persistent ER stress 
will elicit an alternative response called the “ter-
minal UPR,” which actively promotes cell death 
to eliminate the damaged cells [7, 12, 13]. 
Activation of the UPR represents the defining cri-
terion of ER stress, although the terms UPR and 
ER stress are often used interchangeably [8].

18.3	 �Unfolded Protein Response 
(UPR)

The UPR in mammalian cells is governed by three 
transmembrane ER stress sensors, namely PERK 
(protein kinase RNA-like ER kinase), IRE1α 
(inositol-requiring enzyme 1α), and ATF6α (acti-
vating transcription factor 6α) [3]. In the absence 
of ER stress, the ER luminal domains of PERK, 
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IRE1α and ATF6α are associated with immuno-
globulin heavy chain binding protein known as 
BIP (also known as GRP78), where this interac-
tion maintains all three transmembrane proteins 
in their inactive state. BIP, a 78-kDa glucose-reg-
ulated protein, is well established as an ER chap-
erone that participates in protein folding and 
assembly and has been widely used as a marker 
for ER stress [14]. During ER stress, the accumu-
lating misfolded or unfolded proteins cause BIP 
to dissociate from the three transmembrane ER 
stress sensors, and subsequently bind to these 
misfolded or unfolded proteins. This is due to 
higher natural affinity of BIP to unfolded proteins 
compared with the ER stress sensor luminal 
domains [4]. The release of BIP causes the 
homodimerization, trans-auto-phosphorylation, 
and activation of both IRE1α and PERK and 
translocation of ATF6α to the Golgi apparatus and 
subsequent activation [8, 12, 15].

Activated PERK phosphorylates eukaryotic 
translation initiator factor 2α (eIF2α) and attenu-
ates general protein translation, thereby relieving 
the protein burden on the stressed ER by reducing 
new protein synthesis and preventing further 
accumulation of unfolded proteins. 

Phosphorylation of eIF2α also regulates transla-
tion via inhibition of rRNA synthesis [5, 8]. 
Paradoxically, eIF2α phosphorylation allows 
selective translation of activating transcription 
factor 4 (ATF4), a transcription factor that con-
trols the expression of genes encoding ER chaper-
ones (e.g., BIP and GRP94), autophagy, and 
apoptosis [16, 17]. ATF4 favors the expression of 
antioxidant response, amino acid biosynthesis, 
and transport genes to sustain cell survival [4]. 
Depending on the severity and duration of stress, 
PERK activation can lead to either survival or cell 
death [18, 19]. Figure  18.1 illustrates the UPR 
pathway upon exposure to moderate ER stress.

During prolonged ER stress, ATF4 stimulates 
the transcription of DNA-damage-inducible tran-
script 3 (DDIT3; also known as CHOP [CCAAT/
enhancer binding protein homologous transcrip-
tion factor] or GADD153 [growth arrest and DNA 
damage-inducible gene 153]), a transcription fac-
tor that is activated by all three arms of the UPR 
[5]. DDIT3 itself is a transcription factor that is 
critical in supporting the ER stress-induced apop-
totic program [20]. In addition to its prodeath 
functions, DDIT3 participates in relieving the 
general block on translation via induction of 

Fig. 18.1  The UPR pathway upon exposure to moderate ER stress
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growth arrest and DNA damage-inducible protein 
34 (GADD34). GADD34 activates protein phos-
phatase 1 alpha (PP1A) to dephosphorylate eIF2α 
and dephosphorylated eIF2α resumes its function 
in general translation. If the protein folding capac-
ity of the ER has not been reestablished, a prema-
ture restoration of protein synthesis will increase 
protein load in the stressed ER, thus amplifying 
the damage [5, 8]. Although eIF2α phosphoryla-
tion is downregulated during prolonged ER stress, 
PERK signaling is sustained, possibly to sensitize 
cells to cell death via DDIT3 induction [17]. 
Figure  18.2 illustrates the UPR pathway during 
severe and prolonged ER stress.

Similar to PERK, the release of BIP allows 
IRE1α to undergo dimerization and autophos-
phorylation. IRE1α is a bifunctional molecule 
with serine/threonine protein kinase and endori-
bonuclease (RNase) activity in its cytosolic 
domain [8]. Hence, this process leads to the acti-
vation of its cytosolic RNase domain, which 
removes a 26-nucleotide intron from the mRNA 
encoding the transcription factor X box-binding 
protein 1 (XBP1), producing mature spliced 
XBP1 mRNA. The spliced XBP1 mRNA is sub-
sequently translated into an active and stable 
transcription factor, termed spliced XBP1 
(XBP1s). XBP1s regulates the transcription of 

Fig. 18.2  The UPR pathway and ER stress-Ca2+ signaling during severe and prolonged ER stress and antitumor 
targets
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several genes involved in protein folding and 
quality control, ERAD, and phospholipid synthe-
sis [21, 22]. ERAD is a process where misfolded 
proteins are retro-translocated from ER to the 
cytosol to be degraded by the 26S proteasome. 
Meanwhile, phospholipid synthesis is required 
for ER membrane expansion during ER stress [5, 
11]. Through a process known as regulated IRE1-
dependent decay (RIDD) of mRNA, IRE1 RNase 
domain degrades a subset of mRNAs encoding 
certain proteins of the secretory pathways and 
proteins located in the ER [11, 16].

Upon severe ER stress, XBP1s upregulates the 
expression of DDIT3 [5]. On the other hand, pro-
longed activation of IRE1α recruits the adaptor 
molecule TNF receptor-associated factor 2 
(TRAF2), which further recruits apoptosis signal 
regulating kinase 1 (ASK1). This leads to a 
mitogen-activated protein (MAP) kinase activa-
tion cascade that activates c-jun N-terminal 
kinase (JNK) and p38 mitogen-activated protein 
kinase (p38 MAPK) which further activates BIM 
and cause the  inactivation of BCL-2 [3, 5, 23]. 
However, IRE1α is turned off upon prolonged 
ER stress, leading to ablation of the prosurvival 
XBP1s expression. Attenuation of IRE1α signal-
ing is one possible mechanism to explain the 
transition from the adaptive UPR to prodeath 
events [11, 17] (Fig. 18.2).

ATF6α, a type II transmembrane protein, 
translocates to the Golgi apparatus once released 
from BIP, where it is proteolytically cleaved to 
generate a transcriptionally active fragment, 
termed ATF6f transcription factor. ATF6f medi-
ates the adaptive response to ER protein misfold-
ing by increasing the transcription of genes that 
increase ER capacity and the expression of Xbp1 
[24, 25]. The transcription target of ATF6f 
includes genes involved in ERAD, phospholipid 
synthesis, and ER chaperones, thereby enhancing 
cellular folding and degradation capacity [8, 16, 
17] (Fig. 18.1). ATF6f also contributes to upregu-
lation of DDIT3 during prolonged ER stress [5] 
(Fig. 18.2).

Taken together, the three UPR transcription 
factors, ATF4, XBP1s and ATF6f, regulate a large 
set of partially overlapping UPR target genes dur-
ing ER stress which modulates adaptation to 

stress or the induction of cell death under severe 
conditions [11]. The mechanisms underlying the 
switch from adaptive phase to prodeath events are 
still unclear, although it could be possibly through 
programs that sense the duration of the ER stress 
condition [17]. If the UPR is successful to increase 
the protein folding capacity and reduce the 
amount of misfolded proteins in the ER, BIP reas-
sociates with PERK, IRE1α, and ATF6α, thereby 
inactivating these signaling modules. However, in 
case of excessive or prolonged ER stress, signal-
ing pathways leading to cell death, either as apop-
tosis or autophagy, would be initiated [5, 8]. In 
certain situations, UPR may upregulate the 
autophagy machinery to eliminate damaged ER 
and abnormal protein aggregates [11]. In this con-
text, autophagy is activated as an adaptive mecha-
nism to reestablish ER homeostasis. However, if 
autophagy reaches a point of no return, cell death 
will be triggered. Therefore, just like in the case of 
UPR, persistent ER stress switches the cytopro-
tective functions of autophagy to cell death-pro-
moting mechanisms [5, 26].

18.4	 �ER Stress and Cell Death

Several signaling pathways leading to apoptosis 
and autophagy would be initiated if ER stress is 
too severe to be relieved [27]. DDIT3 plays an 
important role in ER stress-induced cellular death, 
as this factor is a target gene common to all three 
apical ER stress sensors/executioners [1]. Duration 
and/or strength of PERK signaling may determine 
whether prosurvival or prodeath outcome predom-
inates. Transient PERK signaling protects cells by 
temporarily reducing protein synthesis and thus 
reducing misfolded protein levels in the ER, but 
may be insufficient to induce DDIT3 to threshold 
level, given DDIT3’s inherent mRNA and protein 
instability. Since DDIT3 mRNA and protein have 
short half-lives, a strong and chronic activation of 
PERK is necessary to increase steady-state level of 
DDIT3 to promote cell death [28]. Persistent 
PERK signaling during prolonged ER stress is 
known to impair cell proliferation and promotes 
apoptosis via DDIT3 [29]. DDIT3 represses 
BCL-2 expression, upregulates BCL-2-interacting 
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mediator of cell death (BIM) transcription, and 
promotes translocation of BAX to mitochondria 
[30–32]. It is also known to bind and induce the 
promoters of p53 upregulated modulator of apop-
tosis (PUMA), lipocalin 2 (LCN2), tribbles homo-
logue 3 (TRIB3), and death receptor 5 (DR5) 
[33–37].

As a mediator of the mitochondrial apoptotic 
pathway, PUMA is known to result in the dis-
placement and activation of BAX/BAK through 
its binding to antiapoptotic BCL-2 proteins, lead-
ing to mitochondrial dysfunction and caspase 
activation, hence initiating apoptosis [38, 39]. 
LCN2 is known to exacerbate hypoxia-induced 
cytochrome c release from mitochondria and cas-
pase-3 activation [40]. Meanwhile, TRIB3 
induces both apoptosis and autophagy. It indi-
rectly activates unc-51-like autophagy-activating 
kinase1 (ULK1) which augments autophago-
some formation and reduces autophagy flux. 
TRIB3 levels inhibit the activity of the kinase Akt 
by interacting with it and activating forkhead box 
O1 (FoxO1), a transcription factor that is nega-
tively regulated by Akt, where it is translocated to 
the nucleus, and induces the proapoptotic gene, 
BIM [41]. It is also noted that DDIT3-mediated 
DR5 induction is responsible for ER stress apop-
tosis via caspase 8 [42]. PERK-dependent activa-
tion of ATF4 and DDIT3 has been demonstrated 
to upregulate the transcription of a set of autoph-
agy genes, which are implicated in the formation, 
elongation, and function of the autophagosome 
[43].

In addition, IRE1α promotes cell death by 
recruiting a TRAF2-ASK1 complex, leading to 
the activation of JNK and p38 MAPK cascades 
upon prolonged ER stress. JNK promotes apop-
tosis through the phosphorylation-mediated reg-
ulation of Bcl-2 family members [5, 31, 44]. JNK 
exerts its proapoptotic effect by activating pro-
apoptotic BH3-only protein BIM and by sup-
pressing the antiapoptotic BCL-2 [5]. The p38 
MAPK also phosphorylates and suppresses the 
antiapoptotic BCL-2 protein [45]. BCL-2 not 
only functions as an antiapoptotic protein, but 
also acts as an antiautophagy protein via its 
inhibitory interaction with BECN1. Both JNK 
and p38 MAPK have been proposed to induce 

autophagy by promoting dissociation of BECN1 
from BCL-2. BECN1 is an essential autophagy 
regulator that participates in autophagosome for-
mation [5, 45, 46]. In addition, p38 MAPK is 
known to phosphorylate DDIT3 and enhances 
DDIT3’s ability to function as a transcriptional 
activator [5, 47] (Fig.  18.2). The apoptosis-
inducing activity of the third arm of UPR, ATF6α, 
has not been widely recognized. This is at least 
partly due to the fact that ATF6α does not induce 
apoptosis in cell lines commonly used in research. 
However, it has been shown that ATF6f mediates 
apoptosis via suppression of antiapoptotic pro-
tein, myeloid cell leukemia sequence 1 (Mcl-1) 
[48].

The mechanisms underlying the switch from 
adaptive phase to prodeath events remain elusive, 
although several hypotheses were suggested. The 
expression of the transcription factor DDIT3 is 
thought to be a decisive effector of the switch 
between adaptive UPR to cell death and the dura-
tion and amount of elevated DDIT3 level were 
hypothesized to be the decisive factor in deter-
mining the cell’s fate [26]. Upon severe ER stress, 
ATF4, XBP1s, and ATF6f transcription factors 
induce the transcription of DDIT3. On the other 
hand, PERK/eiF2α/ATF4 branch is essential to 
upregulate DDIT3 protein expression. The tran-
scriptional activity of DDIT3 is then enhanced 
through the phosphorylation by p38 MAPK [5, 
31]. Prolonged high level of DDIT3 protein 
expression is considered an indicator of the 
switch to proapoptotic module [8]. DDIT3 alters 
the balance between prosurvival and proapop-
totic Bcl-2 family members and thus promotes 
apoptosis through the mitochondrial pathway. In 
addition, a molecular switch to cell death events 
could also involve TRIB3, a downstream tran-
scriptional target of DDIT3. TRIB3 binds directly 
to prosurvival Akt kinase, thereby preventing its 
phosphorylation and reducing its kinase activity. 
During severe or persistent ER stress, induction 
of TRIB3 would be more robust, leading to 
autophagy and apoptosis through TRIB3-
mediated inhibition of Akt/mTOR axis [5, 31, 49, 
50] (Fig. 18.2).

In fact, IRE1α activities, namely (1) XBP1 
mRNA splicing, (2) regulated IRE1-dependent 
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decay of mRNAs, and (3) JNK/p38 MAPK acti-
vation, are also thought to be responsible for the 
life/death switch under prolonged ER stress con-
ditions [51, 52]. Recently, the role of E2F1 has 
been described as a potential mechanistic sur-
vival/death switch under ER stress conditions [4, 
53]. E2F1 is a member of the E2F family of tran-
scription factors involved in several cellular func-
tions such as proliferation, differentiation, and 
cell death [54, 55]. Upon ER stress induction, 
E2F7 as one of XBP1 target gene has been dem-
onstrated to be positively regulated and the com-
bined activity of E2F7 and activated ATF6 results 
in a specific but timely downregulation of E2F1 
expression. This results in the removal of E2F1-
dependent basal inhibition of both PUMA and 
NOXA that will induce the apoptotic program 
[4]. Timely and coordinated expression levels of 
E2F1 are crucial for determining the survival/
death cell fate under ER stress conditions [4].

In addition to the three UPR branches, ER 
stress-Ca2+ signaling also leads to cell death dur-
ing severe and prolonged ER stress. As ER is the 
major intracellular calcium storage organelle in 
the cell, ER stress activation is frequently accom-
panied by calcium release into the cytosol, caus-
ing an increase in cytosolic free calcium ions. 
Increases in cytosolic calcium concentration 
upon treatment with different ER stress inducers 
lead to calcium/calmodulin-dependent kinase 
kinase-β (CaMKKβ)-dependent activation of 
AMPK, that ultimately leads to inhibition of 
mTOR and stimulation of autophagy [5, 56]. In 
addition, mitochondrial intake of calcium ions 
following its release into the cytosol from the ER 
causes a collapse in the inner mitochondrial 
transmembrane potential (ΔΨm). A long-lasting 
or permanent ΔΨm dissipation is often associ-
ated with cell death [57, 58].

18.5	 �ER Stress in Cancer 
and Therapeutic Strategies

Tumor cells are often present within a hostile 
microenvironment and are confronted with 
chronic metabolic stress conditions. Following 
initiation of malignancy, poor vascularization of 

the tumor mass leads to stressful conditions in the 
tumor microenvironment, including low oxygen 
supply, nutrient deprivation, and pH changes. 
Therefore, many tumor types are thought to be 
dependent on an adaptive UPR to combat and 
neutralize the chronic stress and harsh conditions 
of the tumor microenvironment [5, 26, 44]. On 
the other hand, most normal cells are not sub-
jected to stress and their UPR pathways are in an 
inactive state [44].

Both UPR activation and upregulation of BIP 
represent hallmark of several human cancers. 
UPR activation enables cancer cells to survive, 
adapts to adverse environmental conditions, and 
leads to growth arrest driving dormancy, which 
promotes resistance to conventional chemother-
apy [59–62]. In addition, there are emerging evi-
dences that linked mutations in three sensor genes 
such as ATF6α, IRE1α, and PERK in tumorigen-
esis [63–66]. The presence of missense, nonsense, 
and silent mutations in these genes seems to have 
tumor- or tissue-specific significance.

While BIP is generally too low to be detected 
in normal cells, many tumor cell lines display per-
manently elevated levels of BIP, which reflects the 
cancer cells’ ongoing effort to neutralize the 
chronic stress within the cells [26]. Elevated BIP 
is among the critical prosurvival mechanisms of 
tumor cells to withstand and thrive under detri-
mental microenvironmental conditions [8]. 
Similar to BIP, IRE1α/XBP1 signaling pathway is 
important for tumor growth and survival under 
stress conditions. An increase in XBP1 expression 
and splicing has been demonstrated in various 
human cancers, including breast cancer. Moreover, 
sustained IRE1α signaling was shown to enhance 
cell survival and proliferation [44, 67]. PERK/
eif2α/ATF4 pathway also plays a role in cancer 
progression during stress condition. Hypoxia 
induces activation of the PERK pathway in tumor 
cells as an adaptive response to promote survival 
under hypoxic conditions. ATF4 is overexpressed 
in many solid tumors and is involved in promoting 
proliferation and survival during nutrient depriva-
tion and severe hypoxia [44, 67].

In addition, several ER stress-associated 
markers are specifically upregulated in both neu-
roblastoma and melanoma cells under ER stress 
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conditions [68]. DDIT3 and four other genes 
associated with ER stress were induced greater 
than twofold, namely ERdj5 (PDIA19; an 
ER-resident protein containing DnaJ and thiore-
doxin domains), ERp57 (GRP58; PDIA3; an 
ER-resident protein disulfide isomerase), calre-
ticulin, and calnexin (both ER-resident chaper-
ones) [68]. Protein disulfide isomerase (PDI) 
family members such as ERdj5 and ERp57 are 
consistently upregulated in neuroectodermal 
tumors and a generalized inhibition of PDI activ-
ity revealed a significant sensitization of tumor 
cells to ER-stress apoptosis. PDIs are endoplas-
mic reticulum chaperone proteins, catalyze disul-
fide bond breakage, formation, and rearrangement, 
and are required for protein folding in the endo-
plasmic reticulum (ER). The observation that 
knockdown of ERdj5 or ERp57 enhanced the 
extent of cell death induced by chemotherapeutic 
drugs suggests that downregulating ER stress 
responses may be therapeutically valuable; the 
ER resident proteins ERdj5 and ERp57 may thus 
be anticancer targets and PDI inhibition in gen-
eral appears to be a novel therapeutic strategy 
[68–70]. Recently, there are a few synthetic small 
molecule PDI inhibitors such as PACMA31, 
16F16, and CCF642 which have proven efficacy 
in cancer models, but have yet to progress to clin-
ical studies [69, 71–73].

Since tumor cells engage adaptive UPR, only 
a small margin is left for the tumor cells to 
accommodate additional ER stress. Drugs that 
aggravate the preexisting ER stress condition in 
tumor cells may cause a shift from adaptive UPR 
to severe ER stress, leading to cell death. At the 
same time, exposure to ER stress-inducing agents 
causes activation of adaptive UPR in normal 
cells. Thus, moderate intensity ER stress induc-
ers would be required to sufficiently aggravate 
ER stress in tumor cells, but at the same time, 
only modestly trigger ER stress in normal cells, 
in order to produce tumor-selective cytotoxic 
outcome. It was hypothesized that exceptionally 
potent pharmacologic triggers of ER stress might 
not be ideal in this situation [26].

A variety of distinct pharmacologic agents 
have been identified to trigger ER stress by dif-
ferent mechanisms. These agents include protea-

some inhibitors and sarcoplasmic/endoplasmic 
reticulum calcium ATPase (SERCA) inhibitors, 
among others [26]. Although these compounds 
affect the UPR pathway, UPR may not be the pri-
mary mechanism of action of these drugs [44]. In 
the context of cancer research, thapsigargin (an 
inhibitor of SERCA), tunicamycin (an inhibitor 
of protein glycosylation), and brefeldin A (an 
inhibitor of protein transport from ER to Golgi) 
are frequently used in experiments as ER stress 
inducers to investigate the details of ER stress 
response [8].

The degradation of the majority of misfolded 
proteins is mediated by the 26S proteasome 
through the ERAD pathway [44]. Inactivation of 
the proteasome by proteasome inhibitors causes 
accumulation of misfolded proteins bound for the 
ERAD pathway, thereby triggering the UPR [26]. 
Bortezomib is a proteasome inhibitor and was 
approved by the US FDA in 2003 to treat multi-
ple myeloma and mantle cell lymphoma [8]. 
Treatment of multiple myeloma cells with bort-
ezomib causes rapid upregulation of the 
components in the UPR, including PERK, ATF4, 
and DDIT3, resulting in cell death. On the other 
hand, bortezomib sensitized pancreatic cancer 
cells to ER stress-induced apoptosis by induction 
of DDIT3, GADD34 and JNK, while PERK acti-
vation and eIF2α phosphorylation were not 
detected [44]. Several mechanisms have been 
proposed to explain the cytotoxicity of bortezo-
mib, including effects on NF-kB, cell cycle pro-
teins, apoptosis-regulatory proteins and caspases, 
as well as ER stress. Although ER stress repre-
sents only one of several processes associated 
with bortezomib-induced cell death, it is conceiv-
able that it might indeed represent the key com-
ponent, whereas other observed events might be 
orchestrated secondary to the aggravation of ER 
stress [8]. Bortezomib is further discussed in 
Chap. 17.

Inhibitors of human immunodeficiency virus 
(HIV) protease are known to inhibit the protea-
some [26]. Two widely prescribed HIV protease 
inhibitors, namely nelfinavir and atazanavir, 
cause the accumulation of polyubiquitinated pro-
teins, aggresome formation, and an increase in 
BIP and DDIT3 expression [74, 75]. In addition, 
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nelfinavir has been shown to induce ER stress, 
autophagy, and apoptosis in vitro and in vivo in 
nonsmall-cell lung carcinoma [76]. Nelfinavir is 
currently in clinical trials for repositioning as an 
anticancer agent [26]. A Phase II trial of nelfina-
vir in combination with chemoradiation for 
locally advanced inoperable pancreatic cancer 
(LAPC) revealed that nelfinavir showed accept-
able toxicity and promising survival in pancreatic 
cancer [77]. The study reports the clinical out-
come in 23 patients with LAPC treated with 
chemoradiotherapy plus nelfinavir which shows 
moderate median and 1-year overall survival at 
17.4 months and 73.4%, respectively [77].

In another Phase II trial of nelfinavir in combi-
nation with the proteasome inhibitor bortezomib 
in 12 patients with advanced hematologic malig-
nancies, promising activity in advanced, 
bortezomib-refractory multiple myeloma was 
noted [78]. Nelfinavir alone significantly upregu-
lated the expression of proteins related to UPR in 
peripheral blood mononuclear cells and inhibited 
proteasome activity. Of ten evaluable patients in 
the dose escalation cohort, three achieved a par-
tial response, four stable disease for two cycles or 
more, while three had progressive disease as best 
response [78]. Of nine patients given oral nelfina-
vir before and during radiation therapy for 
advanced rectal cancer, five patients exhibited 
good tumor regression on MRI assessed by tumor 
regression grade (mrTRG) [79]. Unfortunately, 
nelfinavir monotherapy does not result in a mean-
ingful improvement in clinical outcomes among 
patients with recurrent adenoid cystic carcinoma 
[80]. Nelfinavir is currently in clinical trials for 
various cancers such as cervical intraepithelial 
neoplasia and advanced renal cancers (Table 18.1

). However, atazanavir is not on any clinical 
trials involving cancer at this moment.

The SERCA is a transmembrane protein that 
actively imports calcium ions from the cytosol 
into the ER lumen, thereby establishing a steep 
calcium gradient between the ER lumen and 
cytosol. Inhibition of SERCA results in massive 
leakage of calcium ions from ER to the cytosol 
and thus efficiently triggers ER stress. 
Thapsigargin, a naturally occurring sesquiter-
pene lactone, is an exceptionally potent inhibitor 

of SERCA. However, its clinical usage is fraught 
with several challenges; it is quite toxic and not 
well tolerated by experimental animals. A pro-
drug of thapsigargin, also known as mipsagargin 
or G202, has been synthesized and was found to 
produce substantial tumor regression against a 
panel of human cancer xenografts in vivo at doses 
that were minimally toxic to the host [148]. 
Interestingly, mipsagargin demonstrated an 
acceptable tolerability and favorable pharmaco-
kinetic profile in a phase I clinical trial in patients 
with refractory, advanced, or metastatic solid 
tumors [81].

Certain diaryl-substituted pyrazoles, for 
example, celecoxib, are another class of com-
pound that has emerged as SERCA inhibitors 
[26]. Nevertheless, celecoxib might not attain 
sufficient level of ER stress in tumor tissues 
because it was initially developed as COX-2 
inhibitor. However, celecoxib analogues with 
minimized COX-2 inhibitory function, but sig-
nificantly increased ER stress-inducing ability 
have been developed [8]. AR-12/OSU-03012 is 
an antitumor celecoxib-derivative that has pro-
gressed to Phase I clinical trial as an anticancer 
agent and has activity against a number of infec-
tious agents including fungi, bacteria, and viruses 
[149]. It has been shown to suppress tumor cell 
viability through multiple mechanisms including 
activation of endoplasmic reticulum stress, inhi-
bition of PDK-1/Akt signaling and the induction 
of autophagy [150–152]. Although a Phase I clin-
ical trial of AR-12 in adult patients with advanced 
or recurrent solid tumors or lymphoma has been 
completed, its overall outcome remain 
unpublished.

In both oncogenic BRAF melanoma cell lines 
and in patients who failed clinical treatment for 
skin melanomas, the presence of oncogenic BRAF 
was responsible for ER stress induction and cell 
survival [153, 154]. In particular, human skin mel-
anoma is characterized by oncogenic BRAF muta-
tions, such as BRAFV600E. In addition, 
approximately 8–14% of colorectal cancers (CRC) 
in early and advanced stages exhibit the BRAFV600E 
mutation [155–158]. The BRAF serine/threonine 
protein kinase is a downstream signaling protein in 
the epidermal growth factor receptor-mediated 
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MAP kinase pathway, which activates MEK 
through its phosphorylation. BRAFV600E mutation 
leads to constitutive BRAF kinase activity, which 
sustains the MAP kinase signaling pathway. 
BRAFV600E-mediated p38 MAPK activation stimu-
lates both the IRE1α/ASK1/JNK and TRIB3 path-
ways. BCL-XL/BCL-2 phosphorylation by active 
JNK releases BECN1, whereas TRIB3 inhibits the 
Akt/mTOR axes, resulting in an increase in basal 
autophagy [154].

Vemurafenib and dabrafenib are BRAF inhib-
itors which have been approved by the USA FDA 
and EMA for the treatment of BRAF-mutated 
metastatic melanoma. In an open-label, multi-
center 2-year follow-up of vemurafenib in 3219 
patients with BRAFV600 mutation-positive meta-
static melanoma, data suggest that long-term 
vemurafenib treatment is effective and tolerable 
[83]. Although vemurafenib and dabrafenib dem-
onstrated impressive antitumor activity in 
advanced melanoma with objective response 
rates around 50% [85, 159], disappointing results 
were seen for patients with BRAFV600E-mutated 
colorectal cancer. In the Phase II study evaluating 
vemurafenib in patients with metastatic 
BRAFV600E-mutated colorectal cancer, of 21 
patients, only one patient had confirmed partial 
response (5%) and the median progression-free 
survival (PFS) was 2.1 months [82]. Dabrafenib 
monotherapy did not show meaningful clinical 
activity with only one confirmed partial response 
among the 11 patients with BRAFV600E-mutated 
colorectal cancer included in the Phase I trial 
[84]. Encorafenib, another potent and selective 
oral BRAF inhibitor, showed signs of efficacy in 
patients with BRAF-mutant advanced melanoma 
but lack of objective response in patients with 
colorectal cancer [160]. All three drugs are cur-
rently in several clinical trials for other tumors 
(Table 18.1).

Treatment of tumor cells with drugs that trig-
ger further ER stress might result in two desirable 
anticancer outcomes. First, the drugs by them-
selves might result in increased antitumor effects. 
Second, the overload and subsequent breakdown 
of the UPR adaptive system might increase the 
tumor cells’ sensitivity toward conventional che-
motherapeutic agents [26]. Targeting of alterna-

tive pathways is an attractive strategy to improve 
antitumor therapy in apoptosis-resistant cancer. 
In view of the fact that ER stress is basally acti-
vated in many cancers, aggravation of the preex-
isting ER stress condition and the subsequent 
activation of autophagy represent an alternative 
therapeutic target to improve cancer therapy [27].

18.6	 �Autophagy

The ubiquitin-proteasome system (UPS) and 
lysosomes are two primary intracellular protein 
degradation pathways recognized in eukaryotic 
cells. Differences between these two major pro-
tein degradation systems depend on their func-
tional significance and the type of substrates 
taken in for degradation [161]. The UPS cata-
lyzes the rapid degradation of abnormal proteins 
and short-lived regulatory proteins, leading to a 
control of a diversity of essential cellular pro-
cesses [162]. In the lysosomal protein degradation 
pathway, degradation of extracellular materials is 
mediated by endocytosis, whereas degradation of 
intracellular long-lived cytoplasmic proteins and 
damaged organelles is mediated by three types of 
autophagy, macroautophagy, microautophagy, 
and chaperone-mediated autophagy (CMA), 
which are classified based on their transport of 
cytoplasmic materials into the lysosome for deg-
radation [163, 164].

Autophagy literally means self-digestion in 
Greek [165]. Macroautophagy, usually  refers to 
autophagy, is responsible for the turnover of 
unnecessary or dysfunctional organelles and pro-
teins, such as damaged mitochondria [166]. 
These processes are important to maintain a well-
controlled balance between anabolism and catab-
olism to facilitate normal cell growth and 
development. It is also a survival pathway, 
required during starvation or growth factor depri-
vation, as it provides an alternative energy source 
[167, 168]. Autophagy process provides cata-
bolic intermediates for intracellular production of 
ATP when energy supplies are limited. It plays an 
essential role during starvation, cellular differen-
tiation, cell death, cell survival, aging, and tumor 
prevention [164, 166, 169].
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Autophagy pathway is a multistep process 
characterized by induction, vesicle nucleation, 
extension, and completion of an isolation mem-
brane to form an organelle called autophagosome 
[170]. Briefly, the autophagy process begins with 
the formation of a preautophagosomal structure 
known as isolation membrane or phagophore 
[171]. The isolation membrane engulfs and elon-
gates to form the autophagosome, surrounding 
the components destined to be recycled. The 
autophagosome, which is a double membrane-
bounded structure, undergoes maturation, and 
fuses with both endosomal and lysosomal vesi-
cles to form autolysosome [171–173]. The 
sequestered contents are subsequently degraded 
by lysosomal hydrolases and are recycled. Based 
on morphological features, the term “autophagic 
cell death” has been described in instances of cell 
death that are accompanied by massive cytoplas-
mic vacuolization. 

The core autophagy machinery is composed 
of four major functional groups: (1) the unc-51-
like kinases (ULKs) (ATG1-ATG13-ATG17 
kinase complex), (2) the Class III 
phosphatidylinositol-3-kinase catalytic subunit 
type 3 (PI3KC3) complexes, including Class III 
PI3K (the mammalian orthologue of vascular 
protein sorting 34; VPS34), p150/VPS15 (the 
mammalian orthologue of Vps15), BECN-1 (the 
mammalian orthologue of ATG6/Vps30) and 
ATG14L (ATG14), (3) two ubiquitin-like conju-
gation systems: ATG12 and ATG8, and (4) ATG9 
and its cycling system [174]. The ULKs (the 
mammalian orthologues of ATG1, which exist in 
a large complex with mammalian ATG13), focal 
adhesion kinase family interacting protein of 
200 kDa (FIP200; the mammalian homologue of 
ATG17), and the recently identified ATG101 play 
a crucial role in autophagy induction [175–179]. 
ULK1 is part of a family of kinases in humans 
(ULK1–4). Isoform ULK1 is the most important 
component in autophagy and in some cells lines, 
blocking both ULK1 and ULK2 is necessary to 
completely shut down autophagy [180].

The ULK1 kinase regulates proautophagic 
signals by phosphorylating many substrate pro-
teins [181]. The numerous substrates of ULK1 
include itself and other subunits of the ULK1 

complex; other elements of the core autophagy 
machinery, including PI3KC3–C1 subunits such 
as BECN1 and ATG9; and other autophagy-
related proteins such as AMBRA1 [180, 181]. 
Autophosphorylation of the kinase domain’s acti-
vation loop at Thr180 of ULK1 is essential for 
activation upon autophagy induction [182, 183]. 
Subsequently, phosphorylation of these down-
stream molecules by ULK1 is an important step 
in the initiation of autophagy.

The early stages of the phagophore membrane 
nucleation are dependent on the Class III PI3KC3 
complex which consists of the Class III PI3KC3 
protein, its regulatory protein kinase p150/
VPS15, and BECN1 [184]. BECN1 is a 60-kDa 
tumor suppressor protein and is identified from a 
yeast two-hybrid screen as a BCL-2 interacting 
protein [185]. Several studies have demonstrated 
that several binding molecules positively regulate 
BECN1 activity and autophagosome formation 
and maturation. For example, ultraviolet radia-
tion resistance-associated gene (UVRAG), 
ATG14L, and activated molecule in BECN1 reg-
ulated autophagy protein (AMBRA1) associate 
with BECN1 to activate autophagy [186–190].

The Class III PI3KC3 phosphorylates phos-
phatidylinositol to generate PI(3)P which is an 
essential early event in autophagy initiation, 
downstream of ULK1 [187, 191, 192]. PI3KC3 
forms two distinct complexes, known as com-
plexes I and II (PI3KC3–C1 and PI3KC3–C2) 
which contain the catalytic subunit VPS34/
Vps34, the putative protein kinase VPS15/Vps15 
and BECN1/ATG6 [187, 192]. PI3KC3–C1 con-
tains ATG14L/ATG14, which directs the com-
plex to phagophore initiation sites [186, 187, 
193–196]. PI3KC3–C1 facilitates elongation 
meanwhile PI3KC3–C2, which contains 
UVRAG, directs endosome and autophagosome 
maturation [180].

The next stage of phagophore membrane elon-
gation (expansion and closure of the autophago-
some) requires two ubiquitin-like systems [197]. 
The ubiquitin-like protein ATG12 conjugates 
with ATG5  in an ATG7- and ATG10-dependent 
manner [161]. The ATG5–ATG12 complex inter-
acts with ATG16 to form a stable and large mul-
timeric complex called the ATG16L complex, 
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which localizes on the outer surface of the 
extending autophagosomal membrane [170]. 
This complex is important in the stimulation and 
localization of the microtubule-associated pro-
tein 1 light chain 3 (LC3) conjugation reactions. 
LC3 is first cleaved by ATG4 to expose a 
C-terminal glycine residue required for subse-
quent activation and conjugation reactions [198]. 
It is then conjugated to the lipid phosphatidyl-
ethanolamine (PE), also via ATG7 and E2-like 
ATG3, and is subsequently recruited to both 
outer and inner surfaces of the autophagosomal 
membrane [197, 199]. Actually, two forms of 
LC3 are produced posttranslationally in various 
cells; the unconjugated form (LC3-I) is in the 
cytosol, while the conjugated form (LC3-II) tar-
gets the autophagosomal membrane with the 
assistance of the ATG16L complex [199, 200]. 
ATG16L complex is a ubiquitin-protein ligase 
(E3)-like enzyme that functions as a scaffold for 
LC3-II lipidation by localizing to the source 
membranes during autophagosome formation 
[200, 201]. The association of LC3-II to the 
autophagosome is crucial for membrane elonga-
tion of the autophagosome and the final limita-
tion of the membrane to form the vacuoles [161]. 
The ATG5–ATG12–ATG16 complex is recycled, 
while the LC3 complex stays on the membrane 
until it is degraded by the lysosome [161]. In 
mammalian autophagy, LC3-II protein is used as 
an index of autophagosome formation or as an 
autophagosomal marker [202]. These conjuga-
tion systems are considered to be uniquely impor-
tant to the autophagosome formation and have 
been identified as possible drug targets in cancer 
[203].

ATG9 system is required for phagophore 
expansion. It is the only transmembrane protein 
in the autophagy core machinery and has been 
proposed to play a key role in directing mem-
brane from donor organelles for autophagosome 
formation [204]. ATG9 trafficking from the 
plasma membrane and trans-Golgi network 
involves two conserved sorting signals for proper 
function in autophagy, namely ATG9 interaction 
with the AP1/2 clathrin adaptor complex and 
phosphorylation of ATG9 at Tyr8 by SRC kinase 
and at Ser14 by ULK1. SRC kinase directly 

phosphorylates Tyr8 of ATG9 and promotes the 
interaction of ATG9 with the AP1/2 complex and 
leads to the movement of ATG9 away from the 
juxtanuclear region [205]. As with Tyr8, phos-
phorylation at Ser14 enhances the binding of 
ATG9 with the AP2 complex and promotes 
ATG9-AP1 interaction. Zhou and co-workers 
showed that phosphorylation of ATG9 at both the 
Tyr8 and Ser14 sites is required for maintaining 
proper autophagy under both basal conditions 
and in response to starvation-induced stress 
[205]. Finally, ATG9 binds the small Rab 
GTPases (RABGAP) protein TBC1D5, and both 
TBC1D5 and the AP2 complex contribute to the 
correct sorting of ATG9-containing vesicles dur-
ing the initiation of autophagy [206].

The completed autophagosome membrane 
subsequently fuses with lysosome via the actions 
of the lysosomal proteins including the 
lysosomal-associated membrane protein 1 
(LAMP1), LAMP2, member of RAS oncogene 
family (Rab7), and UVRAG [207]. The eventual 
autolysosome is a single membrane-bound acidic 
vesicle where the contents are digested and recy-
cled by lysosomal hydrolases such as cathepsins 
(CTS), and its nutrient and energy are recycled 
[208]. These single membrane autolysosomes 
filled with degraded cytoplasmic materials can be 
easily observed using transmission electron 
microscopy (TEM) [170]. In addition, the adapter 
protein sequestosome 1 (SQSTM1/p62), which 
targets specific substrates to autophagosomes and 
LC3II are degraded along with other cargo pro-
teins and are used as a measure of autophagy flux 
[209]. The autophagy cargo receptor p62/
SQSTM1 binds ubiquitin on cargo to deliver 
cargo proteins to autophagosomes by docking 
onto LC3 on autophagosomes. P62 itself is an 
autophagy substrate that accumulates when 
autophagy is inhibited [210].

The Nomenclature Committee on Cell Death 
(NCCD) recommends that the term “autophagic 
cell death” be used based on some biochemical 
and functional considerations, before indicating 
that a cell death is mediated by autophagy. Some 
of the considerations include making sure that 
the investigated cell death can be suppressed by 
the inhibition of the autophagic pathway using 
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chemicals and/or genetic means (e.g., gene 
knock-out or RNAi silencing of essential autoph-
agy modulators such as AMBRA1, ATG5, 
ATG12, or BECN1) [211].

One of the most-studied and important path-
ways involved in autophagy regulation is the 
PI3K-Akt-mTOR signaling pathway. The mam-
malian target of rapamycin, commonly known as 
mTOR, is a serine/threonine kinase which 
belongs to the family of phosphatidylinositol 
3-kinase-related kinases. It regulates translation 
and cell growth by its ability to phosphorylate 
both binding protein of eukaryotic translation 
inhibition factor eIF4E (4E-BP1) and p70 ribo-
somal S6 kinase (p70S6k). Upon stimulation by a 
variety of signals including cytokines, growth 
factors, cellular stress such as heat shock, 

hypoxia, and oxidative stress, PI3K is recruited 
to the inner cell membrane via phosphorylated 
receptor tyrosine kinases and catalyzes the phos-
phorylation of phosphatidylinositol-3,4-
bisphosphate (PIP2) to 
phosphatidylinositol-3,4,5-triphosphate (PIP3). 
The recruitment of inactive Akt from the cytosol 
to the plasma membrane requires that the pleck-
strin homology (PH) domain of Akt binds to PIP3 
synthesized at the plasma membrane by 
PI3K. Akt is then phosphorylated at Thr308 by 
phosphatidylinositol-dependent kinase 1 (PDK1) 
[212, 213]. PTEN phosphatase antagonizes 
PI3K-Akt signaling by converting PIP3 back to 
PIP2 [212]. (Fig. 18.3).

Upstream PI3K and Akt activation by growth 
factors leads to the activation of mTOR and sub-

Fig. 18.3  Autophagy signaling pathway and antitumor targets
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sequently phosphorylation of downstream sub-
strates. Phosphorylation of p70S6k promotes 
ribosome biogenesis, and increases the capacity 
of the translational machinery for protein synthe-
sis [214]. Phosphorylation of 4E-BP1 initiates 
the transcription of a subset of mRNAs important 
for cell growth and proliferation [214–216]. The 
mTOR kinase is a key regulatory component that 
controls the induction of autophagy [217]. 
Inhibition of mTOR (by nutrient depletion, star-
vation, or rapamycin) leads to cell cycle arrest, 
inhibition of cell proliferation, immunosuppres-
sion, and induction of autophagy. Increased lev-
els of the mTOR kinase are found to inhibit the 
autophagy process, resulting in an increased in 
cell growth and tumor development [173]. 
Rapamycin, a specific mTOR inhibitor, com-
plexes with the cytosolic receptor FK506-binding 
protein (FKBP12), and subsequently binds to a 
distinct region of mTOR upstream of the cata-
lytic domain [218]. It induces autophagy and 
inhibits the proliferation of a variety of cells 
[219].

In eukaryotic cells, mTOR exists in two differ-
ent complexes: mTORC1; a rapamycin-sensitive 
complex defined by its interaction with the sup-
plementary protein Raptor (regulatory-associated 
protein of mTOR) and mTORC2; a rapamycin-
insensitive complex defined by its interaction 
with Rictor (rapamycin-insensitive companion of 
mTOR) [220–222]. mTORC1 and mTORC2 
accessorial complexes consist of mTOR, mam-
malian lethal with SEC13 protein 8 (mLST8) 
(also known as GßL) and DEP domain-containing 
mTOR-interacting protein (Deptor) [223]. 
mLST8 binds to the kinase domain of mTOR, 
and stabilizes the interaction of Raptor with 
mTOR in a rapamycin-sensitive pathway [224]. 
Raptor is the first protein shown to bind directly 
to mTOR that is required to mediate mTOR regu-
lation of p70S6k and 4E-BP1 activities [221, 
225]. On the other hand, PRAS40 and Deptor 
play roles as distinct negative regulators of 
mTORC1 [226, 227].

In a rapamycin-sensitive mTOR signaling 
pathway, much of the knowledge about mTORC1 
function comes from the use of rapamycin, a bac-
terial macrolide antibiotic [228]. Upon entering 

the cell, rapamycin binds FK506-binding protein 
(FKBP12), its intracellular receptor, which sub-
sequently binds to the FKBP12-rapamycin bind-
ing domain (FRB) of mTOR, thus inhibiting the 
mTORC1 functions [229, 230]. Rapamycin 
weakens the interaction between mTOR and 
Raptor [231]. However, the exact mechanism of 
how rapamycin and several rapamycin deriva-
tives bind to FKBP12 to inhibit mTORC1 signal-
ing is not completely understood [232]. Various 
conditions including starvation or lack of nutri-
ents such as amino acids and/or glucose mimic 
rapamycin treatment, hence inhibit mTOR func-
tion in cultured cells, as indicated by rapid inacti-
vation of p70S6k and hypophosphorylation of the 
4E-BP1 [233].

Studies have shown that mTORC1 controls 
autophagy through the regulation of a protein 
complex consisting of ULK1, mAtg13, and 
FIP200 [176, 178, 234]. ULK complex is directly 
controlled by mTOR, leading to maintenance of 
the mAtg13 hyperphosphorylation state and 
suppression of autophagy induction [235]. A 
study has demonstrated that inhibition of mTOR 
by rapamycin leads to dephosphorylation of 
ULK1, ULK2, and mATG13, and activates ULKs 
to phosphorylate FIP200. These results suggested 
that the ULK-ATG13-FIP200 complexes are 
direct targets of mTOR and important regulators 
of autophagy in response to mTOR signaling 
[178]. One of the most important proteins 
involved in the regulation of mTORC1 activity is 
the tuberous sclerosis complex (TSC), which is a 
heterodimer of two proteins, TSC1 (also known 
as hamartin) and TSC2 (also known as tuberin) 
[230]. TSC1 and TSC2 function as a GAP 
(GTPase-activating protein) that negatively regu-
lates a small GTPase called Rheb (Ras 
homologue-enriched in brain). TSC1 and TSC2 
inhibit mTORC1 signaling by transforming Rheb 
into its inactive GDP-bound state [236, 237].

On the other hand, mTORC2 consists of 
mTOR, mLST8, Rictor, Deptor, mammalian 
stress-activated map kinase-interacting protein 1 
(mSIN1; also known as MAPKAP1), and the 
recently identified protein observed with Rictor 
(PROTOR) [223, 238]. Rictor is defined as a 
novel mTOR-interacting protein defining a sec-
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ond raptor-independent mTOR complex [220, 
239]. Unlike mTOR-Raptor, the mTOR-Rictor 
complex does not bind to FKBP12-rapamycin, 
and is insensitive to rapamycin treatment [220, 
222]. Therefore, rapamycin treatment does not 
represent a complete inhibition of mTOR func-
tion [240]. mTORC2 stimulates cell signaling 
through activation and phosphorylation of the 
proproliferative and prosurvival kinase Akt [241]. 
Akt regulates cellular processes such as metabo-
lism, survival, apoptosis, growth, and prolifera-
tion by phosphorylating various effectors. 
mTORC2 activates Akt directly by phosphoryla-
tion at Ser473, which is a site needed for its max-
imal activation [242, 243].

In addition, mTORC2 controls various mem-
bers of the AGC subfamily of kinases which 
includes serum and glucocorticoid-induced pro-
tein kinase 1 (SGK1) and several members of 
PKC family including PKCα [220], PKCε [244], 
PKCδ [245], and PKCζ [246]. mTORC2 is also 
known to phosphorylate mammalian Ste20-like 
kinases 1 (MST1) which is a core component 
kinase in the Hippo signaling pathway [247]. The 
Hippo pathway is composed of a group of evolu-
tionarily conserved protein kinases that inhibit 
cellular growth and promote apoptosis [248, 
249]. MST1 phosphorylates and activates large 
tumor suppressor (LATS) kinases, which in turn 
phosphorylate and inhibit Yes-associated protein 
1 (YAP1), a co-transcription factor that promotes 
proliferation and survival [250]. mTORC2 is 
reported to be involved in the regulation of cyto-
skeletal organization through Rho GTPases and 
PKCα [220, 239]. Inhibitors of mTOR kinase 
domain have been developed to suppress the 
activity of both mTOR complexes (mTORC1 and 
mTORC2) [251, 252]. Figure 18.3 illustrates the 
simplified autophagy signaling pathways.

18.7	 �Autophagy and Cancer

The role of autophagy in cancer is rather perplex-
ing. It is widely known that the autophagic path-
way is deregulated in tumor cells. Several 
proteins and pathways related to autophagy sig-
naling are deregulated during cancer develop-

ment [189, 253]. Cell lines derived from hepatic, 
pancreatic, and breast carcinoma exhibit low 
autophagic activity, as compared with normal 
cells from the same origin [189, 254]. Autophagic 
capacity is known to increase during premalig-
nant stages of pancreatic carcinogenesis, and 
then decreases during the transition of pancreatic 
adenoma into adenocarcinoma, suggesting that a 
decreased autophagic activity possibly contrib-
utes to the malignancy of pancreatic cancer [255, 
256]. A decrease in autophagic capacity is also 
observed during animal experimental carcino-
genesis, where cells from preneoplastic liver 
nodules or primary hepatocellular carcinomas 
induced by chemical carcinogens showed a 
decreased autophagic capacity as compared to 
normal liver cells [256, 257]. In addition, BECN1 
is found to be mono-allelically deleted in a high 
percentage of ovarian, breast, and prostate can-
cers (based on the 17q21 and gene mapping stud-
ies). However, BECN1 is adjacent to the known 
tumor suppressor gene breast cancer 1 (BRCA1) 
on chromosome 17. Genomic analysis of 
BECN1  in The Cancer Genome Atlas (TCGA) 
demonstrated that allelic loss of BECN1 does not 
occur independently of codeletion with BRCA1, 
suggesting instead that BRCA1 loss is the driver 
mutation in hereditary and sporadic breast cancer 
[258–260].

There is a direct link between tumorigenesis 
and the disruption of the autophagy signaling 
pathways. PTEN deletions as well as the amplifi-
cations of both Class III PI3K and Akt are found 
in several cancers [261, 262]. The mTOR signal-
ing pathway is constitutively activated in many 
tumor types. For example, the mTOR pathway is 
frequently found to be hyperactive in cancers 
such as breast cancer, suggesting that mTOR is 
an attractive target for cancer drug development 
and therapy [263–265]. The mTOR signaling 
network contains a number of tumor suppressor 
genes which includes PTEN, LKB1 (liver kinase 
B1), TSC1/2, and a number of proto-oncogenes 
such as PI3K, Akt, and eIF4E genes [266]. 
Several alterations in genes such as KRAS, EGFR, 
LKB1, PTEN, PIK3CA (encoding the p110 cata-
lytic subunit of PI3K), as well as Akt1 mutations, 
EGFR and PIK3CA amplification, and PTEN 
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deletion have been described in NSCLC, which 
lead to uncontrolled mTOR pathway signaling 
[267]. In addition, dysregulation of the mTOR 
pathway appears to be more common in squa-
mous lung carcinoma than adenocarcinoma [267, 
268].

Cancer-related changes in pathways at the 
downstream of mTOR such as p70S6k and eIF4E 
are reported in breast carcinoma [269, 270]. In 
addition, malignant cell types undergo massive 
autophagosomes and eventually cell death when 
responding to anticancer agents and traditional 
herbs indicate the potential utility of autophagic 
cell death induction in cancer therapy [173, 271, 
272]. Autophagic cell death characterized by an 
increase in the number of autophagic vacuoles in 
the cytoplasm, followed by cell demise has been 
observed in various diseases such as Alzheimer’s 
disease [273], Huntington’s disease [274–277], 
and Parkinson’s disease [278]. Thus, manipula-
tion of autophagy is considered an attractive 
strategy to increase the efficacy of cancer treat-
ments, prevent cancer development, and limit 
tumor progression.

However, autophagy is divergent in nature in 
both tumor suppression and tumor progression 
[279]. Although the argument supports that if 
cells cannot activate autophagy, protein synthesis 
will predominate over protein degradation and 
cellular growth continues (typical characteristic 
of tumor cells), that was not the case for most. 
For example, a study in human epidermoid lung 
carcinoma cells revealed that the autophagic 
pathway in response to nutrient deprivation is not 
downregulated when compared to their normal 
counterparts [280]. Human colon cancer cells 
which are able to survive for long period of time 
in the absence of nutrients have a high rate of 
autophagic activity [281]. Studies in colorectal 
cancer cells revealed that these cancerous cells 
harbor functional autophagic machinery to pro-
long cell survival during shortages of nutrients 
[282]. A study by Fuji and coworkers has also 
shown that strong LC3 expression in the periph-
eral area of pancreatic cancer tissue is correlated 
with poor outcome and short disease-free period 
[283]. Activated autophagy observed in pancre-
atic cancer cells is thought to be a response to 

factors in the cancer microenvironment, such as 
hypoxia and poor nutrient supply. In addition, 
autophagy was found to be upregulated in RAS-
transformed cancer cells to promote cancer cells 
growth, survival, tumorigenesis, invasion, and 
metastases [284–286]. Upregulation of autoph-
agy in cancer cells is caused by direct activation 
of the transcription factors of the microphthalmia-
associated transcription factor (MiTF)/TFE fam-
ily that control autophagy and lysosomal 
biogenesis or by removal of a repressive phos-
phorylation on the autophagy initiation machin-
ery [286–288].

In lung cancer, deletion of Atg7 dramatically 
alters tumor pathology from carcinomas to that 
of benign oncocytomas [289, 290]. ATG7-
deficient tumors accumulate dysfunctional mito-
chondria and prematurely induce p53 and 
proliferative arrest. As defective mitochondria is 
a major autophagy substrate, this indicates that 
benign human tumors manifest a phenotype of 
defective autophagy, perhaps explaining their 
benign status [286]. Autophagy has been identi-
fied as the key mechanism of cell survival in 
estrogen receptor-positive (ER+) breast cancer 
cells undergoing treatment with 
4-hydroxytamoxifen (4-OHT) [291]. 
Antiestrogen therapy is the standard treatment 
for ER+ breast cancers which improves overall 
survival and provides chemoprevention [292, 
293]. Unfortunately, approximately half of the 
women treated with antiestrogen therapy either 
do not respond or their breast cancer ultimately 
acquires resistance during treatment [294, 295]. 
Studies have shown that autophagic activity 
reduces the efficacy of chemotherapy and tamox-
ifen therapy in ER+ breast cancer cells [291, 296, 
297], supporting the thesis that blocking autoph-
agy signaling pathways may provide a new 
mechanism of anticancer therapy for resistant 
tumors.

In another example, electron microscopy 
examination of autophagic vesicles in melanoma 
tumors from 12 patients enrolled in a Phase II 
clinical trial of temozolomide and sorafenib ther-
apy revealed that autophagic index (mean num-
ber of autophagic vacuoles per cell) is significantly 
higher in patients who derived little or no clinical 
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benefit from the combination of temozolomide 
and sorafenib treatment. Patients who had stable 
disease or responded to therapy had low levels of 
autophagy in their tumors. These findings further 
validate the preclinical evidence that autophagy 
plays a critical role in resistance to chemother-
apy. Results of this study indicate that pretreat-
ment levels of autophagy can predict resistance 
to therapy. Patients with aggressive melanoma 
are more likely to have higher levels of autoph-
agy in their tumor and therefore may respond to 
autophagy inhibition as a therapeutic strategy 
[298]. Hence, the divergent nature of autophagy 
has resulted in strategies for using proautophag-
ics or autophagy inhibitors depending on the 
inherent nature of the cancer involved.

18.8	 �Autophagy Signaling 
Pathways and Therapeutic 
Strategies in Cancer

18.8.1	 �mTOR Signaling Pathway 
Inhibitors

Rapamycin (Sirolimus) as the first prototype of 
an mTOR inhibitor has poor aqueous solubility 
and strong immunosuppressive properties. 
Therefore, its utilization at doses capable of 
exerting anticancer effects is rather limited [299]. 
Nevertheless, trials utilizing rapamycin as a sin-
gle agent or combination therapy are still being 
carried out. In a Phase I study of rapamycin and 
sunitinib in patients with advanced NSCLC, 
combination of rapamycin and sunitinib is 
reported to be well tolerated and has warranted 
further investigation in Phase II trials [300]. 
However, the same was not observed in another 
recent study. Combination of sunitinib and 
rapamycin was observed to be quite toxic in all 
cohorts of patients with refractory solid malig-
nancies [93]. The addition of rapamycin was 
thought to be able to decrease the sunitinib-
induced VEGF production, but on the contrary, 
VEGF levels went further up along with sunitinib 
and rapamycin administration; it only came down 
during the sunitinib-off weeks [93]. However, in 
another recent Phase I trial, combination of oral 

rapamycin, topotecan, and cyclophosphamide 
was well tolerated in patients with relapsed/
refractory solid tumors. Biomarker studies dem-
onstrated modulation of angiogenic pathways 
with reduction of thrombospondin-1 and soluble 
vascular endothelial growth factor receptor-2 lev-
els, respectively [92]. Several Phase II trials with 
rapamycin in combination therapy are currently 
recruiting patients with bladder, thyroid, prostate, 
and central nervous system (CNS) tumors 
(Table 18.1).

Various rapamycin analogues have since been 
developed. Temsirolimus (CCI-779) is the first 
mTOR inhibitor approved by the US FDA for 
cancer treatment, and is considered a first-line 
treatment for patients with advanced renal cell 
carcinoma (RCC) with poor prognostic features 
[301]. A number of clinical trials were carried out 
for this drug, mainly as combination therapy with 
other chemotherapy drugs. Moderate clinical 
activity was observed in patients with bone and 
soft-tissue sarcoma given a combination of tem-
sirolimus and cixutumumab in a Phase II trial 
[302] and in patients with metastatic adrenocorti-
cal carcinoma, the same combination therapy 
resulted in 40% of patients achieving prolonged 
stable disease [303]. Similarly, in a recent Phase 
I study of temsirolimus in combination with 
cetuximab in patients with advanced solid 
tumours, both the median PFS and overall sur-
vival (OS) were <1 year and less than half of the 
patients had stable disease at the end of the trial, 
indicating modest clinical activity [94].

In another recent Phase I study combining 
perifosine (an Akt inhibitor) and temsirolimus, 
although stable disease was seen in 9 of 11 sub-
jects with high-grade gliomas, no partial or com-
plete responses were achieved [95]. However, the 
combination of these Akt and mTOR inhibitors 
was considered safe and feasible in patients with 
recurrent/refractory pediatric solid tumors [95]. 
When temsirolimus was tested as a single therapy 
in patients with relapsed or refractory primary 
CNS lymphoma in a Phase II trial, complete 
response was seen in five patients (13.5%), par-
tial response in 12 patients (32.4%), and an over-
all response rate of just 54% [98]. In 
platinum-refractory/resistant ovarian cancer or 
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advanced/recurrent endometrial carcinoma, 
although temsirolimus treatment was well toler-
ated, it did not meet the predefined efficacy crite-
ria [99]. Phase I and Phase II clinical trials with 
temsirolimus and sorafenib carried out in patients 
with metastatic melanoma did not produce suffi-
cient activity to justify further use [304, 305]. 
Similarly, in a Phase II trial for metastatic 
colorectal cancer, temsirolimus had limited effi-
cacy in chemotherapy-resistant KRAS mutant 
disease [306].

Everolimus is another rapamycin analogue 
which was already approved as an anticancer 
agent. Everolimus (RAD001; rapamycin deriva-
tive 001) is a hydroxyethyl ether derivative of 
rapamycin that has been developed for oral 
administration [307]. This drug was approved by 
FDA for use in a variety of cancers, including 
advanced renal cell carcinoma, advanced pancre-
atic neuroendocrine tumors, renal angiomyoli-
poma, and HER2-negative breast cancer. 
Everolimus is structurally similar to temsiroli-
mus, binds to an intracellular protein, FKBP12, 
forming a complex that inhibits the mTOR 
kinase. In a recent Phase I trial to assess safety 
and efficacy of everolimus in combination with 
liposomal doxorubicin and bevacizumab in 
patients with advanced metaplastic triple nega-
tive breast cancer, only patients with the presence 
of PI3K pathway aberration were associated with 
a significant improvement in objective response 
rate, but not the clinical benefit rate [101]. A ran-
domized Phase II study indicated that combina-
tion therapy of everolimus with tamoxifen 
increased the clinical benefit rate (defined as the 
percentage of all patients with complete or partial 
response or stable disease at 6 months), time to 
progression (TTP), and overall survival com-
pared with tamoxifen alone in postmenopausal 
women with aromatase inhibitor-resistant meta-
static breast cancer [308]. Further Phase III trials 
in combination therapy with aromatase inhibitors 
and adjuvant hormone therapy in hormone recep-
tor positive metastatic cancer are currently 
underway.

Everolimus given for 14 days in combination 
with R-CHOP-21 (rituximab plus cyclophospha-
mide, doxorubicin, vincristine, and prednisone 

delivered in a 21-day cycle) in patients with dif-
fuse large B-cell lymphoma was proven to be 
safe. A total 23 of 24 patients achieved an overall 
response, and all 23 attained a complete meta-
bolic response by PET, suggesting that drugs that 
target the PI3K-mTORC pathway added benefit 
when combined with standard R-CHOP [102]. 
The combination of everolimus plus CHOP was 
also effective in patients who are newly diag-
nosed with peripheral T-cell lymphomas, with 
objective response rate up to 90% [110]. The 
combination of mFOLFOX6 and everolimus in 
patients with metastatic gastroesophageal adeno-
carcinoma was also considered to be an active 
regimen with 83% of the patients experiencing a 
partial response [103]. Everolimus as a single 
therapy has demonstrated clinically relevant anti-
tumor activity in patients with advanced 
differentiated thyroid cancer; median PFS and 
OS were 9 and 18 months, respectively [108].

Ridaforolimus (deforolimus or AP23573) has 
been tested in Phase I and Phase II clinical trials, 
and has shown promising results in several tumor 
types including sarcoma [299, 309]. 
Ridaforolimus received fast track and orphan 
drug status from the US FDA, as well as orphan 
status from the European Medicines Agency. 
Latest Phase I trials indicate that ridaforolimus as 
single therapy or in combination with other che-
motherapy drugs was safe and well-tolerated 
[113, 114]. However, in a previous Phase II trial 
study on the efficacy and safety of single-agent 
ridaforolimus in patients with relapsed or refrac-
tory hematologic malignancies, results were 
unremarkable. Of the 52 patients evaluated, par-
tial responses were noted in five subjects, while 
hematologic improvement and stable disease 
were observed in less than half of the patients 
[310]. In addition, the combination of ridaforoli-
mus and dalotuzumab was no more effective than 
exemestane in patients with advanced ER-positive 
breast cancer, and the incidence of adverse events 
was higher [116]. Thus, the combination was not 
further pursued.

PI3K/Akt/mTOR pathway is often constitu-
tively activated in human tumor cells and thus 
has been considered as a promising drug target. 
BEZ235 is a potent imidazo (4,5-c) quinoline 
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derivative that inhibits PI3K and mTOR kinase 
activities by binding to the ATP-binding cleft of 
these enzymes, and induces G1 arrest [311]. 
Preclinical studies have suggested that BEZ235 
is a potent dual PI3K/mTOR modulator with 
favorable pharmaceutical properties. For exam-
ple, it inhibits VEGF-induced HUVEC cell pro-
liferation and survival in vitro and VEGF-induced 
angiogenesis in vivo [312]. The compound also 
inhibits microvessel permeability in BN472 
mammary carcinoma grown orthotopically in 
syngeneic rats, suggesting that this compound is 
potentially antiangiogenic [312]. Deregulated 
angiogenesis and high tumor vasculature perme-
ability are known VEGF-mediated characteristics 
of human tumors. In addition, BEZ235 is found 
to produce significant tumor growth inhibition in 
xenograft models of pancreatic cancers and 
breast cancer cells [313, 314]. However, in a 
Phase II trial of the BEZ235  in patients with 
everolimus-resistant pancreatic neuroendocrine 
tumours, BEZ235 was poorly tolerated by 
patients. Although evidence of disease stability 
was observed, the study did not proceed to stage 
two [117]. Similarly, BEZ235 showed modest 
clinical activity and an unfavorable toxicity pro-
file in patients with advanced and pretreated tran-
sitional cell carcinoma, with just a minority of 
patients experienced a clinical benefit [118]. 
Several Phase I/II clinical trials of BEZ235  in 
patients with advanced solid malignancies such 
as prostate and breast cancer were completed, but 
reports on the safety and efficacy of this drug 
have yet to be published.

18.8.2	 �Proautophagics

Temozolomide is the first proautophagic cyto-
toxic drug used to overcome apoptosis resistance 
in cancer cells, and was approved for use in glio-
blastoma multiforme (GBM) [119]. It has dem-
onstrated therapeutic benefits in patients with 
glioblastoma, and has been evaluated for several 
types of apoptosis-resistant cancers [315]. 
Temozolomide is a prodrug, a monofunctional 
alkylating agent, and is chemically related to 
dacarbazine. It is the 3-methyl derivative of the 

experimental anticancer drug, mitozolomide. The 
ability of temozolomide in inducing autophagic 
cell death was reported in various preclinical 
studies [316–319]. In addition, temozolomide 
has demonstrated proapoptotic activities in 
malignant melanoma cells [320]. In a systematic 
assessment of three randomized controlled trials 
addressing whether temozolomide holds any 
advantage over conventional therapy for high-
grade gliomas, it was shown that temozolomide 
is an effective therapy for GBM. The drug pro-
longs survival, delays disease progression, and 
has a low incidence of early adverse events [321]. 
Similar outcomes were observed in a Phase II 
study involving erlotinib in combination with 
radiation therapy and temozolomide to treat 
GBM and gliosarcoma. Patients treated with the 
combination of erlotinib and temozolomide 
during and following radiotherapy had better sur-
vival than historical controls [322].

In a later Phase II trial, patients with unresect-
able or multifocal glioblastoma, an upfront regi-
men of temozolomide and bevacizumab was well 
tolerated, and provided a significant level of dis-
ease stabilization [323]. In patients with recurrent 
glioblastoma, either used as a single agent in a 
dose-intense schedule or in combination with 
other chemotherapeutic agents, temozolomide 
was proven to be well tolerated and safe [324–
326]. In pediatric patients with recurrent solid 
tumors or brain tumors, low-dose temozolomide 
improved tolerability and was convenient as out-
patient therapy [327]. However, in a recent Phase 
II trial, bevacizumab plus irinotecan combination 
resulted in a superior PFS-6 rate and median PFS 
compared with temozolomide in patients with 
glioblastoma that harbors a nonmethylated O(6)-
methylguanine DNA methyltransferase promoter 
[124]. Patients with an O(6)-methylguanine–
DNA methyltransferase (MGMT) nonmethylated 
(nmMGMT) glioblastoma (GBM) have a partic-
ularly short median survival of 12.6 months and 
do not substantially benefit from temozolomide 
chemotherapy [124, 328].

The combination of adjuvant temozolomide 
and lomustine, an alkylating agent, was associ-
ated with a significant improvement in OS and 
event-free survival (EFS) compared with adju-
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vant temozolomide alone in the Children’s 
Oncology Group ACNS0126 study [125]. This 
effect was most apparent in patients whose 
tumors had MGMT overexpression, as well as 
those who did not undergo gross-total resection 
and in those with glioblastomas. In a current 
Phase II study, neoadjuvant temozolomide was 
associated with an encouraging favorable long-
term survival with acceptable toxicity in patients 
with glioblastoma [131]. Temozolomide in com-
bination with vorinostat was also well tolerated 
in children with recurrent CNS malignancies 
with myelosuppression [329]. Vorinostat is a 
broad inhibitor of histone deacetylase (HDAC) 
activity which induces apoptosis, inhibits angio-
genesis, and downregulates immunosuppressive 
interleukins. Several Phase III trials using temo-
zolomide in combination with targeted monoclo-
nal antibodies or interferon-alpha in glioblastomas 
and high-grade gliomas are currently recruiting 
patients (Table 18.1).

However, poor therapeutic effects were 
observed in patients with NSCLC.  In a current 
efficacy and safety study of temozolomide in a 
total of 31 pretreated patients with NSCLC, only 
two patients achieved partial response and three 
had stable disease [330]. Moreover, the research-
ers pointed out that prolonged low daily doses of 
temozolomide produce minimal activity in 
patients with advanced NSCLC. In a recent Phase 
II study, combination therapy of pemetrexed and 
temozolomide group achieved the same efficacy 
in PFS and OS as the pemetrexed and cisplatin 
group, but with less toxicity. High-dose peme-
trexed plus temozolomide may be a better regi-
men for treating NSCLC with brain metastasis 
due to its better safety profile [126]. A further 
Phase III study in patients with extensive small-
cell lung cancer is currently underway.

Arsenic trioxide (ATO) has recently been 
introduced as part of a regimen in the therapy and 
management of acute promyelocytic leukemia 
(APL) [331]. It is now considered to be “the most 
biologically active single drug in APL” by a 
panel of International Leukemia Experts for the 
European Leukemia Net. The North American 
Intergroup Study Cancer and Leukemia Group B 
(CALGB) 9710 demonstrated that adults with 

APL receiving two cycles of ATO consolidation 
had significantly improved OS and decreased 
relapse risk (RR) [332]. It also achieves great 
success as a single agent and in combination with 
all-trans retinoic acid (ATRA) in the treatment of 
APL.

Arsenic trioxide (ATO) is known to induce 
both autophagy and apoptosis depending on cell 
types; therefore, its role as an autophagy inducer 
remains largely uncertain. In some preclinical tri-
als, ATO induces the autophagy pathway in ovar-
ian carcinoma cells, and synergizes with 
everolimus to induce the cytotoxicity of ovarian 
cancer cells. The enhanced cytotoxicity is accom-
panied by the upregulation of ATG5-ATG12 con-
jugate and LC3-II, a hallmark of autophagy 
[333]. In another recent study, ATO induces the 
autophagic degradation of the BCR-ABL1 
oncoprotein, known to cause chronic myeloid 
leukemia (CML) and Ph+ acute lymphoblastic 
leukemia (ALL) [334]. However in other studies, 
in the presence or absence of ionizing radiation 
and in specific low concentrations, ATO 
induces apoptosis in MTLn3 cells, known to be 
highly malignant and resistant to both radio- and 
chemotherapy [335]. Interestingly, in human gli-
oma cells, ATO induces both autophagy and 
apoptosis in  vitro and in  vivo, mediated by the 
inhibition of PI3K/Akt and activation of MAPK 
signaling pathway [336].

In a Phase I clinical study, ATO given con-
comitantly with radiation therapy in children 
with newly diagnosed anaplastic astrocytoma, 
glioblastoma, or diffuse intrinsic pontine glioma, 
was safe and well tolerated by patients through-
out the entire dose escalation [337]. ATO was 
also reported to be well tolerated when used in 
combination with temozolomide and radiother-
apy in malignant gliomas [338], or when used in 
combination with bortezomib, high-dose mel-
phalan, and ascorbic acid in multiple myeloma 
(MM) patients [339]. A Phase II study to evaluate 
the efficacy and feasibility of a sequential treat-
ment consisting of induction and consolidation 
with ATO followed by autologous hematopoietic 
cell transplantation for relapsed APL revealed 
that ATO demonstrates outstanding efficacy. Of 
the 23 patients who underwent autologous hema-
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topoietic cell transplantation with PML-RARα-
negative PBSC graft, posttransplant relapse 
occurred only in three patients, and there was no 
transplant-related mortality. The 5-year event-
free and overall survival rates were 65% and 
77%, respectively [340].

A recent study showed that the combination of 
ATO and ATRA exerts at least equal and proba-
bly superior antileukemic efficacy compared 
with ATRA and standard chemotherapy in low- 
and intermediate-risk APL [136]. In a Phase III 
study in which a chemotherapy-free ATRA and 
ATO treatment regimen was compared with the 
standard chemotherapy-based regimen (ATRA 
and idarubicin) in both high-risk and low-risk 
patients with APL, ATRA and ATO have a high 
cure rate and less relapse and a lower incidence 
of liver toxicity [138]. Similarly, a recent Phase 
III trial showed that ATRA-ATO had an edge 
over ATRA-chemotherapy over time and that 
there was significantly greater and more sus-
tained antileukemic efficacy in low- and 
intermediate-risk APL [139]. ATO consolidation 
cycles are well tolerated in pediatric patients with 
APL and allow significant reduction in cumula-
tive anthracycline doses while maintaining excel-
lent survival and a low relapse risk for both 
standard and high-risk patients with APL [140]. 
Other Phase III clinical trials using ATO as com-
bination therapy with other chemotherapy drugs 
and/or tretinoin are currently ongoing for APL.

18.8.3	 �Autophagy Inhibitors

The knowledge that autophagy plays a role as a 
cell survival pathway in response to therapeutic 
and cellular stresses in the tumor microenviron-
ment (which is highly acidic and hypoxic) implies 
that autophagy may work in favor of cancer cells. 
Therefore, inhibition of protective autophagy 
may break the resistance mechanism for survival 
of the harsh tumor microenvironment and lead to 
cell death [341]. Since autophagy activities are 
known to differ according to stages of cancer, 
modulation of autophagy is postulated to enhance 
efficacy of anticancer therapy. In a preclinical 
study, effects of imatinib, with or without differ-

ent types of autophagy inhibitors, on human 
malignant glioma cells were investigated [342]. It 
was demonstrated that suppression of imatinib-
induced autophagy by 3-methyladenine (3-MA) 
or siRNA against ATG5 (which inhibits autoph-
agy at an early stage) attenuates the imatinib-
induced cytotoxicity. On the other hand, 
inhibition of autophagy at a late stage by bafilo-
mycin A1 or RTA 203 enhances imatinib-induced 
cytotoxicity through the induction of apoptosis 
[342]. The therapeutic efficiency of imatinib may 
be augmented by inhibition of autophagy at a late 
stage, which could help sensitize the glioma cells 
to anticancer therapy [342].

The current autophagy inhibitors used in trials 
for human cancer are chloroquine (CQ) and 
hydroxychloroquine (HCQ). Both drugs are 
widely used as antimalarial  agents and have 
gained much attention as potential chemosensi-
tizers in treating tumors when used in combina-
tion with cytotoxic chemotherapeutic agents 
[343–345]. CQ inhibits lysosomal acidification 
and prevents autophagy by blocking autophago-
some fusion and degradation [344, 346, 347]. CQ 
also sensitizes cancer cells to chemotherapeutic 
agents through autophagy-independent mecha-
nisms and has other anticancer effects that are 
independent of its effects on autophagy [348].

A number of clinical trials have revealed the 
promising role of CQ, an autophagy inhibitor, as 
a novel antitumor drug. In an early glioblastoma 
study, where patients were treated with CQ in 
conjunction with radiation and temozolomide, 
the results showed a significantly prolonged 
median survival compared with controls [349]. 
Addition of CQ to conventional treatment for 
GBM also improves mid-term survival of patients 
[350]. Gemcitabine–CQ combination as a first- 
or late-line treatment in patients with metastatic 
or unresectable pancreatic cancer  is well toler-
ated and shows promising effects on the clinical 
response [141]. A number of Phase I/II trials in 
solid tumors such as breast cancer are currently 
recruiting patients.

Although initial glioblastoma studies that 
used CQ in combination with chemotherapy and 
radiation therapy revealed median survival 
greater than control, there was no significant 
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improvement in survival of patients with glio-
blastoma treated with HCQ [145]. A Phase II trial 
of HCQ as a single agent in patients with previ-
ously treated metastatic pancreatic cancer dem-
onstrated no clinical benefit and provided 
inconsistent evidence of autophagy inhibition 
[147]. Since this study was carried out in patients 
with advance disease, thus, there was a limitation 
for HCQ to improve end-stage disease outcome 
[348]. The results appear to be similar to an ear-
lier Phase I study involving patients with 
advanced NSCLC. Although HCQ, with or with-
out erlotinib, was found to be safe and well toler-
ated, the overall response rate was as low as 5% 
[351]. In other Phase I/II trials, HCQ in combina-
tion therapy with other drugs such as temozolo-
mide, vorinostat, bortezomib, and gemcitabine 
are proven to be safe and tolerable among patients 
with advanced solid tumors and myeloma [142–
144, 146]. So far, clinical trials of CQ and HCQ 
as autophagy inhibitors have demonstrated the 
safety of targeting autophagy for cancer therapy. 
More potent and autophagy-specific inhibitors 
such as Lys05 and drugs that target ULK1, 
VPS34, and ATG4B are in development and early 
preclinical stage [348]. Table  18.1  summarizes 
the various drugs targeting the autophagy path-
ways and clinical trial stages based on published 
reports as well as other trials listed in the NIH 
ClinicalTrials.gov website.

18.9	 �Crosstalk in ER Stress, 
Autophagy, and Apoptosis

Many cellular processes including apoptosis, 
autophagy, translation, and energy metabolism 
are controlled by the ER stress and mTOR signal-
ing pathway. However, the crosstalk among these 
three signaling pathways has been identified only 
recently. It has been shown that Akt inactivation 
mediates ER stress-induced cell death. Long-
term exposure to ER stress dephosphorylates 
Akt, induces DDIT3 expression, and causes cell 
death. Treatment with PI3K inhibitor alone also 
decreases phosphorylation of Akt, upregulates 
DDIT3 expression, and causes cell death, sug-
gesting that PI3K/Akt inhibition specifically 

induces DDIT3 expression. Thus, Akt inactiva-
tion is important in ER stress-induced DDIT3 
expression and cell death [352]. In addition, ER 
stress-induced apoptosis has been reported to be 
partly mediated by reduced insulin signaling 
through reduced Akt phosphorylation and 
increased glycogen synthase kinase 3β (GSK3β) 
activity. GSK3β is a proapoptotic Akt substrate 
whose activity is inhibited by Akt phosphoryla-
tion [353]. Prolonged ER stress has been shown 
to inhibit Akt/TSC/mTOR pathway, induce 
DDIT3 expression, and trigger apoptosis cell 
death [354]. On the other hand, ER stress nega-
tively regulates Akt/TSC/mTOR pathway to 
enhance autophagy-mediated cell death [355].

It has been suggested that ER stress promotes 
autophagy and/or apoptosis via TRIB3-dependent 
inhibition of Akt/mTOR pathway [49, 50]. It was 
also proposed that ATF4 negatively regulates 
mTOR via DNA damage inducible transcript 4 
(DDIT4, also known as Redd1) expression in 
response to ER stress. DDIT4 is a cellular stress 
responsive gene that has been shown to inhibit 
mTOR activity [356, 357]. ER stress also leads to 
CaMKKβ-dependent activation of AMPK, which 
ultimately leads to inhibition of mTOR and stim-
ulation of autophagy [358]. In addition, it has 
been demonstrated that ER stress induces BIP 
expression and promotes an interaction between 
BIP and Akt. The physical interaction between 
BIP and Akt at the plasma membrane of cells fol-
lowing induction of ER stress prevents Akt phos-
phorylation [359]. To sum up, these observations 
suggest that ER stress may negatively regulate 
Akt and/or mTOR activity via various pathways, 
and ultimately leads to cell death.

It is also widely accepted that reactive oxygen 
species (ROS) generation precedes downstream 
cellular cascades, including those that determine 
cell fate either survival (autophagy) or death 
(apoptosis). Excessive ROS production disrupts 
the electron transport chain and produces reactive 
oxygen molecules, leading to depolarization of the 
mitochondrial membrane and initiation of mito-
chondria-induced apoptosis. However, ROS gen-
eration has also been shown to occur downstream 
after apoptotic stimulation (TRAIL-induced), or 
autophagy inhibition [360–362]. However, cell 
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fate outcomes are largely dependent on the amount 
of ROS generated and the cell’s antioxidant 
response. During starvation, reactive oxygen mol-
ecules are produced as a result of Class III PI3K 
activation that stimulates autophagy through oxi-
dation of ATG4, ultimately increasing the forma-
tion of lipidated LC3-rich autophagosomes [363]. 
Both O2− and H2O2− induce autophagy through 
AMPK activation and subsequent mTOR inhibi-
tion, and by transcriptional regulation of autoph-
agy genes such as SQSTM1 (p62) and BECN1 
[364–366]. A number of studies have similarly 
demonstrated that exogenously applied ROS leads 
to autophagy induction or apoptosis.

Functional relationships between apoptosis 
and autophagy are gaining much interest, as both 
cell deaths are not mutually exclusive. 
Perturbations in the apoptotic machinery, such as 
caspase inhibition, have been reported to induce 
both autophagic cell death and necroptosis [367, 
368]. Inhibition of autophagy in cancer cells 
results in an accelerated cell death that manifests 
the hallmarks of apoptosis including chromatin 
condensation, MOMP, and activation of caspases 
[369]. In some cases, mixed phenotypes of both 
autophagy and apoptosis are detected in response 
to common stimuli [346, 369]. Studies in a vari-
ety of experimental systems indicate that autoph-
agic cell death is likely to be context- and cell 
type-dependent. Autophagy can delay the onset 
of apoptosis following starvation, DNA damage, 
and hemodynamic stress [173]. For example, 
1-day fasting causes liver autophagy in rats, but 
when starvation is prolonged for a few days, 
hepatocytes succumb to apoptosis [370]. 
Similarly, hematopoietic cell lines withdrawn 
from growth factor first activate autophagy, and 
eventually apoptosis [167]. Studies have also 
demonstrated that certain compounds have the 
ability to trigger both apoptosis and autophagic 
cell deaths simultaneously in cancer cells [371, 
372]. Blocking of one pathway will trigger the 
activation of another [373]. Researchers have 
also hypothesized that there are factors (either 
external or internal) that may affect the preferen-
tial shunting into either biochemical cascades 
that will ultimately result in either apoptosis or 
autophagic cell death [374].

Crosstalks between autophagy and apoptosis 
exist at multiple levels because both pathways 
share mediators and pathway regulators. Several 
signals and pathways involved in autophagy are 
in common with apoptosis. Starvation and oxida-
tive stress can trigger both apoptosis and autoph-
agy. BCL-2 proteins function to inhibit both 
apoptosis and autophagy, providing another clue 
to the interplay between both processes. BECN1, 
the essential autophagy protein and haplo-
insufficient tumor suppressor, interacts with sev-
eral cofactors such as AMBRA1, BIF-1, and 
UVRAG to activate the lipid kinase Class III 
PI3K, and induce autophagy [375]. In normal 
conditions, BECN1 is bound to and inhibited by 
BCL-2 or the BCL-2 homologue BCL-XL, well-
characterized apoptosis regulators, which involve 
an interaction between the BH3 domain in 
BECN1 and the BH3 binding groove of BCL-2/
BCL-XL. BH3-only proteins can competitively 
disrupt the interaction between BECN1 and 
BCL-2/BCL-XL to induce autophagy. Nutrient 
starvation can stimulate the dissociation of 
BECN1 from its inhibitors, either by activating 
BH3-only proteins (such as BAD) or by post-
translational modifications of BCL-2 (such as 
phosphorylation) that may reduce its affinity for 
BECN1 and BH3-only proteins [375]. 
Antiapoptotic BCL-2 family members partici-
pate in the inhibition of autophagy, whereas the 
proapoptotic BH3-only proteins participate in the 
induction of autophagy.

A recent finding suggests a link between 
autophagy and the extrinsic apoptotic pathway 
mediated by p62/SQSTM1. Autophagy is 
recently known to be responsible in selective 
degradation of polyubiquitinated proteins via 
SQSTM1, which encodes for p62 protein. P62 
interacts with LC3 via its LC3 interacting region 
(LIR). Recent studies indicate that p62 is 
recruited to damaged mitochondria via binding to 
ubiquitinated outer mitochondrial membrane 
proteins, suggesting that p62 may serve as an 
autophagy receptor for ubiquitinated proteins and 
damaged mitochondria [376–378]. In addition to 
its role in autophagy, p62 mediates a cell’s deci-
sion to undergo apoptosis or survival through its 
organization of signaling complexes in the cyto-
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plasm [377, 379, 380]. Upon cytokine stimula-
tion, p62 activates the NF-κB pathway, which 
subsequently induces the prosurvival genes, such 
as antiapoptotic and cell proliferation genes, and 
induces the expression of inflammatory genes 
such as cytokines, chemokines, and adhesion 
molecules [380–383]. However, p62 is also found 
to activate caspase-8  in the extrinsic apoptosis 
pathway, resulting in the initiation of apoptosis 
and cell death [379].

The expression of Patched (Ptc) induces apop-
tosis, but this activity is suppressed by its ligand, 
sonic hedgehog (SHH). Interestingly, hedgehog 
inhibition is found to induce autophagy through 
upregulation of BNIP3, and is also found to 
increase apoptosis in hepatocellular carcinoma 
cells at the same time [384]. In a recent study, 
apoptosis suppressed by the knocking down of 
PP2A can be reversed by the administration of 
3-MA, a known autophagy inhibitor. The ele-
vated accumulation of LC3-II and the decline of 
the autophagy substrate p62 are also observed in 
PP2Ac-small interfering RNA transfected cells. 
However, overexpression of PP2Ac suppresses 
the accumulation of LC3-II and restores p62 
[385]. Interestingly, 3-MA increases cell death 
induced by diamindichloridoplatin (DDP), which 
suggests the protective function of autophagy in 
DDP-induced cell death [385].

18.10	 �Future Directions

There are increasing evidences that three major 
processes, i.e., apoptosis, ER stress, and autoph-
agy, share overlapping molecular pathways and 
can occur in parallel under similar conditions. 
Fundamental knowledge in apoptosis, ER stress, 
and autophagy has also generated a great deal of 
insight into the pathogenesis of cancer, and has 
provided important considerations in strategizing 
cancer pharmacotherapy. Much effort and invest-
ment have been devoted to experimental drugs 
modulating apoptosis, ER stress, and autophagy. 
A number of drugs have proven to be promising 
during preclinical and clinical studies, but these 
drugs appear to be effective in one type of cancer 
and not in other. The percentage of patients who 

totally responded or partially responded to these 
treatments, either as single agent or in combina-
tion therapies, is relatively low, even though the 
outcome of these trials suggests some potential. 
These unforeseen effects are probably due to the 
specific-targeted nature of the therapy, in addi-
tion to the interconnected relationships between 
these cell death pathways. The contradictory role 
of autophagy and the status of autophagy in the 
human tumors concerned remain speculative, and 
further complicate the response to conventional 
anticancer treatment.

Currently, modulating apoptosis, ER stress, 
and autophagy by various means may be an 
important strategy to fight against the disease. 
Cancers which are resistant to the apoptotic 
effects of certain chemotherapy drugs may be 
sensitive to drugs that evoke ER stress or autoph-
agic cell deaths. An intact autophagy pathway 
has a role in promoting carcinogenesis as well as 
in suppressing it. It also has a role in the develop-
ment of resistance to treatment. Therefore, if 
autophagy response and activity are normal in 
tumors, combining standard chemotherapy drugs 
with autophagy inhibitors may sensitize tumor 
cells to anticancer agents. Cancer cells which 
present defects in the autophagy pathway may be 
managed by replacement of autophagy-inducing 
signals, e.g., proautophagics, or by inhibiting 
mTOR kinase. In some other cases, utilizing both 
autophagy and apoptosis inducers may present a 
deadly strategy against highly resistant tumors. 
Thus, devising personalized pharmacotherapeu-
tic strategy based on the autophagy status of the 
tumors has become an attractive option and offers 
significant potential to be translated into the 
clinic.

Combination of anticancer drugs of many dif-
ferent classes with autophagy inhibitors and 
inducers is underway but with little rationale for 
deciding or selecting patients who are most likely 
to benefit from these therapies. So far, targeted 
drugs like oblimersen, bortezomib, and mTOR 
inhibitors such as everolimus and ridaforolimus 
have shown to be useful in some clinical trials. 
These novel classes of drugs appear to work syn-
ergistically in combination with other chemo-
therapeutics, and have also shown specific 
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activities against certain cancers. Clinical trials 
of CQ or HCQ as autophagy inhibitors have also 
demonstrated the safety of targeting autophagy 
for cancer therapy. Since these drugs are specifi-
cally targeted against certain molecules or recep-
tors in the pathway, further unveiling of the 
tumor’s characteristics such as receptor or pro-
tein status may be critical in assessing patient’s 
response and clinical trial success. Furthermore, 
a number of known genes that play a role in these 
cell death pathways are either activated or inacti-
vated in several cancers. This will certainly affect 
not only the promotion and progression of can-
cer, but also their response to treatment. 
Therefore, to optimize and personalize treatment 
strategies, the genetic profile of the tumors is 
important.

For example, RAS- and BRAF-mutant tumours 
are often associated with high levels of autophagy 
and exhibit autophagy dependency. These would 
be good markers to select patients in which 
autophagy can be inhibited therapeutically [285, 
348, 386–388]. Other markers include signal 
transducer and activator of transcription 3 
(STAT3) and IL6  in breast cancer cells [389], 
JNK1 in colon cancer [390], and EGFR-mutated 
or amplified tumors [391]. Some clinical trials 
have already used these markers to evaluate 
efficacy and for validation. This may provide 
information on the optimal point in the pathway 
to be targeted, and can also be identified as 
prognostic markers. At the same time, the 
development of both robust tissue markers and 
relevant techniques that can be used in the clinical 
context needs to occur along with novel treatments, 
which will be another challenge.

Although recent studies have incorporated 
some predictive biomarkers by examining tumor 
status, the utility of such practice remains non-
conclusive. For example, the expression of pepti-
dyl O-glycosyltransferase GaLNT14 has been 
proposed to be a potential marker of dulanermin 
or Apo2L/TRAIL activity in NSCLC as high 
GaLNT14 mRNA and protein expression in 
tumor cell lines are associated with Apo2L/
TRAIL sensitivity [392]. An increase in PFS and 
OS was observed in GaLNT14-positive patients 
with advanced NSCLC in the dulanermin arm, 

indicating the potential predictive response bio-
marker for Apo2L/TRAIL-based cancer therapy 
[393]. On the other hand, in a Phase Ib/II trial on 
mapatumumab, a humanized mAb against 
TRAIL-R1, strong expression of TRAIL-R1 
(indicated by immunohistochemical staining) did 
not appear to be a prerequisite for the effective-
ness of mapatumumab in patients with relapsed or 
refractory follicular lymphoma [394]. 
Noteworthy, in the two patients who experienced 
a partial or complete response, the TRAIL-R1 
staining was either undetected or weak [394]. 
However, this could be an isolated case, and trials 
with bigger sample size should be carried out. 
Tumor profiling would remain as a good strategy 
to identify patients who may respond to the rele-
vant treatment.

Fundamental knowledge of cell death path-
ways remains an area of major interest among 
scientists in the field of cancer. More studies to 
characterize these pathways and identify poten-
tial targets, and further evaluation of the efficacy 
of the current drugs in various cancers are cer-
tainly warranted.
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