
Approximated Scale Space for Efficient
and Accurate SIFT Key-Point Detection

Ying Wang, Yiguang Liu, Zhenyu Xu, Yunan Zheng, and Weijie Hong

Abstract The SIFT (scale invariant feature transform) key-point serves as an
indispensable role in many computer vision applications. This paper presents an
approximation of the SIFT scale space for key-point detection with high efficiency
while preserving the accuracy. We build the scale space by repeated averaging filters
to approximate the Gaussian filters used in SIFT algorithm. The accuracy of the
proposed method is guaranteed by that an image undergoes repeated smoothing with
an averaging filter is approximately equivalent to the smoothing with a specified
Gaussian filter, which can be proved by the center limit theorem. The efficiency
is improved by using integral image to fast compute the averaging filtering. In
addition, we also present a method to filter out unstable key-points on the edges.
Experimental results demonstrate the proposed method can generate high repeatable
key-points quite close to the SIFT with only about one tenth of computational
complexity of SIFT, and concurrently the proposed method does outperform many
other methods.

Keywords SIFT · Key-point detector · Approximated Gaussian · Repeated
averaging filters

1 Introduction

The SIFT [1] key-point plays an important role in computer vision and pattern
recognition tasks such as structure from motion, object matching, object recogni-
tion, and texture analysis [2–6]. Though many other key-points have been proposed
[7–11], the SIFT key-point is still favored by many applications especially for
those with high accuracy needed [12]. However, the SIFT key-point has also been
criticized for the drawback of its heavy computational burden, thus many variational
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methods have been proposed to accelerate the computational speed, but at the cost
of insufficient accuracy or degraded repeatability of the key-points. To efficiently
compute the SIFT key-point while preserving the accuracy and repeatability is
the goal of this paper. The SIFT key-point is obtained by the DOG blob detector
which is an approximation of LOG detector. There are also some other blob
detectors such as [13–15], but their performance is inferior to SIFT in terms
of accuracy and repeatability, as the scale space theory[16, 17] proved that the
Gaussian kernel is the only smoothing kernel that could be used to create the image
scale space. Based on the center limit theorem, repeated averaging filtering can be
used to approximate Gaussian filtering. We propose a bank of averaging filters that
accurately approximate the Gaussian filter in the SIFT algorithm, and the averaging
filters are implemented via integral images. Because integral image is computed
in our method, a combined method for eliminating key-points on the edge is also
presented by reusing the integral images, which is more efficient than the original
one in SIFT algorithm.

2 A Brief Review of SIFT Scale Space Construction and
Key-Point Detection

The SIFT scale space consists of two pyramids, the Gaussian pyramid and the
DOG(difference of Gaussian) pyramid. The Gaussian pyramid consists of M octaves
and each octave consists of N layers. Suppose L(a, b) denotes the ath layer in octave
b, it is produced by the convolution of a Gaussian function with the input image
I (x, y)

L(a, b) = G(x, y, σ ) ∗ I (x, y) (1)

where ∗ stands for the convolution operation and

G(x, y, σ ) = 1

2πσ 2 e−(x2+y2)/2σ 2
(2)

where σ is determined by a, b and the scale of the first layer σ0

σ = 2a+ b
N−3 · σ0 (3)

Since the computation complexity of Eq. (1) is proportion to σ 2, in practical
implementation, smaller σ can be used due to the property of the Gaussian
convolution that the convolution of two Gaussian functions is also a Gaussian with
variance being the sum of the original variances. That is,

I (x, y) ∗ G(x, y, σ1) ∗ G(x, y, σ2) = I (x, y) ∗ G(x, y, σ3) (4)
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Fig. 1 The process to construct the SIFT scale space

where σ 2
1 + σ 2

2 = σ 2
3 . So, if b �= 0, L(a, b) is computed as

L(a, b) = G(x, y, σgap) ∗ L(a, b − 1) (5)

where

σgap =
√

σ(0, b)2 − σ(0, b − 1)2 (6)

It can be seen from Eq. (6) that each octave shares the same group of σ to generate
a successive layer, this is because when b = 0 and a �= 0, the L(a, b) is obtained
by down sampling the layer L(a − 1, b + N − 2). Once the Gaussian pyramid is
computed, the difference of Gaussian pyramid is obtained via the subtraction of two
successive layers in the Gaussian pyramid. Figure 1 shows the SIFT scale space
construction processes. The SIFT key-point is detected by finding the extrema in
the DOG pyramid, after that interpolation is performed to get sub-pixel precision if
the key-point is not on the edge.

3 Approximation of Gaussian Smoothing Using Repeated
Averaging Filter

In this section, we introduce the quantitative relationship between repeated aver-
aging filtering and Gaussian filtering for a given image. The coefficients of an
averaging filter can be viewed as the probability density of a random variable X
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which is uniformly distributed in a square area centered at the origin. Given an
image I (x, y) and an averaging filter A(x, y,w), where w is the window width of
the averaging filter, repeated averaging filtering of the image can be mathematically
expressed as:

I (x, y, n) = I (x, y) ∗ A(x, y,w) ∗ A(x, y,w) . . . A(x, y,w)
︸ ︷︷ ︸

n

(7)

Based on the center limit theorem, when n approaches to infinity,

lim
n→∞ I (x, y, n) = I (x, y) ∗ lim

n→∞ A(x, y,w) ∗ A(x, y,w) . . . A(x, y,w)
︸ ︷︷ ︸

n

= I (x, y) ∗ G(x, y, σgau)

(8)

where G(x, y, σgau) is the Gaussian function with the variance σ 2
gau. Suppose the

window width of an averaging filter is w, the variance of its corresponding discrete
random variable is

σ 2
av = w2 − 1

12
(9)

the relation of σav, σgau, w and n can be deduced:

σgau =
√

nσ 2
av =

√
nw2 − n

12
(10)

For discrete averaging filter and discrete Gaussian filter, the two sides of the first
equal sign of Eq. (10) are very close to each other when n ≮ 3, which indicates
no less than 3 times repeated averaging filtering can well approximate a specified
Gaussian filter. Figure 2 shows the two curves are close to each other.

4 Scale Space Construction via Repeated Averaging Filtering

To create the scale space introduced in Sect. 1, the key problem is to seek the initial
scale σ0, a group of Gaussian filters used to construct next layer from current layer
and a group of averaging filters to approximate these Gaussian filters. Given a
Gaussian kernel, it is not hard to find an optimal averaging filter A(x, y,w) and
the times n needed to approximate the Gaussian kernel based on Eq. (10). However,
there are more difficulties to get the optimal averaging filter and filtering times
in real applications. Here we mainly focus on finding optimal averaging filters to
construct the scale space introduced in Sect. 1.
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Fig. 2 Two similar curves:
the red one is the Gaussian
kernel with σ = 2

√
2, the

blue one is its approximation
resulted by 4 times
convolution of an averaging
filter with the window width
w = 5

Repeated averaging

Gaussain

The constraint of Eq. (10) is that n is a positive integer not smaller than 3 and not
bigger than 10, because if n < 3 it is not enough to approximate the Gaussian kernel
and if n > 10 the computational complexity will have no advantage over the original
Gaussian filtering. The variable w should be a positive odd number not smaller than
3, in order to satisfy that there could always be a center pixel the filtering result
can be assigned to. Suppose the initial scale of the Gaussian pyramid is σ0, as most
key-points lie in the first several layer of the scale space, thus σ0 should not be large.
According to the original SIFT algorithm where σ0 = 1.6, here we set σ0 < 2.0. The
number of layers N in each octave depends on the sampling frequency F , and F =
N − 3. In [1] the sampling frequency is set to 2, 3, or 4, which gains an acceptable
balance between key-point repeatability and computational time. Constraints to σi

under SIFT scale space is that σi = σ0

√
2

2(i+1)
F − 2

2i
F . Besides, σi =

√
niw

2
i −ni

12 is
needed for discrete averaging filters and discrete Gaussian filters. These constraints
can be formulated as:

σi = σ0

√
2

2(i+1)
F − 2

2i
F =

√
niw

2
i − ni

12
(11)

where i = 1, 2, 3, . . . , F + 2, σ0 < 2, ni ∈ {3, 4, 5, . . . , 10}, wi ∈ {3, 5, 7, . . .}. It
can be verified that the only solution to Eq. (11) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ0 = √
2, σ1 = 2, σ2 = 2

√
2, σ3 = 4, σ4 = 4

√
2

n1 = 3, n2 = 6, n3 = 4, n4 = 4

w1 = 3, w2 = 3, w3 = 5, w4 = 7

F = 2

(12)



36 Y. Wang et al.

Fig. 3 Approximated DOG
detector for SIFT key-point
detection

DOG

Our approximation

The approximated SIFT scale space is constructed in the same procedure as it is in
the original SIFT algorithm, the Gaussian filters are replaced by averaging filters,
and their quantitative relation is given in Eq. (12). Note that the key-point detector
in SIFT is actually the DOG detector obtained from subtraction of two Gaussian
kernels, Fig. 3 shows the approximated DOG and DOG curves in one octave of the
DOG pyramid.

5 Key-Point Detection

The key-points are detected by searching the local extrema in a 3 × 3 region of
the approximated DOG pyramid. However, the DOG detector is sensitive to image
edges, and the key-point on the edge should be removed since it is unstable. As
integral image is computed in our method (depicted in Fig. 4a), we propose to
use fast Hessian measure to reject key-points on the edge. The principal curvature
is used to determine whether a point is on the edge, which is computed by the
eigenvalues of scale adapted Hessian matrix:

H(X, σ) =
[

Lxx(X, σ), Lxy(X, σ)

Lxy(X, σ), Lyy(X, σ)

]
, (13)

The partial derivatives in Eq. (13) are computed by integral image and a group of
box filters as illustrated in Fig. 4. The images of before and after filtering out the
key-point on the edge are shown in Fig. 5. After filtering out the key-points on edge,
the scale space quadratic interpolation is performed for every key-point to get a
sub-pixel accurate location (Fig. 5).
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Fig. 4 Using integral image and box filters to compute the partial derivatives of Hessian matrix.
(a) The integral image: SUM = A + D − B − C. (b) Box filters to compute the partial derivatives
of the Hessian matrix

Fig. 5 Before-and-after filtering out the edge key-points. (a) Before filtering out the edge key-
points. (b) After filtering out the edge key-points

6 Experimental Results

The accuracy of our method is validated by the performance comparison of the
approximated SIFT detector, SIFT detector, SURF detector, and FAST detector. The
SIFT code implemented by Rob Hess [18] is used in our experiment. For the SURF
algorithm, we use the original implementation released by its authors. The FAST
detector in our experiment is implemented in OpenCV 3.2.0. The datasets proposed
by Mikolajczyk and Schmid [19] are used for the evaluation. There are totally 8
datasets, and each dataset has six images with increasing amount of deformation
from a reference image. The deformations, covering zoom and rotation (Boat
and Bark sequences), view-point change (Wall and Graffiti sequences), brightness
changes (Leuven sequence), blur (Trees and Bikes sequence) as well as JPEG
compression (UBC sequence), are provided with known ground truth which can
be used to identify the correspondence. The repeatability score introduced in [19] is
used to measure the reliability of the detectors on detecting the same feature point
under different deformations of the same scene. The repeatability score is defined
as the ratio between the number of corresponding features and the smaller number
of features in one image in the image pair. To give a fair comparison, the thresholds
of these detectors are adjusted to give approximately equal number of feature points
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Fig. 6 The repeatability of several key-point detectors

Table 1 Timing results of SIFT, SURF, FAST and our method for key-point detection on the first
image of the Wall sequence (size: 1000 × 700 pixels)

Detector SIFT SURF FAST OURS

Time (ms) 332 97 11 35

Fig. 7 Real-world image matching using the approximated SIFT detector with SURF descriptor

as SURF detector detected. The results in Fig. 6 show that the SIFT detector has
the best performance in most cases, and the proposed method is close to SIFT and
better than SURF and FAST detector.

The efficiency of the proposed method is also compared to SIFT, SURF, and
FAST. The times of detection of the key-points in the first image of the wall
sequence is shown in Table 1, where we can see that the FAST detector is most
efficient among all methods, but it merely detects key-points in one scale, while
others detect them in more than 10 scales. The proposed method is about 3 times
faster than SURF and 10 times faster than SIFT. Real-world image matching using
the approximated SIFT detector with SURF descriptor is shown in Fig. 7.
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7 Conclusion

In this paper we have proposed a framework to efficiently and accurately approxi-
mate the SIFT scale space for key-point detection. The quantitative relation between
repeated averaging filtering and Gaussian filtering has been analyzed, and a group
of averaging filters has been found to accurately approximate the DOG detector.
Experimental results demonstrate that the proposed method is about 10 times faster
than SIFT detector, while preserving the high accuracy and high repeatability of the
SIFT detector.
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