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Abstract The segmentation of images with intensity inhomogeneity is always a
challenging problem. For the segmentation of these kinds of images, traditional
active contour models tend to reduce or correct the intensity inhomogeneity. In this
chapter, we present a framework to make use of the intensity inhomogeneity in
images to help to improve the segmentation performance. We use self-similarity
measure to quantify the degree of the intensity inhomogeneity in images and
incorporate it into a variational level set framework. The total energy functional
of the proposed algorithm consists of three terms: a local region fitting term,
an intensity inhomogeneity energy term, and a regularization term. The proposed
model treats the intensity inhomogeneity in images as useful information rather
than alleviates the effect of it. The proposed method is applied to segment various
intensity inhomogeneous images with promising segmentation results. Comparison
results also prove that the proposed method outperforms four state-of-the-art
methods.
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1 Introduction

Image segmentation is a fundamental task in many image processing and computer
vision applications. However, due to the presence of noise, complex background,
low contrast, and intensity inhomogeneity, image segmentation is still a challenging
problem. In the past decades, a variety of algorithms for image segmentation have
been introduced. Among them, active contour models have attracted considerable
interest. The basic idea of the active contour models is to evolve the initial contour
towards the object boundaries by minimizing a given energy functional. Although
the energy functionals of the active contour models are diverse, they can be
divided into two kinds: edge-based methods and region-based methods. Edge-based
methods [1–4] guide a given contour to the object boundaries based on image
gradients. The geodesic active contour model [5] is one of the most commonly used
models. It utilizes the gradient information to construct an edge stopping function
to stop the evolving contours on the object boundaries. Generally, edge-based
approaches can provide stable segmentation results when segmenting images with
strong object boundaries. However, these models suffer from the leakage problem
when segmenting objects with weak boundaries. Moreover, the performance is
dependent on the presence of noise as well as the position of initial contours. To
overcome these problems, region-based active models have been widely studied.
They use intensities or statistics like mean and standard deviation in the energy
minimization frameworks. Thus, they are less sensitive to noise and initializations
and perform better than edge-based active contour models for the segmentation
of images with noise, intensity inhomogeneities, weak and missing boundaries.
Specifically, Chan and Vese [6] simplified the Mumford–Shah [7] energy functional
by using the variational level set [8] formulation and apply it to image segmentation.
Suppose I : Ω → R is the input image, C is a closed contour which can be
represented by the level set function φ(x), x ∈ Ω . The region inside/outside the
contour C can be represented as Ω in = {x ∈ Ω|φ(x)〉0} and Ωout = {x ∈ Ω| φ(x) < 0},
respectively. Then the energy functional of the C-V model becomes:

Ecv (φ, u1, u2) = λ1

∫
Ω

(I−u1)
2Hε (φ(x)) dx+λ2

∫
Ω

(I−u2)
2 (1−Hε (φ(x))) dx

+ μ

∫
Ω

δε (φ(x)) |∇φ(x)| dx,

where μ, λ1, λ2 are positive constants. u1 and u2 are two constants that represent
the average intensities inside and outside the contour. Hε(φ(x)) is the regularized
approximation of the Heaviside function defined in [8]:

Hε (φ(x)) =

⎧⎪⎨
⎪⎩

1 φ(x) > ε,

0 φ(x) < −ε,
1
2

{
1 + φ

ε
+ 1

π
sin

(
πφ(x)

ε

)}
otherwise.
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The derivative of Hε(φ(x)) is:

δε (φ(x)) =
{

0 |φ(x)| > ε,
1
2ε

{
1 + cos

(
πφ(x)

ε

)}
|φ(x)| < ε.

The C-V model assumes that the image intensity is homogeneous. However,
when the image intensity is inhomogeneous, the C-V model fails to produce
acceptable segmentation results. To solve the problem of segmenting intensity
inhomogeneous images, a popular way is to treat the image information in local
region. Li et al. proposed the active contour models: the region-scalable fitting
(RSF) [9] model and the local binary fitting (LBF) [10] model which utilize the
local intensity information instead of global average intensities inside and outside
the contour. The energy functional of the RSF model is defined as:

Ersf (φ, u1(x), u2(x)) = μ

∫
Ω

δε (φ(x)) |∇φ(x)| dx + λ1

∫
Ω

∫
Ω

Kσ (x − y) (I (y) − u1(x))2Hε (φ(x)) dydx + λ2

∫
Ω

∫
Ω

Kσ (x − y) (I (y) − u2(x))2 (1 − Hε (φ(x))) dydx

where μ, λ1, λ2 are weights of each term, u1(x), u2(x) are smooth functions to
approximate the local image intensities inside and outside the contour C. Kσ (y − x)
is the Gaussian kernel function with variance σ 2 defined as:

Kσ (y − x) = 1

2πσ 2
e

−|y−x|2
2σ2 .

Kσ has the localization property that it decreases and approaches 0 as |y − x|
increases. Due to the usage of local image information, these models can achieve
better segmentation results than the C-V model when segmenting images with
inhomogeneous intensities. Various kinds of operators that utilize local image
information have been proposed to correct or reduce the effect of inhomogeneity.
Zhang et al. [11] introduced a local image fitting (LIF) energy and incorporated
it into the variational level set framework for the segmentation of images with
intensity inhomogeneity. Wang et al. [12] proposed a local Chan–Vese model that
utilizes the Gaussian convolution of the original image to describe the local image
statistics. Lankton et al. [13] proposed a localized region-based active contour
model, which can extract the local image information in a narrow band region.
Zhang et al. [14] proposed a level set method for the segmentation of images
with intensity inhomogeneity. The inhomogeneous objects are modeled as Gaussian
distribution with different means and variances. Wang et al. [15] proposed an
improved region-based active contour model which is based on the combination
of both global and local image information (LGIF). A hybrid energy functional is
defined based on a local intensity fitting term used in the RSF model and a global
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intensity fitting term in the C-V model. In most of the methods that can deal with
intensity inhomogeneous images, the original image is modeled as a multiplicative
of the bias or shading which accounts for the intensity inhomogeneity and a true
image. These methods seem to produce promising segmentation results when the
intensity inhomogeneity varies smoothly [16–23]. However, when the intensity
inhomogeneity varies sharply (e.g., the image of a cheetah), they still cannot yield
correct segmentation results. Recently, more algorithms are proposed to solve this
by employing more features. Qi et al. [24] proposed an anisotropic data fitting term
based on local intensity information along the evolving contours to differentiate the
sub-regions. A structured gradient vector flow is incorporated into the regularization
term to penalize the length of the active contour. Kim et al. [25] proposed a
hybrid active contour model which incorporates the salient edge energy defined by
higher order statistics on the diffusion space. Zhi et al. [26] proposed a level set
based method which utilizes both saliency information and color intensity as region
external energy. These models were reported effective for the segmentation of image
with intensity inhomogeneity. But these kinds of features seem not powerful enough
to handle images with significantly inhomogeneous intensities. More related works
can be found in [27–32].

In this chapter, we propose a level set framework which can make use of the
intensity inhomogeneity in images to accomplish the segmentation. Self-similarity
[33] is firstly used to measure and quantify the degree of the intensity inhomogeneity
in images. Then a region intensity inhomogeneity energy term is constructed
based on the quantified inhomogeneity and incorporated into a variational level set
framework. The total energy functional of the proposed algorithm consists of three
terms: a local region fitting term, an intensity inhomogeneity energy term, and a
regularization term. By integrating these three terms, the intensity inhomogeneity
is converted into useful information to improve the segmentation accuracy. The
proposed method has been tested on various images and the experimental results
show that the proposed model effectively drives the contours to the object boundary
compared to the state-of-the-art methods.

2 Model and Algorithm

Image intensity inhomogeneity exists in both medical images and natural images.
Intensity inhomogeneity occurs when the intensity between adjacent pixels is
different. It is observed that the pattern of intensity inhomogeneity in the same object
may be similar. In other words, the intensity difference may have some continuity or
consistency in the same object. That is, the quantification of intensity inhomogeneity
in the same object may be homogeneous to some extent. Inspired by this, we use
the self-similarity to quantify it and then incorporate it into the level set framework.
In this way, the intensity inhomogeneity which is often treated as a negative effect
is converted to positive effect that can help accomplish the segmentation. Figure 1
shows the flowchart of the proposed algorithm.
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Fig. 1 The flowchart of the proposed model

Firstly, we give the definition of self-similarity. For a given M × M window W
centered at x in an input image I, W can be divided into N nonoverlap small n × n
patches. We denote the set of features (e.g., image intensity) in the ith small patch as
F i

n, i = 1, . . . , N , then the difference between each small patch inside the window
W can be defined as:

DWx := {
di,j

}
N×N

=
{

Diff
(
F i

n, F
j
n

)}
N×N

.

Here the Diff
(
F i

n, F
j
n

)
can be calculated as follows:

Diff
(
F i

n, F
j
n

)
=

√∑ (
f i

n − f
j
n

)2
.

Here f i
n is the image intensity value in the ith patch. DWx evaluates the structure

similarity inside W. It is a symmetric positive semi-definite matrix with zero-
valued diagonal. If one patch is similar with the other patches inside W, then its
corresponding element in DWx will be small; on the other hand, if one patch is
dissimilar with the other patches, then its corresponding element in DWx will be
large. Figure 2 shows the details of computing DWx . After getting the difference
inside W, we can define the self-similarity measure. For a given pixel p, tp is a
template window region centered at p. The self-similarity measure (SSM) can be
obtained by comparing the similarity of the Dtp to DWx which is the difference of
M × M window centered at x in the image. The sum of the squares differences is
used to measure the similarity.

SSM
(
tp,Wx

) =

√√√√√
N∑

i=1

N∑
j=1

(
Dtp (i, j) − DWx (i, j)

)2
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Fig. 2 The details of the computation of DWx . The DWx is a symmetric positive semi-definite
matrix with zero-valued diagonal

In Fig. 3, we show an example of computing the self-similarity measure. A
template region on the object is first selected. From Fig. 3, we can see that, for
the region with similar intensity structure with the template region, the SSM of this
region is approximately 0, and for the region with the intensity structure significantly
different from the template region, the SSM of this region is bigger than 0.

In Fig. 4, more images and their corresponding SSMs are shown. We found
that one can use the SSM to define a new image that describes the inhomogeneity
of the original image. In this chapter, we call this image intensity inhomogeneity
image. Locations with small SSM values are regarded as the same texture as
the template. After we get the intensity inhomogeneity image, we can define the
intensity inhomogeneity energy under the framework of C-V model:

EIIH (φ, Ih1, Ih2) =
∫

Ω1

(IIH − Ih1)
2dx +

∫
Ω2

(IIH − Ih2)
2dx

=
∫

Ω

(IIH − Ih1)
2Hε (φ(x)) dx +

∫
Ω

(IIH − Ih2)
2 (1 − Hε (φ(x))) dx

where IIH denotes the intensity inhomogeneity image. Ω1 and Ω2 denote the
regions inside and outside the contour, respectively. and Ih2 are the average
intensities of the IIH image inside and outside the contour.

Due to the complexity of natural images, the intensity inhomogeneity image is
not powerful enough to yield an accurate result. It is necessary to also consider
the intensity information of the original images. In this chapter, we use the region-
scalable fitting energy in [8] to utilize the information of the original images:
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Fig. 3 One example of the SSM. Yellow point is the center of the template. Blue point and red
point are two center points of the 9 × 9 region selected from object and background, respectively
(The center pixels are marked as the same color in the original image). We also show the Dw inside
each region and the SSM value around the center points, respectively

ERSF (φ, u1(x), u2(x)) =
∫

Ω

∫
Ω

Kσ (x − y) (I (y) − u1(x))2Hε (φ(x)) dydx

+
∫

Ω

∫
Ω

Kσ (x − y) (I (y) − u2(x))2 (1 − Hε (φ(x))) dydx.

I is the original image. u1(x), u2(x) are smooth functions to approximate the local
image intensities inside and outside the contour C. Kσ (y − x) is the Gaussian kernel
function with variation σ 2:

Kσ (x − y) = 1

2πσ 2 e
−|x−y|2

2σ2 .
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Fig. 4 The intensity
inhomogeneity images (SSM)
and the original images. W is
a 9 × 9 region and it is
divided into 9 nonoverlapping
3 × 3 small patches

By combining these energies together, we can get the following energy func-
tional:

E = λ1EIIH + λ2ERSF + λ3R.

Here λ1, λ2 and λ3 are positive constants to balance each energy term. R is the
level set regularization term defined as:

R (φ) =
∫

Ω

| ∇Hε (φ) | dx.

Then the total energy functional becomes:
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E (φ, Ih1, Ih2, u1, u2) = λ1

(∫
Ω

(IIH − Ih1)2Hε (φ(x)) dx

+
∫

Ω
(IIH − Ih2)2 (1 − Hε (φ(x))) dx

)
+ λ2

(∫
Ω

∫
Ω

Kσ (x − y) (I (x) − u1(y))2

Hε (φ(x)) dydx +
∫

Ω

∫
Ω

Kσ (x − y) (I (x) − u2(y))2 (1 − Hε (φ(x))) dydx

)

+ λ3

∫
Ω

|∇Hε (φ)| dx.

Here Ih1, Ih2, u1, u2 have the following form:

Ih1 =
∫
Ωin

IIH dx∫
Ωin

dx
, Ih2 =

∫
Ωout

IIH dx∫
Ωout

dx

u1 =
∫
Ωin

Kσ (x − y) I (y)dy∫
Ωin

Kσ (x − y) dy
, u2 =

∫
Ωout

Kσ (x − y) I (y)dy∫
Ωout

Kσ (x − y) dy

By taking the irst variation of the energy functional with respect to φ, we can get
the following updating equation of φ:

∂φ

∂t
= δε (φ(x))

(
λ1

(
−(IIH − Ih1)2 + (IIH − Ih2)2

)

+λ2

(
−

(∫
Ω

Kσ (y−x) (I (x)−u1(y))2dy+
(∫

Ω
Kσ (y−x) (I (x)−u2(y))2dy

)) )

+ λ3 div

( ∇φ(x)

|∇φ(x)|
)

.

Different SSMs may be obtained by choosing different template regions. For
example, in Fig. 5, we show different SSMs computed by using different templates.
Comparing the SSMs of (b) and (c), we can see that the SSMs of (c) are more
suitable to assist the segmentation. In other words, an appropriate template is very
important for segmentation. In order to automatically choose the optimal position
of the template, we use the following strategy: L pixels are randomly selected in the
whole image and L templates can be obtained. Then we can get L SSMs by using
these templates. The optimal position of the template can be selected by:

min
i∈L

⎛
⎝ 1

L

L∑
j=1

(
SSM

(
Ti, Tj

) − mean (SSM (Ti, L))
)2

⎞
⎠

1
2

,
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Fig. 5 (a) The original image. (b, c) The SSM computed by using different template. The red dots
are the center points of the template region

where mean (SSM (Ti, L)) = 1
L

L∑
j=1

SSM
(
Ti, Tj

)
. This means that the template

region is selected on the pixel whose standard deviation of SSM is the minimum.

3 Experimental Results

In this section, we evaluate and compare the proposed model with the C-V model
[5], the RSF [9] model, the LGIF model [15], and the LSM model [14]. In these
comparisons, for the C-V model, λ1 = λ2 = 1, �t = 0.1, μ which is the weight of
the regularization term is set to 6500. For the RSF model, λ1 = λ2 = 1, �t = 0.1,
σ = 3, μ is set to 5400. The LGIF model, λ1 = 0.5, λ2 = 0.95, they are the weights
of the C-V data force and the RSF data force. �t = 0.1, σ = 3, and the weight for
the regularization term is set as μ = 6500. For the LSM model, σ = 3, , the weight
for the regularization term is set to 0.2. For the proposed algorithm, N = 9, W = 9,
n = 3, σ = 3, λ1 = 4, λ2 = 0.1, λ3 = 5. All the experiments are implemented with
Matlab R2017b on a PC of CPU 2.8 GHz, RAM 16G.
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We test the segmentation performance of the proposed model on 40 natural
images with extremely inhomogeneous intensities which are collected from MSRA
dataset [34] and the ECSSD dataset [35]. For quantitative analysis, we compute the
F1-measure given as:

F1 = 2 × Precision × Recall

Precision + Recall
.

Here Precision = TP
TP+FP , Recall = TP

TP+FN . TP is the number of true positive
pixels, FP is the number of false positive pixels, and the FN is the number of false
negative pixels. In Fig. 6, we show the comparison results. Results of the quantitative

Fig. 6 Segmentation performance of each algorithm



196 X. Li et al.

Table 1 F1-measure of the images in Fig. 3 and the average F1-measure of the 40 images

Img 1 (%) Img 2 (%) Img 3 (%) Img 4 (%)
Img 5
(%)

Img 6
(%)

Average of
40 images
(%)

C-V 80.2 45.7 61.9 72.7 87.8 71.1 69.2 ± 20
RSF 77 86.9 60.4 65 87.3 64.1 78.7 ± 11
LGIF 85.2 83.9 73.6 90.1 95.4 82.8 83.4 ± 9.7
LSM 87.8 74 72.8 79.2 94.7 89.1 83 ± 11
Proposed 89.7 90 82.6 92.9 97.8 93.2 92 ± 3.9

Black bold numbers show the efficiency of the proposed model

evaluation of these methods are shown in Table 1. In Fig. 6, the original images are
shown in the first column, and the ground truths are shown in the second column.
The segmentation results of the C-V, RSF, LGIF, LSM, and the proposed algorithm
are shown in the other columns, respectively. In the first three images, the extremely
inhomogeneous intensities are mainly in the objects and in the last three images, the
backgrounds are extreme intensity inhomogeneity. It is shown that the LGIF model
and the LSM model perform better than the C-V and the RSF models. In the LGIF
model, the author proposed a hybrid model that combines the advantages of both
global information (C-V data force) and the local intensity information (RSF data
force). For the proposed algorithm, the global information is replaced by the region
intensity inhomogeneity term. From the segmentation results, we can see that the
proposed algorithm has the overall best performance, which further illustrates that
the intensity inhomogeneity in the images can be useful information to assist the
segmentation.

4 Conclusion

In this chapter, a novel active contour model is proposed for the segmentation
of images with intensity inhomogeneity. We use self-similarity to quantify the
intensity inhomogeneity in the images. Based on the quantified inhomogeneity, we
design a region intensity inhomogeneity energy term and then incorporate it into the
level set framework. The proposed model can get promising segmentation results
on images with extreme intensity inhomogeneity. The experimental results show
that, compared with traditional methods, the proposed segmentation model is more
effective.
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