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Foreword

Simin Li

The International Conference on Sensing and Imaging (ICSI) is an important
academic conference that provides an excellent platform for international exchange
and collaboration in various fields of sensing and imaging such as image detection,
image reconstruction, as well as industrial and biomedical applications. Guangxi
University of Science and Technology (GXUST) was honored to be the host of the
ICSI 2018 held at Liuzhou, Guangxi, China, from October 15 to 17, 2018.

GXUST is rooted in its two major components and predecessors: Guangxi
College of Engineering founded in 1958 and Medical College of Liuzhou founded
in 1951. The mission of the University is to cultivate talent and innovative spirit in
engineering and medical science students.

To ensure the success of the conference and promote interdisciplinary collab-
oration, we invited domestic and overseas experts and scholars specializing in
sensing and imaging to gather here at Liuzhou to exchange ideas on hot topics
and cutting-edge research in sensing and imaging, such as image reconstruction,
image restoration, image fusion, biomedical imaging, nondestructive inspection,
and remote sensing. We sincerely hope that theoretical and practical research in
sensing and imaging can be continuously promoted through academic exchanges,
technical innovation, and cooperation after this conference.

I would like to thank the co-chairs of the conference, Professors Ming Jiang
of Peking University and Nathan Ida of the University of Akron, for their tireless
efforts to initiate the conference in a brand new location with a new host, GXUST,
and to co-chair the conference. I would also like to thank Prof. Eric Todd Quinto of
Tufts University for leading the effort to edit and publish the conference proceeding
and Professor Yu Shang of North University China for a special issue of Sensing
and Imaging, with a strong editorial and administrative support from Professors
Ming Jiang, Nathan Ida, Alfred K Louis of Saarland University, Yu Shang of the
North University of China, Tobias Kluth of the University of Bremen, and Hong

S.Li
Guangxi University of Science and Technology (GXUST), Liuzhou, China



vi Foreword

Liu of GXUST. My special thanks go to all the local organizers and volunteers,
especially Prof. Hong Liu and his team at GXUST, for their steadfast efforts to
make this conference happen. Finally, I thank all the invited speakers, session chairs,
and participants of this conference. It is the joint effort of all the aforementioned
colleagues that made this conference a successful one.



Preface

The International Conference on Sensing and Imaging 2018 (ICSI 2018) was the
fourth conference in this series. The previous three were held at Chifeng, Inner
Mongolia, China, in 2015; Taiyuan, Shanxi Province, China, in 2016; and at
Chengdu, Sichuan Province, China, in 2017.

This fourth conference was held in Liuzhou, China, from October 15 to 17, 2018.
Guangxi University of Science and Technology (GXUST) was the primary sponsor
of ICSI 2018. Prof. Simin Li, the President of GXUST, was the general chair for
this conference. Profs. Nathan Ida and Ming Jiang were co-chairs. We accepted 58
submissions for presentation at the conference. With the success of the previous
conferences and because of suggestions from peers and requests from participants,
we decided to publish the proceedings for ICSI 2018.

These proceedings have 17 papers including 8 invited chapters. The review and
publication of these proceedings are not like most conference proceedings. All
submissions were first reviewed to see if they could be suitable for presentations
at the conference and were accepted for presentation after revisions. Unlike other
conference proceedings, after the conference, all revised submissions underwent
another round of revision so the authors could incorporate discussions at the
conference. They were reviewed again for final acceptance in the proceedings, and
some submissions were rejected. We understand that proceedings are different from
journal submissions, but we hope the two rounds of revision improve the quality of
submissions without delaying publication.

Seven additional submissions were selected to be published in the special issue
“Recent developments in Sensing and Imaging” in the journal Sensing and Imaging
published by Springer Nature. Each selected manuscript has been extended to a
full-length regular paper with significant additions from its conference version and
reviewed under the normal reviewing process of that journal. This special issue
is edited by lead guest editor, Yu Shang North University of China, China, and
guest editors Tobias Kluth, University of Bremen, Germany, and Hong Liu, Guangxi
University of Science and Technology.

We thank the publishing editor, Christopher T. Coughlin of Springer Nature, for
his prompt agreement and coordination to publish the proceedings in Lecture Notes

vii
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in Electrical Engineering (LNEE), so that authors could prepare their manuscript for
this publication opportunity. We thank all the reviewers for their timely responses
and comments for authors to improve the quality of manuscripts. We thank all the
authors for their participation in ICSI 2018 and their understanding and patience for
the two rounds of revisions. We thank authors of the 8 invited contributions for their
effort in preparing the invited chapters. Finally, we thank, Chandhini Kuppusamy,
Ho Yin Fan, and Jeffrey Taub, of the editorial team of Springer Nature for their
efficient and timely help and support during the editing process of these proceedings.

Medford, MA, USA Eric Todd Quinto
Akron, OH, USA Nathan Ida
Beijing, China Ming Jiang

Saarbriicken, Germany Alfred K. Louis
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Fuzzy Rough Clustering Analysis )
Algorithm Based on Attribute Reduction e

Hao Ouyang, Zhi Wen Wang, Zhen Jin Huang, and Wei Ping Hu

Abstract Fuzzy clustering analysis algorithm has good ability to solve fuzzy
problems. Rough clustering analysis has good ability to solve these problems its
prior knowledge is uncertain. But in the real world, there are many problems that
not only are fuzzy but also are rough and uncertain; the paper combines the idea
of these two algorithms. In order to improve correction of clustering, it imports
attributes reduction algorithm to get importance of each attribute, and dynamically
changes attribute weight by the importance. The new algorithm firstly computes
fuzzy membership degree of every object and then estimates the object that belongs
to lower approximation or upper approximation of one cluster. In the analysis
process, the paper provides a new way to get the cluster centers, combining fuzzy
and rough theory. From experiments of four UCI data sets, it is proved that the new
algorithm is better effective.

Keywords Clustering - Fuzzy theory - Rough set theory - Attribute reduction

1 Introduction

Clustering analysis is different from classifying analysis that is an unsupervised
analysis process. Before the analysis, it does not know the characteristics of all
attributes and the importance of all kinds of attributes for the clustering analysis
process [1]. The paper [2] introduces the information entropy theory to analyze
the attributes of data objects and obtains the importance of each attribute, so as
to dynamically adjust the analysis process. The paper [3] introduces the idea of
C4.5 algorithm, uses the information gain for the continuous attributes and category
attributes, so as to help the category analysis. Although the above papers dynami-
cally analyze the importance of each attribute, they fail to effectively combine the

H. Ouyang (b<) - Z. W. Wang - Z. J. Huang - W. P. Hu
School of Computer Science and Communication Engineering, Guangxi
University of Science and Technology, LiuZhou, Guangxi Province, PR China
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fuzzy theory and the rough theory to deal with nonlinear problems. Fuzzy theory and
rough set theory describe problems from the two different aspects: the fuzziness
and the uncertainty. Therefore, a lot of papers combine fuzzy theory or rough set
theory with clustering analysis algorithm to analyze problems. These papers [4—6]
use fuzzy clustering algorithm to analyze medical image problem, social service
problem, and carbonate fluid detection problem. These papers [7-9] use rough
clustering algorithm to analyze fault detection in rotating machinery equipment,
gene expression problems, and psychological anxiety problems of students. The
paper [10] tries to combine the fuzzy theory and rough set theory and applies the
algorithm to analyze hydrological engineering. In the process of combination, FCM
algorithm is firstly adopted to obtain the mean points of fuzzy clustering, and then
the rough set is calculated to obtain the upper and lower approximation of clusters.
In the process, the two theories are not combined well, instead there are separated. In
the paper [11], data object sets are preprocessed by using support vector machine,
then introduces fuzzy clustering and rough set respectively, so the two steps are
also independent. In the paper [12], fuzzy rough clustering is applied to the image
analysis of brain MRI. In the process of analysis, the difference of membership
degree is used to determine the rough boundary, but for calculating the mean point,
only using the same method in the FCM algorithm. There are the same defect likely
papers [10, 11].

In this paper, a new algorithm is provided. The reduction algorithm in rough set
theory is used to obtain the importance of each attribute, dynamically adjust the
weight values of each attribute in the iteration calculate process, so as to optimize
the value of important attributes. In the clustering analysis, to combine the fuzzy
and rough set theories, firstly it gets the fuzzy membership degree of each data
object, and then gets fuzzy lower approximations and upper approximations of these
clusters. The process effectively combines fuzzy and rough theory by calculating
cluster mean points. This method more approximately describes the real world. The
new algorithm presented in this paper is proved to have better analysis performance
by several related experiments.

Chapter 2 introduces rough set theory and attribute reduction algorithm. This
chapter introduces fuzzy clustering and rough clustering. In Chap. 4, fuzzy rough
clustering based on reduction is introduced. In Chap. 5, a new algorithm is adopted
to analyze multiple data sets. Chapter 6 is the conclusion and expectation.

2 Rough Set Theory and Reduction Algorithm

Rough set theory is a common method to analyze uncertain problems. In this theory,
the most important concepts include lower approximation, upper approximation,
bound and approximation quality.

Definition 1 for Low approximation, Upper approximation, and Bound. For
an information system IS = (U,A,V,F), B C A, there exists equivalent relation


http://dx.doi.org/10.1007/978-3-030-30825-4_2
http://dx.doi.org/10.1007/978-3-030-30825-4_4
http://dx.doi.org/10.1007/978-3-030-30825-4_5
http://dx.doi.org/10.1007/978-3-030-30825-4_6
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Rp, (U,Rp) is defined as approximate space. For any set X, X C U, the low
approximation of X for (U, Rp) is defined as:

RpX ={x e Ullxlp € X} )]
The upper approximation of X for (U, Rp) is defined as:
RpX = {x € Ullx]p N X # ¢} 2)
The bound of X for (U, Rp) is defined as:
BNp=RpX — RpX 3)

In formula (1), U is a finite object set for analysis, A is an attribute set for objects.
V is a domain set for A, f : U x A — V is an information function. By definition,
RpX is looked as the set composed by objects that certainly belong to X, RpX is
looked as the set composed by objects that probably belong to X, BNp is looked as
the set composed by objects that probably belong or not belong to X.

Definition 2, Approximate quality. 7g(X) is the rough degree of set X for B, it is
defined as:

re(X)=| RpX | /| X| “)

In formula (4), 1 * 1 is the number of elements contained in the set. If rg(X) = 1,
it means the bound does not exist, BNp = ®. If rp(X) < 1, it means that X is rough
referring to B.

In the analysis of actual data, there is a lot of redundant information, and the
importance of each attribute is different. In order to deal with problems effectively,
the attribute reduction of rough set theory can be used to find the importance of
attributes and eliminate the irrelevant or redundant attributes, so as to improve the
correctness of clustering.

Definition 3, Attribute importance. For the decision table DT = (U, C U D), if
B C Cand a € C — B, sigy(a, B, D) is the importance of attribute a referring to
attribute set B, sig,(a, B, D) is defined as:

sig, (a, B, D) = rpuja)(D) — rp(D) ®)

In formula (5), rp(D) is the dependent degree of decision attribute D referring to
conditional attribute.

According to formula (5), sig,(a, B, D)can be seen as the analysis contribution
of attribute a in attribute set B. If the figure of sig,(a, B, D) is bigger, the attribute
a is more important for decision. According to this reason, we can get an attribute
reduction algorithm. The reduction algorithm starts from an empty attribute set, and
then iteratively selects the attribute with the maximum importance. In order to avoid
the influence of noise, the algorithm imports a stop threshold ¢.
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The reduction algorithm is described as follows:

Input: decision table DT = (U, C U D), stop threshold ¢
Output: set B that is a relative reduction of set C for set D

Steps:
Calculate the reliance of decision attributes on conditional attributes, rc(D);
B « ¢;
while B C C do
begin
foreverya € C — B do
Calculate sig,(a, B, D);
Select the attribute a having biggest sig,(a, B, D), if many attributes
meet this condition, then select the attribute a that has least number of combinations
with attribute set B;

B < B U {a};
ifre(D) —rp(D) <¢
break;
end if
end for

for every a € B do
ifre(D) —rp—(qy(D) < ¢
B < B — {a};
End if
output B;
end for
end while

3 Fuzzy Clustering and Rough Clustering

Fuzzy Clustering

Fuzzy c-mean clustering (FCM) is using fuzzy theory into clustering analysis
process. In this algorithm, membership degree is used to indicate the possibility
of object belonging to a certain cluster. The membership degree u;x is described
as how much degree of data object x; belonged to the No. i cluster, uj; € [0, 1],
Y uik = 1.

The objective function of FCM algorithm is:

C n
In (U, V) =" (ui)"dy, 6)

i=1 k=1
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In formula (6), dj; is described as the distance between the object x; and the mean
v;, it is defined as follows:
d = llxe — vill? )

In formula (6), m is the fuzzy factor, m € [1, oo]. Usually, m = 2. Through many
iterative calculations, the mean point is obtained by the following formula:

C
(dip)*/ =M /|:Z (djk)z/(l_m)] it v # X
v Uik = j=1

l<i<c 1, if v = xg;

1<k=<n 0, if v =x,1#£1;
3

and

Vou= Y i)"Y i)™ (9)
k=1 k=1

I<i<c

Rough Clustering

Rough c-mean clustering (RCM) is using rough theory into clustering analysis
process. In the algorithm, it is agreed that an object can only belong to the lower
approximation of one cluster mostly. When calculating the distance between the data
object and each mean point, if the difference between these distances is less than a
certain threshold value, the object will be divided into the upper approximation of
each corresponding cluster. Otherwise, it is divided into the lower approximation of
nearest cluster.

According to the definition of lower approximation, upper approximation, and
bound in formula (1)—(3), the new definition of mean point in RCM is obtained as
follows:

Y xx > Xk

x€C; eV

wi g + won vy it Ci # 9 A CPY £ 4
2k
v = { 2 it Ci#¢nCEY =¢; (10)

I<izc ICil >
> Xk
xkECiBN

BN
[er

it Ci=¢ACEY £
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In the above formula, w; is the weight of lower approximation, wy,, is the weight
of bound. Then w; + wy, = 1. If wy, is larger, the prior knowledge is less complete,
and the information set is rougher.

4 Fuzzy Rough Clustering Based on Attribute Reduction

Fuzzy Rough Clustering

In practical application scenarios, there are many problems often lacking prior
knowledge that are fuzzy description. In this case, if only fuzzy clustering or rough
clustering is used, it will inevitably lead to one-sidedness of the analysis process. In
this paper, the fuzzy theory and rough set theory are applied to clustering analysis,
and a new fuzzy clustering algorithm is designed. In the algorithm, two equivalent
classes can be obtained for the set U: they are upper approximation and non-
upper approximation; upper approximation can be divided continually into lower
approximation and bound; this process is defined in formula (11). However, the
definition of mean point is combined with the fuzzy theory and the rough theory. In
the analysis, it is believed that the fuzzy degree of data objects belong to the lower
approximation, boundary or non-upper approximation of each cluster is different,
and the calculation method of fuzzy membership degree is shown in formula (12).

U = {xklxx € GO} U {xxlxi ¢ Ci(X)}
<i<c _ 1D
= [l € G} U el € €2V} U el ¢ G0

\m
> (i)™ xi %BN(M”‘) Tk
w xpeC; + wh xg€C; n
IGil " ICEN| 3 (ui)™,
+ 2 i) k=1
xk¢Ci

if Ci#¢nCIN #¢;

Zc (i)™ xk "

Xpel;

Y = (kT—F > (uik)ka>/ > i)™, (12)
= — k=1

N xc¢Ci
it CiAoACN =g
> (i)™ xx
.kkECiBN m n m
[CBY| + Z (i)™ x Z (i)™,
! xx¢Ci k=1

if Ci=¢ACPN +£¢;
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In the formula (12), u; is got in formula (8).
When analyzing, the fuzzy rough clustering algorithm needs to comply with the
following three rules:

(a) A data object can only belong to the lower approximation of a cluster.

(b) If the data object belongs to the lower approximation of a cluster, it must also
belong to the upper approximation of the cluster.

(c) When the difference between the maximum fuzzy membership of a cluster (it is
uMax) and the fuzzy membership of other cluster (it is u;) is less than a certain
threshold value, the data object can belong to the upper approximation of two
or more clusters.

In this paper, the threshold in point C above is called the fuzzy rough threshold,
which is denoted as 4.

Fuzzy Rough Clustering Based on Attribute Reduction

In the paper, a fuzzy rough clustering based on attribute reduction (FRCMbR) is
proposed. In the calculation process, the algorithm obtains the importance of each
attribute by the reduction algorithm. Then it gives different weight value to each
attribute according to the importance. At last, it makes corresponding adjustments
for the distance between data object and cluster by different weight value. The new
difference is calculated as shown in formula (13).

cond

diy = er(xkp - ”ip)z (13)

p=1

where 7, is the weight of the No. p attribute of the object, cond is the count of the
attributes, and

cond

1= er (14)

p=1

Fuzzy rough theory is introduced in clustering analysis.
The fuzzy rough clustering algorithm is described as follows:

Input: Set U has n data objects; number of clusters (c); lower approximate weight
(wy); bound weight (wpy,); fuzzy rough threshold (§); algorithm stop threshold
(e).

Output: c clusters

Steps:
Initialize the weight of each attribute of a data object: r, <— 1/n;



8 H. Ouyang et al.

Randomly generate the ¢ mean points of each cluster,
The number of iterations: j < 0;
do
Running the reduction algorithm to get the weight of each attribute;
Using formula (13) calculate the difference between data objects and each
cluster;
Using formula (8) get the membership degree of each object (u;x) in the No.
Jj iteration calculation;
if e — 1 <5&&i#m
C; < Ci U{x};
Cim < Cp U {1}
else
Ci < CU {xx}
end if-else
Using formula (12) get the mean points of each cluster again;
The number of iterations: j <—j + 1;
while <max {|u§,]<) - u§£_1)|} > 8);
end do-while;

5 Experiments of FRCMDbR Algorithm

Experimental Setting

The computer configuration for testing the algorithm: CPU is 2.93 GHz dual—core,
and the memory is 4 GB. Software configuration: Window 7, Matlab2007. The
experimental UCI data sets are Iris, Nursery, lonosophere, and Isolet5, respectively.
The characteristics of the data sets are shown in Table 1.

The definition of accuracy in the experiment is as follows:

Y i correct;

15
U 15)

accurate(U) =

In formula (15), (U1 is the number of data sets, and correct; is the number of data
objects correctly divided into corresponding clusters.

Table 1 Characterization of four UCI sets

Number of Attribute Number of
Data set samples dimension clusters Instructions
Iris 150 4 3 Data on Iris flowers
Nursery 12,960 8 3 Nursery data
Tonosophere 351 34 2 Radar acquisition data

Isolet5 1559 617 26 Alphabetic predictive data
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Table 2 Comparison of correction for Iris set

Algorithm Number of samples Correct samples Wrong samples | Accuracy (%)
K-Means 150 105 45 70.0
FCM 150 130 20 82.7
RCM 150 129 21 86.0
FRCM 150 132 18 88.0
FRCMbR 150 139 11 92.7

Table 3 Comparison of correction for Nursery set

Algorithm Number of samples Correct samples Wrong samples | Accuracy (%)
K-Means 12,960 8451 4509 65.2
FCM 12,960 8935 4025 68.9
RCM 12,960 9051 3909 69.8
FRCM 12,960 10,455 4170 80.7
FRCMbR 12,960 10,561 2399 81.4

Table 4 Comparison of correction for Jonosophere set

Algorithm Number of samples Correct samples Wrong samples | Accuracy (%)
K-Means 351 207 144 59.0
FCM 351 234 117 66.7
RCM 351 241 110 68.7
FRCM 351 249 102 70.9
FRCMbR 351 292 59 83.2

Table 5 Comparison of correction for Isolet5 set

Algorithm Number of samples Correct samples Wrong samples | Accuracy (%)
K-Means 1559 894 665 57.3
FCM 1559 1032 527 61.2
RCM 1559 1025 534 65.7
FRCM 1559 1098 461 70.4
FRCMbR 1559 1286 273 82.4

Comparison of the Accuracy of Each Algorithm

Tables 2, 3, 4, and 5 shows the accuracy of different algorithm after analysis of the
above four data sets. For the four experiments of FRCMbR algorithm, the stooping
threshold ¢ = 0.00001, the lower approximate weight w; = 0.9, and the bound
weight wp, = 0.1.

According to the analysis results in Tables 2, 3, 4, and 5, the traditional
FRCM algorithm combines the fuzzy theory with the rough theory, which makes
the analysis more robust. Compared with FCM and RCM, it is more capable
of analyzing nonlinear problems, so its analysis results are more accurate. The
FRCMBDR algorithm proposed in this paper is superior to the other four algorithms
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because it not only recombines the fuzzy and rough theory, but also conforms to
the concept of fuzzy roughness and is close to the real world. In the process of
analysis, the weights of each attribute are dynamically adjusted according to the
analysis results, so as to optimize the analysis results. From the perspective of
Iris and Nursery data sets, if the attribute dimension of the data set is small, the
FRCMDbR algorithm is superior to the FRCM algorithm, but its advantages are
not particularly obvious. When the attribute dimension increases, the FRCMbR
algorithm’s analytical capability gradually shows that it is superior to the FRCM
algorithm in a word, FRCMDbR algorithm has two advantages:

(a) FRCMBDbR algorithm combines the characteristics of fuzzy theory and rough
theory, making it better able to deal with nonlinear problems, especially when
the background knowledge is not clear, fuzzy, and incomplete, it has more
advantages.

(b) FRCMBDbR algorithm introduces reduction algorithm, which can dynamically
adjust the weight of attributes according to the actual importance in the analysis,
so as to strengthen the major attributes on final analysis results.

Parameter Experiments of FRCMbR Algorithm

The important parameters to be adjusted in FRCMDbR analysis include: lower
approximate weight w;, bound weight wy,,, fuzzy rough threshold §, algorithm stop
threshold e. Where the algorithm stop threshold ¢ generally selects a minimum value
approaching 0. The approximate weight w;, bound weight wy,, and fuzzy rough
threshold § are directly related to rough calculation. Therefore, this paper conducts
experiments on these three parameters to further verify the validity of FRCMbR
algorithm. Among the three parameters, w; and wy, are correlated, w; + wp, = 1,
so when analyzing these two parameters, only one of them needs to be set, and the
other one can be determined.

In order to test the w; and wy,,, it sets § = 0.1. The algorithm deals with data set
Iris, Nursery, lonosophere, and Isolet5, respectively, 20 times each for each data set,
and then average the results. These test results are shown in Fig. 1.

As can be seen in Fig. 1, when it deals with Iris data set, it sets wp, = 0.1,
the analysis accuracy 92.7% is the highest; when it deals with Nursery data set,
it sets wp, = 0.15, the analysis accuracy 82.7% is the highest; when it deals with
Ionosophere data set, it sets wp, = 0.15, the analysis accuracy 85.9% is the highest;
when it deals with Isolet5data set, it sets wp, = 0.2, the analysis accuracy 88.4% is
the highest. Conclusion can be drawn from the above analysis:

(a) When wy,, is within the [0.1, 0.2] range, the accuracy is highest. This is because
only a small part of the data object that clusters in the whole problem domain is
uncertain, but the overall information is uncertain. The impact of these uncertain
data objects on the overall analysis results can be small.
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(b) At that time wp, = 0, FRCMDbR algorithm is focused only on the data objects
determined by prior knowledge, completely ignoring the bound objects in rough
set. And the algorithm is reduced to a fuzzy clustering, that only dealt with lower

approximation of each cluster.
At that time wy, > 0.25, the analytical capability of FRCMDbR algorithm is

(©)

gradually declined. This is because, in the process, the algorithm will only pay
more attention to these objects whose prior knowledge is uncertain, but easing
to ignore the objects of the low approximation.

In the fuzzy rough threshold § test, this paper sets the boundary weight wy,, = 0.1,
and the algorithm tests the four data sets, respectively. The test results are shown in

Fig. 2.

As can be seen from Fig. 2 when § = 0.1 in the test for Iris data set, the highest
accuracy rate is 92.7%; when § = 0.08 in the test for Nursery data set, the highest



12 H. Ouyang et al.

accuracy rate is 87.7%; when § = 0.06 in the test for Ionosophere data set, the
highest accuracy rate is 84.1%; when § = 0.06 in the test for Isolet5 data set, the
highest accuracy rate is 86.0%. The conclusion is drawn from the above analysis:

(a) When the § value range within the [0.06, 0.1], the accuracy is the highest. This
is because most of the data is not fuzzy and uncertainty, only the data of bound
that is fuzzy.

(b) Comparing with the bound weight wy,,, the fuzzy rough threshold § is a smaller
values The reason is that the ¢ is a difference of fuzzy membership degrees for
the data object belonging to different clusters. (e.g., |ujx — u;| is the difference
of fuzzy membership degree for the No. i data object belonging to the No. k or
the No. j cluster). The fuzzy membership degree value is small and it is in [0, 1],
so the § is more smaller.

(c) At that time § = 0, the FRCMDbR algorithm is no longer capable of rough
analysis, and the algorithm is degraded to fuzzy clustering algorithm.

(d) At that time § > 0.1, the analysis capability of FRCMbR algorithm is also
declining. This is because as § increases, the algorithm divides more data
objects into the bound, believing that the whole analysis object is more rough,
which is inconsistent with the actual situation.

6 Conclusion

Fuzzy theory and rough set theory helps to understand the real world from different
angles. When combined with K-Means algorithm, the two theories can be selected
according to different scenarios. Fuzzy K-Means is better at the ambiguous and
paradoxical problems, while rough K-Means is better at the problems of incomplete
prior knowledge or incomplete prerequisite knowledge. The FRCMbR algorithm
proposed in this paper combines fuzzy theory and rough set theory and deals with
problems from two aspects at the same time. FRCMDbR algorithm also introduces
the reduction algorithm in rough set theory, in order to obtain the important degree
of each attribute, then, dynamically adjust their weight, and further optimize the
important attribute. The FRCMDbR algorithm is verified through several experiments
on UCI data sets. However, in the process of algorithm calculation, the parameter
setting will affect the final analysis results. Therefore, it is necessary to further
improve the algorithm in future research to reduce the influence of experience
factors on the algorithm.
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Abstract Electrical resistance tomography (ERT) reconstructs the resis-
tance/conductivity distribution in the sensitive field by measuring the boundary
voltage of the field. In the traditional ERT adjacent excitation mode, the sensitivity
coefficients amplitude of the central region of the field is low, which leads to the
poor imaging resolution of the central region. In this chapter, the influence of
the distribution of the sensitivity coefficients amplitude of ERT system on image
reconstruction is analyzed. A new excitation mode is proposed, in which the inner
electrode is added to the center of the field to improve the sensitivity amplitude of
the central region and thus improve the quality of image reconstruction. Aiming at
the problem of central artifact caused by internal electrode excitation, the mixed
excitation mode and its corresponding image reconstruction algorithm are used to
reduce it. The simulation results show that the new excitation mode and algorithm
can effectively improve the resolution of field center image and the quality of
reconstructed image.
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1 Introduction

Electrical resistance tomography (ERT) [1] reconstructs the conductivity distribu-
tion in the field by measuring the boundary voltage of the field. ERT system has
been widely used in industrial surveying [2—4], geological exploration [5-7], and
other fields because of its simple equipment and fast imaging speed. However, due
to the low resolution of ERT reconstruction image, it is very limited in application.
In recent years, in order to improve the image resolution of ERT, experts have
done a lot of research on its excitation measurement mode. At present, the adjacent
measurement with adjacent excitation mode [8] is commonly used in measurement.
In addition, Liu proposed a single-electrode excitation multi-electrode measurement
model [9], and Ren proposed a new sensor with 8 internal electrodes and 16 external
electrodes [10].

In this chapter, the distribution characteristics of sensitivity coefficient of ERT
system are analyzed. To solve the problem of low sensitivity coefficient in central
field, a measurement mode based on internal electrode excitation is proposed. We
propose adding an inner electrode in the center of the field as the excitation current
outflow terminal. This method can increase the magnitude of sensitivity coefficient
in the central field and improve the quality of image reconstruction. To solve the
central artifact problem caused by internal electrode excitation, a new algorithm
is proposed. In the new algorithm, the adjacent excitation and inner electrode
excitation are used to measure the object, and then the image reconstruction
algorithm is improved to reduce artifacts. The simulation results show that the
new excitation mode and algorithm can effectively improve the resolution of the
reconstructed image in the central field and improve the quality of the reconstructed
image.

2 The Effect of ERT Sensitivity Coefficient Amplitude
on Image Reconstruction

Principle of ERT

For ERT systems, adjacent measurement mode with adjacent excitation is com-
monly used as shown in Fig. 1 [8]. The current is injected into the measured area
from one pair of adjacent electrodes, and the voltage between the other adjacent
electrodes is measured at the same time. The measurement is then stimulated until
all the pairs of electrodes are used as one-time excitation electrodes. One hundred
and four independent measuring voltages can be obtained in 16-electrode measuring
system [11].

Based on the principle of sensitivity coefficient, when the conductivity distribu-
tion in the measured area changes very little, the linear model of current excitation
and voltage measurement mode (Fig. 1) can be expressed as [12].
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Fig. 1 16-electrodes ERT
model. (a) Uniform
conductivity. (b) Perturbed
conductivity

S-Ac=AZ ey

where AZ is the changed vector of measured boundary voltage, Ao is the changed
conductivity vector, and S is the calculated sensitivity matrix. After the conductivity
change vector is obtained, the conductivity distribution vector can be obtained from

Eq. ).
o6 = Q[op + Ao] 2

where o is the initial conductivity distribution in the field, and Q[] is a projection
operator [13], which limits the conductivity distribution in the field between 0 and 1.

The Effect of Sensitivity Coefficient Amplitude Distribution
on Image Reconstruction

S = [S;j] is the calculated sensitivity matrix, where S;; is the sensitivity coefficient
of the j-th pixel relative to the i-th measurement. Assuming that the m-th pair of
electrodes is used as the exciting pair and the n-th pair of electrodes is used as the
measurement electrode pair in the i-th measurement, then S;; can be calculated by
[12]

\Y% v
Sij = - / . T g ray 3)
L, 1,

where ¢, and V{, represent the potential distribution in the field when the current
is I, and I,,, respectively, when the m-th and n-th pairs of electrodes are used as
exciting electrodes.

As the amount of boundary measurement data of ERT system is far less
than the number of finite element to be solved, image reconstruction is seriously
undetermined [14] and cannot be solved directly by inverse matrix. So the ERT
reconstruction often uses iterative method to solve the approximate solution of
image, such as Landweber algorithm [15]
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Fig. 2 Equipotential lines of ’—'\\
adjacent electrode excitation

{Aok+1:A6k+a~ST(AZ—S-A6k) @
Ao =STAZ
where Aoy is the conductivity change vector obtained by step & iteration and the
constant « is known as the gain factor and is used to control the convergence rate.
Agy,; represents the variation of the /-th finite element obtained by the second
iteration, and S; represents the /-th column of the sensitivity matrix S, which consists
of 104 sensitivity coefficients of the /-th finite element, from Eq. (4).

Aag,,=slT-(I+a-1—a.s.sT)-Az (5)

can be obtained. The larger the amplitude of each element in S;, the larger the
amplitude of Aoy ;. The principle of subsequent iteration is similar. In addition,
Eq. (3) shows that the magnitude of |S;;| which is positively correlated with the
magnitude of the potential gradients |V ¢,,| and |V, | of the finite element method.
Therefore, it can be seen that the magnitudes of V¢, and V1, will affect the effect
of image reconstruction.

Image Reconstruction Analysis of Adjacent Excitation Modes

When the adjacent excitation mode is used, the equipotential line in the field is
shown in Fig. 2.

From the above analysis, it can be seen that the closer the excitation electrode is,
the more dense the electric field equipotential lines are, the bigger the |V ¢,,| and
|V, | are, and the bigger the [S;;| is. Correspondingly, within the field far from the
electrode, the more sparse equipotential lines are, the smaller the |V ¢,,| and |V{,|
are, and the smaller the [S;| is. The field is divided into 16 circles and the number
of finite elements is 1536. The finite element division is shown in Fig. 3a. The finite
element is numbered in order from the center to the outside. The smaller the finite
element number is, the closer the finite element is to the central field. The amplitude
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Fig. 3 Sensitivity coefficient distribution with adjacent excitation mode. (a) Mesh grid. (b)
Amplitude distribution of sensitivity coefficient in once measurement. (¢) Amplitude of sensitivity
coefficient of adjacent measurement under adjacent excitation

distribution of sensitivity coefficient in once measurement is shown in Fig. 3b. After
104 measurements, the sensitivity coefficient amplitude distribution of 1536 finite
elements is obtained as shown in Fig. 3c.

Taking the model of Fig. 4a as an example, the effect of adjacent excitation
modes on the reconstruction of discrete phases at different positions in the field
is analyzed. The normalized discrete phase conductivity is O and the continuous
phase conductivity is 1. The reconstructed image is shown in Fig. 4b. The contour
of reconstructed image is clear because of the dense equipotential lines near the
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(a) (b)

Fig. 4 Reconstructed image of adjacent excitation adjacent measurement mode. (a) Model D1.
(b) Reconstructed image of model D1

electrodes and the large variation of sensitivity coefficient amplitude. However, the
equipotential line near the center of the field are sparse and the sensitivity coefficient
amplitude changes a little, so the reconstructed image is blurred and the contours are
difficult to distinguish.

3 ERT System with Internal Electrode Excitation

Internal Electrode Excitation

In order to improve the central field, a measurement mode with internal electrode
excitation is proposed in this chapter. Taking flow detection as an example, in order
to enhance the sensitivity of the central field, an inner electrode can be added to the
center of the field. The structure is shown in Fig. 5.

The inner electrode is used as the current outflow terminal, and the 16 electrodes
around the field are used as the current input terminal to excite in turn. The boundary
voltage is measured by adjacent measurement mode, as shown in Fig. 6.

Image Reconstruction of Internal Electrode Excitation Mode

The distribution of field contour is shown in Fig. 7 when the inner electrode is used
for excitation. Like adjacent excitation measurement mode, the closer the excitation
electrode is, the more dense the contour lines are. However, due to the addition of
central electrodes, the distance between each finite element and the electrodes in the
field is reduced, so the distribution of potential lines in the field is more uniform.
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Fig. 5 ERT system with internal electrodes

Fig. 6 ERT model with
electrode excitation. (a)
Uniform conductivity. (b)
Perturbed conductivity

(a) (b)

Fig. 7 Equipotential lines of
internal electrode excitation

The distribution of sensitivity coefficient is calculated by Eq. (3). The distribution
of sensitivity coefficient in once measurement is shown in Fig. 8a. After 224
measurements, the sensitivity coefficient amplitude distribution of 1536 finite
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Fig. 8 Sensitivity coefficient distribution with adjacent excitation mode. (a) Amplitude distribu-

tion of sensitivity coefficient in once measurement. (b) Amplitude of sensitivity coefficient of
adjacent measurement under adjacent excitation
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Fig. 9 Reconstructed image of inner electrode excitation adjacent measurement mode. (a) Model
D1. (b) Reconstructed image of model D1

elements is obtained as shown in Fig. 8b. It can be seen that the magnitude of
sensitivity coefficient near the center of the field is enhanced.

The model D1 in Fig. 4a is reconstructed by using the inner electrode excitation
measurement mode with Eq. (4) as shown in Fig. 9b.

Compared with the adjacent excitation mode, the inner electrode excitation mode
significantly enhances the imaging effect in the central field, and the image boundary
is clear. But it will produce artifacts which tend to the inner electrode. In the two-
phase flow system model, the conductivity of continuous phase is 1 and that of
discrete phase is 0. Artifacts in this chapter refer to the area where the original
conductivity value should be 1, and the conductivity value is less than 1 due to
reconstruction error. As a result, the discrete phase distribution in the reconstructed
image is enlarged.
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The reconstructed conductivity near the electrode changes dramatically because
the sensitivity coefficient is much higher than that of other positions in the field.
Artifacts will be generated near the electrode whether the image is reconstructed by
the adjacent excitation mode or the internal electrode excitation mode. Although the
inner electrode excitation mode can significantly improve the image reconstruction
effect in the central field, the artifacts near the inner electrode are also serious. If
the discrete phase is distributed near the electrode, the image will be distorted, as
shown in Fig. 9b.

Algorithms for Mixed Excitation Mode

In order to reduce the artifacts near the inner electrode, the results of conductivity
distribution of adjacent excitation modes are used to modify the model.

Firstly, the internal electrode excitation mode and the adjacent excitation mode
are used to reconstruct the structure, respectively. When the adjacent excitation
mode is adopted, the internal electrode is in the open circuit state. The conductivity
distributions of two reconstructions are 6 adjacent and Gnternal, T€Spectively.

Then, in each finite element, the maximum value 6; Max between 6, Adjacent and
0, Internal 1S taken as the reconstruction distribution.

0 Max = Max [Gi,Adjacent» Ui,Internal] i=0,1,...,1536) (6)

At the center of the field, 6; Adjacent > 0, Internal, then 0; Max = 0, Adjacent, the
artifacts near the central electrode are effectively eliminated. At the edge of the
discrete phase, 6; Internal > 07, Adjacent> then 6; Max = 0, Internal, the clear contour of
the discrete phase is maintained. However, the reconstructed values in the discrete
phase near the central field may also be taken as the reconstructed values in the
adjacent excitation mode. This makes the reconstructed conductivity in discrete
phase higher, closer to 1, rather than 0, as shown in Fig. 10b.

The conductivity distribution under mixed excitation mode is analyzed as shown
in Fig. 11. Compared with the internal electrode excitation method, the maximum
reconstruction makes the reconstruction value of the discrete phase in the central
region deviate from the true value, and its value is closer to 1.

In order to ensure that the reconstructed image has a clear contour and its internal
conductivity is close to the true conductivity, the threshold can be used to judge the
range of discrete phases in the new conductivity distribution opMax.

Setting threshold p, when the conductivity value of the i-th finite element is
0, Max > P, we consider that the finite element is a continuous phase and adopt
0}, Max as the conductivity of the finite element. When o; Max < p, the finite element
is considered as discrete phase, and the average value 6; Mean Of 0 Adjacent and
0}, Internal (Eq. 7) can be calculated as the conductivity of the finite element.
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Fig. 10 Mixed excitation reconstruction using maximum value. (a) Model D1. (b) Reconstructed
image of model D1
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Fig. 11 Reconstructed conductivity amplitude

0 Mean = Mean [o'i,Adjacentv 0’i,Internal] (i=0,1,...,1536) @)

The reconstruction algorithm can be expressed as

o 0/ Max >
O Mix = i,Max ( i,Max :0) (8)

0 Mean (Ui,Max < ,0) '

According to the experience, we choose p = 0.7 and use the algorithm to
reconstruct the field as shown in Fig. 12b.

Comparing Figs. 12b and 10b, the image reconstructed by the new algorithm is
closer to the real conductivity in the discrete phase near the central region.
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Fig. 12 Mixed excitation reconstruction using maximum value. (a) Model D1. (b) Reconstructed
image of model D1

Fig. 13 Four conductivity distribution models for simulation. (a) Model D1. (b) Model D2. (c)
Model D3. (d) Model D4

4 Simulation and Results

Experimental Conditions

In order to verify the reconstruction effect of internal electrode excitation mode for
different distribution, four models are selected for simulation experiments as shown
in Fig. 13.

Relative error of image reconstruction and image correlation coefficient are used
to evaluate the reconstruction results [15].

Reconstruction error = M x 100% 9
ol
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Fig. 14 Reconstruction of two excitation modes without noise

Correlation coefficient = = (10)

f: (oi —C_T)2 f: (U,' —CTT>2

i=1 i=1

where & is the calculated conductivity distribution in the field, o is the true
conductivity distribution, and K = 1536 is the number of finite elements in the
field.

Noise Free

Four models are stimulated by the adjacent electrode excitation mode and the inner
electrode excitation mode, respectively, and the Landweber algorithm is used to
iterate 500 times for reconstruction. In the internal electrode excitation mode, the
image is reconstructed by Eq. (8). The reconstructed image is shown in Fig. 14.

It can be seen that for different models, the reconstructed images using the pro-
posed incentive mode are clear. The contour of discrete phase in the reconstructed
image is clearer and the reconstruction of the central region of the field is more
accurate. The image reconstruction errors and correlation coefficients are analyzed
as shown in Fig. 15.

As shown in Fig. 15, for four different models, the reconstruction errors obtained
by the proposed measurement model are reduced and the correlation coefficients are
improved.
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Fig. 15 Reconstruction errors and image correlation coefficients of different excitation. (a)
Reconstruction errors. (b) Image correlation coefficients
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Fig. 16 Reconstruction of two excitation modes with noise

With Noise

In practical applications, the measured data are often disturbed by noise, so the anti-
noise ability of the system is very important. In this chapter, by adding random noise
to the boundary voltage vector, the SNR is 30 dB (Fig. 16).

Considering the system noise, the reconstructed image under adjacent excitation
measurement mode is seriously distorted, especially near the central field. Using
the excitation measurement mode proposed in this chapter, the discrete phases
distributed in different positions can be reconstructed clearly by adding inner
electrodes. The position of discrete phase distribution is basically correct and the
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Fig. 17 Reconstruction errors and image correlation coefficients of different excitation with noise.
(a) Reconstruction errors. (b) Image correlation coefficients

outline is clear. It can be considered that the anti-noise ability of the whole field has
been improved obviously.

Quantitative analysis is made on the reconstructed image after adding noise. The
reconstruction error and reconstruction correlation coefficient are shown in Fig. 17.

In the case of noise, for four different models, the reconstructed images obtained
by the proposed excitation mode have lower image error than those measured by
adjacent excitation. At the same time, the correlation coefficient between recon-
structed distribution and real distribution has been effectively improved. Therefore,
according to the quantitative analysis, we can conclude that the measurement mode
calculation method proposed in this chapter has better anti-noise performance.

5 Conclusion

Based on the analysis of sensitivity coefficient, an ERT excitation measurement
mode with inner electrodes is proposed, and the corresponding algorithm is studied.
The simulation results show that the model can effectively reduce the reconstruction
error and improve the correlation coefficient of the reconstructed image. However,
it cannot be neglected that the internal electrode intrudes into the field, so the
measurement mode proposed in this chapter cannot be applied to non-intrusive
measurement environment. In addition, the proposed algorithm can be further
improved and will be studied in future work.
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Approximated Scale Space for Efficient )
and Accurate SIFT Key-Point Detection et

Ying Wang, Yiguang Liu, Zhenyu Xu, Yunan Zheng, and Weijie Hong

Abstract The SIFT (scale invariant feature transform) key-point serves as an
indispensable role in many computer vision applications. This paper presents an
approximation of the SIFT scale space for key-point detection with high efficiency
while preserving the accuracy. We build the scale space by repeated averaging filters
to approximate the Gaussian filters used in SIFT algorithm. The accuracy of the
proposed method is guaranteed by that an image undergoes repeated smoothing with
an averaging filter is approximately equivalent to the smoothing with a specified
Gaussian filter, which can be proved by the center limit theorem. The efficiency
is improved by using integral image to fast compute the averaging filtering. In
addition, we also present a method to filter out unstable key-points on the edges.
Experimental results demonstrate the proposed method can generate high repeatable
key-points quite close to the SIFT with only about one tenth of computational
complexity of SIFT, and concurrently the proposed method does outperform many
other methods.

Keywords SIFT - Key-point detector - Approximated Gaussian - Repeated
averaging filters

1 Introduction

The SIFT [1] key-point plays an important role in computer vision and pattern
recognition tasks such as structure from motion, object matching, object recogni-
tion, and texture analysis [2—6]. Though many other key-points have been proposed
[7-11], the SIFT key-point is still favored by many applications especially for
those with high accuracy needed [12]. However, the SIFT key-point has also been
criticized for the drawback of its heavy computational burden, thus many variational
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methods have been proposed to accelerate the computational speed, but at the cost
of insufficient accuracy or degraded repeatability of the key-points. To efficiently
compute the SIFT key-point while preserving the accuracy and repeatability is
the goal of this paper. The SIFT key-point is obtained by the DOG blob detector
which is an approximation of LOG detector. There are also some other blob
detectors such as [13-15], but their performance is inferior to SIFT in terms
of accuracy and repeatability, as the scale space theory[16, 17] proved that the
Gaussian kernel is the only smoothing kernel that could be used to create the image
scale space. Based on the center limit theorem, repeated averaging filtering can be
used to approximate Gaussian filtering. We propose a bank of averaging filters that
accurately approximate the Gaussian filter in the SIFT algorithm, and the averaging
filters are implemented via integral images. Because integral image is computed
in our method, a combined method for eliminating key-points on the edge is also
presented by reusing the integral images, which is more efficient than the original
one in SIFT algorithm.

2 A Brief Review of SIFT Scale Space Construction and
Key-Point Detection

The SIFT scale space consists of two pyramids, the Gaussian pyramid and the
DOG(difference of Gaussian) pyramid. The Gaussian pyramid consists of M octaves
and each octave consists of N layers. Suppose L (a, b) denotes the ath layer in octave
b, it is produced by the convolution of a Gaussian function with the input image
I(x,y)

L(a,b) =G(x,y,0) % I(x,y) 6]
where * stands for the convolution operation and

1
G()C, y, O_) — me—(xz—}-yz)/ZaZ (2)

where o is determined by a, b and the scale of the first layer oy

o =24TN3 . g 3)
Since the computation complexity of Eq.(1) is proportion to o2, in practical
implementation, smaller o can be used due to the property of the Gaussian
convolution that the convolution of two Gaussian functions is also a Gaussian with

variance being the sum of the original variances. That is,

I(x,y) % G(x,y,01) % G(x,y,02) = I(x,y) * G(x, y, 03) “)
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Fig. 1 The process to construct the SIFT scale space

where 012 + 022 = 032. So, if b # 0, L(a, b) is computed as
L(a,b) = G(x,y,0gp) * L(a,b—1) (&)

where

Ogap = V0 (0,0)2 — (0, b — 1)2 (6)

It can be seen from Eq. (6) that each octave shares the same group of o to generate
a successive layer, this is because when b = 0 and a # 0, the L(a, b) is obtained
by down sampling the layer L(a — 1, b + N — 2). Once the Gaussian pyramid is
computed, the difference of Gaussian pyramid is obtained via the subtraction of two
successive layers in the Gaussian pyramid. Figure 1 shows the SIFT scale space
construction processes. The SIFT key-point is detected by finding the extrema in
the DOG pyramid, after that interpolation is performed to get sub-pixel precision if
the key-point is not on the edge.

3 Approximation of Gaussian Smoothing Using Repeated
Averaging Filter

In this section, we introduce the quantitative relationship between repeated aver-
aging filtering and Gaussian filtering for a given image. The coefficients of an
averaging filter can be viewed as the probability density of a random variable X
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which is uniformly distributed in a square area centered at the origin. Given an
image I (x, y) and an averaging filter A(x, y, w), where w is the window width of
the averaging filter, repeated averaging filtering of the image can be mathematically
expressed as:

I(x,y,n)=1(x,y)xAlx,y,w)*xAlx,y,w)...Ax,y, w) @)

n

Based on the center limit theorem, when n approaches to infinity,

lim I(x,y,n)=1I1(x,y)* lim A(x,y,w)*x A(x,y,w)...A(x,y, w)
n—oo n—oo
n (8)

= I(xs )’) * G(-x’ )’7 Ugau)
where G(x, y, 0gau) is the Gaussian function with the variance ag2au. Suppose the
window width of an averaging filter is w, the variance of its corresponding discrete
random variable is

O = )

the relation of 04y, 0gau, w and n can be deduced:

5 nw? —n
Ogau = /10yy = 12 (10)

For discrete averaging filter and discrete Gaussian filter, the two sides of the first
equal sign of Eq.(10) are very close to each other when n £ 3, which indicates
no less than 3 times repeated averaging filtering can well approximate a specified
Gaussian filter. Figure 2 shows the two curves are close to each other.

4 Scale Space Construction via Repeated Averaging Filtering

To create the scale space introduced in Sect. 1, the key problem is to seek the initial
scale o9, a group of Gaussian filters used to construct next layer from current layer
and a group of averaging filters to approximate these Gaussian filters. Given a
Gaussian kernel, it is not hard to find an optimal averaging filter A(x, y, w) and
the times n needed to approximate the Gaussian kernel based on Eq. (10). However,
there are more difficulties to get the optimal averaging filter and filtering times
in real applications. Here we mainly focus on finding optimal averaging filters to
construct the scale space introduced in Sect. 1.
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Fig. 2 Two similar curves:
the red one is the Gaussian
kernel with o = 2+4/2, the
blue one is its approximation
resulted by 4 times
convolution of an averaging
filter with the window width
w=>5
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—Gaussain

The constraint of Eq. (10) is that n is a positive integer not smaller than 3 and not
bigger than 10, because if n < 3 it is not enough to approximate the Gaussian kernel
and if n > 10 the computational complexity will have no advantage over the original
Gaussian filtering. The variable w should be a positive odd number not smaller than
3, in order to satisfy that there could always be a center pixel the filtering result
can be assigned to. Suppose the initial scale of the Gaussian pyramid is oy, as most
key-points lie in the first several layer of the scale space, thus og should not be large.
According to the original SIFT algorithm where oy = 1.6, here we set o < 2.0. The
number of layers N in each octave depends on the sampling frequency F, and F =
N — 3. 1In [1] the sampling frequency is set to 2, 3, or 4, which gains an acceptable
balance between key-point repeatability and computational time. Constraints to o;

. 2641 2i . nw?—n; .
under SIFT scale space is that o; = 0gy/2™ F — 2F. Besides, 0; = 5 is

needed for discrete averaging filters and discrete Gaussian filters. These constraints
can be formulated as:

2(i;rl) _2% _ n,-wl —n; (11)
12

o] = 00

wherei =1,2,3,...,F+2,00 <2,n; € {3,4,5,...,10}, w; € {3,5,7,...}.It
can be verified that the only solution to Eq. (11) is

00 =~2,01=2,00=2v2,03 = 4,04 = 42
n1:3,n2:6,n3:4,n4:4

12)
w1:3,w2:3,w3:5,w4:7

F=2
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Fig. 3 Approximated DOG
detector for SIFT key-point
detection

DOG

.............. Our approximation

The approximated SIFT scale space is constructed in the same procedure as it is in
the original SIFT algorithm, the Gaussian filters are replaced by averaging filters,
and their quantitative relation is given in Eq. (12). Note that the key-point detector
in SIFT is actually the DOG detector obtained from subtraction of two Gaussian
kernels, Fig. 3 shows the approximated DOG and DOG curves in one octave of the
DOG pyramid.

5 Key-Point Detection

The key-points are detected by searching the local extrema in a 3 x 3 region of
the approximated DOG pyramid. However, the DOG detector is sensitive to image
edges, and the key-point on the edge should be removed since it is unstable. As
integral image is computed in our method (depicted in Fig.4a), we propose to
use fast Hessian measure to reject key-points on the edge. The principal curvature
is used to determine whether a point is on the edge, which is computed by the
eigenvalues of scale adapted Hessian matrix:

13)

H(X,0) = |:Lxx(X»U)a Lyy(X, U):| ,

ny(Xa o), Lyy(Xa o)

The partial derivatives in Eq. (13) are computed by integral image and a group of
box filters as illustrated in Fig.4. The images of before and after filtering out the
key-point on the edge are shown in Fig. 5. After filtering out the key-points on edge,
the scale space quadratic interpolation is performed for every key-point to get a
sub-pixel accurate location (Fig. 5).
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Fig. 4 Using integral image and box filters to compute the partial derivatives of Hessian matrix.
(a) The integral image: SUM = A+ D — B — C. (b) Box filters to compute the partial derivatives
of the Hessian matrix

(a) (b)

Fig. 5 Before-and-after filtering out the edge key-points. (a) Before filtering out the edge key-
points. (b) After filtering out the edge key-points

6 Experimental Results

The accuracy of our method is validated by the performance comparison of the
approximated SIFT detector, SIFT detector, SURF detector, and FAST detector. The
SIFT code implemented by Rob Hess [18] is used in our experiment. For the SURF
algorithm, we use the original implementation released by its authors. The FAST
detector in our experiment is implemented in OpenCV 3.2.0. The datasets proposed
by Mikolajczyk and Schmid [19] are used for the evaluation. There are totally 8
datasets, and each dataset has six images with increasing amount of deformation
from a reference image. The deformations, covering zoom and rotation (Boat
and Bark sequences), view-point change (Wall and Graffiti sequences), brightness
changes (Leuven sequence), blur (Trees and Bikes sequence) as well as JPEG
compression (UBC sequence), are provided with known ground truth which can
be used to identify the correspondence. The repeatability score introduced in [19] is
used to measure the reliability of the detectors on detecting the same feature point
under different deformations of the same scene. The repeatability score is defined
as the ratio between the number of corresponding features and the smaller number
of features in one image in the image pair. To give a fair comparison, the thresholds
of these detectors are adjusted to give approximately equal number of feature points
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Fig. 6 The repeatability of several key-point detectors

Table 1 Timing results of SIFT, SURF, FAST and our method for key-point detection on the first
image of the Wall sequence (size: 1000 x 700 pixels)

Detector SIFT SURF FAST OURS
Time (ms) 332 97 11 35

Fig. 7 Real-world image matching using the approximated SIFT detector with SURF descriptor

as SURF detector detected. The results in Fig. 6 show that the SIFT detector has
the best performance in most cases, and the proposed method is close to SIFT and
better than SURF and FAST detector.

The efficiency of the proposed method is also compared to SIFT, SURF, and
FAST. The times of detection of the key-points in the first image of the wall
sequence is shown in Table 1, where we can see that the FAST detector is most
efficient among all methods, but it merely detects key-points in one scale, while
others detect them in more than 10 scales. The proposed method is about 3 times
faster than SURF and 10 times faster than SIFT. Real-world image matching using
the approximated SIFT detector with SURF descriptor is shown in Fig. 7.
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7 Conclusion

In this paper we have proposed a framework to efficiently and accurately approxi-
mate the SIFT scale space for key-point detection. The quantitative relation between
repeated averaging filtering and Gaussian filtering has been analyzed, and a group
of averaging filters has been found to accurately approximate the DOG detector.
Experimental results demonstrate that the proposed method is about 10 times faster
than SIFT detector, while preserving the high accuracy and high repeatability of the
SIFT detector.
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in UAV Reconnaissance Information oo
Mining System
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Abstract As a kind of emerging weapon, UAV (unmanned aerial vehicle) has
become increasingly prominent in modern warfare and received unprecedented
attention from the world’s military powers. The major function of UAV in warfare
is reconnaissance, providing intelligence support for systematic warfare with the
equipped different kinds of payloads. Videos and images are the most intuitive
reconnaissance results and the basic carrier of the reconnaissance information
processing system. This paper analyzes the application of image processing tech-
nology in UAV intelligence information processing through demand analysis of
reconnaissance mission-oriented and the procedure of reconnaissance mission. We
finally complete the design and implementation of UAV reconnaissance information
processing system.

Keywords Emerging weapon - Unmanned aerial vehicle - Image processing -
Intelligence support - Reconnaissance information mining system

1 Introduction

Modernized war deeply depends on the battlefield intelligence information. Ground
reconnaissance equipment would be influenced by the obstacle and earth curvature.
Satellite reconnaissance equipment couldn’t detect in real time and the details
are not clear. Thus, these two reconnaissance methods have their own limits.
Reconnaissance UAV is an important complementary to the other two detective
means [1]. With different payloads carried, reconnaissance UAV could detect the
details of battlefield situation in real time [2]. In the prewar period, reconnaissance
of UAV could construct the battlefield situation, such as the map of battlefield,
helping the commander make correct decision about the forces deployment. In
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Fig. 1 UAV participated in the war

the wartime, reconnaissance of UAV could detect the change of battlefield, detect
and recognize target, helping the commander revise war policy in time [3]. In the
postwar period, the damage assessment is an important evidence of summary [4].
The major form of reconnaissance is to capture images and videos from the battle
field. The image acquired by the payload is an intuitive intelligence source. Thus,
image processing technology directly influenced the intelligence result.

Figure 1 shows the process of UAV participation in the war. The UAV is
reconnoitering the battlefield situation, sending the reconnaissance results to the
receiving station and command and control vehicles by data chain in real time. The
intelligence processing system is installed on the vehicle to generate the intelligence
information and report the information to command post to help the commander
make decisions about how to deploy forces by battlefield network.

This paper is organized as follows. Section one educes the importance of
image processing in intelligence mining system with the way UAV is providing
the intelligence support in war. Section two analyzes the requirement analysis of
image processing technology. Section three describes the implementation of the
used image processing technology. Section four concludes this paper.

2 Requirements Analysis

The UAV reconnaissance information processing system integrates the intelligence
information obtained by various means during the reconnaissance task. The function
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of this system contains intelligence generation, sharing and distribution, and intel-
ligence support throughout the process of mission execution. It is the information
analysis and processing center of UAV reconnaissance mission system.

The requirements of UAV reconnaissance intelligence include two aspects.
One is obtaining the high-precision reconnaissance panorama image. The other
is detection, recognition, and location of enemy target. To obtain high-precision
and large-scale images in the reconnaissance area to help construct the battlefield
situation in real time, image mosaic method is applied. After image mosaic,
combined with the map of the battlefield such as “Google Global Satellite Map,” we
can get the location of target in the panoramic image. The location and property of
targets are reported to the command post to decide whether to attack. Then artillery
correction technology is used to amend the fire attack system if the fire did not
hit the target. Also, if the target is hit by artillery, the damage assessment could
help commander to summary the war to determine whether the target is damaged.
Meanwhile, in most cases, the battlefield environment is complex. Single mode
cameras may not be able to detect targets. SAR (synthetic aperture radar) or infrared
camera may be also used to detect target.

3 Key Technology

In this section, we discuss the image processing technology in the intelligence
mining system, containing (1) image mosaic and geometric correction, (2) image
fusion, (3) target detection and recognition, (4) target location, and (5) artillery
correction and damage assessment.

Image Mosaic and Electronic Map Fusion

After the mission is distributed to UAYV, it flies to the mission area to execute
reconnaissance mission. Because of the miniaturization of UAV and the limitations
of the reconnaissance equipment, the scene structure information in a single frame
image is very limited, which is not sufficient to obtain wide-area reconnaissance
information. Thus we need to stitch the continuous multi-frame images to form a
panoramic image. The panoramic image could also fusion with the electronic map
to form the battlefield situation through coordinate transformation so that we could
locate any point in the image in the world coordinate system [5]. The whole process
of the algorithm is shown in Fig. 2.

The algorithm divides into two parts, image mosaic and geometric rectifica-
tion.

1. Image Mosaic: Firstly, we screened the image data. Due to the sensor equipment
trouble or the influence of data chain interference, the image data acquired by
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Fig. 2 Flowchart of building battlefield situation

UAV may contain some outlier data. The payload on UAV captures images
about 25 frames per second, resulted in the large overlap region in the adjacent
images, which means massive repeated information is contained in the image
data. Considering the effectiveness of image data and the overlap region between
images, several images are selected to stitch the panoramic image, such as six
or seven images per second. Image mosaic is to transform all the images into a
uniform coordinate. The first step is to register the image. Keypoint based method
is fast and robust way to register images, containing keypoint extraction such as
SIFT, SURF, ORB, and so on [6-8], construction of descriptor, and keypoint
match. According to the matched keypoint, the transformation between images
is calculated. Let the first image to be the benchmark and all the images could be
transformed to the same coordinate.

2. When the panoramic image is acquired, according to the flight parameters of
UAV, we could calculate the coordinate of the corner points on images in WGS84
(world geodetic system 1984), which is explained in the subsection target
location. These corner points are used to be the pseudo GCP (ground control
point) set to simulate the geometric distortion of images. The transformation
model is based on the quadratic polynomial model, and the mathematical
transformation relation is as follows.

{x=a0+(a1X+a2Y)+(a3X2+a4XY+a5Y2) )
y =bo+ (01X 4+ byY) + (b3X* 4+ b4 XY + bsY?)

(x,y) and (X, Y) are the coordinates of arbitrary pixels in original and corrected
images. (a;, b;), (i=0, 1, ..., 5) are the coefficients of this model, which could be
obtained by the least square method.

Figure 3 shows the fusion result of panoramic image and electronic map [9].

Visual and Infrared Image Fusion

The reconnaissance UAV carried a photoelectric payload including a visual camera
and an infrared camera. The fusion between visual and infrared image could extract
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Fig. 3 Fusion result of panoramic image and electronic map

the most useful information of the two images, integrating them into a high-quality
image. This effort could improve the utilization rate of image information.

Firstly, as the field of visual camera and infrared camera are not the same. We
need to extract the overlap region of visual and infrared image to fuse. While the
visual camera and infrared camera are in one pod, these two cameras would be
focused on the same place, so that the center of visual image and infrared image are
the same. According to the camera parameters, focal length and pixel size, we could
easily extract the overlap region between visual camera and infrared camera.

Now, there are two of the most commonly used ways to integrate visual and
infrared image: pixel level image fusion and feature level image fusion. Pixel level
image fusion are fused on the original data level, contains more abundant details,
while feature level image fusion extract features in the two images such as shapes,
edge, contour, regions, etc. Thus feature level image fusion not only keeps effective
information, but also compresses information.

In our system, the pixel level image fusion is utilizing the weighted mean of the
luminance component of visual image and infrared image.

As is known to us, the background of infrared image is smooth and the difference
between feature and background is in brightness. Thus, the most important thing is
to extract the features of infrared image. We firstly utilize quad-tree decomposition
to divide the infrared image and select the points in each image patch uniformly to be
the control point of Bessel interpolation to reconstruct the background of infrared
image. This method would result in the blocking artifact because of the different
control points used in the stitched surface. Thus, the reconstructed background
should be smoothed by a Gaussian filter to eliminate the blocking artifact. With the
background of infrared image, we could easily obtain the features of the infrared
image.

Figure 4 shows the fusion result of visual and infrared image with pixel level
fusion and feature level fusion.
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© (d)

Fig. 4 Pixel level image fusion result and feature level image fusion result. (a) is visual image; (b)
is infrared image; (c) is pixel level image fusion result; and (d) is feature level image fusion result

Target Detection and Recognition

Object detection system can detect and recognize targets on visible images, SAR
images, and infrared images. The whole process is shown in Fig. 5.

In the object detection on visual images, deep learning has become one of the
most popular methods in recent years [8]. It is a brain-like architecture that can be
trained with massive data to extract features and learn the key features in sight of
these data automatically. Deep learning network has deeper network than normal
machine learning model and so that it can handle with more complicated features
and realize object detection with high accuracy (Fig. 6).

In the object detection on SAR and infrared images, which have only one
channel, denoising, thresholding, and dilating are used to make objects much
prominent from the background. Then use the convolution filter to sample the
objects and filter the boxes with non-maximum suppression to get the accurate
location of objects (Fig. 7).
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Target Location

After the target is detected and recognized, the location of target is an important
property used to guide the fire attack system to attack the target. The coordinate
system we utilized is WGS 84 (World Geodetic System 1984). The relevant method
is target location. It is based on photogrammetry and image processing technology,
and it aims to calculate the latitude and longitude of target with the flight parameters
of UAV in our system.

There are mainly three methods to locate the target.

The first one is based on the telemetry data of UAV. It could locate the target in
real time while the location accuracy is not enough. The real time location of UAV
is measured in time by the GPS (global position system) mounted in the UAV. With
the altitude of UAV and elevation data in DEM format, the distance between UAV
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Fig. 6 Detection results on visual images

Fig. 7 Detection results on
SAR images

and ground is calculated. Also, the position, posture, azimuth, and pitch angle are
measured by the sensor mounted on the UAV in real time.
According to the principles of imaging, the point location formula is as follows:

{XA — Xs = (Za—Zs) (a1 X x+az x y—azx f) [/ (c1 X x+c2 X y—c3 X f)
Ya—Ys = (ZA—Zs) (b1 xx+byxy—b3 x f) [ (c1 xx +c2 Xy —c3 X f)
2
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(XA, YA,ZA)  is the coordinate of object point A i ground photogrammetric coordinate system, and
(Xs,Ys,Zs) is the coordinate of photography center. (x, y, _f ) is the coordinate of image point @
in image space coordinate system S _ XYZ f is the focal length.d41, d2, 43, by, by, b3, c1, c2,

C3 are the elements of rotation matrix K. The rotation matrix R could be calculated as follows

ay az az
R=\|by by b3
c1 ¢ 3)
cosk sink O cosw 0 —sinw 1 0 0
=| —sink cosk O 0 1 0 0 cosgp —sing
0 0 1 sinw 0 cosw 0 sing cosg

@, @, k are the pitch, roll, and yaw of payloadin ¢ — @ — k rotation system.

The second method is based on the space intersection. It is the extension of
the first method. Laser range finder is used in this method. It is used to measure
the distance between target and UAV relatively accurately. With the location result
when the UAV is locating the same target at different place, we can construct the
intersection model. Least-square method could be used to reduce the location errors.
Since the laser range finder is a more stable and accurate device, the measured result
could be used as a benchmark value.

The formula is as follows:

(x,y,2) =min Y _ (f Cn, Y, 20) — L)’ )

(x,y,z) is the location result. f(x,,yn,2,) is the distance between UAV and target
calculate by the first method in time n. L, is the measure esult of laser range finder
in time n. Compared with the first method, the method with space intersection model
is a more accurate way to locate the target.

The third method is based on the map match. It is also the extension of the first
method and is similar to geometric rectification. From the first method, we can
calculate the latitude and longitude of the visual image’s four vertex to superpose the
visual image over “Google Global Satellite Map” with some errors. Then, register
the visual image and map image automatically or manually. Figure 8 shows the
result of map matching between visual image and the relative image in “Google
Global Satellite Map.” The first image is the visual image captured by the payload.
The figure shows the visual image superimposed over the “Google Global Satellite
Map.”

Artillery Correction and Damage Assessment

After the target property and location are sent to the command post, fire attacking
system decides to attack the detected target. UAV would hover over the target to
monitor it to know the strike situation by comparing the images before and after
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attack. The process is shown in Fig. 9. Artillery correction is to calculate the distance
and angle between the location of target and the impact point. By sending the
distance and angle of impact point relative to the target to the fire attacking system,
they can amend system to attack again until the target is hit. After the target is hit,
the damage image is captured. By comparing the images before and after attacking,
according to the attributes of the target, type and killing radius of the warhead, and
other features, the damage situation is assessed to decide whether to attack again.
The result can be seen in Fig. 10.

4 Conclusion

UAV intelligence information processing method is a branch of UAV combat
application research. Many mature technologies in image processing will be applied
in the information processing of UAV, such as moving target tracking, removing
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(a) (b)

Fig. 10 Comparison before and after attack. (a) Before attack. (b) After attack

fog or rain effect from images, and so on. With the improvement of the technical
level of the UAV and the diversification of the reconnaissance payload, the ability
of intelligence mining system also needs to improve. Therefore, image processing
method will also face many new challenges.
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An Object Detection Algorithm for UAV )
Reconnaissance Image Based on Deep i
Convolution Network

Xinping Guo, Xiangbin Li, Qiufeng Pan, Peng Yue, and Jiaxing Wang

Abstract In recent years, the UAV technology has developed rapidly and played
an important role in many fields, especially in intelligence, reconnaissance, and
monitoring. Object detection can provide accurate target location and target cat-
egory for reconnaissance missions, providing detailed command information for
commanders. However, the current object detection algorithm based on deep
convolution network does not work well on detection for small objects and so
cannot be applied to small objects in the reconnaissance image of UAV. In this
paper, an object detection algorithm for UAV reconnaissance image based on deep
convolution network is proposed. The image is adaptively divided according to the
UAV flight parameters and the payload parameters before sent into the network.
Through this way, small objects can be located and classified in a high accuracy of
location and classification. This method can detect objects with small size, multiple
quantities, and multiple categories on UAV.

Keywords Deep learning - Convolution network - Object detection - Adaptive
division - UAV

1 Introduction

Target detection is one of the three major tasks in the field of computer vision. It can
locate and classify multiple objects in the image and has been widely used in many
scenes. The process of object detection algorithm includes three steps: proposed
region selection, feature extraction, and classification. By the way of extracting
features with or without human designed features, object detection can be divided
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into detection based on artificially designed features and detection based on deep
learning automatic extracting features. The algorithm based on artificially designed
features obtains proposed region by using a detection window to entirely search on
different scales of the image, uses artificially designed features to extract features
such as Haar [1], LBP [2], or HOG [3], and finally classifies into shallow classifier
SVM [4] and decision tree [5]. These methods have achieved good results in the field
of object detection based on artificially designed features but they do relatively poor
on classification accuracy and speed. In recent years, with the rapid development of
neural networks and big data technologies, more and more deep learning algorithms
have been applied in the field of object detection and have made big breakthroughs.
R Girshick et al. proposed a method by using Selective Search [6] to select proposed
regions and RCNN (Regions with CNN features) [7] and Fast RCNN (Fast Regions
with CNN features) [8] convolution network to extract features. The classification
accuracy has been greatly improved. S Ren et al. proposed Faster RCNN (Faster
Regions with CNN features) [9] and the detection speed is greatly improved without
loss of classification accuracy, so that the computer detection capacity gradually
approaches the human level. However, the deep learning method mentioned above
has a relatively poor result on small objects, and when the UAV performs the
reconnaissance task at a relative altitude of 2 km from ground, the objects captured
by the payload on UAV are usually small, which limits the method to be used on
UAV.

This paper proposes an object detection based on Faster RCNN network for UAV
reconnaissance images. By establishing a flight image dataset, the Faster RCNN
algorithm is trained and the algorithm can adaptively divide the image according to
the payload parameters and the minimum detectable pixel size calculated which
is decided by the algorithm and training set. As a result, a small object with
approximately 1% of the whole image size can be detected, thereby achieving object
detection with small sizes, multiple categories, and multiple numbers.

2 Faster RCNN Algorithm

Faster RCNN algorithm is one of the most popular deep learning networks used for
object detection, and its classification accuracy and speed have reached the forefront
of current detection algorithms. The algorithm is improved on the basis of RCNN
and fast RCNN. The proposal regions’ selection, feature extraction, classification,
and location refinement are unified into a deep network framework as shown in
Fig. 1, which improves the comprehensive performance.

Faster RCNN algorithm has better performance on precision and recall compared
to other detection algorithms based on deep learning, just as shown in Table 1. It can
be concluded from the table that Faster RCNN is suitable for reconnaissance image
on UAV because of its better precision and recall on small targets.
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Fig. 1 The structures of three object detection frameworks

Table 1 Performance of four detection algorithms on COCO dataset [10]

Algorithm AP (average precision) AR (average recall)

AP®S | APY IS ML 1 10 100 |S M |L
Faster RCNN | 453 | 23.5 7.7 264 |37.1 |23.8 34.0 [346 (12.0 38.5 |54.4
Fast RCNN 399 194 41 1200 [358 |21.3 295 [30.1 | 7.3 [32.1 |52.0
SSD300 412|234 53 1232 |39.6 225 332 |353 | 9.6 |37.6 |56.5
YOLOV2 440 |19.2 5.0 224 |355 |20.7 316 [333 | 9.8 [36.5 |54.4

Faster RCNN Network Architecture

Faster RCNN network has three parts: convolution and pooling network, region
proposal network, and classification network as shown in Fig. 2.

The convolution and pooling network consists of a few of convolution layers
and pooling layers, which is responsible for the feature extraction of the UAV flight
image. The convolution layers have two dimensions: depth and width. Convolution
kernels in width are responsible for detecting different features and kernels in
depth are responsible for combining simple features from lower layers to complex
features. After the convolution and pooling network, the UAV image is converted
into a feature map, representing the key features of the objects.

The RPN consists of a convolution layers and a softmax layer. The network can
generate the probabilities pop; of the foreground and background of each anchor in
each feature. The anchors are generated with different sizes and scales for each
feature in the feature map. Meanwhile, the network can generate the deviation
(plx, ply, ply, ply) of center position and sizes between this anchor and its true label
window. Then the anchors are selected with the top-N probabilities as proposed
regions to be sent into the subsequent network for training.

The classification network is composed of a fully connected layer and a softmax
layer. The network uses the proposed regions generated by RPN, the feature map
generated by convolution and pooling network, and the ground-truth labels as input
to calculate the probability ps; if this region contains an object, then its position
deviation is (I, ly, Ly, Ip).
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Loss Function

The loss function can provide the target for training the network. The loss function
of the Faster RCNN algorithm consists of two parts: the loss of RPN and the loss of
classification.

RPN Loss Function

In order to train the RPN network, each anchors needs to be assigned a label
{contains object, non-object} and the following conditions are used to define the
positive label (contains object).

The biggest overlap with ground-
o truth window
Positive label
Overlaps with ground-truth window
which are bigger than 70% of total size

Therefore, the RPN loss function can be defined as Eq. (1),
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Lgpn =

st Pl Zpl Lreg tla i (D)

in which p; represents the probability of the anchor containing an object, p;
represents the true label of each anchor, #; represents the four parameterized
coordinates of the predicted box, and t/ is the coordinates of the ground-truth
window with a positive label. L (pi, pl*) is the foreground and background
classification loss of each anchor, which is shown as Eq. (2)

L (pi- pf) = —pjlog (pi) — (1 — pi)log (1 — pi) 2)

Lieg (t,, ; ) is the regression loss which can be calculated by Eq. (3)

0.5(t; —tf ) if |-t <1

L iP5t
reg (’t’ li ) |t, _ t*| — 0.5, otherwise

3

Ncis, A, and Nyeg are the hyper-parameters to adjust the weights between these two
losses.

Classification Loss Function

The formulation of the classification loss function Lcr s is similar to Eq. (1), except

that the foreground and background classification loss Ljs (p,-, pl*) is changed to
multi-class classification loss shown as Eq. (4),

Lcls Pu Pl Z P, log (pi) €]

where C is the number of all categories.
Therefore, the total loss function of the Faster RCNN algorithm is

Liotal (pi» Pf) = Lren (pis p}) + Levs (pis p}) 5)

3 Adaptive Image Division Algorithm

According to the payload azimuth, flight height, field size, and pixel size, adaptive
image division algorithm automatically divides the image into several blocks and
resizes the blocks to the original size of image to satisfy the minimum detectable
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pixel size. Through this way, small objects can be detected in the image. The specific
process is as follows:

1. Determine the minimum detectable pixel size (MDPZ) to be detected of each
category, and take car class as an example, MDPZ of the car is a x b.

2. According to the actual detection size of object and the posture of the UAV and
payload, calculate the pixel size a; x b that the object occupies in the image.

3. If a; < aor by < b, divide the image into N > c/(c; x scale) blocks, and

i 4 > b
c= a, if ap = b
b, else

scale is the resize scale in the preprocessing progress.
4. Resize each of the blocks to the original size and send to the network.
5. Finally, integrate the detection results of each block.

4 Experiments and Results

Throughout the experiment includes five parts: establishing the training set, labeling
the objects, training, validating, and testing. The flow chart is shown in Fig. 3.

dataset
Input Image S Y G N O T Y N O

8 i R Y w
A 53 Y O O O 1
V2 B ) N A 8 Y

-

Labeling

Adaptive Image
Division

Fig. 3 Flow chart of the Faster RCNN network in the reconnaissance images of UAV



An Object Detection Algorithm for UAV Reconnaissance Image Based on Deep. . . 59

————— —— oy ——— —— —— ——— ——— ——— —— ——— ——

ey ey ee—— ——— P -

. T -

Fig. 4 Schematic diagram of part of the training set in the experiment
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Fig. 5 VGGI16 network structure in this experiment

Building Training Set and Labeling

The training set of this experiment contains about 4500 images recorded by visible
light camera in which includes totally 10,000 targets (aeroplanes, cars, and boats), as
shown in Fig. 4. The dataset is constructed by manually labeling, coordinate storage,
and xml conversion.

Network Training

In this experiment, the convolution and pooling network uses the VGG16 network
and it has five sets of convolution layers and pooling layers. The network architec-
ture diagram of VGG16 is shown in Fig. 5.

The training set is sent into the network for training, using the stochastic gradient
descent as optimizing method. One image was sent into the network on each
iteration. After 10,000 iterations training on the training set, the loss after training
was less than 0.3 and the accuracy was about 85% on training set. The changes in
training loss with training iterations are shown in Fig. 6.
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total_Joss

Fig. 6 Training loss decreases with the training iterations

Network Validation

The cross-validation method has strong stability and fidelity and can be applied for
different sizes of training sets. Therefore, k folds cross-validation method is used in
this experiment to validate the performance of the model. This method divides the
dataset D into k mutually subsets with the same size D = D1 U D, U ... U Dy, and
each subset is sampled from D in layers. Take every k — 1 subsets as the training set
and the reminder subset as the validation set, then repeat this process k times and
get the average validation result of these k results. The entire process is shown in
Fig. 7. The trained model was validated on the validation set of UAV reconnaissance
images using cross-validation method and the mean loss was around 0.3, as shown
in Fig. 8.

Results on Reconnaissance Images

The trained model was tested on the test set which contains aeroplane, boat, and
car. The AP (Average Precision) for each type and mAP (mean Average Precision)
is shown in Table 2. The mAP can achieve around 0.79 and is slightly improved by
AID. The recall has a greatly improved by using AID.

The trained model is tested to measure the minimum detectable pixel size and
the results are shown in Table 3. The results can be the condition of the adaptive
division.

The trained model is used on the UAV scout images as shown in Fig. 9, and it
can be seen that the algorithm can handle with small size, multiple categories, and
multiple numbers.
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Tabll:. 2 tA\’fe(ria}fng pretctision Type Aeroplane |Boat |Car |mAP | Recall
onobjects of crfferent types Without AID | 0.94 0.73 070 | 079 | 031
With AID 0.95 0.77 10.76 10.83 |0.74
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Table 3 Minimum detectable pixel size for different categories

Type Aeroplane | Boat Car
Minimum pixel size that can be detected (width x height) |28 x 30 18 x 24 |20 x 25

5 Conclusion

This paper analyzes the characteristics of the objects in UAV reconnaissance images
and introduces a deep convolution network algorithm suitable for objects with small
sizes, multiple categories, and multiple quantities. By building the dataset, training
the network on the dataset and dividing the image according to the minimum
detectable pixel size, the algorithm for UAV reconnaissance images is implemented
and can get a good result on validation set. The algorithm can achieve better results
by expanding the numbers and the categories of the objects in training set.
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Fig. 9 The results of the
algorithm in UAV scout
images. (a) Object’s size is
1% of the image size. (b)
Number of objects in one
image is larger than 30. (c)
Images contain many objects
with multiple categories

(h)
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Visualization of Horizontal Settling m)
Slurry Flow Using Electrical Resistance e
Tomography

Kun Li, Mi Wang, and Yan Han

Abstract Settling slurry flow is very common and important in many industries,
especially in transportation, which need to be monitored in practical operation.
An investigation on visualization of horizontal settling slurry flow in pipeline
using electrical resistance tomography was made in this paper. The internal images
of fluid structure were displayed to operators with measurement of the solids
concentration distribution and solids velocity distribution in pipe cross section.
Experimental investigation with 5% solids loading concentration at various transport
velocities was conducted. Meanwhile, the results of photography and other flow
measurement methods were compared with the results obtained from electrical
resistance tomography.

Keywords Flow visualization - Horizontal settling slurry flow - Electrical
resistance tomography - Local solid concentration - Local solid velocity

1 Introduction

The transportation of settling slurry flow is required in a diverse range of industries,
such as mining, nuclear, energy, pharmaceutical, chemical, and food industries [1—
4]; especially in some specific applications, hydraulic transport through pipelines is
the only method to transport solid particles. As the slurry is an essential mixture
of solid and liquid, its characteristics rely on many factors, such as size and
orientation of pipes, size and concentration of solids, velocity and viscosity of
the liquid carrier. Slurry transportation is a highly complex process [2], which
should be under measuring and monitoring in the transport process, and appropriate
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slurry flow parameters can efficiently avoid pipe blockage, equipment failures,
and environmental damage. With well understanding the internal structure of the
slurry flow, the optimal design, accurate analysis, and safe operation of slurry
transportation systems can be more easily achieved.

Due to the complex nature of slurry flow and the effect of gravity, it is very
difficult for measuring and visualizing settling slurry flow. In the past, venturimeter
[5] based on differential pressure technique was widely used for measuring fluid
flow rate. Conductivity probes [6] were installed inside pipes to measure the solids
volumetric concentration, which disturbs the internal structure of slurry flow (i.e.,
intrusive method), and the abrasive nature of slurry makes the probe sensor to hardly
survive. With significant efforts of worldwide researchers, several non-intrusive
methods [7-10] appeared, such as, optical (laser), nuclear (X-ray or gamma ray),
ultrasound, and conductance transducers. Among the above methods, electrical
resistance tomography (ERT) offered a good solution for measuring and visualizing
settling slurry flow, since the optical method cannot measure muddy fluid, and
nuclear method is expensive and radioactive.

Phase volume fraction and phase velocity are two important parameters to
describe the internal structure of slurry flow, and flow characteristics also can be
extracted from them, for example, flow regimes [3]. With ERT online measurement,
the real-time solids concentration and velocity distribution are offered, which
allows process owners to “see” inside the pipe and determine flow conditions.
The information can be used for understanding and managing slurry flow, and
they also provide an experimental basis for CFD and other models in complex
flows. Therefore, this paper focuses on the visualization of horizontal settling slurry
flow, where local solids volumetric concentration and local solids axial velocity are
measured with using an ERT system.

2 Horizontal Settling Slurry Flow Regimes

A flow regime describes the solids spatial distribution of settling slurry, which is
crucial for design, optimisation, and the control of slurry flow processes. In hori-
zontal settling slurry flow, with the influence of gravity and various flow velocities,
the separation of phases occurs and four main flow regimes (from high velocity to
low velocity) are developed, namely pseudo-homogeneous, heterogeneous, moving
bed, and stationary bed [2], as shown in Fig. 1.

Homogeneous flow regime usually occurs at high velocities, where solids are
fine particles and fully suspended in the liquid carrier, as shown in Fig. la. As the
solid particles are almost equally distributed and flow with same velocity from top to
bottom of pipe, it can be approximately regarded as single phase flow, which allows
the equivalent fluid model used for representing the type of flow. This flow regime
is the mostly used one in industrial applications. As the flow velocity decreases,
heterogeneous flow regime occurs, where the solids concentration gradient and axis
solid velocity gradient appears at the cross section of pipe. As shown in Fig. 1b, the
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Fig. 1 Schematic presentations of horizontal slurry flow regimes with solids concentration and
axis velocity profile. (a) Pseudo-homogeneous flow regime. (b) Heterogeneous flow regime. (c)
Moving bed flow regime. (d) Stationary bed flow regime

flow regime is referred to as an intermediate flow regime, or might be in the process
of forming a flowing bed, where some finer particles are suspended at top part of
pipe and coarser particles are suspended at bottom part of pipe. The flow regime is
usually applied in mining and dredging applications but a critical velocity is needed
to maintain the flow regime, i.e., minimum velocity of liquid carrier. Moving bed
flow regime starts to be formed when the flow velocity is below the critical velocity,
where larger particles accumulate at the bottom of pipe and form a flowing bed, and
the upper part of fluid is still heterogeneous mixture with less solids concentration,
as shown in Fig. 1c. The solids concentration at bottom is maximum and decreases
from bottom to top at cross section of pipe, while the solids velocity at upper part is
higher than that at bottom part. As the flow velocity reduces further, the liquid carrier
cannot move the solids on bed, which will be stationary and contact with the bottom
of pipe, as shown in Fig. 1d. With the accumulation of solid particles, the stationary
bed turns thicker, which might lead to blockage. Therefore, it is impossible for
maintaining stationary bed flow regime for very long time, and it should be avoided
in practice.

3 ERT System and Principle

The principle of ERT [11] is based on the concept of Ohm’s law: by injecting
a certain signal through electrodes pair into a conductive sensing region, and
the injected signal will result in boundary voltages on the remaining electrodes.
The boundary voltages contain the information of conductivity distribution which
represents the phase distribution within the sensing region. Therefore, the boundary
voltages data were collected and used to image the internal structure of multi-phase
flow with using an image reconstruction algorithm [12].

A typical ERT system [11] is made of ERT sensor, data acquisition system, and
image reconstruction system, as shown in Fig. 2. Each plane of ERT sensor is a
set of equally spaced electrodes mounted around the pipe wall, which is in contact
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Fig. 2 Structure of ERT measurement system

with inside fluid, and does not cause any interference with the inside flow. The data
acquisition system consists of signal sources, multiplexer arrays, voltmeters, signal
demodulators, which is critical for ERT system since it determines sensing strategy,
data accuracy, and highest data collection speed. Normally, an adjacent strategy [13]
is used in most ERT systems, where a set of measured data contains 104 independent
differential voltages for each 16-eletrode sensor. With using a preloaded image
reconstruction algorithm, each set of measured data were transferred to each frame
of internal conductivity distribution, which represents the phase distribution in the
pipe cross section. The finite element mesh of pipe cross section is shown in Fig. 3.
Based on simplified Maxwell’s relationship for slurry flow [14] (liquid carrier is
water, and solids are silica sand in this paper), the obtained conductivity distribution
can be used to derive the solids concentration distribution, as following Eq. (1).

20w — 20m

=Y - (1)

ow + 20m

where « is the solids concentration in each pixel, o is the conductivity of
continuous water phase, and o, is measured mixture conductivity of each pixel.
According to the internal conductivity distribution of dual plane, the pixel to
pixel cross-correlation technique [15] is used to measure the time difference of solid
particles flowing through two sensor planes, as shown in Fig. 4. With a predefined
distance between them, the solids axial velocity can be calculated with using Eq. (2).

_L 2)
V= (

As the horizontal settling slurry flow without stirring can be assumed as vertically
axial-symmetric, the solids concentration and velocity profile (Profile represents
the distribution at vertical positions of pipe cross section) can be extracted using
the average values of each row, i.e., Egs. (3) and (4). And the local mean solids
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concentration and mean solids velocity can be calculated with the average value of
316 pixels, i.e., Egs. (5) and (6).

1 &
== a; 3)
ni “—
j=1
1 &
v = — Vi, j (4)
ni
j=1
_ 1
o = ; oz,',j (5)
1
V= — Vi j (6)
n

where «; and v; are the average solids concentration and velocity of i-th row (i = 1,
2, ..., 20), respectively. & and v are the local solids mean concentration and velocity,
respectively. «; j and v; ; are the local solids concentration and velocity in the pixel
of i-th row and j-th column, respectively.

4 Experiment Setup

Experimental investigation of settling slurry flow was conducted on a slurry flow
loop facility in University of Leeds, as shown in Fig. 5. It consists of a high-
performance dual-plane ERT system (FICA, built by OLIL) [16] for measuring local
solids concentration and velocity, an EMF (OPTIFLUX 4300, from KROHNE) for
obtaining fluid velocity, and a CMF (OPTIMASS 700 T50, from KROHNE) for
obtaining slurry mass flow rate. The slurry flow run in experiment with 5% loading
solids volumetric concentration at different transport velocity (from 1.5 to 4.0 m/s),
where solid phase is silica sand (particle size is between 75 and 700 in diameter) and
liquid carrier is tap water. Meanwhile, a section of transparent pipe was installed on
slurry flow loop for taking photography of slurry flow at each transport velocity.

In order to evaluate the measurement and visualization of slurry flow using ERT,
the photography results, EMF and CMF results were compared with ERT results.
The solids concentration from CMF and EMF measurement can be calculated with

Eq. (7).

0
v-A

a-pst+(l—a) py= (7N
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Fig. 5 Experimental facility (slurry flow loop) in Leeds University

where pg and py, are the density of sand and water, respectively. « is the solids
concentration. Q and v are slurry mass flow rate and velocity, respectively. A is the
area of pipe cross section.

5 Results and Discussions

Figure 6 shows the local solids concentration and solids velocity profile with
different transport velocities. It can be noticed that the solids distribution and flow
conditions depend on the transport velocity. At higher transport velocity, the solid
particles are all suspended in slurry mixture, and almost uniformly distributed in the
pipe cross section, as demonstrated at 4.0 m/s in Fig. 7a, and the solids velocities
are almost equal in the pipe cross section. With the transport velocity decreasing, the
solid particles in upper part tend to the lower part, and the velocity of solids particles
in lower part slowdown, which tends to form a moving bed. Especially at 1.5 m/s,
the solid particles clearly accumulate and move in lower part, as demonstrated in
Fig. 7b, and the solids velocity in moving bed is lower than upper part.

Figure 8a shows that the local mean solids concentration obtained from ERT
and from EMF and CMF are almost same (the measurement error is less than 1%),
which implies that the ERT provides a reasonable method to visualize slurry flow.
Figure 8b shows that the mean solids velocity obtained from ERT basically keep
consistent with the transport velocity at high velocity (especially over 3.0 m/s).
However, as the increase of solids concentration in pipe bottom leads to a strong
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Fig. 7 Local solids concentration distribution of pipe cross section and photography of slurry flow.
(a) Slurry flow at 4.0 m/s transport velocity. (b) Slurry flow at 1.5 m/s transport velocity
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of CMF and EMF, (b) Comparison of solids velocity obtained from ERT and transport velocity
measured by EMF

particle—particle interaction at low velocity (below than 2.5 m/s), the movement of

solid particles is impeded, and the solids velocity is lower than transport velocity,
which is highlighted by ERT.
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6 Conclusions

A visualization method with using a high-performance ERT system on horizontal
slurry flow was investigated. It demonstrated ERT can determine the mean local
solids concentration and solids concentration profile at vertical positions of pipe
cross section, which shows the amount and the distribution of solid particles
in slurry. And with cross-correlation technique, the dual-plane ERT system can
determine the mean local solids velocity and solids velocity profile in pipe. The
ERT results were compared with actual photography and other flow measurement
methods, which verified the dual-plane ERT system can perform well for visualizing
slurry flow in pipeline. Meanwhile, the below conclusions were drawn:

e Compared with photography and other flow measurement methods, ERT offers a
better solution for monitoring slurry flow, as the solids concentration distribution
and velocity distribution were clearly shown in ERT results.

* At slow slurry transparent velocity, the solids velocity in lower part of pipe is
slower than that in upper part and the mean local solids velocity is smaller than
transparent velocity, which are highlighted in ERT results.
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CSAR Moving Target Detection )
with Logarithm Background Subtraction S
Based on Optimal Azimuth Aperture

Analysis

Wenjie Shen, Yun Lin, Fei Teng, Yanping Wang, and Wen Hong

Abstract This paper focuses on moving target detection in single-channel circular-
SAR (CSAR). The logarithm background subtraction algorithm described in this
paper utilizes the overlapped subaperture logarithm image sequence to detect
moving targets. It first models the background image with the input image sequence,
and then uses the input images to subtract the background image to cancel the
clutter. Finally, the moving target can be detected in a subtracted image sequence.
However the detection performance depends on the azimuth aperture width (or
otherwise the number of input images in one set of image sequence). Thus, the
detection performance is analyzed with two measurements: the signal-to-clutter
noise ratio (SCNR) improvement and the clutter cancellation ability. Based on
the analysis, the proper azimuth aperture width to achieve the best detection
performance could be obtained. The algorithm is validated by the GOTCHA-GMTI
dataset.

1 Introduction

Ground moving target detection is an important research area in SAR applica-
tion because of its all-weather capability. Current applications such as battlefield
surveillance and city traffic monitoring depend on multichannel techniques such as
displaced phase center array (DPCA) [1], space-time adaptive processing (STAP)
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[2], along-track interferometry (ATI) [3]. Compared with the multichannel system,
the single channel system is still an important part of the current system. Thus,
research into moving target detection for single-channel systems is essential.

However, the detection capability of single-channel SAR is limited, as pointed
out in Chapman et al. [4]. Recent research reveals that the circular geometry may
resolve such single-channel SAR detection problems, such as Poisson et al. and
Shen et al. [5, 6]. Our team proposed a moving target detection algorithm at the
2017 IGARSS [6]. A modified version is described in this paper. Compared with
Shen et al. [6], the algorithm integrates the log-ratio operator to achieve a better
clutter cancellation ability. The radiometric adjustment and constant false alarm
rate (CFAR) detector are also added to achieve better performance. However, the
optimal detection performance depends on the azimuth aperture width, which is
used to generate the subaperture image sequence. Previously, the preset azimuth
aperture width was mainly acquired by testing. Therefore, in this paper, we present
an analysis on acquiring the parameter for achieving optimal detection performance.

The rest of the paper is organized as follows. Section 2 introduces the processing
chain of the logarithm background subtraction algorithm. Section 3 consists of the
method, whereas Section 4 presents the algorithm performance analysis, which
is composed of data and experiment parameters, the signal-to-clutter noise ratio
(SCNR) and clutter cancellation analysis, and the optimal detection result.

2 Processing Chain

The subaperture image can be decomposed into a background image (containing
clutter) and a foreground image (contain a moving target). The position of the
moving target’ varies in a subaperture image sequence. The algorithm modeled
the background image first, rather than simply making the difference between the
subaperture images. The first advantage of this step is that it can avoid the target
signature being canceled because of the use of the adjacent images performing
subtraction. Another advantage is that the target SCNR could be improved by
subtraction processing, which is good for moving target detection.

The processing chain is shown in Fig. 1. The algorithm consists of the following
parts:

(1) Segment the full aperture into small arcs of equal length.

(2) For each arc, using the same image grid to generate an overlap subaperture
logarithm image (OSLI) sequence.

(3) Performing the radiometric adjustment process on each OSLI sequence to
remove the antenna pattern.

(4) Apply a median filter along the azimuth time dimension to the OSLI sequence
to obtain the corresponding background image.

(5) Generating foreground images by using original OSLI subtracts the back-
ground image.

(6) The target is detected on the foreground images by a CFAR detector.
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Fig. 1 Processing chain of the logarithm background subtraction algorithm

The moving target detection performance depends on the quality of the modeled
background images. The quality of the modeled background images is controlled
by the width of the input azimuth aperture (the arc mentioned above, otherwise the
number of input images). Thus, in this paper, we mainly discuss the influence of the
first step (labeled with a rectangle in Fig. 1) on detection performance.

3 Method

Detecting a moving target requires the SCNR to be high enough; thus, several
techniques decrease the clutter energy first such as multichannel techniques.
Logarithm background subtraction utilizes such an idea, but the difference is that
the background is provided by using the overlapped subaperture image sequence.
Thus, the background cancellation result influences the final detection performance.
If the width of the input azimuth aperture is too narrow, there may be residual target
signature in the background image. If the width of the input azimuth aperture is too
wide, the background may mismatch with the clutter in the original image because
of its anisotropic behavior. This causes a false alarm. Thus, it is natural to think that
there is an optimal width of the input azimuth aperture value so that the target energy
is well preserved whereas the clutter is mostly canceled. Two measurements, SCNR
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improvement and clutter cancellation quality, are used to find that value. The SCNR
improvement factor is used to ensure that the target energy can be much preserved.
Clutter cancellation quality is to avoid the defect caused by the anisotropic behavior
of the clutter.

We find the proper width of the input azimuth aperture by carrying out the
following step. First, we use the clutter cancellation quality data along the width of
the input azimuth aperture to find the stable interval during which the clutter value
does not vary too much. Then, we find maximum SCNR improvement within the
interval. The corresponding angle is the optimal width of the input azimuth aperture.

Therefore, the proper width of the input azimuth aperture should meet the fol-
lowing condition: SCNR improvement reaches its maximum value during interval
when the clutter is canceled most.

Improvement of SCNR is shown by the following:

0
e ( § _10.10g,b¢t0

Gsenr (0) =10 - log
He (0 JZel]

ey

Gscnr(0) is SCNR improvement. 6 is the width of the input azimuth aperture.
uo and peo are the maximum intensity of the target signature and the reference
clutter in the original test frame. 1;0(6) and 1 .o(0) are the intensity values extracted
from the same position as s and .o after subtracting the background generated
with different 6. The clutter cancellation ability is evaluated by drawing the curve
that w.0(6) changes along 6.

4 Algorithm Performance Analysis

In this section, we use a selected scene as an example to present the analysis on
how to obtain the experiment parameters to achieve the optimal target detection
performance with the logarithm background subtraction algorithm. For other CSAR
data, the experiment parameter could be acquired by performing the same analysis.

Data and Experiment Parameters

To evaluate the performance, a test frame is selected as shown in Fig. 2. The
SAR image is generated with channel one data in GOTCHA GMTI dataset [7].
The aperture width is 0.79°, the center time is 11.2 s. The image grid spacing is
0.2 m x 0.2 m. The target car Durango is delocalized owing to its motion, as
labeled with a red rectangle. The reference clutter for SCNR improvement and
clutter cancellation ability analysis is labeled with a blue circle.

To study the influence of input azimuth arc size on detection, the 20° azimuth
aperture (the test frame is at 0°) is used to generate the overlapped subaperture
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Fig. 2 Selected test frame.
The target car Durango is
delocalized owing to its
motion as labeled with a red
rectangle. Reference clutter
for signal-to-clutter noise
ratio (SCNR) improvement
and clutter cancellation
ability analysis is labeled
with a blue circle

image sequence. Each subaperture image is generated using the same parameters
as the test frame. The gap of the azimuth angle between adjacent images is 0.2°).
Therefore, we have 100 images for evaluation. To calculate the SCNR, a strong
stationary target, which exists within all 20° azimuth apertures, is selected as the
reference. The clutter cancellation ability is also evaluated with the strong stationary
target. After acquiring the parameter for optimal detection, the example detection
result is shown on the test frame.

SCNR Improvement and Clutter Cancellation Analysis

According to the above measurements, we can find the proper 6, which fulfills the
above condition as the experiment parameter for optimal detection.

The SCNR improvement curve is shown in Fig. 3.

In Fig. 3, the Durango’s SCNR improvement factor increases fast along the 6 at
[0°, 6°] (the corresponding input images are from O to 30) and reaches the peak at
6°. This is because the quality of the background image is improved and the target
signature is gradually filtered, as shown in Fig. 4.

In Fig. 4b, the target signature becomes weak but is still visible. In Fig. 4c, the
target signature is almost filtered; thus, the improvement is quite high, at around
9dB. In Fig. 4d, the target signature is fully filtered and has a good improvement
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value at 10.52dB. When 6 > 6°, the improvement factor decreases and remains
stable at around 9-10dB. This is because, although the target signature is fully
filtered when 6 > 6°, the clutter value varies because of its anisotropic scattering
behavior. Thus, the causes of the clutter in the test frame cannot be canceled by
subtraction processing with model background images.

Take the reference clutter as the example shown in Fig. 5. As mentioned above,
the reference clutter could be seen during all 20°. Therefore, we collect the residual
clutter value from the same position as in the test frame after subtraction processing
to evaluate the clutter cancellation ability. In Fig. 5, the residual clutter values are
close to 0 dB during [0°, 12°]. This means that its scattering field is stable; therefore,
the value is almost equal in the test frame and modeled background image. When
6 > 12°, the value is changed because of the anisotropic scattering behavior, thus
causing the residual clutter value to gradually increase.

As mentioned previously, the experiment parameter for optimal target detection
should fulfill two conditions. Thus, according to the above analysis, the proper width
of the input azimuth aperture is & = 6° (30 images). In the next section, we present
the optimal detection result.

Optimal Moving Target Detection Result

The background image is obtained using 30 overlapped subaperture images. The
corresponding background image is shown in Fig. 6.

Compared with test frame shown in Fig. 2, the moving target signatures have
been filtered and the clutter structures such as the road edge and building are all
preserved. Then, performing the subtraction step, the output image is shown in
Fig. 7.
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Fig. 4 Test frame and background image modeled with different input image numbers (azimuth
aperture width). (a) Test frame. (b—d) Corresponds to the background generated with 10, 20, and
30 input images (6 = 2°; 4°; 6°) respectively. The target signature position is labeled with a red
circle

It could be seen in Fig. 7 that the moving target is well preserved. Except
for the moving target signatures, the side lobe of the strong stationary target also
exists. This is because the side lobe of this stationary target rotates during the 30
input images. Therefore, it is filtered in the background and the target’s sidelobe is
preserved in the subtracted image.

Apply a CFAR detector to a subtracted image and post-target discrimination
processing to reduce the false alarm; the detection result is shown in Fig. 8. The
Durango and the potential moving target are labelled in red. At the top left of the
figure, the sidelobe of the two strong manmade structures is also detected. This is
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Fig. 5 Residual reference 3 T T T T T T T
clutter curve
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Fig. 6 Modeled background
image

because the anisotropic target’s rotating sidelobe is not preserved in the background
image. It is not canceled; thus, it is falsely detected. The anisotropic behavior-
induced false alarm may be excluded by better target discrimination processing in
the future.
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Fig. 7 Test frame after
subtraction processing

Fig. 8 Detection result

Durango

5 Conclusion

In this paper, the performance of the logarithm background subtraction algorithm
is evaluated with SCNR improvement and clutter cancellation ability, two measure-
ments. Following the presented analysis, the parameter of the proper number of
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input images (or otherwise the width of the input azimuth aperture) for achieving
the optimal moving target detection can be determined. Other CSAR data that use
the logarithm background subtraction algorithm can follow the same routine. Future
work will involve studying better target discrimination processing to reduce the false
alarm induced by the anisotropic backscattering behavior of the clutter.
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Abstract Compact polarimetric SAR is currently drawing more attention owing to
its advantage in earth observations. In this paper, based on scattering vector in hybrid
mode and X-Bragg scattering model, a new method is presented for evaluating ship
detection performance. By using this method, three polarization features, including
circular polarization ratio, relative phase, and roundness, were analyzed selectively.
Experiments performed using hybrid mode emulated from C-band RADARSAT-2
full polarimetric SAR data validate the feasibility of the method in analyzing the
ship detection performance.
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1 Introduction

Ship surveillance is of great significance to ocean security and marine management
[1]. The synthetic aperture radar (SAR), which can work day and night with high
resolution, even under cloudy conditions, has been given great concern for ship
detection over the past 30 years.

With the improvement of radar system and ship detection algorithms, the SAR
data acquisition mode has been extended from single and dual polarimetric SAR
to full polarimetric (FP) SAR [2]. Contrast with single and dual polarimetric SAR,
FP SAR can provide more target information and allows complete backscattering
characterization of scatterers [3]. However, the narrow swath width of FP SAR can’t
meet the application demands (e.g., the maximum swath of radarsat-2 is just 50 km),
which limits its development.

To solve the problem in FP SAR, compact polarimetric (CP) SAR appears
with wide swath coverage and less energy budget [4-6], which has been widely
studied, and a lot of promising results have been obtained [5—7]. According to the
polarization state, three CP SAR modes have been proposed, including 7/4 [8], dual
circular polarization [9], and hybrid polarization (HP) [10]. Among which, the HP
mode is simpler, more stable and less sensitive to noise than the other two modes.
Furthermore, the HP mode achieves a better performance in self-calibration and
engineering [11]. So far, the RISA-1 in India, the ALOS-2 in Japan, even the future
Canadian RADARSAT Constellation Mission (RCM) all supports the HP mode,
which is most suitable for marine applications.

Extracting effective polarization features from Stokes Vector can essentially
reflect the physical difference between ships and sea clutter [6]. The feasibility of
feature extraction was verified by researchers in a series of study. For example,
Shirvany et al. [12] indicated the effectiveness of the degree of polarization (DoP)
in ship detection. Then, this work was further studied by Touzi, who defined an
excursion of the DoP to enhance a significant ship-sea contrast [13]. In contrasting
with single polarimetric parameter, Yin investigated the capability of m-o and m-x
decompositions for ship detection [14]. Three features extracted from CP SAR were
proved to have a good performance in ship detection [3]. What’s more, Paes showed
a more detailed analysis of the detection capability and sensitivity [15] of § together
with m, pc, |pxy|, and entropy H,.

In summary, the existing polarization parameters from polarization decomposi-
tion are used directly without considering the influence of sea surface roughness,
which weakens the detection capability of the polarization parameters to some
extent. In this paper, a new method for analyzing the polarization parameters is
presented by introducing the sea surface roughness disturbance [16]. In this case,
the polarization parameters can be evaluated in both theory and experiments for
ship detection.

Section 2 gives the formula derivation of the presented target scattering model,
and the surface roughness of sea is introduced. In Sect. 3, the presented target
scattering model is applied to analyze the polarization difference of circular
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polarization ratio, roundness, and relative phase between ships and sea to prove
its availability. Finally, in Sect. 4, the conclusion is given.

2 New Method for Feature Analysis

In hybrid mode, the radar antenna transmits a circular signal and simultaneously
receives two orthogonal linear-polarization signals. Consider that radar transmits a
right-circular signal, the scattering vector is [17]

—> T 1 . . T
ki1 =[Eru Erv]' = —=(Sun — jSuv. —jSyv + Suv) 9]
V2
As we know, the coherency matrix 7 is a 3 x 3 matrix [3] as follows:
Y H I Ty T 2AQ C-jD H —i—].G
T = kpkpz Ty Ty T |=|C+jD By+B E+jF 2)
T3 T3 T3 H-jG E—jF By—B

where 713 = \/LE[SHH + Svv Sun — Svv 2Suv]’, A0, B, BO, C, D, E, F, G, H are
Huynen parameters [18].

The matrix 73 can be expressed by Sy, Suv, Svv, which is extremely compli-
cated. In this case, a new idea is proposed by using the elements of the scattering
vector. We do the operation as

{ ERrn + jEry = SHH + Svv 3)
Eru — jERy = Sun — Svv — 2/ Spy
Then a new matrix Y is defined consequently as
[ Ern + JERv . H . H
Y = E E Eru—JjE
_ERHjERv:|[( RH +J Rv) ( RH — J RV) ]
[ Sum + Svv H . H
= . SHH + S Sy — Svyv —2j S
_SHH—SVV—ZJSHV:||:(HH v (Sun — Svv —2jSuv) }
_ [ (Sum + Svv) (San + Syv)* (SHH + Svv) ((SHH — SVW)* + 2/ STy)
| (Sun — Svv = 2jSuv) (Sun + Svw)* (Sun — Svy — 2jSuv) ((Sun — Svw)* +2/Sfry)
“)

The matrix Y can be described by the coherency matrix 7

_ Ty Tio+ )T
Y=|_. . . (5)
T5 —jTi; T+ T3z —2Im(T3)
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By using Huynen parameters [18] the matrix Y is

=[ 2A0 (C—G)+j(H—D)] 6)

(C-G)—j(H—-D) 2(Bo— F)

In Wang et al. [18], the stokes vector of the scattered wave in hybrid mode is
written as

80 Ao+ By — F
C-G
g = 81| _ @)
$) H-D
83 —Ap+By—F

Hence, Y can be derived from Egs. (5), (6), and (7) as

Yz[ T T2+ jT3 ]
T\ — jTiy Too + T33 — 21m (T23) @)
_ [ 80— &3 g1+jgz}
81— Jj& & +&3

As a result, the stokes vector can be derived as

g0 = T11+T§2+T33 —Im (T3)
g1 = Re (T12) —Im (T13)

g2 = Im (T12) + Re (T13)

g3 = —T11+§22+T33 —Im (T3)

€))

Based on the theory mentioned above, the coherency matrix 7 and stokes vector
are used to represent the constructed matrix Y. For better description of the matrix
Y, X-Bragg scattering model is introduced below.

X-Bragg scattering model is first introduced by Hajnsek et al. [16] in order to
solve the case of nonzero cross-polarized backscattering and depolarization. By
assuming a roughness disturbance induced random surface slope g, the X-Bragg
scattering is modeled as a reflection depolarizer [16] as shown in Eq. (10).

T T2 Tz Ci Cysinc (281) 0
TX-Bragg = | To1 T2 T3 | = | Casinc(2B1) C3 (1 +sinc(4B1)) 0
T3 T3 T33 0 0 C3 (1 —sinc (4B1))

(10)
where

Ci = |Rs + Rp|?
C> = (Rs + Rp) (R — RY)
C3 = 3|Rs — Rp|?
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B is assumed to follow a uniform distribution in the interval [—81, B1], and
B1 < /2 is the distribution width.
Combined with Egs. (9) and (10), the stokes vector can be described by X-Bragg
scattering matrix as
g0 = T11+T§2+T33 — Im (T23) — C1—22C3
g1 =Re (T12) — Im (T13) = Re (C2sinc (2B1))

g2 = Im (T12) + Re (T13) = Im (Cy sinc (281))
g = _TI1+§22+T33 —Im (T23) — —C|;—2C3

(1)

With the analysis of scattering difference of ships and sea, Eq. (11) can evaluate
the performance of the polarization features in ship detection.

3 Ship Detection Performance Analysis

According to the target scattering model of ships in Sect. 2, the polarization
parameters, such as, circular polarization ratio, roundness, and relative phase,
which have good performance in ship detection [19], are analyzed for example to
extract new parameter. For lack of compact polarimetric SAR data, full polarimetric
RADARSAT-2 SAR data are chosen to reconstruct the compact polarimetric SAR
data transmitted by right-circular polarization and received by horizontal and
vertical polarization. Note that the formulas are

CPR = M, sin2y = SR £ N 8 =tan~! (&) (12)
82

g+ &3 /g12+g§+g§

Circular Polarization Ratio

The circular polarization ratio (CPR) is derived from Eqgs. (11) and (12) as

Ci |Rs+Rpl*> [Sun+ Syl
CPR= — = > = -
2C3  |Rs — Rp| |SuH — Svvl

(13)

In Eq. (13), the value of the CPR is positive, which is only related to the
dielectric constant and the incidence angle, and is independent of the rotation angle.
Therefore, this parameter is stable and can be used in ship detection.

Figure 1 is a part of SAR image, which shows the value of CPR about ships and
sea. We can see the value of the ship is basically between 0 and 1, while the value of
the sea surface is greater than 1. Hence, the ships and sea surface can be separated
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Fig. 1 Value of circular polarization ratio about the ships and sea surface

by the threshold 1. However, the value of CPR in the figure ranges from 0.4 to 2.5,
which means the span is too small to select the threshold properly.

Roundness

Roundness can be derived from Eqs. (11) and (12) as

-2
Sin2y = C1-26 (14)

JA(Casine 2B1) + (—C1 +2C3)?

In Eq. (14), the value of x and sin2y is consistent whether it is positive or
negative. On the right side of the Eq. (14), the denominator is positive, so the positive
and negative properties of x depends on the numerator. Assuming that the phase
angle of SHHS{“,V is OgH — vv, the numerator is derived as

C) —2C3 = 2Re (SunSyy) = 2cos (Buu-vv) (15)

According to Eq. (15), the denominator on the right side is positive, as a result,
the value of C1 — 2C; is decided by the phase angle 6y - vy. We know that the
initial value of the phase angle is 7/2, and with each additional scattering, the
phase angle increases 7. Therefore, the phase angles are 377/2 and 5/2 for single
scattering and even scattering respectively. Consequently, for single scattering, the
value of cos(fyy - vv) is positive, while for even scattering, the value is negative.

The scattering of sea surface is mostly surface scattering, and the ship is mostly
even scattering, so the value of sea surface should be positive and the ship should
be negative. As is shown in Fig. 2, the ships and sea surface can be separated by the
threshold 0. Notice that the value of roundness is related to the rotation angle, which
is not stable in high sea conditions.



Ship Detection Using X-Bragg Scattering Model Based on Compact Polarimetric SAR 93

HEHEESEEE

]
g8

0
0
kol
=
am
1
00

@

-]

© W W X0 X0 X0 ¥ a0

Fig. 2 Value of roundness about the ships and sea surface
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Fig. 3 Value of relative phase about the ships and sea surface

Relative Phase

Relative phase is derived from Eqgs. (11) and (12) as

1
3= —m cot (HH-vV) (16)

In Eq. (16), for single scattering, the phase angle is 37/2, so the value of
cot(@yy - vv) is positive, which means the value of § is negative. While for even
scattering, the value of § is positive. Due to different scattering characteristics, the
ships in SAR image is mainly even scattering, while the sea surface is mainly surface
scattering of ships and sea surface. Therefore, the value of the ships should be
positive and the sea surface should be negative. An example is shown in Fig. 3,
and the threshold O can be used to separate the ships and sea surface.

Note that the value of § is related to the angle 8 in Eq. (16), the surface roughness
increases with the increasing sea conditions. Therefore, the value of § is unstable
influenced by S, which is difficult to distinguish ships and the sea surface, especially
in high sea conditions.

Figures 4 and 5 are experiments’ results: (a) is the amplitude of RV polarization,
and (b), (c), and (d) are results of threshold segmentation (the threshold are 1,
0 and 0). The areas with white are ships while dark and gray are sea surface. It
indicates that the three features are all good discriminators for observing ships from
sea surface. According to the scattering intensity, ships in Fig. 5 are bigger than
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(a) (b) (c) (d)

(a)

Fig. 5 Results of threshold segmentation. (a) RV image (b) CPR (c) Roundness (d) Relative phase

ships in Fig. 4. Combined with AIS, false alarms circled by red box are apparently
owing to the high sea condition in Fig. 5. All in all, roundness and relative phase
are all unstable in high sea conditions, while for CPR, the proper threshold is hard
to choose in ship detection. The total number of detected ships is 166, and the
false alarm rate of CPR, roundness, and relative phase are 0.06, 0.078, and 0.083,
respectively.

4 Conclusion

In this paper, a new method of analyzing polarization parameter is derived by
introducing the surface roughness of the sea. Three compact polarimetric parameters
in hybrid mode are analyzed. The circular polarization ratio, roundness, and relative
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phase can all be used to separate ships from sea surface. The circular polarization
ratio is stable, but the span value is too small to select proper threshold for ship
detection. Roundness and relative phase are not stable owing to their relation with
rotation angle B, which increases the difficulty of ship detection, especially in high
sea conditions. The false alarm rate of CPR, roundness, and relative phase are 0.06,
0.078, and 0.083, respectively by detecting 166 ships.
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Analysis of Sea Clutter Distribution m)
and Evaluation of Ship Detection e
Performance for Sentinel-1 SAR Data

Yongxu Li, Xudong Lai, Jie Zhang, Junmin Meng, Genwang Liu,
and Xi Zhang

Abstract This paper statistically analyzed the sea clutter distribution and ship
detection performance for Sentinel-1 synthetic aperture radar image. First, the
goodness-of-fit of five commonly used distribution models were evaluated to find
out the most suitable model and the Kullback-Leibler Distance was adopted to
judge the fitting degree. Then construct a constant false alarm rate detector for
ship detection. To measure the robustness of the detector, the figure of merit, the
probability of detection, and the false alarm rate were calculated to evaluate detector
performance.

Keywords Ship detection - Synthetic aperture radar - Constant false alarm rate -
Statistical distribution

1 Introduction

The monitoring of the ship target is one of the most important research fields.
The information such as location and type of ship is widely used in maritime
surveillance, maritime detection, traffic safety, fisheries control, and so on. For
synthetic aperture radar (SAR), the basic method of ship detection takes advantage
of SAR images’ feature that the backscattering signal from the ship is much stronger
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than the sea clutter background in most cases, and the detection was realized by
searching pixels whose amplitudes are greater than a given threshold. The constant
false alarm rate (CFAR) detector was widely used due to the variable threshold,
which was determined by accurately describing the real-time dynamic sea clutter
around the target. An appropriate model is essential to the detector [1-3].

However, properties like frequency, polarization, resolution, grazing angle, and
sea state have influence on SAR imaging, therefore, the sea clutter may fit different
models and the suitable model of the given dataset needs to be judged [4—8]. In high-
resolution SAR image, the K distribution becomes popular due to the compound
formulation, which was introduced by Ward that enables both the small-scale and
large-scale components of the sea clutter to be characterized [9, 10]. The Weibull
(WBL) distribution was used to model amplitude earlier, and the results show that it
can fit most SAR images effectively. The lognormal (LGN) distribution can achieve
better goodness-of-fit even under the heterogeneous situation in high-resolution
SAR images [11]. The computational complexity of G° distribution was reduced
by eliminating an iterative computing step; meanwhile, it has been demonstrated
with excellent performance in a heterogeneous sea surface environment [12]. The
generalized gamma distribution (GI"'D) was used for modeling many scenes of high-
resolution SAR images and shows a better performance in most cases [13].

Therefore, the comparative analyses among those five commonly used distribu-
tions were carried out. The Kullback—Leibler (K-L) Distance was used to judge the
goodness-of-fit. After the best fitting was found, the CFAR detector was constructed
to carry out ship detection experiments. To evaluate CFAR detector performance,
the ground truth (GT), which were determined via Automatic Identification System
(AIS) data combined with manual interpretation, was used to validate the result,
and the figure of merit (FOM), probability of detection (PoD), and false alarm rate
(FAR) were calculated.

The remainder of this paper is organized as follows. Section 2 briefly describes
the Sentinel-1 dataset. The experiment methodologies are presented in Sect. 3, while
Sect. 4 shows the results. Finally, the conclusions are given in Sect. 5.

2 Sentinel-1 IW Level-1 GRD Data

Following the “open and free” data access policy, seven dual polarization images of
Sentinel-1 IW Level-1 Ground Range Detected High resolution (GRDH) produce
from October 2014 to January 2016 have been obtained in the three areas of the
Strait of Malacca, shown in Fig. 1. These images were acquired using vertical
transmit, vertical receive (VV) polarization and vertical transmit, horizontal receive
(VH) polarization in high resolution 20 m x 22 m.

In order to avoid the influence of shoreline or island on the experimental results,
30 pairs of sub-images were extracted from the original data by artificial cutting. In
addition to the goodness-of-fit analysis, whether the detector has the capability to
provide reliable results is also the scope of the assessment. We verified 304 ship
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Fig. 1 Geographical location
Table 1 . Additional No. | Acquire time Location | GT | Sub-images
information

1 20150815_232741 |1 9 |2

2 20151026_232742 |1 5 |1

3 20141222_225535 |2 74 |6

4 20150316_225534 |2 72 |6

5 20150527_225538 | 2 69 |6

6 20151018_225543 | 2 58 |6

7 20160116_112449 |3 17 |3

targets by AIS data and manual supervision to acquire GT as the reference. To
acquire GT, 304 ship targets were verified by AIS data and manual supervision.

Additional information about the dataset is shown in Table 1.

3 Experiment Methodologies

Distribution Model

In this section, these five distribution models: LGN, WBL, K-root, GI'D, G° were
used to fit the sea clutter. After the distribution model was determined, the Method
of log-cumulants (MoLC) was used to solve the parameters of the