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Abstract. We present a formal model of publish/subscribe network
architectures in which a central communication broker is in charge of
distributing messages to clients subscribed to certain topics. We con-
sider different semantics for the notification phase in order to take into
consideration exceptions due to node crashes. For the considered model,
we study decidability of verification problems formulated in terms of
coverability, a non trivial class of reachability problems well-suited to
validate properties of parameterised systems.

1 Introduction

Publish/subscribe protocols such as MQTT are widely used for interconnecting
heterogeneous collections of network services and devices, e.g., in Internet of
Things applications. In this paper we present a new formal model of publish/-
subscribe protocols such as MQTT in which a broker is in charge of distributing
messages to clients subscribed to certain topics. In this setting we use a tran-
sition system parametric on the specification of individual nodes to provide an
operational semantics to basic operations such as (un)subscription and push
notifications. Node crashes and connection failures are modelled via state infor-
mation included in the representation of individual nodes. We then provide a
formal specification of different implementations of the broker internal struc-
ture. The semantics is inspired to a working prototype of pub/sub broker that
we implemented in Java using RMI (Remote Method Invocation) communica-
tion. More in detail, we consider two scenarios in which to model the delivery of
a published message m to subscribers of a given topic t.

In the first scenario the broker acknowledges the request and, inside a syn-
chronisation block, forwards the message the other clients subscribed to topic
t. Communication failures are captured locally via a try-catch statement as in
Fig. 1. In the considered example the broker stores client communication data in
a shared Map protected by a synchronization region (the Map topicRelation). In
RMI the communication data are encapsulated in stub objects that act as inter-
faces when invoking remote methods on each client (in our example the method
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boolean pub l i sh ( S t r ing top ic , S t r ing news , S t r ing sender )
throws Exception {
C l i e n t I n t e r f a c e c l i e n t ;
synchronized ( t op i cRe l a t i on ) {

Map<Integer , C l i e n t I n t e r f a c e>
s ub s c r i b e rL i s t = top i cRe l a t i on . get ( t op i c ) ;

synchronized ( s ub s c r i b e rL i s t ) {
I t e r a t o r<Map. Entry<Integer , C l i e n t I n t e r f a c e>> e n t r i e s =

sub s c r i b e rL i s t . entrySet ( ) . i t e r a t o r ( ) ;
while ( e n t r i e s . hasNext ( ) ) {

Map. Entry<Integer , C l i e n t I n t e r f a c e>
entry = en t r i e s . next ( ) ;

c l i e n t = entry . getValue ( ) ;
try { stub . send ( top ic , sender , news ) ; }
catch ( RemoteException e ) {

System . out . p r i n t l n ( ” No t i f i c a t i o n e r r o r ) ;
}

}
}

}
re turn true ;

}

Fig. 1. Broker in Java: first scenario.

send). Remote methods throw RemoteExceptions. In this example, since excep-
tions are handled locally, notification always reach all connected nodes leaving
the state of all other nodes unchanged.

In the second scenario we consider an implementation in which an exception
generated during a push notification sent to a certain client is propagated to the
caller of the publish method. Going back to our Java example, this scenario corre-
sponds to the implementation of the publish method with synchronized regions,
an iterator over a Map, and a remote callback on a client stub (method send) in
Fig. 2. In this scenario we assume that every invocation to the publish method
is embedded into a try-catch statement, e.g., to propagate error notifications to
the server or to modify the current list of active clients.

In the paper we give a formal account of the above mentioned scenarios
by introducing a transition system modelling configurations with an arbitrary
number of publishers and subscribers and a single broker. The behaviour of the
broker is hard-wired in the semantics of the transition system. For the considered
model, we focus our attention on decidability properties of verification problems
formulated in terms of coverability, a non trivial class of reachability problems
well-suited to validate properties of parameterised systems.

The reason why we consider parameterised formulations of verification prob-
lems is strictly related to the nature of distributed algorithms and protocols.
Indeed, protocols designed to operate in distributed systems are often defined
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boolean pub l i sh ( S t r ing top ic , S t r ing news , S t r ing sender )
throws Exception {

synchronized ( t op i cRe l a t i on ) {
Map<Integer , InfoSub> s ub s c r i b e rL i s t =

top i cRe l a t i on . get ( t op i c ) ;
synchronized ( s ub s c r i b e rL i s t ) {

I t e r a t o r<Map. Entry<Integer , InfoSub>>
e n t r i e s = sub s c r i b e rL i s t . entrySet ( ) . i t e r a t o r ( ) ;

while ( e n t r i e s . hasNext ( ) ) {
Map. Entry<Integer , InfoSub>

entry = en t r i e s . next ( ) ;
entry . getValue ( ) . send ( top ic , sender , news ) ;

}
}

}
return true ;

}

Fig. 2. Broker in Java: second scenario.

for an arbitrary number of components. Formal specification languages like Petri
nets and automata are often used to model skeletons of this kind of systems. In
this setting the coverability decision problem [1] is typically used to formulate
reachability of bad configurations independently from the number of components
of a system. Furthermore, to express safety properties of distributed systems we
can lift the coverability decision problem, in which the initial configuration is
fixed a priory, to a formulation in which the initial configuration is picked up
from an infinite set of initial configurations [3,4]. This formulation of the cover-
ability problem has been considered in [5,7–12] in order to reason on Broadcast
Protocols. Falsification of this decision problem provides a characterisation of
initial configurations from which it is possible to reach a bad configuration.

Plan of the Paper. In Sect. 2 we introduce our formal model of Pub/Sub Net-
works, inspired to extensions of Petri nets with data with a first formulation of
the notification phase. In Sect. 4 we study decidability properties for coverability
in parameterised formulations of Pub/Sub Networks. In Sect. 5 we consider an
extensions with retained messages inspired to the MQTT protocol. In Sect. 6
we introduce a variant of the notification phase in which we model exception
handling using a global conditions on the operating status of client nodes and
reconsider decidability properties for coverability in parameterised formulations
of the proposed variant of Pub/Sub Networks. In Sect. 7 we address some con-
clusions, consider other extensions and proposed some open problems.
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2 Formal Model of Pub/Sub Architectures

In this section we introduce a formal model that will help us to analyse the
interactions between publishers and subscribers via a server with synchronized
operations on internal data structures. In the rest of the paper we will use the
following terminology. Multisets over elements e1, e2, . . . in a support set D will
be indicated as {{e1, e2, . . .}}, multiset union as ⊕, multiset difference as �, �,
� as multiset inclusion, and ∈ as membership. Furthermore, we will use the
standard notation such as ∪,∩, \,⊆,⊂ and ∈ for operations over sets. We will
use 2A to indicate the powerset of A. Finally, we will use 〈e1, . . . , en〉 to denote
tuples of elements in D.

Topics, States, Messages and Actions

We define T to be a finite set of, fixed a priori, labels representing topics names.
We define Q to be a finite set of labels of client states. Furthermore, we define
M to be a finite set of message labels. Finally, we consider a finite set of action
labels having the following form:

– local, that denotes a local transition,
– subscribe(s) for s ⊆ T that denotes subscription to a subset of topics,
– unsubscribe(s) for s ⊆ T that denotes unsubscription from a subset of topics,
– publish(m, t) with m ∈ M and t ∈ T , that denotes publishing of message m

on topic t.

The above listed type of actions are strictly related to the communication model
typical of publish/subscribe architecture in which every message is delivered to
all subscribers via a shared broker.

Client Specification

In the rest of the section we will first introduce the static specification of individ-
ual clients. The dynamic semantics of a client will be described only after having
introduced the notion network configuration. In this setting we will consider sys-
tems composed by a single server and an arbitrary number of client instances,
each one defined by the same client specification. A client configuration c is a
tuple 〈q, s, b, f〉, where q ∈ Q is the current client state, s ∈ 2T is the set of topics
for which the client is a subscriber, b ∈ 2M is the set of messages received so
far, and f ∈ {�,⊥} is a flag that defines the connection status of the client with
respect to the global network, namely � corresponds to the normal operating
status, whereas ⊥ corresponds to a disconnection event.

A client specification P is a tuple 〈Q, q0, R〉, where Q is a finite set of states,
q0 ∈ Q is the initial state, and R ⊆ Q × A × 2M × Q defines state transitions
induced by action labels. In other words a client specification can be viewed
as a finite state automata with labelled transitions which statically defines its
behavior. The tuple 〈q, a, s, q′〉 denotes a transition from q to q′ associated to
action a whose firing requires the presence of at least the set of messages s in the
local message list. For instance, 〈q1, local, {m,n}, q2〉 can be fired in 〈q1, s, b, f〉
only if {m,n} ⊆ b.
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We assume here that disconnected clients cannot roll back to a normal status,
i.e., when they restart they will be assigned a new identity, their internal state
being completely reset. In other words we will simulate restart by using client
creation. The model can naturally be extended in order to consider a richer set
of operations for the manipulation of local message sets (e.g. remove messages,
reset buffers, etc.). For the sake of brevity, we will keep the model simple and
discuss how these extension affect the decidability of coverability when necessary.

2.1 Pub/Sub Networks

We are ready now to define a model for Pub/Sub Networks. In this paper we
will consider a single Pub/Sub broker. The client-server architecture of such a
server will be implicitly defined via the semantics of publish operations.

A Pub/Sub Network S consists of fixed sets A, Q, M , and a client speci-
fication P = 〈Q, q0, R〉. In this setting a network configuration is defined as a
multiset γ = {{c1, . . . , ck}} of client configurations, i.e., ci = 〈qi, si, bi, fi〉 with
qi ∈ Q, si ∈ 2T , b ∈ 2M and fi ∈ {⊥,�} for i : 1, . . . , k. We use N to denote
the set of Network Configurations of finite but arbitrary size. The set N0 of
Initial Network Configurations is the subset of N is which client configurations
are restricted to those with form c0 = 〈q0, ∅, ∅,�〉.
Operational Semantics

The operational semantics of a Pub/Sub Network η is defined via a transitions
system defined through a binary relation → over Network Configurations. To
specify the semantics of this operation we first introduce some auxiliary defini-
tions. Let t ∈ T and γ be a configuration, Ef (t, γ) is the multiset containing all
client configurations of the form 〈q, s, b, f〉 occurring in γ such that t ∈ s. Fur-
thermore, we use Addm(t, γ) to denote the multiset obtained from γ by adding
message m in all local message sets of configurations of subscribers of topic t
with flag f . More precisely, Addm(t, {{}}) = {{}}, Addm(t, {{〈q, s, b,�〉}} ⊕ γ) =
{{〈q, s, {m}∪ b,�〉}}⊕Addm(t, γ), if t ∈ s; Addm(t, {{c}}⊕γ) = {{c}}⊕Addm(t, γ)
otherwise. We also use Addm(t, γ) to denote the multiset obtained from γ by
adding message m in all local message sets of configurations of subscribers of
topic t with flag f . The relation →⊆ N × N is the least relation satisfying one
of the conditions listed below.

Local Operations. We first consider actions with local effect.

Local {{〈q, s, b,�〉}} ⊕ C → {{〈q′, s, b,�〉}} ⊕ C

under the assumption 〈q, local, q′〉 ∈ R. With this rule a client instance updates
its local state after firing a local action.

Subscription {{〈q, s, b,�〉}} ⊕ C → {{〈q′, s ∪ s1, b,�〉}} ⊕ C

under the assumption 〈q, subscribe(s1), q′〉 ∈ R. With this rule a client instance
subscribes to the set of topics s1.

Unsubscription {{〈q, s, b,�〉}} ⊕ C → {{〈q′, s \ s1, b,�〉}} ⊕ C
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under the assumption 〈q, unsubscribe(s1), q′〉 ∈ R. With this rule a client unsub-
scribes from the set of topics s1.

Disconnection {{〈q, s, b,�〉}} ⊕ C → {{〈q, s, b,⊥〉}} ⊕ C

With this rule we can non-deterministically turn an active client instance into a
disconnected instance. This rule models a fairly realistic scenario in which the
broker is equipped with a background service for sending heartbeat messages to
each client in order to check their connection status.

Global Operations. We now turn our attention to global operations that
model the publish action. As discussed in the introduction, we first consider a
semantics based on a broadcast message embedded into synchronisation blocks
in which possible errors during individual notifications are handled locally, e.g.,
using try-catch statements. The semantics of publish is defined as follows.

Publish {{〈q, s,m,�〉}} ⊕ γ → {{〈q′, s,m,�〉}} ⊕ γ′

under the following assumptions:

– 〈q, publish(m, t), q′〉 ∈ R,
– ξ = E�(t, γ),
– μ = γ � ξ,
– γ′ = Addm(t, ξ) ⊕ μ.

With this rule a client sends a publish request for message m on topic t to
the server. The server acknowledges the request and, inside a synchronisation
block, forwards the message m to all other active clients subscribed (at least) to
topic t. We assume that m is not sent to the sender client. Since disconnected
clients are not selected in E�(t, γ), the server forwards the message only to
active clients. The state of all other clients (disconnected ones and clients that
are not subscribed to topic t) remain unchanged. Since our semantics does not
keep track of exact time information on node failures and message receptions,
the message m is not added to disconnected nodes in order to avoid confusion
when inspecting a final configuration.

Computations. A computation σ is a (possibly infinite) sequence of network
configurations σ = γ0 . . . γi . . . such that γi → γi+1 for i ≥ 0. Using a standard
notation, we will use →∗ to denote the transitive closure of →.

3 Example: Specification of an IoT System

Let us consider an example inspired to the standard workflow of an IoT applica-
tion based on MQTT. MQTT is often used for both device discovery and data
acquisition. In the discovery phase a subscriber registers to a topic exposing a
list of available sensors. After receiving access details for a specific sensor, a
subscriber can start listening to data coming from the sensor.
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r1 = 〈init, subscribe(sensors), ∅, listen〉
r2 = 〈listen, local, {si}, auxi〉,
r3 = 〈auxi, unsubscribe(sensors), ∅, subi〉
r4 = 〈subi, subscribe(si), ∅, acquirei〉
r5 = 〈acquirei, {di1, . . . , dik}, ∅, oki〉
r6 = 〈oki, unsubscribe(si), ∅, init〉
r7 = 〈oki, unsubscribe(si), ∅, endi〉

Fig. 3. IoT subscriber

Subscriber. The workflow of a subscriber can be described as follows. Consider
the set of topics T = {sensors, s1, . . . , sn} and messages M = {s1, . . . , sn} ∪⋃n

i=1{di1, . . . , dik} in which di,j represents a piece of data coming from sensor
si. A subscriber can then be described by the specification in Fig. 3. In this
model the subscriber first register on topic sensors. Then he waits for message
si for some i and use the message label to register to topic si. After registration
the subscriber waits for messages di1, . . . , dik. Rule r6 specifies the completion
the reception phase, i.e., it simulates the reception of all data sent by sensor
si. Notice that communication is asynchronous, i.e., the subscriber accumulates
individual messages in its message set and then moves to state oki only when
all messages have been received. The subscriber then unsubscribes from si and
moves either to state init or to the halting state endi.

Discovery Service. A discovery service is in charge of generating from time
to time the list of available sensors on the sensor topic. This service can be
described via the following specification.

〈sinit, publish(si, sensors), sendi〉 for i : 1, . . . , n

Sensors. Each sensor si acts as a publisher that is in charge of sending data
along the corresponding topic si. The publisher associate to sensor si can be
described via the following model.

〈initi, publish(dij , si), initi〉 for i : 1, . . . , n, j : 1, . . . , k

In our model the broker is implicitly defined via the semantics of the subscribe,
unsubscribe, and publish operations. In Fig. 4 we present an example of com-
putation in the above defined Pub/Sub Network in which for clarity states are
labeled with process indexes. Notice that messages associated along with a cer-
tain topic are delivered only to the current set of subscribed clients. For instance,
in our example the client in state init2 never receives message s1 since it is not
subscribed to topic sensors when the publisher sends the message. In other
words clients do not read messages from a shared global memory. Subscriber
groups are formed dynamically and messages are delivered to the current set of
subscribers. In our example when sensor si is added to the public registry via
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〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈init3, ∅, ∅,�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈listen, {sensors}, ∅,�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈listen, {sensors}, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈aux1, ∅, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈sub1, {s1}, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈acquire1, {s1}, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈send1, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈acquire1, {s1}, {s1, d1,3},�〉,
〈listen, {sensors}, {s1},�〉〉 . . .

〈〈send1, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈ok1, {s1}, {s1, d1,1, . . . , d1,k},�〉,
〈listen, {sensors}, {s1},⊥〉〉

〈〈send1, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈end1, ∅, {s1, d1,1, . . . , d1,k},�〉,
〈listen, {sensors}, {s1},⊥〉〉

Fig. 4. Computations

the discovery service, each subscriber can receive its data and possibly reach its
halting state. For instance, it should not be possible to reach a configuration
in which a subscriber is in state endi from initial configurations in which there
are no discovery service nodes in state initi. This kind of property should hold
for any number of nodes. In the next section we will discuss how this kind of
properties can be stated formally on parameterised families of transition systems
of Pub/Sub Networks.

4 The Coverability Decision Problem

In this paper we will focus our attention on safety properties for Pub/Sub
Networks with a finite but arbitrary number of clients (parameterised system)
described via a decision problem called Coverability considered in other formal
models of concurrent and distributed systems such as Petri nets, Broadcast Pro-
tocols, Lossy FIFO systems, and Ad Hoc Networks (see e.g. [2,14]).

Reachability Sets. In order to formally define the problem we introduce some
auxiliary definitions. Given a set of configurations C ⊆ N , the Pre and Post
operators are defined as follows:

Post(C) = {γ′|∃γ ∈ C s.t. γ → γ′}
Pre(C) = {γ|∃γ′ ∈ C s.t. γ → γ′}

Post∗(C) [resp. Pre∗(C)] is defined as
⋃∞

i=0 Posti(C) [resp.
⋃∞

i=0 Prei(C)]. The
set of configurations reachable from C ⊆ N is defined as Post∗(C). For instance,



Parameterised Verification of Publish/Subscribe Networks 115

Post∗(N0) is the set of configurations reachable from initial configurations of
arbitrary size. Similarly, given a set of target configurations T , Pre∗(T ) is the
set of predecessor configurations that can reach configurations in T after finitely
many steps.

Coverability. The Coverability Decision problem is strictly related to the above
mentioned correctness criterion. Let 〈N,≤〉 be a total ordering on Network con-
figurations. Furthermore, for a set of configurations S, let uc≤(S) = {γ′|γ ≤
γ′, γ ∈ S}.

Definition 1. Let 〈η,→〉 be a Pub/Sub Network defined over the sets A,M,Q
and the client specification P , with an associated predecessor operator Pre, with
an ordering ≤ on Network Configurations, and with a set N0 of Initial Net-
work Configuration. Given a finite set of configuration F ⊆ N , the Coverability
Decision Problem consists in checking whether N0∩Pre∗(uc≤(F )) = ∅ or, alter-
natively, Post∗(N0) ∩ uc≤(F ) = ∅.
The rationale behind this definition is as follows. Assume that T = uc≤(F )
represents a set of bad configurations of arbitrary size (e.g. violations of a given
safety property) that can be finitely generated via the upward closure of F (if
γ represents a violations, then any γ′ larger than γ represents a violation). The
condition N0 ∩ Pre∗(T ) = ∅ [resp. Post∗(N0) ∩ T = ∅] holds if and only if there
exist no finite computations that starting from some initial configuration (of any
size) can reach a bad configuration in T .

4.1 Decision Procedure for Coverability in Pub/Sub Networks

In this section we will study instances of the coverability problem that can
be applied to verify properties by considering both local states and received
messages.

Definition 2. Given two client configurations c1, c2, the ordering ≤c is defined
as follows: c1 = 〈q1, s1, b1, f1〉 ≤c c2 = 〈q2, s2, b2, f2〉 if and only if q1 = q2,
s1 = s2, b1 ⊆ b2, and f1 = f2.

The ordering on configurations can be lifted to Network configurations as follows.

Definition 3. Given two Network Configurations γ1, γ2, the ordering ≤c is
defined as follows: γ1 ≤n γ2 if and only if there exists an injective map h from
the configurations in γ1 = {c1, . . . , ck} to configurations in γ2 = {d1, . . . , dn}
such that ci ≤c h(ci) for i : 1, . . . , k.

Theorem 1. The Coverability Decision Problem is decidable for Pub/Sub Net-
works.



116 G. Delzanno

Proof. We apply the methodology introduced in [2,14] to prove that 〈→,≤n〉 is
a well-structured transition systems.

We first observe that the ordering ≤n is obtained embedding equality over
finite sets and finite set inclusion into multiset inclusion. By Higman Lemma’s
[16], the resulting ordering is a well-quasi-ordering, i.e., for any sequence γ1γ2 . . .
there exist indexes i, j s.t. γi ≤c γj .

The transition relation → induced by a client specification P is monotone
w.r.t. ≤n, i.e., if γ1 ≤n γ2 and γ1 → γ3, then there exists γ4 s.t. γ2 → γ4 and
γ3 ≤n γ4. The proof is based on the observation that enabling conditions for
a transition rely only on the occurrence of a certain control state and on the
presence of at least a certain sets of messages in the local message list. Thus,
augmenting the number of client configurations or the size of local message lists
cannot prevent the firing of a rule. In particular, this property holds for the
Publish rule of the operational semantics.

Given a finite set of configuration C it is possible to compute a finite repre-
sentation of Pre(uc≤n

(C)). An indirect proof can be given via the observation
that the semantics of Publish can be encoded using a transfer arc operation
on Petri Nets. The encoding is based on a preliminary flattening step in which
topics set, message lists and connection flag are hardwired into the control state
of individual components. In other words we can generate a flatten specification
in which control states have the form 〈q, s, b, f〉 and in which ≤n is multiset
inclusion (over finitely many labels).

The combination of all above properties proves that Pub/Sub Networks are a
well-structured transition systems w.r.t. ≤n. Decidability of coverability follows
then from the general results in [2,14]. ��

5 Notification with Retained Messages

In Pub/Sub protocols such as MQTT the broker can be instructed in order to
retained the last published message for every topic. Retained messages are then
distributed to new subscribers right after their first connection. The semantics
of this kind of operations requires the introduction of a global state to book-
keep published messages. For brevity, we assume here that all messages (a finite
set) are maintained in the broker. More specifically, a network configuration
with retained messages is defined as a multiset γ = 〈g, {{c1, . . . , ck}}〉 where
g : T → 2M is a mapping from topics to published messages, and ci is a client
configuration. We use g(s) to denote

⋃
t∈s{g(t)}.

The semantics of publish is redefined in order to update the global configu-
ration.

Publish 〈g, {{〈q, s,m,�〉}} ⊕ γ〉 → 〈g′, {{〈q′, s,m,�〉}} ⊕ γ′〉

under the following assumptions:

– 〈q, publish(m, t), q′〉 ∈ R,
– ξ = E�(t, γ),
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– μ = γ � ξ,
– γ′ = Addm(t, ξ) ⊕ μ,
– g′(t) = g(t) ∪ {m}, g′(r) = g(r) for r �= t.

The semantics of subscribe is redefined in order to update the message set of a
node upon subscription to a given topic.

Subscription 〈g, {{〈q, s, b,�〉}} ⊕ γ → {{〈q′, s ∪ s1, b ∪ g(s1),�〉}} ⊕ γ〉
under the assumption 〈q, subscribe(s1), q′〉 ∈ R. With this rule a client instance
subscribes to the set of topics s1.

For the extended model, the following property then holds.

Theorem 2. The Coverability Decision Problem is decidable for Pub/Sub Net-
works with retained messages.

Proof. The proof of Theorem1 can be extended in order to deal with the seman-
tics with retained messages. Indeed, we observe that (1) the extended transition
system is still monotone and that (2) it is still possible to compute a finite rep-
resentation of predecessor states passing through a flattening of the transition
system that reduces configurations to multisets of control states. The resulting
system can then be viewed as a Petri net with transfer arc and a control unit
(the global state) for which coverability is known to be decidable [2,14]. ��
We notice that synchronisation steps with control unit can also be encoded via
simpler models such a Process Rewrite Systems with weak unit or finite state
constraints [17–19].

6 Handling Exceptions During Notifications

In this section we consider a semantics of the publish operation in which the
broker does not handle node failures locally to individual notification messages.
In this scenario the failure during a notification for a specific client, e.g. the
client is disconnected and the notification generates and exception, can lead to
a failure of the entire notification phase. As a consequence, the message might
be delivered to a strict subset of the active destination nodes. We assume that
the sender proceed with its execution without forcing the broker to roll-back to
a previous state. Let publishe denote the operation with the above described
implementation of the publish operation.

Operational Semantics for publishe . Let us first define Up⊥(γ) as the
multiset obtained by setting all connection flags occurring in γ to ⊥, namely
Up⊥({{}}) = {{}}, Up⊥({{〈q, s, b,�〉}}⊕γ) = {{〈q, s, b,⊥〉}}⊕Up⊥(γ), Up⊥(t, {{c}}⊕
γ) = {{c}} ⊕ Up⊥(γ) otherwise. The operational semantics of publishe is defined
as follows.

Publishe {{〈q, s,m,�〉}} ⊕ γ → {{〈q′, s,m,�〉}} ⊕ γ′

with the following assumptions:
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– 〈q, publishe(m, t), q′〉 ∈ R,
• E�(t, γ) = ξ ⊕ η,
• μ = γ � (ξ ⊕ η),
• γ′ = Addm(ξ) ⊕ Up⊥(η) ⊕ μ.

With this rule a client sends a publish request for message m on topic t to
the broker. The server acknowledges the request and, inside a synchronisation
block, forwards the message m to all other active clients subscribed (at least)
to topic t. If during the notification phase (typically a scanning of an internal
data structure) a disconnected client is detected (i.e. the corresponding notifi-
cation operation fails) the procedure exits. This effect is modelled using a non-
deterministically chosen subset of active destination nodes ξ with ξ � E�(t, γ)
that represents subscribers ready to receive message m before failure detection.
The remaining potential receivers η are marked as disconnected. In this seman-
tics, among all possible executions, we consider the case in which, during the
notification phase, no disconnected clients are detected as well the case in which
none or a strict subset of clients receive the notification.

The semantics of the new operation is slightly different from the typical
broadcast operations adopted in Petri Nets that we took as target operation
to prove decidability of coverability in the first part of the paper. Indeed this
operation applies a non-deterministic split during the transfer phase in which
instances are transferred from one state to another. The non-deterministic split
redistributes all instances in a given state to a finite set of different states with-
out cancellations or duplications. Despite of the use of a non-standard transfer
operation, coverability is still decidable as proved in the following theorem.

Theorem 3. Coverability is decidable for Pub/Sub Networks with the publishe

operation.

Proof. The proof is based on a reduction of the considered decision problem
to coverability for parameterised systems composed by many finite-state compo-
nents with a single monitor in which each component reacts in a non determinis-
tic way to broadcast messages sent by the monitor. This kind of systems has been
introduced in [6] to model the behaviour of synchronous systems. The decision
procedure is based on a symbolic reachability algorithm based on a constraint
solver for linear integer (in)equalities. The reduction requires the following steps.
For the publish operation the encoding requires a preliminary flattening step in
which topics set, message lists and connection flag are hardwired into the control
state of individual clients. The flattening can then be used to associate finitely
many counters (to keep track of occurrences of states in network configurations)
to each control state in accord with the counting abstraction used e.g. to model
Petri nets as vector addition systems. The flattening and the counter represen-
tation of control states provides a way to represent transition rule using linear
integer inequalities over variables ranging over natural numbers. For instance,
enabling conditions of the publishe operation can be expressed via lower bounds
constraints of the form X ≤ 1 for the counter X that denotes a given control
state, e.g., a publisher state. The effect of a transition can be expressed as an
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affine transformation, i.e., a linear combination defined on the current number of
client instances in different counters associated to control states. Differently from
other models such as transfer nets and affine well-structured Nets [15] the seman-
tics of publishe requires inequalities in special form in which the left hand side
may consists of an expression X ′

1 + . . .+X ′
n = X1 + . . .+Xn +Exp(Y1, . . . , Ym)

for variables X ′
i denoting the value of the counter in the next state and vari-

ables Xi and Yj denoting the current values of the counters for i : 1, . . . , n and
j : 1, . . . , m. In addition we need to insert the side conditions X ′

1 ≥ Xi to ensure
that variables occurring in X ′

1 + . . . + X ′
n will be incremented. As an example,

the transitions on counters X ′ + Y ′ = X + Y + Z,X ′ ≥ X,Y ′ ≥ Y,Z ′ = 0 can
be used to model the transfer of all instances in Z in X and Y . The effect of
the transfer is to distribute the instances in Z non-deterministically between X
and Y . Decidability of coverability in the resulting counter representation of the
flattened transition system follows by observing that the problem can be solved
by applying the symbolic backward reachability algorithm based on constraint
solvers for inequalities over natural numbers proposed in [6]. The algorithm main-
tains constraint-based representations of infinite set of configurations via unions
of constraints of the form X1 ≥ c1,Xn ≥ cn. To apply termination results based
on Dickson’s lemma [13] on the ≤v ordering to the resulting procedure, transi-
tions of the form X ′ + Y ′ = X + Y + Z,X ′ ≥ X,Y ′ ≥ Y, . . . require a further
normalization steps in order to eliminate constraints of the form X ′ ≥ X. The
idea here is to associate an auxiliary variable AuxZ to each variable Z whose
value must be split between several variables. Before firing the transfer action,
the transition system enters a special state in which instances in Z are moved
to AuxZ. This phase is non-deterministically terminated in order to start the
transfer arc from Z and AuxZ to variables X and Y respectively. ��

7 Conclusions

We have studied coverability problems for a formal model of Publish/Subscribe
Networks inspired to extensions of Petri nets with broadcast and transfer arcs.
Our model combines asynchronous communication with global operations and
non-deterministic actions to model the effect of exceptions generated during com-
munication between broker and individual clients. The proposed model, exten-
sions and variants seem to be different from other infinite-state models proposed
in the literature, see e.g., [1,3] for a survey on extensions of Petri nets used to
model distributed systems.

For the considered model, we prove preliminary results for the coverability
decision problem. The model discussed in this paper can be extended in different
directions. One possible extension consists of a new operation publishr(m, t, q)
in which m is a message, t is a topic name, and q ∈ Q denotes the state in which
the sender is redirected when an exception is generated during the notification
step. The operational semantics requires to detect absence/presence of crashed
nodes, i.e., global, universally quantified, condition for firing a transition. Finding
suitable semantics for this operation for which coverability remains decidable is
still an open problem.
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