
On Solving Word Equations Using SAT

Joel D. Day1, Thorsten Ehlers2, Mitja Kulczynski3(B), Florin Manea3,
Dirk Nowotka3, and Danny Bøgsted Poulsen3

1 Department of Computer Science, Loughborough University, Loughborough, UK
j.day@lboro.ac.uk

2 German Aerospace Center (DLR), Helmholtz Association, Hamburg, Germany
thorsten.ehlers@dlr.de

3 Department of Computer Science, Kiel University, Kiel, Germany
{mku,flm,dn,dbp}@informatik.uni-kiel.de

Abstract. We present Woorpje, a string solver for bounded word
equations (i.e., equations where the length of each variable is upper
bounded by a given integer). Our algorithm works by reformulating the
satisfiability of bounded word equations as a reachability problem for
nondeterministic finite automata, and then carefully encoding this as
a propositional satisfiability problem, which we then solve using the
well-known Glucose SAT-solver. This approach has the advantage of
allowing for the natural inclusion of additional linear length constraints.
Our solver obtains reliable and competitive results and, remarkably,
discovered several cases where state-of-the-art solvers exhibit a faulty
behaviour.

1 Introduction

Over the past twenty years, applications of software verification have scaled from
small academic programs to finding errors in the GNU Coreutils [7]. In princi-
ple, the employed verification strategies involve exploring the control-flow-graph
of the program, gathering constraints over program variables and passing these
constraints to a constraint solver. The primary worker of software verification is
thus the constraint solver, and the scalability of software verification achieved
by improving the efficiency of constraint solvers. The theories supported by con-
straint solvers are likewise highly influenced by the needs of software verification
tools (e.g. array theory and bitvector arithmetic). A recent need of software ver-
ification tools is the ability to cope with equations involving string constraints,
i.e. equations over string variables composing equality between concatenation of
strings and string variables. This need arose from the desire to do software verifi-
cation of languages with string manipulation as a core part of the language (e.g.
JavaScript and Java) [9,19]. To accomplish this goal, we have seen the advent of

Florin Manea’s work was supported by the DFG grant MA 5725/2-1.
Danny Bøgsted Poulsen’s work was supported by the BMBF through the ARAMiS2
(01IS160253) project.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 93–106, 2019.
https://doi.org/10.1007/978-3-030-30806-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_8

94 J. D. Day et al.

dedicated string solvers as well as constraint solvers implementing string solving
techniques. As an incomplete list we mention HAMPI [15], CVC4 [4], Ostrich [8],
Sloth [11], Norn [1], S3P [20] and Z3str3 [5].

Although the need for string solving only recently surfaced in the software
verification community, the problem is in fact older and known as Word Equa-
tions (a term that we will use from now on). The word equation satisfiability
problem is to determine whether we can unify the two strings, i.e., transform
them into two equal strings containing constant letters only, by substituting the
variables consistently by strings of constants. For example, consider the equation
defined by the two strings XabY and aXY b, denoted XabY =̇ aXY b, with vari-
ables X,Y and constants a and b. It is satisfiable because X can be substituted
by a and Y by b, which produces the equality aabb = aabb. In fact, substituting
X by an arbitrary amount of a’s and Y by an arbitrary amount of b’s unifies the
two sides of the equation.

The word equation problem is decidable [16] and NP-hard. In a series of
works, Jeż [12,13] showed that word equations can be solved in non-deterministic
linear space. It has been shown by Plandowski [18] that there exists an upper

bound of 22
O(n4)

for the smallest solution to a word equation of length n. Having
this in mind, a standard method for solving word equations is known as filling
the positions [14,17]. In this method a length for each of the string variables is
non-deterministically selected. Having a fixed length of the variables reduces the
problem to lining up the positions of the two sides of the equation, and filling
the unknown positions of the variables with characters, making the two sides
equal.

In this paper we present a new solver for word equation with linear length
constraints, Woorpje. In particular, it guesses the maximal length of vari-
ables and encodes a variation of filling the positions method into an automata-
construction, thereby reducing the search for a solution to a reachability question
of this automata. Preliminary experiments with a pure automata-reachability-
based approach revealed however, that this would not scale for even small word
equations. Woorpje therefore encodes the automata into SAT and uses the
tool Glucose [3] as a backend. Unlike other approaches based on the filling the
positions method (e.g. [6,19]), Woorpje does not need an exact bound for each
variable, but only an upper bound. Experiments indicate that Woorpje is not
only reliable but also competitive with the more mature CVC4 and Z3. Results
indicate that Woorpje is quicker on pure word equations (no linear length con-
straints), and that CVC4 and Z3 mainly have an edge on word equations with
linear constraints. This may be due to our naive solution for solving linear length
constraints.

2 Preliminaries

Let N be the set of natural numbers, let [n] be the set { 0, 1, 2, . . . , n − 1 } and
[n]0 the set [n] \ { 0 }. For a finite set Δ of symbols, we let Δ∗ be the set of all
words over Δ and ε be the empty word. For an alphabet Δ and a /∈ Δ, we let

On Solving Word Equations Using SAT 95

Δa denote the set Δ ∪ { a }. For a word w = x0x1 . . . xn−1 we let |w| = n refer
to its length. For i ∈ [|w|] we denote by w[i] the symbol on the ith position of
w i.e. w[i] = xi. For a ∈ Δ and w ∈ Δ∗ we let |w|a denote the number of as
in w. If w = v1v2 for some words v1, v2 ∈ Δ∗, then v1 is called a prefix of w
and v2 is a suffix of w. In the remainder of the paper, we let Ξ = Σ ∪ Γ where
Σ (Γ) is a set of symbols called letters (variables) and Σ ∩ Γ = ∅. We call a
word w ∈ Ξ∗ a pattern over Ξ. For a pattern w ∈ Ξ∗ we let var(w) ⊆ Γ denote
the set of variables from Γ occurring in w. A substitution for Ξ is a morphism
S : Ξ∗ → Σ∗ with S(a) = a for every a ∈ Σ and S(ε) = ε. Note, that to define
a substitution S, it suffices to define S(X) for all X ∈ Γ .

A word equation over Ξ is a tuple (u, v) ∈ Ξ∗ × Ξ∗ written u =̇ v. A sub-
stitution S over Ξ is a solution to a word equation u =̇ v (denoted S |=u =̇ v) if
S(u) = S(v). A word equation u =̇ v is satisfiable if there exists a substitution
S such that S |= u =̇ v. A system of word equations is a set of word equations
P ⊆ Ξ∗ ×Ξ∗. A system of word equations P is satisfiable if there exists a substi-
tution S that is a solution to all word equations (denoted S |= E). Karhumäki
et al. [14] showed that for every system of word equations, a single equation can
be constructed which is satisfiable if and only if the initial formula was satisfi-
able. The solution to the constructed word equation can be directly transferred
to a solution of the original word equation system.

Bounded Word Equations. A natural sub-problem of solving word equations is
that of Bounded Word Equations. In this problem we are not only given a word
equation u =̇ v but also a set of length constraints {|X| ≤ bX | X ∈ Γ ∧bX ∈ IN}.
The bounded word equation is satisfiable if there exists a substitution S such
S |=u =̇ v and |S(X)| ≤ bX for each X ∈ Γ . For convenience, we shall sometimes
refer to the set of bounds bX as a function B : Γ → IN such that bX = B(X).

Word Equations with Linear Constraints. A word equation with linear con-
straints is a word equation u =̇ v accompanied by a system θ of linear Dio-
phantine equations, where the unknowns correspond to the lengths of possible
substitutions of the variables in Γ . A word equation with linear constraints is
satisfiable if there exists a substitution S such that S |=u =̇ v and S satisfies θ.
Note that the bounded word equation problem is in fact a special case of word
equations with linear constraints.

SAT Solving. A Boolean formula ϕ with finitely many Boolean variables
var(ϕ) = { x1, . . . , xn } is usually given in conjunctive normal form. This is a
conjunction over a set of disjunctions (called clauses), i.e. ϕ =

∧
i

∨
j li,j , where

li,j ∈ ⋃
i∈[n] { xi,¬xi } is a literal. A mapping β : var(ϕ) → { 0, 1 } is called

an assignment ; for such an assignment, the literal l evaluates to true if and
only if l = xi and β(xi) = 1, or l = ¬xi and β(xi) = 0. A clause inside a
formula in conjunctive normal form is evaluated to true if at least one of its
literals evaluates true. We call a formula ϕ satisfied (under an assignment) if all
clauses are evaluated to true. If there does not exists a satisfying assignment, ϕ
is unsatisfiable.

96 J. D. Day et al.

3 Word Equation Solving

In this section we focus on solving Bounded Word Equations and Word Equations
with Linear Constraints. We proceed by first solving bounded word equations,
and secondly, we discuss a minor change, that allows solving word equations
with linear constraints.

3.1 Solving Bounded Word Equation

Recall that a bounded word equation consists of a word equation u =̇ v along
with a set of equations {|X| ≤ bX} providing upper bounds for the solution
of each variable X. In our approach we use these bounds to create a finite
automaton which has an accepting run if and only if the bounded word equation
is satisfiable.

Before the actual automata construction, we need some convenient transfor-
mations of the word equation itself. For a variable X with length bound bX ,
we replace X with a sequence of new ‘filled variables’ X(0) · · · X(bX−1) which
we restrict to only be substituted by either a single letter or the empty word. A
pattern containing only filled variables, as well as letters, is called a filled pattern.
For a pattern w ∈ Ξ∗ we denote its corresponding filled pattern by wξ. In the
following, we refer to the alphabet of filled variables by Γξ and by Ξξ = Σ ∪ Γξ

the alphabet of the filled patterns. Let S : Ξ∗ → Σ∗ be a substitution for
w ∈ Ξ∗. We can canonically define the induced substitution for filled patterns
as Sξ : (Σ ∪ Γξ) → Σλ with Sξ(a) = S(a) for all a ∈ Σ, Sξ(X(i)) = S(X)[i]
for all X(i) ∈ Γξ and i < |S(X)|, and Sξ(X(j)) = λ for all X(j) ∈ Γξ and
|S(X)| ≤ j < bX . Here, λ is a new symbol (λ /∈ Ξξ) to indicate an unused
position at the end of a filled variable. Note that the substitution of a single
filled variable always maps to exactly one character from Σλ, and, as soon as
we discover Sξ

(
X(j)

)
= λ for j ∈ [bX] it also holds that Sξ

(
X(i)

)
= λ for all

j ≤ i < bX . In a sense, the new element λ behaves in the same way as the
neutral element of the word monoid Σ∗, being actually a place holder for this
element ε. In the other direction, if we have found a satisfying filled substitution
to our word equation, the two filled patterns obtained from the left hand side
and the right hand side of an equation, respectively, we can transform it to a
substitution for our original word equation by defining S(X) as the concate-
nation Sξ

(
X(0)

)
. . . Sξ

(
X(i)

)
in which each occurrence of λ is replaced by the

empty word ε, for all X ∈ Γ and i ∈ [bX].
Our goal is now to build an automaton which calculates a suitable substi-

tution for a given equation. During the calculation there are situations where
a substitution does not form a total function. To extend a partial substitution
S : Ξ
→ Σ∗ we define for X ∈ Ξ and b ∈ Σ∗ the notation S

[
X
b

]
= S∪{ X
→ b }

whenever S(X) is undefined and otherwise S
[

X
b

]
= S. This definition can be

naturally applied to filled substitutions. We define a congruence relation which
sets variables and letters in relation whenever their substitution with respect to
a partial substitution Sξ is equal or undefined. For all a, b ∈ Ξξ ∪ {λ} we define

On Solving Word Equations Using SAT 97

a
Sξ∼ b iff Sξ (a) = Sξ (b) or Sξ (b) /∈ Σ∗

λ or Sξ (a) /∈ Σ∗
λ.

Definition 1. For a word equation u =̇ v for u, v ∈ Ξ∗ and a mapping B :
Γ → IN defining the bounds B(X) = bX , we define the equation automaton
A(u =̇ v,B) = (Q, δ, I, F) where Q = ([|uξ| + 1] × [|vξ| + 1]) × (Ξξλ

→ Σλ) is a
set of states consisting of two integers which indicate the position inside the two
words uξ and vξ and a partial substitution, the transition function δ : Q×Σλ → Q
defined by

δ (((i, j) , S) , a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
(i + 1, j + 1) , S

[
uξ[i]

a

] [
vξ[j]

a

])
if uξ[i]

Sξ∼ vξ[j]
Sξ∼ a,

(
(i + 1, j) , S

[
uξ[i]

λ

])
if uξ[i]

Sξ∼ λ = a,
(
(i, j + 1) , S

[
vξ[j]

λ

])
if vξ[j]

Sξ∼ λ = a.

an initial state I = ((0, 0) , { a
→ a | a ∈ Σλ }) and the set of final states F =
{ ((i, j) , Sξ) | i = |uξ|, j = |vξ| }.
The state space of our automaton is finite since the filled substitution Sξ maps
each input to exactly one character in Σ. The automaton is nondeterministic, as
the three choices we have for a transition are not necessarily mutually exclusive.

As an addition to the above definition, we introduce the notion of location as
a pair of integers (i, j) corresponding to two positions inside the two words uξ

and vξ. A location (i, j) can also be seen as the set of states of the form ((i, j), S)
for all possible partial substitutions S.

A run of the above nondeterministic automaton constructs a partial substi-
tution for the given equation which is extended with each change of state. The
equation has a solution if one of the accepting states (|uξ|, |vξ|, S), where S is a
total substitution, is reachable, because the automaton simulates a walk through
our input equation left to right, with all its positions filled in a coherent way.

Example 1. Consider the equation u =̇ v for u = aZXb, v = aXaY ∈ Ξ∗.
We choose the bounds bX = bY = bZ = 1. This will give us the words
uξ = aZ(0)X(0)b and vξ = aX(0)aY (0). Figure 1 visualizes the corresponding
automaton. A run starting with the initial substitution Si = { a
→ a | a ∈ Σλ }
reaching one of the final states gives us a solution to the equation. In this example
we get the substitutions Z
→ a,X
→ a, Y
→ b and Z
→ a,X
→ ε, Y
→ b.

Theorem 1. Given a bounded word equation u =̇ v for u, v ∈ Ξ∗,with bounds
B, then the automaton A(u =̇ v,B) reaches an accepting state if and only if there
exists S such that S |= u =̇ v and |S(X)| ≤ B(X) for all X ∈ Γ .

SAT Encoding. We now encode the solving process into propositional logic.
For that we impose an ordering on the finite alphabets Σ = { a0, . . . , an−1 }
and Γ = { X0, . . . , Xm−1 } for n,m ∈ N. Using the upper bounds given for all
variables X ∈ Γ , we create the filled variables alphabet Γξ. Further, we create

98 J. D. Day et al.

a Z(0) X(0) b

a

X(0)

a

Y (0)

(0, 0)

Si

(1, 1)

Si

(2, 1)

Si

[
Z(0)

λ

]

(1, 2)

Si

[
X(0)

λ

] (2, 2)

Si

[
Z(0)

λ

] [
X(0)

λ

]

Si

[
Z(0)

a

] [
X(0)

a

]

Si

[
Z(0)

b

] [
X(0)

b

]

(3, 2)

Si

[
Z(0)

λ

] [
X(0)

λ

]

(2, 3)

Si

[
Z(0)

a

] [
X(0)

λ

] (3, 3)

Si

[
Z(0)

a

] [
X(0)

a

]

Si

[
Z(0)

a

] [
X(0)

λ

]

(4, 4)

Si

[
Z(0)

a

] [
X(0)

a

] [
Y (0)

b

]

Si

[
Z(0)

a

] [
X(0)

λ

] [
Y (0)

b

]

a

λ

λ

λ

a

b

a

λ

a

λ

b

b

Fig. 1. Automaton for the word equation aZXb =̇ aXaY , with the states grouped
according to their locations. Only reachable states are shown.

the Boolean variables Ka
X(i) , for all X(i) ∈ Γξ, a ∈ Σλ and i ∈ [bX]. Intuitively,

we want to construct our formula such that an assignment β sets Ka
X(i) to 1, if

the solution of the word equation, which corresponds to the assignment β, is such
that at position i of the variable X an a is found, meaning Sξ

(
X(i)

)
= a. To make

sure Ka
X(i) is set to 1 for exactly one a ∈ Σλ we define the clause

∨
a∈Σλ

Ka
X(i)

which needs to be assigned true, as well the constraints Ka
X(i) → ¬Kb

X(i) , for all
a, b ∈ Σλ,X ∈ Γ, i ∈ [bX] where a �= b, which also need to be all true.

To match letters we add the variables Ca,a ↔ � and Ca,b ↔ ⊥ for all a, b ∈ Σλ

with a �= b. As such, the actual encoding of our equation can be defined as follows:
for w ∈ { uξ, vξ } and each position i of w and letter a ∈ Σλ we introduce a
variable which is true if and only if w[i] will correspond to an a in the solution
of the word equation. More precisely, we make a distinction between constant
letters and variable positions and define: worda

w[i] ↔ Cw[i],a if w[i] ∈ Σλ and
worda

w[i] ↔ Ka
w[i] if w[i] ∈ Γξ. The equality of two characters, corresponding to

position i in u and, respectively, j in v, is encoded by introducing a Boolean
variable wmi,j ↔ ∨

a∈Σλ
worda

u[i] ∧ worda
v[j] for appropriate i ∈ [|uξ|], j ∈ [|vξ|].

Based on this setup, each location of the automaton is assigned a Boolean
variable. As seen in Definition 1 we process both sides of the equation simul-
taneously, from left to right. As such, for a given equation u =̇ v we create
n · m = (|uξ| + 1) · (|vξ| + 1) many Boolean variables Si,j for i ∈ [n] and j ∈ [m].
Each variable corresponds to a location in our automaton. The location (0, 0)
is our initial location and (|uξ|, |vξ|) our accepting location. The goal is to find
a path between those two locations, or, alternatively, a satisfying assignment
β, which sets the variables corresponding to these locations to 1. Every path

On Solving Word Equations Using SAT 99

between the location (0, 0) and another location corresponds to matching pre-
fixes of u and v, under proper substitutions. We will call locations where an
assignment β sets a variable Si,j to 1, active locations. Our transitions are now
defined by a set of constraints. We fix i ∈ [n] and j ∈ [m] in the following.
The constraints are given as follows: The first constraint (1) ensures that every
active location has at least one active successor. The next three constraints
(2)–(4) ensure the validity of the paths we follow: from a location we can only
proceed to exactly one other location, in order to find a satisfying assignment;
therefore we disallow simultaneous steps in multiple directions. In (5), (6) we
forbid using an λ-transition whenever there is another possibility of moving for-
ward. In the same manner we proceed in the case of two matching λ in (7);
this part is especially important for finding substitutions which are smaller than
the given bounds. The idea applies in the same way for matching letters, whose
encoding is given in (8). The actual transitions which are possible from one state
to another are encoded in (9) by using our Boolean variables wmi,j which are
true for matching positions in the two sides of the equation. This constraint
allows us to move forward in both words if there was a match of two letters in
the previous location. When the transitions are pictured as movements in the
plane, this corresponds to a diagonal move. A horizontal or vertical move corre-
sponds to a match with the empty word. The last constraint (10) ensures a valid
predecessor. This is supposed to help the solver in deciding the satisfiability of
the obtained formula, i.e., to guide the search in an efficient way. It can be seen
as a local optimization step.

Si,j → Si+1,j ∨ Si,j+1 ∨ Si+1,j+1 (1)
(Si,j ∧ Si,j+1) → (¬Si+1,j+1 ∧ ¬Si+1,j) (2)
(Si,j ∧ Si+1,j) → (¬Si+1,j+1 ∧ ¬Si,j+1) (3)
(Si,j ∧ Si+1,j+1) → (¬Si,j+1 ∧ ¬Si+1,j) (4)

Si,j ∧ ¬wordλ
u[i] → ¬Si+1,j and Si,j ∧ wordλ

u[i] ∧ ¬wordλ
v[j] → Si+1,j (5)

Si,j ∧ ¬wordλ
v[j] → ¬Si,j+1 and Si,j ∧ ¬wordλ

u[i] ∧ wordλ
v[j] → Si,j+1 (6)

Si,j ∧ wordλ
u[i] ∧ wordλ

v[j] → Si+1,j+1 (7)

Si,j ∧ Si+1,j+1 → wmi,j (8)
Si,j ↔ (Si−1,j−1 ∧ wmi−1,j−1) ∨ (Si,j−1 ∧ ¬wmi,j−1) ∨ (Si−1,j ∧ ¬wmi−1,j) (9)
Si+1,j+1 → Si,j ∨ Si+1,j ∨ Si,j+1 (10)

The final formula is the conjunction of all constraints defined above. This formula
is true iff location (n,m) is reachable from location (0, 0), and this is true iff the
given word equation is satisfiable w.r.t. the given length bounds.

Lemma 1. Let u =̇ v be a word equation, B be the function giving the bounds
for the word equation variable, and ϕ the corresponding formula consisting of
the conjunction (1)–(10) and the earlier defined constraints in this section, then
ϕ ∧ S0,0 ∧ S|uξ|,|vξ| has a satisfying assignment if and only if A(u =̇ v,B) reaches
an accepting state.

100 J. D. Day et al.

Example 2. Consider the word equation u =̇ v where u = XaXbY bZ and v =
aXY Y bZZbaa ∈ Ξ∗ where Σ = { a } and Γ = { X,Y,Z }. Using the approach
discussed above, we find the solution S(X) = aaaaaaaa, S(Y) = aaaa and
S(Z) = aa using the bounds bX = 8 and bY = bZ = 6. We set up an automaton
with 32·38 = 1216 states to solve the equation. In Fig. 2 we show the computation
of the SAT-Solver. Light grey markers indicate states considered in a run of the
automaton. In this case only 261 states are needed. The dark grey markers
visualize the actual path in the automaton leading to the substitution. Non-
diagonal stretches are λ transitions.

3.2 Refining Bounds and Guiding the Search

Fig. 2. Solver compu-
tation on XaXbY bZ
=̇ aXY Y bZZbaa

Initial experiments revealed a major inefficiency of
our approach: most of the locations were not used
during the search and only increased the encoding
time. The many white markers in Fig. 2 indicat-
ing unused locations visualizes the problem. Since
we create all required variables x ∈ Γ and con-
straints for every position i < bX , we can reduce
the automaton size by lowering these upper bounds.
Abstracting a word equation by the length of the
variables gives us a way to refine the bounds bX

for some of the variables X ∈ Γ . By only consider-
ing length we obtain a Diophantine equation in the
following manner. We assume an ordering on the

variable alphabet Γ = { X0, . . . , Xn−1 }. We associate to each word equation
variable Xj an integer variable Ij .

Definition 2. For a word equation u =̇ v with Γ = { X0, . . . , Xn−1 } we define
its length abstraction by

∑
j∈[n]

(|u|Xj
− |v|Xj

)·Ij =
∑

a∈Σ |v|a−|u|a for j ∈ [n].

If a word equation has a solution S, then so does its length abstraction with
variable Ij = |S(Xj)|. Our interest is computing upper bounds for each variable
Xk ∈ Γ relative to the upper bounds of the bounded word equation problem.
To this end consider the following natural deductions

∑

j∈[n]

(|u|Xj
− |v|Xj

) · Ij =
∑

a∈Σ

(|v|a − |u|a)

⇐⇒ Ik =
∑

a∈Σ (|v|a − |u|a)
|u|Xk

− |v|Xk

−
∑

j∈[n]\k

(|u|Xj
− |v|Xj

) · Ij

|u|Xk
− |v|Xk

=⇒ Ik ≤
∑

a∈Σ (|v|a − |u|a)
(|u|Xk

− |v|Xk
)

−
∑

j∈κ

(|u|Xj
− |v|Xj

) · bXj

(|u|Xk
− |v|Xk

)
= bSXk

,

where κ = {m ∈ [n] \ k | (| u|Xk
− |v|Xk

) · (|u|Xm
− |v|Xm

) < 0 }. Whenever
0 < bSXk

< bXk
holds, we use bSXk

instead of bxk
to prune the search space.

On Solving Word Equations Using SAT 101

The length abstraction is also useful because it might give information about
the unsatisfiability of an equation: if there is no solution to the Diophantine
equation, there is no solution to the word equation. We use this acquired knowl-
edge and directly report this fact. Unfortunately whenever |u|X −|v|X = 0 holds
for a variable X we cannot refine the bounds, as they are not influenced by the
above Diophantine equation.

Guiding the Search. The length abstraction used to refine upper bounds can
also be used to guide the search in the automaton. In particular it can restrict
allowed length of one variable based on the length of others. We refer to the
coefficient of variable Ij in Definition 2 by Cou,v(Ij) =

(|u|Xj
− |v|Xj

)
.

To benefit from the abstraction of the word equation inside our propositional
logic encoding we use Reduced Ordered Multi-Decision Diagrams (MDD) [2]. An
MDD is a directed acyclic graph, with two nodes having no outgoing edges (called
true and false terminal nodes). A Node in the MDD is associated to exactly
one variable Ij , and has an outgoing edge for each element of Ij ’s domain. In the
MDD, a node labelled Ij is only connected to nodes labelled Ij+1. A row (r(Ij))
in an MDD is a subset of nodes corresponding to a certain variable Ij .

We create the MDD following Definition 2. The following definition creates
the rows of the MDD recursively. An MDD node is a tuple consisting of a variable
Ij and an integer corresponding the partial sum which can be obtained using
the coefficients and position information of all previous variables Ik for k < j.
We introduce a new variable I−1 labelling the initial node of the MDD. The
computation is done as follows:

r(Ii) = { (Ii, s + k · Cou,v(Xi)) | s ∈ { s′ | (Ii−1, s
′) ∈ r(Ii−1) } , k ∈ [bXi

] } (11)

and r(I−1) = { (I−1, 0) }. Since Ij is associated to the word equations variable
Xj , we let r(Xj) = r(Ij). We denote the whole set of nodes in the MDD by
MC =

⋃
X∈Γ∪{ I−1 } r(X). The true node of the MDD is (In−1, s#), where

s# =
∑

a∈Σ |v|a − |u|a. If the initial creation of nodes did not add this node,
the given equation (Definition 2) is not satisfiable hence the word equation has
no solution given the set bounds. Furthermore there is no need to encode the
full MDD, when only a subset of its nodes can reach (In−1, s#). For reducing
the MDD nodes to this subset, we calculate all predecessors of a given node
(Ii, s) ∈ MC as follows

pred((Ii, s)) =
{

(Ii−1, s
′)

∣
∣ s′ = s − k · Cou,v(Xi−1), k ∈ [bXi−1]

}
.

The minimized set M = F (T) of reachable nodes starting at the only accepting
node T = { (In, s#) } is afterwards defined through a fixed point by

T ⊆ F (T) ∧ (∀ p ∈ F (T) : q ∈ pred(p) ∧ q ∈ MC ⇒ q ∈ F (T)
)

(12)

We continue by encoding this into a Boolean formula. For that we need informa-
tion on the actual length of a possible substitution. We reuse the Boolean vari-
ables of our filled variables X ∈ Γξ. The idea is to introduce bX +1 many Boolean

102 J. D. Day et al.

variables (OHi(0) . . .OHi(bX + 1)) for each Xi ∈ Γ , where OHi(j) is true if and
only if Xi has length j in the actual substitution. This kind of encoding is known
as a one-hot encoding. To achieve this we add a constraint forcing substitutions
to have all λ in the end. We force our solver to adapt to this by adding clauses
Kλ

X(j) → Kλ
X(j+1) for all j ∈ [bXi

−1] and X
(j)
i ∈ Γξ. The actual encoding is done

by adding the constraints OHi(0) ↔ KλX
(0)
i and OHi(bXi

) ↔ ¬Kλ

X
(bXi

−1) , which
fixes the edge cases for the substitution by the empty word and no λ inside it. For
all j ∈ [bXi

]0, we add the constraints OHi(j) ↔ Kλ

X
(j)
i

∧ ¬Kλ

X
(j−1)
i

, which marks

the first occurrence of λ. The encoding of the MDD is done nodewise by associat-
ing a Boolean variable Mi,j for each i ∈ [|Γ |], where (Ii, j) ∈ M . Our goal is now
to find a path inside the MDD from node (I−1, 0) to (In−1, s#). Therefore we
enforce a true assignment for the corresponding variables M−1,0 and Mn−1,s# . A
valid path is encoded by the constraint Mi−1,j ∧OHi(k) → Mi,s for each variable
Xi ∈ Γ , k ∈ [bXi

]0, where s = j + k · Cou,v(Xi) and (Ii, s) ∈ M . This encodes
the fact that whenever we are at a node (Ii−1, s) ∈ M and the substitution for a
variable Xi has length k (|S(Xi)| = k), we move on to the next node, which corre-
sponds to Xi and an integer obtained by taking the coefficient of the variable Xi,
multiplying it by the substitution length, and adding it to the previous partial
sum s. Whenever there is only one successor to a node (Ii, j) within our MDD,

(I−1, 0)

(I0, 0)

(I1, −1)(I1, 0) (I1, −2)

(I2, 0) (I2, −1) (I2, −2)(I2, 1)(I2, 2)

truefalse

I0 ∈ [2]

I1 = 0
I1 = 1

I1 = 2

I2 = 0I2 = 1
I2 = 2

I2 = 1 I2 = 0I2 = 2
I2 = 2

I2 = 1
I2 = 0

Fig. 3. The MDD for aX2X0b
.
= aX0aX1

we directly force its correspond-
ing one hot encoding to be true
by adding Mi−1,j → OHi(j).
This reduces the amount of
guesses on variables.

Example 3. Consider the equa-
tion u =̇ v for u = aX2X0b, v =
aX0aX1 ∈ Ξ∗, where Σ =
{ a, b } and Γ = { X0,X1,X2 }.
The corresponding linear equa-
tion therefore has the form 0 ·
I0 + (−1) · I1 + 1 · I2 = 0
which gives us the coefficients
Cou,v(X0) = 0, Cou,v(X1) = −1
and Cou,v(X2) = 1. For given
bounds bX0 = bX1 = bX2 = 2 the induced MDD has the form shown in Fig. 3. In
this example s# = 0, and therefore (I2, 0) is the only node connected to the true
node. The minimization of the MDD by using the fixed point decribed in (12)
removes all grey nodes, since they are not reachable starting at the true node.
The solver returns the substitution S(X0) = ε, S(X0) = b and S(X0) = a. It took
the centred path consisting of the nodes (I−1, 0), (I0, 0), (I1,−1), (I2, 0), true
inside the MDD.

Adding Linear Length Constraints. Until now we have only concerned ourselves
with bounded word equations. As mentioned in the introduction however, bound-
ed equations with linear constraints are of interest as well. In particular, without

On Solving Word Equations Using SAT 103

Preprocessing Encoding SAT-Solver
Input

Model

Woorpje

unsat
sat

sat

unsat

unknown

Fig. 4. Architecture of Woorpje

loss of generality we restrict to linear constraints of the form [2] c0I0 + · · · +
cn−1In−1 ≤ c where c, ci ∈ Z are integer coefficients and Ii are integer variables
with a domain Di = { m ∈ IN | 0 ≤ m ≤ di } and a corresponding di ∈ IN. Each
Ii corresponds to the length of a substitution to a variable of the given word
equation.

Notice that the structure of the linear length constraint is similar to that
of Definition 2. For handling linear constraints we can adapt the generation of
MDD nodes to keep track the partial sum of the linear constraint, and define
the accepting node of the MDD to one where all rows have been visited and the
inequality is true. We simply extend the set T which was used in the fix point
iteration in (12) to the set T =

{
(In, s)

∣
∣ (In, s) ∈ MC ∧ s ≤ s#

}
.

4 Experiments

The approach described in the previous sections has been implemented in the
tool Woorpje. The inner workings of Woorpje is visualised in Fig. 4. Woor-
pje first has a preprocessing step where obviously satisfiable/unsatisfiable word
equations are immediately reported.

After the preprocessing step, Woorpje iteratively encodes the word equation
into a propositional logic formula and solves it with Glucose [3] for increasing
maximal variable lengths (i2, where i is the current iteration). If a solution is
found, it is reported. The maximal value of i is user definable, and by default
set to 2n where n is the length of the given equation. If Woorpje reaches the
given bound without a verdict, it returns unknown.

We have run Woorpje and state of the art word equation solvers (CVC4
1.6, Norn 1.0.1, Sloth 1.0, Z3 4.8.4) on several word equation benchmarks with
linear length constraints. The benchmarks range from theoretically-interesting
cases to variations of the real-world application set Kaluza [19]. All tests were
performed on Ubuntu Linux 18.04 with an Intel Xeon E5-2698 v4 @ 2.20 GHz
CPU and 512 GB of memory with a timeout of 30 s.

We used five different kind of benchmarks. The first track (I) was produced
by generating random strings, and replacing factors with variables at random,
in a coherent fashion. This guarantees the existence of a solution. The gener-
ated word equations have at most 15 variables, 10 letters, and length 300. The
second track (II) is based on the idea in Proposition 1 of [10], where the equa-
tion XnaXnbXn−1bXn−2 · · · bX1

.= aXnXn−1Xn−1bXn−2Xn−2b · · · bX1X1baa is

104 J. D. Day et al.

shown to have a minimal solution of exponential length w.r.t. the length of the
equation. The third track (III) is based on the second track, but each letter b is
replaced by the left hand side or the right hand side of some randomly generated
word equation (e.g., with the methods from track (I)). In the fourth track (IV)
each benchmark consists of a system of 100 small random word equations with at
most 6 letters, 10 variables and length 60. The hard aspect of this track is solving
multiple equations at the same time. Within the fifth track (V) each benchmark
enriches a system of 30 word equations by suitable linear constraints, as presented
in this paper. This track is inspired by the Kaluza benchmark set in terms of hav-
ing many small equations enriched by linear length constraints. All tracks, except
track II which holds 9 instances, consist of 200 benchmarks. The full benchmark
set is available at https://www.informatik.uni-kiel.de/∼mku/woorpje. Table 1 is
read as follows: is the count of instances classified as correctly, where marks
the incorrect classified cases. For instances marked with the solver returned no
answer but terminated before the timeout of 30 s was reached, where in marked
cases the solver was killed after 30 s. The row marked by states the overall solv-
ing time. The produced substitutions were checked regarding their correctness
afterwards. The classification of was done by ad-hoc case inspection whenever
not all solvers agreed on a result. In the cases one solver produced a valid solu-
tion, and others did not, we validated the substitutions manually. For the cases
where one solver determined an equation is unsatisfied and all others timed out,
we treated the unsat result as correct. This means that we only report errors if a
solver reports unsat and we know the equation was satisfiable. During our evalu-
ation of track I CVC4 crashed with a null-pointer exception regarding the word
equation dbebgddbecfcbbAadeeaecAgebegeecafegebdbagddaadbddcaeeebfabfef -
abfacdgAgaabgegagf =̇ dbebgddbeAfcbbAaIegeeAaDegagf , where lowercase
symbols are letters and uppercase symbols are variables. Worth mentioning is
the reporting of 14 satisfiable benchmarks by the tool Sloth without being able
to produce a valid model, while at least two other tools classified them as unsat-
isfiable. We treated this as an erroneous behaviour.

Table 1. Benchmark results (: correct classified, : reported unknown, : timed

out after 30 s, : incorrectly classified, : total Time in seconds)

The result shows that Woorpje produces reliable results (0 errors) in com-
petitive time. It outperforms the competitors in track I, III and IV and sticks

https://www.informatik.uni-kiel.de/~mku/woorpje

On Solving Word Equations Using SAT 105

relatively tight to the leaders Z3str3, Z3Seq and CVC4 on track V. On track
II Woorpje trails CVC4 and Z3Str3. The major inefficiency of Woorpje is
related to multiple equations with large alphabets and linear length constraints.

It is worth emphasising, that the benchmarks developed here seem of intrinsic
interest, as they challenge even established solvers.

5 Conclusion

In this paper we present a method for solving word equations by using a SAT-
Solver. The method is implemented in our new tool Woorpje and experiments
show it is competitive with state-of-the-art string solvers. Woorpje solves word
equations instances that other solvers fail to solve. This indicates that our tech-
nique can complement existing techniques in a portfolio approach.

In the future, we aim to extend our approach to include regular constraints.
As our approach relies on automata theory, it is expected that this could be
achievable. Another step is the enrichment of our linear constraint solving. We
currently do a basic analysis by using the MDDS. There are a few refinement
steps described in [2] which seem applicable. A next major step is to develop a
more efficient encoding of the alphabet of constants. Currently the state space
explodes due to the massive branching caused by the usage of large alphabets.

References

1. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

2. Ab́ıo, I., Stuckey, P.J.: Encoding linear constraints into SAT. In: O’Sullivan, B.
(ed.) CP 2014. LNCS, vol. 8656, pp. 75–91. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10428-7 9

3. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
27(01), 1840001 (2018)

4. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

5. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp.
55–59, October 2017

6. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, 8–10 December 2008, San Diego, California, USA, Proceedings,
pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/osdi08/
tech/full papers/cadar/cadar.pdf

https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-10428-7_9
https://doi.org/10.1007/978-3-319-10428-7_9
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

106 J. D. Day et al.

8. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL), 49 (2019)

9. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying Java bytecode. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 10

10. Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations.
In: Proceedings of MFCS 2017. LIPIcs, vol. 83, pp. 18:1–18:14 (2017)

11. Hoĺık, L., Jank P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. Proc. ACM Program. Lang.
2(POPL), 4 (2017)

12. Jeż, A.: Recompression: a simple and powerful technique for word equations.
In: 30th International Symposium on Theoretical Aspects of Computer Science,
STACS 2013, 27 February- 2 March 2013, Kiel, Germany, pp. 233–244 (2013).
https://doi.org/10.4230/LIPIcs.STACS.2013.233

13. Jeż, A.: Word equations in nondeterministic linear space. In: Proceedings of ICALP
2017. LIPIcs, vol. 80, pp. 95:1–95:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2017)

14. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM (JACM) 47(3), 483–505 (2000)

15. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver
for string constraints. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pp. 105–116. ACM (2009)

16. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Sbornik:
Math. 32(2), 129–198 (1977)

17. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055097

18. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
40th Annual Symposium on Foundations of Computer Science, pp. 495–500. IEEE
(1999)

19. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for Javascript. In: 2010 IEEE Symposium on Security and
Privacy, pp. 513–528. IEEE (2010)

20. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–
240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 12

https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.4230/LIPIcs.STACS.2013.233
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/978-3-319-41528-4_12

	On Solving Word Equations Using SAT
	1 Introduction
	2 Preliminaries
	3 Word Equation Solving
	3.1 Solving Bounded Word Equation
	3.2 Refining Bounds and Guiding the Search

	4 Experiments
	5 Conclusion
	References

