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Abstract. In this paper we propose augmented interval Markov chains
(AIMCs): a generalisation of the familiar interval Markov chains (IMCs)
where uncertain transition probabilities are in addition allowed to depend
on one another. This new model preserves the flexibility afforded by IMCs
for describing stochastic systems where the parameters are unclear, for
example due to measurement error, but also allows us to specify tran-
sitions with probabilities known to be identical, thereby lending further
expressivity.

The focus of this paper is reachability in AIMCs. We study the quali-
tative, exact quantitative and approximate reachability problem, as well
as natural subproblems thereof, and establish several upper and lower
bounds for their complexity. We prove the exact reachability problem is
at least as hard as the well-known square-root sum problem, but, encour-
agingly, the approximate version lies in NP if the underlying graph is
known, whilst the restriction of the exact problem to a constant num-
ber of uncertain edges is in P. Finally, we show that uncertainty in the
graph structure affects complexity by proving NP-completeness for the
qualitative subproblem, in contrast with an easily-obtained upper bound
of P for the same subproblem with known graph structure.

Keywords: Interval Markov decision processes · Reachability

1 Introduction

Discrete-time Markov chains are a well-known stochastic model, one which has
been used extensively to reason about software systems [7,14,21]. They com-
prise a finite set of states and a set of transitions labelled with probabilities in
such a way that the outgoing transitions from each state form a distribution.
They are useful for modelling systems with inherently probabilistic behaviour,
as well as for abstracting complexity away from deterministic ones. Thus, it
is a long-standing interest of the verification community to develop logics for
describing properties concerning realiability of software systems and to devise
verification algorithms for these properties on Markov chains and their related
generalisations, such as Markov decision processes [2,17].

One well-known such generalisation is motivated by how the assumption of
precise knowledge of a Markov chain’s transition relation often fails to hold.
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Indeed, a real-world system’s dynamics are rarely known exactly, due to incom-
plete information or measurement error. The need to model this uncertainty
and to reason about robustness under perturbations in stochastic systems nat-
urally gives rise to interval Markov chains (IMCs). In this model, uncertain
transition probabilities are constrained to intervals, with two different seman-
tic interpretations. Under the once-and-for-all interpretation, the given inter-
val Markov chain is seen as representing an uncountably infinite collection of
Markov chains refining it, and the goal is to determine whether some (or alter-
natively, all) refinements satisfy a given property. In contrast, the at-every-step
interpretation exhibits a more game-theoretic flavour by allowing a choice over
the outgoing transition probabilities prior to every move. The goal is then to
determine strategies which optimise the probability of some property being sat-
isfied. Originally introduced in [15], interval Markov chains have recently elicited
considerable attention: see for example references [23], [6] and [3], which study
the complexity of model checking branching- and linear-time properties, as well
as [9], where the focus is on consistency and refinement.

While IMCs are very natural for modelling uncertainty in stochastic dynam-
ics, they lack the expressiveness necessary to capture dependencies between tran-
sition probabilities arising out of domain-specific knowledge of the underlying
real-world system. Such a dependency could state e.g. that, although the proba-
bilities of some transitions are only known to lie within a given interval, they are
all identical. Disregarding this information and studying only a dependence-free
IMC is impractical, as allowing these transitions to vary independently of one
another results in a vastly over-approximated space of possible behaviours.

Therefore, in the present paper we study augmented interval Markov chains
(AIMCs), a generalisation of IMCs which allows for dependencies of this type to
be described. We study the effect of this added expressivity through the prism
of the existentially quantified reachability problem, exclusively under the once-
and-for-all interpretation. Our results are the following. First, we show that the
full problem is hard for both the square-root sum problem (Theorem 6) and
for the class NP (Theorem 3). The former hardness is present even when the
underlying graph structure is known and acyclic, whilst the latter arises even
in the qualitative subproblem when transition intervals are allowed to include
zero, rendering the structure uncertain. Second, assuming known structure, we
show the approximate reachability problem to be in NP (Theorem 7). Third,
we show that the restriction of the reachability problem to a constant number of
uncertain (i.e. interval-valued) transitions is in P (Theorem 4). The problem in
full generality is in PSPACE via a straightforward reduction to the existential
theory of the reals (Theorem 5).

The model studied here can be viewed as a simple variant of parametric
Markov chains. These have an established presence in the literature, typically
with practical and scalable synthesis procedures as the main focus, rather than
complexity classification. See for example references [8,10,13,18].
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2 Preliminaries

Markov Chains. A discrete-time Markov chain or simply Markov chain (MC)
is a tuple M = (V, δ) which consists of a finite set of vertices or states V and
a one-step transition function δ : V 2 → [0, 1] such that for all v ∈ V , we have∑

u∈V δ(v, u) = 1. For the purposes of specifying Markov chains as inputs to
decision problems, we will assume δ is given by a square matrix of rational
numbers. The transition function gives rise to a probability measure on V ω in
the usual way. We denote the probability of reaching a vertex t starting from
a vertex s in M by P

M (s � t). The structure of M is its underlying directed
graph, with vertex set V and edge set E = {(u, v) ∈ V 2 : δ(u, v) �= 0}. Two
Markov chains with the same vertex set are said to be structurally equivalent if
their edge sets are identical.

An interval Markov chain (IMC) generalises the notion of a Markov chain.
Formally, it is a pair (V,Δ) comprising a vertex set V and a transition function
Δ from V 2 to the set Int [0,1] of intervals contained in [0, 1]. For the purposes of
representing an input IMC, we will assume that each transition is given by a lower
and an upper bound, together with two Boolean flags indicating the strictness of
the inequalities. A Markov chain M = (V, δ) is said to refine an interval Markov
chain M = (V,Δ) with the same vertex set if δ(u, v) ∈ Δ(u, v) for all u, v ∈ V .
We denote by [M] the set of Markov chains which refine M. An IMC’s structure
is said to be known if all elements of [M] are structurally equivalent. Moreover,
if there exists some ε > 0 such that for all M = (V, δ) ∈ [M] and all u, v ∈ V ,
either δ(u, v) = 0 or δ(u, v) > ε, then the IMC’s structure is ε-known. An IMC
can have known structure but not ε-known structure for example by having an
edge labelled with an open interval whose lower bound is 0.

An augmented interval Markov chain (AIMC) generalises the notion of an
IMC further by equipping it with pairs of edges whose transition probabilities are
required to be identical. Formally, an AIMC is a tuple (V,Δ,C), where (V,Δ)
is an IMC and C ⊆ V 4 is a set of edge equality constraints. A Markov chain
(V, δ) is said to refine an AIMC (V,Δ,C) if it refines the IMC (V,Δ) and for
each (u, v, x, y) ∈ C, we have δ(u, v) = δ(x, y). We extend the notation [M] to
AIMCs for the set of Markov chains refining M.

The reachability problem for AIMCs is the problem of deciding, given an
AIMC M = (V,Δ,C), an initial vertex s ∈ V , a target vertex t ∈ V , a threshold
τ ∈ [0, 1] and a relation ∼∈ {≤,≥}, whether there exists M ∈ [M] such that
P

M (s � t) ∼ τ . The qualitative subproblem is the restriction of the reachability
problem to inputs where τ ∈ {0, 1}.

Finally, in the approximate reachability problem, we are given a (small) ratio-
nal number θ and a reachability problem instance. If ∼ is ≥, our procedure is
required to accept if there exists some refining Markov chain with reachability
probability greater than τ + θ/2, it is required to reject if all refining Markov
chains have reachability probability less than τ −θ/2, and otherwise it is allowed
to do anything. Similarly if ∼ is ≤. Intuitively, this is a promise problem: in the
given instance the optimal reachability probability is guaranteed to be outside
the interval [τ − θ/2, τ + θ/2]. A similar type of problem was studied in [19].
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First-Order Theory of the Reals. We write L to denote the first-order language
R〈+,×, 0, 1, <,=〉. Atomic formulas in L are of the form P (x1, . . . , xn) = 0 and
P (x1, . . . , xn) > 0 for P ∈ Z[x1, . . . , xn] a polynomial with integer coefficients.
We denote by Th(R) the first-order theory of the reals, that is, the set of all valid
sentences in the language L. Let Th∃(R) be the existential first-order theory of
the reals, that is, the set of all valid sentences in the existential fragment of L. A
celebrated result [24] is that L admits quantifier elimination: each formula φ1(x̄)
in L is equivalent to some effectively computable formula φ2(x̄) which uses no
quantifiers. This immediately entails the decidability of Th(R). Tarski’s original
result had non-elementary complexity, but improvements followed, culminating
in the detailed analysis of [20]:

Theorem 1. (i) Th(R) is complete for 2-EXPTIME. (ii) Th∃(R) is decidable
in PSPACE. (iii) If m ∈ N is a fixed constant and we consider only existential
sentences where the number of variables is bounded above by m, then validity is
decidable in P.

We denote by ∃R the class, introduced in [22], which lies between NP and
PSPACE and comprises all problems reducible in polynomial time to the prob-
lem of deciding membership in Th∃(R).

Square-Root Sum Problem. The square-root sum problem is the decision problem
where, given r1, . . . , rm, k ∈ N, one must determine whether

√
r1+· · ·+√

rm ≥ k.
Originally posed in [16], this problem arises naturally in computational geometry
and other contexts involving Euclidean distance. Its exact complexity is open.
Membership in PSPACE is straightforward via a reduction to the existential
theory of the reals. Later this was sharpened in [1] to PosSLP, the complexity
class whose complete problem is deciding whether a division-free arithmetic cir-
cuit represents a positive number. This class was introduced and bounded above
by the fourth level of the counting hierarchy CH in the same paper. However,
containment of the square-root sum problem in NP is a long-standing open
question, originally posed in [12], and the only obstacle to proving membership
in NP for the exact Euclidean travelling salesman problem. This highlights a
difference between the familiar integer model of computation and the Blum-
Shub-Smale Real RAM model [4], under which the square-root sum is decidable
in polynomial time [25]. See also [11] for more background.

3 Qualitative Case

In this section, we will focus on the qualitative reachability problem for AIMCs.
We show that, whilst membership in P is straightforward when the underlying
graph is known, uncertainty in the structure renders the qualitative problem
NP-complete.

Theorem 2. The qualitative reachability problem for AIMCs with known struc-
ture is in P.
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Proof. Let the given AIMC be M and s, t the initial and target vertices, respec-
tively. Since the structure G = (V,E) of M is known, the qualitative reachability
problem can be solved simply using standard graph analysis techniques on G.
More precisely, for any M ∈ [M], PM (s � t) = 1 if and only if there is no path
in G which starts in s, does not enter t and ends in a bottom strongly connected
component which does not contain t. Similarly, PM (s � t) = 0 if and only if
there is no path from s to t in G. �
Theorem 3. The qualitative reachability problem for AIMCs is NP-complete.

Proof. Membership in NP is straightforward. The equivalence classes of [M]
under structure equivalence are at most 2n2

, where n is the number of vertices,
since for each pair (u, v) of vertices, either an edge (u, v) is present in the struc-
ture or not. This upper bound is exponential in the size of the input. Thus, we
can guess the structure of the Markov chain in nondeterministic polynomial time
and then proceed to solve an instance of the qualitative reachability problem on
an AIMC with known structure in polynomial time by Theorem 2.

We now proceed to show NP-hardness using a reduction from 3-SAT. Sup-
pose we are given a propositional formula ϕ in 3-CNF: ϕ ≡ ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk,
where each clause is a disjunction of three literals: ϕi ≡ li,1 ∨ li,2 ∨ li,3. Let the
variables in ϕ be x1, . . . , xm.

Let M = (V,Δ,C) be the following AIMC, also depicted in Fig. 1. The vertex
set has 3m + k + 3 vertices:

V = {x1, . . . , xm, x1, . . . , xm} ∪ {ϕ1, . . . , ϕk} ∪ {S, F},∪{v0, . . . , vm}
that is, one vertex for each possible literal over the given variables, one vertex
for each clause, two special sink vertices S, F (success and failure) and m + 1
auxiliary vertices. Through a slight abuse of notation, we use xi, xi to refer both
to the literals over the variable xi and to their corresponding vertices in M, and
similarly, ϕi denotes both the clause in the formula and its corresponding vertex.

The transitions are the following. For all i ∈ {1, . . . , m}, we have:

Δ(vi−1, xi) = Δ(vi−1, xi) = Δ(xi, vi) =
Δ(xi, F ) = Δ(xi, F ) = Δ(xi, vi) = [0, 1].

For all i ∈ {1, . . . , k} and j ∈ {1, . . . , 3}, we have: Δ(ϕi, li,j) = [0, 1]. For all
i ∈ {1, . . . , k},

Δ(vm, S) = Δ(vm, ϕi) =
[

1
k + 1

,
1

k + 1

]

.

Finally, Δ(S, S) = Δ(F, F ) = [1, 1]. For all other pairs of vertices u, v, we have
Δ(u, v) = [0, 0].

The edge equality constraints are:

C =
⋃

i=1,...,m

{(vi−1, xi, xi, vi), (vi−1, xi, xi, F )}.
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Intuitively, the sequence of ‘diamonds’ comprised by v0, . . . , vm and the ver-
tices corresponding to literals are a variable setting gadget. Choosing transition
probabilities δ(vi−1, xi) = δ(xi, vi) = 1, and hence necessarily δ(xi, F ) = 0,
corresponds to setting xi to true, whereas δ(vi−1, xi) = δ(xi, vi) = 1 and
δ(xi, F ) = 0 corresponds to setting xi to false. On the other hand, the branching
from vm into ϕ1, . . . , ϕk and the edges from clauses to their literals makes up the
assignment testing gadget. Assigning non-zero probability to the edge (ϕi, li,j)
corresponds to selecting the literal li,j as witness that the clause ϕi is satisfied.

Formally, we claim that there exists a Markov chain M ∈ [M] such that
P

M (v0 � S) = 1 if and only if ϕ is satisfiable.
Suppose first that ϕ is satisfiable and choose some satisfying assignment

σ : {x1, . . . , xm} → {0, 1}. Let M = (V, δ) ∈ [M] be the refining Markov chain
which assigns the following transition probabilities to the interval-valued edges
of M. First, let δ(vi−1, xi) = δ(xi, vi) = δ(xi, F ) = σ(xi), and δ(vi−1, xi) =
δ(xi, vi) = δ(xi, F ) = 1 − σ(xi) for all i ∈ {1, . . . , m}. Second, for each clause
ϕi, choose some literal li,j which is true under σ and set δ(ϕi, li,j) = 1 and
consequently δ(ϕi, l) = 0 for the other literals l. Now we can observe that the
structure of M has two bottom strongly-connected components, namely {S} and
{F}, and moreover, F is unreachable from v0. Therefore, PM (v0 � S) = 1.

Conversely, suppose there exists some M = (V, δ) ∈ [M] such that PM (v0 �
S) = 1. We will prove that ϕ has a satisfying assignment. For each i ∈ {1, . . . , m},
write pi = δ(vi−1, xi) = δ(xi, vi) = δ(xi, F ), and 1−pi = δ(vi−1, xi) = δ(xi, vi) =
δ(xi, F ). Notice that P

M (v0x1F
ω) = P

M (v0x1F
ω) = p1(1 − p1), so we can con-

clude p1 ∈ {0, 1}, otherwise P
M (v0 � S) �= 1, a contradiction. If p1 = 1, then

P
M (v0x1v1x2F

ω) = P
M (v0x1v1x2F

ω) = p2(1 − p2),

whereas if p1 = 0, then

P
M (v0x1v1x2F

ω) = P
M (v0x1v1x2F

ω) = p2(1 − p2).

Either way, we must have p2 ∈ {0, 1} to ensure P
M (v0 � S) = 1. Unrolling

this argument further shows pi ∈ {0, 1} for all i. In particular, there is exactly
one path from v0 to vm and it has probability 1. Let σ be the truth assignment
xi → pi, we show that σ satisfies ϕ. Indeed, if some clause ϕi is unsatisfied under
σ, then its three literals li,1, . . . , li,3 are all unsatisfied, so δ(li,j , F ) > 0 for all
j = 1, . . . , 3. Moreover, for at least one of these three literals, say li,1, we will
have δ(ϕi, li,1) > 0, so the path v0 . . . vmϕili,1F

ω will have non-zero probability:

P
M (v0 . . . vmϕili,1F

ω) =
1

k + 1
δ(ϕi, li,1)δ(li,1, F ) �= 0,

which contradicts P
M (v0 � S) = 1. Therefore, σ satisfies ϕ, which completes

the proof of NP-hardness and of the Theorem. �
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Fig. 1. Construction used in Theorem 3 for showing NP-hardness of the qualitative
AIMC reachability problem. The sink F is duplicated to avoid clutter.

4 Quantitative Case: Upper Bound

We now shift our attention to the subproblem of AIMC reachability which arises
when the number of interval-valued transitions is fixed, that is, bounded above
by some absolute constant. Our result is the following.

Theorem 4. Fix a constant N ∈ N. The restriction of the reachability problem
for AIMCs to inputs with at most N interval-valued transitions lies in P. Hence,
the approximate reachability problem under the same restriction is also in P.

Proof. Let M = (V,Δ,C) be the given AIMC and suppose we wish to decide
whether there exists M ∈ [M] such that P

M (s � t) ∼ τ . Let U ⊆ V be the set
of vertices which have at least one interval-valued outgoing transition, together
with s and t: U = {s, t} ∪ {u ∈ V : ∃v ∈ V.Δ(u, v) is not a singleton}. Notice
that |U | ≤ N +2 = const . Write W = V \U , so that {U,W} is a partition of V .

Let x be a vector of variables, one for each interval-valued transition of
M. For vertices v1, v2, let δ(v1, v2) denote the corresponding variable in x if
the transition (v1, v2) is interval-valued, and the only element of the singleton
set Δ(v1, v2) otherwise. Let ϕ1 be the following propositional formula over the
variables x which captures the set of ‘sensible’ assignments:

ϕ1 ≡
∧

v1∈V

∑

v2∈V

δ(v1, v2) = 1

∧
∧

v1,v2∈V

δ(v1, v2) ∈ Δ(v1, v2) ∩ [0, 1] ∧
∧

(a,b,c,d)∈C

δ(a, b) = δ(c, d).

There is clearly a bijection between [M] and assignments of x which satisfy ϕ1.
For vertices v1, v2, use the notation v1 � v2 to denote the event ‘v2 is reached

from v1 along a path consisting only of vertices in W , with the possible exception
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of the endpoints v1, v2’. Notice that for all u ∈ U and w ∈ W , PM (w � u) is
independent of the choice of M ∈ [M]. Denote these probabilities by α(w, u).
They satisfy the system

∧

w∈W,u∈U

α(w, u) = δ(w, u) +
∑

w′∈W

δ(w,w′)α(w′, u),

which is linear and therefore easy to solve with Gaussian elimination. Thus,
assume that we have computed α(w, u) ∈ Q for all w ∈ W and u ∈ U .

Similarly, for all u1, u2 ∈ U , write β(u1, u2) for the probability of u1 � u2.
Notice that β(u1, u2) is a polynomial of degree at most 1 over the variables x,
given by

β(u1, u2) = δ(u1, u2) +
∑

w∈W

δ(u1, w)α(w, u2).

Thus, assume we have computed symbolically β(u1, u2) ∈ Q[x] for all u1, u2 ∈ U .
Finally, for each u ∈ U , let y(u) be a variable and write y for the vector of

variables y(u) in some order. Consider the following formula in the existential
first-order language of the real field: ϕ ≡ ∃x∃y . ϕ1 ∧ ϕ2 ∧ ϕ3, where

ϕ2 ≡ y(t) = 1 ∧
∧

u∈U\{t}
y(u) =

∑

u′∈U

β(u, u′)y(u′),

ϕ3 ≡ y(s) ∼ τ , and ϕ1 is as above. Intuitively, ϕ1 states that the variables x
describe a Markov chain in [M], ϕ2 states that y gives the reachability proba-
bilities from U to t, and ϕ3 states that the reachability probability from s to t
meets the required threshold τ . The problem instance is positive if and only if
ϕ is a valid sentence in the existential theory of the reals, which is decidable.
Moreover, the formula uses exactly 2|U | ≤ 2(N + 2) = const variables, so by
Theorem 1, the problem is decidable in polynomial time, as required. �

Notice that removing the assumption of a constant number of interval-valued
transitions only degrades the complexity upper bound, but not the described
reduction to the problem of checking membership in Th∃(R). As an immediate
corollary, we have:

Theorem 5. The reachability problem and the approximate reachability problem
for AIMCs are in ∃R.
Note that Theorem 5 can be shown much more easily, without the need to con-
sider separately U -vertices and W -vertices as in the proof of Theorem 4. It is
sufficient to use one variable per interval-valued transition to capture its transi-
tion probability as above and one variable per vertex to express its reachability
probability to the target. Then write down an existentially quantified formula
with the usual system of equations for reachability in a Markov chain obtained
by conditioning on the first step from each vertex. While this easily gives the
∃R upper bound, it uses at least |V | variables, so it is insufficient for showing
membership in P for the restriction to a constant number of interval-valued
transitions.
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5 Quantitative Case: Lower Bound

In this section, we give a lower bound for the AIMC reachability problem. This
bound remains in place even when the structure of the AIMC is ε-known and
acyclic, except for the self-loops on two sink vertices.

Theorem 6. The AIMC reachability problem is hard for the square-root sum
problem, even when the structure of the AIMC is ε-known and is acyclic, except
for the self-loops on two sink vertices.

Proof. The reduction is based on the gadget depicted in Fig. 2. It is an AIMC
with two sinks, S and F (success and failure), each with a self-loop with probabil-
ity 1, and 12 vertices: {a, b1, . . . , b4, c1, . . . , c4, d1, d4, e}. The structure is acyclic
and comprises four chains leading to S, namely, ab1c1d1eS, ab2c2S, ab3c3S and
ab4c4d4S. From each vertex other than a and S there is also a transition to F .

The probabilities are as follows. The transition (b3, c3) has probability α,
whilst (b1, c1), (b2, c2), (b4, c4) have probability β, for rationals α, β to be spec-
ified later. Consequently, the remaining outgoing transition to F out of each bi

has probability 1 − α or 1 − β. The transitions (a, bi) for i = 1, . . . , 4 all have
probability 1/4. Finally, the transitions (c1, F ), (c2, F ), (c3, S), (c4, F ), (d1, e),
(d4, S) and (e, S) are interval-valued and must all have equal probability in any
refining Markov chain. Assign the variable x to the probability of these tran-
sitions. The interval to which these transition probabilities are restricted (i.e.
the range of x) is to be specified later. Consequently, the remaining transitions
(c1, d1), (d1, F ), (e, F ), (c2, S), (c3, F ), (c4, d4), (d4, F ) are also interval-valued,
with probability 1 − x.

The gadget is parameterised by an input r ∈ N, on which the transition
probabilities depend. Let M be a positive integer large enough to ensure

x∗ :=
3
√

r

2M
∈ (0, 1).

Then choose a positive integer N large enough, so that

α :=
4M

N
∈ (0, 1), β :=

16M3

27rN
∈ (0, 1), and popt :=

√
r

N
+

β

4
∈ (0, 1).

Now, a straightforward calculation shows

P(a � S) = P(ab1c1d1eS) + P(ab2c2S) + P(ab3c3S) + P(ab4c4d4S)

=
βx2(1 − x)

4
+

β(1 − x)
4

+
αx

4
+

βx(1 − x)
4

=
αx − βx3 + β

4
.

Analysing the derivative of this cubic, we see that P(a � S) increases on [0, x∗),
has its maximum at x = x∗ and then decreases on (x∗, 1]. This maximum is

αx∗ − β(x∗)3 + β

4
=

√
r

N
+

β

4
= popt .
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Thus, if we choose some closed interval which contains x∗ but not 0 and 1 to be
the range of x, then the gadget described thus far will have ε-known structure
and maximum reachability probability from a to S given by

√
r scaled by a

constant and offset by another constant.
Now, suppose we wish to decide whether

√
r1 + · · · +

√
rm ≥ k for given

positive integers r1, . . . , rm and k. Construct m gadgets as above, with values
of the parameter r given by r1, . . . , rm, respectively. The constants α,N,M are
shared across the gadgets, as are the sinks S, F , but each gadget has its own
constant βi in place of β, and its own copy of each non-sink vertex. The edge
equality constraints are the same as above within each gadget, and there are no
equality constraints across gadgets. Assign a variable xi to those edges in the
i-th gadget which in the description above were labelled x, and choose a range
for xi as described above for x. Finally, add a new initial vertex v0, with m
equiprobable outgoing transitions to the a-vertices of the gadgets.

In this AIMC, the probability of v0 � S is given by the multivariate poly-
nomial

1
m

m∑

i=1

αxi − βix
3
i + βi

4
,

whose maximum value on [0, 1]m is

1
m

m∑

i=1

(√
ri

N
+

βi

4

)

.

Therefore, if we denote

τ =
k

mN
+

1
m

m∑

i=1

βi

4
,

then we have
√

r1 + · · · +
√

rm ≥ k if and only if there exists a refining Markov
chain of this AIMC with P(v0 � S) ≥ τ , so the reduction is complete. Note
that if we represent rational numbers as usual as pairs of integers in binary, the
bit-length of τ and all intermediate constants is bounded above by a polynomial
in the bit-lengths of the inputs r1, . . . , rm, k, so the reduction can be carried out
in polynomial time. �
Remark 1. It is easy to see that if we are given an acyclic AIMC with the
interval-valued edges labelled with variables, the reachability probabilities from
all vertices to a single target vertex are multivariate polynomials and can be
computed symbolically with a backwards breadth-first search from the target.
Then optimising reachability probabilities reduces to optimising the value of a
polynomial over given ranges for its variables.

It is interesting to observe that a reduction holds in the other direction as well.
Suppose we wish to decide whether there exist values of x1 ∈ I1, . . . , xn ∈ In

such that P (x1, . . . , xn) ≥ τ for a given multivariate polynomial P , intervals
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I1, . . . , In ⊆ [0, 1] and τ ∈ Q. Notice that P can easily be written in the form
P (x1, . . . , xn) = β +N

∑m
i=1 αiQi(x1, . . . , xn), where N > 0, α1, . . . , αm ∈ (0, 1)

are constants such that
∑m

i=1 αi ≤ 1, each Qi is a non-empty product of terms
drawn from

⋃n
j=1{xj , (1−xj)}, and β is a (possibly negative) constant term. For

example, we rewrite the monomial −2x1x2x3 as 2(1 − x1)x2x3 + 2(1 − x2)x3 +
2(1 − x3) − 2. Do this to all monomials with a negative coefficient, then choose
an appropriately large N to obtain the desired form.

Now it is easy to construct an AIMC with two sinks S, F and a designated
initial vertex v0 where the probability of v0 � S is

∑m
i=1 αiQi. We use a chain

to represent each Qi, and then branch from v0 into the first vertices of the chains
with distribution given by the αi. There exist values of the xi in their appropriate
intervals such that P (x1, . . . , xn) ≥ τ if and only if there exists a refining Markov
chain such that P(v0 � S) ≥ (τ − β)/N .

a
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b2

b3

b4

c1

c2

c3

c4

d1

d4

e

SF

1/4

1/4

1/4

1/4

β 1 − x x

x

β 1 − x

x

β

1 − x

α

x

1−
β

1−
α

x

1−
x

1−
β

x

1
−

β

x

1− x

1−
x

1 − x

1
1

Fig. 2. Gadget for reduction from square-root sum problem to AIMC reachability.

6 Approximate Case

In this section, we focus on the approximate reachability problem for AIMCs.
To obtain our upper bound, we will use a result from [5].

Definition 1. If M1 = (V, δ1) and M2 = (V, δ2) are Markov chains with the
same vertex set, then their absolute distance is

distA(M1,M2) = max
u,v∈V

{|δ1(u, v) − δ2(u, v)|} .

Lemma 1 (Theorem 5 in [5]). Let M1 = (V, δ1) and M2 = (V, δ2) be struc-
turally equivalent Markov chains, where n = |V | and for all u, v ∈ V , we have
either δ1(u, v) = 0 or δ1(u, v) ≥ ε. Then for any two vertices s, t ∈ V , we have

∣
∣PM1(s � t) − P

M2(s � t)
∣
∣ ≤

(

1 +
distA(M1,M2)

ε

)2n

− 1.
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In particular, if distA(M1,M2) ≤ d < ε for some d, then

∣
∣PM1(s � t) − P

M2(s � t)
∣
∣ ≤

(

1 +
d

ε − d

)2n

− 1.

We will also need a version of Bernoulli’s inequality:

Lemma 2. For all x ≥ −1 and r ∈ [0, 1], we have (1 + x)r ≤ 1 + rx.

Now we proceed to prove our upper bound.

Theorem 7. The approximate reachability problem for AIMCs with ε-known
structure is in NP.

Proof. Let M be the given AIMC and let ε > 0 be a lower bound on all non-
zero transitions across all M ∈ [M]. Suppose we are solving the maximisation
version of the problem: we are given vertices s, t and a rational θ > 0, we must
accept if P

M (s � t) > τ + θ/2 for some M ∈ [M] and we must reject if
P

M (s � t) < τ − θ/2 for all M ∈ [M].
Let n be the number of vertices and let d := ε

(
1 − (1 + θ)−1/2n

)
. For each

interval-valued transition, split its interval into at most 1/d intervals of length at
most d each. For example, [l, r] partitions into [l, l+d), [l+d, l+2d), . . . , [l+kd, r],
where k is the largest natural number such that l + kd ≤ r. Call the endpoints
defining these subintervals grid points. Let 〈M〉 ⊆ [M] be the set of Markov
chains refining M such that the probabilities of all interval-valued transitions
are chosen from among the grid points. Observe that for all M1 ∈ [M], there
exists M2 ∈ 〈M〉 such that distA(M1,M2) ≤ d.

Our algorithm showing membership in NP is the following. We choose
M ∈ 〈M〉 nondeterministically and compute p := P

M (s � t) using Gaussian
elimination. Then if p ≥ τ − θ/2, we accept, and otherwise we reject.

To complete the proof, we need to argue two points. First, that 〈M〉 is at
most exponentially large in the size of the input, so that M can indeed be
guessed in nondeterministic polynomial time. Second, that if for all M ∈ 〈M〉
we have P

M (s � t) < τ − θ/2, then it is safe to reject, i.e. there is no M ′ with
P

M ′
(s � t) ≥ τ + θ/2. (Note that the procedure is obviously correct when it

accepts.)
To the first point, we apply Lemma 2 with x = −θ/(θ + 1) and r = 1/2n:

(1 + θ)−1/2n =
(

1 − θ

1 + θ

)1/2n

≤ 1 − 1
2n

θ

1 + θ

=⇒ d−1 = ε−1 1
1 − (1 + θ)−1/2n

≤ 1
ε
2n

1 + θ

θ
=

1
ε
2n

(

1 +
1
θ

)

.

This upper bound is a polynomial in n, 1/θ and 1/ε, and hence at most exponen-
tial in the length of the input data. Therefore, for each interval-valued transition,
we can write down using only polynomially many bits which grid point we wish
to use for the probability of that transition. Since the number of transitions is
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polynomial in the length of the input, it follows that an element of 〈M〉 may be
specified using only polynomially many bits, as required.

To the second point, consider M1,M2 ∈ [M] such that distA(M1,M2) ≤ d.
Noting that d < ε, by Lemma 1, we have

∣
∣PM1(s � t) − P

M2(s � t)
∣
∣ ≤

(

1 +
d

ε − d

)2n

− 1

=
(

ε

ε(1 + θ)−1/2n

)2n

− 1 = θ.

In other words, changing the transition probabilities by at most d does not alter
the reachability probability from s to t by more than θ. However, recall that we
chose 〈M〉 in such a way that for all M1 ∈ [M], there is some M2 ∈ 〈M〉 with
distA(M1,M2) ≤ d. In particular, if PM2(s � t) < τ − θ/2 for all M2 ∈ 〈M〉,
then certainly P

M1(s � t) < τ + θ/2 for all M1 ∈ [M], so it is safe to reject.
This completes the proof. �
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