
Reaching Out Towards Fully Verified
Autonomous Systems

Sriram Sankaranarayanan1(B) , Souradeep Dutta1 , and Sergio Mover2

1 University of Colorado, Boulder, USA
{srirams,souradeep.dutta}@colorado.edu

2 Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
smover@lix.polytechnique.fr

Abstract. Autonomous systems such as “self-driving” vehicles and
closed-loop medical devices increasingly rely on learning-enabled compo-
nents such as neural networks to perform safety critical perception and
control tasks. As a result, the problem of verifying that these systems
operate correctly is of the utmost importance. We will briefly exam-
ine the role of neural networks in the design and implementation of
autonomous systems, and how various verification approaches can con-
tribute towards engineering verified autonomous systems. In doing so,
we examine promising initial solutions that have been proposed over the
past three years and the big challenges that remain to be tackled.

Keywords: Formal verification · Autonomous systems ·
Constraint solvers

1 Introduction

This paper presents a brief overview of recent progress towards the verification
of autonomous systems. A system is defined as autonomous if it can operate in a
reliable manner without requiring “frequent” human intervention. As such, the
definition encompasses a wide variety of autonomous systems that are charac-
terized by varying levels of human involvement, including teleoperated surgical
robotic systems that translate the surgeon’s actions from a remote terminal
into precise movements of the surgical instruments placed inside the body of the
patient [31]; closed loop medical devices such as pacemakers and artificial insulin
delivery systems; autonomous “self-driving” cars, and unmanned aerial vehicles
(UAVs). The examples mentioned above clearly demonstrate that autonomous
systems are safety critical : even as we expect these systems to operate with
limited human intervention, we also expect them to perform in a provably safe
manner despite uncertainties about the environment and the numerous limita-
tions on the system’s ability to sense, compute and actuate.

Over the past decade, machine learning approaches have become default “go-
to” approaches for building autonomous systems. These approaches use a variety
of mathematical and computational models that are trained during design time
c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 22–32, 2019.
https://doi.org/10.1007/978-3-030-30806-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_3&domain=pdf
http://orcid.org/0000-0001-7315-4340
http://orcid.org/0000-0003-2706-2095
http://orcid.org/0000-0003-1029-9547
https://doi.org/10.1007/978-3-030-30806-3_3


Reaching Out Towards Fully Verified Autonomous Systems 23

using input-output examples in a supervised manner, or continuously learn and
adapt from “past mistakes” using ideas such as reinforcement learning. In both
cases, the use of neural network models has become quite popular due to the
ability of neural networks to approximate complex nonlinear functions and the
availability of powerful optimization tools that can infer these models from the
given data. Neural network models have been widely applied in a variety of
tasks. For instance, feedforward neural network models are widely used to build
perception stacks for autonomous vehicles that can be used to process large
amounts of sensor data from cameras, Lidars and other sensors to recognize
other vehicles, pedestrians, road signs and traffic lights [17,22]. Current “end-
to-end” driving pipelines seek to go from raw sensor data directly to steering
and throttle commands that can help drive the vehicle, skipping the need for
a human designed controller [5]. In applications such as robotic surgery, neural
networks can be potentially applied to enable decision support by monitoring
pre-operative, intra-operative and post-operative data to minimize the overall
risk at each stage of patient care [19]. Neural networks have also been used to
predict future blood glucose levels to help make real-time treatment decisions
for patients with type-1 diabetes [14].

The key challenge in all of these applications lies in building systems with
neural network components that are also guaranteed to satisfy key safety and
liveness properties, even in the presence of significant uncertainties in the envi-
ronment. This challenge is significant, since autonomous systems are often too
large and complex to reason about manually. Furthermore, besides the system,
the operating environment can also be complex and uncertain. Finally, it is chal-
lenging to arrive at well-defined specifications for such systems. For instance, it
is highly challenging to specify a deep neural-network based object detection
component for a self driving car. Such a specification must describe a stream of
images from a road scene and the output of the object detector for these scenes:
a task that has not proven easy, to date.

Despite these challenges, the broad area of verified autonomous systems has
rapidly gained prominence in the formal verification community. We will briefly
examine existing approaches, their advantages and drawbacks. Despite these
promising steps, a lot more work needs to be carried out to move this area
forward.

2 Preliminaries: Neural Networks

In this section, we will briefly explain background on feedforward neural net-
works, their role in learning-enabled autonomous systems. Our presentation will
be brief and at a high level. We refer the reader to standard textbooks for further
details [18].

2.1 Neural Networks

Neural networks belong to a class of connectionist models that are loosely
inspired by the way neurons are connected to each other in human and ani-



24 S. Sankaranarayanan et al.

x1 xn

y

x

σ(x)

-9 -6 -3 0 3 6 9
-1

1
tanh(z)

sigmoid(z)

ReLU(z)

Fig. 1. (Left) A schematic diagram of a feedforward neural network with n inputs
x1, . . . , xn and a single output y. Intermediate nodes are shown as unfilled circles.
(Right) Commonly used activation functions.

mal brains. There are many types of neural networks, some including units that
can store information. We classify neural networks broadly into two types: (a)
feedforward networks: that do not have internal states; and (b) recurrent net-
works: that include units that can store information internally to the network.
The difference between feedforward and recurrent networks is (roughly speaking)
analogous to that between combinatorial boolean circuits and sequential circuits
in digital logic. Most of our discussions in this paper will be centered around
feedforward neural networks.

A feedforward network can be seen as a directed acyclic graph that represents
the output as a function of the input. The nodes of this graph can be input nodes,
output nodes or intermediate nodes. Each edge of the network is a directed edge
from some node i to another node j with an associated real-valued weight wi,j .
The inputs to the network are fed to the input nodes, which do not have incoming
edges. Likewise, the outputs are available at output nodes, which do not have
any outgoing edges. Figure 1 shows a schematic diagram of a feedforward neural
network.

Each intermediate node j of a feedforward network is associated with an
activation function σj computed as follows:

1. Let (i1, j), . . . , (ik, j) be the incoming edges at node j, with associated weights
w1, . . . , wk respectively.

2. Let y1, . . . , yk be the values computed at nodes i1, . . . , ik, respectively.
3. The output at node j is given by σj(

∑k
i=1 wiyi + bj), wherein bj is a constant

called the bias at node j.

The activation functions associated with nodes are typically nonlinear functions.
Popularly used functions are depicted in Fig. 1.

1. ReLU: The ReLU unit is defined by the activation function σ(z): max(z, 0).
2. Sigmoid: The sigmoid unit is defined by the activation function σ(z): 1

1+e−z .
3. Tanh: The activation function for this unit is σ(z): tanh(z).



Reaching Out Towards Fully Verified Autonomous Systems 25

Note also that besides intermediate nodes with such activation functions, neural
networks (especially networks used in image classification) employ specialized
nodes such as max-pooling and softmax nodes that are not discussed here. They
are explained in detail elsewhere [18]. A neural network computes a function
of its inputs as follows: (a) the value of the input nodes are set according to
the inputs to the network; (b) each intermediate node is enabled as soon as
values are available at the target nodes for its incoming edges; and (c) once
enabled, a node computes its output by applying its activation function. The
computation terminates as soon as all output nodes are evaluated. Note that
since the network is a DAG, a topological ordering of the nodes can be used to
identify an evaluation order of the nodes in the network.

Neural networks have many desirable properties as universal function approx-
imators: they can uniformly approximate any given continuous function f over
a compact domain C to any desired accuracy [11]. Neural networks are used pri-
marily for two important tasks: (a) classify an input into one of many discrete
categories: for instance, categorize an image of a road sign as being a stop sign,
a speed limit sign or a pedestrian crossing sign; and (b) represent a function
from inputs to outputs learned from data through regression. Neural networks
are applied in other ways besides just classification. For instance, networks can
be used to identify a bounding box around objects of interest in a given image.
Since the networks are too complex to design by hand, they are constructed by
machine learning techniques that learn the weights and biases of the network
given the topology of the network that includes the nodes, edges, the activation
functions at each node; the input/output data in terms of training examples and
a loss function that penalizes discrepancies between the output predicted by the
neural network and the actual output in the training data.

There are many algorithms for “learning” the network weights and biases
from given training data [18]. The most popular algorithms use variants of a
strategy called stochastic gradient descent that updates the weights by calculat-
ing the gradient over a randomly chosen batch from the training data in order to
achieve a local minimum for the loss function. Often, activation functions such
as the ReLU function discussed above are smoothed in order to make it differen-
tiable. There are many popular tools that automate the training process, notably
TensorFlow and PyTorch [1,25]. These tools allow the user to create a neural
network topology with unknown weights and biases, specify a loss function and
perform the stochastic gradient descent. The networks are then evaluated on a
“held-back” test data set that is not part of the data over which it was trained
to evaluate its ability to generalize. The recent advent of GPUs that can perform
rapid vector and matrix calculations along with the availability of large amounts
of data has led to deep neural networks with hundreds of thousands of nodes.

3 Verification of Neural Networks

Even though deep neural networks, are essentially acyclic computation graphs
formed by composing simple activation functions, the overall behavior of the



26 S. Sankaranarayanan et al.

network can be exceedingly complex and highly non-linear. In this section, we
present a brief overview of the existing verification tools and techniques for neural
networks and systems that incorporate neural networks in them.

In general, neural networks are used as components inside a closed loop
autonomous system. As a result, verification problems have involved component-
wise specification involving just the neural network or an end-to-end approach
that studies the network in composition with other parts of the system. We dis-
tinguish different but closely related verification problems over neural networks:
(a) BNNs have been shown to be quite effective for regression and classification
tasks. The unit weights also yield computational savings and are amenable to
implementation as digital circuits. One of the first attempts at verifying BNN’s
was proposed by Narodytska et al. [23]. Another recent approach proposed by
Shih et al. [3] learns an Ordered Binary Decision Diagram (OBDD) locally to
abstract parts of the neural networks. Cheng et al. [9] reduce the problem of
BNN verification to hardware verification problem, and have reported speed ups
in performance.

3.1 Abstract Interpretation for Neural Networks

Abstract interpretation originally formalized by Cousot and Cousot was devel-
oped to systematically propagate sets of reachable states of a program through
individual program statements in order to establish properties of a program
as a whole [10]. Such techniques rely on abstract domains to represent the reach-
able set of states [24]. This idea can be applied to neural networks which rep-
resent loop free computations involving the application of nonlinear activation
functions.

Vechev et al. use zonotopes as an abstract domain to perform image com-
putation across a neural network [16]. In particular, zonotopes are used to
over-approximation the non-convex set of possible outputs for each layer of
the network. This allows for a layer-by-layer analysis to compute sound over-
approximations for the output of the neural network.

Xiang et al. that computes the output ranges as a union of convex poly-
topes [36]. This approach does not use SMT or MILP solvers unlike other
approaches and thus can lead to highly accurate estimates of the output range.
However, judging from preliminary evaluation reported, the cost of manipulating
polyhedra is quite expensive, and thus, the approach is currently restricted to
smaller networks when compared to SMT/MILP-based approaches.

Range computations using symbolic intervals were attempted in Reluval
[33], which essentially relied on affine arithmetic techniques to reduce the over-
approximation errors, and handle the case splitting imposed by ReLU units.
Likewise, Cheng et al. [8] propose a heuristic approach to compute tight ranges
for individual neurons.



Reaching Out Towards Fully Verified Autonomous Systems 27

3.2 Training with Robustness

Verification approaches have been incorporated to improve the process of learn-
ing networks from data [32,34]. For instance Jana et al. use the output set
estimates computed by verification tools in order to incorporate robustness in
the training phase wherein the network is rendered somewhat immune to small
perturbations of the input. This has been proposed as a means to defend against
any adversarial perturbations of the input. However, the computational cost can
be orders magnitude more expensive than standard approaches to adversarially
robust training that do not involve expensive verification tools in the loop.

3.3 Closed Loop Verification

Until this point we have been interested in verifying properties of a single neural
network in isolation. However, as mentioned previously, autonomous systems
employ neural networks as components in a closed loop that controls a physical
process. Such physical processes can often be described by ordinary differen-
tial equations (ODEs). The simplest such situation involves a neural network
that applies a feedback control to a physical process modeled as an ODE. This
setup has been studied recently in order to perform reachability analysis of the
resulting closed loop behaviors [13,21,30,35].

Dutta et al. [13], propose a technique to compute Taylor models (polyno-
mial + error) as approximations of the behavior of the neural network in a
compact domain. This was then used in conjunctions with standard reachability
tools like Flow* [6] to compute reachable set of states of the closed loop involv-
ing an ODE and a neural network. A followup approach [20] approximates the
neural network controller with Bernstein polynomials to deal with activation
functions that are more general than ReLU. Ivanov et al. [21] propose a tech-
nique whereby activation functions such as sigmoid and tanh are modeled using
differential equations evolving over time to encode a network as an ODE itself.
This allows the transformation of a single layer of the neural network into a
hybrid system. Which could then be used in standard reachability analysis tools
for such systems. Another recent work by Xiang et al. considers the combina-
tion of neural networks in feedback with piecewise linear dynamical systems [37]
using the techniques presented in [36].

Barrier certificates serve as an important approach to establish safety prop-
erties of dynamical systems [26]. Tuncali et al. [30] present an approach to syn-
thesize barrier certificates using an SMT solver to prove properties of ODEs with
neural networks as feedback.

However, neural networks are also employed in autonomous systems to clas-
sify a large volume of sensor data from cameras and LIDAR sensors. It is an enor-
mous challenge to specify the behavior of these sensors with respect to changes
in the environment and the vehicle. Shoukry et al. present a recent step towards
verifying robotic systems that employ LIDAR sensors by means of simplifying
the LIDAR system to consider a finite set of angles along with the system finds
ranges [28]. The approach also “hard codes” a fixed environment with obstacles



28 S. Sankaranarayanan et al.

having fixed positions and geometries. The authors use a SMT based approach
to construct a finite state abstraction of the closed loop system using fixed set
of predicates to partition the state-space. This abstraction is then used to check
reachability properties.

3.4 Falsification and Testing

We have focused our attention entirely on the use of formal verification
approaches to prove properties of autonomous systems with neural network
components. The problems of “best-effort” falsification to find counterexam-
ples and that of systematic testing have also received a lot of attention. We
mention a few representative approaches that relate closely to the verification
approaches mentioned above without claiming to be a comprehensive survey on
falsification/testing approaches for autonomous systems. An important line of
work (e.g., [12,29,38]) focuses on the falsification problem for systems containing
neural network components, as autonomous vehicles. The falsification problem
consist of finding an execution of the system that violates a requirement, and the
falsification algorithms for cyber-physical systems (e.g., S-TaLiRo [4]) implement
efficient heuristics to search for a system’s input that can falsify a requirement.

One challenge addressed in [38] is to find adversarial examples, a perturbation
of the input that falsifies a temporal logic formula, for a closed loop control
system formed by a neural network controller and a dynamical system. The
proposed solution tries to find an adversarial example minimizing the robustness
function of the Signal Temporal Logic (STL) formula via gradient descent.

Recent approaches also address the falsification of autonomous vehicles where
neural networks are used in the perception stack. Dreossi et al. [12] propose an
approach that falsifies STL formulas compositionally, first falsifying an abstrac-
tion of the neural network component and the cyber-physical system, and then
confirming the counterexample in the neural network component. An alternative
approach proposed by Fainekos et al. [29] focuses on perturbing driving scenar-
ios for autonomous vehicles that can result in reaching undesired state (e.g., a
crash). The scenarios are expressed in STL, and the approach generates input
test cases from different combinations of discrete parameters of the system.

4 Challenges

We conclude our discussion by briefly mentioning some of the important chal-
lenges that remain to be tackled in this rapidly emerging area.

Specification: Despite initial approaches to verifying properties of neural net-
works in isolation, or as part of larger closed loops, the problem of formally
specifying the behavior of these systems remains largely open for perception
systems that classify sensor data including images and LIDAR data. The key
challenge here lies in specifying what a valid image is in a logical formalism that
is compatible with existing verification tools. This in turn requires a specification



Reaching Out Towards Fully Verified Autonomous Systems 29

of the environment, and the imaging/sensing processes. To make matters more
complicated, small changes to the orientation/pose of the vehicle can drastically
alter the image generated. Current approaches sidestep functional specifications
in favor of requiring the classifier to be “robust” to perturbations around some
selected training examples. Alternatively, one may simplify the sensor’s capabili-
ties to make modeling easier. Another popular alternative uses generative models
that specify inputs at a high level. Fremont et al. propose an approach that uses
generative models for creating road scenes corresponding to simple program-
matic specifications for the purposes of testing [15]. Extending such formalisms
to verification problems remains an important challenge.

Scalability: Scalability of verification approaches remains yet another challenge.
Simply put, the current state-of-the art networks are 100x or 1000x larger than
the most efficient verification tools available. This gap needs to be considerably
narrowed before verification approaches can be used on realistic systems. This
challenge may requires to improve the existing verification techniques, for exam-
ple improving the underlying constraint solvers by specializing them to handle
neural networks. Alternative approaches such as using abstractions that are suf-
ficient precise to show the correctness of the neural network can also be useful.
The challenge lies in the definition of these abstractions and how they can be
obtained for large networks without resorting to expensive verification tools in
the first place.

Recurrent Networks: Another important challenge lies in tackling recurrent net-
works that involve units such as long short term memory (LSTM) with internal
state. These networks are widely used in applications such as data-driven mod-
eling and natural language processing. Verification of such networks is highly
challenging for existing tools and techniques.

Runtime Verification: Runtime verification provides an important alternative to
everything mentioned here that focuses on static/pre-deployment verification.
The use of real-time monitors to predict and act against imminent property
violations form the basis for runtime assurance using L1-Simplex architectures
that switch between a lower performance but formally validated control when an
impending failure is predicted [27]. However, the key issue lies in how impending
failures are to be predicted. An alternative approach to verification to guarantee
safety is shielding [2,40] that uses a supervisor (or so-called shield) to monitor
the execution of the autonomous system and intervene to enforce temporal logic
properties if a violation is imminent. Chen et al. present a different approach
based on monitoring viability rather than safety in order to sidestep the need to
reason about the controller [7]. Instead, their approach can perform lightweight
reasoning just over the behavior of the plant model. A recent application of their
approach involves monitoring geofences for unmanned aerial vehicle [39].



30 S. Sankaranarayanan et al.

5 Conclusion

In conclusion, we have attempted to classify the rapidly emerging area of verify-
ing autonomous systems involving neural networks. Our presentation has focused
on some of the current successes and future challenges in this area.

Acknowledgments. This work was supported in part by the Air Force Research
Laboratory (AFRL) and by the US NSF under Award # 1646556.

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learn-
ing on heterogeneous systems (2015). https://www.tensorflow.org/

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.:
Safe reinforcement learning via shielding (2018). https://aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17211

3. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by
local automaton learning (2019). http://reasoning.cs.ucla.edu/fetch.php?id=193&
type=pdf

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

5. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR abs/1604.07316
(2016). http://arxiv.org/abs/1604.07316

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

7. Chen, X., Sankaranarayanan, S.: Model-predictive real-time monitoring of linear
systems. In: IEEE Real-Time Systems Symposium (RTSS), pp. 297–306. IEEE
Press (2017)

8. Cheng, C., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. CoRR abs/1705.01040 (2017). http://arxiv.org/abs/1705.01040

9. Cheng, C., Nührenberg, G., Ruess, H.: Verification of binarized neural networks.
CoRR abs/1710.03107 (2017). http://arxiv.org/abs/1710.03107

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM Prin-
ciples of Programming Languages, pp. 238–252 (1977)

11. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Sig.
Syst. 2, 303–314 (1989)

12. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

13. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings of the
Hybrid Systems: Computation and Control (HSCC), HSCC 2019, pp. 157–168.
ACM, New York (2019)

https://www.tensorflow.org/
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
http://reasoning.cs.ucla.edu/fetch.php?id=193&type=pdf
http://reasoning.cs.ucla.edu/fetch.php?id=193&type=pdf
https://doi.org/10.1007/978-3-642-19835-9_21
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
http://arxiv.org/abs/1705.01040
http://arxiv.org/abs/1710.03107
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26


Reaching Out Towards Fully Verified Autonomous Systems 31

14. Dutta, S., Kushner, T., Sankaranarayanan, S.: Robust data-driven control of arti-
ficial pancreas systems using neural networks. In: Češka, M., Šafránek, D. (eds.)
CMSB 2018. LNCS, vol. 11095, pp. 183–202. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99429-1 11

15. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: Proceedings of the ACM Programming Language Design and Implementation
(PLDI), pp. 63–78 (2019)

16. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18, May
2018

17. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
Kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3354–3361, June 2012

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

19. Hashimoto, D.A., Rosman, G., Rus, D., Meireles, O.: Artificial intelligence in
surgery: promises and perils. Ann. Surg. 268, 70–76 (2018)

20. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis
of neural-network controlled systems. CoRR abs/1906.10654 (2019). http://arxiv.
org/abs/1906.10654

21. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the Hybrid Systems: Computation and Control (HSCC), HSCC 2019, pp. 169–178.
ACM, New York (2019)

22. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pp. 253–256, May 2010. https://doi.org/10.1109/ISCAS.2010.5537907

23. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. CoRR abs/1709.06662 (2017). http://
arxiv.org/abs/1709.06662

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

25. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Workshop on
Automatic Differentiation (2017). https://openreview.net/forum?id=BJJsrmfCZ

26. Prajna, S., Jadbabaie, A.: Safety verification using barrier certificates. In: Proceed-
ings of the HSCC 2004, vol. 2993, pp. 477–492 (2004)

27. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
28. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled

autonomous systems. In: Proceedings of the Hybrid Systems: Computation and
Control (HSCC), HSCC 2019, pp. 147–156. ACM, New York (2019)

29. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In: 2018
IEEE Intelligent Vehicles Symposium, pp. 1555–1562 (2018)

30. Tuncali, C.E., Kapinski, J., Ito, H., Deshmukh, J.V.: Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In: Proceed-
ings of the Design Automation Conference, DAC 2018, pp. 30:1–30:6 (2018)

31. U.S Food and Drug Administration: Computer-assisted surgical systems
(2019). https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-
surgical-systems. Accessed July 2019

https://doi.org/10.1007/978-3-319-99429-1_11
https://doi.org/10.1007/978-3-319-99429-1_11
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1906.10654
http://arxiv.org/abs/1906.10654
https://doi.org/10.1109/ISCAS.2010.5537907
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
https://doi.org/10.1007/978-3-662-03811-6
https://openreview.net/forum?id=BJJsrmfCZ
https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-surgical-systems
https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-surgical-systems


32 S. Sankaranarayanan et al.

32. Wang, S., Chen, Y., Abdou, A., Jana, S.: Mixtrain: scalable training of formally
robust neural networks. CoRR abs/1811.02625 (2018). http://arxiv.org/abs/1811.
02625

33. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. CoRR abs/1804.10829 (2018). http://
arxiv.org/abs/1804.10829

34. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Proceedings of the International Conference
on Machine Learning, ICML, pp. 5283–5292 (2018). http://proceedings.mlr.press/
v80/wong18a.html

35. Xiang, W., Tran, H., Johnson, T.T.: Reachable set computation and safety veri-
fication for neural networks with relu activations. CoRR abs/1712.08163 (2017).
http://arxiv.org/abs/1712.08163

36. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety ver-
ification for neural networks with relu activations (2107). https://arxiv.org/pdf/
1712.08163.pdf. Posted on arxiv December 2017

37. Xiang, W., Tran, H.D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation
and verification for a class of piecewise linear systems with neural network con-
trollers (2018). To Appear in the American Control Conference (ACC), invited
session on Formal Methods in Controller Synthesis

38. Yaghoubi, S., Fainekos, G.: Gray-box adversarial testing for control systems with
machine learning components. In: Proceedings of Hybrid Systems: Computation
and Control, pp. 179–184 (2019)

39. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime
monitoring for linear stochastic systems and applications to geofence enforcement
for UAVs (2019). In: Proceedings of the Runtime Verification 2019, October 2019
(to appear)

40. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework
for verifiable reinforcement learning. In: ACM Programming Language Design and
Implementation (PLDI), pp. 686–701 (2019)

http://arxiv.org/abs/1811.02625
http://arxiv.org/abs/1811.02625
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
http://arxiv.org/abs/1712.08163
https://arxiv.org/pdf/1712.08163.pdf
https://arxiv.org/pdf/1712.08163.pdf

	Reaching Out Towards Fully Verified Autonomous Systems
	1 Introduction
	2 Preliminaries: Neural Networks
	2.1 Neural Networks

	3 Verification of Neural Networks
	3.1 Abstract Interpretation for Neural Networks
	3.2 Training with Robustness
	3.3 Closed Loop Verification
	3.4 Falsification and Testing

	4 Challenges
	5 Conclusion
	References




