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Abstract. We give a survey of a function-analytic approach in the study
of primitivity of matrix families and of synchronizing automata. Then
we define the m-synchronising automata and prove that the existence
of a reset m-tuple of a deterministic automata with n states can be
decided in less than mn2(log2 n + m+4

2
) operations. We study whether

the functional-analytic approach can be extended to m-primitivity and
to m-synchronising automata. Several open problems and conjectures
concerning the length of m-reset tuples, m-primitive products and finding
those objects algorithmically are formulated.
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1 Introduction

A multiplicative semigroup of nonnegative matrices is called primitive if it pos-
sesses at least one strictly positive matrix. Such semigroups were introduced
relatively recently and have been intensively studied in the literature due to
applications to Markov chains, linear dynamical systems, graph theory, etc. Their
relation to synchronizing automata are especially important. There are rather
surprising links between primitive semigroups and functional equations with the
contraction of the argument. Those equations are usually applied to generate
fractals and self-similar tilings. The theory of those equations can produce short
and clear proofs of some known results on primitivity. For example, the charac-
terization of primitive families, the theorem of existence of a common invariant
affine subspace for matrices of non-synchronizing automata, etc. A new app-
roach is also useful to study Hurwitz primitive (or m-primitive) semigroups. We
discuss the characterization theorem for Hurwitz primitivity, which looks very
similar to usual primitivity in spite of the totally different proofs. This leads to
the concept of Hurwitz-synchronizing automata and reset m-tuples. We prove
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polynomial decidability of the existence of reset m-tuples and formulate several
open problems.

Throughout the paper we denote the vectors by bold letters: x =
(x1, . . . , xn) ∈ R

n. The vectors ei, i = 1, . . . , n denote the canonical basis in R
n

(all but one components of ei are zeros, the ith component is one). The norms
of vectors and of matrices is always Euclidean. By norm of affine operator we
mean the norm of its linear part. The spectral radius (the maximal modulus
of eigenvalues) of a matrix A is denoted by ρ(A). By convex body we mean a
convex compact set with a nonempty interior, coM denotes the convex hull of
M . The support of a non-negative vector (matrix) is the set of positions of its
strictly positive entries.

2 Contraction Operators and Reachability Theorems

Many facts on reachability in graphs and in automata can be formulated in terms
of contraction operators on convex domains. The following results proved in [17]
implies at least two important results on reachability. Let B be an arbitrary
family of affine operators acting in R

d. This family is called contractive if for
every ε > 0, there exists a product Π of operators from B (with repetitions
permitted) such that ‖Π‖< ε. Clearly, this is equivalent to the existence of a
product with the spectral radius (maximal modulus of eigenvalues) smaller than
one.

Theorem 1. [17] Let G ⊂ R
n be a convex body and B be a family of affine

operators respecting this body, i.e., B G ⊂ G for all B ∈ B. Then B is contractive
unless all operators of B possess a common invariant affine subspace of some
dimension q, 0 ≤ q ≤ d − 1, that intersects G.

In the next section we show how to prove this fact using tools of functional anal-
ysis. Now let us demonstrate two of its corollaries from reachability problems.
The first one deals with synchronizing automata and was presented in 2016 by
Berlinkov and Szykula:

Theorem 2. [3] If an automaton is not synchronizing, then its matrices possess
a proper invariant common linear subspace.

Let us show how this fact can be deduced from Theorem 1.

Proof. To every matrix A of the automaton we associate the corresponding affine
operator A|V on the affine hyperplane V = {x ∈ R

n | ∑n
i=1 xi = 1}. For an

arbitrary product Π of matrices of the automaton, we have either ‖Π|V ‖= 0 if
Π has a positive row, of ‖Π|V ‖≥ 1 otherwise. If a product with positive row
exists, then the automaton is synchronizing. Otherwise, the set of matrices of
the automaton is not contractive on V . Applying Theorem 1 to the simplex Δ =
co {e1, . . . ,en} ⊂ V we conclude the existence of a common invariant affine
subspace in V . Its linear span with the origin is the desired invariant linear
subspace. ��
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The next fact that can be derived from Theorem 1 is the criterion of primi-
tivity of matrix family proved in 2013 by Protasov and Voinov [16]. Let A be an
arbitrary irreducible family of nonnegative n × n matrices. Irreducibility means
that there is no coordinate subspace of R

n, i.e., subspace spanned by several
vectors of the canonical basis, which is invariant for every matrix from A. The
family A is called primitive, if there exists a strictly positive product of matrices
from A.

The concept of primitivity of matrix families was introduced in [16] and has
been studied in the literature due to many applications, see the bibliograpghy
in [2,4,11]. The importance of this property is explained by the fact that if the
family A is finite and all its matrices have neither zero rows nor zero columns,
then the primitivity of A implies that almost all long products of matrices from A
are strictly positive.

Theorem 3. [16] Let A be an irreducible family of non-negative matrices. Sup-
pose all matrices of A have neither zero rows nor zero columns; then A is not
primitive if and only if there exists a partition of the set Ω = {1, . . . , n} to r ≥ 2
nonempty subsets {Ωk}r

k=1, on which all the matrices from A act as permuta-
tions.

This means that for every A ∈ A, there is a permutation σ of the set {1, . . . , r}
such that for each i ∈ Ωk, the support of the vector Aei is contained in Ωσ(k), k =
1, . . . , k. So, if the family A is not primitive, then there is a partition of the set
of basis vectors, common to all matrices from A, such that each matrix A ∈ A
defines a permutation of this partition. If A is primitive, we formally set r = 1
and the partition is trivial Ω1 = Ω. For one matrix, this fact is a part of Perron-
Frobenius theorem. Moreover, in this case the permutation is cyclic. For families
of matrices, these permutations can be arbitrary.

Despite the simple formulation, the proof of Theorem 3 is surprisingly long
and technical. Now in the literature there are at least five different proofs of
this theorem based on different ideas. The authors proof from [16] is based on
geometry of convex polytopes. In that work the problem of finding a purely geo-
metrical and possibly simpler proof was left. The problem seems to be reasonable
in view of the combinatorial nature of the theorem. The first successful responds
to this challenge was made by Alpin and Alpina in [1] and by Blondel, Jungers,
and Olshevsky in [4]. Then Alpin and Alpina [2] suggested another construction.
All those works presented (different!) combinatorial proofs, although still rather
long. In 2015 Voynov and Protasov [17] noted that Theorem 3 can be actually
derived by the same idea of contraction families of affine operators (Theorem 1),
which gives the shortest known proof of this result. That proof may be called
analytic, since Theorem 1 is established by analytic methods, with functional
equations.

Before giving the proof we make a couple of observations. Nothing changes
in Theorem 3 if we replace the family A by the family of all column-stochastic
matrices with the same supports as matrices from A. We assume that this
replacement is already done and we keep the same notation for the new family.
Thus, all matrices from A generate affine operators on the affine hyperplane V
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and respect the simplex Δ ⊂ V . Under the assumptions of Theorem 3, primitiv-
ity of the family A is equivalent to contractivity of this family on V . This fact
is rather simple, its proof can be found in [14].

Proof of Theorem 3. Sufficiency is obvious. To prove the necessity we apply
Theorem 1 to the family A|V of affine operators on V and to the convex
body G = Δ. If A non-contracting, then the operators from A|V share a common
invariant affine subspace L ⊂ V, 0 ≤ dim L ≤ n − 2, intersecting Δ. Due to
the irreducibility of A, the subspace L intersects the interior of Δ, i.e., contains
a positive point a ∈ Δ. Consider the following relation on the set Ω: i ∼ j, if
the vector ei − ej belongs to L̃ (the linear part of L). This is an equivalence
relation splitting Ω to classes Ω1, . . . ,Ωr. Since dim L ≤ n − 2, we have r ≥ 2.
Let us show that for every i ∈ Ω and A ∈ A, the supports of all vectors of the set
Mi(A) = {Aei, A ∈ A} lie in one set Ωk. It suffices to prove that the difference
of each two elements of the set Mi(A) lies in L̃. Take arbitrary A,B ∈ A. Let a
matrix C ∈ A have the same ith column as the matrix A and all other columns
as the matrix B. For a positive vector a =

∑
i aiei ∈ L, we have

ai(Aei − Bei) = ai(Cei − Bei) = C(aiei) − B(aiei) = Ca − Ba ∈ L̃.

Since Ca ∈ L and Ba ∈ L, we have Ca − Ba ∈ L̃, and hence Aei − Bei ∈ L̃.
Thus, the supports of ith columns of all matrices from A belong to one set
Ωk. Then the supports of all columns with indices from the equivalence class
of the index i (say, Ωj) lie in the same class Ωk. Consequently, the matrix A
defines a map σ(j) = k. Since A does not have zero rows, it follows that σ is a
permutation. ��

3 Contractive Families and Functional Equations

The proof of Theorem 1 is realized by applying the theory of fractal curves and
equations of self-similarity. This idea originated in [17], here we slightly simplify
that proof. Let us have a finite family of affine operators B = {B1, . . . , Bm}. The
self-similarity equation is the equation on function v : [0, 1] → R

d:

v(t) = Bk v(mt − k + 1) , t ∈
[
k − 1

m
,

k

m

]

k = 1, . . . ,m. (1)

This equation plays an exceptional role in the theory of subdivision schemes,
compactly supported wavelets, etc. see [5,6] and references therein. A advantage
of those equations is an existence and uniqueness theorem for solutions. We will
restrict ourselves to L2-solutions. The solvability and smoothness of the solution
are expressed in terms of the so-called L2-spectral radius or in short, 2-radius
of linear or affine operators: ρ2(B) = limk→∞[ m−k

∑
Π∈Bk‖Π‖1/k]1/mk

. Here
we denote by Bk the set of products of length k of operators from the family B
(repetitions permitted). If there is a convex body G such that BG ∈ G for all
B ∈ B, then, of course, all norms of products ‖Π‖ are uniformly bounded, and
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hence ρ2 ≤ 1. It turns out that the family B is contrative precisely when ρ2 < 1.
This fact is rather simple, its proof can be found in [17]. Now we formulate the
main result on equations of self-similarity.

Theorem 4. [13] Suppose a finite family of affine operators B does not possess
a common invariant affine subspace; then Eq. (1) possesses an L2-solution if and
only if ρ2(B) < 1. In this case the solution is unique and continuously depends
on the family B.

This theorem implies Theorem 1 on contractive families.

Proof of Theorem 1. We show only the existence of a common invariant sub-
space. For the proof that this subspace intersects G, see [17]. It suffices to prove
the theorem for finite families B. Indeed, if B is non-contractive, then so is every
its finite subset, and consequently every finite subset of B possesses an invariant
affine subspace intersecting G. In this case the whole family B possesses such an
invariant subspace. Thus, we assume B = {B1, . . . , Bm} and that this family is
not contractive. Take an arbitrary point a ∈ int G and consider the operator Bε

1

defined as Bε
1x = (1 − ε)B1x + εx. For every ε ∈ (0, 1), the operator Bε

1 maps
G to intG, hence ρ(Bε

1) < 1. Therefore, the family Bε = {Bε
1, B2, . . . , Bm} is

contractive, and consequently ρ2(Bε) < 1. Hence, the self-similarity Eq. (1) with
the family Bε possesses a unique L2-solution vε. We have vε(t) ∈ G for almost
all t ∈ [0, 1]. Taking an arbitrary sequence εk → 0 we obtain a bounded sequence
vεk

, which has a weak-* limit v. This limit satisfies Eq. (1) with the initial fam-
ily of operators B. Therefore, if the family B does not have an invariant affine
subspace, then ρ2(B) < 1. Hence, B is contractive which is a contradiction. ��

4 m-primitivity and m-syncronising Automata

In this section we compare the main results on primitive and on m-primitive
families and rise a question whether the analytic method can be extended to the
study of m-primitivity. Then we define m-synchronizing automata, prove that
the existence of a synchronising m-tuple can be decided in polynomial time and
leave several open problems. For example, how to find the synchronising m-tuple
and what is an upper bound for its length?

The concept of m-primitivity was introduced in 1990 by Fornasini [7] and
then studied by Fornasini and Valcher [8,9]. Now there is an extensive literature
on this subject, see [10,12,15] and references therein. The main application of
m-primitivity is the multivariate Markov chains [7,8], although there are some
natural generalization to the graph theory, dynamical systems and large net-
works. In the notation, m is the number of matrices, that is why we say not
“k-primitive” as in some works, but “m-primitive”. It would also be natural to
use the term “Hurwitz primitive”.

Let us have a finite family of nonnegative n×n-matrices A = {A1, . . . , Am}.
For a given m-tuple α = (α1, . . . , αm) of nonnegative integers,

∑m
i=1 αi = k ≥ 1,

called also colour vector we denote by Aα the sum of all products of m matrices
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from A, in which every product contains exactly αi factors equal to Ai. The
number k will be referred to as the length of α and denoted by |α|. For example,
if A = {A1, A2, A3}, then A (1,3,0) = A1A

3
2 + A2A1A

2
2 + A2

2A1A2 + A3
2A1. Such

sums are called in the literature Hurwitz products, although they are not actually
products but sums of products. A family of non-negative matrices is m-primitive
if there exists a strictly positive Hurwitz product of those matrices. This property
is weaker than primitivity: primitivity implies m-primitivity, but not vice versa.

This notion has an obvious combinatorial interpretation. Suppose there are
n villages, some of them are connected by one-way roads colored in m colors
(two villages may be connected by several roads). The m-primitivity means that
there exists a colored vector α = (α1, . . . , αm) such that every two villages are
connected by a path of length |α| that for each i = 1, . . . ,m contains precisely
αi roads of the ith color. The criterion of m-primitivity was proved in [15] in
2013:

Theorem 5. [15] Let A be an irreducible family of non-negative matrices. Sup-
pose all matrices of A have no zero columns; then A is not primitive if and only
if there exists a partition of the set Ω = {1, . . . , n} to r ≥ 2 nonempty subsets
{Ωk}r

k=1, on which all the matrices from A act as permutations and all those
permutations commute.

If A is primitive, we formally set r = 1 and the partition is trivial Ω1 = Ω.
This criterion almost literally repeats the criterion of primitivity in Theorem 3.
The main difference is the following: if for non-primitivity the matrices Ai can
define arbitrary permutations of the sets {Ωj}r

j=1, for non m-primitivity those
permutations have to commute. This criterion quite naturally shows the common
properties and the difference between those two concepts. Another difference is
that the criterion of Theorem 5 does not require the absence of zero rows and
columns, as it was in Theorem 3, but just zero columns. This condition is much
less restrictive, since it is always satisfied for column stochastic matrices and for
matrices of automata.

As a corollary of Theorem 5 one can obtain that the m-primitivity is poly-
nomially decidable. In [15] an algorithm was presented to find the partition
{Ωj}r

j=1. If r = 1, then the family is m-primitive. The complexity of the algo-
rithm is O(mn 3 + m2n 2).

Now let us formulate three open problems.

Problem 1. Can Theorem 5 be derived by a geometrical of function-analytic
argument, similar to Theorem 1?

In spite of similarity of Theorems 3 and 5, their proofs are totally different.
The only known proof of Theorem 5 is combinatorial and has nothing in common
with all five known proofs of Theorem 3.

Problem 2. If the family is primitive, how to find its positive Hurwitz product
within polynomial time?
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The algorithm from [15] based on Theorem 5 is not constructive. It decides
whether the family is m-primitive by finding the partition {Ωj}r

j=1, but does
not find any positive Hurwitz product. The greedy algorithm for finding positive
product of a primitive family seems not to work here.

Problem 3. What is a sharp upper bound for the exponent of m-primitivity?

The exponent of m-primitivity is the minimal number k = k(n,m) such that
every m-primitive family of matrices of size n has a positive Hurwitz product
with a colour vector of length at most k.

Conjecture 1. Under the assumption that all matrices of the family A do not
have zero columns, the exponent of m-primitivity is polynomial in n and m.

Examples from the works [10,12] show that the exponents of m-primitivity
can be exponential in m. In example from [12], we have k(n,m) ≥ Cnm+1.
However, in all those examples the matrices have zero columns.

Similarly to m-primitivity, we can define m-synchronising automata. Let us
have deterministic finite automaton with n states and with m actions. The
automaton is called m-synchronizing if there exists an m-tuple α = (α1, . . . , αm)
such that for every state there exists a reset word of length |α| with αi com-
mands of the ith action, i = 1, . . . ,m. This means that for every starting state
there is a word (may be different for different states) with the m-tuple α that
leaves the automaton on a prescribed particular state, one for all starting states.
Thus the reset words may be different for different states, but with the same
reset m-tuple.

In terms of graphs, this means that there is a path from each vertex to the
particular vertex that has exactly αi edges of the ith colour, i = 1, . . . ,m. The
synchronising m-tuple has the following meaning. Assume realisation of each
action is not free, it requires some resources. It is possible to leave a stock set
of resources, αi units for the ith action, so that it is always possible to reset
the system using this stock? Let us stress that we can control the sequences of
actions to reset the system from a given state, but we are not able to control the
stock, it is the same for all states.

The existence of reset m-tuples can be decided within polynomial time, at
least for irreducible automata, i.e., whose sets of matrices are irreducible.

Theorem 6. There is a polynomial time algorithm to decide if a given automa-
ton is m-synchronising. The algorithm spends less than mn2(log2 n+ m+4

2 ) arith-
metic operations.

Proof. Let A = {A1, . . . , Am} be a family of matrices of the automaton. An
m-tuple is synchronising precisely when the corresponding Hurwitz product of
matrices A1, . . . , Am possesses a positive row. Since all matrices Ai are column
stochastic, we can apply Theorem 5. Using algorithm from [15], we find the
partition {Ωj}r

j=1. If r = 1, then A is m-primitive and hence the corresponding
Hurwitz product is strictly positive and so has a positive row. If r ≥ 2, then there
is no Hurwitz product with a positive row. Indeed, since all permutations of the
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set {Ωj}r
j=1 defined by matrices from A commute, it follows that all products

Π = Ad1 · · · Adk
corresponding to one m-tuple α define the same permutation.

Therefore, they have the same block structure corresponding to the partition
{Ωj}r

j=1 and hence their sum does not have a positive row. Thus, the automaton
is m-synchronizing if and only if r = 1. By [15, Theorem 2], the algorithm spends
less than mn2(2p + log2 n + m

2 ) operations, where p is the maximal number of
positive components in columns of the matrices from A. In our case, p = 1,
which completes the proof. ��

Thus, for irreducible automata, the existence of reset m-tuple can be decided
by a polynomial algorithm. But this algorithm does not find the reset m-tuple.

Problem 4. If an automaton in m-primitive, how to find its reset m-tuple
within polynomial time?

Problem 5. What is a sharp upper bound for the minimal length of the reset
m-tuple?

For synchronising automata this bound is known to be O(n3) and there is a
long standing Černý conjecture that the minimal upper bound is actually (n−1)2.
What are the bounds for m-synchronizing automata?
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