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Abstract. Gossip protocols use point-to-point communication to spread
information within a network until every agent knows everything. Each
agent starts with her own piece of information (‘secret’) and in each call
two agents will exchange all secrets they currently know. Depending on
the protocol, this leads to different distributions of secrets among the
agents during its execution. We investigate which distributions of secrets
are reachable when using several distributed epistemic gossip protocols
from the literature. Surprisingly, a protocol may reach the distribution
where all agents know all secrets, but not all other distributions. The five
protocols we consider are called ANY, LNS, CO, TOK, and SPI. We find
that TOK and ANY reach the same distributions but all other protocols
reach different sets of distributions, with some inclusions. Additionally,
we show that all distributions are subreachable with all five protocols:
any distribution can be reached, if there are enough additional agents.

Keywords: Gossip · Networks · Reachability

1 Introduction

Let each of a set of agents {a, b, c, . . .} know a single secret {A,B,C, . . .}, respec-
tively. The agents can communicate via telephone calls. When they call, they
share all the secrets they know at the moment the call takes place. An agent
who knows all secrets is an expert. The goal is to turn all agents into experts. A
protocol to achieve this state of knowledge is called a gossip protocol [10,11].

Here we consider five gossip protocols of a distributed nature [1–4]:

ANY Any call is allowed, i.e., for every two agents a and b, a is allowed to call b.
CO Short for “call once”. An agent a may call b iff they have not spoken before,

i.e., if a has not called b before and b has not called a before.
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LNS Short for “learn new secrets”. Agent a may call b iff a doesn’t yet know B.
During the execution of this protocol after every call at least one new secret
is learned, hence the protocol name.

TOK Short for “token”. Agent a may call b iff a has a token. The caller passes
her token to the callee.
Every agent starts with a token. After a call all tokens held by an agent merge
to one. In this protocol an agent who lost her token can get it back when she
receives a new call.
Equivalently, we can say that a may call b iff a has either not been involved
in any calls, or a was the callee in the last call a was involved in.

SPI Short for “spider”. Agent a may call b iff a has a token. The callee passes
her token to the caller.
Every agent starts with a token. After a call all tokens held by an agent
merge to one. In this protocol an agent who has been called loses her token
permanently and can never initiate a call again. This protocol tends to lead
to a small number of agents making many calls. When drawn as a graph, this
looks like a spider web with the agent making the calls at the centre, hence
the name “spider”.
Equivalently, we can say that a may call b iff a has never received any calls.

All protocols run in a sequential manner as follows: starting from the situation
where each agent only knows her own secret, each moment in time a single call
satisfying the protocol condition is selected and executed. The selection of calls
continues until all agents are experts. Here we investigate which distributions
of secrets may be reached during the protocol execution (under any sequence of
calls), hence we do not have to fix a specific algorithm for call selection.

Knowing which distribution can be reached by which protocol can help the
agents (or an external observer) understand which protocol is being used during
the exchange of information. Moreover, reachability can be of importance for
security or privacy reasons.

Let us illustrate the topic of reachability by an example with three agents.
We represent a distribution of secrets by listing the secrets known by each agent.
Given initial distribution (A,B,C), the call ab (the call from a to b) results in
(AB,AB,C). (Strictly, we go from ({A}, {B}, {C}) to ({A,B}, {A,B}, {C}).)
This is therefore ANY-reachable. After the call sequence ab; bc; ac, which is per-
mitted in ANY, LNS, and CO, all three agents are experts. But already for three
agents there is a difference between the five protocols. The sequence ab; bc; ca is
CO-permitted but not LNS-permitted: as c already knows A, the call ca is not
allowed in LNS. The sequence ab; bc; ab is not CO-permitted (repeating ab is not
allowed); and clearly if a call is not CO-permitted it is also not LNS-permitted.
Call sequence ab; ba; ab is TOK-permitted but not SPI-permitted, whereas call
sequence ab; ab is SPI-permitted but not TOK-permitted.

We assume that communication between all agents is possible, i.e., a complete
network topology. Unreachability results in this setting are very strong: if one
of the five protocols cannot reach a distribution s assuming a complete network
topology, then this protocol also cannot reach s assuming any other topology. It
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is not difficult to see that already for two agents, unreachable distributions can
occur: the distribution (AB,A) cannot be reached by any of the five protocols.

We also study a less restrictive notion called subreachability. Given
agents a, b, c, if b calls c, and then c calls a, the resulting distribution is
(ABC,BC,ABC). The restriction of that distribution to the agents a and b
only is (AB,B). We say that distribution (AB,B), although not reachable, is
subreachable. Knowing the knowledge situations that can be subreached by a
protocol is particularly interesting when the number of agents is not common
knowledge among the agents, or when the agents have limited reasoning power
and cannot reason like “there are two agents beside me and a call has taken place,
so these agents now know each other’s secrets”. In such a situation the agents
should not only consider the reachable but also the subreachable distributions
possible.

We further investigate reachability under unordered distributions (“given n
agents and n subsets of the set of all secrets, is there a bijection between these
sets of agents and subsets?”). Unordered distributions should be taken into con-
sideration by an observer who is uncertain about which agent holds which sets
of secrets in a distribution.

Our Contributions. For up to three agents all five protocols can reach the same
distributions. Thus, with at most three agents present, an observer cannot tell
which protocol is currently used, by simply observing the distributions of secrets.
But with four or more agents there is a difference in the reachability strength.
In Fig. 1 we give a complete overview of each protocol’s reachability strength.
Figure 1 (together with the relevant theorems) can serve as guide for an (internal
or external observer) that wants to know which protocol the agents are using for
information exchange. For example, if the observer finds out that the distribution
of secrets (ABCD,ABCD,ABC,ABD) has appeared, then she can be certain
that agents are not using the CO-protocol since this distribution is not CO-
reachable (see Theorem 3).

LNS CO

TOK

SPI

ANY ALL

�
Thm. 4

�

Cor. 1

�
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Thm. 2

�
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Fig. 1. Overview of results, in which a protocol’s name stands for the set of distribu-
tions reachable by it and ALL stands for the set of all distributions. Besides transitivity
no other inclusions hold, i.e., SPI and CO properly intersect (see Theorem 3 and Corol-
lary 1), and so do SPI and LNS (see Theorems 4 and 5).

In Theorem 6 we show that all distributions are subreachable by all five pro-
tocols. As we mentioned before this has the consequence that an observer cannot
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infer which of the five protocols is being used if, for example, she does not know
how many agents there are, since every distribution of secrets can possibly occur
among a subset of the agents using any of the five protocols. Finally in Theorem7
we show that SPI, ANY and TOK reach the same set of unordered distributions.
The consequence of the latter theorem is that the observer cannot distinguish
between the protocols SPI, ANY and TOK if she is uncertain about which agent
holds which set of secrets in a given distribution.

Related Work. The combinatorial properties of gossip protocols have been inves-
tigated several times in the literature. In [1] the focus is on distributed gossip,
including information change in one direction only, and termination. The exten-
sion (permitted call sequences of the protocols) and the characterization of the
classes of graphs where the (dynamic versions) of our protocols terminate were
investigated in [5], where their main result is for LNS (in [9] the same question
was answered for the (static) protocol CO). In [2,3] the focus is on the logical
dynamics of call exchange. In [6,7] the gossip protocols were treated as random
processes and it was shown that TOK and SPI have the same expectation. As
simulations (some of which where theoretically corroborated) in [6,7] indicate,
the expected duration of all protocols considered here is of the order n log n,
the ‘usual’ suspect in the gossiping community, but the constant factor may be
different.

Organization of the Paper. In Sect. 2 we present all the definitions and relevant
notions that are necessary for understanding our results. In Sect. 3 we present
our main result which is the comparison of the reachability strength of the 5
protocols. In Sect. 4 we study the subreachability strength of our protocols and
their reachability strength in unordered distributions. Finally in Sect. 5 we give
directions for further work, mainly on parallel calls.

2 Terminology for Gossip Protocols and Reachability

In this section we give formal definitions for the notions of secret
(sub)distributions and (sub)reachability. We always assume a complete network
topology. A set of agents is represented by A. We use the lower-case letters
a, b, c, d, . . . for agents. At the start of any gossip protocol each agent has a
unique secret. We denote the secrets by the corresponding upper-case letters
A,B,C,D, . . . and there are no other secrets.

Definition 1 (Distribution of Secrets). An n-distribution of secrets for a
set of agents A = {a1, . . . , an} is an ordered n-tuple (Sa1 , . . . , San

) where each
Sai

is a subset of the set of all secrets {A1, . . . , An}. In the initial distribution
every agent knows only her own secret, i.e. Sai

= {Ai} for all ai. An agent ai

is an expert iff she knows all secrets, i.e. iff Sai
= {A1, . . . , An}. In the final

distribution every agent is an expert.

In general, a distribution (Sa1 , . . . , San
) represents the situation in which

each agent ai knows exactly the secrets in Sai
. We drop the references to A, n
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and secrets if this causes no confusion. We write (ABC,AB,ABC) instead of
({A,B,C}, {A,B}, {A,B,C}). We use the letters s, t (possibly primed or with
subscripts) to represent a distribution. Finally, we observe that a distribution of
secrets implicitly assumes an ordering on the agents.

Definition 2 (Call). A call is an ordered pair (a, b), where a �= b for some
agents a, b. We write ab instead of (a, b). A call sequence is a (possibly empty)
finite or infinite sequence of calls. We write ab; cd; . . . for a call sequence. If ab
occurs in a call sequence σ, we also write ab ∈ σ, slightly abusing language. By
(ab) we mean the call ab or the call ba. Let s = (Sa1 , . . . , San

) be a distribution
and consider (aiaj) for some i < j. We apply any of the two calls aiaj and ajai

to (Sa1 , . . . , San
) as follows and obtain the new distribution

saiaj := sajai :=
(Sa1 , . . . , Sai−1 , Sai

∪ Saj
, Sai+1 , . . . , Saj−1 , Sai

∪ Saj
, Saj+1 , . . . , San

) .

We apply a finite call sequence σ to a distribution s as follows:

sσ :=

{
s, if σ = ε

(sab)τ
, if σ = ab; τ .

For example, we have (A,B,C)ab;bc = (AB,AB,C)bc = (AB,ABC,ABC).
A call sequence σ is P-permitted if the restrictions of P allow every call in σ

to be executed in the order given in σ. A P-permitted call sequence will also be
called P-call sequence. A call sequence σ is called successful if the application of
σ to an initial distribution leads to the final distribution where all agents know
all secrets. If the applications of either σ or τ to the initial distribution lead to
the same distribution we write σ ≈ τ .

Definition 3 (Reachability). A distribution s is P-reachable if s can be
obtained by applying a P-permitted call sequence on the initial distribution.

The ANY-permitted calls are also called the possible calls and an ANY-
reachable distribution is also called a possible distribution.

From a given n-distribution we can derive the set of possible calls that could
have contributed to reaching that distribution, including an order on their exe-
cution. It is defined as follows.

Definition 4. Let s be a distribution. The set of potential calls for s is PC(s) :=
{ab | A ∈ Sb and B ∈ Sa, for some agents a, b}. The order <s on PC(s) is
defined as follows. For any ab, cd ∈ PC(s):

ab < cd if a = c and D �∈ Sb, or
b = c and D �∈ Sa, or
a = d and C �∈ Sb, or
b = d and C �∈ Sa.

The pair (PC(s), <s) is called the set of potential call sequences (for s).
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A call sequence σ consisting of calls from PC(s) respects the order <s if, for
every ab <s cd, no occurrence of (ab) in σ is after any occurrence of (cd) in σ.

Let (ab) <s (cd) denote: ab <s cd, ba <s cd, ab <s dc, and ba <s dc. Now
let σ and τ be call sequences. By σ <s τ we mean that for every xy ∈ σ and
every zw ∈ τ if xy is related to zw then xy <s zw; and that no pair of calls in
σ are comparable and that the same holds for τ . We may additionally employ
(σ) <s (τ) meaning that for every xy ∈ σ and every zw ∈ τ , if xy and zw are
comparable then (xy) <s (zw).

The proof of the next proposition is obvious.

Proposition 1. Each distribution s uniquely determines a pair (PC(s), <s).
Distribution s can only be obtained by a call sequence in which only calls in
PC(s) occur, and that respects the order <s.

We note (i) that a pair (PC(s), <s) does not uniquely determine a given
distribution s, (ii) that calls may occur more than once (for example, in both
directions, and as long as the order <s is respected), and (iii) that not all
calls in PC(s) need occur in a sequence reaching s. The proof of Theorems 5
demonstrates (i) and (iii). Concerning (ii), note that any call ab can be followed
by (if the protocol so permits) the dual call ba as long as neither a nor b have
been involved in other calls, without the second call ba affecting the distribution
at that time.

Example 1. Consider the 4-distribution s = (ABCD,ABCD,ABCD,ABCD).
We have PC(s) = {ab, ac, ad, bc, bd, cd, ba, ca, da, cb, db, dc} and <s = ∅. Two
different call sequences reaching s are ab; cd; ac; bd and ac; bd; ab; cd. There are
also call sequences that respect <s and do not reach s (e.g. ab; ac; bd; cd).

As a second example, consider the 3-distribution t = (AB,ABC,BC). Then
PC(t) = {ab, bc, ba, cb} and (ab) <t (bc) and (bc) <t (ab). No call sequence
respecting <t reaches t. Indeed, t is not ANY-reachable.

Finally we present the notion of subreachability that uses that of the restric-
tion of a distribution.

Definition 5. Suppose we have A′ ⊆ A with m = |A′| and n = |A|. The
A′-restriction of an n-distribution (Sa1 , . . . , San

) for A is the m-distribution
(Sa′

1
, . . . , Sa′

m
) such that for all a′

j ∈ A′, if ai = a′
j then Sa′

j
= {Ak ∈ Sai

| ak ∈
A′}.
Definition 6 (Subreachability). A distribution s for a set of agents A′ is P-
subreachable if there is a distribution t for an extended set of agents A ⊇ A′

such that t is P-reachable and s is the A′-restriction of t.

Note that P-reachable implies P-subreachable, namely when A′ = A above.
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3 Reachability

In this section we provide an answer to the question: “are all P1-reachable dis-
tributions also P2-reachable?” for any P1 and P2 from the five protocols. It is
interesting that although all five protocols can reach the final distribution on
complete graphs [5], their reachability strength on intermediate distributions
varies.

Theorem 1.

1. There is a distribution that is not reachable by any of the five protocols.
2. Every CO-, LNS-, SPI- and TOK-distribution is ANY-reachable.
3. Every LNS-reachable distribution is CO-reachable.

Proof. This follows from the protocol definitions and because (AB,A) is not
reachable by any of the protocols.

Our next, rather unexpected, result is that, although TOK has a stricter calling
condition than ANY, these two protocols reach the same set of distributions.
Recall that TOK can be thought of as demanding that, in order to make a call,
an agent has to possess a token. Every agent starts out with a token, and in a
call ab the token of a is given to b. In the following lemma we use the fact that
a call ab can be followed by a call ba in which the token is returned to a.

Lemma 1 (Token Density Lemma). Let s be a TOK-reachable distribution
and let a, b be two agents. Then s can be reached by a TOK-call sequence σ such
that after the execution of σ at least one of a and b have a token.

Proof. The Lemma follows easily from the following more general claim.

Claim. Let σ be any TOK sequence, let k ∈ N, I = {1, . . . , k} and let f, g : I → A
be injections such that f(I) ∩ g(I) = ∅ for some set of agents A. Then there is
a TOK sequence σ′ such that (i) σ ≈ σ′ and (ii) for every 1 ≤ i ≤ k at least one
of f(i) and g(i) has a token after σ′.

Proof (of the Claim and the Lemma). By induction on the length of σ. If σ is
of length 1 the claim is trivial. Assume then as induction hypothesis that the
claim holds for all sequences shorter than σ. Now, let σ = τ ; ab. We distinguish
whether the agents of the final call in σ are in the images of f and g.

– Suppose a, b �∈ f(I) ∪ g(I). Then let f ′, g′ : I ∪ {k + 1} → A be extensions of
f and g with f ′(k + 1) = a, g′(k + 1) = b. By the induction hypothesis, there
is τ ′ such that τ ≈ τ ′ and for every 1 ≤ i ≤ k + 1 either f(i) or g(i) has a
token after τ ′. Then τ ′; (ab) ≈ σ and for every 1 ≤ i ≤ k, either f(i) or g(i)
has a token after τ ′; (ab).

– Suppose a ∈ f(I) ∪ g(I) and b �∈ f(I) ∪ g(I). Without loss of generality,
suppose that f(1) = a. Now, let f ′, g′ be as f, g except g′(1) = b. By the
induction hypothesis, there is a τ ′ such that τ ≈ τ ′ and either f ′(i) or g′(i)
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ends up with a token. In particular, either a or b has a token after τ ′. If a
has the token, let σ′ = τ ′; ab; ba, otherwise let σ′ = τ ′; ba. In either case, (i)
σ′ ≈ σ, (ii) for i > 1 either f(i) or g(i) has a token because they had it after
τ ′ and (iii) a has a token so either f(1) or g(1) has a token.

– Suppose a = f(i) and b = g(i). By the induction hypothesis τ ′ exists, and
σ′ = τ ′; (ab) suffices.

– Suppose a = f(i) and b ∈ f(I) ∪ g(I) \ g(i). Without loss of generality,
b = f(j). Let f ′, g′ be as f, g except g′(i) = b and f ′(j) = g(i). Let τ ′ be such
that τ ≈ τ ′ and for every l either f ′(l) or g′(l) ends up with a token. Since
f ′(i) = a and g′(i) = b, the sequence τ ′; (ab) is TOK. Note furthermore that
f ′(j) = g(i) and g′(j) = g(j), so one of the pairs (a, g(i)) and (f(j), b) has
at least one token. By inverting the (ab) call if necessary, we can ensure that
the other pair keeps the token of the (ab) call. As such, either τ ′; (ab); (ba) or
τ ′; (ab) satisfies the conditions of the claim. �

Theorem 2. Every ANY-reachable distribution is TOK-reachable.

Proof. We will show that for every ANY sequence σ there is a TOK sequence
σ′ such that σ ≈ σ′. The proof proceeds by induction on the length of the call
sequence σ and by repeatedly applying Lemma1.

If σ is of length 1, then σ is a TOK sequence. Assume then as induction
hypothesis that the theorem holds for all sequences shorter than σ, and let
σ = τ ; ab. By the induction hypothesis, there is a TOK sequence τ ′ such that
τ ≈ τ ′. Because τ ′ is a TOK sequence it follows from Lemma 1 that there is a
TOK sequence τ ′′ such that (i) τ ′ ≈ τ ′′ and (ii) either a or b has a token after
τ ′′. It follows that σ′ = τ ′′; (ab) is a TOK sequence, and σ ≈ σ′. �

We continue to compare the sets of distributions reachable by all other pro-
tocols. Theorems 3 and 4 are generalized versions of [6, Theorems 3 and 4].

Theorem 3. There is a SPI-reachable distribution that is not CO-reachable.

Proof. Consider the 4-distribution t = (ABCD,ABCD,ABC,ABD). We show
that in order to reach t one has to choose the same call twice.

– The initial 4-distribution is (A,B,C,D).
– Since c and d must not learn each others secret, the first call cannot be cd.

Furthermore, if the first call is ac then, when d learns a’s secret, she will also
learn c’s secret. With similar arguments we can show that the first call cannot
be ad, bc or bd. Thus in order to reach t we have to select ab which leads to
(AB,AB,C,D).

– Now, d has to learn A and B. So, without loss of generality the next call is
ad which leads to (ABD,AB,C,ABD).

– Now, c has to learn A and B. The only way of achieving this is by selecting
cb which leads to (ABD,ABC,ABC,ABD).

– Until now we have made the CO-permitted call sequence: ab; ad; bc. The only
way of reaching t is by selecting call ab again, which is a violation of CO.



226 H. van Ditmarsch et al.

The call sequence that reached t is: σ = ab; ad; cb; ab. No agent who has been
called initiates a call, hence σ is SPI-permitted. �
Theorem 4. There is a CO- and SPI-reachable distribution that is not LNS-
reachable.

Proof. Consider the 6-distribution:

t = (ABCDEF,ABC,ABCDE,ABCDEF,DEF,ABDEF ) .

We will show that we can reach t without violating CO or SPI, but at the price
of having to make a call between agents that already know each other’s secrets.

– The initial 6-distribution is (A,B,C,D,E, F ).
– Agent b has to learn A and C and nothing else and e has to learn d and

f and nothing else. So, without loss of generality, the first four calls can be
ab; cb; ed; ef , which are clearly both SPI-and CO-permitted and lead to

(AB,ABC,ABC,DE,DEF,DEF ) .

– Now c has to learn everything but F . The only way of achieving this is by
selecting the call cd. Similarly in order for f to learn everything but c we need
to select call af . So, until now we have made the LNS- and SPI-permitted call
sequence ab; cb; ed; ef ; cd; af which leads to

(ABDEF,ABC,ABCDE,ABCDE,DEF,ABDEF ) .

– Only the CO- and SPI-permitted call ad will now lead to t. But ad is not
LNS-permitted. �

Theorem 5. There is an LNS-reachable distribution that is not SPI-reachable.

Proof. We will show that there is a 16-distribution reachable by LNS but not by
SPI. Recall that (ab) represents a call between a and b, which can be instantiated
as either ab or ba. Consider the following call sequence σ := σ1;σ2;σ3, where

σ1 = (12); (34); (56); (78); (ab); (cd); (ef); (gh)
σ2 = (23); (45); (67); (81); (bc); (de); (fg); (ha)
σ3 = (1a); (4c); (7h); (6f).

This sequence has three phases σ1, σ2, σ3, as shown on different lines. We can
represent this sequence visually as in Fig. 2, where the solid lines are calls that
happen in σ1, dashed lines happen in σ2, and dotted lines in σ3.

We will show that σ is not SPI-permitted (nor any of its order variants).
Suppose towards a contradiction that it is.

In the first stage, the callee member of each pair loses its token. In the second
stage, every agent is involved in one more call. If agent 1 still has a token, then
2 does not. So 3 must have a token, otherwise (23) could not take place. But
then 4 does not have a token, so 5 must have it, and so on. It follows that in
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a b c d

efgh

1 2 3 4

5678

Fig. 2. The call sequence σ = σ1; σ2; σ3.

both blocks, either all even agents have lost their token or all odd agents have
lost their token (where a, c, e, g are “odd” and b, d, f, h are “even”).

Now, consider the third stage. Here, calls (1a), (4c), (7h) and (6f) are sup-
posed to happen. Note that these include every combination of even/odd from
both groups: odd number and odd letter (1a), even number and odd letter (4c),
odd number and even letter (7h), and even number and even letter (6f). So at
least one of these calls is between two agents that do not have their token any
more. It follows that the sequence σ is not SPI-permitted.

We still need to show that there is no sequence of other calls that is SPI-
permitted and reaches the same distribution of secrets. However, this is fairly
straightforward. The distribution s produced by the sequence σ is as follows (let
the secret by agent named i ∈ N be also i):

1 : 1278ABGH
2 : 1234
3 : 1234
4 : 3456ABCD

5 : 3456
6 : 5678EFGH
7 : 5678ABGH
8 : 1278

a : 1278ABGH
b : ABCD
c : 3456ABCD
d : CDEF

e : CDEF
f : 5678EFGH
g : EFGH
h : 5678ABGH

Given this s, we now compute the set of potential call sequences (PC(s), <s). It
is easy to show that the set PC(s) consists of all calls in σ plus (7a) and (6h).

Our first observation is that since A �∈ S6 and 6 �∈ Sa it holds that (67) <s

(7a) and that (7a) <s (67). Thus (67) and (7a) cannot exist in the same call
sequence leading to s. It is not difficult to see that (67) is necessary in order
to produce s since give the order constraints there is no other way for 6 and 7
to exchange their secrets. Hence, (7a) cannot be used to a call sequence leading
to s. In a similar fashion we obtain that (ha) <s (6h) and that (6h) <s (ha)
and since (ha) is again necessary we conclude that (6h) cannot be used to a call
sequence leading to s.

Additional we observe that (σ1) <s (σ2) and that (σ2) <s (σ3). Therefore,
except for the order of calls within σ1, σ2, and σ3, and the call directions, only
σ leads to s. Finally, one can easily verify that σ is also LNS-permitted. �
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Theorems 1, 3 and 5 lead to the following corollary. Together with some
already discussed inclusions this completes the comparison of the reachability
strength between the five protocols (see also Fig. 1).

Corollary 1.

1. There is a TOK-reachable distribution that is not CO-reachable.
2. There is a TOK-reachable distribution that is not SPI-reachable.
3. There is a CO-reachable distribution that is not SPI-reachable.

We presented several examples of distributions that are reachable by some of
the protocols and unreachable by others. A natural question to ask is “are these
distributions optimal counter-examples?”, i.e., “did we use the smallest possible
number of agents?”. We implemented an algorithm that counts the reachable
distributions for all five protocols modulo isomorphism (i.e., modulo renaming
the agents) [13]. The results of this implementation can be found in Table 1.

Given the inclusions of Theorem 1, Table 1 tells us that all protocols reach the
same set of distributions for up to 3 agents. This implies that the 4 distribution
in Theorem 3 is optimal. We also see that LNS and CO reach the same set of
distributions for up to 5 agents, which implies that the 6-distribution in Theo-
rem 4 is optimal. We do not know whether the non-SPI reachable 16-distribution
in the proof of Theorem 5 is optimal (due to a huge combinatorial explosion the
implementation in [13] can only count distributions up to at most 7 agents).

Table 1. Number of non-isomorphic reachable distributions for up to 5 agents. For
LNS and ANY these numbers are also in the On-Line Encyclopedia of Integer Sequences
(OEIS) as https://oeis.org/A307085 and https://oeis.org/A318154, respectively.

n LNS CO SPI TOK = ANY

2 2 2 2 2

3 4 4 4 4

4 15 15 16 16

5 97 97 111 111

4 Subreachability, Unorderded Distributions

Subreachability in Ordered Distributions. While there are distributions that are
not even ANY-reachable, all possible distributions are subreachable by any of the
five protocols we consider. In [8] this was shown for a more general setting using
incomplete network topologies that change dynamically when agents exchange
‘phone numbers’, but only for the protocol ANY.

Theorem 6. All distributions are ANY-, CO-, LNS-, SPI-, TOK-subreachable.

https://oeis.org/A307085
https://oeis.org/A318154
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Proof. We adapt the proof of [8, Section 6.2]. Given a distribution s for agents
A, let the number of secrets known by the agents in s be defined as sec(s) =
Σa∈A|Sa|, where Sa is the set of secrets known by a in s.

For any protocol P and for any distribution s, we prove by induction on
m = sec(s) that s is P-subreachable. In the base case m = 1 the distribution must
have shape (A) for a single agent a. This distribution is clearly (sub)reachable
by all protocols and the empty call sequence.

Assuming that the result holds for m secrets we will show that it holds for
m + 1 secrets. We need to distinguish two subcases: either there is an agent a
who knows a single secret (i.e., an agent who has not made any call yet), or not.

In the first subcase, as Σb∈A\{a}|Sb| = m, by induction hypothesis there is
a call sequence σ such that the (A \ {a})-restriction of s is P-subreachable by
σ from the initial distribution for the set of agents A \ {a}. Clearly, s is then
P-subreachable by the same call sequence σ from the initial distribution for the
set of agents A, as agent a has not been involved in any call. This holds for all
five protocols ANY,CO, LNS,SPI,TOK.

In the second subcase, there must be an agent a who knows at least one other
secret B than its own secret A. As |Sa \ {B}| + Σb∈A,b �=a|Sb| = m, by induction
there is a call sequence σ such that s′ is P-subreachable by σ, where s′ is as s
(and defined for the same set of agents) except that S′

a = Sa \ {B}.
First, assume that P is one of ANY, CO, or LNS. Let c �∈ A. The role of agent

c will be to inform a of B and nothing else. Let s′′ be the distribution reached by
executing bc;σ; ca in the initial distribution for agents A∪{c}. Observe that s is
the restriction to A of s′′. Also, call bc is ANY-, CO-, and LNS-permitted, as it
is the first call. The last call ca is obviously ANY-permitted. It is CO-permitted
because prefix bc;σ does not contain a call between c and a. It is also LNS
permitted, since c did not learn a in the first call and was not involved in σ.
Therefore bc;σ; ca is an ANY- CO- and LNS-permitted call sequence reaching s.

Now let P = SPI. Let in this case c, d �∈ A, and consider call sequence
bc; dc;σ; da for set of agents A ∪ {c, d}, resulting in distribution s′′. In first call
bc, b keeps its token, as in the initial distribution for A, but c loses its token
(so c can no longer inform a of B at the end, as in the previous case). In the
second call dc, d keeps it token and learns B from c. Therefore, in the last call
da, d can inform a of B, as desired. Also note that s is the restriction to A of
s′′. Therefore bc; dc;σ; da is a SPI-permitted call sequence reaching s.

Finally, let P = TOK. This subcase is fairly similar to the subcase SPI. Again,
as for SPI, let c, d �∈ A. However, now consider call sequence cb; dc;σ; ca. In the
first call c hands its token to b. So b can still engage in σ as before. In the second
call dc agent d hands back a token to agent c. Therefore, the final call ca (instead
of da, for SPI) is TOK-permitted resulting in c again informing a of B. Therefore
cb; dc;σ; ca is a TOK-permitted call sequence reaching s. �

Reachability in Unordered Distributions. To illustrate the difference between
reachability in unordered and ordered distributions, let us consider the fol-
lowing example. In Theorem 3 we have shown that the ordered distribution
(ABCD,ABCD,ABC,ABD) is not CO-reachable. However, this holds only if
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we understand it as an ordered distribution. It is not difficult to see that the
unordered distribution {ABCD,ABCD,ABC,ABD} is CO-reachable by the
call sequence ab; ac; bd; cd.

Theorem 7. The protocols ANY, TOK and SPI reach the same unordered dis-
tributions.

Proof. The fact that ANY and TOK reach the same set of ordered distribu-
tions (Theorem 2) implies that they also reach the same set of unordered ones.
To show that TOK and SPI also reach the same set of unordered distribu-
tions we proceed as follows: assume that we have the unordered distribution
{Sa1 , . . . , Sai

, Saj
, . . . San

} wherein (at least) the agent knowing Sai
possesses a

token. Both the TOK and the SPI-call between agents knowing Sai
and Saj

will
lead to {Sa1 , . . . , Sai

∪ Saj
, Sai

∪ Saj
, . . . San

} where exactly one of the agents
that know Sai

∪ Saj
possesses a token. These two unordered distributions are

the same, which proves the theorem. �

5 Further Research: Parallel Gossip

We very succinctly describe some results for the setting wherein agents may
make calls in parallel. Instead of sequences of individual calls, one now considers
sequences of rounds of calls, where a round of calls consists of a set of calls
made in parallel. Different semantics for parallel calls include the ‘classical’ 1970s
setting of gossip [12] wherein calls made in parallel must be mutually disjoint, and
the ‘modern’ 1990s setting of gossip [11] wherein agents, instead, may receive
multiple calls. The latter leads to novel reachable distributions, for example,
(AB,ABC,BC) is reachable by the simultaneous calls ab, ba, cb, wherein agent
b simultaneously receives A from a and C from c. Let us call such a distribution
parallel reachable, where the notion used so far is sequential reachable.

Although (ABCD,ABCD,ABC,ABD) is not sequential CO-reachable (see
Theorem 3), it is parallel CO-reachable by the sequence {ad, bc, ca, db}; {ab} in
two rounds. Similarly, (ABCDEF,ABC,ABCDE,ABCDEF,DEF,ABDEF )
is not sequential LNS-reachable (Theorem 4), but it is parallel LNS-reachable by
the sequence {ab, cb, de, fe}; {ca, dc, fd, af}; {da} in three rounds. Hence reach-
ability in parallel gossip is very different and should be further investigated.

As we mentioned in the introduction the main motivation for studying reach-
ability issues in gossip protocols is to provide an observer with some tools for
understanding which protocol is currently being used by the agents. Some further
research in this setting could also involve determining the reasoning power that
such an observer should have or studying the design of a procedure/determining
the resources needed for constructing such observers.

Beyond parallel calls and the observer construction, while in this paper we
restricted our attention to only five protocols, our aim is to investigate reachabil-
ity for protocols that have epistemic conditions. Examples are “call if you know
that/consider it possible that an agent will learn a secret” and “don’t call if you
are an expert”. In general, our results should be received as part of a bigger
effort to compare the combinatorial properties of epistemic gossip protocols.
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