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Abstract. Let b ∈ N
+. A b-bounded Petri net (b-net) solves a transi-

tion system (TS) if its reachability graph and the TS are isomorphic.
Synthesis (of b-nets) is the problem of finding for a TS A a b-net N that
solves it. This paper investigates the computational complexity of syn-
thesis, where the searched net is structurally restricted in advance. The
restrictions relate to the cardinality of the preset and the postset of N ’s
transitions and places. For example, N is choice-free (CF) if the postset-
cardinality of its places do not exceed one. If additionally the preset-
cardinality of N ’s transitions is at most one then it is fork-attribution.
This paper shows that deciding if A is solvable by a pure or test-free b-net
N which is choice-free, fork-attribution, free-choice, extended free-choice
or asymmetric-choice, respectively, is NP-complete. Moreover, we show
that deciding if A is solvable by a b-bounded weighted (m, n)-T-systems,
m, n ∈ N, is NP-complete if m, n belong to the input. On the contrary,
synthesis for this class becomes tractable if m, n ∈ N are chosen a priori.
We contrast this result with the fact that synthesis for weighted (m, n)-
S-systems, being the T-systems’s dual class, is NP-complete for any fixed
m, n ≥ 2.

1 Introduction

Examining the behaviour of a system and deducing its behavioral properties
is the task of system analyses. Its counterpart, synthesis, is the task to find
for a given behavioral specification an implementing system. A valid synthesis
procedure computes systems which are correct by design. However, the chances
for obtaining an (efficient) algorithm for both analyses and synthesis, depend
drastically on the given specification and the searched system: In [8] it has been
shown that deciding liveness (the behavioral property) is EXPSPACE-hard for
bounded Petri nets (the system), while it is NP-complete for free-choice Petri
nets and polynomial for 1-safe free-choice nets. Similarly, the reachability prob-
lem is EXPSPACE-hard for bounded Petri nets, PSPACE-complete for free-
choice 1-safe nets, NP-complete for acyclic 1-safe and conflict-free nets and poly-
nomial for 1-safe conflict-free nets [8,10].
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In [12] it has been shown that it is impossible to decide if a modal transition
system (the specification) can be implemented by a bounded Petri net, while syn-
thesis of bounded Petri nets can be done in polynomial time if the specification
is a transition system (TS, for short) [1]. An even better procedure for synthesis
from TS is possible if the searched bounded Petri net is to be choice-free or
a marked graph [4,7]. Moreover, restricting the searched system to b-bounded
Petri nets makes synthesis from modal TSs decidable for every fixed integer b
[13].

In this paper, we investigate the following instance of synthesis: The specifi-
cation is a TS A and the searched system is a b-bounded Petri net N (b-net, for
short). We demand that N implements A up to isomorphism, that is, N ’s reacha-
bility graph and A are isomorphic. Recently, in [15] we have shown that deciding
the existence of N is NP-complete for every fixed b ≥ 1. However, the former
examples provide several results where restricting the system makes the corre-
sponding analyses and synthesis problems easier. Encouraged by these results,
we continue our work of [15] in this paper and address whether structurally
restricting a searched b-net N influences positively the computational complex-
ity of synthesis. The restrictions relate to the preset- and postset-cardinality
of N ’s transitions and places and correspond to well-known subclasses of Petri
nets [3,6,9,14]. Surprisingly, it turns out that almost all applied net restrictions
do not bring the synthesis down to polynomial time. More exactly, we show
that synthesis remains intractable if N is pure or test-free and satisfies one
of the following properties: choice-free [6,14], fork-attribution [14], free-choice,
extended free-choice or asymmetric-choice [3]. Moreover, we adapt the classes
of (weighted) T -systems and (weighted) marked graphs [9] for b-nets and intro-
duce for m,n ∈ N their extension of weighted (m,n)-T-systems restricting the
cardinality of the preset and the postset of N ’s places by m and n, respec-
tively. We show that synthesis of weighted (m,n)-T-systems is hard if m,n are
part of the input and becomes tractable for every fixed m,n. In particular, syn-
thesis of b-bounded weighted T-systems is polynomial which answers partly a
question from [5, p.144]. Furthermore, we introduce their dual class of weighted
(m,n)-S-systems which restricts the cardinality of the preset and postset of N ’s
transitions by m and n, respectively. In contrast to the result of its dual class,
deciding if A is implementable by a pure or test-free b-net, being a weighted
(m,n)-S-system, is NP-complete for every fixed m,n ≥ 2. We get all intractabil-
ity results by a reduction of the cubic monotone one-in-three-3-sat-problem and
partly apply our methods from [15]. However, the reductions here are extremely
specialized and tailored to synthesis of restricted nets.

The next Sect. 2 introduces all necessary preliminary notions, Sect. 3 presents
our main result and Sect. 4 closes the paper.

2 Preliminaries

This section introduces all necessary preliminary notions and Fig. 1 gives cor-
responding examples. In the remainder of this paper, if not stated explicitly
otherwise then b ∈ N

+ is assumed to be arbitrary but fixed.
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Transition Systems. An initialized transition system (TS, for short) A =
(S,E, δ, s0) consists of a finite disjoint set S of states, E of events, a partial
transition function δ : S × E → S and an initial state s0 ∈ S. A can be
interpreted as edge-labeled directed graph where every triple δ(s, e) = s′ is an
e-labeled edge s e s′, called transition. An event e occurs at state s, denoted
by s e , if δ(s, e) = s′ for some state s′. This notation is extended to words

w′ = wa, w ∈ E∗, a ∈ E, by inductively defining s ε s for all s ∈ S and s w′
s′′

if and only if there is a state s′ ∈ S satisfying s w s′ and s′ a s′′. If w ∈ E∗

then s w denotes that there is a state s′ ∈ S such that s w s′. We assume all
TSs to be reachable: ∀s ∈ S,∃w ∈ E∗ : s0

w s.

b-bounded Petri Nets. A b-bounded Petri net (b-net, for short) N =
(P, T, f,M0) consists of finite and disjoint sets of places P and transitions
T , a (total) flow function f : P × T → {0, . . . , b}2 and an initial marking
M0 : P → {0, . . . , b}. If f(p, t) = (m,n) then f−(p, t) = m defines the consuming
effect of t on p. Similarly, f+(p, t) = n defines t’s producing effect on p. The preset
of a place p is defined by •p = {t ∈ T | f+(p, t) > 0}, the set of transitions that
produce on p. Accordingly, p’s postset is defined by p• = {t ∈ T | f−(p, t) > 0}
and contains the transitions that consume from p. Similarly, the preset •t =
{p ∈ P | f−(p, t) > 0} of a transition t is defined by the places from which t
consumes and its postset t• = {p ∈ P | f+(p, t) > 0} by the places on which t
produces. Notice that neither •p∩p• nor •t∩t• is necessarily empty. A transition
t ∈ T can fire or occur in a marking M : P → {0, . . . , b}, denoted by M t , if
M(p) ≥ f−(p, t) and M(p) − f−(p, t) + f+(p, t) ≤ b for all places p ∈ P . The
firing of t in marking M leads to the marking M ′(p) = M(p)−f−(p, t)+f+(p, t)

for p ∈ P , denoted by M t M ′. Again, this notation extends to sequences
σ ∈ T ∗ and the reachability set RS(N) = {M | ∃σ ∈ T ∗ : M0

σ M} contains
all of N ’s reachable markings. The firing rule preserves the b-boundedness of N
by definition: M(p) ≤ b for all places p and all M ∈ RS(N). The reachability
graph of N is the TS AN = (RS(N), T, δ,M0), where for every reachable mark-

ing M of N and transition t ∈ T with M t M ′ the transition function δ of AN

is defined by δ(M, t) = M ′.

Structurally Restricted Subclasses of b-nets. A b-net N is pure if ∀(p, t) ∈
P × T : f−(p, t) = 0 or f+(p, t) = 0, that is, ∀p ∈ P : •p ∩ p• = ∅; test-free
if ∀(p, t) ∈ P × T : f(p, t) 
= (0, 0) ⇒ f−(p, t) 
= f+(p, t); choice-free (CF) or
place-output-nonbranching if ∀p ∈ P : |p•| ≤ 1; fork-attribution (FA) if it is CF
and, additionally, ∀t ∈ T : |•t| ≤ 1; free-choice (FC) if ∀p, p̃ ∈ P : p• ∩ p̃• 
= ∅ ⇒
|p•| = |p̃•| = 1; extended-free-choice (EFC) if ∀p, p̃ ∈ P : p• ∩ p̃• 
= ∅ ⇒ p• = p̃•;
asymmetric-choice (AC) if ∀p, p̃ ∈ P : p• ∩ p̃• 
= ∅ ⇒ (p• ⊆ p̃• or p̃• ⊆ p•); for
m,n ∈ N a weighted (m,n)-T-system if ∀p ∈ P : |•p| ≤ m, |p•| ≤ n; for m,n ∈ N

a weighted (m,n)-S-system if ∀t ∈ T : |•t| ≤ m, |t•| ≤ n.

b-bounded Regions. For the purpose of finding a b-net N implementing a TS
A, we want to synthesize N ’s components purely from the input A. Demanding A
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s0 s1 s2 s3 s4 s5 s6
k k z o k k

sup s0 s1 s2 s3 s4 s5 s6 sig k z o

sup1 0 1 2 2 0 1 2 sig1 (0, 1) (0, 0) (2, 0)
sup2 2 1 0 2 2 1 0 sig2 (1, 0) (0, 2) (0, 0)
sup3 2 2 2 0 2 2 2 sig3 (0, 0) (2, 0) (0, 2)
sup4 0 0 0 2 2 2 2 sig4 (0, 0) (0, 2) (0, 0)
sup5 0 1 2 1 0 1 2 sig5 (0, 1) (1, 0) (1, 0)

R1

R2

k
(0,1)

(1,0)

z
(0,2)

o
(2,0)

R3

(2,0)

(0,2)

R4

(0,2)

Fig. 1. Top: Input TS A. Middle: For i ∈ {1, 2, 3, 4, 5} pure 2-regions Ri = (supi, sigi)
of A, where R1, . . . , R4 already solve all of A’s (E)SSP atoms. For example, the region
R1 solves (k, si), ∀i ∈ {2, 3, 6} and (o, si), ∀i ∈ {0, 1, 4, 5}. Bottom: Pure 2-net NR

A ,
built by R = {R1, R2, R3, R4}, where, for example, •R3 = {o} and R3

• = {z} and
•o = {R1} and o• = {R3}. Moreover, NR

A is FA because of |R•| ≤ 1 and |•eR| ≤ 1 for

all R ∈ R and e ∈ E(A). The net NR
A origins from NR′

A , where R′ = R ∪ { R5 }, by
removing R5. Both R and R′ are b-admissible sets. Thus, the reachability graphs of
their synthesized nets are both isomorphic to A. However, because z ∈ R3

• ∩ R5
• and

R5
• = {z, o}, the net NR′

A is not even free-choice.

and AN to be isomorphic suggests that A’s events correspond to N ’s transitions.
However, the notion of a place is not known for TSs. A b-bounded region R (b-
region, for short) of a TS A = (S,E, δ, s0) is a pair R = (sup, sig) of support
sup : S → {0, . . . , b} and signature sig : E → {0, . . . , b}2, where sig−(e) = m

and sig+(e) = n for sig(e) = (m,n), such that for every edge s e s′ of A
holds sup(s) ≥ sig−(e) and sup(s′) = sup(s) − sig−(e) + sig+(e). A region
(sup, sig) models a place p and the corresponding part of the flow function f :
sig+(e) models f+(e), sig−(e) models f−(e) and sup(s) models M(p) in the
marking M ∈ RS(N) corresponding to s ∈ S(A). Accordingly, a region R is
test-free if sig(e) 
= (0, 0) implies sig−(e) 
= sig+(e). The preset of R is defined
by •R = {e ∈ E | sig+(e) > 0} and its postset by R• = {e ∈ E | sig−(e) > 0}.
The Region R is pure if •R ∩ R• = ∅. For a set R of b-regions and e ∈ E
we define by •eR = {(sup, sig) ∈ R | sig−(e) > 0} the preset and by e•

R =
{(sup, sig) ∈ R | sig+(e) > 0} the postset of e (in accordance to R). Every set
R of b-regions of A defines the synthesized b-net NR

A = (R, E, f,M0) with flow
function f((sup, sig), e) = sig(e) and initial marking M0((sup, sig)) = sup(s0)
for all (sup, sig) ∈ R, e ∈ E. We emphasize once again that a region R of R
becomes a place of NR

A with the preset •R and the postset R•. Moreover, every
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event e ∈ E becomes a transition of NR
A with preset •e = •eR and postset

e• = eR•. It is well known that ANR
A

and A are isomorphic if and only if R’s
regions solve certain separation atoms [2], to be introduced next.

A pair (s, s′) of distinct states of A define a state separation atom (SSP
atom, for short). A b-region R = (sup, sig) solves (s, s′) if sup(s) 
= sup(s′).
The meaning of R is to ensure that NR

A contains at least one place R such
that M(R) 
= M ′(R) for the markings M and M ′ corresponding to s and s′,
respectively. If there is a b-region that solves (s, s′) then s and s′ are called b-
solvable. If every SSP atom of A is b-solvable then A has the b-state separation
property (b-SSP, for short).

A pair (e, s) of event e ∈ E and state s ∈ S where e does not occur at s, that is
¬s e , define an event state separation atom (ESSP atom, for short). A b-region
R = (sup, sig) solves (e, s) if sig−(e) > sup(s) or sup(s)−sig−(e)+sig+(e) > b.
The meaning of R is to ensure that there is at least one place R in NR

A such that
¬M e for the marking M corresponding to s. If there is a b-region that solves
(e, s) then e and s are called b-solvable. If every ESSP atom of A is b-solvable
then A has the b-event state separation property (b-ESSP, for short).

A set R of b-regions of A is called b-admissible if for every of A’s (E)SSP
atoms there is a b-region R in R that solves it. The following lemma, borrowed
from [2, p.163], summarizes the already implied connection between the existence
of b-admissible sets of A and (the solvability of) synthesis:

Lemma 1. ([2]). A b-net N has a reachability graph isomorphic to a given TS
A if and only if there is a b-admissible set R of A such that N = NR

A .

We say a b-net N solves A if AN and A are isomorphic. By Lemma 1, searching for
a restricted b-net reduces to finding a b-admissible set of accordingly restricted
regions. The following two examples illustrate this fact.

Example 1. If R is a b-admissible set of pure regions of A satisfying ∀R ∈ R :
|R•| ≤ 1 and ∀e ∈ E(A) : |•eR| ≤ 1 then NR

A is a pure FA b-net solving A.

Example 2. If R is a b-admissible set of pure regions of A and ∀e ∈ E(A) :
|•eR| ≤ 2, |eR•| ≤ 2 then NR

A is a pure solving b-net, being a weighted (2, 2)-S-
system.

3 Our Contribution

Theorem 1. For a given TS A the following conditions are true:

1. If P ∈ {CF,FA,FC,EFC,AC} then to decide if A is solvable by a pure or
a test-free b-net which is P is NP-complete.

2. Given integers �, �′ ∈ N, deciding if A is solvable by a pure or a test-free b-net,
being a weighted (�, �′)-T-System, is NP-complete.

3. For any fixed �, �′ ≥ 2, deciding if A is solvable by a pure or a test-free b-net,
being a weighted (�, �′)-S-system, is NP-complete.
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4. For any fixed �, �′ ∈ N, one can decide in polynomial time if A is solvable by
a b-net, being a weighted (�, �′)-T-System.

To prove Theorem 1.1–Theorem 1.3 we show that the corresponding decision
problems are in NP and NP-hard. Membership in NP can be seen as follows: By
Lemma 1, if N is a b-net that solves A then there is a b-admissible set R′ of A such
that NR′

A = N . By definition, A has at most |S|2 SSP atoms and at most |E| · |S|
ESSP atoms. Thus, there is a b-admissible subset R ⊆ R′ with |R| ≤ |S|2 + |E| ·
|S|. In particular, NR

A originates from NR′
A = N by (possibly) removing places,

which can not increase any preset- or postset cardinality. Consequently, removing
places preserves property P ∈ {CA,FA,FC,EFC,AC}, the weighted (m,n)-T-
system property and the weighted (m,n)-S-system property. This makes NR

A

a searched net. A non-deterministic Turing machine can guess in polynomial
time a corresponding set R, check its b-admissibility, build NR

A and check its
structural properties in accordance to the regarded decision problem.

To show hardness we use the NP-complete problem cubic monotone
one-in-three-3-sat (cm 1-in-3 3sat) from [11] which is defined as fol-
lows: The input for cm 1-in-3 3sat is a negation-free boolean expression
ϕ = {ζ0, . . . , ζm−1} of three-clauses ζ0, . . . , ζm−1 with set of variables V (ϕ)
where every variable occurs in exactly three clauses. Notice that this implies
|V (ϕ)| = m. The question is whether there is a subset M ⊆ V (ϕ) satisfying
|M ∩ ζi| = 1, ∀i ∈ {0, . . . , m − 1}.

For Theorem 1.(1–2) we reduce an input instance ϕ with m clauses (in poly-
nomial time) to a TS Ab

ϕ satisfying the following condition:

Condition 1. 1. If a test-free b-net solves Ab
ϕ then ϕ is one-in-three satisfiable.

2. If ϕ is one-in-three satisfiable then there is a b-admissible set R of pure regions
of Ab

ϕ satisfying ∀R ∈ R : |R•| ≤ 1∧|•R| ≤ 7m+4 and ∀e ∈ E(A) : |•eR| ≤ 1.

A reduction that satisfies Condition 1 proves Theorem 1.(1–2) as follows: By
definition of test-freeness, every b-net of Theorem 1.(1–2) is at least test-free,
although possibly further restricted. Hence, Condition 1.1 ensures that if Ab

ϕ is
solvable by such a net then ϕ has a one-in-three model. Moreover, a b-admissible
set R that satisfies Condition 1.2 implies that NR

Ab
ϕ

is a pure b-net that is FA

and solves A, cf. Example 1. Every pure FA b-net is test-free (by f+(p, t) = 0
or f−(p, t) = 0) and CF (by definition). By NR

Ab
ϕ

being CF, all of its places p

satisfy |p•| ≤ 1. Thus, the net is also FC, EFC and AC. Finally, by � = 7m + 4
and �′ = 1, the net NR

Ab
ϕ

is a weighted (�, �′)-T-system. Altogether, Condition 1

ensures that Ab
ϕ is solvable by a b-net of Theorem 1.(1–2) if and only if ϕ is

one-in-three satisfiable.
For Theorem 1.3 we reduce ϕ to a TS Bb

ϕ that satisfies the following condition:

Condition 2. 1. If a test-free b-net solves Bb
ϕ then ϕ is one-in-three satisfiable.

2. If ϕ is one-in-three satisfiable then there is a b-admissible set R of pure regions
such that |•eR| ≤ 2 and |eR•| ≤ 2 for all e ∈ E(A).
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A reduction satisfying Condition 2 proves Theorem 1.3 as follows: By the
definition of test-freeness and weighted (m,n)-S-systems, a pure weighted (2, 2)-
S-system is a test-free weighted (m,n)-S-System for all m,n ≥ 2. Moreover, a
b-admissible set that satisfies Condition 2.2 implies that NR

Bb
ϕ

is a pure weighted

(2, 2)-S-system solving Bb
ϕ, cf. Example 2. Thus, Condition 2 ensures that Bb

ϕ is
solvable by a b-net of Theorem 1.3 if and only if ϕ is one-in-three satisfiable.

3.1 The Reduction and the Proof of Condition 1.1 and Condition 2.2

In accordance to Condition 1.1 and Condition 2.1, our goal is to combine the
existence of a b-admissible set R, the b-solvability of Ab

ϕ and Bb
ϕ, with the one-

in-three satisfiability of ϕ. For this purpose, both TSs (among others) apply
gadgets that represent ϕ’s clauses and use their variables as events. Moreover,
both Ab

ϕ and Bb
ϕ have a certain separation atom and the signature of a solving

region (sup, sig) defines a one-in-three model of ϕ via the variable events. So
far, this approach is like that of [15]. However, the main difference and the
biggest challenge is to consider the restrictions of Condition 1.1 and Condition 2.2.
To master this challenge, we apply refined, specialized and different gadgets.
Particularly noteworthy in this context is the representation of ϕ’s clauses by
{0, . . . , b}3-grids instead of simple sequences, as it has been done in [15].

We proceed by introducing the gadgets of Ab
ϕ and Bb

ϕ that represent ϕ’s
clauses. In particular, the clause-gadgets’ functionality will serve as motivation
for the remaining parts of Ab

ϕ and Bb
ϕ, which are presented afterwards.

Let i ∈ {0, . . . ,m − 1}. The TSs Ab
ϕ and Bb

ϕ have for the clause Ci =
{Xi,0,Xi,1,Xi,2} the {0, . . . , b}3-grid Cb

i with transitions that use the variables
of Ci as events. More exactly, the {0, . . . , b}3-grid Cb

i is built by the following
sequences P i,0

α,β , P i,1
α,β , P i,2

α,β , where α, β ∈ {0, . . . , b}. Figure 2 shows C2
i .

P i,0
α,β = ti

0,α,β ti
1,α,β

. . . ti
b−1,α,β ti

b,α,β

Xi,0 Xi,0 Xi,0 Xi,0

P i,1
α,β = ti

α,β,0 ti
α,β,1

. . . ti
α,β,b−1 ti

α,β,b

Xi,1 Xi,1 Xi,1 Xi,1

P i,2
α,β = ti

α,0,β ti
α,1,β

. . . ti
α,b−1,β ti

α,b,β

Xi,2 Xi,2 Xi,2 Xi,2

Among others, Cb
i provides the following sequence Pi where each of Xi,0,Xi,1

and Xi,2 occur b times in a row:

Pi = ti0,0,0
Xi,0 . . . Xi,0 tib,0,0

Xi,1 . . . Xi,1 tib,0,b
Xi,2 . . . Xi,2 tib,b,b

Notice that, except for tib,b,b, every variable of Ci occur at every state of Cb
i .

This has the advantage that we never have to solve an ESSP atom (X, s) such
that X ∈ {Xi,0,Xi,1,Xi,2} and s occur in the same grid and s is a source of
another variable event Y ∈ {Xi,0,Xi,1,Xi,2} \ {X}. This property is crucial
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to ensure Condition 1.2 and Condition 2.2. In particular, it prevents atoms like
(Xi,1, t

i
b−1,0,0) which would be unsolvable for b ≥ 2.

The TSs Ab
ϕ and Bb

ϕ use the grid Cb
i as follows: Both TSs have at least one

separation atom such that a corresponding b-solving region (sup, sig) satisfies
either sup(ti0,0,0) = 0 and sup(tib,b,b) = b or sup(ti0,0,0) = b and sup(tib,b,b) = 0.
In the following, we assume sup(ti0,0,0) = 0 and sup(tib,b,b) = b and argue that
this implies that there is exactly one X ∈ {Xi,0,Xi,1,Xi,2} with sig(X) 
=
(0, 0). If X ∈ {Xi,0,Xi,1,Xi,2} then, by sup(ti0,0,0) = 0 and ti0,0,0

X , we have
immediately sig−(X) = 0 (no consuming is possible). Moreover, by the definition
of regions, we have sup(s′) = sup(s)−sig−(e)+sig+(e) for every s e s′ ∈ Pi. We
use all this together and obtain inductively that b = sup(tib,b,b) = b ·(sig+(Xi,0)+
sig+(Xi,1)+sig+(Xi,2)) > 0 = sup(ti0,0,0). It is easy to see that this expression is
satisfied if and only if there is exactly one variable event with a positive value sig+

(and this value equals 1). Thus, there is exactly one event X ∈ {Xi,0,Xi,1,Xi,2}
with sig(X) 
= (0, 0). By the arbitrariness of i this is simultaneously true for all
grids Cb

0, . . . , C
b
m−1. Consequently, the set M = {X ∈ V (ϕ) | sig(X) 
= (0, 0)}

selects exactly one element of every clause Ci which makes it a one-in-three
model of ϕ. Similarly, if sup(ti0,0,0) = b and sup(tib,b,b) = 0 then M yields also a
one-in-three model of ϕ.

With the just presented functionality of Cb
i in mind, in what follows, we

introduce Ab
ϕ’s and Bb

ϕ’s remaining parts. In particular, we explain how they
collaborate to ensure the existence of a region satisfying sup(ti0,0,0) = 0 and
sup(tib,b,b) = b or sup(ti0,0,0) = b and sup(tib,b,b) = 0. Before we start, the following
lemma provides a basic result, to be used in the sequel, and shows how to connect
the signature of some events with the solvability of an ESSP atom.

Lemma 2. Let q0
e1 . . . e1 qb

e2 qb+1
e3 qb+2

e1 . . . e1 q2b+2 be a sequence
of a TS A = (S,E, δ, s0), where e1, e2, e3 are pairwise distinct events, which
starts and ends with e1 b-times in a row. A test-free b-region solves the ESSP
atom (e1, qb+1) if and only if sig(e1) = (0, 1), sig−(e2) = sig+(e2) and sig(e3) =
(b, 0) or sig(e1) = (1, 0), sig−(e2) = sig+(e2) and sig(e3) = (0, b).

We start by introducing the parts of Ab
ϕ. Figure 2 sketches a snippet of A2

ϕ.
The initial state of Ab

ϕ is s. Firstly, the TS Ab
ϕ has the sequence Qb:

Qb = s q0 . . . qb qb+1 qb+2 . . . q2b+2
a k k z o k k

The sequence Qb provides the ESSP-atom (k, qb+1). If Ab
ϕ is b-solvable then, by

Lemma 1, there is a b-admissible set R of (test-free) regions such that N = NR
Ab

ϕ
.

As R is b-admissible, there is a test-free b-region (sup, sig) ∈ R that solves
(k, qb+1). By Lemma 2, we have either sig−(z) = sig+(z) and sig(o) = (b, 0)
or sig−(z) = sig+(z) and sig(o) = (0, b). Let’s discuss the former case. The
region R implies for transitions s o s′ and s′′ z s′′′ (of Ab

ϕ) that sup(s) = b,
sup(s′) = 0 and sup(s′′) = sup(s′′′). The TS Ab

ϕ uses this to ensure a particular
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ti0

s

si

ti000 ti100 ti200

ti010 ti110 ti210

ti020 ti120 ti220

ti001 ti101 ti201

ti011 ti111 ti211

ti021 ti121 ti221

ti002 ti102 ti202

ti012 ti112 ti212

ti022 ti122 ti222

k2i

vi

ui

k2i+1

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

q0

q1

q2

q3

q4

q5

q6

k

k

z

o

k

k

mi,0mi,1mi,2mi,3mi,4mi,5mi,6
ok2izokk

ni,0ni,1ni,2ni,3ni,4ni,5ni,6
ok2i+1zokk

a

wi

yi

Fig. 2. A snippet of A2
ϕ showing the sequences Q2, M2

i , N2
i , the {0, 1, 2}3-grid C2

i for
the clause Ci = {Xi,0, Xi,1, Xi,2} and the paths Li,0 and Li,1. For clarity, edges labeled
by the same variable event have the same color. The coloring of the states corresponds
to the 2-region R1 which is defined in Table 1 and where Xi,0 ∈ M : Light (dark) red
colored states are mapped to 1 (2) and the others are mapped to 0. (Color figure online)

signature of the events k2i, k2i+1 that are provided by the following sequences
N b

i and M b
i , for all i ∈ {0, . . . , m − 1}:

Mb
i = s mi,0 mi,1 mi,2 mi,3 mi,4 . . . mi,b+4

wi o k2i z o k k

Nb
i = s ni,0 ni,1 ni,2 ni,3 ni,4 . . . ni,b+4

yi o k2i+1 z o k k
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The TS Ab
ϕ uses M b

i , N b
i , R and the occurrences of z and o for the announced goal

as follows: By sig(o) = (b, 0), we have sup(mi,1) = sup(ni,1) = 0 and sup(mi,3) =
sup(ni,3) = b which, by sig−(z) = sig+(z), implies sup(mi,2) = sup(ni,2) = b.

By mi,1
k2i mi,2, ni,1

k2i+1 ni,2 this leads to sig(k2i) = sig(k2i+1) = (0, b). In

particular, for all edges s k2i s′ and s′′ k2i+1 s′′′ of Ab
ϕ holds sup(s) = sup(s′′) = 0

and sup(s′) = sup(s′′′) = b. Finally, Ab
ϕ uses other occurrences of k2i and k2i+1

to ensure sup(ti0,0,0) = 0 and sup(tib,b,b) = b. More exactly, Ab
ϕ installs the paths

Li,0 = s vi ti0,0,0
k2i ti0 and Li,1 = s ui si

k2i+1 tib,b,b. On the one hand, Li,0

ensures reachability of Ab
ϕ. On the other hand, by ti0,0,0

k2i ti0, si
k2i+1 tib,b,b and

the discussion above, Li,0, Li,1 ensure that sup0(ti0,0,0) = 0 and sup0(tib,b,b) = b.
Similarly, one argues that sig(o) = (0, b) and sig−(z) = sig+(z) yields

sig(k2i) = sig(k2i+1) = (b, 0), implying sup1(ti0,0,0) = b and sup1(tib,b,b) = 0.
By the discussed functionality of the grids, this proves that Ab

ϕ satisfies Condi-
tion 1.1.

We proceed by presenting the remaining gadgets of Bb
ϕ. The TS Bb

ϕ has the
initial state s and it has for every i ∈ {0, . . . , m − 1} the following six sequences:

F b
i = s ai

2m+5
. . . ai

1 fi
0

. . . fi
b fi

b+1 fi
b+2

. . . fi
2b+2

bi
2m+5 bi

0 k k z2i o k k

Gb
i = s ci

2m+5
. . . ci

1 gi
0

. . . gi
b gi

b+1 gi
b+2

. . . gi
2b+2

di
2m+5 di

0 k k z2i+1 o k k

Mb
i = s ri

2m+5
. . . ri

1 mi
0 mi

1 mi
2 mi

3 mi
4

. . . mi
2b+2

wi
2m+5 wi

0 o k2i z2i o k k

Nb
i = s si

2m+5
. . . si

1 ni
0 ni

1 ni
2 ni

3 ni
4

. . . ni
2b+2

yi
2m+5 yi

0 o k2i+1 z2i+1 o k k

Li,0 =s qi
2m+5

. . . qi
1 ti

0 ti
0

vi
2m+5 vi

0 k2i
Li,1 =s pi

2m+5
. . . pi

2 pi
1 ti

b,b,b

ui
2m+5 ui

1 k2i+1

In terms of Condition 2.2, the gadgets M b
i , N b

i , Li,0 and Li,1 work similar to the
corresponding ones of Ab

ϕ. However, Condition 2.2 requires to distribute the task
of one event to multiple events. For example, the events z0, . . . , z2m−1 of Bb

ϕ play
the same role as z of Ab

ϕ. This is achieved by F b
i and Gb

i . More exactly, if Bb
ϕ is b-

solvable then, by Lemma 1, every atom (k, f i
b+1) is too. By Lemma 2, if (sup, sig)

is a solving test-free b-region then sig(k) = (0, 1) and sig(o) = (b, 0) or sig(k) =
(1, 0) and sig(o) = (0, b). If sig(k) = (0, 1) then, by sup(f i

b) = sup(gi
b) = b ·

sig+(k) = b and sup(f i
b+1) = sup(f i

b+1) = b, we get sig+(zi) = sig−(zi) and,
thus, sig(ki) = (0, b), ∀i ∈ {0, . . . , 2m − 1}. Similarly, if sig(k) = (1, 0) then
sig(ki) = (b, 0), ∀i ∈ {0, . . . , 2m − 1}. Thus, by the grids’ functionality, the set
M = {X ∈ V (ϕ) | sig(X) 
= (0, 0)} is a sought model.
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3.2 The Proof of Condition 1.2 and Condition 2.2

In this section, we provide b-admissible sets of Ab
ϕ and Bb

ϕ in accordance
to Condition 1.2 and Condition 2.2, respectively. For the sake of simplicity,
we present for every region (sup, sig) only its signature sig and the value
sup(s) of the initial state s. Because Ab

ϕ and Bb
ϕ are reachable and sup(s′′) =

sup(s′) − sig−(e) + sig+(e) for every transition s′ e s′′, this completely defines
the region. In the remainder of this section, unless stated explicitly otherwise,
let i ∈ {0, . . . , m − 1} and M be a one-in-three model of ϕ. Moreover, for
α ∈ {0, 1, 2} let βα, γα ∈ {0, . . . , m − 1} \ {i} be the distinct indices such that
Xi,α ∈ Ci∩Cβα

∩Cγα
, that is, βα, γα choose the other two clauses of ϕ containing

Xi,α.
We start with Condition 1.2 and provide a b-admissible set R of pure regions

of Ab
ϕ such that |R•| ≤ 1 and |•eR| ≤ 1 for all R ∈ R and e ∈ E(Ab

ϕ). Moreover,
because Ab

ϕ has exactly 7m+4 events, every region R of Ab
ϕ satisfies |•R| ≤ 7m+

4. For abbreviation, we define U = {u0, . . . , um−1}, V = {v0, . . . , vm−1},W =
{w0, . . . , wm−1}, Y = {y0, . . . , ym−1} and K = {k0, . . . , k2m−1}. We solve all
atoms concerning the events of {a}∪U∪V ∪W ∪Y with the region R = (sup, sig),
defined by sup(s) = 0 and sig(e) = (0, b) if e ∈ {a} ∪ U ∪ V ∪ W ∪ Y and,
otherwise, sig(e) = (0, 0). This region satisfies |R•| = 0 (no event consumes).
Moreover, none of the subsequently presented regions of Ab

ϕ is in the preset of
any of {a} ∪ U ∪ V ∪ W ∪ Y , thus, |•eR| ≤ 1 for e ∈ {a} ∪ U ∪ V ∪ W ∪ Y . We
proceed with presenting for every event k, z, o, v, k2i, k2i+1 and Xi,0,Xi,1,Xi,2

corresponding regions that solves it. Every row of Table 1 (below) defines a region
R = (supR, sigR) with supR(s) = 0 as follows: For every e ∈ E(Ab

ϕ) we have
either sigR(e) = (0, 0) or sigR(e) ∈ {(1, 0), (0, 1), (b, 0), (0, b)}. In the latter case,
e occurs according to its signature in the corresponding column either as a
single event or as member of the event set shown. For example, for R1 we have
sigR1(k) = (0, 1) and sigR1(e) = (0, 1) for e ∈ M .

Table 1. Pure regions of Ab
ϕ that solve k, z, o, k2i, k2i+1 and Xi,0, Xi,1, Xi,2.

R (1, 0) (0, 1) (b, 0) (0, b)

R1 k, M o W, Y, K

R2 k z, a

R3 z a, o, U, V

R4 z, U, V

Rz
k2i

k2i z, ui, vi, wi

Rz
k2i+1

k2i+1 z, ui, yi

Rα
k2i

for Xi,α a, Y , � ∈ {i, βα, γα} : u�, k2�,

Xi,α �∈ M W \ {w� | � ∈ {i, βα, γα}
Rk2i+1 k2i+1, a, W, V , U \ {u2i+1}, Y \ {y2i+1}
RXi,α Xi,α vi, vβα , vγα
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The regions of Table 1 solve the events k, z, o, k2i, k2i+1 and Xi,0,Xi,1,Xi,2 as
follows. (k): R1 solves k at the sinks of z and R2 solves k at the remaining states.
(z): R2 solves z at the sources of k and R3 solves z at o’s sources and at s. Rz

k2i

and Rz
k2i+1

, where i ∈ {0, . . . , m − 1}, solve z at the sources of k0, . . . , k2m−1.
Finally, R4 solves z at the remaining states. (o): R1 solves o at the sources of k,
k0, . . . , k2m−1 and at s and R3 solves o at the remaining states. (k2i): R1 solves
k2i at all sources of o and all sources of Xi,α in Cb

i , where Xi,α ∈ M . Rz
k2i

solves
k2i at all sources of kj , where 2i 
= j ∈ {0, . . . , 2m − 1} and at s. The remaining
atoms are solved by (the two regions defined by) Rα

k2i
, where α ∈ {0, 1, 2} such

that Xi,α 
∈ M . (k2i+1): R1 solve k2i+1 at ni,0 and Rz
k2i+1

at s and Rk2i+1 at all
remaining states. (Xi,α): If Xi,α ∈ M then the region R1 solves it at ti0, otherwise,
Xi,α is solved at ti0 by Rα

k2i
. The remaining atoms are solved by RXi,α

.
In the following we argue that Ab

ϕ has the SSP, too: To separate S(Qb)
from S(Ab

ϕ) \ S(Qb) we use the region RQ = (supQ, sigQ) where supQ(s) = 0,
sigQ(a) = (0, b) and sigQ(e) = (0, 0) for the other events. Moreover, the
states of Qb are pairwise separated by R1, R2 and R4. To separate the states
S(M b

i ) from S(Ab
ϕ) \ S(M b

i ) we define the region RMi
= (supMi

, sigMi) where
supMi

(s) = 0, sigMi
(wi) = (0, b) and sigMi

(e) = (0, 0) for the other events.
The states of M b

i are pairwise separated by R1, R2, R3 and R4. Similarly, the
states S(N b

i ) are separated by R1, R2, R3, R4 and RNi
= (supNi

, sigNi) where
supNi

(s) = 0, sigNi
(yi) = (0, b) and sigNi

(e) = (0, 0) for the other events. To
separate the states of S(Cb

i )∪{ti0, si} from all the other states we use the region
RCi

= (supCi
, sigCi

) where sup(Ci)(s) = 0, sigCi
(ui) = sigCi

(vi) = (0, b) and
sigCi

(e) = (0, 0) for the other events. Moreover, the states of S(Cb
i )∪{ti0, si} are

pairwise separated by R1, Rk2i+1 and Rα
Xi,α

, where Xi,α 
∈ M .
Altogether, the set R = R1 ∪ R2 ∪ R3 ∪ R4 where R1 = {R1, R2, R3, R4},

R2 = {Rz
k2i

, Rz
k2i+1

, Rα
k2i

, Rk2i+1 | i ∈ {0, . . . , m − 1}, α ∈ {0, 1, 2},Xi,α 
∈ M},
R3 = {RXi,α

| i ∈ {0, . . . , m − 1}, α ∈ {0, 1, 2}} and R3 = {RQ, RMi
, RNi

, RCi
|

i ∈ {0, . . . , m − 1}}, is an admissible set of Ab
ϕ. We briefly argue that it is FA:

It is easy to see that every presented region R ∈ R satisfy |R•| ≤ 1. Moreover,
|•eR| ≤ 1 is also true for e ∈ E(Ab

ϕ): The regions R1 ∈ •o, R2 ∈ •k, R3 ∈ •z and
Rz

k2i
∈ •k2i and Rz

k2i+1
∈ •k2i+1 are unique. Furthermore, if Xi,α = Xj,β = X�,γ

then RXi,α
= RXj,β

= RX�,γ
where i, j, � ∈ {0, . . . , m − 1}, α, β, γ ∈ {0, 1, 2}. As

R is a set, this region is the only element in •Xi,α. No other region (sup, sig) ∈ R
satisfies sig−(e) > 0 for any e ∈ E(Ab

ϕ). Thus, Ab
ϕ satisfies Condition 1.2.

To prove Condition 2.2 we provide a b-admissible set R of pure regions of
Bb

ϕ such that |eR•| ≤ 2 and |•eR| ≤ 2 for all e ∈ E(Bb
ϕ). For brevity, we

define for j ∈ {0, . . . , m − 1} the following sets: Bj = {bi
j | i ∈ {0, . . . , m − 1}},

Dj = {di
j | i ∈ {0, . . . , m − 1}}, Uj = {ui

j | i ∈ {0, . . . , m − 1}}, Vj = {vi
j | i ∈

{0, . . . , m − 1}}, Wj = {wi
j | i ∈ {0, . . . , m − 1}}, Yj = {yi

j | i ∈ {0, . . . , m − 1}},
K = {ki | i ∈ {0, . . . , 2m − 1}} and Z = {zi | i ∈ {0, . . . , 2m − 1}}. By a little
abuse of notation, we let Ci = F b

i ∪ Gb
i ∪ M b

i ∪ N b
i ∪ F b

i ∪ Cb
i ∪ Li,0 ∪ Li,1 and

δi = 2m + 5 − i. Table 2 (below) defines a regions R of Bb
ϕ with supR(s) = 0.
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Table 2. Pure b-regions of Bb
ϕ that solve several separation atoms.

R (1, 0) (0, 1) (b, 0) (0, b)

R1 k, M o W0, Y0, K

R2 k Z, B0, D0

R3 o Z, W3, Y3

Rz2i z2i bi
1, w

i
1

R0
z2i+1 z2i+1 vi

5, k2i+1, d
i
1

R1
z2i+1 z2i+1 di

0, y
i
1

Rk2i+1 k2i+1 bi
1, w

i
1

R2
2i z2i k2i, b

i
0, (Vδi ∪ Uδi ∪ Bδi ∪ Dδi ∪ Wδi ∪ Yδi) \ E(Ci)

(k), (o): The regions R1 and R2 solve k and the regions R1 and R3 solve o.
(z2i), (z2i+1): The region R2 solves z2i, z2i+1 at k’s sources and R3 solves them at
o’s sources, at si,1, si,2, si,3 and at ri,1, ri,2, ri,3. R2

2i solves z2i at the remaining
states of Ci \{ti0} and Rz2i

solves z2i at the remaining states of Bb
ϕ. R0

z2i+1
solves

z2i+1 at ni
0, n

i
1 and si,1 and R1

z2i+1
solves it at the remaining states.

(k2i): For a correct referencing, we need the following definitions: If j ∈
{0, . . . , m − 1} then let αj ∈ {0, 1, 2} be the index such that Xj,αj

∈ M and let
by βj < γj ∈ {0, 1, 2}\{αj} the other variable events of Cb

j be chosen. Moreover,
let � 
= j ∈ {0, . . . , m − 1} such that Xi,βi

∈ Ci ∩ C�,∩Cj and let �′ 
= j′ ∈
{0, . . . , m − 1} such that Xi,γi

∈ Ci ∩ C�′ ,∩Cj′ . That is, �, j and �′, j′ choose
the other two clauses where Xi,βi

,Xi,γi
occur. We use this to define the region

R0
2i = (sup02i, sig

0
2i) where sup02i(s) = 0, sig(Xi,βi

) = (1, 0) and for δ ∈ {i, �, j}
it is sig02i(k2δ) = (b, 0) and sig02i(w

δ
0) = (0, b) if Xi,βi

= Xδ,βδ
and sig02i(w

δ
2) =

(0, b) if Xi,βi
= Xδ,γδ

. Similarly, we define the region R1
2i = (sup12i, sig

1
2i) by

sup12i(s) = 0, sig(Xi,γi
) = (1, 0) and for δ ∈ {i, �′, j′} it is sig12i(k2δ) = (b, 0) and

sig12i(wδ,2) = (0, b) if Xi,γi
= Xδ,γδ

and sig12i(wδ,0) = (0, b) if if Xi,γi
= Xδ,βδ

.
Notice that if Xi,βi

= Xδ,γδ
then R0

2i = R1
2δ and if Xi,γi

= Xδ,βδ
then R1

2i = R0
2δ.

This is our way to correctly, restrict the postset of the events w···
0 and w···

2 . The
region R1 solves k2i at mi

0 and the sinks of Xi,αi
. R0

2i and R1
2i solve k2i at all

states of Cb
i ∪ {s} and

⋃2m+5
j=1 {q�

j , p
�
j , a

�
j , c

�
j , r

�
j , s

�
j | � ∈ {0, . . . , m − 1} \ {i}}.

Finally, to solve k2i at the remaining states we use the region R2
2idefined as

follows: If α = 2m + 5 − i then R2
2i = (sup22i, sig

2
2i) is defined by sup22i(s) = 0,

sig22i(k2i) = sig22i(bi,0) = sig22i(e), where e ∈ {vj,α, uj,α, bj,α, dj,α, wj,α, yj,α | j ∈
{ 0, . . . , m − 1} \ {i}} and sig22i(z2i) = (b, 0).

(k2i+1): R1 and Rk2i+1 solve k2i+1 at all states of Bb
ϕ.

(Xi,0,Xi,1,Xi,2): Let αi, βi, γi be defined as above. To separate Xi,αi
=

X�,α�
= Xj,αj

, i, j, � pairwise distinct, from qi
1, q

i
2, q

�
1, q

�
2, q

j
1, q

j
2, respectively, we

use the region Ri
q = R�

q = Rj
q that maps s to 0, Xi,α1 to (0, b), vi

0, v
�
0, v

j
0 to (b, 0),

vi
2, v

�
2, v

j
2 to (0, b) and the other events to (0, 0). This region is necessary as the pre-

sets •vi
0,

•v�
0,

•vj
0 have already two elements. To separate Xi,αi

from the remain-
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ing states, we use Ri
αi

= (supi
αi

, sigi
αi

), where supi
αi

(s) = 0, sigi
αi

(Xiαi
) = (1, 0)

sigi
αi

(vi
1) = sigi

αi
(v�

1) = sigi
αi

(vj
1) = (0, b) and Xi,αi

∈ Ci ∩ C� ∩ Cj .
The regions Ri

βi
for Xi,βi

and Ri
γi

for Xi,γi
are defined accordingly, where we

use v...
3 and v...

4 (without repetition or confusion) as preset events, respectively.
Notice that, so far, Xi,βi

,Xi,γi
are already separated from q1, . . . , q2m+5 by R0

2i

and R1
2i, respectively.

(ui
j , v

i
j , b

i
j , d

i
j , w

i
j , y

i
j , j ∈ {1, . . . , 2m − 5}): So far, for all of these events

e holds |•eR| = 0 and, even more, if j 
= 1 then |eR•| ≤ 1. Hence, for

e, e′ ∈ {ui
j , v

i
j , b

i
j , d

i
j , w

i
j , y

i
j , j ∈ {1, . . . , 2m − 4}} with e′

x e ∈ Bb
ϕ we use

the region (supe, sige) where supe(s) = 0, sige(e′) = (0, b) and sige(e) = (b, 0)
and sige(e′′) = (0, 0) for E(Bb

ϕ) \ {e, e′}. Notice that e, e′ are unique and that
this region also separates x. For the 2m + 5-indexed events we use the region
where all these (and only these) events are mapped to (b, 0) and s is mapped
to b.

So far, the presented regions justify Bb
ϕ’s b-ESSP. It remains to justify its

b-SSP: One verifies that all distinct states s, s′ ∈ Ci are separated by the
already presented regions. If e ∈ {ui

j , v
i
j , b

i
j , d

i
j , w

i
j , y

i
j | i ∈ {0, . . . , m − 1}, j ∈

{1, . . . , 2m − 5}} and s e then s is separated by the region defined for the sep-
aration of e. Moreover, so far, if e ∈ {ui

j , v
i
j , b

i
j , d

i
j , w

i
j , y

i
j | i ∈ {0, . . . , m− 1}, j ∈

{m, . . . , 2m + 6}} then |eR•| = 1. Hence, we choose for every i ∈ {0, . . . , m − 1}
the region RCi

= (supCi
, sigCi

) where supCi
(s) = 0, sigCi

(e) = (0, b) if
e ∈ {ui

j , v
i
j , b

i
j , d

i
j , w

i
j , y

i
j | j = 2m + 5 − i}} and, otherwise, sigCi

(e) = (0, 0).
Clearly, RCi

separates the remaining states in question from S(Bb
ϕ) \ Ci. More-

over, the regions RC0 , . . . , RCm−1 preserve the (2, 2)-S-system property.
Altogether, the union of all introduced regions yields a b-admissible set R of

pure regions that has the (2, 2)-S-system property.

3.3 The Proof of Theorem1.4

By Lemma 1, a b-net N , being a weighted (m,n)-T-system, solves A if and only if
there is a b-admissible set R with N = NR

A . By definition, every R = (sup, sig) ∈
R satisfies |•R| = |{e ∈ E(A) | sig+(e) > 0}| ≤ m and |R•| = |{e ∈ E(A) |
sig−(e) > 0}| ≤ n. The maximum set R of A′s b-regions that satisfy the (m,n)-
condition is computable in polynomial time: To define R = (sup, sig) ∈ R we
have for � ∈ {1, . . . , m} and �′ ∈ {1, . . . , n} at most

(|E|
�

)
and

(|E|
�′

)
events for •R

and R•, respectively. This makes at most
(|E|

�

) · (|E|
�′

) · (b + 1)�+�′
possibilities for

sig, each of it is to combine with the at most b+1 values for sup(s0). As b,m and
n are not part of the input, altogether, there are at most O(|E|m+n) b-regions.
Moreover, one can decide in polynomial time if sup(s0) and sig define actually
a fitting b-region as follows: Firstly, compute a spanning tree A′ of A, having at
most |S(A)| paths, in time O(|E(A)|·|S(A)|3) [16]. Secondly, use sup(s0) and sig

to determine sup(sj) for all sj ∈ S(A) by the unique path s0
e1 . . . ej sj ∈ A′.

Thirdly, check for the at most |S|2 ·|E| edges s e s′ ∈ A if both sup(s) ≥ sig−(e)
and sup(s′) = sup(s) + sig−(e) + sig+(e) ≤ b are satisfied.
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Having computed the (maximum) set R, it remains to check (in polynomial
time) whether the at most |S|2 + |S| · |E| separation atoms of A are solved by
R.

4 Conclusion

This paper shows that deciding if a TS is solvable by a b-net which is CF, FA,
FC, EFC or AC remains NP-complete. Moreover, our proof imply that synthesis
is also hard if the searched net is to be behaviorally free choice, behaviorally
asymmetric choice or reducedly asymmetric choice [3]. Furthermore, we show
that synthesis of (m,n)-S-systems is NP-complete for every fixed m,n ≥ 2. While
synthesis of weighted (m,n)-T-systems, being dual to the S-systems, is also hard
if m,n are part of the input, it becomes tractable for any fixed m,n. In particular,
fixing m,n puts the problem into the complexity class XP. Consequently, for
future work, it remains to be investigated whether the synthesis of weighted
(m,n)-T-systems parameterized by m + n is fixed parameter tractable.
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