
Emmanuel Filiot
Raphaël Jungers
Igor Potapov (Eds.)

LN
CS

 1
16

74

13th International Conference, RP 2019
Brussels, Belgium, September 11–13, 2019
Proceedings

Reachability Problems

Lecture Notes in Computer Science 11674

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Emmanuel Filiot • Raphaël Jungers •

Igor Potapov (Eds.)

Reachability Problems
13th International Conference, RP 2019
Brussels, Belgium, September 11–13, 2019
Proceedings

123

Editors
Emmanuel Filiot
Université Libre de Bruxelles
Brussels, Belgium

Raphaël Jungers
Université Catholique de Louvain
Louvain-la-Neuve, Belgium

Igor Potapov
University of Liverpool
Liverpool, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30805-6 ISBN 978-3-030-30806-3 (eBook)
https://doi.org/10.1007/978-3-030-30806-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-30806-3

Preface

This volume contains the papers presented at RP 2019, the 13th International Con-
ference on Reachability Problems, organized in Brussels during September 11–13,
2019 by the Université Catholique de Louvain (UCL), Louvain-La-Neuve, Belgium
and Université libre de Bruxelles (ULB), Brussels, Belgium. Previous events in the
series were located at: Aix-Marseille University (2018), Royal Holloway, University of
London (2017), Aalborg University (2016), the University of Warsaw (2015), the
University of Oxford (2014), Uppsala University (2013), the University of Bordeaux
(2012), the University of Genoa (2011), Masaryk University Brno (2010), École
Polytechnique (2009), the University of Liverpool (2008), and Turku University
(2007).

The aim of the conference is to bring together scholars from diverse fields with a
shared interest in reachability problems, and to promote the exploration of new
approaches for the modeling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include
(but are not limited to): reachability for infinite state systems; rewriting systems;
reachability analysis in counter/timed/cellular/communicating automata; Petri nets;
computational game theory, computational aspects of semi-groups, groups, and rings;
reachability in dynamical and hybrid systems; frontiers between decidable and unde-
cidable reachability problems; complexity and decidability aspects; predictability in
iterative maps; and new computational paradigms.

We are very grateful to our invited speakers:

– Thomas A. Henzinger (IST Austria): “Temporal Logics for Multi-Agent Systems”
– Vladimir Protasov (HSE Moscow): “Primitivity and Synchronizing Automata: A

Functional Analytic Approach”
– Slawomir Lasota (University of Warsaw): “The Reachability Problem for Petri Nets

is Not Elementary”
– Sriram Sankaranarayanan (University of Colorado Boulder): “Reaching Out

Towards Fully Verified Autonomous Systems”
– Jean-François Raskin (ULB Brussels): “Tutorial on Game Graphs for Reactive

Synthesis”

The conference received 26 paper submissions, from which 2 papers were with-
drawn. Each submission was carefully reviewed by three Program Committee
(PC) members. Based on these reviews, the PC decided to accept 14 papers, in addition
to the 4 invited talks and 1 invited tutorial. The members of the PC and the list of
external reviewers can be found on the next pages. We are grateful for the high quality
work produced by the PC and the external reviewers. Overall this volume contains 14
contributed papers and 3 papers from invited speakers which cover their talks.

The conference also provided the opportunity to other young and established
researchers to present work in progress or work already published elsewhere. This year,

the PC selected 16 high-quality presentations on various reachability aspects in theo-
retical computer science.

List of accepted talk-only submissions:

– Amaury Pouly, Nathanaël Fijalkow, James Worrell, Joël Ouaknine, and Joao Sousa
Pinto: On the Decidability of Reachability in Linear Time-Invariant Systems

– Bernadette Charron-Bost and Patrick Lambein-Monette: Randomization and
Quantization for Average Consensus

– Cas Widdershoven and Stefan Kiefer: Efficient Analysis of Unambiguous Automata
Using Matrix Semigroup Techniques

– Emilie Charlier, Célia Cisternino, and Adeline Massuir: State Complexity of the
Multiples of the Thue-Morse Set

– Florent Delgrange, Thomas Brihaye, Youssouf Oualhadj, and Mickael Randour:
Life is Random, Time is Not: Markov Decision Processes with Window Objectives

– Frederik M. Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marco Muniz,
and Jiri Srba: Partial Order Reduction for Reachability Games

– Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier: Synthesis of Data Word
Transducers

– Marie van den Bogaard: The Complexity of Subgame Perfect Equilibria in Quan-
titative Reachability Games

– Mehran Hosseini, Joël Ouaknine, and James Worrell: Termination of Affine Loops
over the Integers

– Nikolaos Athanasopoulos and Raphaël Jungers: Path-Complete Reachability for
Switching Systems

– Pablo Barceló, Chih-Duo Hong, Xuan-Bach Le, Anthony Widjaja Lin, and Reino
Niskanen: Monadic Decomposability of Regular Relations

– Patricia Bouyer, Thomas Brihaye, Mickael Randour, Cédric Rivière, and Pierre
Vandenhove: Reachability in Stochastic Hybrid Systems

– Pierre Ohlmann, Nathanal Fijalkow, and Pawe l Gawrychowski: The Complexity of
Mean Payoff Games Using Universal Graphs

– Stéphane Le Roux, Arno Pauly, and Mickael Randour: Extending Finite-Memory
Determinacy by Boolean Combination of Winning Conditions

– Thomas Colcombet, Joël Ouaknine, Pavel Semukhin, and James Worrell: On
Reachability Problems for Low-Dimensional Matrix Semigroups

– Tobias Winkler, Sebastian Junges, Guillermo Pérez, and Joost-Pieter Katoen: On
the Complexity of Reachability in Parametric Markov Decision Processes

Overall, the conference program consisted of 4 invited talks, 1 invited tutorial, 14
presentations of contributed papers, and 16 informal presentations in the area of
reachability problems stretching from results on fundamental questions in mathematics
and computer science to efficient solutions of practical problems.

A special thanks to the team behind the EasyChair system and the Lecture Notes in
Computer Science team at Springer, who together made the production of this volume
possible in time for the conference. Finally, we thank all the authors and invited
speakers for their high-quality contributions, and the participants for making RP 2019 a
success. We are also very grateful to Alfred Hofmann for the continuous support of the

vi Preface

event in the last decade, to F.R.S.-FNRS and Springer for their financial sponsorship,
and the following people for their help in organizing RP 2019:

– The Formal Methods and Verification Team of ULB, in particular Nicolas
Mazzocchi

– The ICTEAM Institute at UCLouvain, in particular Pascale Premereur,
Marie-Christine Joveneau, Ludovic Taffin, Guillaume Berger, and Franois Gonze.

September 2019 Emmanuel Filiot
Igor Potapov

Raphaël Jungers

Preface vii

Organization

Program Committee

S. Akshay IIT Bombay, India
Nikolaos Athanasopoulos Queen’s University Belfast, UK
Christel Baier TU Dresden, Germany
Paul Bell Liverpool John Moores University, UK
Nathalie Bertrand Inria, France
Bernard Boigelot University of Liege, Belgium
Ahmed Bouajjani IRIF, University Paris Diderot, France
Alessandro D’Innocenzo University of L’Aquila, Italy
Nathanaël Fijalkow CNRS, LaBRI, University of Bordeaux, France
Emmanuel Filiot Université Libre de Bruxelles, Belgium
Gilles Geeraerts Université libre de Bruxelles, Belgium
Matthew Hague Royal Holloway University of London, UK
Vesa Halava University of Turku, Finland
Raphaël Jungers Université Catholique de Louvain (UCL), Belgium
Martin Lange University of Kassel, Germany
Fribourg Laurent LSV, CNRS, ENS Paris-Saclay, France
Axel Legay Université Catholique de Louvain (UCL), Belgium
Guillermo Perez University of Antwerp, Belgium
Igor Potapov University of Liverpool, UK
Pavithra Prabhakar Kansas State University, USA
Maria Prandini Politecnico di Milano, Italy
Alexander Rabinovich Tel Aviv University, Israel
Mickael Randour F.R.S.-FNRS, UMONS - Université de Mons, Belgium
Pierre-Alain Reynier Aix-Marseille Université, France
Shinnosuke Seki The University of Electro-Communications, Japan
Patrick Totzke University of Liverpool, UK

Additional Reviewers

Almagor, Shaull
Ausiello, Giorgio
Berwanger, Dietmar
Blondin, Michael
Bollig, Benedikt
Bradfield, Julian
Bruse, Florian D.

Delgrange, Florent
Fujiyoshi, Akio
Given-Wilson, Thomas
Hundeshagen, Norbert
Lal, Ratan
Mazowiecki, Filip
Narayan Kumar, K.

Niskanen, Reino
Phawade, Ramchandra
Rahimi Afzal, Zahra
Rossi, Massimiliano
Schnoebelen, Philippe
Taghian Dinani, Soudabeh
Zimmermann, Martin

Abstracts of Invited Talks

Bidding Games on Markov Decision Processes

Guy Avni1, Thomas A. Henzinger1, Rasmus Ibsen-Jensen2,
and Petr Novotný3

1 IST Austria
2 University of Liverpool

3 Masaryk University

Abstract. In two-player games on graphs, the players move a token through a
graph to produce an infinite path, which determines the qualitative winner or
quantitative payoff of the game. In bidding games, in each turn, we hold an
auction between the two players to determine which player moves the token.
Bidding games have largely been studied with concrete bidding mechanisms
that are variants of a first-price auction: in each turn both players simultaneously
submit bids, the higher bidder moves the token, and pays his bid to the lower
bidder in richman bidding, to the bank in poorman bidding, and in taxman
bidding, the bid is split between the other player and the bank according to a
predefined constant factor. Bidding games are deterministic games. They have
an intriguing connection with a fragment of stochastic games called random-turn
games. We study, for the first time, a combination of bidding games with
probabilistic behavior; namely, we study bidding games that are played on
Markov decision processes, where the players bid for the right to choose the
next action, which determines the probability distribution according to which the
next vertex is chosen. We study parity and mean-payoff bidding games on
MDPs and extend results from the deterministic bidding setting to the proba-
bilistic one.

This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369N33 (Meitner fellowship),
and the Czech Science Foundation grant no. GJ19-15134Y.

The Reachability Problem for Petri Nets is Not
Elementary

Slawomir Lasota

University of Warsaw
sl@mimuw.edu.pl

Abstract. The central algorithmic problem for Petri nets (or vector addition
systems) is reachability: whether from the given initial configuration there exists
a sequence of valid execution steps that reaches the given final configuration.
The complexity of the problem has remained unsettled since the 1960s, and it is
one of the most prominent open questions in the theory of verification.
Decidability was proved by Mayr in his seminal STOC 1981 work, and the
currently best published upper bound is non-primitive recursive Ackermannian
of Leroux and Schmitz from LICS this year. We establish a non-elementary
lower bound: the reachability problem needs a tower of exponentials of time and
space. Until this work, the best lower bound has been exponential space, due to
Lipton in 1976. The new lower bound is a major breakthrough for several
reasons. Firstly, it shows that the reachability problem is much harder than the
coverability (i.e., state reachability) problem, which is also ubiquitous but has
been known to be complete for exponential space since the late 1970s. Sec-
ondly, it implies that a plethora of problems from formal languages, logic,
concurrent systems, process calculi, and other areas, that are known to admit
reductions from the Petri nets reachability problem, are also not elementary.
Thirdly, it makes obsolete the currently best lower bounds for the reachability
problems for two key extensions of Petri nets: with branching and with a
pushdown stack.

Primitivity and Synchronizing Automata:
A Functional Analytic Approach

Vladimir Yu. Protasov1,2

1 University of L’Aquila, Italy
2 Moscow State University, Russia
v-protassov@yandex.ru

Abstract. We give a survey of a function-analytic approach in the study of
primitivity of matrix families and of synchronizing automata. Then we define
the m-synchronising automata and prove that the existence of a reset m-tuple of
a deterministic automata with n states can be decided in less than
mn2 log2 nþ mþ 4

2

� �
operations. We study whether the functional-analytic

approach can be extended to m-primitivity and to m-synchronising automata.
Several open problems and conjectures concerning the length of m-reset tuples,
m-primitive products, and finding those objects algorithmically are formulated.

Keywords: Nonnegative matrix � Primitive semigroups � Synchrinizing auto-
mata � Functional equation � Contraction � Affine operator

The research is supported by FRBR grants 17-01-00809 and 19-04-01227.

Game Graphs for Reactive Synthesis

Jean-François Raskin

Université libre de Bruxelles, U.L.B., Belgium
jraskin@ulb.ac.be

Abstract. In this talk, I will recall how to use infinite duration games played on
graphs to formalize and solve the reactive synthesis problem. I will review the
main results concerning the two-player zero-sum graph games including algo-
rithms to solve them for x-regular objectives. Then I will show some limitations
of this framework and hint at solutions, based on non-zero games, to overcome
them.

Reaching Out Towards Fully Verified
Autonomous Systems

Sriram Sankaranarayanan1, Souradeep Dutta1, and Sergio Mover2

1 University of Colorado, Boulder, USA
{srirams,souradeep.dutta}@colorado.edu

2 Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
smover@lix.polytechnique.fr

Abstract. Autonomous systems such as “self-driving” vehicles and closed-loop
medical devices increasingly rely on learning-enabled components such as
neural networks to perform safety critical perception and control tasks. As a
result, the problem of verifying that these systems operate correctly is of the
utmost importance. We will briefly examine the role of neural networks in the
design and implementation of autonomous systems, and how various verifica-
tion approaches can contribute towards engineering verified autonomous sys-
tems. In doing so, we examine promising initial solutions that have been
proposed over the past three years and the big challenges that remain to be
tackled.

Keywords: Formal verification � Autonomous systems � Constraint solvers

Contents

Bidding Games on Markov Decision Processes. 1
Guy Avni, Thomas A. Henzinger, Rasmus Ibsen-Jensen,
and Petr Novotný

Primitivity and Synchronizing Automata: A Functional Analytic Approach. . . 13
Vladimir Yu. Protasov

Reaching Out Towards Fully Verified Autonomous Systems 22
Sriram Sankaranarayanan, Souradeep Dutta, and Sergio Mover

On the m-eternal Domination Number of Cactus Graphs 33
Václav Blažej, Jan Matyáš Křišt’an, and Tomáš Valla

On Relevant Equilibria in Reachability Games . 48
Thomas Brihaye, Véronique Bruyère, Aline Goeminne,
and Nathan Thomasset

Partial Solvers for Generalized Parity Games . 63
Véronique Bruyère, Guillermo A. Pérez, Jean-François Raskin,
and Clément Tamines

Reachability in Augmented Interval Markov Chains 79
Ventsislav Chonev

On Solving Word Equations Using SAT . 93
Joel D. Day, Thorsten Ehlers, Mitja Kulczynski, Florin Manea,
Dirk Nowotka, and Danny Bøgsted Poulsen

Parameterised Verification of Publish/Subscribe Networks
with Exception Handling . 107

Giorgio Delzanno

Cellular Automata for the Self-stabilisation of Colourings and Tilings 121
Nazim Fatès, Irène Marcovici, and Siamak Taati

On the Termination Problem for Counter Machines
with Incrementing Errors . 137

Christopher Hampson

Reachability Problems on Partially Lossy Queue Automata 149
Chris Köcher

On the Computation of the Minimal Coverability Set of Petri Nets 164
Pierre-Alain Reynier and Frédéric Servais

Deciding Reachability for Piecewise Constant Derivative Systems
on Orientable Manifolds. 178

Andrei Sandler and Olga Tveretina

Coverability Is Undecidable in One-Dimensional Pushdown Vector
Addition Systems with Resets. 193

Sylvain Schmitz and Georg Zetzsche

Synthesis of Structurally Restricted b-bounded Petri Nets:
Complexity Results . 202

Ronny Tredup

Reachability of Five Gossip Protocols . 218
Hans van Ditmarsch, Malvin Gattinger, Ioannis Kokkinis,
and Louwe B. Kuijer

Author Index . 233

xx Contents

Bidding Games on Markov Decision
Processes

Guy Avni1(B), Thomas A. Henzinger1, Rasmus Ibsen-Jensen2,
and Petr Novotný3

1 IST Austria, Klosterneuburg, Austria
guy.avni@ist.ac.at

2 University of Liverpool, Liverpool, UK
3 Masaryk University, Brno, Czechia

Abstract. In two-player games on graphs, the players move a token
through a graph to produce an infinite path, which determines the qual-
itative winner or quantitative payoff of the game. In bidding games, in
each turn, we hold an auction between the two players to determine
which player moves the token. Bidding games have largely been studied
with concrete bidding mechanisms that are variants of a first-price auc-
tion: in each turn both players simultaneously submit bids, the higher
bidder moves the token, and pays his bid to the lower bidder in Richman
bidding, to the bank in poorman bidding, and in taxman bidding, the bid
is split between the other player and the bank according to a predefined
constant factor. Bidding games are deterministic games. They have an
intriguing connection with a fragment of stochastic games called random-
turn games. We study, for the first time, a combination of bidding games
with probabilistic behavior; namely, we study bidding games that are
played on Markov decision processes, where the players bid for the right
to choose the next action, which determines the probability distribution
according to which the next vertex is chosen. We study parity and mean-
payoff bidding games on MDPs and extend results from the deterministic
bidding setting to the probabilistic one.

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in
formal verification [2], where they are used, for example, to solve the problem of
reactive synthesis [12], and they have deep connections to foundations of logic
[14]. A graph game proceeds by placing a token on a vertex in the graph, which
the players move throughout the graph to produce an infinite path (“play”) π.
The game is zero-sum and π determines the winner or payoff.

A graph game is equipped with a set of rules, which we call the “mode of
moving”, that determine how the token is moved in each turn. The simplest

This research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meit-
ner fellowship), and the Czech Science Foundation grant no. GJ19-15134Y.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-30806-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_1

2 G. Avni et al.

mode of moving is turn based in which the vertices are partitioned between the
two players, and when the token is placed on a vertex v, the player who owns
v decides to which neighbor of v it proceeds to. Turn-based games are used to
model antagonistic behavior and are appropriate in worst-case analysis. On the
other hand, probabilistic transitions conveniently model lack of information and
are appropriate for average-case analysis. In Markov chains, the token proceeds
from each vertex according to a probability distribution on neighboring vertices.
A Markov decision process (MDP, for short) is associated with a set of actions
Γ , and each vertex v is associated with a probability distribution δ(v, γ) on
neighboring vertices, for each action γ ∈ Γ . Thus, an MDP can be thought of
as a 1.5-player game in which, assuming the token is placed on a vertex v, the
single player chooses an action γ, and Nature chooses the vertex to move the
token to according to the distribution δ(v, γ). Stochastic games, a.k.a. 2.5-player
games, combine turn-based games and probabilistic transitions [7]. The vertices
in a stochastic game are partitioned between two players and a Nature player.
Whenever the token is placed on a vertex that is controlled by a player, we
proceed as in turn-based games, and whenever it is placed on a vertex that is
controlled by Nature, we proceed randomly as in Markov chains.

Bidding is another mode of moving. In bidding games, both players have
budgets and an auction is held in each turn to determine which player moves
the token. Bidding games where introduced in [9,10], where several concrete bid-
ding rules were defined. In Richman bidding (named after David Richman), each
player has a budget, and before each turn, the players submit bids simultane-
ously, where a bid is legal if it does not exceed the available budget. The player
who bids higher wins the bidding, pays the bid to the other player, and moves
the token. A second bidding rule called poorman bidding in [9], is similar except
that the winner of the bidding pays the “bank” rather than the other player.
Thus, the bid is deducted from his budget and the money is lost. A third bidding
rule called taxman in [9], spans the spectrum between poorman and Richman
bidding. Taxman bidding is parameterized by a constant τ ∈ [0, 1]: the winner of
a bidding pays portion τ of his bid to the other player and portion 1 − τ to the
bank. Taxman bidding with τ = 1 coincides with Richman bidding and taxman
bidding with τ = 0 coincides with poorman bidding.

We study for the first time, a combination of the bidding and probabilistic
modes of moving by studying bidding games that are played on MDPs; namely,
the bidding game is played on an MDP, and in each turn we hold a bidding
to determine which player chooses an action. One motivation for the study of
bidding games on MDPs is practical; the extension expands the modelling capa-
bilities of bidding games. A second motivation is theoretical and aims at a better
understanding of a curious connection between bidding games and stochastic
games, which we describe below.

Up to now, we have only discussed modes of moving the token. A second
classification for graph games is according to the players’ objectives. The simplest
objective is reachability, where Player 1 wins iff an infinite play visits a designated
target vertex. Bidding reachability games were studied in [9,10], and these are

Bidding Games on Markov Decision Processes 3

the only objectives studied there. A central quantity in bidding games is the
initial ratio of the players’ budgets. The central question that was studied in
[9] regards the existence of a necessary and sufficient initial ratio to guarantee
winning the game. Formally, assuming that, for i ∈ {1, 2}, Player i’s initial
budget is Bi, we say that Player 1’s initial ratio is B1/(B1 + B2). The threshold
ratio in a vertex v, denoted Thresh(v), is such that if Player 1’s initial ratio
exceeds Thresh(v), he can guarantee winning the game, and if his initial ratio
is less than Thresh(v), Player 2 can guarantee winning the game1. Existence
of threshold ratios in reachability games for all three bidding mechanisms was
shown in [9].

Moreover, the following probabilistic connection was shown for reachability
games with Richman-bidding and only for this bidding rule. Random-turn games
are a fragment of stochastic games. A random-turn game is parameterized by p ∈
[0, 1]. In each turn, the player who moves is determined according to a (possibly)
biased coin toss: with probability p, Player 1 chooses how to move the token,
and Player 2 chooses with probability 1 − p. Consider a reachability Richman-
bidding game G. We construct a “uniform” random-turn game on top of G,
denoted RT0.5(G), in which we toss an unbiased coin in each turn. The objective
of Player 1 remains reaching his target vertex. It is well known that each vertex
in RT0.5(G) has a value, which is, informally, the probability of reaching the target
when both players play optimally, and which we denote by val(RT0.5(G), v). The
probabilistic connection that is observed in [10] is the following: For every vertex
v in the reachability Richman-bidding game G, the threshold ratio in v equals
1−val(RT(G), v). We note that such a connection is not known and is unlikely to
exist in reachability games with neither poorman nor taxman bidding. Indeed,
very simple poorman games have irrational threshold ratios [4]. Random-turn
games have been extensively studied in their own right, mostly with unbiased
coin tosses, since the seminal paper [11].

Infinite-duration bidding games were studied with Richman- [3], poorman-
[4], and taxman-bidding [5]. The most interesting results in these papers regards
an extended probabilistic connection for mean-payoff bidding games. Mean-
payoff games are quantitative games; an infinite play is associated with a payoff
that is Player 1’s reward and Player 2’s cost. Accordingly, we refer to the play-
ers in a mean-payoff game as Max and Min, respectively. Consider a strongly-
connected mean-payoff taxman-bidding game G with taxman parameter τ ∈ [0, 1]
and initial ratio r ∈ (0, 1). The probabilistic connection is the following: the
value of G w.r.t. τ and r, namely the optimal payoff Max can guarantee assum-
ing his budget exceeds r, equals the value of the mean-payoff random-turn game
RTF (τ,r)(G) for F (τ, r) = r+τ(1−r)

1+τ , where the value of RTF (τ,r)(G) is the expected
payoff when both players play optimally. Specifically, for Richman-bidding, the
value does not depend on the initial ratio and equals the value of RT0.5(G). For

1 When the initial ratio is exactly Thresh(v), the winner depends on the mechanism
with which ties are broken. Our results do not depend on a specific tie-breaking
mechanism.Tie-breaking mechanisms are particularly important in discrete-bidding
games [1].

4 G. Avni et al.

poorman bidding, the value of G equals the value of RTr(G). We highlight the
point that bidding games are deterministic. One way to understand the proba-
bilistic connection is as a “derandomization”; namely, Max has a deterministic
bidding strategy in G that ensures a behavior that mimics the probabilistic
behavior of RTF (τ,r)(G).

For qualitative objectives, we show existence of surely-winning threshold
ratios in Richman-bidding reachability games. We then focus on strongly-
connected games and show that in a strongly-connected parity taxman-bidding
game, one of the players wins almost-surely with any positive initial budget.
For mean-payoff objectives, we extend the probabilistic connection for strongly-
connected mean-payoff taxman-bidding games from the deterministic setting to
the probabilistic one. Namely, we show that the optimal expected payoff in a
taxman-bidding game G w.r.t. τ and r equals the value of RTF (τ,r)(G). The proof
is constructive and we show an optimal bidding strategy for the two players.

2 Preliminaries

A Markov decision process (MDP, for short) is M = 〈V, Γ, δ〉, where V is a set of
vertices, Γ is a set of actions, and δ : V ×Γ → [0, 1]V is a probabilistic transition
function, where for every v ∈ V and γ ∈ Γ , we have

∑
u∈V δ(v, γ)(u) = 1. We

say that an MDP M is strongly-connected if from every two vertices v and u,
both players have a strategy that forces the game from v to u with probability
1. We focus on strongly-connected MDPs, where the initial position of the token
is not crucial and we sometimes omit it.

We study bidding games that are played on MDPs. The game proceeds as
follows. Initially, a token is placed on some vertex and the players start with
budgets, which are real numbers. Suppose the token is placed on v ∈ V in the
beginning of a turn. We hold a bidding in which both players simultaneously
submit bids, where a bid is legal if it does not exceed the available budget. The
player who bids higher wins the bidding and chooses an action γ ∈ Γ , and the
next position of the token is chosen at random according to the distribution
δ(v, γ). The bidding rules that we consider differ in the update to the players’
budget, and specifically, in how the winning bid is distributed.

Definition 1. Suppose the players budgets are B1 and B2 and Player 1 wins
the bidding with a bid of b. The budgets in the next turn are obtained as follows.

– Richman bidding: Player 1 pays Player 2, thus B′
1 = B1 − b and B′

2 =
B2 + b.

– Poorman bidding: Player 1 pays the bank, thus B′
1 = B1 − b and B′

2 = B2.
– Taxman bidding with parameter τ ∈ [0, 1]: Player 1 pays portion τ to

Player 2 and portion (1−τ) to the bank, thus B′
1 = B1−b and B′

2 = B2+b ·τ .

Note that fixing the taxman parameter to τ = 1 gives Richman bidding and
fixing τ = 0 gives poorman bidding.

A finite play of a bidding game is in (V × Γ ×R× {1, 2})∗ · V . A strategy is
a function that takes a finite player and prescribes a bid as well as an action to

Bidding Games on Markov Decision Processes 5

perform upon winning the bid. Two strategies f1 and f2 for the two players and
an initial vertex v0 give rise to a distribution over plays of length n ∈ IN, which
we denote by Distn(v0, f1, f2) and define inductively. For n = 0, the probability
of the play v0 is 1. Consider a finite play π that visits n−1 vertices. For i ∈ {1, 2},
let 〈bi, γi〉 = fi(π). If bi > b3−i, then Player i wins the bidding, and the next
action to be played is γi. For u ∈ V , the probability of the n-lengthed play
π · 〈v, γi, bi, i〉 · u is Pr[π] · δ(v, γi)(u). The issue of draws, i.e., the case in which
bi = b3−i, needs to be handled with a tie-breaking mechanism, and our results
are not affected by which mechanism is used. The extension of the distribution
Dn(v0, f1, f2) to infinite paths is standard.

Random-Turn Games. Stochastic games generalize MDPs; while an MDP can
be thought of as a player playing against Nature, in a stochastic game, a player is
playing against a second adversarial player as well as against Nature. We consider
a fragment of stochastic games called random-turn games, which are similar to
bidding games except that, in each turn, rather than bidding, the player who
chooses an action is selected according to some fixed probability. Formally, let
G = 〈V, Γ, δ, w〉 be a mean-payoff bidding game and p ∈ (0, 1), then the random-
turn game that is associated with G and p is RTp(G) = 〈V ∪(V ×{1, 2}), Γ, δ′, w〉,
where vertices in V are controlled by Nature and model coin tosses and a vertex
〈v, i〉, for i ∈ {1, 2}, models the case that Player i is chosen to play. Thus, for
every v ∈ V and γ ∈ Γ , we have δ′(v, γ)(〈v, 1〉) = p and δ′(v, γ)(〈v, 2〉) = 1 − p.
Also, Player i controls every vertex in V ×{i}, and we have δ′(〈v, i〉, γ) = δ(v, γ).
Finally, it is technically convenient to assume that vertices in V × {1, 2} do not
contribute to the energy of a play.

3 Qualitative Bidding Games on MDPs

In this section we study infinite-duration games with qualitative objectives. We
adapt the concept of surely winning to bidding games played on MDPs.

Definition 2. Let G be a game that is played on an MDP 〈V, Γ, δ〉, let O ⊆ V ω

be an objective for Player 1, and let v ∈ V . The surely-winning threshold ratio
in v, denoted Thresh(v), is such that

– If Player 1’s initial ratio exceeds Thresh(v), then Player 1 has a strategy such
that no matter how Player 2 plays, the resulting play is in O.

– If Player 2’s initial ratio exceeds 1 − Thresh(v), then he has a strategy such
that no matter how Player 1 plays, the resulting play is not in O.

In reachability games, Player 1 has a target vertex and an infinite play is
winning for him iff it visits the target. We show existence of surely-winning
threshold ratios in reachability Richman-bidding games.

Theorem 1. Let G be a reachability Richman-bidding game. Surely-winning
threshold ratios exist in G and can be found using a linear reduction to a stochas-
tic reachability game.

6 G. Avni et al.

Proof. Recall that the random-turn game RT0.5(G) is a stochastic game that
models the following process: in each turn, we toss a fair coin, and if it turns
“heads” Player 1 determines the next action and otherwise Player 2 determines
the next action. The action gives rise to a probability distribution with which
the following vertex is chosen. We construct G′ similarly, only that we replace
the last probabilistic choice with a deterministic choice of Player 2. Formally,
the vertices of G′ are V ∪ (V × {1, 2}) ∪ (V × Γ). The transition function δ′

restricted to V is the same as in RT0.5(G), namely, for every action, we proceed
from v ∈ V to 〈v, i〉, for i ∈ {1, 2}, with probability 0.5. The vertex 〈v, i〉 is
controlled by Player i. A vertex u ∈ V is a neighbor of 〈v, 2〉 iff there exists
γ ∈ Γ with δ(v, γ)(u) > 0. The neighbors of 〈v, 1〉 are {v} × Γ , where moving to
〈v, γ〉 models Player 1 choosing the action γ at v. Each vertex 〈v, γ〉 is controlled
by Player 2 and a vertex u ∈ V is a neighbor of 〈v, γ〉 iff δ(v, γ)(u) > 0.

Let v ∈ V . The value of v in G′, denoted val(G′, v) is the probability of
reaching the target when both players play optimally. We claim that the surely-
winning threshold ratio in v equals 1−val(G′, v). Note that when val(G′, v) = 0,
no matter how Player 1 plays, there is no path from v to t, thus Player 1 cannot
win and we have Thresh(v) = 1. Suppose val(G′, v) = 1 and we claim that
Thresh(v) = 0. We follow the construction in the deterministic setting [3,9]. Let
n = |V |. It is not hard to show that if Player 1 wins n biddings in a row, he
wins the game. Suppose Player 1’s initial ratio is ε > 0. He follows a strategy
that guarantees that he either wins n biddings in a row or, if he loses, his
budget increases by a constant that depends on ε and n. Thus, by repeatedly
playing according to this strategy, he either wins the game or increases his budget
arbitrarily close to 1, where he can force n bidding wins. The proof for vertices
with val(G′, v) ∈ (0, 1) is similar only that Player 1’s strategy maintains the
invariant that his budget exceeds 1 − val(G′, v) and his surplus, namely the
difference between his budget and 1 − val(G′, v), increases every time he loses a
bidding. The proof for Player 2 is dual. �	

Theorem 1 shows a reduction from the problem of finding threshold ratios
to the problem of solving a stochastic reachability game. The complexity of the
later is known to be in NP and coNP [7], thus we obtain the following corollary.

Corollary 1. The problem of deciding, given a reachability Richman-bidding
game on an MDP G and a vertex v in G, whether the surely-winning threshold
ratio is at least 0.5, is in NP and coNP.

The solution to strongly-connected games is the key in the deterministic
setting. We show that Player 1 almost-surely wins reachability games that are
played on strongly-connected MDPs.

Proposition 1. Let G = 〈V, Γ, δ, w〉 be a strongly-connected taxman-bidding
game with taxman parameter τ . For every positive initial budget, initial ver-
tex v ∈ V , and target vertex u ∈ V , Player i has a strategy that guarantees that
u is reached from v with probability 1.

Bidding Games on Markov Decision Processes 7

Proof. Let fi be a strategy for Player i in the MDP 〈V, Γ, δ〉 that guarantees
that u is reached from v with probability 1. Let ε > 0 be an initial budget or
Player i in the bidding game G. It is shown in [5] that, for every n ∈ IN, there
is a bidding strategy that guarantees that Player i eventually wins n biddings
in a row. Intuitively, Player i splits his budget into n exponentially increasing
parts ε1, . . . , εn such that if Player i loses the j-th bidding, for 1 ≤ j ≤ n, his
budget increases by a constant factor. By repeatedly following such a strategy,
Player i’s ratio approaches 1, which guarantees n consecutive wins. Player i splits
his budget into infinitely many parts ε1, ε2, . . ., and, for n ≥ 1, he plays as if his
budget is εn until he wins n consecutive biddings. Upon winning a bidding, he
chooses actions according to fi. Thus, Player i essentially follows fi for growing
sequences thereby ensuring visiting u with a probability that approaches 1. �	

Consider a strongly-connected parity taxman-bidding game G in which the
highest parity index is odd. A corollary of the above proposition is that Player 1
almost-surely wins in G with any positive initial budget. Indeed, in RTp(G), by
repeatedly playing according to a strategy fi that forces a visit to the vertex v
with the highest parity index, Player 1 forces infinitely many visits to v with
probability 1. A bidding strategy proceeds as in the proof of the proposition
above and forces increasingly longer sequences of bidding winnings, which in
turn implies following fi for increasingly longer sequences.

Theorem 2. Let G be a strongly-connected parity game. If the maximal parity
index in G is odd, then Player 1 almost-surely wins in G with any positive initial
budget, and if the maximal parity index in G is even, Player 2 almost-surely wins
in G with any positive initial budget.

4 Mean-Payoff Bidding Games on Strongly-Connected
MDPs

Mean-payoff bidding games are played on a weighted MDP 〈V, Γ, δ, w〉,
where 〈V, Γ, δ〉 is an MDP and w : V → Q is a weight function.
The energy of a finite play π, denoted E(π), refers to the accumulated
weights, thus E(π) =

∑
1≤i≤n w(vi). Consider two strategies f1 and f2,

and an initial vertex v0. The payoff w.r.t f1, f2, and v0, is MP(v0, f1, f2) =
lim infn→∞ Eπ∼Distn(v0,f1,f2)[E(π)/n]. A mean-payoff game is a zero-sum game.
The payoff is Player 1’s reward and Player 2’s cost. Accordingly, we refer to
Player 1 as Max and Player 2 as Min.

We focus on strongly-connected mean-payoff games. Since the mean-payoff
objective is prefix independent, Proposition 1 implies that the optimal payoff
from each vertex in a strongly-connected game is the same.

Definition 3 (Mean-payoff values). Consider a strongly-connected mean-
payoff taxman-bidding game G = 〈V, Γ, δ, w〉, a ratio r ∈ (0, 1), and a taxman
parameter τ ∈ [0, 1]. We say that c ∈ R is the value of G w.r.t. r and τ , denoted
MPτ,r(G), if for every ε > 0,

8 G. Avni et al.

– when Max’s initial ratio is r + ε, he can guarantee an expected payoff of at
least c, and

– when Max’s initial ratio is r − ε, Min can guarantee an expected payoff of at
most c.

We describe an optimal bidding strategy for Max in G w.r.t. τ and r. The
construction consists of two components. The first component assigns an “impor-
tance” to each vertex, which we call the strength of a vertex and denote by
Stp(v), for every v ∈ V . Intuitively, if Stp(v) > Stp(u), then it is more important
to move in v than it is in u. The second ingredient is a “normalization scheme”
for the strengths, which consists of a sequence (rx)x≥1 and associating normal-
ization factors (βx)x≥1, where βx, rx ∈ [0, 1]. Max keeps track of a position on
the sequence, where he maintains the invariant that when the position is x, his
ratio exceeds rx. One property of the sequence is that the invariant implies that
position x = 1 is never reached. Assuming the token is placed on v ∈ V and the
position on the sequence is x, Max’s bid is roughly βx · Stp(v). The outcome of
the bidding determines the next position on the sequence, where winning means
that we proceed up on the sequence and losing means that we proceed down on
the sequence. A normalization scheme for Richman bidding was devised in [3],
for poorman bidding in [4], and we use a unified normalization scheme that was
devised in [5] for taxman bidding.

We start with assigning importance to vertices. Our definition relies on a
solution to random-turn games.

Definition 4 (Values). For a strongly-connected mean-payoff bidding game G
and p ∈ (0, 1), the mean-payoff value of RTp(G), denoted MP(RTp(G)), is the
maximal expected payoff that Max guarantee from every vertex.

A positional strategy is a strategy that always chooses the same action in a
vertex. It is well known that there exist optimal positional strategies for both
players in stochastic mean-payoff games. For some p ∈ (0, 1), consider two opti-
mal positional strategies f and g in RTp(G), for Min and Max, respectively. For
a vertex v ∈ V , let γ+(v), γ−(v) ∈ Γ denote the actions that f and g prescribe,
thus γ+(v) = f(〈v, 1〉) and γ−(v) = g(〈v, 2〉).

The potential of v, denoted Pop(v), is a known concept in probabilistic models
and was originally used in the context of the strategy iteration algorithm for
MDPs [8]. We use the potential to define the strength of v, denoted Stp(v),
which intuitively measures how much the expected potentials of the neighbors of
v differ. The potential and strengths of v are functions that satisfy the following:

Pop(v) = p ·
∑

u∈V

δ(v, γ+(v))(u) ·Pop(u)+(1−p) ·
∑

u∈V

δ(v, γ−(v))(u) ·Pop(u)−MP(RTp(G)) and

Stp(v) = p(1 − p)
(∑

u∈V

δ(v, γ+(v))(u) · Pop(u) −
∑

u∈V

δ(v, γ−(v))(u) · Pop(u)
)

The existence of the potential and thus the strength is known to be guaran-
teed [13].

Bidding Games on Markov Decision Processes 9

Consider a finite path η = 〈v1, γ1〉, . . . , 〈vn−1, γn−1〉, vn. Consider a partition
of {1, . . . , n − 1} to W (η) ∪ L(η) such that i ∈ W (η) iff γi = γ+(vi). Intuitively,
we think of η as a play and the indices in W (η) are the ones that Max wins
whereas the ones in L(η) represent the ones in which he loses. The probability of
η is

∏
1≤i<n δ(vi, γi(vi))(vi+1). The energy of η, denoted E(η), is

∑
1≤i<n w(vi).

We define a random variable Ψn over paths of length n. Let η be such a path
that ends in a vertex v, then

Ψp
n(η) = Pop(v) + E(η)−

∑

i∈W (η)

Stp(vi)/p +
∑

i∈L(η)

Stp(vi)/(1− p)− (n − 1) · MP(RTp(G)).

Lemma 1. For every game G, p ∈ [0, 1], and n ∈ IN, we have E[Ψp
n −Ψp

n+1] ≥ 0.
Thus, E[Ψn] ≥ E[Ψ1] ≥ minv Pop(v).

Proof. Let η = 〈v1, γ1〉, . . . , 〈vn−1, γn−1〉, vn and γ ∈ Γ . We show that E[Ψn(η)−
Ψn+1(η′)] ≤ 0, where η′ is obtained from η by extending it with a last vertex
that is chosen according to the distribution δ(vn, γ). We prove for the case of
γ = γ+(vn). Since Max wins the last bidding, we have W (η) = W (η′) ∪ {n} and
I(η) = I(η′). In addition, we have E(η) + w(vn) = E(η′). Thus,

E[Ψn(η) − Ψn+1(η′)] =

= Pop(vn)−
(∑

u∈V

Pop(u) ·δ(vn, γ+(vn))(u)+w(vn)−Stp(vn)/p−MP(RTp(G))
)

=

= Pop(vn) − (
(1 − p)

∑

u∈V

Pop(u) · δ(vn, γ−(vn))(u)+

+p
∑

u∈V

Pop(u) · δ(vn, γ+(vn))(u) + w(vn) − MP(RTp(G))
)

=

= Pop(vn) − Pop(vn) = 0

The proof for the case that γ �= γ+(vn) is similar. Since we define γ−(v) to
be the action that minimizes mina

∑
u∈V δ(vn, a)(u) · Pop(u), we get E[Ψn(η) −

Ψn+1(η′)] ≥ 0. �	
We continue to describe the properties of a normalization scheme as well as

show its existence.

Lemma 2. [5] Let S ⊆ Q≥0, a ratio r ∈ (0, 1), and a taxman parameter τ ∈
[0, 1]. For every K > τr2+r(1−r)

τ(1−r)2+r(1−r) there exist sequences (rx)x≥1 and (βx)x≥1

with the following properties.

1. For each position x ∈ R≥1 and s ∈ S, we have βx · s · r · (r − 1) < rx.
2. For every s ∈ S\{0} and 1 ≤ x < 1 + rs, we have βx · s · r · (r − 1) > 1 − rx.
3. The ratios tend to r from above, thus for every x ∈ R≥1, we have rx ≥ r, and

limx→∞ rx = r.

10 G. Avni et al.

4. We have
rx − βx · s · r · (r − 1)

1 − (1 − τ) · βx · s · r · (r − 1)
≥ rx+(1−r)·K·s and

rx + τ · βx · s · r · (r − 1)
1 − (1 − τ) · βx · s · r · (r − 1)

≥ rx−s·r

We combine the two ingredients to obtain the following.

Theorem 3. Let G be a strongly-connected mean-payoff taxman-bidding game,
r ∈ (0, 1) an initial ratio, and τ ∈ [0, 1] a taxman constant. Then, the mean-
payoff value of G w.r.t. r and τ equals the value of the random-turn game
RTF (r,τ)(G) in which Max is chosen to move with probability F (τ, r) and Min
with probability 1 − F (τ, r), where F (τ, r) = r+τ(1−r)

1+τ .

Proof. Since the definition of payoff favors Min, it suffices to show an optimal
strategy for Max. Let G such that RTF (τ,r)(G) = 0. For ε > 0, we describe a
strategy for Max that guarantees a payoff that is greater than −ε, assuming his
initial ratio is strictly greater than r. Following [5], we consider a slight change
of parameters; we choose K > τr2+r(1−r)

τ(1−r)2+r(1−r) , and define ν = r, μ = K · (1 − r),
and p = ν/(ν + μ), where we choose K such that MP(RTp(G)) > −ε, where this
is possible due to the continuity of the mean-payoff value due to changes in the
probabilities in the game structure [6,15]. We find potentials and strengths w.r.t.
p and find a sequence (rx)x≥1 as in Lemma 2, where we set S = {Stp(v) : v ∈ V }.

Max maintains a position on the sequence. Recall that Max’s ratio strictly
exceeds r and that Point 3 implies that the sequence tends from above to r,
thus Max can choose an initial position x0 such that his initial ratio exceeds
rx0 . Whenever the token reaches a vertex v and the position on the sequence is
x, Max bids Stp(v) · r(1 − r)βx, and chooses the action γ+(v) upon winning. If
Max wins the bidding, the next position on the sequence is x + μStp(v), and if
he loses a bidding, the next position is x − ν · Stp(v). Note that Point 4 implies
the invariant that whenever the position is x, Max’s ratio exceeds rx; indeed,
the first part of the point takes care of winning a bidding, and the second part
of losing a bidding. The invariant together with Point 1 implies that Max has
sufficient funds for bidding. Suppose the current position is x following a play π,
then x = x0 + μ

∑
i∈W (π) Stp(v) − ν

∑
i∈L(π) Stp(v). Point 2 implies that x > 1;

indeed, consider a position that is close to 1, i.e., a position such that if Min wins
a bidding, the next position is x ≤ 1, then Point 2 states that Max’s bid is greater
than Min’s ratio, thus he necessarily wins the bidding and the next position is
farther from 1. Rearranging, dividing by μ·ν, and multiplying by (−1), we obtain∑

i∈L(π) Stp(v)/μ−∑
i∈W (π) Stp(v)/ν = (x0−x)/(μ ·ν) < (x0−1)/(μ ·ν), where

recall that x0 is a constant.
Let n ∈ IN. We adapt the notation in Lemma 1 from paths to plays in the

straightforward manner. The lemma implies that E[Ψn] ≥ c, for some constant
c ∈ Q. On the other hand, recall that, for a play π of length n that ends in a
vertex v, we have

Bidding Games on Markov Decision Processes 11

Ψn(π) = Pop(v) + E(π) −
∑

i∈W (π)

Stp(v)/ν +
∑

i∈L(π)

Stp(v)/μ − (n − 1)MP(RTp(G)).

For every vertex v, we have Pop(v) ≤ maxu Pop(u). Also, as in the above, we have
E[

∑
i∈W (π) Stp(v)/ν − ∑

i∈L(π) Stp(v)/μ] is bounded from above by a constant.
Combining, we have that E[E(π)] ≥ c′ + (n − 1) · MP(RTp(G)). We divide both
sides by n and tend it to infinity, thus the constant c′ vanishes, and we get a
payoff that exceeds −ε, as required. �	

Theorem 3 shows a reduction from the problem of finding the value of a mean-
payoff taxman-bidding game on a strongly-connected MDP to the problem of
solving a stochastic mean-payoff game. The complexity of the later is known to
be in NP and coNP, thus we obtain the following corollary.

Corollary 2. The problem of deciding, given a mean-payoff taxman-bidding
game G that is played on a strongly-connected MDP, an initial ratio r, a taxman
parameter τ , and a value k ∈ Q, whether MPτ,r(G) ≥ k, is in NP and coNP.

5 Discussion

We study qualitative and mean-payoff bidding games on MDPs. For qualitative
objectives, we show existence of surely-winning threshold ratios in reachabil-
ity bidding games, and we study almost-surely winning in strongly-connected
parity bidding games. For mean-payoff objectives, we extend the probabilistic
connection from the deterministic setting to the probabilistic one. A problem
that we leave open is a quantitative solution to reachability bidding games that
are played on MDPs; namely, given an MDP with a target vertex t, an initial
vertex v, and a probability p, find a necessary and sufficient budget with which
Player 1 can guarantee that t is reached from v with probability at least p.
We expect that a solution to this problem will imply a solution to parity and
mean-payoff bidding games on general graphs.

References

1. Aghajohari, M., Avni, G., Henzinger, T.A.: Determinacy in discrete-bidding
infinite-duration games. In: Proceedings 30th CONCUR (2019)

2. Apt, K.R., Grädel, E.: Lectures in Game Theory for Computer Scientists. Cam-
bridge University Press, Cambridge (2011)

3. Avni, G., Henzinger, T.A., Chonev, V.: Infinite-duration bidding games. J. ACM
66(4), 31:1–31:29 (2019)

4. Avni, G., Henzinger, T.A., Ibsen-Jensen, R.: Infinite-duration poorman-bidding
games. In: Christodoulou, G., Harks, T. (eds.) WINE 2018. LNCS, vol. 11316, pp.
21–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04612-5 2

5. Avni, G., Henzinger, T.A., Žikelić, -D.: Bidding mechanisms in graph games. In:
Proceedings of the 44th MFCS (2019)

https://doi.org/10.1007/978-3-030-04612-5_2

12 G. Avni et al.

6. Chatterjee, K.: Robustness of structurally equivalent concurrent parity games. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 270–285. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9 18

7. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224
(1992)

8. Howard, A.R.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge (1960)

9. Lazarus, A.J., Loeb, D.E., Propp, J.G., Stromquist, W.R., Ullman, D.H.: Combi-
natorial games under auction play. Games Econ. Behav. 27(2), 229–264 (1999)

10. Lazarus, A.J., Loeb, D.E., Propp, J.G., Ullman, D.: Richman games. Games No
Chance 29, 439–449 (1996)

11. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity
laplacian. J. Amer. Math. Soc. 22, 167–210 (2009)

12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
the 16th POPL, pp. 179–190 (1989)

13. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (2005)

14. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Trans. AMS 141, 1–35 (1969)

15. Solan, E.: Continuity of the value of competitive Markov decision processes. J.
Theor. Probab. 16, 831–845 (2003)

https://doi.org/10.1007/978-3-642-28729-9_18

Primitivity and Synchronizing Automata:
A Functional Analytic Approach

Vladimir Yu. Protasov1,2(B)

1 University of L’Aquila, L’Aquila, Italy
v-protassov@yandex.ru

2 Moscow State University, Moscow, Russia

Abstract. We give a survey of a function-analytic approach in the study
of primitivity of matrix families and of synchronizing automata. Then
we define the m-synchronising automata and prove that the existence
of a reset m-tuple of a deterministic automata with n states can be
decided in less than mn2(log2 n + m+4

2
) operations. We study whether

the functional-analytic approach can be extended to m-primitivity and
to m-synchronising automata. Several open problems and conjectures
concerning the length of m-reset tuples, m-primitive products and finding
those objects algorithmically are formulated.

Keywords: Nonnegative matrix · Primitive semigroups ·
Synchrinizing automata · Functional equation · Contraction ·
Affine operator

1 Introduction

A multiplicative semigroup of nonnegative matrices is called primitive if it pos-
sesses at least one strictly positive matrix. Such semigroups were introduced
relatively recently and have been intensively studied in the literature due to
applications to Markov chains, linear dynamical systems, graph theory, etc. Their
relation to synchronizing automata are especially important. There are rather
surprising links between primitive semigroups and functional equations with the
contraction of the argument. Those equations are usually applied to generate
fractals and self-similar tilings. The theory of those equations can produce short
and clear proofs of some known results on primitivity. For example, the charac-
terization of primitive families, the theorem of existence of a common invariant
affine subspace for matrices of non-synchronizing automata, etc. A new app-
roach is also useful to study Hurwitz primitive (or m-primitive) semigroups. We
discuss the characterization theorem for Hurwitz primitivity, which looks very
similar to usual primitivity in spite of the totally different proofs. This leads to
the concept of Hurwitz-synchronizing automata and reset m-tuples. We prove

The research is supported by FRBR grants 17-01-00809 and 19-04-01227.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 13–21, 2019.
https://doi.org/10.1007/978-3-030-30806-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_2

14 V. Yu. Protasov

polynomial decidability of the existence of reset m-tuples and formulate several
open problems.

Throughout the paper we denote the vectors by bold letters: x =
(x1, . . . , xn) ∈ R

n. The vectors ei, i = 1, . . . , n denote the canonical basis in R
n

(all but one components of ei are zeros, the ith component is one). The norms
of vectors and of matrices is always Euclidean. By norm of affine operator we
mean the norm of its linear part. The spectral radius (the maximal modulus
of eigenvalues) of a matrix A is denoted by ρ(A). By convex body we mean a
convex compact set with a nonempty interior, coM denotes the convex hull of
M . The support of a non-negative vector (matrix) is the set of positions of its
strictly positive entries.

2 Contraction Operators and Reachability Theorems

Many facts on reachability in graphs and in automata can be formulated in terms
of contraction operators on convex domains. The following results proved in [17]
implies at least two important results on reachability. Let B be an arbitrary
family of affine operators acting in R

d. This family is called contractive if for
every ε > 0, there exists a product Π of operators from B (with repetitions
permitted) such that ‖Π‖< ε. Clearly, this is equivalent to the existence of a
product with the spectral radius (maximal modulus of eigenvalues) smaller than
one.

Theorem 1. [17] Let G ⊂ R
n be a convex body and B be a family of affine

operators respecting this body, i.e., B G ⊂ G for all B ∈ B. Then B is contractive
unless all operators of B possess a common invariant affine subspace of some
dimension q, 0 ≤ q ≤ d − 1, that intersects G.

In the next section we show how to prove this fact using tools of functional anal-
ysis. Now let us demonstrate two of its corollaries from reachability problems.
The first one deals with synchronizing automata and was presented in 2016 by
Berlinkov and Szykula:

Theorem 2. [3] If an automaton is not synchronizing, then its matrices possess
a proper invariant common linear subspace.

Let us show how this fact can be deduced from Theorem 1.

Proof. To every matrix A of the automaton we associate the corresponding affine
operator A|V on the affine hyperplane V = {x ∈ R

n | ∑n
i=1 xi = 1}. For an

arbitrary product Π of matrices of the automaton, we have either ‖Π|V ‖= 0 if
Π has a positive row, of ‖Π|V ‖≥ 1 otherwise. If a product with positive row
exists, then the automaton is synchronizing. Otherwise, the set of matrices of
the automaton is not contractive on V . Applying Theorem 1 to the simplex Δ =
co {e1, . . . ,en} ⊂ V we conclude the existence of a common invariant affine
subspace in V . Its linear span with the origin is the desired invariant linear
subspace. ��

Primitivity and Synchronizing Automata: A Functional Analytic Approach 15

The next fact that can be derived from Theorem 1 is the criterion of primi-
tivity of matrix family proved in 2013 by Protasov and Voinov [16]. Let A be an
arbitrary irreducible family of nonnegative n × n matrices. Irreducibility means
that there is no coordinate subspace of R

n, i.e., subspace spanned by several
vectors of the canonical basis, which is invariant for every matrix from A. The
family A is called primitive, if there exists a strictly positive product of matrices
from A.

The concept of primitivity of matrix families was introduced in [16] and has
been studied in the literature due to many applications, see the bibliograpghy
in [2,4,11]. The importance of this property is explained by the fact that if the
family A is finite and all its matrices have neither zero rows nor zero columns,
then the primitivity of A implies that almost all long products of matrices from A
are strictly positive.

Theorem 3. [16] Let A be an irreducible family of non-negative matrices. Sup-
pose all matrices of A have neither zero rows nor zero columns; then A is not
primitive if and only if there exists a partition of the set Ω = {1, . . . , n} to r ≥ 2
nonempty subsets {Ωk}r

k=1, on which all the matrices from A act as permuta-
tions.

This means that for every A ∈ A, there is a permutation σ of the set {1, . . . , r}
such that for each i ∈ Ωk, the support of the vector Aei is contained in Ωσ(k), k =
1, . . . , k. So, if the family A is not primitive, then there is a partition of the set
of basis vectors, common to all matrices from A, such that each matrix A ∈ A
defines a permutation of this partition. If A is primitive, we formally set r = 1
and the partition is trivial Ω1 = Ω. For one matrix, this fact is a part of Perron-
Frobenius theorem. Moreover, in this case the permutation is cyclic. For families
of matrices, these permutations can be arbitrary.

Despite the simple formulation, the proof of Theorem 3 is surprisingly long
and technical. Now in the literature there are at least five different proofs of
this theorem based on different ideas. The authors proof from [16] is based on
geometry of convex polytopes. In that work the problem of finding a purely geo-
metrical and possibly simpler proof was left. The problem seems to be reasonable
in view of the combinatorial nature of the theorem. The first successful responds
to this challenge was made by Alpin and Alpina in [1] and by Blondel, Jungers,
and Olshevsky in [4]. Then Alpin and Alpina [2] suggested another construction.
All those works presented (different!) combinatorial proofs, although still rather
long. In 2015 Voynov and Protasov [17] noted that Theorem 3 can be actually
derived by the same idea of contraction families of affine operators (Theorem 1),
which gives the shortest known proof of this result. That proof may be called
analytic, since Theorem 1 is established by analytic methods, with functional
equations.

Before giving the proof we make a couple of observations. Nothing changes
in Theorem 3 if we replace the family A by the family of all column-stochastic
matrices with the same supports as matrices from A. We assume that this
replacement is already done and we keep the same notation for the new family.
Thus, all matrices from A generate affine operators on the affine hyperplane V

16 V. Yu. Protasov

and respect the simplex Δ ⊂ V . Under the assumptions of Theorem 3, primitiv-
ity of the family A is equivalent to contractivity of this family on V . This fact
is rather simple, its proof can be found in [14].

Proof of Theorem 3. Sufficiency is obvious. To prove the necessity we apply
Theorem 1 to the family A|V of affine operators on V and to the convex
body G = Δ. If A non-contracting, then the operators from A|V share a common
invariant affine subspace L ⊂ V, 0 ≤ dim L ≤ n − 2, intersecting Δ. Due to
the irreducibility of A, the subspace L intersects the interior of Δ, i.e., contains
a positive point a ∈ Δ. Consider the following relation on the set Ω: i ∼ j, if
the vector ei − ej belongs to L̃ (the linear part of L). This is an equivalence
relation splitting Ω to classes Ω1, . . . ,Ωr. Since dim L ≤ n − 2, we have r ≥ 2.
Let us show that for every i ∈ Ω and A ∈ A, the supports of all vectors of the set
Mi(A) = {Aei, A ∈ A} lie in one set Ωk. It suffices to prove that the difference
of each two elements of the set Mi(A) lies in L̃. Take arbitrary A,B ∈ A. Let a
matrix C ∈ A have the same ith column as the matrix A and all other columns
as the matrix B. For a positive vector a =

∑
i aiei ∈ L, we have

ai(Aei − Bei) = ai(Cei − Bei) = C(aiei) − B(aiei) = Ca − Ba ∈ L̃.

Since Ca ∈ L and Ba ∈ L, we have Ca − Ba ∈ L̃, and hence Aei − Bei ∈ L̃.
Thus, the supports of ith columns of all matrices from A belong to one set
Ωk. Then the supports of all columns with indices from the equivalence class
of the index i (say, Ωj) lie in the same class Ωk. Consequently, the matrix A
defines a map σ(j) = k. Since A does not have zero rows, it follows that σ is a
permutation. ��

3 Contractive Families and Functional Equations

The proof of Theorem 1 is realized by applying the theory of fractal curves and
equations of self-similarity. This idea originated in [17], here we slightly simplify
that proof. Let us have a finite family of affine operators B = {B1, . . . , Bm}. The
self-similarity equation is the equation on function v : [0, 1] → R

d:

v(t) = Bk v(mt − k + 1) , t ∈
[
k − 1

m
,

k

m

]

k = 1, . . . ,m. (1)

This equation plays an exceptional role in the theory of subdivision schemes,
compactly supported wavelets, etc. see [5,6] and references therein. A advantage
of those equations is an existence and uniqueness theorem for solutions. We will
restrict ourselves to L2-solutions. The solvability and smoothness of the solution
are expressed in terms of the so-called L2-spectral radius or in short, 2-radius
of linear or affine operators: ρ2(B) = limk→∞[m−k

∑
Π∈Bk‖Π‖1/k]1/mk

. Here
we denote by Bk the set of products of length k of operators from the family B
(repetitions permitted). If there is a convex body G such that BG ∈ G for all
B ∈ B, then, of course, all norms of products ‖Π‖ are uniformly bounded, and

Primitivity and Synchronizing Automata: A Functional Analytic Approach 17

hence ρ2 ≤ 1. It turns out that the family B is contrative precisely when ρ2 < 1.
This fact is rather simple, its proof can be found in [17]. Now we formulate the
main result on equations of self-similarity.

Theorem 4. [13] Suppose a finite family of affine operators B does not possess
a common invariant affine subspace; then Eq. (1) possesses an L2-solution if and
only if ρ2(B) < 1. In this case the solution is unique and continuously depends
on the family B.

This theorem implies Theorem 1 on contractive families.

Proof of Theorem 1. We show only the existence of a common invariant sub-
space. For the proof that this subspace intersects G, see [17]. It suffices to prove
the theorem for finite families B. Indeed, if B is non-contractive, then so is every
its finite subset, and consequently every finite subset of B possesses an invariant
affine subspace intersecting G. In this case the whole family B possesses such an
invariant subspace. Thus, we assume B = {B1, . . . , Bm} and that this family is
not contractive. Take an arbitrary point a ∈ int G and consider the operator Bε

1

defined as Bε
1x = (1 − ε)B1x + εx. For every ε ∈ (0, 1), the operator Bε

1 maps
G to intG, hence ρ(Bε

1) < 1. Therefore, the family Bε = {Bε
1, B2, . . . , Bm} is

contractive, and consequently ρ2(Bε) < 1. Hence, the self-similarity Eq. (1) with
the family Bε possesses a unique L2-solution vε. We have vε(t) ∈ G for almost
all t ∈ [0, 1]. Taking an arbitrary sequence εk → 0 we obtain a bounded sequence
vεk

, which has a weak-* limit v. This limit satisfies Eq. (1) with the initial fam-
ily of operators B. Therefore, if the family B does not have an invariant affine
subspace, then ρ2(B) < 1. Hence, B is contractive which is a contradiction. ��

4 m-primitivity and m-syncronising Automata

In this section we compare the main results on primitive and on m-primitive
families and rise a question whether the analytic method can be extended to the
study of m-primitivity. Then we define m-synchronizing automata, prove that
the existence of a synchronising m-tuple can be decided in polynomial time and
leave several open problems. For example, how to find the synchronising m-tuple
and what is an upper bound for its length?

The concept of m-primitivity was introduced in 1990 by Fornasini [7] and
then studied by Fornasini and Valcher [8,9]. Now there is an extensive literature
on this subject, see [10,12,15] and references therein. The main application of
m-primitivity is the multivariate Markov chains [7,8], although there are some
natural generalization to the graph theory, dynamical systems and large net-
works. In the notation, m is the number of matrices, that is why we say not
“k-primitive” as in some works, but “m-primitive”. It would also be natural to
use the term “Hurwitz primitive”.

Let us have a finite family of nonnegative n×n-matrices A = {A1, . . . , Am}.
For a given m-tuple α = (α1, . . . , αm) of nonnegative integers,

∑m
i=1 αi = k ≥ 1,

called also colour vector we denote by Aα the sum of all products of m matrices

18 V. Yu. Protasov

from A, in which every product contains exactly αi factors equal to Ai. The
number k will be referred to as the length of α and denoted by |α|. For example,
if A = {A1, A2, A3}, then A (1,3,0) = A1A

3
2 + A2A1A

2
2 + A2

2A1A2 + A3
2A1. Such

sums are called in the literature Hurwitz products, although they are not actually
products but sums of products. A family of non-negative matrices is m-primitive
if there exists a strictly positive Hurwitz product of those matrices. This property
is weaker than primitivity: primitivity implies m-primitivity, but not vice versa.

This notion has an obvious combinatorial interpretation. Suppose there are
n villages, some of them are connected by one-way roads colored in m colors
(two villages may be connected by several roads). The m-primitivity means that
there exists a colored vector α = (α1, . . . , αm) such that every two villages are
connected by a path of length |α| that for each i = 1, . . . ,m contains precisely
αi roads of the ith color. The criterion of m-primitivity was proved in [15] in
2013:

Theorem 5. [15] Let A be an irreducible family of non-negative matrices. Sup-
pose all matrices of A have no zero columns; then A is not primitive if and only
if there exists a partition of the set Ω = {1, . . . , n} to r ≥ 2 nonempty subsets
{Ωk}r

k=1, on which all the matrices from A act as permutations and all those
permutations commute.

If A is primitive, we formally set r = 1 and the partition is trivial Ω1 = Ω.
This criterion almost literally repeats the criterion of primitivity in Theorem 3.
The main difference is the following: if for non-primitivity the matrices Ai can
define arbitrary permutations of the sets {Ωj}r

j=1, for non m-primitivity those
permutations have to commute. This criterion quite naturally shows the common
properties and the difference between those two concepts. Another difference is
that the criterion of Theorem 5 does not require the absence of zero rows and
columns, as it was in Theorem 3, but just zero columns. This condition is much
less restrictive, since it is always satisfied for column stochastic matrices and for
matrices of automata.

As a corollary of Theorem 5 one can obtain that the m-primitivity is poly-
nomially decidable. In [15] an algorithm was presented to find the partition
{Ωj}r

j=1. If r = 1, then the family is m-primitive. The complexity of the algo-
rithm is O(mn 3 + m2n 2).

Now let us formulate three open problems.

Problem 1. Can Theorem 5 be derived by a geometrical of function-analytic
argument, similar to Theorem 1?

In spite of similarity of Theorems 3 and 5, their proofs are totally different.
The only known proof of Theorem 5 is combinatorial and has nothing in common
with all five known proofs of Theorem 3.

Problem 2. If the family is primitive, how to find its positive Hurwitz product
within polynomial time?

Primitivity and Synchronizing Automata: A Functional Analytic Approach 19

The algorithm from [15] based on Theorem 5 is not constructive. It decides
whether the family is m-primitive by finding the partition {Ωj}r

j=1, but does
not find any positive Hurwitz product. The greedy algorithm for finding positive
product of a primitive family seems not to work here.

Problem 3. What is a sharp upper bound for the exponent of m-primitivity?

The exponent of m-primitivity is the minimal number k = k(n,m) such that
every m-primitive family of matrices of size n has a positive Hurwitz product
with a colour vector of length at most k.

Conjecture 1. Under the assumption that all matrices of the family A do not
have zero columns, the exponent of m-primitivity is polynomial in n and m.

Examples from the works [10,12] show that the exponents of m-primitivity
can be exponential in m. In example from [12], we have k(n,m) ≥ Cnm+1.
However, in all those examples the matrices have zero columns.

Similarly to m-primitivity, we can define m-synchronising automata. Let us
have deterministic finite automaton with n states and with m actions. The
automaton is called m-synchronizing if there exists an m-tuple α = (α1, . . . , αm)
such that for every state there exists a reset word of length |α| with αi com-
mands of the ith action, i = 1, . . . ,m. This means that for every starting state
there is a word (may be different for different states) with the m-tuple α that
leaves the automaton on a prescribed particular state, one for all starting states.
Thus the reset words may be different for different states, but with the same
reset m-tuple.

In terms of graphs, this means that there is a path from each vertex to the
particular vertex that has exactly αi edges of the ith colour, i = 1, . . . ,m. The
synchronising m-tuple has the following meaning. Assume realisation of each
action is not free, it requires some resources. It is possible to leave a stock set
of resources, αi units for the ith action, so that it is always possible to reset
the system using this stock? Let us stress that we can control the sequences of
actions to reset the system from a given state, but we are not able to control the
stock, it is the same for all states.

The existence of reset m-tuples can be decided within polynomial time, at
least for irreducible automata, i.e., whose sets of matrices are irreducible.

Theorem 6. There is a polynomial time algorithm to decide if a given automa-
ton is m-synchronising. The algorithm spends less than mn2(log2 n+ m+4

2) arith-
metic operations.

Proof. Let A = {A1, . . . , Am} be a family of matrices of the automaton. An
m-tuple is synchronising precisely when the corresponding Hurwitz product of
matrices A1, . . . , Am possesses a positive row. Since all matrices Ai are column
stochastic, we can apply Theorem 5. Using algorithm from [15], we find the
partition {Ωj}r

j=1. If r = 1, then A is m-primitive and hence the corresponding
Hurwitz product is strictly positive and so has a positive row. If r ≥ 2, then there
is no Hurwitz product with a positive row. Indeed, since all permutations of the

20 V. Yu. Protasov

set {Ωj}r
j=1 defined by matrices from A commute, it follows that all products

Π = Ad1 · · · Adk
corresponding to one m-tuple α define the same permutation.

Therefore, they have the same block structure corresponding to the partition
{Ωj}r

j=1 and hence their sum does not have a positive row. Thus, the automaton
is m-synchronizing if and only if r = 1. By [15, Theorem 2], the algorithm spends
less than mn2(2p + log2 n + m

2) operations, where p is the maximal number of
positive components in columns of the matrices from A. In our case, p = 1,
which completes the proof. ��

Thus, for irreducible automata, the existence of reset m-tuple can be decided
by a polynomial algorithm. But this algorithm does not find the reset m-tuple.

Problem 4. If an automaton in m-primitive, how to find its reset m-tuple
within polynomial time?

Problem 5. What is a sharp upper bound for the minimal length of the reset
m-tuple?

For synchronising automata this bound is known to be O(n3) and there is a
long standing Černý conjecture that the minimal upper bound is actually (n−1)2.
What are the bounds for m-synchronizing automata?

References

1. Alpin, Yu.A., Alpina, V.S.: Combinatorial properties of irreducible semigroups of
nonnegative matrices. J. Math. Sci. (N. Y.) 191(1), 4–9 (2013)

2. Alpin, Yu.A., Alpina, V.S.: A new proof of the Protasov-Voynov theorem on
semigroups of nonnegative matrices. Math. Notes 105, 805–811 (2019)

3. Berlinkov, M.V., Szykula, M.: Algebraic synchronization criterion and computing
reset words. Inf. Sci. 369, 718–730 (2016)

4. Blondel, V.D., Jungers, R.M., Olshevsky, A.: On primitivity of sets of matrices.
Automatica 61, 80–88 (2015)

5. Cabrelli, C.A., Heil, C., Molter, U.M.: Self-similarity and Multiwavelets in Higher
Dimensions, vol. 170, no. 807. Memoirs of the American Mathematical Society
(2004)

6. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision, vol. 93,
no. 453. Memoirs of the American Mathematical Society (1991)

7. Fornasini, E.: 2D Markov chains. Linear Algebra Appl. 140, 101–127 (1990)
8. Fornasini, E., Valcher, M.: Directed graphs, 2D state models and characteristic

polynomials of irreducible matrix pairs. Linear Alg. Appl. 263, 275–310 (1997)
9. Fornasini, E., Valcher, M.: A polynomial matrix approach to the structural prop-

erties of 2D positive systems. Linear Algebra Appl. 413(2–3), 458–473 (2006)
10. Gao, Y., Shao, Y.: Generalized exponents of primitive two-colored digraphs. Lin-

ear Algebra Appl. 430(5–6), 1550–1565 (2009)
11. Gerencsér, B., Gusev, V.V., Jungers, R.M.: Primitive sets of nonnegative matrices

and synchronizing automata. SIAM J. Matr. Anal. 39(1), 83–98 (2018)
12. Olesky, D.D., Shader, B., van den Driessche, P.: Exponents of tuples of nonnega-

tive matrices. Linear Algebra Appl. 356(1–3), 123–134 (2002)

Primitivity and Synchronizing Automata: A Functional Analytic Approach 21

13. Protasov, V.Yu.: Extremal Lp-norms of linear operators and self-similar functions.
Linear Alg. Appl. 428(10), 2339–2356 (2008)

14. Protasov, V.Yu.: Semigroups of non-negative matrices. Russian Math. Surv.
65(6), 1186–1188 (2010)

15. Protasov, V.Yu.: Classification of k-primitive sets of matrices. SIAM J. Matrix
Anal. 34(3), 1174–1188 (2013)

16. Protasov, V.Yu., Voynov, A.S.: Sets of nonnegative matrices without positive
products. Linear Alg. Appl. 437(3), 749–765 (2012)

17. Voynov, A.S., Protasov, V.Yu.: Compact noncontraction semigroups of affine
operators. Sb. Math. 206(7), 921–940 (2015)

Reaching Out Towards Fully Verified
Autonomous Systems

Sriram Sankaranarayanan1(B) , Souradeep Dutta1 , and Sergio Mover2

1 University of Colorado, Boulder, USA
{srirams,souradeep.dutta}@colorado.edu

2 Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
smover@lix.polytechnique.fr

Abstract. Autonomous systems such as “self-driving” vehicles and
closed-loop medical devices increasingly rely on learning-enabled compo-
nents such as neural networks to perform safety critical perception and
control tasks. As a result, the problem of verifying that these systems
operate correctly is of the utmost importance. We will briefly exam-
ine the role of neural networks in the design and implementation of
autonomous systems, and how various verification approaches can con-
tribute towards engineering verified autonomous systems. In doing so,
we examine promising initial solutions that have been proposed over the
past three years and the big challenges that remain to be tackled.

Keywords: Formal verification · Autonomous systems ·
Constraint solvers

1 Introduction

This paper presents a brief overview of recent progress towards the verification
of autonomous systems. A system is defined as autonomous if it can operate in a
reliable manner without requiring “frequent” human intervention. As such, the
definition encompasses a wide variety of autonomous systems that are charac-
terized by varying levels of human involvement, including teleoperated surgical
robotic systems that translate the surgeon’s actions from a remote terminal
into precise movements of the surgical instruments placed inside the body of the
patient [31]; closed loop medical devices such as pacemakers and artificial insulin
delivery systems; autonomous “self-driving” cars, and unmanned aerial vehicles
(UAVs). The examples mentioned above clearly demonstrate that autonomous
systems are safety critical : even as we expect these systems to operate with
limited human intervention, we also expect them to perform in a provably safe
manner despite uncertainties about the environment and the numerous limita-
tions on the system’s ability to sense, compute and actuate.

Over the past decade, machine learning approaches have become default “go-
to” approaches for building autonomous systems. These approaches use a variety
of mathematical and computational models that are trained during design time
c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 22–32, 2019.
https://doi.org/10.1007/978-3-030-30806-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_3&domain=pdf
http://orcid.org/0000-0001-7315-4340
http://orcid.org/0000-0003-2706-2095
http://orcid.org/0000-0003-1029-9547
https://doi.org/10.1007/978-3-030-30806-3_3

Reaching Out Towards Fully Verified Autonomous Systems 23

using input-output examples in a supervised manner, or continuously learn and
adapt from “past mistakes” using ideas such as reinforcement learning. In both
cases, the use of neural network models has become quite popular due to the
ability of neural networks to approximate complex nonlinear functions and the
availability of powerful optimization tools that can infer these models from the
given data. Neural network models have been widely applied in a variety of
tasks. For instance, feedforward neural network models are widely used to build
perception stacks for autonomous vehicles that can be used to process large
amounts of sensor data from cameras, Lidars and other sensors to recognize
other vehicles, pedestrians, road signs and traffic lights [17,22]. Current “end-
to-end” driving pipelines seek to go from raw sensor data directly to steering
and throttle commands that can help drive the vehicle, skipping the need for
a human designed controller [5]. In applications such as robotic surgery, neural
networks can be potentially applied to enable decision support by monitoring
pre-operative, intra-operative and post-operative data to minimize the overall
risk at each stage of patient care [19]. Neural networks have also been used to
predict future blood glucose levels to help make real-time treatment decisions
for patients with type-1 diabetes [14].

The key challenge in all of these applications lies in building systems with
neural network components that are also guaranteed to satisfy key safety and
liveness properties, even in the presence of significant uncertainties in the envi-
ronment. This challenge is significant, since autonomous systems are often too
large and complex to reason about manually. Furthermore, besides the system,
the operating environment can also be complex and uncertain. Finally, it is chal-
lenging to arrive at well-defined specifications for such systems. For instance, it
is highly challenging to specify a deep neural-network based object detection
component for a self driving car. Such a specification must describe a stream of
images from a road scene and the output of the object detector for these scenes:
a task that has not proven easy, to date.

Despite these challenges, the broad area of verified autonomous systems has
rapidly gained prominence in the formal verification community. We will briefly
examine existing approaches, their advantages and drawbacks. Despite these
promising steps, a lot more work needs to be carried out to move this area
forward.

2 Preliminaries: Neural Networks

In this section, we will briefly explain background on feedforward neural net-
works, their role in learning-enabled autonomous systems. Our presentation will
be brief and at a high level. We refer the reader to standard textbooks for further
details [18].

2.1 Neural Networks

Neural networks belong to a class of connectionist models that are loosely
inspired by the way neurons are connected to each other in human and ani-

24 S. Sankaranarayanan et al.

x1 xn

y

x

σ(x)

-9 -6 -3 0 3 6 9
-1

1
tanh(z)

sigmoid(z)

ReLU(z)

Fig. 1. (Left) A schematic diagram of a feedforward neural network with n inputs
x1, . . . , xn and a single output y. Intermediate nodes are shown as unfilled circles.
(Right) Commonly used activation functions.

mal brains. There are many types of neural networks, some including units that
can store information. We classify neural networks broadly into two types: (a)
feedforward networks: that do not have internal states; and (b) recurrent net-
works: that include units that can store information internally to the network.
The difference between feedforward and recurrent networks is (roughly speaking)
analogous to that between combinatorial boolean circuits and sequential circuits
in digital logic. Most of our discussions in this paper will be centered around
feedforward neural networks.

A feedforward network can be seen as a directed acyclic graph that represents
the output as a function of the input. The nodes of this graph can be input nodes,
output nodes or intermediate nodes. Each edge of the network is a directed edge
from some node i to another node j with an associated real-valued weight wi,j .
The inputs to the network are fed to the input nodes, which do not have incoming
edges. Likewise, the outputs are available at output nodes, which do not have
any outgoing edges. Figure 1 shows a schematic diagram of a feedforward neural
network.

Each intermediate node j of a feedforward network is associated with an
activation function σj computed as follows:

1. Let (i1, j), . . . , (ik, j) be the incoming edges at node j, with associated weights
w1, . . . , wk respectively.

2. Let y1, . . . , yk be the values computed at nodes i1, . . . , ik, respectively.
3. The output at node j is given by σj(

∑k
i=1 wiyi + bj), wherein bj is a constant

called the bias at node j.

The activation functions associated with nodes are typically nonlinear functions.
Popularly used functions are depicted in Fig. 1.

1. ReLU: The ReLU unit is defined by the activation function σ(z): max(z, 0).
2. Sigmoid: The sigmoid unit is defined by the activation function σ(z): 1

1+e−z .
3. Tanh: The activation function for this unit is σ(z): tanh(z).

Reaching Out Towards Fully Verified Autonomous Systems 25

Note also that besides intermediate nodes with such activation functions, neural
networks (especially networks used in image classification) employ specialized
nodes such as max-pooling and softmax nodes that are not discussed here. They
are explained in detail elsewhere [18]. A neural network computes a function
of its inputs as follows: (a) the value of the input nodes are set according to
the inputs to the network; (b) each intermediate node is enabled as soon as
values are available at the target nodes for its incoming edges; and (c) once
enabled, a node computes its output by applying its activation function. The
computation terminates as soon as all output nodes are evaluated. Note that
since the network is a DAG, a topological ordering of the nodes can be used to
identify an evaluation order of the nodes in the network.

Neural networks have many desirable properties as universal function approx-
imators: they can uniformly approximate any given continuous function f over
a compact domain C to any desired accuracy [11]. Neural networks are used pri-
marily for two important tasks: (a) classify an input into one of many discrete
categories: for instance, categorize an image of a road sign as being a stop sign,
a speed limit sign or a pedestrian crossing sign; and (b) represent a function
from inputs to outputs learned from data through regression. Neural networks
are applied in other ways besides just classification. For instance, networks can
be used to identify a bounding box around objects of interest in a given image.
Since the networks are too complex to design by hand, they are constructed by
machine learning techniques that learn the weights and biases of the network
given the topology of the network that includes the nodes, edges, the activation
functions at each node; the input/output data in terms of training examples and
a loss function that penalizes discrepancies between the output predicted by the
neural network and the actual output in the training data.

There are many algorithms for “learning” the network weights and biases
from given training data [18]. The most popular algorithms use variants of a
strategy called stochastic gradient descent that updates the weights by calculat-
ing the gradient over a randomly chosen batch from the training data in order to
achieve a local minimum for the loss function. Often, activation functions such
as the ReLU function discussed above are smoothed in order to make it differen-
tiable. There are many popular tools that automate the training process, notably
TensorFlow and PyTorch [1,25]. These tools allow the user to create a neural
network topology with unknown weights and biases, specify a loss function and
perform the stochastic gradient descent. The networks are then evaluated on a
“held-back” test data set that is not part of the data over which it was trained
to evaluate its ability to generalize. The recent advent of GPUs that can perform
rapid vector and matrix calculations along with the availability of large amounts
of data has led to deep neural networks with hundreds of thousands of nodes.

3 Verification of Neural Networks

Even though deep neural networks, are essentially acyclic computation graphs
formed by composing simple activation functions, the overall behavior of the

26 S. Sankaranarayanan et al.

network can be exceedingly complex and highly non-linear. In this section, we
present a brief overview of the existing verification tools and techniques for neural
networks and systems that incorporate neural networks in them.

In general, neural networks are used as components inside a closed loop
autonomous system. As a result, verification problems have involved component-
wise specification involving just the neural network or an end-to-end approach
that studies the network in composition with other parts of the system. We dis-
tinguish different but closely related verification problems over neural networks:
(a) BNNs have been shown to be quite effective for regression and classification
tasks. The unit weights also yield computational savings and are amenable to
implementation as digital circuits. One of the first attempts at verifying BNN’s
was proposed by Narodytska et al. [23]. Another recent approach proposed by
Shih et al. [3] learns an Ordered Binary Decision Diagram (OBDD) locally to
abstract parts of the neural networks. Cheng et al. [9] reduce the problem of
BNN verification to hardware verification problem, and have reported speed ups
in performance.

3.1 Abstract Interpretation for Neural Networks

Abstract interpretation originally formalized by Cousot and Cousot was devel-
oped to systematically propagate sets of reachable states of a program through
individual program statements in order to establish properties of a program
as a whole [10]. Such techniques rely on abstract domains to represent the reach-
able set of states [24]. This idea can be applied to neural networks which rep-
resent loop free computations involving the application of nonlinear activation
functions.

Vechev et al. use zonotopes as an abstract domain to perform image com-
putation across a neural network [16]. In particular, zonotopes are used to
over-approximation the non-convex set of possible outputs for each layer of
the network. This allows for a layer-by-layer analysis to compute sound over-
approximations for the output of the neural network.

Xiang et al. that computes the output ranges as a union of convex poly-
topes [36]. This approach does not use SMT or MILP solvers unlike other
approaches and thus can lead to highly accurate estimates of the output range.
However, judging from preliminary evaluation reported, the cost of manipulating
polyhedra is quite expensive, and thus, the approach is currently restricted to
smaller networks when compared to SMT/MILP-based approaches.

Range computations using symbolic intervals were attempted in Reluval
[33], which essentially relied on affine arithmetic techniques to reduce the over-
approximation errors, and handle the case splitting imposed by ReLU units.
Likewise, Cheng et al. [8] propose a heuristic approach to compute tight ranges
for individual neurons.

Reaching Out Towards Fully Verified Autonomous Systems 27

3.2 Training with Robustness

Verification approaches have been incorporated to improve the process of learn-
ing networks from data [32,34]. For instance Jana et al. use the output set
estimates computed by verification tools in order to incorporate robustness in
the training phase wherein the network is rendered somewhat immune to small
perturbations of the input. This has been proposed as a means to defend against
any adversarial perturbations of the input. However, the computational cost can
be orders magnitude more expensive than standard approaches to adversarially
robust training that do not involve expensive verification tools in the loop.

3.3 Closed Loop Verification

Until this point we have been interested in verifying properties of a single neural
network in isolation. However, as mentioned previously, autonomous systems
employ neural networks as components in a closed loop that controls a physical
process. Such physical processes can often be described by ordinary differen-
tial equations (ODEs). The simplest such situation involves a neural network
that applies a feedback control to a physical process modeled as an ODE. This
setup has been studied recently in order to perform reachability analysis of the
resulting closed loop behaviors [13,21,30,35].

Dutta et al. [13], propose a technique to compute Taylor models (polyno-
mial + error) as approximations of the behavior of the neural network in a
compact domain. This was then used in conjunctions with standard reachability
tools like Flow* [6] to compute reachable set of states of the closed loop involv-
ing an ODE and a neural network. A followup approach [20] approximates the
neural network controller with Bernstein polynomials to deal with activation
functions that are more general than ReLU. Ivanov et al. [21] propose a tech-
nique whereby activation functions such as sigmoid and tanh are modeled using
differential equations evolving over time to encode a network as an ODE itself.
This allows the transformation of a single layer of the neural network into a
hybrid system. Which could then be used in standard reachability analysis tools
for such systems. Another recent work by Xiang et al. considers the combina-
tion of neural networks in feedback with piecewise linear dynamical systems [37]
using the techniques presented in [36].

Barrier certificates serve as an important approach to establish safety prop-
erties of dynamical systems [26]. Tuncali et al. [30] present an approach to syn-
thesize barrier certificates using an SMT solver to prove properties of ODEs with
neural networks as feedback.

However, neural networks are also employed in autonomous systems to clas-
sify a large volume of sensor data from cameras and LIDAR sensors. It is an enor-
mous challenge to specify the behavior of these sensors with respect to changes
in the environment and the vehicle. Shoukry et al. present a recent step towards
verifying robotic systems that employ LIDAR sensors by means of simplifying
the LIDAR system to consider a finite set of angles along with the system finds
ranges [28]. The approach also “hard codes” a fixed environment with obstacles

28 S. Sankaranarayanan et al.

having fixed positions and geometries. The authors use a SMT based approach
to construct a finite state abstraction of the closed loop system using fixed set
of predicates to partition the state-space. This abstraction is then used to check
reachability properties.

3.4 Falsification and Testing

We have focused our attention entirely on the use of formal verification
approaches to prove properties of autonomous systems with neural network
components. The problems of “best-effort” falsification to find counterexam-
ples and that of systematic testing have also received a lot of attention. We
mention a few representative approaches that relate closely to the verification
approaches mentioned above without claiming to be a comprehensive survey on
falsification/testing approaches for autonomous systems. An important line of
work (e.g., [12,29,38]) focuses on the falsification problem for systems containing
neural network components, as autonomous vehicles. The falsification problem
consist of finding an execution of the system that violates a requirement, and the
falsification algorithms for cyber-physical systems (e.g., S-TaLiRo [4]) implement
efficient heuristics to search for a system’s input that can falsify a requirement.

One challenge addressed in [38] is to find adversarial examples, a perturbation
of the input that falsifies a temporal logic formula, for a closed loop control
system formed by a neural network controller and a dynamical system. The
proposed solution tries to find an adversarial example minimizing the robustness
function of the Signal Temporal Logic (STL) formula via gradient descent.

Recent approaches also address the falsification of autonomous vehicles where
neural networks are used in the perception stack. Dreossi et al. [12] propose an
approach that falsifies STL formulas compositionally, first falsifying an abstrac-
tion of the neural network component and the cyber-physical system, and then
confirming the counterexample in the neural network component. An alternative
approach proposed by Fainekos et al. [29] focuses on perturbing driving scenar-
ios for autonomous vehicles that can result in reaching undesired state (e.g., a
crash). The scenarios are expressed in STL, and the approach generates input
test cases from different combinations of discrete parameters of the system.

4 Challenges

We conclude our discussion by briefly mentioning some of the important chal-
lenges that remain to be tackled in this rapidly emerging area.

Specification: Despite initial approaches to verifying properties of neural net-
works in isolation, or as part of larger closed loops, the problem of formally
specifying the behavior of these systems remains largely open for perception
systems that classify sensor data including images and LIDAR data. The key
challenge here lies in specifying what a valid image is in a logical formalism that
is compatible with existing verification tools. This in turn requires a specification

Reaching Out Towards Fully Verified Autonomous Systems 29

of the environment, and the imaging/sensing processes. To make matters more
complicated, small changes to the orientation/pose of the vehicle can drastically
alter the image generated. Current approaches sidestep functional specifications
in favor of requiring the classifier to be “robust” to perturbations around some
selected training examples. Alternatively, one may simplify the sensor’s capabili-
ties to make modeling easier. Another popular alternative uses generative models
that specify inputs at a high level. Fremont et al. propose an approach that uses
generative models for creating road scenes corresponding to simple program-
matic specifications for the purposes of testing [15]. Extending such formalisms
to verification problems remains an important challenge.

Scalability: Scalability of verification approaches remains yet another challenge.
Simply put, the current state-of-the art networks are 100x or 1000x larger than
the most efficient verification tools available. This gap needs to be considerably
narrowed before verification approaches can be used on realistic systems. This
challenge may requires to improve the existing verification techniques, for exam-
ple improving the underlying constraint solvers by specializing them to handle
neural networks. Alternative approaches such as using abstractions that are suf-
ficient precise to show the correctness of the neural network can also be useful.
The challenge lies in the definition of these abstractions and how they can be
obtained for large networks without resorting to expensive verification tools in
the first place.

Recurrent Networks: Another important challenge lies in tackling recurrent net-
works that involve units such as long short term memory (LSTM) with internal
state. These networks are widely used in applications such as data-driven mod-
eling and natural language processing. Verification of such networks is highly
challenging for existing tools and techniques.

Runtime Verification: Runtime verification provides an important alternative to
everything mentioned here that focuses on static/pre-deployment verification.
The use of real-time monitors to predict and act against imminent property
violations form the basis for runtime assurance using L1-Simplex architectures
that switch between a lower performance but formally validated control when an
impending failure is predicted [27]. However, the key issue lies in how impending
failures are to be predicted. An alternative approach to verification to guarantee
safety is shielding [2,40] that uses a supervisor (or so-called shield) to monitor
the execution of the autonomous system and intervene to enforce temporal logic
properties if a violation is imminent. Chen et al. present a different approach
based on monitoring viability rather than safety in order to sidestep the need to
reason about the controller [7]. Instead, their approach can perform lightweight
reasoning just over the behavior of the plant model. A recent application of their
approach involves monitoring geofences for unmanned aerial vehicle [39].

30 S. Sankaranarayanan et al.

5 Conclusion

In conclusion, we have attempted to classify the rapidly emerging area of verify-
ing autonomous systems involving neural networks. Our presentation has focused
on some of the current successes and future challenges in this area.

Acknowledgments. This work was supported in part by the Air Force Research
Laboratory (AFRL) and by the US NSF under Award # 1646556.

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learn-
ing on heterogeneous systems (2015). https://www.tensorflow.org/

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.:
Safe reinforcement learning via shielding (2018). https://aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17211

3. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by
local automaton learning (2019). http://reasoning.cs.ucla.edu/fetch.php?id=193&
type=pdf

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

5. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR abs/1604.07316
(2016). http://arxiv.org/abs/1604.07316

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

7. Chen, X., Sankaranarayanan, S.: Model-predictive real-time monitoring of linear
systems. In: IEEE Real-Time Systems Symposium (RTSS), pp. 297–306. IEEE
Press (2017)

8. Cheng, C., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. CoRR abs/1705.01040 (2017). http://arxiv.org/abs/1705.01040

9. Cheng, C., Nührenberg, G., Ruess, H.: Verification of binarized neural networks.
CoRR abs/1710.03107 (2017). http://arxiv.org/abs/1710.03107

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM Prin-
ciples of Programming Languages, pp. 238–252 (1977)

11. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Sig.
Syst. 2, 303–314 (1989)

12. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

13. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings of the
Hybrid Systems: Computation and Control (HSCC), HSCC 2019, pp. 157–168.
ACM, New York (2019)

https://www.tensorflow.org/
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
http://reasoning.cs.ucla.edu/fetch.php?id=193&type=pdf
http://reasoning.cs.ucla.edu/fetch.php?id=193&type=pdf
https://doi.org/10.1007/978-3-642-19835-9_21
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
http://arxiv.org/abs/1705.01040
http://arxiv.org/abs/1710.03107
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26

Reaching Out Towards Fully Verified Autonomous Systems 31

14. Dutta, S., Kushner, T., Sankaranarayanan, S.: Robust data-driven control of arti-
ficial pancreas systems using neural networks. In: Češka, M., Šafránek, D. (eds.)
CMSB 2018. LNCS, vol. 11095, pp. 183–202. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99429-1 11

15. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: Proceedings of the ACM Programming Language Design and Implementation
(PLDI), pp. 63–78 (2019)

16. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18, May
2018

17. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
Kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3354–3361, June 2012

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

19. Hashimoto, D.A., Rosman, G., Rus, D., Meireles, O.: Artificial intelligence in
surgery: promises and perils. Ann. Surg. 268, 70–76 (2018)

20. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis
of neural-network controlled systems. CoRR abs/1906.10654 (2019). http://arxiv.
org/abs/1906.10654

21. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the Hybrid Systems: Computation and Control (HSCC), HSCC 2019, pp. 169–178.
ACM, New York (2019)

22. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pp. 253–256, May 2010. https://doi.org/10.1109/ISCAS.2010.5537907

23. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. CoRR abs/1709.06662 (2017). http://
arxiv.org/abs/1709.06662

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

25. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Workshop on
Automatic Differentiation (2017). https://openreview.net/forum?id=BJJsrmfCZ

26. Prajna, S., Jadbabaie, A.: Safety verification using barrier certificates. In: Proceed-
ings of the HSCC 2004, vol. 2993, pp. 477–492 (2004)

27. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
28. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled

autonomous systems. In: Proceedings of the Hybrid Systems: Computation and
Control (HSCC), HSCC 2019, pp. 147–156. ACM, New York (2019)

29. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In: 2018
IEEE Intelligent Vehicles Symposium, pp. 1555–1562 (2018)

30. Tuncali, C.E., Kapinski, J., Ito, H., Deshmukh, J.V.: Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In: Proceed-
ings of the Design Automation Conference, DAC 2018, pp. 30:1–30:6 (2018)

31. U.S Food and Drug Administration: Computer-assisted surgical systems
(2019). https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-
surgical-systems. Accessed July 2019

https://doi.org/10.1007/978-3-319-99429-1_11
https://doi.org/10.1007/978-3-319-99429-1_11
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1906.10654
http://arxiv.org/abs/1906.10654
https://doi.org/10.1109/ISCAS.2010.5537907
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
https://doi.org/10.1007/978-3-662-03811-6
https://openreview.net/forum?id=BJJsrmfCZ
https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-surgical-systems
https://www.fda.gov/medical-devices/surgery-devices/computer-assisted-surgical-systems

32 S. Sankaranarayanan et al.

32. Wang, S., Chen, Y., Abdou, A., Jana, S.: Mixtrain: scalable training of formally
robust neural networks. CoRR abs/1811.02625 (2018). http://arxiv.org/abs/1811.
02625

33. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. CoRR abs/1804.10829 (2018). http://
arxiv.org/abs/1804.10829

34. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Proceedings of the International Conference
on Machine Learning, ICML, pp. 5283–5292 (2018). http://proceedings.mlr.press/
v80/wong18a.html

35. Xiang, W., Tran, H., Johnson, T.T.: Reachable set computation and safety veri-
fication for neural networks with relu activations. CoRR abs/1712.08163 (2017).
http://arxiv.org/abs/1712.08163

36. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety ver-
ification for neural networks with relu activations (2107). https://arxiv.org/pdf/
1712.08163.pdf. Posted on arxiv December 2017

37. Xiang, W., Tran, H.D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation
and verification for a class of piecewise linear systems with neural network con-
trollers (2018). To Appear in the American Control Conference (ACC), invited
session on Formal Methods in Controller Synthesis

38. Yaghoubi, S., Fainekos, G.: Gray-box adversarial testing for control systems with
machine learning components. In: Proceedings of Hybrid Systems: Computation
and Control, pp. 179–184 (2019)

39. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime
monitoring for linear stochastic systems and applications to geofence enforcement
for UAVs (2019). In: Proceedings of the Runtime Verification 2019, October 2019
(to appear)

40. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework
for verifiable reinforcement learning. In: ACM Programming Language Design and
Implementation (PLDI), pp. 686–701 (2019)

http://arxiv.org/abs/1811.02625
http://arxiv.org/abs/1811.02625
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
http://arxiv.org/abs/1712.08163
https://arxiv.org/pdf/1712.08163.pdf
https://arxiv.org/pdf/1712.08163.pdf

On the m-eternal Domination Number
of Cactus Graphs

Václav Blažej, Jan Matyáš Křǐst’an(B), and Tomáš Valla

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

matyas.kristan@gmail.com

Abstract. Given a graph G, guards are placed on vertices of G. Then
vertices are subject to an infinite sequence of attacks so that each attack
must be defended by a guard moving from a neighboring vertex. The
m-eternal domination number is the minimum number of guards such
that the graph can be defended indefinitely. In this paper we study the
m-eternal domination number of cactus graphs, that is, connected graphs
where each edge lies in at most one cycle, and we consider three vari-
ants of the m-eternal domination number: first variant allows multiple
guards to occupy a single vertex, second variant does not allow it, and
in the third variant additional “eviction” attacks must be defended. We
provide a new upper bound for the m-eternal domination number of cac-
tus graphs, and for a subclass of cactus graphs called Christmas cactus
graphs, where each vertex lies in at most two biconnected components,
we prove that these three numbers are equal. Moreover, we present a
linear-time algorithm for computing them.

1 Introduction

Let us have a graph G whose vertices are occupied by guards. The graph is
subject to an infinite sequence of vertex attacks. The guards may move to any
neighboring vertex after each attack. After moving, a vertex attack is defended
if the vertex is occupied by a guard. The task is to come up with a strategy such
that the graph can be defended indefinitely.

Defending a graph from attacks using guards for an infinite number of steps
was introduced by Burger et al. [2]. In this paper we study the concept of the
m-eternal domination, which was introduced by Goddard et al. [4] (eternal dom-
ination was originally called eternal security).

The m-eternal guarding number Γ∞
m (G) is the minimum number of guards

which tackle all attacks in G indefinitely. Here the (slightly confusing) notion of
the letter “m” emphasizes that multiple guards may move during each round.
The m-eternal domination number γ∞

m (G) is the minimum number of guards
which tackle all attacks indefinitely, with the restriction that no two guards may

V. Blažej and T. Valla acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 33–47, 2019.
https://doi.org/10.1007/978-3-030-30806-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_4

34 V. Blažej et al.

occupy a single vertex simultaneously. We also introduce the m-eternal domina-
tion number with eviction γ∞

me(G), which is similar to γ∞
m with the additional

requirement, that during each round one can decide to either attack a vertex
or choose an “evicted” vertex or edge, which must be cleared of guards in the
next round. There is also a variant of the problem studied by Goddard et al. [4]
where only one guard may move during each round, which is not considered in
our paper. We will define all concepts formally at the end of this section.

Goddard et al. [4] established γ∞
m exactly for paths, cycles, complete graphs

and complete bipartite graphs, showing that γ∞
m (Pn) = �n/2�, γ∞

m (Cn) = �n/3�,
γ∞
m (Kn) = 1 and γ∞

m (Km,n) = 2. The authors also provide several bounds for
general graphs, most notably γ(G) ≤ γ∞

m (G) ≤ α(G), where α(G) denotes the
size of the maximum independent set in G and γ(G) is the size of the smallest
dominating set in G. Since that several results focused on finding bounds of γ∞

m

in different conditions or graph classes.
Henning, Klostermeyer and MacGillivray [7] explored the relationship

between γ∞
m and the minimum degree δ(G) of a graph G: If G is a con-

nected graph with minimum degree δ(G) ≥ 2 and has n �= 4 vertices, then
γ∞
m (G) ≤ �(n − 1)/2�, and this bound is tight.

Finbow, Messinger and van Bommel [3] proved the following result for 3 × n
grids. For n ≥ 2

γ∞
m (P3�Pn) ≤ �6n/7� +

{
1 if n ≡ 7, 8, 14 or 15 mod 21,
0 otherwise.

Here G�H denotes the Cartesian product of graphs G and H.
Van Bommel and van Bommel [12] showed for 5 × n grids that⌊

6n + 9
5

⌋
≤ γ∞

m (P5�Pn) ≤
⌊

4n + 4
3

⌋
.

For a good survey on other related results and topics see Klostermeyer and
Mynhardt [9].

Very little is known regarding the algorithmic aspects of m-eternal domina-
tion. The decision problem (asking if γ∞

m (G) ≤ k) is obviously NP-hard and
belongs to EXPTIME, however, it is not known whether it lies in the class
PSPACE (see [9]). On the positive side, there is a linear algorithm for comput-
ing γ∞

m for trees by Klostermeyer and MacGillivray [8]. Braga, de Souza and
Lee [1] showed that γ∞

m (G) = α(G) in all proper-interval graphs. Very recently
Gupta et al. [5] showed that the maximum independent set in an interval graph
on n vertices can be solved in time O(n log n), or O(n) in the case when end-
points of the intervals are already sorted. We can thus compute γ∞

m (G) efficiently
on proper-interval graphs.

In this paper we contribute to the positive side and provide an extension
of the result by Klostermeyer and MacGillivray [8]. Cactus is a graph that is
connected and its every edge lies on at most one cycle. An equivalent definition
is that it is connected and any two cycles have at most one vertex in common.

On the m-eternal Domination Number of Cactus Graphs 35

Christmas cactus graph is a cactus in which each vertex is in at most two 2-
connected components. Christmas cactus graphs were introduced by Leighton
and Moitra [10] in the context of greedy embeddings, where Christmas cactus
graphs play an important role in the proof that every polyhedral graph has a
greedy embedding in the Euclidean plane.

Our main result is summarized in the following theorem.

Theorem 1. Let G be a Christmas cactus graph. Then Γ∞
m (G) = γ∞

m (G) =
γ∞
me(G) and there exists a linear-time algorithm which computes these values.

Using Theorem 1 we are able to devise a new bound on the m-eternal dom-
ination number of cactus graphs, which is stated in Theorem 3 in Sect. 3. In
Sect. 4 we provide the linear-time algorithm for computing γ∞

m of Christmas
cactus graphs.

Let us now introduce all concepts formally. For an undirected graph G let
a configuration be a multiset C = {c1, c2, . . . , ck : ci ∈ V (G)}. We will refer to
the elements of configurations as guards. Movement of a guard u ∈ C means
changing u to some element v ∈ NG[u] of its closed neighborhood and we denote
it by u → v. Two configurations C1 and C2 of G are mutually traversable in
G if it is possible to move each guard of C1 to obtain C2. A strategy in G is
a graph SG = (C,F) where C is a set of configurations in G of same size and
F =

{{C1, C2} ∈ C
2 | C1 and C2 are mutually traversable in G

}
. The order of

a strategy is the number of guards in each of its configurations.
We now define the variants of the problem which we study in our paper. For

the purpose of the proof of our main result we devise a variant of the problem,
where a vertex or an edge can be “evicted” during a round, that means, no
guard may be left on the respective vertex or edge. We call the strategy SG

to be defending against vertex attacks if for any C ∈ C the configuration C
and its neighbors in SG cover all vertices of G, i.e., when a vertex v ∈ V (G) is
“attacked” one can always respond by changing to a configuration which has a
guard at the vertex v. Note that every configuration in a strategy which defends
against vertex attacks induces a dominating set in G. We call a strategy SG to
be evicting vertices if for any C ∈ C and any u ∈ V (G) the configuration C has
a neighbor C ′ in SG such that u /∈ C ′, i.e., when a vertex v is “to be evicted”
one can respond by changing to a configuration where no guard is present at v.
We call a strategy SG to be evicting cycle edges if for any C ∈ C and any edge
{u, v} ∈ E(G) lying in some cycle in G the configuration C has a neighbor C ′

in SG such that u, v /∈ C ′. That means, when an edge is “to be evicted” one
can respond by changing to a configuration where no guards are incident to the
edge.

Let the m-eternal guard strategy in G be a strategy defending against ver-
tex attacks in G. Let the m-eternal guard configuration number Γ∞

m (G) be the
minimum order among all m-eternal guard strategies in G. Let the m-eternal
dominating strategy in G be a strategy in G such that none of its configura-
tions has duplicates and is also defending against vertex attacks. The m-eternal
dominating set in G is a configuration, which is contained in some m-eternal

36 V. Blažej et al.

dominating strategy in G. Let the m-eternal dominating number γ∞
m (G) be the

minimum order of m-eternal dominating strategy in G. Let the m-eternal dom-
inating strategy with eviction in G be a strategy such that none of its config-
urations has duplicates, is defending vertex attacks, is evicting vertices, and is
evicting cycle edges in G. Let the m-eternal dominating with eviction number
γ∞
me(G) be the minimum order of m-eternal dominating strategy evicting vertices

and edges in G.
A cycle in G is a leaf cycle if exactly one of its vertices has degree greater

than 2. By Pn we denote a path with n edges and n + 1 vertices. By G[U] we
denote the subgraph of G induced by the set of vertices U ⊆ V (G).

2 The m-eternal Domination of Christmas Cactus Graphs

In this section we prove that Γ∞
m (G) = γ∞

m (G) = γ∞
me(G) for Christmas cactus

graphs by showing the optimal strategy. The main idea is to repeatedly use
reductions of the Christmas cactus graph G to produce smaller Christmas cactus
graph I. We prove that the optimal strategy for G uses a constant number of
guards more than the optimal strategy for I.

This will be one part of the proof of Theorem 1. Before we describe the
reductions, we present several technical tools that are used in the proofs of
validity of the reductions and that give a hint into the machinery of the proof.
We defer the technical proofs of reductions correctness to the full version of this
paper which is available online.1

Observation 1. Every strategy used in the m-eternal domination with eviction can
be applied in an m-eternal domination strategy, and every m-eternal domination
strategy can be applied as an m-eternal guard configuration strategy. Every
configuration in each of these strategies must induce a dominating set, therefore,
they are all lower bound by the domination number γ. We see that the following
inequality holds for every graph G.

γ(G) ≤ Γ∞
m (G) ≤ γ∞

m (G) ≤ γ∞
me(G)

Note that we can prove bounds on all of these strategies by showing that for
G and its reduction I it holds that γ∞

me(G) ≤ γ∞
me(I)+k and Γ∞

m (I) ≤ Γ∞
m (G)−k

for some integer constant k. If we have an exact result for I the reduction gives
us an exact bound on G as well. This is summed up in the following lemma.

Lemma 1. Let us assume that for graphs G, I, and an integer constant k

γ∞
me(G) ≤ γ∞

me(I) + k, (1)
Γ∞
m (G) ≥ Γ∞

m (I) + k, (2)
γ∞
me(I) = Γ∞

m (I). (3)

Then γ∞
me(G) = Γ∞

m (G).
1 https://arxiv.org/abs/1907.07910.

https://arxiv.org/abs/1907.07910

On the m-eternal Domination Number of Cactus Graphs 37

Proof. Given the assumptions, we get γ∞
me(G) ≤ Γ∞

m (G) in the following manner.

γ∞
me(G) ≤(1) γ∞

me(I) + k =(3) Γ∞
m (I) + k ≤(2) Γ∞

m (G)

Recall Observation 1 where we saw that Γ∞
m (G) ≤ γ∞

me(G) holds, giving us the
desired equality.
�

Let us have a graph G with a strategy. By simulating a vertex attack, a
vertex eviction, or an edge eviction on G, we mean performing the attack on G
and retrieving the strategy’s response configuration. Simulating attacks is useful
mainly in merging several strategies over subgraphs into a strategy for the whole
graph.

In the following theorem we introduce a general upper bound applicable to
the m-eternal dominating strategy with eviction.

Lemma 2. Let G be a graph with an articulation v such that G \ v has two
connected components H and I ′ such that there are exactly two vertices u and w
in V (I ′) which are neighbors of v. Let I =

(
V (I ′), E(I ′) ∪ {{u,w}}). If {u,w}

lies on a cycle in I then

γ∞
me(G) ≤ γ∞

me(H) + γ∞
me(I).

Proof. We will show that having two separate strategies for H and I we can
merge them into one strategy for G without using any additional guards (Fig. 1).

u v
w u w

G

H

I

v

Fig. 1. Decomposition of G into H and I

We will create a strategy which keeps the invariant that in all its configura-
tions either v is occupied by a guard or the pair of vertices u and w are evicted.
This will ensure that whenever v is not occupied due to the strategy of H need-
ing a guard from v to defend other vertices of H, the strategy of I will be in a
configuration where no guard can traverse the {u,w} edge.

Let the initial configuration be a combination of a configuration of H which
defends v and a configuration of I which evicts {u,w}. The final strategy will
consist of configurations which are unions of configurations of H and I which
we choose in the following manner.

The vertices of G were partitioned among H and I so a vertex attack can be
distinguished by the target component. Whenever a vertex z of G is attacked,
choose a configuration of respective component which defends z. If H was not

38 V. Blažej et al.

attacked then simulate an attack on v. If I was not attacked then simulate an
edge eviction on {u,w}. By the configuration of the non-attacked component we
ensure the invariant is true. Whenever the {u,w} edge might be traversed by
a guard in the I’s strategy, we use the fact that v is occupied and instead of
performing u → w we move the guards u → v and v → w which has the same
effect considering guard configuration of I.

The eviction of vertices and edges present in H and I is solved in the same
way as vertex attacks. The only attack which remains to be solved is an edge
eviction of {u, v} or {w, v}. Both of these are defended by simulating an eviction
of v in H and {u,w} in I. The two strategies will ensure there are no guards on
either u, v, nor w and the invariant is still true.
�

We may now proceed with the reductions.

Lemma 3. Let Ck be a cycle on k vertices. Then γ(C) = Γ∞
m (C) = γ∞

m (C) =
γ∞
me(C) =

⌈
k
3

⌉
.

Reduction 1. Let G be a Christmas cactus graph and u be a leaf vertex which
is connected to a vertex v of degree 2. Remove u and v from G.

Lemma 4. Let G be a graph satisfying the prerequisites of Reduction 1. Let I
be G after application of Reduction 1. Then I is a Christmas cactus graph and
γ∞
me(G) = Γ∞

m (G) = Γ∞
m (I) + 1 = γ∞

me(I) + 1.

Reduction 2. Let G be a Christmas cactus graph and u be a leaf vertex which is
connected to a vertex v of degree 3. Let the vertex v has neighbors u, x, y such
that x and y are not connected. Remove u and v from G and connect x, y by an
edge.

Lemma 5. Let G be a graph satisfying the prerequisites of Reduction 2. Let I
be G after application of Reduction 2 on u, v, x and y. Then I is a Christmas
cactus graph and γ∞

me(G) = Γ∞
m (G) = Γ∞

m (I) + 1 = γ∞
me(I) + 1.

Reduction 3. Let G be a Christmas cactus graph and C be a leaf cycle on n
vertices where n ∈ {3k, 3k + 2 | k ≥ 1}. Let v be the only articulation on this
cycle. Remove C \ v and create a new vertex u and the edge {v, u} in G.

Lemma 6. Let G be a graph satisfying the prerequisites of Reduction 3. Let I be
G after application of Reduction 3 with C. Then I is a Christmas cactus graph
and γ∞

me(G) = Γ∞
m (G) = Γ∞

m (I) + k − 1 = γ∞
me(I) + k − 1.

Reduction 4. Let G be a Christmas cactus graph and C be a leaf cycle on 3k +1
vertices. Let v be the only articulation on this cycle. Remove C \ v from G.

Lemma 7. Let G be a graph satisfying the prerequisites of Reduction 4. Let I be
G after application of Reduction 4 substituting C by K1. Then I is a Christmas
cactus graph and γ∞

me(G) = Γ∞
m (G) = Γ∞

m (I) + k = γ∞
me(I) + k.

On the m-eternal Domination Number of Cactus Graphs 39

Reduction 5. Let G be a Christmas cactus graph and C be a cycle on three
vertices {v, x, y}, let x′, y′ be leafs in G, such that x′ connects to x, y′ to y, and
v is connected to the rest of the graph (no other edges are incident to C). We
call the C ∪ {x′, y′} subgraph a bull graph. Remove {x, y, x′, y′} from G.

Lemma 8. Let G be a Christmas cactus graph. Let K be a bull graph connected
to the rest of G via a vertex of degree 2. Let I be G after application of Reduc-
tion 5 on K. Then I is a Christmas cactus graph and γ∞

me(G) = Γ∞
m (G) =

Γ∞
m (I) + 2 = γ∞

me(I) + 2.

Let the 3-pan graph be a K3 with one leaf attached.

Reduction 6. Let G be a Christmas cactus graph and C be a cycle on three
vertices {v, x, y}, let x′ be a leaf in G, such that x′ connects to x and v is
connected to the rest of the graph (no other edges are incident to C). The
C ∪ {x′} is a 3-pan graph. Remove {x, x′} from G.

Lemma 9. Let G be a Christmas cactus graph. Let K be a 3-pan graph connected
to rest of the graph via a vertex of degree 2. Let I be G after application of
Reduction 6 on K. Then I is a Christmas cactus graph and γ∞

me(G) = Γ∞
m (G) =

Γ∞
m (I) + 1 = γ∞

me(I) + 1.

Using the reductions we are ready to prove the part of Theorem 1 stating
that Γ∞

m (G) = γ∞
m (G) = γ∞

me(G) for all Christmas cactus graphs.
A block or a 2-connected component of graph G is a maximal 2-connected

subgraph of G.

Lemma 10. In a non-elementary christmas cactus graph with no leaf cycles,
no leaf vertices connected to a vertex of degree 2, and no leaf vertices connected
to a block of size bigger than 3, there is at least one leaf bull or one leaf 3-pan
graph.

Proof. Let us call the blocks of size 3 triangles. Removing edges of all the triangle
subgraphs would split the christmas cactus into connected components of blocks.
Let us choose a triangle and traverse the graph in the following way. If the current
triangle is a bull or a 3-pan we end the traversal and have a positive result.
Otherwise, choose the component we have not visited yet and find a different
triangle graph incident to it. Such triangle must exist otherwise it would be a
leaf component. Mark this component as visited and repeat the process. See
Fig. 2.
�

Theorem 2. Let G be a Christmas cactus graph. Then Γ∞
m (G) = γ∞

m (G) =
γ∞
me(G).

40 V. Blažej et al.

Proof. A Christmas cactus graph G always contains either a leaf or a leaf cycle.
This will be shown by contradiction. If all vertices have degree at least two and
each cycle has at least two neighboring blocks then the chain of blocks would
either never end or it must close itself, creating another big cycle, contradicting
that the graph is a cactus.

We will use reductions until we obtain an elementary graph for which the
optimal strategy is known. The graph is called elementary if it is a cycle, single
edge, a path on three vertices, a bull, or a 3-pan. The proper reduction is chosen
repeatedly in the following manner, which is also depicted in Fig. 2.

– If G is elementary we return the optimal strategy.
– If there is a leaf cycle on k ≥ 3 vertices:

• If k �≡ 1 mod 3 use Reduction 3,
• otherwise k ≡ 1 mod 3 and then use Reduction 4.

– Otherwise there is a leaf vertex u in G and its neighbor v is an articulation.
– If the vertex v is connected to the rest of the graph by only one edge then

use Reduction 1,
– Vertex v is connected to two vertices x and y which are different from u.
– If there is no edge between x and y then they must be connected by a path

in G, otherwise, v would be in more than two blocks. Use Reduction 2.
– If there is an edge between x and y then it cannot be on any other cycle than

{v, x, y}. Note that vertices v, x, y form a triangle which is be connected to
at most 3 other blocks.

– Now, the previous evaluation can be done on every leaf vertex u. If no of the
previous cases is applicable, it means by Lemma 10 that there is a leaf bull
(use Reduction 5) or a leaf 3-pan graph (use Reduction 6).

Using the reductions we eventually end up in a situation where the Christmas
cactus graph is an elementary graph. The optimal strategy for cycle was shown
in Lemma 3, all the configurations of optimal strategies of all the remaining
graphs are depicted in Fig. 2.

In each of these elementary graphs, allowing eviction attacks does not increase
the necessary number of guards. Also, allowing more guards at one vertex does
not add any advantage and does not decrease the necessary number of guards.
Therefore, for all of these cases it holds that γ∞

me = γ∞
m = Γ∞

m .
�

3 Upper Bound on the m-eternal Domination Number
of Cactus Graphs

Definition 1. Let us have a cactus graph G. Let us color vertices of G in the
following way. Let a vertex be colored red if it is contained in more than two
2-connected components of G, otherwise it is colored black. Let R(G) denote the
number of red vertices, and Rg(G) denote the number of red connected compo-
nents (e.g. R(G) = 7 and Rg(G) = 3 in Fig. 3).

Let G′ be a graph created from G by contracting each red connected compo-
nents into a red vertex.

On the m-eternal Domination Number of Cactus Graphs 41

G has a leaf Cn? n mod 3?
v

G
x

v

C3k+1

I

x′

v′

Reduction 4

v

G
x

v

x

C3k

I
x′

v′

Reduction 3

There is a leaf u
connected to v.

Vertex v has
degree 2?

v
G

I

u

Reduction 1

Are neighbors
x and y of v
connected?

u

v
y x y

G

I

x

Reduction 2

Is there a leaf
bull in the graph? v

G

I
v′

K

Reduction 5

There is a leaf
3-pan graph. v

G
Iy

x

x′
y′

Reduction 6

no

no

yes

no

yes 1

0 or 2

yes

no

yes

Always true by Lemma 10.

Fig. 2. Decision tree for choosing a proper reduction

Let BG′ be a set of maximal connected components of black vertices in G′.
Let RG′ = {b ∪ N(b) | b ∈ BG′}. Note that N(b) contains only red vertices. Let
the Christmas cactus decomposition Op(G) be a disjoint union of graphs induced
by G[r] for all r ∈ RG′ . See Fig. 3.

Theorem 3. The m-eternal domination number of a cactus graph G is bounded
by

γ∞
m (G) ≤

∑
H∈Op(G)

(
γ∞
m (H) − R(H)

)
+ R(G) + Rg(G),

where Op(G) are the components of the Christmas cactus decomposition, R(G)
is the number of red vertices in G and Rg(G) is the number of connected com-
ponents of red vertices.

Proof. Let G′ be a graph where all connected components of red vertices are
contracted creating one red group vertex for each component as shown in Fig. 3.
Let Op(G) be the Christmas cactus decomposition of G.

42 V. Blažej et al.

Fig. 3. Process of transforming a cactus G by contracting red edges to produce G′

and subsequently duplicating red vertices for each black connected component to get
Op(G). (Color figure online)

First, find an optimal strategy for each Christmas cactus graph in Op(G)
separately by the process presented in Sect. 2. We will show how to merge these
disjoint strategies into one strategy for the whole graph G′ and subsequently
generalize it for G.

Assume that all red vertices of G′ are always occupied, hence we have to
show how to defend black vertices. Let us reverse the process of Christmas
cactus decomposition and merge disjoint Christmas cactus graphs by the red
vertices to obtain G′. When a black vertex is attacked we simulate an attack
on the respective Christmas cactus graph to get a configuration which defends
the vertex as shown in Fig. 4. If any of the red vertices of the Christmas cactus
graph are not occupied then we simulate an attack on the red vertex in all other
Christmas cactus graphs which contain it.

The process ensures that in each configuration all but one Christmas cactus
graph incident to each red vertex has a guard on it. A red vertex v incident to k
black components in G′ is always occupied by exactly k − 1 guards. So we can
remove k − 2 guards and it remains always occupied by exactly one guard. This
strategy for G′ uses

∑
H∈Op(G)

(
γ∞
m (H) − R(H)

)
+ 2Rg(G) guards.

Fig. 4. Simulating attacks to get the right amount of guards on each red vertex. (Color
figure online)

Now we get G from G′ by expanding the red vertices back into the original
red connected components. Add guards such that all red vertices are occupied.
The strategy will be altered slightly. When we defend G′ by moving a guard from
red vertex v then another guard from a different Christmas cactus component is
forced to move to v by a simulated attack. However in G the left vertex u and
the attacked vertex u′ might not coincide so we pick a path from u to u′ in the
red component and move all the guards along the path.

The change in number of guards can be imagined as removing guards on red
vertices of G′ and adding guards on all red vertices of G. We devised a strategy
for G which uses

∑
H∈Op(G)

(
γ∞
m (H) − R(H)

)
+ R(G) + Rg(G) guards.
�

On the m-eternal Domination Number of Cactus Graphs 43

4 Linear-Time Algorithm

We present a description of a linear-time algorithm, which computes γ∞
m in

Christmas cactus graphs in linear time. The algorithm applies previously pre-
sented reductions on the block-cut tree of the input graph.

Definition 2 (Harary [6]). Let the block-cut tree of a graph G be a graph
BC(G) = (A ∪ B, E′), where A is the set of articulations in G and B is the set
of biconnected components in G. A vertex a ∈ A is connected by an edge to a
biconnected component B ∈ B if and only if a ∈ B in G.

The high level description of the algorithm is as follows.

1. Construct the Christmas cactus decomposition of G and iterate the following
for each component H1,H2, . . . , Hc.
(a) Construct the block-cut tree BC of the Christmas cactus Hi.
(b) Repeatedly apply the reductions on the leaf components of BC.
(c) If a reduction can by applied, appropriately modify BC in constant time,

so that it represents Hi with the chosen reduction applied. At the same
time, increase the resulting γ∞

m appropriately.
(d) If BC is empty return the resulting γ∞

m and end the process.
2. Use Theorem 3 to get the upper bound.

This result is summed up in the following theorem. We also present the
detailed pseudocode of the linear-time algorithm for finding the m-eternal dom-
ination number for Christmas cactus graphs.

Theorem 4. Let G be a cactus on n vertices and m edges. Then there exists
an algorithm which computes an upper bound on γ∞

m (G) in time O(n + m).
Moreover, this algorithm computes the γ∞

m of Christmas cactus graphs exactly.

Proof. First step of the algorithm is to create the Christmas cactus decompo-
sition of the input graph G. For each of these Christmas cactus graphs we run
Algorithm 1 and then output the answer devised by Theorem 3.

The construction of a Christmas cactus decomposition of G is done by con-
structing the block-cut tree of G and coloring red all the vertices which are
present in at least 3 blocks, and coloring black all other vertices. We use the
DFS algorithm to find all the connected components of red vertices and con-
tract each of these components into a single red vertex. Next, we use the DFS
algorithm to retrieve all connected components of black vertices along with their
incident red vertices. Note that every edge of G is contained at most once in the
Christmas cactus decomposition, hence the total number of vertices and edges
in the decomposition is bounded by O(|E(G)|).

We run the Algorithm 1 for each component separately. Now we will show
its correctness. The algorithm performs reductions in the while loop at line 10.
In each iteration it processes one leaf block vertex in BC.

First, we argue that the algorithm correctly counts the number of guards on
all elementary graphs. In case BC consists of a single block, it is detected on line

44 V. Blažej et al.

Algorithm 1. γ∞
m of a Christmas cactus graph, Part 1

1: procedure m-EDN-Christmas-cactus(G)
2: BC = (V ′, E′, size, deg) ← the block-cut tree of G
3: stack ← ∅ � stack keeps track of all leaf blocks in BC
4: for v ∈ V ′ do
5: if deg(v) ≤ 1 then � All leaf blocks, or the only block
6: add v on top of the stack
7: end if
8: end for
9: g ← 0 � The resulting γ∞

m (G)
10: while stack �= ∅ do
11: v ← retrieve and remove an element from top of the stack
12: if deg(v) = 0 then � Block is an elementary cycle, an edge, or one vertex
13: (g, stack, size) ← remove-leaf-block(v, stack)
14: else
15: a ← the articulation incident to v � deg(a) = 2 in Ch. cactus graphs
16: u ← the second block neighbor of a other than v
17: (g, stack, size) ← block(u, v, g, stack, size)
18: end if
19: end while
20: return g
21: end procedure

12. The block is removed and the number of guards increases by �size(v)/3� on
line 58, which is consistent with the result for elementary cycle and edge. In the
other case the BC consists of several blocks. If BC represents a path on three
vertices, one guard will added by line 27 and one by line 58 and both blocks
are removed. If BC represents a 3-pan it will count 2 guards by first reducing
one block by line 31 or 27, and then reducing a single block of size at most 2
on line 58. If BC represents a bull the algorithm will find a leaf block of size 2
reducing the bull to a path on 3 vertices on line 31, counting correctly 3 guards.

Now we show that if the algorithm performs an operation on a leaf block it
resolves in the correct number of guards at the end. Let v be a leaf block vertex
processed in the loop. Note that each block of a Christmas cactus graph is either
a cycle or an edge.

Consider the case where v is a leaf cycle. If the cycle has size(v) ≡ 1 mod 3,
then the block is removed entirely adding (size(v) − 1)/3 guards on line 40,
exactly as in Reduction 4. Otherwise the cycle is contracted to a block of size 2
and �size(v)/3� − 1 guards are added on line 44, as in Reduction 3.

Consider the case where the leaf block v has size(v) = 2, representing a leaf
vertex. Let u be the block that shares an articulation with v. If block u has
size(u) = 2 then we remove both of these blocks and add a guard on line 27,
as in Reduction 1. If block u has size(u) ≥ 3 then v is a leaf vertex connected
to a cycle. On line 31 v is removed and size(u) is decreased by one. This is
consistent with Reductions 2, 5, and 6. Note that reducing a leaf incident to a

On the m-eternal Domination Number of Cactus Graphs 45

Algorithm 1. γ∞
m of a Christmas cactus graph, Part 2

22: procedure block(u, v, g, stack, size)
23: if size(v) ≥ 3 then � Leaf cycle of size at least 3
24: (g, stack, size) ← leaf-cycle(v, g, stack, size)
25: else if size(v) = 2 then
26: if size(u) = 2 then � Reduction 2
27: g ← g + 1
28: (g, stack) ← remove-leaf-block(v, g, stack, size)
29: (g, stack) ← remove-leaf-block(u, g, stack, size)
30: else if size(u) ≥ 3 then � Partial Reductions 5 and 6
31: g ← g + 1
32: (g, stack) ← remove-leaf-block(v, g, stack, size)
33: size(u) ← size(u) − 1
34: end if
35: end if
36: return (g, stack, size)
37: end procedure
38: procedure leaf-cycle(v, g, stack, size)
39: if size(v) ≡ 0 mod 3 or size(v) ≡ 2 mod 3 then � Reduction 3
40: g ← g + 	size(v)/3
 − 1
41: size(v) ← 2
42: add v on top of the stack � The block still remains a leaf
43: else if size(v) ≡ 1 mod 3 then � Reduction 4
44: g ← g + (size(v) − 1)/3
45: (g, stack) ← remove-leaf-block(v, g, stack, size)
46: end if
47: return (g, stack, size)
48: end procedure
49: procedure remove-leaf-block(v, g, stack, size)
50: if deg(v) ≥ 1 then
51: a ← the articulation incident to v � deg(a) = 2 in Ch. cactus graphs
52: u ← the second block neighbor of a other than v
53: remove a from the neighbor list in u and erase v and a from BC
54: if deg(u) ≤ 1 then
55: add u on top of the stack � Vertex can become a leaf only here
56: end if
57: else if deg(v) = 0 then
58: g ← g + 	size(v)/3

59: erase v from BC
60: end if
61: return (g, stack)
62: end procedure

component on three vertices first, yields the same result as reducing the graph
first and waiting for the leaf be reduced in either Reduction 2, 5, or 6.

The algorithm performs reductions which were proved to be correct. This
concludes the proof of correctness.

46 V. Blažej et al.

Let n′ be the number of vertices of the Christmas cactus graph, and m′ be
the number of its edges. Now we show that Algorithm 1 runs in time O(n′ +m′).
Using Tarjan’s algorithm [11], we can find the blocks of a graph in linear time.
By the straight-forward augmentation of the algorithm we obtain the block-cut
tree BC where every block v contains additional information size(v) with the
number of vertices it contains. Note that the number of vertices and edges of
BC is bounded by 2n′. Therefore |V (BC)| = O(n′) and |E(BC)| = O(n′).

Now consider the while loop at line 10. We claim that every vertex in BC is
processed at most twice in the loop and every iteration takes constant time. Let
v be the currently processed vertex. During one iteration of the main cycle either
a block of size at most 2 is deleted or a block of size at least 3 is either shrunk
to size 2 or deleted. Therefore, the algorithm for Christmas cactus graphs runs
in time O(n′ + m′).

For the cactus graph we need to create the Christmas cactus decomposition
which uses Tarjan’s algorithm [11] for creating the block-cut tree, and the DFS,
which both runs in O(n + m). As stated, the running time of the algorithm is
linear in the size of the Christmas cactus. Therefore, the total running time is
bound by sum of their sizes O(n + m).
�

This result together with Theorem 2 implies Theorem 1.

5 Future Work

The computational complexity of the decision variant of the m-eternal domina-
tion problem is still mostly unknown as mentioned in the introduction.

The natural extension of the algorithm from cactus graphs is to the more
general case of graphs with treewidth 2. It is also an interesting question if we
can design an algorithm, whose running time is parameterized by the treewidth
of the input graph.

Acknowledgments. We would like to thank Martin Balko and an anonymous referee
for their valuable comments and insights.

References

1. Braga, A., de Souza, C.C., Lee, O.: The eternal dominating set problem for proper
interval graphs. Inf. Process. Lett. 115(6), 582–587 (2015)

2. Burger, A.P., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren,
J.H., Winterbach, W.: Infinite order domination in graphs. J. Comb. Math. Comb.
Comput. 50, 179–194 (2004)

3. Finbow, S., Messinger, M.-E., van Bommel, M.F.: Eternal domination on 3 × n
grid graphs. Australas. J. Comb. 61, 156–174 (2015)

4. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J.
Comb. Math. Comb. Comput. 52, 169–180 (2005)

5. Gupta, U.I., Lee, D.-T., Leung, J.Y.-T.: Efficient algorithms for interval graphs
and circular arc graphs. Networks 12(4), 459–467 (1982)

On the m-eternal Domination Number of Cactus Graphs 47

6. Harary, F.: Graph Theory. Addison-Wesley, Boston (1969)
7. Henning, M.A., Klostermeyer, W.F., MacGillivray, G.: Bounds for the m-eternal

domination number of a graph. Contrib. Discrete Math. 12(2), 91–103 (2017).
ISSN 1715-0868

8. Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Comb.
Math. Comb. Comput. 68, 97–111 (2009)

9. Klostermeyer, W.F., Mynhardt, C.M.: Protecting a graph with mobile guards.
Appl. Anal. Discrete Math. 10, 1–29 (2014)

10. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces.
Discrete Comput. Geom. 44(3), 686–705 (2010)

11. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

12. van Bommel, C.M., van Bommel, M.F.: Eternal domination numbers of 5 × n grid
graphs. J. Comb. Math. Comb. Comput. 97, 83–102 (2016)

On Relevant Equilibria in Reachability
Games

Thomas Brihaye1, Véronique Bruyère1, Aline Goeminne1,2(B),
and Nathan Thomasset1,3

1 Université de Mons (UMONS), Mons, Belgium
{thomas.brihaye,veronique.bruyere,aline.goeminne}@umons.ac.be

2 Université libre de Bruxelles (ULB), Brussels, Belgium
3 ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

nathan.thomasset@ens-paris-saclay.fr

Abstract. We study multiplayer reachability games played on a finite
directed graph equipped with target sets, one for each player. In those
reachability games, it is known that there always exists a Nash equi-
librium (NE) and a subgame perfect equilibrium (SPE). But sometimes
several equilibria may coexist such that in one equilibrium no player
reaches his target set whereas in another one several players reach it. It
is thus very natural to identify “relevant” equilibria. In this paper, we
consider different notions of relevant equilibria including Pareto optimal
equilibria and equilibria with high social welfare. We provide complexity
results for various related decision problems.

Keywords: Multiplayer non-zero-sum games played on graphs ·
Reachability objectives · Relevant equilibria · Social welfare ·
Pareto optimality

1 Introduction

Two-player zero-sum games played on graphs are commonly used to model reac-
tive systems where a system interacts with its environment [16]. In such setting
the system wants to achieve a goal - to respect a certain property - and the envi-
ronment acts in an antagonistic way. The underlying game is defined as follows:
the two players are the system and the environment, the vertices of the graph
are all the possible configurations in which the system can be and an infinite
path in this graph depicts a possible sequence of interactions between the system
and its environment. In such a game, each player chooses a strategy : it is the
way he plays given some information about the game and past actions of the
other player. Following a strategy for each player results in a play in the game.
Finding how the system can ensure that a given property is satisfied amounts

Research partially supported by the PDR project “Subgame perfection in graph games”
(F.R.S.-FNRS) and by COST Action 16228 “GAMENET” (European Cooperation in
Science and Technology).

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 48–62, 2019.
https://doi.org/10.1007/978-3-030-30806-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_5

On Relevant Equilibria in Reachability Games 49

to finding, if it exists, a winning strategy for the system in this game. For some
situations, this kind of model is too restrictive and a setting with more than two
agents such that each of them has his own not necessarily antagonistic objective
is more realistic. These games are called multiplayer non zero-sum games. In
this setting, the solution concept of winning strategy is not suitable anymore
and different notions of equilibria can be studied.

In this paper, we focus on Nash equilibrium (NE) [14]: given a strategy for
each player, no player has an incentive to deviate unilaterally from his strategy.
We also consider the notion of subgame perfect equilibrium (SPE) well suited
for games played on graphs [15]. We study these two notions of equilibria on
reachability games. In reachability games, we equip each player with a subset of
vertices of the graph game that he wants to reach. We are interested in both the
qualitative and quantitative settings. In the qualitative setting, each player only
aims at reaching his target set, unlike the quantitative setting where each player
wants to reach his target set as soon as possible.

It is well known that both NEs and SPEs exist in both qualitative and quan-
titative reachability games. But, equilibria such that no player reaches his target
set and equilibria such that some players reach it may coexist. This observation
has already been made in [17,18]. In such a situation, one could prefer the second
situation to the first one. In this paper, we study different versions of relevant
equilibria.

Contributions. For quantitative reachability games, we focus on the following
three kinds of relevant equilibria: constrained equilibria, equilibria optimizing
social welfare and Pareto optimal equilibria. For constrained equilibria, we aim
at minimizing the cost of each player i.e., the number of steps it takes to reach
his target set (Problem 1). For equilibria optimizing social welfare, a player does
not only want to minimize his own cost, he is also committed to maximizing the
social welfare (Problem 2). For Pareto optimal equilibria, we want to decide if
there exists an equilibrium such that the tuple of the costs obtained by players
following this equilibrium is Pareto optimal in the set of all the possible costs that
players can obtain in the game (Problem 3). We consider the decision variant of
Problems 1 and 2; and the qualitative adaptations of the three problems.

Our main contributions are the following. (i) We study the complexity of the
three decision problems. Our results gathered with previous works are summa-
rized in Table 1. (ii) In case of a positive answer to any of the three decision
problems, we prove that finite-memory strategies are sufficient. Our results and
others from previous works are given in Table 1. (iii) We identify a subclass of
reachability games in which there always exists an SPE where each player reaches
his target set. (iv) Given a play, we provide a characterization which guarantees
that this play is the outcome of an NE. This characterization is based on the
values in the associated two-player zero-sum games called coalitional games.

50 T. Brihaye et al.

Table 1. Complexity classes and memory results

Complexity
Qual. Reach. Quant. Reach.

NE SPE NE SPE
Prob. 1 NP-c [10] PSPACE-c[4] NP-c PSPACE-c[5]
Prob. 2 NP-c PSPACE-c NP-c PSPACE-c
Prob. 3 NP-h/ΣP

2 PSPACE-c NP-h/ΣP
2 PSPACE-c

Memory
Qual. Reach. Quant. Reach.
NE SPE NE SPE

Prob. 1 Poly.[10] Expo.[4] Poly. Expo.
Prob. 2 Poly. Expo. Poly. Expo.
Prob. 3 Poly. Expo. Poly. Expo.

Related Work. There are many results on NEs and SPEs played on graphs,
we refer the reader to [9] for a survey and an extended bibliography. Here we
focus on the results directly related to our contributions.

Regarding Problem 1, for NEs, it is shown to be NP-complete only in the
qualitative setting [10]; for SPEs it is shown to be PSPACE-complete in both
the qualitative and quantitative settings in [4–6]. Notice that in [18], variants
of Problem 1 for games with Streett, parity or co-Büchi winning conditions are
shown NP-complete and decidable in polynomial time for Büchi.

Regarding Problem 2, in the setting of games played on matrices, deciding
the existence of an NE such that the expected social welfare is at most k is
NP-hard [11]. Moreover, in [1] it is shown that deciding the existence of an NE
which maximizes the social welfare is undecidable in concurrent games in which
a cost profile is associated only with terminal nodes.

Regarding Problem 3, in the setting of zero-sum two-player multidimensional
mean-payoff games, the Pareto-curve (the set of maximal thresholds that a player
can force) is studied in [2] by giving some properties on the geometry of this set.
The authors provide a ΣP

2 algorithm to decide if this set intersects a convex set
defined by linear inequations.

Regarding the memory, in [7] it is shown that there always exists an NE
with memory at most |V | + |Π| in quantitative reachability games, without any
constraint on the cost of the NE. It is shown in [17] that, in multiplayer games
with ω-regular objectives, there exists an SPE with a given payoff if and only
if there exists an SPE with the same payoff but with finite memory. Moreover,
in [4] it is claimed that it is sufficient to consider strategies with an exponential
memory to solve Problem 1 for SPE in qualitative reachability games.

Finally, we can find several kinds of outcome characterizations for Nash equi-
libria and variants, e.g., in multiplayer games equipped with prefix-linear cost
functions and such that the vertices in coalitional games have a value (sum-
marized in [9]), in multiplayer games with prefix-independent Borel objectives
[18], in multiplayer games with classical ω-regular objectives (as reachability) by
checking if there exists a play which satisfies an LTL formula [10], in concurrent
games [12], etc. Such characterizations are less widespread for subgame perfect
equilibria, but one can recover one for quantitative reachability games thanks to
a value-iteration procedure [5].

Structure of the Paper. We decide to only detail results for quantitative
reachability games while results for qualitative reachability games are only sum-

On Relevant Equilibria in Reachability Games 51

marized in Table 1. The proofs for the qualitative reachability setting are not
given because they are in the same spirit as for the quantitative setting. In
Sect. 2, we introduce the needed background and define the different studied
problems. In Sect. 3, we identify families of reachability games for which there
always exists a relevant equilibrium, for different notions of relevant equilibria. In
Sect. 4, we provide the main ideas necessary to obtain our complexity results (see
Table 1). The detailed proofs for the quantitative reachability setting, together
with additional results on qualitative reachability games, are provided in the full
version of the paper available at https://arxiv.org/abs/1907.05481.

2 Preliminaries and Studied Problems

Arena, Game and Strategies. An arena is a tuple A = (Π,V,E, (Vi)i∈Π)
such that: (i) Π is a finite set of players; (ii) V is a finite set of vertices; (iii)
E ⊆ V ×V is a set of edges such that for all v ∈ V there exists v′ ∈ V such that
(v, v′) ∈ E and (iv) (Vi)i∈Π is a partition of V between the players.

A play in A is an infinite sequence of vertices ρ = ρ0ρ1 . . . such that for all
k ∈ N, (ρk, ρk+1) ∈ E. A history is a finite sequence h = h0h1 . . . hk with k ∈ N

defined similarly. The length |h| of h is the number k of its edges. We denote the
set of plays by Plays and the set of histories by Hist. Moreover, the set Histi is
the set of histories such that their last vertex v is a vertex of player i, i.e. v ∈ Vi.

Given a play ρ ∈ Plays and k ∈ N, the prefix ρ0ρ1 . . . ρk of ρ is denoted by
ρ≤k and its suffix ρkρk+1 . . . by ρ≥k. A play ρ is called a lasso if there exists
h� ∈ Hist such that ρ = h�ω. The length of this lasso is the length of h�. Notice
that � is not necessarily a simple cycle.

A game G = (A, (Costi)i∈Π) is an arena equipped with a cost function profile
(Costi)i∈Π such that for all i ∈ Π, Costi : Plays → N∪ {+∞} is a cost function
which assigns a cost to each play ρ for player i. We also say that the play ρ has
cost profile (Costi(ρ))i∈Π . Given two cost profiles c, c′ ∈ (N∪ {+∞})|Π|, we say
that c ≤ c′ if and only if for all i ∈ Π, ci ≤ c′

i.
An initial vertex v0 ∈ V is often fixed, and we call (G, v0) an initialized game.

A play (resp. a history) of (G, v0) is then a play (resp. a history) of G starting in
v0. The set of such plays (resp. histories) is denoted by Plays(v0) (resp. Hist(v0)).
The notation Histi(v0) is used when these histories end in a vertex v ∈ Vi.

Given a game G, a strategy for player i is a function σi : Histi → V . It assigns
to each history hv, with v ∈ Vi, a vertex v′ such that (v, v′) ∈ E. In an initialized
game (G, v0), σi needs only to be defined for histories starting in v0. We denote
by Σi the set of strategies for Player i. A play ρ = ρ0ρ1 . . . is consistent with
σi if for all ρk ∈ Vi, σi(ρ0 . . . ρk) = ρk+1. A strategy σi is positional if it only
depends on the last vertex of the history, i.e., σi(hv) = σi(v) for all hv ∈ Histi.
It is finite-memory if it can be encoded by a finite-state machine.

A strategy profile is a tuple σ = (σi)i∈Π of strategies, one for each player.
Given an initialized game (G, v0) and a strategy profile σ, there exists a unique
play from v0 consistent with each strategy σi. We call this play the outcome of
σ and denote it by 〈σ〉v0 . We say that σ has cost profile (Costi(〈σ〉v0))i∈Π .

https://arxiv.org/abs/1907.05481

52 T. Brihaye et al.

Quantitative Reachability Games. In this article, we are interested in reach-
ability games: each player has a target set of vertices that he wants to reach.

Definition 1. A quantitative reachability game G = (A, (Costi)i∈Π , (Fi)i∈Π)
is a game enhanced with a target set Fi ⊆ V for each player i ∈ Π and for all
i ∈ Π the cost function Costi is defined as follows: for all ρ = ρ0ρ1 . . . ∈ Plays:
Costi(ρ) = k if k ∈ N is the least index such that ρk ∈ Fi and Costi(ρ) = +∞ if
such index does not exist.

In quantitative reachability games, players have to pay a cost equal to the
number of edges until visiting their own target set or +∞ if it is not visited.
Thus each player aims at minimizing his cost.

Solution Concepts. In the multiplayer game setting, the solution concepts
usually studied are equilibria. We recall the concepts of Nash equilibrium and
subgame perfect equilibrium.

Let σ = (σi)i∈Π be a strategy profile in an initialized game (G, v0). When we
highlight the role of player i, we denote σ by (σi, σ−i) where σ−i is the profile
(σj)j∈Π\{i}. A strategy σ′

i
= σi is a deviating strategy of Player i, and it is a
profitable deviation for him if Costi(〈σ〉v0) > Costi(〈σ′

i, σ−i〉v0).
The notion of Nash equilibrium is classical: a strategy profile σ in an initial-

ized game (G, v0) is a Nash equilibrium (NE) if no player has an incentive to
deviate unilaterally from his strategy, i.e. no player has a profitable deviation.

Definition 2 (Nash equilibrium). Let (G, v0) be an initialized quantitative
reachability game. The strategy profile σ is an NE if for each i ∈ Π and each
deviating strategy σ′

i of Player i, we have Costi(〈σ〉v0) ≤ Costi(〈σ′
i, σ−i〉v0).

When considering games played on graphs, a useful refinement of NE is the
concept of subgame perfect equilibrium (SPE). An SPE is a strategy profile that
is an NE in each subgame. Formally, given a game G = (A, (Costi)i∈Π), an
initial vertex v0, and a history hv ∈ Hist(v0), the initialized game (G�h, v) such
that G�h = (A, (Costi�h)i∈Π) where Costi�h(ρ) = Costi(hρ) for all i ∈ Π and
ρ ∈ V ω is called a subgame of (G, v0). Notice that (G, v0) is a subgame of itself.
Moreover if σi is a strategy for player i in (G, v0), then σi�h denotes the strategy
in (G�h, v) such that for all histories h′ ∈ Histi(v), σi�h(h′) = σi(hh′). Similarly,
from a strategy profile σ in (G, v0), we derive the strategy profile σ�h in (G�h, v).

Definition 3 (Subgame perfect equilibrium). Let (G, v0) be an initialized
game. A strategy profile σ is an SPE in (G, v0) if for all hv ∈ Hist(v0), σ�h is
an NE in (G�h, v).

Clearly, any SPE is an NE and it is stated in Theorem 2.1 in [3] that there
always exists an SPE (and thus an NE) in quantitative reachability games.

On Relevant Equilibria in Reachability Games 53

Studied Problems. We conclude this section with the problems studied in
this article. Let us first recall the concepts of social welfare and Pareto opti-
mality. Let (G, v0) be an initialized quantitative reachability game with G =
(A, (Costi)i∈Π , (Fi)i∈Π). Given ρ = ρ0ρ1 . . . ∈ Plays(v0), we denote by Visit(ρ)
the set of players who visit their target set along ρ, i.e., Visit(ρ) = {i ∈ Π |
there exists n ∈ N st. ρn ∈ Fi}.1 The social welfare of ρ, denoted by SW(ρ), is
the pair (|Visit(ρ)|,∑i∈Visit(ρ) Costi(ρ)). Note that it takes into account both the
number of players who visit their target set and their accumulated cost to reach
those sets. Finally, let P = {(Costi(ρ))i∈Π | ρ ∈ Plays(v0)} ⊆ (N ∪ {+∞})|Π|.
A cost profile p ∈ P is Pareto optimal in Plays(v0) if it is minimal in P with
respect to the componentwise ordering ≤ on P 2.

Let us now state the studied decision problems. The first two problems
are classical: they ask whether there exists a solution (NE or SPE) σ satis-
fying certain requirements that impose bounds on either (Costi(〈σ〉v0))i∈Π or
on SW(〈σ〉v0).

Problem 1 (Threshold decision problem). Given an initialized quantitative reach-
ability game (G, v0), given a threshold y ∈ (N∪{+∞})|Π|, decide whether there
exists a solution σ such that (Costi(〈σ〉v0))i∈Π ≤ y.

The most natural requirements are to impose upper bounds on the costs that
the players have to pay and no lower bounds. One might also be interested in
imposing an interval [xi, yi] in which the cost paid by Player i must lie.

In [5], Problem 1 with upper and lower bounds is already solved for SPEs.

Theorem 1 ([5]). For SPEs, Problem 1 with upper (and lower) bounds is
PSPACE-complete.

In the second problem, constraints are imposed on the social welfare, with
the aim to maximize it. We use the lexicographic ordering on N

2 such that
(k, c) � (k′, c′) if and only if (i) k ≥ k′ or (ii) k = k′ and c ≤ c′.

Problem 2 (Social welfare decision problem). Given an initialized quantitative
reachability game (G, v0), given two thresholds k ∈ {0, . . . , |Π|} and c ∈ N,
decide whether there exists a solution σ such that SW(〈σ〉v0) � (k, c).

Notice that with the lexicographic ordering, we want to first maximize the
number of players who visit their target set, and then to minimize the accumu-
lated cost to reach those sets. Let us now state the last studied problem.

Problem 3 (Pareto optimal decision problem). Given an initialized quantitative
reachability game (G, v0) decide whether there exists a solution σ in (G, v0) such
that (Costi(〈σ〉v0))i∈Π is Pareto optimal in Plays(v0).

1 We can easily adapt this definition to histories.
2 For convenience, we prefer to say that p is Pareto optimal in Plays(v0) rather than

in P .

54 T. Brihaye et al.

Remark 1. Problems 1 and 2 impose constraints with non-strict inequalities.
We could also impose strict inequalities or even a mix of strict and non-strict
inequalities. The results of this article can be easily adapted to those variants.

We conclude this section with an illustrative example.

Example 1. Consider the quantitative reachability game (G, v0) of Fig. 1. We
have two players such that the vertices of Player 1 (resp. Player 2) are rounded
(resp. rectangular) vertices. For the moment, the reader should not consider the
value indicated on the right of the vertices’ labeling. Moreover F1 = {v3, v4} and
F2 = {v1, v4}. In this figure, an edge (v, v′) labeled by x should be understood
as a path from v to v′ with length x. Observe that F1 and F2 are both reachable
from the initial vertex v0. Moreover the two Pareto optimal cost profiles are
(3, 3) and (2, 6): take a play with prefix v0v2v4 in the first case, and a play with
prefix v0v2v3v0v1 in the second case.

v0: 3v1: +∞ v2: 1

v3: 0

v4: 0
3 2

Fig. 1. A two-player quantitative reachability game such that F1 = {v3, v4} and F2 =
{v1, v4}

For this example, we claim that there is no NE (and thus no SPE) such
that its cost profile is Pareto optimal (see Problem 3). Assume the contrary and
suppose that there exists an NE σ such that its outcome ρ has cost profile (3, 3),
meaning that ρ begins with v0v2v4. Then Player 1 has a profitable deviation
such that after history v0v2 he goes to v3 instead of v4 in a way to pay a cost
of 2 instead of 3, which is a contradiction. Similarly assume that there exists an
NE σ such that its outcome ρ has cost profile (2, 6), meaning that ρ begins with
v0v2v3v0v1. Then Player 2 has a profitable deviation such that after history v0
he goes to v1 instead of v2, again a contradiction. So there is no NE σ in (G, v0)
such that (Costi(〈σ〉v0))i∈Π is Pareto optimal in Plays(v0).

The previous discussion shows that there is no NE σ such that (0, 0) =
x ≤ (Costi(〈σ〉v0))i∈Π ≤ y = (3, 3) (see Problem 1). This is no longer true
with y = (6, 3). Indeed, one can construct an NE τ whose outcome has prefix
v0v1v0v2v3 and cost profile (6, 3). This also shows that there exists an NE σ (the
same τ as before) that satisfies SW(〈σ〉v0) � (k, c) = (2, 9) (with τ both players
visit their target set and their accumulated cost to reach it equals 9).
�

3 Existence Problems

In this section, we show that for particular families of reachability games and
requirements, there is no need to solve the related decision problems because
they always have a positive answer in this case.

On Relevant Equilibria in Reachability Games 55

We begin with the family constituted by all reachability games with a strongly
connected arena. The next theorem then states that there always exists a solution
that visits all non-empty target sets.

Theorem 2. Let (G, v0) be an initialized quantitative reachability game such
that its arena A is strongly connected. There exists an SPE σ (and thus an NE)
such that its outcome 〈σ〉v0 visits all target sets Fi, i ∈ Π, that are non-empty.

Let us comment this result. For this family of games, the answer to Problem 1
is always positive for particular thresholds. In case of quantitative reachability,
take strict constraints < +∞ if Fi
= ∅ and non-strict constraints ≤ +∞ oth-
erwise. We will see later that the strict constraints < +∞ can be replaced by
the non-strict constraints ≤ |V | · |Π| (see Theorem 7). We will also see that,
in this setting, the answer to Problem 2 is also always positive for thresholds
k = |{i | Fi
= ∅}| and c = |Π|2 · |V | (see Theorem 7).

In the statement of Theorem 2, as the arena is strongly connected, Fi is
non-empty if and only if Fi is reachable from v0. Also notice that the hypothesis
that the arena is strongly connected is necessary. Indeed, it is easy to build an
example with two players (Player 1 and Player 2) such that from v0 it is not
possible to reach both F1 and F2.

We now turn to the second result of this section. The next theorem states that
even with only two players there exists an initialized quantitative reachability
game that has no NE with a cost profile which is Pareto optimal. To prove this
result, we only have to come back to the quantitative reachability game of Fig. 1.
We explained in Example 1 that there is no NE in this game such that its cost
profile is Pareto optimal.

Theorem 3. There exists an initialized quantitative reachability game such that
|Π| = 2 and that has no NE with a cost profile Pareto optimal in Plays(v0).

Notice that in the qualitative setting, in two-player games, there always exists
an NE (resp. SPE) such that the gain profile3 is Pareto optimal in Plays(v0)
however this existence result cannot be extended to three players.

4 Solving Decision Problems

In this section, we provide the complexity results for the different problems
without any assumption on the arena of the game. Even if we provide complexity
lower bounds, the main part of our contribution is to give the upper bounds.
Roughly speaking the decision algorithms work as follows: they guess a path and
check that it is the outcome of an equilibrium satisfying the relevant property
(such as Pareto optimality). In order to verify that a path is an equilibrium
outcome, we rely on the outcome characterization of equilibria, presented in
3 In the qualitative setting, each player obtains a gain that he wants to maximize:

either 1 (if he visits his target set) or 0 (otherwise), all definitions are adapted
accordingly.

56 T. Brihaye et al.

Sect. 4.2. These characterizations rely themselves on the notion of λ-consistent
play, introduced in Sect. 4.1. As the guessed path should be finitely representable,
we show that we can only consider λ-consistent lassoes, in Sect. 4.3. Finally, we
expose the philosophy of the algorithms providing the upper bounds on the
complexity of the three problems in Sect. 4.4.

4.1 λ-Consistent Play

We here define the labeling function, λ : V → N ∪ {+∞} used to obtain the
outcome characterization of equilibria. Given a vertex v ∈ V along a play ρ,
intuitively, the value λ(v) represents the maximal number of steps within which
the player who owns this vertex should reach his target set along ρ starting from
v. A play which satisfies the constraints given by λ is called a λ-consistent play.

Definition 4 (λ-consistent play). Let (G, v0) be a quantitative reachability
game and λ : V → N ∪ {+∞} be a labeling function. Let ρ ∈ Plays be a play,
we say that ρ = ρ0ρ1 . . . is λ-consistent if for all i ∈ Π and all k ∈ N such that
i
∈ Visit(ρ0 . . . ρk) and ρk ∈ Vi: Costi(ρ≥k) ≤ λ(ρk).

The link between λ-consistency and equilibrium is made in Sect. 4.2.

Example 2. Let us come back to Example 1 and assume that the values indicated
on the right of the vertices’ labeling represent the valuation of a labeling function
λ. Let us first consider the play ρ = (v0v2v4)ω with cost profile (3, 3). We have
that Cost2(ρ) = 3 ≤ λ(v0) = 3 but Cost1(ρ≥1) = Cost1(v2v4(v0v2v4)ω) = 2 >
λ(v2) = 1. This means that (v0v2v4)ω is not λ-consistent. Secondly, one can
easily see that the play v0v1(v0v2v3)ω is λ-consistent.

4.2 Characterizations

Outcome Characterization of Nash Equilibria. To define the label-
ing function λ which allows us to obtain this characterization, we need to
study the rational behavior of one player playing against the coalition of
the other players. In order to do so, with a quantitative reachability game
G = (A, (Costi)i∈Π , (Fi)i∈Π), we can associate |Π| two-player zero-sum quanti-
tative games [7]. For each i ∈ Π, we depict by Gi the (quantitative) coalitional
game associated with Player i. In such a game Player i (which becomes Player
Min) wants to reach the target set F = Fi within a minimum number of steps,
and the coalition of all players except Player i (which forms one player called
Player Max , aka −i) aims to avoid it or, if it is not possible, maximize the
number of steps until reaching F .

Given a coalitional game Gi and a vertex v ∈ V , the value of Gi from v,
depicted by Vali(v), allows us to know what is the lowest (resp. greatest) cost
(resp. gain) that Player Min (resp. Player Max) can ensure to obtain from v.
Moreover, as quantitative coalitional games are determined these values always
exist and can be computed in polynomial time [7,8,13].

On Relevant Equilibria in Reachability Games 57

An optimal strategy for Player Min (resp. Player Max) in a coalitional game
Gi is a strategy which ensures that, from all vertices v ∈ V , Player Min (resp.
Player Max) will pay (resp. obtain) at most Vali(v) by following this strategy
whatever the strategy of the other player. For each i ∈ Π, we know that there
always exist optimal strategies for both players in Gi. Moreover, we can always
find optimal strategies which are positional [7].

In our characterization, we show that the outcomes of NEs are exactly the
plays which are Val-consistent, with the labeling function Val defined in this
way: for all v ∈ V , Val(v) = Vali(v) if v ∈ Vi.

Theorem 4 (Characterization of NEs). Let (G, v0) be a quantitative reach-
ability game and let ρ ∈ Plays(v0) be a play, the next assertions are equivalent:

1. there exists an NE σ such that 〈σ〉v0 = ρ;
2. the play ρ is Val-consistent.

Additionally, if ρ = h�ω is a lasso, we can replace the first item by: there exists
an NE σ with memory in O(|h�| + |Π|) and such that 〈σ〉v0 = ρ.

The main idea is that if the second assertion is false, then there exists a player
i who has an incentive to deviate along ρ. Indeed, if there exists k ∈ N such that
Costi(ρ≥k) > Vali(ρk) (ρk ∈ Vi) it means that Player i can ensure a better
cost for him even if the other players play in coalition and in an antagonistic
way. Thus, Player i has a profitable deviation. For the second implication, the
Nash equilibrium σ is defined as follows: all players follow the outcome ρ but
if one player, assume it is Player i, deviates from ρ the other players form a
coalition −i and punish the deviator by playing the optimal strategy of player
−i in the coalitional game Gi. Thus, if ρ = h�ω, a player has to remember: (i)
h� to know both what he has to play and if someone has deviated and (ii) who
is the deviator.

Example 3. Let us go back to Example 2, in this example the used labeling func-
tion λ is in fact the labeling function Val. We proved in Example 2 that the play
(v0v2v4)ω is not Val-consistent and so not the outcome of an NE by Theorem 4.
On the contrary, we have seen that the play v0v1(v0v2v3)ω is Val-consistent and
it means that it is the outcome of an NE (again by Theorem 4). Notice that we
have already proved these two facts in Example 1.

Outcome Characterization of Subgame Perfect Equilibria. In the previ-
ous section, we proved that the set of plays which are Val-consistent is equal to
the set of outcomes of NEs. We now want to have the same kind of characteriza-
tion for SPEs. We may not use the notion of Val-consistent plays because there
exist plays which are Val-consistent but which are not the outcome of an SPE.
But, we can recover the characterization of SPEs thanks to a different labeling
function defined in [5] that we depict by λ∗. Notice that, λ∗ is not defined on the
vertices of the game G but on the vertices of the extended game X associated
with G. Vertices in such a game are the vertices in G equipped with a subset of
players who have already visited their target set. This game is also a reachabil-
ity game thus all concepts and definitions introduced in Sect. 2 hold. Moreover,

58 T. Brihaye et al.

there is a one-to-one correspondence between SPEs in G and its extended game.
This is the reason why we solve the different decision problems on the extended
games (X , x0), where x0 = (v0,Visit(v0)), instead of (G, v0). More details are
given in [5]. However, it is very important to notice that some of our results
depend on |V | (resp. |Π|) that are the number of vertices (resp. players) in G
and not in X .

Theorem 5 ([5] Characterization of SPEs). Let (G, v0) be a quantitative
reachability game and (X , x0) be its extended game and let ρ = ρ0ρ1 . . . ∈
Plays(x0) be a play in the extended game, the next assertions are equivalent:

1. there exists a subgame perfect equilibrium σ such that 〈σ〉x0 = ρ;
2. the play ρ is λ∗-consistent.

4.3 Sufficiency of Lassoes

In this section, we provide technical results which given a λ-consistent play
produce an associated λ-consistent lasso. In the sequel, we show that working
with these lassoes is sufficient for the algorithms.

The associated lassoes are built by eliminating some unnecessary cycles and
then identifying a prefix h� such that � can be repeated infinitely often. An
unnecessary cycle is a cycle inside of which no new player visits his target set.
More formally, let ρ = ρ0ρ1 . . . ρk . . . ρk+� . . . be a play in G, if ρk = ρk+� and
Visit(ρ0 . . . ρk) = Visit(ρ0 . . . ρk+�) then the cycle ρk . . . ρk+� is called an unnec-
essary cycle.

We call: (P1) the procedure which eliminates an unnecessary cycle, i.e.,
let ρ = ρ0ρ1 . . . ρk . . . ρk+� . . . such that ρk . . . ρk+� is an unnecessary cycle, ρ
becomes ρ′ = ρ0 . . . ρkρk+�+1 . . . and (P2) the procedure which turns ρ into a
lasso ρ′ = h�ω by copying ρ long enough for all players to visit their target set
and then to form a cycle after the last player has visited his target set. If no
player visits his target set along ρ, then (P2) only copies ρ long enough to form a
cycle. Notice that, given ρ ∈ Plays, applying (P1) or (P2) may involve a decreas-
ing of the costs but for (P1) and (P2) Visit(ρ) = Visit(ρ′). Additionally, (P2)
Visit(h) = Visit(ρ′). Additionally, applying (P1) until it is no longer possible
and then (P2), leads to a lasso with length at most (|Π| + 1) · |V | and cost less
than or equal to |Π| · |V | for players who have visited their target set.

Additionally, applying (P1) or (P2) on λ-consistent play preserves this prop-
erty. This is stated in Lemma 1 which is in particular true for extended games.

Lemma 1. Let (G, v0) be a quantitative reachability game and ρ ∈ Plays be a
λ-consistent play for a given labeling function λ. If ρ′ is the play obtained by
applying (P1) or (P2) on ρ, then ρ′ is λ-consistent.

These properties on (P1) and (P2) allow us to claim that it is sufficient to
deal with lassoes with polynomial length to solve Problems 1, 2 and 3. Moreover,
it yields some bounds on the needed memory and the costs for each problem.

The next corollary is used to solve Problems 1 and 2.

On Relevant Equilibria in Reachability Games 59

Corollary 1. Let σ be an NE (resp. SPE) in a quantitative reachability game
(G, v0) (resp. (X , x0) its extended game). Let w0 = v0 (resp. w0 = x0). Then
there exists τ an NE (resp. SPE) in (G, v0) (resp. (X , x0)) such that:

– 〈τ〉w0 is a lasso h�ω such that |h�| ≤ (|Π| + 1) · |V |;
– for each i ∈ Visit(〈τ〉w0), Costi(〈τ〉w0) ≤ |Π| · |V |;
– τ has memory in O((|Π| + 1) · |V |) (resp. O(2|Π| · |Π| · |V |(|Π|+2)·(|V |+3)+1)).

Moreover, given y ∈ (N ∪ {+∞})|Π|, k ∈ {0, . . . , |Π|} and c ∈ N:

– If (Costi(〈σ〉w0))i∈Π ≤ y, then (Costi(〈τ〉w0))i∈Π ≤ y;
– If SW(〈σ〉w0) � (k, c), then SW (〈τ〉w0) � (k, c).

The following corollary is used to solve Problem 3.

Corollary 2. Let σ be an NE (resp. SPE) in a quantitative reachability game
(G, v0) (resp. (X , x0) its extended game). Let w0 = v0 (resp. w0 = x0). If we
have that (Costi(〈σ〉w0))i∈Π is Pareto optimal in Plays(w0), then:

– for all i ∈ Visit(〈σ〉w0), Costi(〈σ〉w0) ≤ |V | · |Π|;
– there exists τ an NE (resp. SPE) such that 〈τ〉w0 = h�ω, |h�| ≤ (|Π|+1) · |V |

and (Costi(〈σ〉w0))i∈Π = (Costi(〈τ〉w0))i∈Π ;
– τ has memory in O((|Π| + 1) · |V |) (resp. O(2|Π| · |Π| · |V |(|Π|+2)·(|V |+3)+1).

4.4 Algorithms

In this section, we provide the main ideas behind our algorithms.
We first focus on algorithms to solve Problems 1, 2 and 3 for NEs. Each

algorithm works as follows:

1. it guesses a lasso of polynomial length;
2. it verifies that the cost profile of this lasso satisfies the conditions4 given by

the problem;
3. it verifies that the lasso is the outcome of an NE.

Let us comment the different steps of these algorithms.

– Step 1: For Problems 1 and 2 (resp. Problem 3), it is sufficient to consider
plays which are lassoes with polynomial length thanks to Corollary 1 (resp.
Corollary 2).

– Step 3: This property is verified thanks to Theorem 4. This is done in polyno-
mial time as the lasso has a polynomial length and the values of the coalitional
games are computed in polynomial time.

– Step 2: For Problems 1 and 2, this verification can be obviously done in
polynomial time. For Problem 3, we need to have an oracle allowing us to
know if the cost profile of the lasso is Pareto optimal. As a consequence, we
study Problem 4 which lies in co-NP.

4 Satisfying the conditions is either satisfying the constraints (Problems 1 and 2) or
having a cost profile which is Pareto optimal (Problem 3).

60 T. Brihaye et al.

Problem 4. Given a reachability game (G, v0) (resp. its extended game (X , x0))
and a lasso ρ ∈ Plays(v0) (resp. ρ ∈ Plays(x0)), decide whether (Costi(ρ))i∈Π is
Pareto optimal in Plays(v0) (resp. Plays(x0)).

Proposition 1. Problem 4 lies in co-NP.

Now, we explain our algorithms to solve the three decision problems for SPEs.
As Problem 1 is already solved in PSPACE (see Theorem 1), we here focus only
on Problems 2 and 3. Each algorithm works as follows:

1. it guesses a lasso of polynomial length;
2. it verifies that the cost profile p of this lasso satisfies the conditions given by

the problem;
3. it checks, whether there exists an SPE with cost profile equal to p.

The explanations for the first and the second steps are the same as for the
algorithms for NEs. Finally, we know that the third step can be done in PSPACE
(Theorem 1).

4.5 Results

Thanks to the previous discussions in Sect. 4.4, we obtain the following results.
Notice that we do not provide the proof for the NP-hardness (resp. PSPACE-
hardness) as it is very similar to the one given in [10] (resp. [5]).

Theorem 6. Let (G, v0) be a quantitative reachability game.

– For NEs: Problems 1 and 2 are NP-complete while Problem 3 is NP-hard and
belongs to ΣP

2 .
– For SPEs: Problems 1, 2 and 3 are PSPACE-complete.

Theorem 7. Let (G, v0) be a quantitative reachability game.

– For NEs: for each decision problem, if the answer is positive, then there exists
a strategy profile σ with memory in O((|Π| + 1) · |V |) which satisfies the
conditions.

– For SPEs: for each decision problem, if the answer is positive, then there
exists a strategy profile σ with memory in O(2|Π| · |Π| · |V |(|Π|+2)·(|V |+3)+1)
which satisfies the conditions.

Moreover, for both NEs and SPEs:

– for Problems 1 and 3, σ is such that: if i ∈ Visit(〈σ〉v0), then Costi(〈σ〉v0) ≤
|Π| · |V |;

– for Problem 2, σ is such that:
∑

i∈Visit(〈σ〉v0) Costi(〈σ〉v0) ≤ |Π|2 · |V |.

On Relevant Equilibria in Reachability Games 61

References

1. Bouyer, P., Markey, N., Stan, D.: Mixed Nash equilibria in concurrent terminal-
reward games. In: 34th International Conference on Foundation of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2014, 15–17 December 2014,
New Delhi, India, pp. 351–363 (2014)

2. Brenguier, R., Raskin, J.-F.: Pareto curves of multidimensional mean-payoff games.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 251–267.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 15

3. Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quan-
titative reachability games. Logical Methods Comput. Sci. 9(1) (2012)

4. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J.: Constrained existence prob-
lem for weak subgame perfect equilibria with ω-regular Boolean objectives. In:
Proceedings Ninth International Symposium on Games, Automata, Logics, and
Formal Verification, GandALF 2018, 26–28th September 2018, Saarbrücken, Ger-
many, pp. 16–29 (2018)

5. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J., van den Bogaard, M.: The
complexity of subgame perfect equilibria in quantitative reachability games. CoRR
abs/1905.00784 (2019). http://arxiv.org/abs/1905.00784

6. Brihaye, T., Bruyère, V., Goeminne, A., Raskin, J., van den Bogaard, M.: The com-
plexity of subgame perfect equilibria in quantitative reachability games. CONCUR
2019 (2019)

7. Brihaye, T., De Pril, J., Schewe, S.: Multiplayer cost games with simple Nash
equilibria. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp.
59–73. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0 5

8. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: Pseudopolynomial iterative
algorithm to solve total-payoff games and min-cost reachability games. Acta Inf.
54(1), 85–125 (2017)

9. Bruyère, V.: Computer aided synthesis: a game-theoretic approach. In: Charlier,
É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 3–35. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62809-7 1

10. Condurache, R., Filiot, E., Gentilini, R., Raskin, J.F.: The complexity of ratio-
nal synthesis. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi,
D. (eds.) 43rd International Colloquium on Automata, Languages, and Program-
ming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol.
55, pp. 121:1–121:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2016)

11. Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. CoRR
cs.GT/0205074 (2002). http://arxiv.org/abs/cs.GT/0205074

12. Haddad, A.: Characterising Nash equilibria outcomes in fully informed concurrent
games. http://web1.ulb.ac.be/di/verif/haddad/H16.pdf

13. Khachiyan, L., et al.: On short paths interdiction problems: total and node-wise
limited interdiction. Theory Comput. Syst. 43(2), 204–233 (2008)

14. Nash, J.F.: Equilibrium points in n-person games. In: PNAS, vol. 36, pp. 48–49.
National Academy of Sciences (1950)

15. Osborne, M.: An Introduction to Game Theory. Oxford University Press, Oxford
(2004)

16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

https://doi.org/10.1007/978-3-319-21668-3_15
http://arxiv.org/abs/1905.00784
https://doi.org/10.1007/978-3-642-35722-0_5
https://doi.org/10.1007/978-3-319-62809-7_1
http://arxiv.org/abs/cs.GT/0205074
http://web1.ulb.ac.be/di/verif/haddad/H16.pdf

62 T. Brihaye et al.

17. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
212–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 21

18. Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games. In:
Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78499-9 3

https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/978-3-540-78499-9_3

Partial Solvers for Generalized Parity
Games

Véronique Bruyère1(B), Guillermo A. Pérez2, Jean-François Raskin3,
and Clément Tamines1

1 University of Mons (UMONS), Mons, Belgium
veronique.bruyere@umons.ac.be

2 University of Antwerp (UAntwerp), Antwerp, Belgium
3 Université libre de Bruxelles (ULB), Brussels, Belgium

Abstract. Parity games have been broadly studied in recent years for
their applications to controller synthesis and verification. In practice,
partial solvers for parity games that execute in polynomial time, while
incomplete, can solve most games in publicly available benchmark suites.
In this paper, we combine those partial solvers with the classical algo-
rithm for parity games due to Zielonka. We also extend partial solvers
to generalized parity games that are games with conjunction of parity
objectives. We have implemented those algorithms and evaluated them
on a large set of benchmarks proposed in the last LTL synthesis compe-
tition.

Keywords: Parity games · Generalized parity games · Partial solvers

1 Introduction

Since the early nineties, parity games have been attracting a large attention
in the formal methods and theoretical computer science communities for two
main reasons. First, parity games are used as intermediary steps in the solution
of several relevant problems like, among others, the reactive synthesis problem
from LTL specifications [18] or the emptiness problem for tree automata [9].
Second, their exact complexity is a long standing open problem: while we know
that they are in NP∩ coNP [9] (and even in UP∩ coUP [16]), we do not yet have
a polynomial time algorithm to solve them. Indeed, the best known algorithm
so far has a worst-case complexity which is quasi-polynomial [3].

The classical algorithm for reactive synthesis from LTL specifications is as
follows: from an LTL formula φ whose propositional variables are partitioned

Work partially supported by the PDR project Subgame perfection in graph games
(F.R.S.-FNRS), the ARC project Non-Zero Sum Game Graphs: Applications to Reac-
tive Synthesis and Beyond (Fédération Wallonie-Bruxelles), the EOS project Verifying
Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO), the COST Action
16228 GAMENET (European Cooperation in Science and Technology). The full ver-
sion of this article is available at https://arxiv.org/abs/1907.06913.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 63–78, 2019.
https://doi.org/10.1007/978-3-030-30806-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_6&domain=pdf
https://arxiv.org/abs/1907.06913
https://doi.org/10.1007/978-3-030-30806-3_6

64 V. Bruyère et al.

into inputs (controllable by the environment) and outputs (controlled by the
system), construct a deterministic parity automaton (DPA) Aφ that recognizes
the set of traces that are models of φ. This DPA can then be seen as a two player
graph game where the two players choose in turn the values of the input variables
(Player 1) and of the output variables (Player 0). The winning condition in this
game is the parity acceptance condition of the DPA. The two main difficulties
with this approach are that the DPA may be doubly exponential in the size of φ
and that its parity condition may require exponentially many priorities. So the
underlying parity game may be hard to solve with the existing (not polynomial)
algorithms. These difficulties have triggered two series of results.

First, incomplete algorithms that partially solve parity games in polynomial
time have been investigated [1,13,14]. Although they are incomplete, experimen-
tal results show that they behave well on benchmarks generated with a random
model and on examples that are forcing the worst-case behavior of the classi-
cal recursive algorithm for solving parity games due to Zielonka [19]. The latter
algorithm has a worst-case complexity which is exponential in the number of
priorities of the parity condition. Second, compositional approaches to gener-
ate the automata from LTL specifications have been advocated, when the LTL
formula φ is a conjunction of smaller formulas, i.e., φ = φ1 ∧ · · · ∧ φn. In this
case, the procedure constructs a DPA Ai for each subformula φi. The underlying
game is a product of the automata Ai; the winning condition, the conjunction
(for Player 0) of the parity conditions of each automaton. Those games are thus
generalized parity games, that are known to be co-NP-complete [6].

In this paper, we contribute to these lines of research in several ways. First,
we show how to extend the partial solvers for parity games to generalized parity
games. In the generalized case, we show how antichain-based data structures
can be used to retain efficiency. Second, we show how to combine partial solvers
for parity games and generalized parity games with the classical recursive algo-
rithms [6,19]. In this combination, the recursive algorithm is only executed on
the portion of the game graph that was not solved by the partial solver, and this
is repeated at each recursive call. Third, we provide for the first time extensive
experiments that compare all those algorithms on benchmarks that are generated
from LTL specifications used in the LTL synthesis competition [15]. For parity
games, our experiments show behaviors that differ largely from the behaviors
observed on experiments done on random graphs only. Indeed Zielonka’s algo-
rithm is faster than partial solvers on average which was not observed on random
graphs in [14]. Equally interestingly, we show that there are instances of our
benchmarks of generalized parity games that cannot be solved by the classical
recursive algorithm or by any of the partial solvers alone, but that can be solved
by algorithms that combine them. We also show that when combined with par-
tial solvers, the performances of the classical recursive algorithms are improved
on a large portion of our benchmarks for both the parity and generalized parity
cases.

Partial Solvers for Generalized Parity Games 65

2 Preliminaries

Game Structures. A game structure is a tuple G = (V0, V1, E) where (i) (V,E)
is a finite directed graph, with V = V0∪V1 the set of vertices and E ⊆ V ×V the
set of edges such that1 for each v ∈ V , there exists some (v, v′) ∈ E, (ii) (V0, V1)
forms a partition of V where Vi is the set of vertices controlled by player i. Given
U ⊆ V , if G�U = (V0 ∩ U, V1 ∩ U,E ∩ (U × U)) has no deadlock, then G�U is
called the subgame structure induced by U .

A play in G is an infinite sequence of vertices π = v0v1 . . . ∈ V ω such that
(vj , vj+1) ∈ E for all j ∈ N. Histories in G are finite sequences h = v0 . . . vj ∈ V +

defined similarly. We denote by Plays(G) the set of plays in G and by Plays(v0)
the set of plays starting in a given initial vertex v0. Given a play π = v0v1 . . .,
the set Occ(π) denotes the set of vertices that occur in π, and the set Inf(π)
denotes the set of vertices that occur infinitely often in π.

A strategy σi for player i is a function σi : V ∗Vi → V assigning to each history
hv ∈ V ∗Vi a vertex v′ = σi(hv) such that (v, v′) ∈ E. Given a strategy σi of
player i, a play π = v0v1 . . . is consistent with σi if vj+1 = σi(v0 . . . vj) for all
j ∈ N such that vj ∈ Vi. Consistency is naturally extended to histories.

Objectives. An objective for player i is a set of plays Ω ⊆ Plays(G). A game
(G,Ω) is composed of a game structure G and an objective Ω for player 0. A play
π is winning for player 0 if π ∈ Ω, and losing otherwise. The games that we study
are zero-sum: player 1 has the opposite objective Ω = V ω \ Ω, meaning that a
play π is winning for player 0 if and only if it is losing for player 1. Given a game
(G,Ω) and an initial vertex v0, a strategy σ0 for player 0 is winning from v0 if all
the plays π ∈ Plays(v0) consistent with σ0 belong to Ω. We say that v0 is winning
for player 0 and that player 0 is winning from v0. We denote by Win(G, 0, Ω)
the set of such winning vertices v0. Similarly we denote by Win(G, 1, Ω) the set
of vertices from which player 1 can ensure his objective Ω.

A game (G,Ω) is determined if each vertex of G belongs to either
Win(G, 0, Ω) or Win(G, 1, Ω). Martin’s theorem [17] states that all games with
Borel objectives are determined. The problem of solving a game (G,Ω) means to
decide, given an initial vertex v0, whether player 0 is winning from v0 for Ω (or
dually whether player 1 is winning from v0 for Ω when the game is determined).
The sets Win(G, 0, Ω) and Win(G, 1, Ω) are also called the solutions of the game.

Parity and Generalized Parity Objectives. Let G be a game structure
and d ∈ N be an integer. Let α : V → [d], with [d] = {0, 1, . . . , d}, be a pri-
ority function that associates a priority with each vertex. The parity objective
Ω = EvenParity(α) asks that the maximum priority seen infinitely often along
a play is even, i.e., EvenParity(α) = {π ∈ Plays(G) | maxv∈Inf(π) α(v) is even}.
Games (G,EvenParity(α)) are called parity games. In those games, player 1 has
the opposite objective Ω equal to {π ∈ Plays(G) | maxv∈Inf(π) α(v) is odd}. We
denote Ω by OddParity(α). In the sequel, an i-priority means an even priority

1 This condition guarantees that there is no deadlock.

66 V. Bruyère et al.

if i = 0 and an odd priority if i = 1. For convenience, we also use notation
iParity(α) such that 0Parity(α) = EvenParity(α) and 1Parity(α) = OddParity(α).

The generalized parity objective Ω = ConjEvenParity(α1, . . . , αk) is the con-
junction of k ≥ 1 parity objectives, that is, Ω =

⋂k
�=1 EvenParity(α�), where each

α� : V → [d�] is a priority function. The opposite objective Ω for player 1 is equal
to DisjOddParity =

⋃k
�=1 OddParity(α�). Games (G,ConjEvenParity(α1, . . . , αk))

are called generalized parity games.
Parity games and generalized parity games are determined because their

objectives are ω-regular and thus Borel. Solving parity games is in UP ∩ co-
UP [16] and solving generalized parity games is co-NP-complete [6].

Partial Solvers. We study partial solvers for parity games and generalized
parity games. A partial solver returns two partial sets of winning vertices Z0 ⊆
Win(G, 0, Ω) and Z1 ⊆ Win(G, 1, Ω) such that G�U is a subgame structure with
U = V \ (Z0 ∪ Z1). In the next sections, we present the polynomial time partial
solvers proposed in [13,14] for parity games and show how to extend them to
generalized parity games.

Other ω-Regular Objectives. We recall some other useful ω-regular objec-
tives. Let G be a game structure and U,U1, . . . , Uk ⊆ V be subsets: the reachabil-
ity objective Reach(U) = {π ∈ Plays(G) | Occ(π)∩U 	= ∅} asks to visit U at least
once; the safety objective Safe(U) = {π ∈ Plays(G) | Occ(π) ∩ U = ∅} asks to
avoid visiting U ; the Büchi objective Büchi(U) = {π ∈ Plays(G) | Inf(π)∩U 	= ∅}
asks to visit infinitely often a vertex of U ; the co-Büchi objective CoBüchi(U) =
{π ∈ Plays(G) | Inf(π) ∩ U = ∅} asks to avoid visiting infinitely often U ; the
generalized Büchi objective GenBüchi(U1, . . . , Uk) is equal to the intersection
⋂k

�=1 Büchi(U�). The next theorem summarizes the time complexities for solving
those games as implemented in our prototype tool.2

Theorem 1. For solving games (G,Ω), we have the following time complexities.

– Reachability, safety objectives: O(|E|) [12].
– Büchi, co-Büchi, Büchi ∩ safety objectives: O(|V | · |E|) [12].
– Generalized Büchi, generalized Büchi ∩ safety objectives: O(k · |V | · |E|).3

Attractors. Let G be a game structure. The controllable predecessors for
player i of a set U ⊆ V , denoted by Cprei(G,U), is the set of vertices from
which player i can ensure to visit U in one step. Formally, Cprei(G,U) is equal
to

{v ∈ Vi | ∃(v, v′) ∈ E, v′ ∈ U} ∪ {v ∈ V1−i | ∀(v, v′) ∈ E, v′ ∈ U}. (1)

The attractor Attri(G,U) for player i is the set of vertices from which he can
ensure to visit U in any number of steps (including zero steps). It is constructed

2 A better algorithm in O(|V |2) for Büchi objectives is proposed in [5], and in O(k·|V |2)
for generalized Büchi objectives in [4].

3 This result is obtained with a classical reduction to games with Büchi objectives [2].

Partial Solvers for Generalized Parity Games 67

as follows: Attri(G,U) =
⋃

j≥0 Xj such that X0 = U , and for all j ∈ N, Xj+1 =
Xj ∪ Cprei(G,Xj). It is thus the winning set Win(G, i,Reach(U)). The positive
attractor PAttri(G,U) is the set of vertices from which player i can ensure to
visit U in any positive number of steps, that is, PAttri(G,U) =

⋃
j≥0 Xj with:

X0 = Cprei(G,U), Xj+1 = Xj ∪ Cprei(G,Xj ∪ U) for all j ∈ N. (2)

Given U ⊆ V , we say that U is an i-trap if for all v ∈ U∩Vi and all (v, v′) ∈ E,
we have v′ ∈ U (player i cannot leave U), and for all v ∈ U ∩ V1−i, there exists
(v, v′) ∈ E such that v′ ∈ U (player 1−i can ensure to stay in U). Therefore G�U
is a subgame structure. When V \ U is an i-trap, we also use the notation G \ U
(instead of G�V \U) for the subgame structure induced by V \U . It is well-known
that the set V \Attri(G,U) is an i-trap [12].

3 Zielonka’s Algorithm with Partial Solvers

The classical algorithm used to solve parity games is the algorithm proposed by
Zielonka in [19]. Despite its relatively bad theoretical O(|V |d) time complexity, it
is known to outperform other algorithms in practice [7,11]. This algorithm solves
parity games (G,EvenParity(α)) by working in a divide-and-conquer manner,
combining solutions of subgames to obtain the solution of the whole game. It
returns two sets {W0,W1} such that Wi = Win(G, i, iParity(α)) is the winning
set for player i. See Algorithm 1 in which no call to a partial solver is performed
(therefore line 4 is to be replaced by {Z0, Z1} = {∅, ∅}).

Let us explain how Zielonka’s algorithm can be combined with a partial solver
for parity games (see Algorithm 1). When V is not empty, we first execute the
partial solver. If it solves the game completely, we are done. Otherwise, let G be
the subgame of G that was not solved. We then execute the Zielonka instructions
on G and return the union of the partial solutions obtained by the partial solver
with the solutions obtained for G. Proposition 2 below guarantees the soundness
of this approach under the hypothesis that if some player wants to escape from
G, then he necessarily goes to the partial solution of the other player.

Proposition 2. Suppose that the partial solver used in Algorithm1 computes
partial solutions Z0, Z1 such that for all (v, v′) ∈ E and i ∈ {0, 1}, if v ∈ V ∩ Vi

and v′ 	∈ V , then v′ ∈ Z1−i. Then Algorithm Ziel&PSolver correctly computes
the sets Win(G, i, iParity(α)), for i ∈ {0, 1}.

An extension of Zielonka’s algorithm to generalized parity games4 is intro-
duced in [6]. This algorithm, that we call GenZielonka, has O(|E|·|V |2D)

(
D

d1,...,dk

)

time complexity where D = Σk
�=1d�. While more complex, it has the same behav-

ior with respect to the recursive call: an attractor X is computed as part of the
solution of one player and a recursive call is executed on the subgame G \ X.
Therefore, this algorithm can be combined with a partial solver for generalized
parity games, as long as the latter satisfies the assumptions of Proposition 2.
4 This algorithm is referred to as “the classical algorithm” in [6].

68 V. Bruyère et al.

Algorithm 1. Ziel&PSolver(G, α)

1 if V = ∅ then return {W0, W1} = {∅, ∅}
2 else
3 {Z0, Z1} = PSolver(G, α)
4 G = G \ (Z0 ∪ Z1); V = V \ (Z0 ∪ Z1)
5 if V = ∅ then return {Z0, Z1}
6 else
7 p = max{α(v) | v ∈ V }; i = p mod 2
8 U = {v ∈ V | α(v) = p}; X = Attri(G, U)
9 {W ′

i , W
′
1−i} = Ziel&PSolver(G \ X, α)

10 if W ′
1−i = ∅ then

11 Wi = Zi ∪ W ′
i ∪ X; W1−i = Z1−i

12 else
13 X = Attr1−i(G, W ′

1−i)
14 {W ′′

i , W ′′
1−i} = Ziel&PSolver(G \ X, α)

15 Wi = Zi ∪ W ′′
i ; W1−i = Z1−i ∪ W ′′

1−i ∪ X

16 return {Wi, W1−i}

In the next sections, we present three partial solvers for parity games and
their extension to generalized parity games. They all satisfy the assumptions of
Proposition 2 since the partial solutions that they compute are composed of one
or several attractors.

4 Algorithms BüchiSolver and GenBüchiSolver

In this section, we present simple partial solvers for parity games and generalized
parity games. More elaborate and powerful partial solvers are presented in the
next two sections. These first partial solvers are based on Propositions 3 and 4
that are direct consequences of the definition of parity games and generalized
parity games. The first proposition states that for parity games, if player i can
ensure to visit infinitely often an i-priority without visiting infinitely often a
greater (1 − i)-priority, then he is winning for iParity(α).

Proposition 3. Given a parity game (G,EvenParity(α)) and an i-priority p ∈
[d], let U = {v ∈ V | α(v) = p} and U ′ = {v ∈ V | α(v) is a (1 − i)-
priority and α(v) > p}. If v0 ∈ Win(G, i,Büchi(U) ∩ CoBüchi(U ′)), then v0 ∈
Win(G, i, iParity(α)).

The second proposition states that for generalized parity games, (i) if player 0
can ensure to visit infinitely often a 0-priority p� without visiting infinitely often
a 1-priority greater than p� on all dimensions 	, then he is winning in the gen-
eralized parity game, and (ii) if player 1 can ensure to visit infinitely often a
1-priority p� without visiting infinitely often a 0-priority greater than p� on some
dimension 	, then he is also winning.

Proposition 4. Let (G,ConjEvenParity(α1, . . . , αk)) be a generalized parity
game.

Partial Solvers for Generalized Parity Games 69

– Let p = (p1, . . . , pk), with p� ∈ [d�], be a vector of 0-priorities. For all 	, let
U� = {v ∈ V | α�(v) = p�}. Let U ′ = {v ∈ V | ∃	, α�(v) is a 1-priority and
α�(v) > p�}. Then for all v0 ∈ V ,

v0 ∈ Win(G, 0,GenBüchi(U1, . . . , Uk) ∩ CoBüchi(U ′))
=⇒ v0 ∈ Win(G, 0,ConjEvenParity(α1, . . . , αk)).

– Let 	 ∈ {1, . . . , k} and p� ∈ [d�] be a 1-priority. Let U = {v ∈ V | α�(v) = p�}
and U ′ = {v ∈ V | α�(v) is a 0-priority and α�(v) > p�}. Then for all v0 ∈ V ,

v0 ∈ Win(G, 1,Büchi(U) ∩ CoBüchi(U ′))
=⇒ v0 ∈ Win(G, 1,DisjOddParity(α1, . . . , αk)).

Partial Solver for Parity Games. A partial solver for parity games is easily
derived from Proposition 3. The polynomial time algorithm BüchiSolver (see
Algorithm 2) computes winning vertices for each player by applying this propo-
sition as follows. Let us denote by Wp the computed winning set for priority p
(line 5) and let us suppose for simplicity that the loop in line 1 treats the prior-
ities from the highest one d to the lowest one 0. This algorithm computes Wd,
Wd−1, . . ., until finding Wp 	= ∅. At this stage, it was able to find some winning
vertices. It then repeats the process on G \ Wp to find other winning vertices.
At the end of the execution, it returns the computed partial solutions {Z0, Z1}.

Algorithm 2. BüchiSolver(G,α)
1 for each p ∈ [d] do
2 i = p mod 2
3 U = {v ∈ V | α(v) = p}
4 U ′ = {v ∈ V | α(v) is a (1 − i)-priority > p}
5 W = Win(G, i,Büchi(U) ∩ CoBüchi(U ′))
6 if W �= ∅ then
7 {Zi, Z1−i} = BüchiSolver(G \ W, α)
8 return {Zi ∪ W, Z1−i}
9 return {∅, ∅}

Notice that we could replace line 5 by W ′ = Win(G, i,Büchi(U) ∩ Safe(U ′))
and W = Attri(G,W ′) since Attri(G,W ′) ⊆ Win(G, i,Büchi(U) ∩ CoBüchi(U ′))
(as the parity objective is closed under attractor; and computing the attractor
is necessary to get a subgame for the recursive call). This variant is investigated
in [13,14] under the name of Algorithm psolB.

Partial Solver for Generalized Parity Games. Similarly, a partial solver
for generalized parity games can be derived from Proposition 4. This algorithm
is called GenBüchiSolver (see Algorithm 3). Instead of considering all p ∈ [d] as
done in line 1 of Algorithm2, we here have a loop on all elements, stored in

70 V. Bruyère et al.

a list L (see line 1), that are either a 1-priority p for some given dimension 	
(case of player 1), or a vector (p1, . . . , pk) with 0-priorities (case of player 0). As
in Algorithm BüchiSolver, objective CoBüchi(U ′) can be replaced by Safe(U ′) in
lines 5 and 12 (with the addition of an attractor computation). This modification
yields an algorithm in O((Πk

�=1
d�

2) · k · |V |2 · |E|) time by Theorem 1.

Algorithm 3. GenBüchiSolver(G,α1, . . . , αk, L)
1 for each element ∈ L do
2 if element = (p, �) then
3 U = {v ∈ V | α�(v) = p}
4 U ′ = {v ∈ V | α�(v) is a 0-priority and α�(v) > p}
5 W = Win(G, 1,Büchi(U) ∩ CoBüchi(U ′))
6 if W �= ∅ then
7 {Z0, Z1} = GenBüchiSolver(G \ W, α1, . . . , αk, L)
8 return {Z0, Z1 ∪ W}
9 else {We know that element = (p1, . . . , pk)}

10 for each � do U� = {v ∈ V | α�(v) = p�}
11 U ′ = {v ∈ V | ∃�, α�(v) is a 1-priority and α�(v) > p�}
12 W = Win(G, 0,GenBüchi(U1, . . . , Uk) ∩ CoBüchi(U ′))
13 if W �= ∅ then
14 {Z0, Z1} = GenBüchiSolver(G \ W, α1, . . . , αk, L)
15 return {Z0 ∪ W, Z1}
16 return {∅, ∅}

U8 B8

B8

U6

B6

B6

U4

B4

Fig. 1. Layered struc-
ture of attractors with
U8 ⊆ U6 ⊆ U4 = U
and B8 ⊆ B6 ⊆ B4.

5 Algorithms GoodEpSolver and GenGoodEpSolver

In this section, we present a second polynomial time partial solver for parity
games as proposed in [14]. We then explain how to extend it for partially solv-
ing generalized parity games. We finally explain how the latter solver can be
transformed into a more efficient (in practice) antichain-based algorithm.

Partial Solver for Parity Games. We consider the extended game structure
G × M with M = [d] such that m ∈ M records the maximum visited priority.
More precisely, the set of vertices of G×M is equal to V ×M (where Vi ×M are
the vertices controlled by player i), and the set EM of its edges is composed of
all pairs ((v,m), (v′,m′)) such that (v, v′) ∈ E and m′ = max{m,α(v)}. Clearly,
with this construction, in G, player i can ensure to visit v from v0 such that the
maximum visited priority (v excluded) is an i-priority if and only if in G × M ,
he can ensure to visit (v,m) from (v, α(v0)) for some i-priority m.

Given a player i, we then compute the following fixpoint F (i) =
⋂

j≥0 Fj .
Initially F0 = V and for j ≥ 1, Fj is computed from Fj−1 as follows:

Tj = {(v,m) ∈ V × M | v ∈ Fj−1 and m is an i-priority} (3)
Aj = PAttri(G × M,Tj) (4)
Fj = {v ∈ V | (v, α(v)) ∈ Aj)} ∩ Fj−1. (5)

Partial Solvers for Generalized Parity Games 71

Algorithm 4. GoodEpSolver(G,α)
1 for each i ∈ {0, 1} do
2 W = GoodEpi(G, α)
3 if W �= ∅ then
4 X = Attri(G, W)
5 {Zi, Z1−i} = GoodEpSolver(G\X, α)
6 return {Zi ∪ X, Z1−i}
7 return ∅, ∅

Algorithm 5. LaySolver(G,α)
1 for each P≥q with q ∈ [d] do
2 i = parity of the priorities in P≥q

3 W = LayEpi(G, α, P≥q)
4 if W �= ∅ then
5 X = Attri(G, W)
6 {Zi, Z1−i} = LaySolver(G\X, α)
7 return {Zi ∪ X, Z1−i}
8 return ∅, ∅

Intuitively, if v0 ∈ Fj , then player i has a strategy to ensure to visit some vertex
v ∈ Fj−1 such that the maximum visited priority along the consistent history
hv from v0 to v (priority of v excluded) is some i-priority. We say that h is a
good episode. Notice that h is non empty since each Aj is a positive attractor.

We denote the fixpoint F (i) by GoodEpi(G,α). From a vertex v0 in this
fixpoint, player i can ensure a succession of good episodes in which the maximum
visited priority is an i-priority. Thus he is winning from v0 for iParity(α) as
formalized in the next proposition (notice that if v0 belongs to the attractor for
player i of GoodEpi(G,α), then v0 still belongs to Win(G, i, iParity(α))). From
Proposition 5, we derive a polynomial time algorithm called GoodEpSolver (see
Algorithm 4). This algorithm is called psolC in [14].

Proposition 5 ([14]). Let (G,EvenParity(α)) be a parity game. For all v0 ∈ V ,
if v0 ∈ Attri(G,F (i)), then v0 ∈ Win(G, i, iParity(α)).

Partial Solver for Generalized Parity Games. The same approach can be
applied to generalized parity games with some adaptations that depend on the
player. For player 1, instead of applying Proposition 3, we now apply the Good-
EpSolver approach by computing W = GoodEp1(G,α�) for each dimension 	.

For player 0, we have to treat vectors of 0-priorities. We thus consider
the extended game structure G × M1 × . . . × Mk such that for all 	, M� is
equal to [d�], and where m� ∈ M� records the maximum visited priority in
dimension 	 according to function α�. Hence, the edges of this game struc-
ture have the form ((v,m1, . . . ,mk), (v′,m′

1, . . . ,m
′
k)) such that (v, v′) ∈ E and

m′
� = max{m�, α�(v)} for all 	. A good episode is now a history h such that for

all 	, the maximum priority visited along h in dimension 	 is a 0-priority. And the
related set GoodEp0(G,α1, . . . , α�) equal to

⋂
j≥0 Fj is computed with Eqs. (3–5)

modified as expected. The resulting algorithm, called GenGoodEpSolver, has a
time complexity in O((Πk

�=1d�) · |V |2 · |E|) by Theorem 1.

Partial Solver with Antichains. Algorithm GenGoodEpSolver has exponen-
tial time complexity due to the use of the game structure G×M1× . . .×Mk, and
in particular to the computation of GoodEp0(G,α1, . . . , αk). We here show that
the vertices of this extended game can be partially ordered in a way to obtain
an antichain-based algorithm for GoodEp0(G,α1, . . . , αk). The antichains allow
compact representation and efficient manipulation of partially ordered sets [8].

72 V. Bruyère et al.

Let us first recall the basic notions about antichains. Consider a partially
ordered set (S,�) where S is a finite set and �⊆ S × S is a partial order on S.
Given s, s′ ∈ S, we write s � s′ their greatest lower bound if it exists. A lower
semilattice is a partially ordered set such that this greater lower bound always
exists for all s, s′ ∈ S. Given two subsets R,R′ ⊆ S, we denote by R � R′ the
set {s � s′ | s ∈ R, s′ ∈ R′}. An antichain A ⊆ S is a set composed of pairwise
incomparable elements with respect to �. Given a subset R ⊆ S, we denote �R�
the set of its maximal elements (which is thus an antichain). We say that R
is closed if whenever s ∈ R and s′ � s, then s′ ∈ R. If A is an antichain, we
denote by ↓A the closed set that it represents, that is, A = �↓A�. Hence when
R is closed, we have R = ↓�R�. The benefit of antichains is that they provide a
compact representation of closed sets. Moreover some operations on those closed
sets can be done at the level of their antichains:

Proposition 6 ([8]). Let (S,�) be a lower semilattice, and R,R′ ⊆ S be two
closed sets represented by their antichains A = �R�, A′ = �R′�. Then
– for all s ∈ S, s ∈ R if and only if there exists s′ ∈ A such that s � s′,
– R ∪ R′, R ∩ R′ are closed, and �R ∪ R′� = �A ∪ A′�, �R ∩ R′� = �A � A′�.

For simplicity, we focus on the extended structure G × M associated to a
parity game and begin to explain an antichain-based algorithm for the computa-
tion of the set GoodEp0(G,α) (this algorithm is inspired from [10]). We explain
later what are the required adaptations to compute GoodEp0(G,α1, . . . , αk) in
generalized parity games. We equip V × M with the following partial order:

Definition 7. We define the strict partial order ≺ on V ×M such that (v′,m′) ≺
(v,m) if and only if v = v′ and (i) either m,m′ are even and m′ > m, (ii)
or m,m′ are odd and m′ < m, (iii) or m is odd and m′ is even. We define
(v′,m′) � (v,m) if either (v′,m′) = (v,m) or (v′,m′) ≺ (v,m).

For instance, if [d] = [4], then (v, 4) ≺ (v, 2) ≺ (v, 0) ≺ (v, 1) ≺ (v, 3). With
this definition, two elements (v,m), (v′,m′) are incomparable as soon as v 	= v′.
It follows that in Proposition 6, if R ⊆ {v}×M and R′ ⊆ {v′}×M with v 	= v′,
then the union A ∪ A′ of their antichains is already an antichain.

The computation of GoodEp0(G,α) is based on Eqs. (3–5). Equation (4)
involves the computation of positive attractors over G × M thanks to Eqs. (1–
2). Let us show that GoodEp0(G,α) is a closed set and that so are all the
intermediate sets used to compute it. We already know from Proposition 6
that the family of closed sets is stable under union and intersection. So we
now focus on the operation Cpre0(G × M,U). We introduce the following func-
tions up and down. Given (v,m) ∈ V × M , let up(m,α(v)) = max{m,α(v)}.
Recall that such an update from m to m′ = up(m,α(v)) is used in the edges
((v,m), (v′,m′)) of G × M . Function down is the inverse reasoning of function
up: given (v′,m′) ∈ V × M and (v, v′) ∈ E, the value down(m′, α(v)) yields the
maximal value m such that (v′, up(m,α(v))) � (v′,m′).

Partial Solvers for Generalized Parity Games 73

Definition 8. Given (v′,m′) ∈ V × M and p = α(v), we define m =
down(m′, p) as follows: (i) Case p even: if p < m′ then m = m′, else
m = max{p − 1, 0}; (ii) Case p odd: if p ≤ m′ then m = m′, else m = p + 1
except if p = d in which case down(m′, p) is not defined.

The next proposition states that if a set U ⊆ V × M is closed, then the set
Cpre0(G × M,U) is also closed. It also indicates how to design an antichain-based
algorithm for computing Cpre0(G × M,U).

Proposition 9. If U ⊆ V × M is a closed set, then Cpre0(G × M,U) is closed.
Let A = �U� be the antichain representing U . Then �Cpre0(G × M,U)� = �B0 ∪
B1� where B0, B1 are the following antichains:

B0 =
⋃

v∈V0

⌈
{(v, down(m′, α(v))) | (v, v′) ∈ E, (v′,m′) ∈ A}

⌉
,

B1 =
⋃

v∈V1

⌈ �
(v,v′)∈E

⌈{(v, down(m′, α(v))) | (v′,m′) ∈ A}⌉
⌉
.

Let us come back to the computation of GoodEp0(G,α), which depends on
Eqs. (3-5) and Eqs. (1–2). As each Tj of Equation (3) is a closed set represented
by the antichain �Tj� = {(v, 0) | v ∈ Fj}, by Propositions 6 and 9, we get an
antichain-based algorithm for computing GoodEp0(G,α) as announced.

This antichain approach can be extended to generalized parity games and
their extended game G × M1 × . . . × Mk. The approach is similar and works
dimension by dimension as we did before for parity games. First, we define a
partial order on V × M1 × . . . × Mk such that the partial order of Definition 7 is
used on each dimension. More precisely, (v′,m′

1, . . . ,m
′
k) ≺ (v,m1, . . . ,mk) if and

only if v = v′ and for all 	, both m� and m′
� respect Definition 7. Second, functions

up� and down�, with 	 ∈ {1, . . . , k}, are defined exactly as previous functions up
and down (see Definition 8), for each dimension 	 and with respect to priority
function α�. Third, we adapt (as expected) Proposition 9 for the computation of
Cpre0(G × M1 × . . . × Mk, U) for a closed set U ⊆ V ×M1×. . .×Mk. Finally, we
obtain an antichain-based algorithm for GoodEp0(G,α1, . . . , αk) as each set Tj

in (3) is a closed set represented by the antichain �Tj� = {(v, 0, . . . , 0) | v ∈ Fj}.

6 Algorithms LaySolver and GenLaySolver

In [13], the authors study another polynomial time partial solver for parity
games, called psolQ, that has similarities with the GoodEpSolver approach of
Sect. 5. It also generalizes the BüchiSolver approach of Sect. 4. It is a more com-
plex partial solver that we present on an example. We then explain how to modify
it for generalized parity games.

Partial Solver for Parity Games. The new partial solver works on the initial
game structure G, focuses on a subset P≥q of i-priorities and computes a set
similar to GoodEpi(G,α) such that the positive attractor PAttri(G × M,Tj) of
Eq. (4) is replaced by a layered attractor LayAttri(G,α, P≥q, U) (one layer per
priority p ∈ P≥q).

74 V. Bruyère et al.

Let us explain on an example. First, we denote by PSafeAttri(G,U,U ′) the
positive safe attractor composed of vertices from which player i can ensure to
visit U in any positive number of steps while not visiting U ′. Now, take the
example of a parity game with d = 9 and fix a 0-priority q = 4. Let P≥q

be the set of all 0-priorities p ≥ q, that is, P≥q = {4, 6, 8}. Given some set
U ⊆ {v ∈ V | α(v) ∈ P≥q}, we consider U8 (resp. U6, U4) being the set of
vertices of U with priority 8 (resp. priorities in {6, 8}, in {4, 6, 8}). Notice that
U8 ⊆ U6 ⊆ U4 = U . We also consider U ′

8 (resp. U ′
6, U ′

4) the set of vertices with
priority 9 (resp. priorities in {7, 9}, in {5, 7, 9}).

We compute the following sequence of positive safe attractors (see Fig. 1):
Initially B10 = ∅ and for all p ∈ P≥q, Bp is computed from Bp+2 as follows:

Bp = Bp+2 ∪ PSafeAttr0(G,Up ∪ Bp+2, U
′
p \ Bp+2). (6)

The last computed set B4 is the layered attractor LayAttr0(G,α, P≥q, U). Notice
that B8 ⊆ B6 ⊆ B4. Let us give some intuition. From a vertex in B4 \B6 (lowest
layer 4), player 0 can ensure to visit U4 ∪ B6 without visiting U ′

4 \ B6. In case
of a visit to U4, this is a good episode for himself (in the sense of Sect. 5) since
the maximum visited priority is a 0-priority ≥ 4. In case of a visit to some
v ∈ B6 \B8, player 0 can now ensure to visit U6 ∪B8 without visiting U ′

6 \B8. In
case of a visit to U6, this is again a good episode for him, otherwise it is a visit
to B8 in the highest layer from which player 0 can ensure to visit U8 without
visiting U ′

8 (since B10 is empty). Thus from all vertices of B4, player 0 can ensure
a good episode for himself.

The new partial solver, called LaySolver (see Algorithm 5), is the same
as Algorithm GoodEpSolver of Sect. 5 except that (i) in Eq. (4), the layered
attractor LayAttri(G,α, P≥q, U) in the game G replaces PAttri(G × M,T) in the
extended game G×M , and (ii) the subset P≥q = {q, q+2, q+4, . . .} of i-priorities
replaces the set of all i-priorities.

Partial Solver for Generalized Parity Games. We explain how to adapt
the LaySolver approach to generalized parity games, only for player 0. Indeed for
player 1 we can apply the previous LaySolver approach on each α� separately.

For player 0, take the example of a generalized parity game d� = 9 for all 	.
We fix q = (4, . . . , 4) and P≥q = {(4, . . . , 4), (6, . . . , 6), (8, . . . , 8)}. Take a vector
p ∈ P≥q, (say with p� = 6,∀) and a subset U ⊆ V . In a first step, let us
focus on how player 0 can ensure to visit U such that along the history, for
all 	, a 0-priority ≥ p� is visited and no 1-priority > p� is visited (in a way to
extend Eq. (6) temporarily without set Bp+2). Such a generalized reachability
can be reduced to reachability by working with an extended game Gp such
that in vertex (v,N), the memory N ⊆ {1, . . . , k} records the dimensions 	
for which a vertex with 0-priority ≥ p� is already visited. We then work with
the positive safe attractor PSafeAttr0(Gp, Tp, T

′
p) such that Tp = {(v,N) | v ∈

U,N = {1, . . . , k}} and T ′
p = {(v,N) | ∃	, α�(v) is a 1-priority > p�}. In a

second step, let us show how to manage the set Bp+2 in Eq. (6). For parity
games we explained how player 0 has to adapt his attractor strategy when he
shifts from layer p to some higher layer p′ > p due to the visit to some v ∈ Bp+2.

Partial Solvers for Generalized Parity Games 75

Here when player 0 visits some vertex (v,N) in layer p for which he has to
shift to layer p′, he stops applying his current strategy, and begins applying
his strategy for layer p′ from the vertex (v,Np′(v)) belonging to layer p′ with
initial memory Np′(v) = {	 | α�(v) is a 0-priority ≥ p�}. All these modifications
lead to the layered attractor LayAttr0(G,α1, . . . , αk, P≥q, Fj) used in place of
LayAttr0(G,α, P≥q, Fj). In this way, we derive an algorithm called GenLaySolver
with O((maxk

�=1
d�

2)2 · |V |2 · |E| · 2k) time complexity.

7 Empirical Evaluation

For parity games, the polynomial time partial solvers BüchiSolver5, GoodEp-
Solver, and LaySolver are theoretically compared in [13,14]. It is proved that
the partial solutions computed by Algorithm BüchiSolver are included in those
computed by Algorithm LaySolver themselves included in those computed by
Algorithm GoodEpSolver. Examples of parity games are also given that distin-
guish the three partial solvers (strict inclusion of partial solutions), as well as
an example that is not completely solved by the most powerful of these partial
solvers. This behavior also holds for the partial solvers proposed here for general-
ized parity games. Moreover, their time complexity is exponential in the number
k of priority functions while the classical algorithm for generalized parity games
is exponential in both k and all d� [6].

For both parity games and generalized parity games, we implemented in
Python 2.7 the three partial solvers (with the antichain approach for Algo-
rithm GenGoodEpSolver), Algorithm Zielonka (resp. GenZielonka) and its com-
bination Ziel&PSolver (resp. GenZiel&PSolver) with each partial solver, and we
executed all these algorithms on a large set of benchmarks. Our benchmarks were
generated from TLSF specifications used for the Reactive Synthesis Competition
(SYNTCOMP [15]) using the compositional translation explained in the intro-
duction.6 The source code for our prototype tool along with all the information
about our benchmarks is made publicly available at https://github.com/Skar0/
generalizedparity. Our experiments have been carried out on a server with Mac
OS X 10.13.4 (build 17E199). As hardware, the server had as CPU one 6-Core
Intel Xeon; as processor speed, 3.33 GHz; as L2 Cache (per Core), 256 KB; as
L3 Cache, 12 MB; as memory, 32 GB; and as processor interconnect speed, 6.4
GT/s.

Experiments. We considered 240 benchmarks for parity games. Those games
have a mean size |V | around 46K with a maximal size of 3157K, and a mean
number d of priorities of 4.1 with a maximal number d = 15. The statistics about
the behaviors of the different algorithms are summarized in Table 1 and divided
into two parts: the first part concerns all the 240 benchmarks and the second part
the 20 most difficult benchmarks for Zielonka’s algorithm. Column 1 indicates

5 The variant with safety objectives.
6 The tool we implemented to realize this translation can be fetched from https://

github.com/gaperez64/tlsf2gpg.

https://github.com/Skar0/generalizedparity
https://github.com/Skar0/generalizedparity
https://github.com/gaperez64/tlsf2gpg
https://github.com/gaperez64/tlsf2gpg

76 V. Bruyère et al.

the name of the solver, Columns 2 and 6 count the number of benchmarks
completely solved (for the partial solvers, the second number is the number of
incomplete solutions), Columns 3 and 7 count the number of timeouts (fixed
at 60000 ms), and Columns 4 and 8 count how many times the solver was the
fastest (excluding examples with timeout). For the 233 (resp. 13) benchmarks
without timeout for Zielonka’s algorithm and all its combinations with a partial
solver, Column 5 (resp. 9) indicates the mean execution time in milliseconds.

We considered 152 benchmarks for generalized parity games. Those games
have a mean size |V | around 207K with a maximal size of 7009K. The mean
number of priority functions is equal to 4.53 with a maximum number of 17.
The statistics about the behaviors of the different algorithms are summarized
in Table 2. The columns have the same meaning as before and the last column
concerns the 87 benchmarks without timeout for all Algorithms GenZielonka
and GenZiel&PSolver.

Table 1. Statistics on the one dimensional benchmarks.

Solver Solved T.O. Fastest Mean Solved T.O. Fastest Mean

Zielonka 240 (100%) 0 150 (63%) 272 ms 20 (100%) 0 11 (55%) 451 ms

Ziel&BüchiSolver 240 (100%) 0 89 (37%) 480 ms 20 (100%) 0 8 (40%) 7746 ms

Ziel&GoodEpSolver 233 (97%) 7 0 (0%) 1272 ms 13 (65%) 7 0 (0%) 20025 ms

Ziel&LaySolver 238 (99%) 2 1 (0%) 587 ms 18 (99%) 2 1 (5%) 9079 ms

BüchiSolver 203 (84%) - 37 0 - - 15 (75%) - 5 0 - -

GoodEpSolver 233 (97%) - 0 7 - - 13 (65%) - 0 7 - -

LaySolver 232 (97%) - 6 2 - - 18 (90%) - 0 2 - -

Table 2. Statistics on the multi-dimensional benchmarks.

Solver Solved T.O. Fastest Mean

GenZielonka 128 (84%) 24 33 (25%) 66 ms

GenZiel&GenBüchiSolver 130 (86%) 22 72 (55%) 56 ms

GenZiel&GenGoodEpSolver 112 (74%) 40 24 (18%) 644 ms

GenZiel&GenLaySolver 110 (72%) 42 3 (2%) 1133 ms

GenBüchiSolver 110 (72%) - 20 22 - -

GenGoodEpSolver 112 (74%) - 0 40 - -

GenLaySolver 104 (68%) - 6 42 - -

Observations. Our experiments show that for parity games, Zielonka’s algo-
rithm is faster than partial solvers on average which was not observed on random
graphs in [14]. For generalized parity games, they show that 4 benchmarks can
be solved only by the combination of GenZielonka with a partial solver. Our
experiments also show that the combination with a partial solver improves the
performances of Zielonka’s algorithm (resp. GenZielonka): for 90 cases over 240
(38%) (resp. for 99 cases over 132 (75%)). For generalized parity games, they

Partial Solvers for Generalized Parity Games 77

suggest that it is interesting to launch in parallel all three Algorithms Gen-
Ziel&PSolver, as none appears to dominate the other ones. Nevertheless, the
combination of GenZielonka with GenBüchiSolver is a good compromise.

References

1. Ah-Fat, P., Huth, M.: Partial solvers for parity games: effective polynomial-
time composition. In: GandALF Proceedings. EPTCS, vol. 226, pp. 1–15 (2016).
https://doi.org/10.4204/EPTCS.226.1

2. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robust-
ness in the presence of liveness. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 410–424. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 36

3. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity
games in quasipolynomial time. In: STOC Proceedings, pp. 252–263. ACM (2017).
https://doi.org/10.1145/3055399.3055409

4. Chatterjee, K., Dvorák, W., Henzinger, M., Loitzenbauer, V.: Conditionally opti-
mal algorithms for generalized Büchi games. In: MFCS Proceedings. LIPIcs, vol.
58, pp. 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016).
https://doi.org/10.4230/LIPIcs.MFCS.2016.25

5. Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating
büchi games and maximal end-component decomposition. J. ACM 61(3), 15:1–
15:40 (2014). https://doi.org/10.1145/2597631

6. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl,
H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71389-0 12

7. Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291–308.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 16

8. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 2

9. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: FOCS Proceedings, pp. 368–377. IEEE Computer Society
(1991). https://doi.org/10.1109/SFCS.1991.185392

10. Filiot, E., Jin, N., Raskin, J.: Exploiting structure in LTL synthesis. STTT 15(5-6),
541–561 (2013). https://doi.org/10.1007/s10009-012-0222-5

11. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P.
(eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04761-9 15

12. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

13. Huth, M., Kuo, J.H.-P., Piterman, N.: Fatal attractors in parity games. In: Pfen-
ning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 34–49. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37075-5 3

14. Huth, M., Kuo, J.H.-P., Piterman, N.: Static analysis of parity games: alternat-
ing reachability under parity. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.)
Semantics, Logics, and Calculi. LNCS, vol. 9560, pp. 159–177. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-27810-0 8

https://doi.org/10.4204/EPTCS.226.1
https://doi.org/10.1007/978-3-642-14295-6_36
https://doi.org/10.1007/978-3-642-14295-6_36
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.4230/LIPIcs.MFCS.2016.25
https://doi.org/10.1145/2597631
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/s10009-012-0222-5
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-642-37075-5_3
https://doi.org/10.1007/978-3-319-27810-0_8

78 V. Bruyère et al.

15. Jacobs, S., et al.: The 5th reactive synthesis competition (SYNTCOMP 2018):
Benchmarks, participants & results. CoRR abs/1904.07736 (2019). http://arxiv.
org/abs/1904.07736

16. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998). https://doi.org/10.1016/S0020-0190(98)00150-1

17. Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)
18. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL Proceed-

ings, pp. 179–190. ACM Press (1989). https://doi.org/10.1145/75277.75293
19. Zielonka, W.: Infinite games on finitely coloured graphs with applications to

automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998). https://
doi.org/10.1016/S0304-3975(98)00009-7

http://arxiv.org/abs/1904.07736
http://arxiv.org/abs/1904.07736
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1145/75277.75293
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

Reachability in Augmented Interval
Markov Chains

Ventsislav Chonev(B)

MPI-SWS, Saarbrücken, Germany
v.chonev@gmail.com

Abstract. In this paper we propose augmented interval Markov chains
(AIMCs): a generalisation of the familiar interval Markov chains (IMCs)
where uncertain transition probabilities are in addition allowed to depend
on one another. This new model preserves the flexibility afforded by IMCs
for describing stochastic systems where the parameters are unclear, for
example due to measurement error, but also allows us to specify tran-
sitions with probabilities known to be identical, thereby lending further
expressivity.

The focus of this paper is reachability in AIMCs. We study the quali-
tative, exact quantitative and approximate reachability problem, as well
as natural subproblems thereof, and establish several upper and lower
bounds for their complexity. We prove the exact reachability problem is
at least as hard as the well-known square-root sum problem, but, encour-
agingly, the approximate version lies in NP if the underlying graph is
known, whilst the restriction of the exact problem to a constant num-
ber of uncertain edges is in P. Finally, we show that uncertainty in the
graph structure affects complexity by proving NP-completeness for the
qualitative subproblem, in contrast with an easily-obtained upper bound
of P for the same subproblem with known graph structure.

Keywords: Interval Markov decision processes · Reachability

1 Introduction

Discrete-time Markov chains are a well-known stochastic model, one which has
been used extensively to reason about software systems [7,14,21]. They com-
prise a finite set of states and a set of transitions labelled with probabilities in
such a way that the outgoing transitions from each state form a distribution.
They are useful for modelling systems with inherently probabilistic behaviour,
as well as for abstracting complexity away from deterministic ones. Thus, it
is a long-standing interest of the verification community to develop logics for
describing properties concerning realiability of software systems and to devise
verification algorithms for these properties on Markov chains and their related
generalisations, such as Markov decision processes [2,17].

One well-known such generalisation is motivated by how the assumption of
precise knowledge of a Markov chain’s transition relation often fails to hold.
c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 79–92, 2019.
https://doi.org/10.1007/978-3-030-30806-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_7

80 V. Chonev

Indeed, a real-world system’s dynamics are rarely known exactly, due to incom-
plete information or measurement error. The need to model this uncertainty
and to reason about robustness under perturbations in stochastic systems nat-
urally gives rise to interval Markov chains (IMCs). In this model, uncertain
transition probabilities are constrained to intervals, with two different seman-
tic interpretations. Under the once-and-for-all interpretation, the given inter-
val Markov chain is seen as representing an uncountably infinite collection of
Markov chains refining it, and the goal is to determine whether some (or alter-
natively, all) refinements satisfy a given property. In contrast, the at-every-step
interpretation exhibits a more game-theoretic flavour by allowing a choice over
the outgoing transition probabilities prior to every move. The goal is then to
determine strategies which optimise the probability of some property being sat-
isfied. Originally introduced in [15], interval Markov chains have recently elicited
considerable attention: see for example references [23], [6] and [3], which study
the complexity of model checking branching- and linear-time properties, as well
as [9], where the focus is on consistency and refinement.

While IMCs are very natural for modelling uncertainty in stochastic dynam-
ics, they lack the expressiveness necessary to capture dependencies between tran-
sition probabilities arising out of domain-specific knowledge of the underlying
real-world system. Such a dependency could state e.g. that, although the proba-
bilities of some transitions are only known to lie within a given interval, they are
all identical. Disregarding this information and studying only a dependence-free
IMC is impractical, as allowing these transitions to vary independently of one
another results in a vastly over-approximated space of possible behaviours.

Therefore, in the present paper we study augmented interval Markov chains
(AIMCs), a generalisation of IMCs which allows for dependencies of this type to
be described. We study the effect of this added expressivity through the prism
of the existentially quantified reachability problem, exclusively under the once-
and-for-all interpretation. Our results are the following. First, we show that the
full problem is hard for both the square-root sum problem (Theorem 6) and
for the class NP (Theorem 3). The former hardness is present even when the
underlying graph structure is known and acyclic, whilst the latter arises even
in the qualitative subproblem when transition intervals are allowed to include
zero, rendering the structure uncertain. Second, assuming known structure, we
show the approximate reachability problem to be in NP (Theorem 7). Third,
we show that the restriction of the reachability problem to a constant number of
uncertain (i.e. interval-valued) transitions is in P (Theorem 4). The problem in
full generality is in PSPACE via a straightforward reduction to the existential
theory of the reals (Theorem 5).

The model studied here can be viewed as a simple variant of parametric
Markov chains. These have an established presence in the literature, typically
with practical and scalable synthesis procedures as the main focus, rather than
complexity classification. See for example references [8,10,13,18].

Reachability in Augmented Interval Markov Chains 81

2 Preliminaries

Markov Chains. A discrete-time Markov chain or simply Markov chain (MC)
is a tuple M = (V, δ) which consists of a finite set of vertices or states V and
a one-step transition function δ : V 2 → [0, 1] such that for all v ∈ V , we have∑

u∈V δ(v, u) = 1. For the purposes of specifying Markov chains as inputs to
decision problems, we will assume δ is given by a square matrix of rational
numbers. The transition function gives rise to a probability measure on V ω in
the usual way. We denote the probability of reaching a vertex t starting from
a vertex s in M by P

M (s � t). The structure of M is its underlying directed
graph, with vertex set V and edge set E = {(u, v) ∈ V 2 : δ(u, v) �= 0}. Two
Markov chains with the same vertex set are said to be structurally equivalent if
their edge sets are identical.

An interval Markov chain (IMC) generalises the notion of a Markov chain.
Formally, it is a pair (V,Δ) comprising a vertex set V and a transition function
Δ from V 2 to the set Int [0,1] of intervals contained in [0, 1]. For the purposes of
representing an input IMC, we will assume that each transition is given by a lower
and an upper bound, together with two Boolean flags indicating the strictness of
the inequalities. A Markov chain M = (V, δ) is said to refine an interval Markov
chain M = (V,Δ) with the same vertex set if δ(u, v) ∈ Δ(u, v) for all u, v ∈ V .
We denote by [M] the set of Markov chains which refine M. An IMC’s structure
is said to be known if all elements of [M] are structurally equivalent. Moreover,
if there exists some ε > 0 such that for all M = (V, δ) ∈ [M] and all u, v ∈ V ,
either δ(u, v) = 0 or δ(u, v) > ε, then the IMC’s structure is ε-known. An IMC
can have known structure but not ε-known structure for example by having an
edge labelled with an open interval whose lower bound is 0.

An augmented interval Markov chain (AIMC) generalises the notion of an
IMC further by equipping it with pairs of edges whose transition probabilities are
required to be identical. Formally, an AIMC is a tuple (V,Δ,C), where (V,Δ)
is an IMC and C ⊆ V 4 is a set of edge equality constraints. A Markov chain
(V, δ) is said to refine an AIMC (V,Δ,C) if it refines the IMC (V,Δ) and for
each (u, v, x, y) ∈ C, we have δ(u, v) = δ(x, y). We extend the notation [M] to
AIMCs for the set of Markov chains refining M.

The reachability problem for AIMCs is the problem of deciding, given an
AIMC M = (V,Δ,C), an initial vertex s ∈ V , a target vertex t ∈ V , a threshold
τ ∈ [0, 1] and a relation ∼∈ {≤,≥}, whether there exists M ∈ [M] such that
P

M (s � t) ∼ τ . The qualitative subproblem is the restriction of the reachability
problem to inputs where τ ∈ {0, 1}.

Finally, in the approximate reachability problem, we are given a (small) ratio-
nal number θ and a reachability problem instance. If ∼ is ≥, our procedure is
required to accept if there exists some refining Markov chain with reachability
probability greater than τ + θ/2, it is required to reject if all refining Markov
chains have reachability probability less than τ −θ/2, and otherwise it is allowed
to do anything. Similarly if ∼ is ≤. Intuitively, this is a promise problem: in the
given instance the optimal reachability probability is guaranteed to be outside
the interval [τ − θ/2, τ + θ/2]. A similar type of problem was studied in [19].

82 V. Chonev

First-Order Theory of the Reals. We write L to denote the first-order language
R〈+,×, 0, 1, <,=〉. Atomic formulas in L are of the form P (x1, . . . , xn) = 0 and
P (x1, . . . , xn) > 0 for P ∈ Z[x1, . . . , xn] a polynomial with integer coefficients.
We denote by Th(R) the first-order theory of the reals, that is, the set of all valid
sentences in the language L. Let Th∃(R) be the existential first-order theory of
the reals, that is, the set of all valid sentences in the existential fragment of L. A
celebrated result [24] is that L admits quantifier elimination: each formula φ1(x̄)
in L is equivalent to some effectively computable formula φ2(x̄) which uses no
quantifiers. This immediately entails the decidability of Th(R). Tarski’s original
result had non-elementary complexity, but improvements followed, culminating
in the detailed analysis of [20]:

Theorem 1. (i) Th(R) is complete for 2-EXPTIME. (ii) Th∃(R) is decidable
in PSPACE. (iii) If m ∈ N is a fixed constant and we consider only existential
sentences where the number of variables is bounded above by m, then validity is
decidable in P.

We denote by ∃R the class, introduced in [22], which lies between NP and
PSPACE and comprises all problems reducible in polynomial time to the prob-
lem of deciding membership in Th∃(R).

Square-Root Sum Problem. The square-root sum problem is the decision problem
where, given r1, . . . , rm, k ∈ N, one must determine whether

√
r1+· · ·+√

rm ≥ k.
Originally posed in [16], this problem arises naturally in computational geometry
and other contexts involving Euclidean distance. Its exact complexity is open.
Membership in PSPACE is straightforward via a reduction to the existential
theory of the reals. Later this was sharpened in [1] to PosSLP, the complexity
class whose complete problem is deciding whether a division-free arithmetic cir-
cuit represents a positive number. This class was introduced and bounded above
by the fourth level of the counting hierarchy CH in the same paper. However,
containment of the square-root sum problem in NP is a long-standing open
question, originally posed in [12], and the only obstacle to proving membership
in NP for the exact Euclidean travelling salesman problem. This highlights a
difference between the familiar integer model of computation and the Blum-
Shub-Smale Real RAM model [4], under which the square-root sum is decidable
in polynomial time [25]. See also [11] for more background.

3 Qualitative Case

In this section, we will focus on the qualitative reachability problem for AIMCs.
We show that, whilst membership in P is straightforward when the underlying
graph is known, uncertainty in the structure renders the qualitative problem
NP-complete.

Theorem 2. The qualitative reachability problem for AIMCs with known struc-
ture is in P.

Reachability in Augmented Interval Markov Chains 83

Proof. Let the given AIMC be M and s, t the initial and target vertices, respec-
tively. Since the structure G = (V,E) of M is known, the qualitative reachability
problem can be solved simply using standard graph analysis techniques on G.
More precisely, for any M ∈ [M], PM (s � t) = 1 if and only if there is no path
in G which starts in s, does not enter t and ends in a bottom strongly connected
component which does not contain t. Similarly, PM (s � t) = 0 if and only if
there is no path from s to t in G.
�
Theorem 3. The qualitative reachability problem for AIMCs is NP-complete.

Proof. Membership in NP is straightforward. The equivalence classes of [M]
under structure equivalence are at most 2n2

, where n is the number of vertices,
since for each pair (u, v) of vertices, either an edge (u, v) is present in the struc-
ture or not. This upper bound is exponential in the size of the input. Thus, we
can guess the structure of the Markov chain in nondeterministic polynomial time
and then proceed to solve an instance of the qualitative reachability problem on
an AIMC with known structure in polynomial time by Theorem 2.

We now proceed to show NP-hardness using a reduction from 3-SAT. Sup-
pose we are given a propositional formula ϕ in 3-CNF: ϕ ≡ ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk,
where each clause is a disjunction of three literals: ϕi ≡ li,1 ∨ li,2 ∨ li,3. Let the
variables in ϕ be x1, . . . , xm.

Let M = (V,Δ,C) be the following AIMC, also depicted in Fig. 1. The vertex
set has 3m + k + 3 vertices:

V = {x1, . . . , xm, x1, . . . , xm} ∪ {ϕ1, . . . , ϕk} ∪ {S, F},∪{v0, . . . , vm}
that is, one vertex for each possible literal over the given variables, one vertex
for each clause, two special sink vertices S, F (success and failure) and m + 1
auxiliary vertices. Through a slight abuse of notation, we use xi, xi to refer both
to the literals over the variable xi and to their corresponding vertices in M, and
similarly, ϕi denotes both the clause in the formula and its corresponding vertex.

The transitions are the following. For all i ∈ {1, . . . , m}, we have:

Δ(vi−1, xi) = Δ(vi−1, xi) = Δ(xi, vi) =
Δ(xi, F) = Δ(xi, F) = Δ(xi, vi) = [0, 1].

For all i ∈ {1, . . . , k} and j ∈ {1, . . . , 3}, we have: Δ(ϕi, li,j) = [0, 1]. For all
i ∈ {1, . . . , k},

Δ(vm, S) = Δ(vm, ϕi) =
[

1
k + 1

,
1

k + 1

]

.

Finally, Δ(S, S) = Δ(F, F) = [1, 1]. For all other pairs of vertices u, v, we have
Δ(u, v) = [0, 0].

The edge equality constraints are:

C =
⋃

i=1,...,m

{(vi−1, xi, xi, vi), (vi−1, xi, xi, F)}.

84 V. Chonev

Intuitively, the sequence of ‘diamonds’ comprised by v0, . . . , vm and the ver-
tices corresponding to literals are a variable setting gadget. Choosing transition
probabilities δ(vi−1, xi) = δ(xi, vi) = 1, and hence necessarily δ(xi, F) = 0,
corresponds to setting xi to true, whereas δ(vi−1, xi) = δ(xi, vi) = 1 and
δ(xi, F) = 0 corresponds to setting xi to false. On the other hand, the branching
from vm into ϕ1, . . . , ϕk and the edges from clauses to their literals makes up the
assignment testing gadget. Assigning non-zero probability to the edge (ϕi, li,j)
corresponds to selecting the literal li,j as witness that the clause ϕi is satisfied.

Formally, we claim that there exists a Markov chain M ∈ [M] such that
P

M (v0 � S) = 1 if and only if ϕ is satisfiable.
Suppose first that ϕ is satisfiable and choose some satisfying assignment

σ : {x1, . . . , xm} → {0, 1}. Let M = (V, δ) ∈ [M] be the refining Markov chain
which assigns the following transition probabilities to the interval-valued edges
of M. First, let δ(vi−1, xi) = δ(xi, vi) = δ(xi, F) = σ(xi), and δ(vi−1, xi) =
δ(xi, vi) = δ(xi, F) = 1 − σ(xi) for all i ∈ {1, . . . , m}. Second, for each clause
ϕi, choose some literal li,j which is true under σ and set δ(ϕi, li,j) = 1 and
consequently δ(ϕi, l) = 0 for the other literals l. Now we can observe that the
structure of M has two bottom strongly-connected components, namely {S} and
{F}, and moreover, F is unreachable from v0. Therefore, PM (v0 � S) = 1.

Conversely, suppose there exists some M = (V, δ) ∈ [M] such that PM (v0 �
S) = 1. We will prove that ϕ has a satisfying assignment. For each i ∈ {1, . . . , m},
write pi = δ(vi−1, xi) = δ(xi, vi) = δ(xi, F), and 1−pi = δ(vi−1, xi) = δ(xi, vi) =
δ(xi, F). Notice that P

M (v0x1F
ω) = P

M (v0x1F
ω) = p1(1 − p1), so we can con-

clude p1 ∈ {0, 1}, otherwise P
M (v0 � S) �= 1, a contradiction. If p1 = 1, then

P
M (v0x1v1x2F

ω) = P
M (v0x1v1x2F

ω) = p2(1 − p2),

whereas if p1 = 0, then

P
M (v0x1v1x2F

ω) = P
M (v0x1v1x2F

ω) = p2(1 − p2).

Either way, we must have p2 ∈ {0, 1} to ensure P
M (v0 � S) = 1. Unrolling

this argument further shows pi ∈ {0, 1} for all i. In particular, there is exactly
one path from v0 to vm and it has probability 1. Let σ be the truth assignment
xi → pi, we show that σ satisfies ϕ. Indeed, if some clause ϕi is unsatisfied under
σ, then its three literals li,1, . . . , li,3 are all unsatisfied, so δ(li,j , F) > 0 for all
j = 1, . . . , 3. Moreover, for at least one of these three literals, say li,1, we will
have δ(ϕi, li,1) > 0, so the path v0 . . . vmϕili,1F

ω will have non-zero probability:

P
M (v0 . . . vmϕili,1F

ω) =
1

k + 1
δ(ϕi, li,1)δ(li,1, F) �= 0,

which contradicts P
M (v0 � S) = 1. Therefore, σ satisfies ϕ, which completes

the proof of NP-hardness and of the Theorem.
�

Reachability in Augmented Interval Markov Chains 85

v0 v1 v2

x1

x1

x2

x2

. . .

x3

x3

xm

xm

vm

F

F

ϕ1

...

ϕk

S

to
lit
er
al
s

[0, 1]

to
lit
er
al
s

[0, 1
]

p1

1−
p
1

p
1

1−
p1

p2

1−
p
2

p
2

1−
p2

p3

1−
p
3

1−
p
3

p 3

p
m

1−
pm

1−
p
m

pm
p1

p
2

1

1− p1

1
−

p 2

1 1

1
k+1

1
k+1

1
k+1

Fig. 1. Construction used in Theorem 3 for showing NP-hardness of the qualitative
AIMC reachability problem. The sink F is duplicated to avoid clutter.

4 Quantitative Case: Upper Bound

We now shift our attention to the subproblem of AIMC reachability which arises
when the number of interval-valued transitions is fixed, that is, bounded above
by some absolute constant. Our result is the following.

Theorem 4. Fix a constant N ∈ N. The restriction of the reachability problem
for AIMCs to inputs with at most N interval-valued transitions lies in P. Hence,
the approximate reachability problem under the same restriction is also in P.

Proof. Let M = (V,Δ,C) be the given AIMC and suppose we wish to decide
whether there exists M ∈ [M] such that P

M (s � t) ∼ τ . Let U ⊆ V be the set
of vertices which have at least one interval-valued outgoing transition, together
with s and t: U = {s, t} ∪ {u ∈ V : ∃v ∈ V.Δ(u, v) is not a singleton}. Notice
that |U | ≤ N +2 = const . Write W = V \U , so that {U,W} is a partition of V .

Let x be a vector of variables, one for each interval-valued transition of
M. For vertices v1, v2, let δ(v1, v2) denote the corresponding variable in x if
the transition (v1, v2) is interval-valued, and the only element of the singleton
set Δ(v1, v2) otherwise. Let ϕ1 be the following propositional formula over the
variables x which captures the set of ‘sensible’ assignments:

ϕ1 ≡
∧

v1∈V

∑

v2∈V

δ(v1, v2) = 1

∧
∧

v1,v2∈V

δ(v1, v2) ∈ Δ(v1, v2) ∩ [0, 1] ∧
∧

(a,b,c,d)∈C

δ(a, b) = δ(c, d).

There is clearly a bijection between [M] and assignments of x which satisfy ϕ1.
For vertices v1, v2, use the notation v1 � v2 to denote the event ‘v2 is reached

from v1 along a path consisting only of vertices in W , with the possible exception

86 V. Chonev

of the endpoints v1, v2’. Notice that for all u ∈ U and w ∈ W , PM (w � u) is
independent of the choice of M ∈ [M]. Denote these probabilities by α(w, u).
They satisfy the system

∧

w∈W,u∈U

α(w, u) = δ(w, u) +
∑

w′∈W

δ(w,w′)α(w′, u),

which is linear and therefore easy to solve with Gaussian elimination. Thus,
assume that we have computed α(w, u) ∈ Q for all w ∈ W and u ∈ U .

Similarly, for all u1, u2 ∈ U , write β(u1, u2) for the probability of u1 � u2.
Notice that β(u1, u2) is a polynomial of degree at most 1 over the variables x,
given by

β(u1, u2) = δ(u1, u2) +
∑

w∈W

δ(u1, w)α(w, u2).

Thus, assume we have computed symbolically β(u1, u2) ∈ Q[x] for all u1, u2 ∈ U .
Finally, for each u ∈ U , let y(u) be a variable and write y for the vector of

variables y(u) in some order. Consider the following formula in the existential
first-order language of the real field: ϕ ≡ ∃x∃y . ϕ1 ∧ ϕ2 ∧ ϕ3, where

ϕ2 ≡ y(t) = 1 ∧
∧

u∈U\{t}
y(u) =

∑

u′∈U

β(u, u′)y(u′),

ϕ3 ≡ y(s) ∼ τ , and ϕ1 is as above. Intuitively, ϕ1 states that the variables x
describe a Markov chain in [M], ϕ2 states that y gives the reachability proba-
bilities from U to t, and ϕ3 states that the reachability probability from s to t
meets the required threshold τ . The problem instance is positive if and only if
ϕ is a valid sentence in the existential theory of the reals, which is decidable.
Moreover, the formula uses exactly 2|U | ≤ 2(N + 2) = const variables, so by
Theorem 1, the problem is decidable in polynomial time, as required.
�

Notice that removing the assumption of a constant number of interval-valued
transitions only degrades the complexity upper bound, but not the described
reduction to the problem of checking membership in Th∃(R). As an immediate
corollary, we have:

Theorem 5. The reachability problem and the approximate reachability problem
for AIMCs are in ∃R.
Note that Theorem 5 can be shown much more easily, without the need to con-
sider separately U -vertices and W -vertices as in the proof of Theorem 4. It is
sufficient to use one variable per interval-valued transition to capture its transi-
tion probability as above and one variable per vertex to express its reachability
probability to the target. Then write down an existentially quantified formula
with the usual system of equations for reachability in a Markov chain obtained
by conditioning on the first step from each vertex. While this easily gives the
∃R upper bound, it uses at least |V | variables, so it is insufficient for showing
membership in P for the restriction to a constant number of interval-valued
transitions.

Reachability in Augmented Interval Markov Chains 87

5 Quantitative Case: Lower Bound

In this section, we give a lower bound for the AIMC reachability problem. This
bound remains in place even when the structure of the AIMC is ε-known and
acyclic, except for the self-loops on two sink vertices.

Theorem 6. The AIMC reachability problem is hard for the square-root sum
problem, even when the structure of the AIMC is ε-known and is acyclic, except
for the self-loops on two sink vertices.

Proof. The reduction is based on the gadget depicted in Fig. 2. It is an AIMC
with two sinks, S and F (success and failure), each with a self-loop with probabil-
ity 1, and 12 vertices: {a, b1, . . . , b4, c1, . . . , c4, d1, d4, e}. The structure is acyclic
and comprises four chains leading to S, namely, ab1c1d1eS, ab2c2S, ab3c3S and
ab4c4d4S. From each vertex other than a and S there is also a transition to F .

The probabilities are as follows. The transition (b3, c3) has probability α,
whilst (b1, c1), (b2, c2), (b4, c4) have probability β, for rationals α, β to be spec-
ified later. Consequently, the remaining outgoing transition to F out of each bi

has probability 1 − α or 1 − β. The transitions (a, bi) for i = 1, . . . , 4 all have
probability 1/4. Finally, the transitions (c1, F), (c2, F), (c3, S), (c4, F), (d1, e),
(d4, S) and (e, S) are interval-valued and must all have equal probability in any
refining Markov chain. Assign the variable x to the probability of these tran-
sitions. The interval to which these transition probabilities are restricted (i.e.
the range of x) is to be specified later. Consequently, the remaining transitions
(c1, d1), (d1, F), (e, F), (c2, S), (c3, F), (c4, d4), (d4, F) are also interval-valued,
with probability 1 − x.

The gadget is parameterised by an input r ∈ N, on which the transition
probabilities depend. Let M be a positive integer large enough to ensure

x∗ :=
3
√

r

2M
∈ (0, 1).

Then choose a positive integer N large enough, so that

α :=
4M

N
∈ (0, 1), β :=

16M3

27rN
∈ (0, 1), and popt :=

√
r

N
+

β

4
∈ (0, 1).

Now, a straightforward calculation shows

P(a � S) = P(ab1c1d1eS) + P(ab2c2S) + P(ab3c3S) + P(ab4c4d4S)

=
βx2(1 − x)

4
+

β(1 − x)
4

+
αx

4
+

βx(1 − x)
4

=
αx − βx3 + β

4
.

Analysing the derivative of this cubic, we see that P(a � S) increases on [0, x∗),
has its maximum at x = x∗ and then decreases on (x∗, 1]. This maximum is

αx∗ − β(x∗)3 + β

4
=

√
r

N
+

β

4
= popt .

88 V. Chonev

Thus, if we choose some closed interval which contains x∗ but not 0 and 1 to be
the range of x, then the gadget described thus far will have ε-known structure
and maximum reachability probability from a to S given by

√
r scaled by a

constant and offset by another constant.
Now, suppose we wish to decide whether

√
r1 + · · · +

√
rm ≥ k for given

positive integers r1, . . . , rm and k. Construct m gadgets as above, with values
of the parameter r given by r1, . . . , rm, respectively. The constants α,N,M are
shared across the gadgets, as are the sinks S, F , but each gadget has its own
constant βi in place of β, and its own copy of each non-sink vertex. The edge
equality constraints are the same as above within each gadget, and there are no
equality constraints across gadgets. Assign a variable xi to those edges in the
i-th gadget which in the description above were labelled x, and choose a range
for xi as described above for x. Finally, add a new initial vertex v0, with m
equiprobable outgoing transitions to the a-vertices of the gadgets.

In this AIMC, the probability of v0 � S is given by the multivariate poly-
nomial

1
m

m∑

i=1

αxi − βix
3
i + βi

4
,

whose maximum value on [0, 1]m is

1
m

m∑

i=1

(√
ri

N
+

βi

4

)

.

Therefore, if we denote

τ =
k

mN
+

1
m

m∑

i=1

βi

4
,

then we have
√

r1 + · · · +
√

rm ≥ k if and only if there exists a refining Markov
chain of this AIMC with P(v0 � S) ≥ τ , so the reduction is complete. Note
that if we represent rational numbers as usual as pairs of integers in binary, the
bit-length of τ and all intermediate constants is bounded above by a polynomial
in the bit-lengths of the inputs r1, . . . , rm, k, so the reduction can be carried out
in polynomial time.
�
Remark 1. It is easy to see that if we are given an acyclic AIMC with the
interval-valued edges labelled with variables, the reachability probabilities from
all vertices to a single target vertex are multivariate polynomials and can be
computed symbolically with a backwards breadth-first search from the target.
Then optimising reachability probabilities reduces to optimising the value of a
polynomial over given ranges for its variables.

It is interesting to observe that a reduction holds in the other direction as well.
Suppose we wish to decide whether there exist values of x1 ∈ I1, . . . , xn ∈ In

such that P (x1, . . . , xn) ≥ τ for a given multivariate polynomial P , intervals

Reachability in Augmented Interval Markov Chains 89

I1, . . . , In ⊆ [0, 1] and τ ∈ Q. Notice that P can easily be written in the form
P (x1, . . . , xn) = β +N

∑m
i=1 αiQi(x1, . . . , xn), where N > 0, α1, . . . , αm ∈ (0, 1)

are constants such that
∑m

i=1 αi ≤ 1, each Qi is a non-empty product of terms
drawn from

⋃n
j=1{xj , (1−xj)}, and β is a (possibly negative) constant term. For

example, we rewrite the monomial −2x1x2x3 as 2(1 − x1)x2x3 + 2(1 − x2)x3 +
2(1 − x3) − 2. Do this to all monomials with a negative coefficient, then choose
an appropriately large N to obtain the desired form.

Now it is easy to construct an AIMC with two sinks S, F and a designated
initial vertex v0 where the probability of v0 � S is

∑m
i=1 αiQi. We use a chain

to represent each Qi, and then branch from v0 into the first vertices of the chains
with distribution given by the αi. There exist values of the xi in their appropriate
intervals such that P (x1, . . . , xn) ≥ τ if and only if there exists a refining Markov
chain such that P(v0 � S) ≥ (τ − β)/N .

a

b1

b2

b3

b4

c1

c2

c3

c4

d1

d4

e

SF

1/4

1/4

1/4

1/4

β 1 − x x

x

β 1 − x

x

β

1 − x

α

x

1−
β

1−
α

x

1−
x

1−
β

x

1
−

β

x

1− x

1−
x

1 − x

1
1

Fig. 2. Gadget for reduction from square-root sum problem to AIMC reachability.

6 Approximate Case

In this section, we focus on the approximate reachability problem for AIMCs.
To obtain our upper bound, we will use a result from [5].

Definition 1. If M1 = (V, δ1) and M2 = (V, δ2) are Markov chains with the
same vertex set, then their absolute distance is

distA(M1,M2) = max
u,v∈V

{|δ1(u, v) − δ2(u, v)|} .

Lemma 1 (Theorem 5 in [5]). Let M1 = (V, δ1) and M2 = (V, δ2) be struc-
turally equivalent Markov chains, where n = |V | and for all u, v ∈ V , we have
either δ1(u, v) = 0 or δ1(u, v) ≥ ε. Then for any two vertices s, t ∈ V , we have

∣
∣PM1(s � t) − P

M2(s � t)
∣
∣ ≤

(

1 +
distA(M1,M2)

ε

)2n

− 1.

90 V. Chonev

In particular, if distA(M1,M2) ≤ d < ε for some d, then

∣
∣PM1(s � t) − P

M2(s � t)
∣
∣ ≤

(

1 +
d

ε − d

)2n

− 1.

We will also need a version of Bernoulli’s inequality:

Lemma 2. For all x ≥ −1 and r ∈ [0, 1], we have (1 + x)r ≤ 1 + rx.

Now we proceed to prove our upper bound.

Theorem 7. The approximate reachability problem for AIMCs with ε-known
structure is in NP.

Proof. Let M be the given AIMC and let ε > 0 be a lower bound on all non-
zero transitions across all M ∈ [M]. Suppose we are solving the maximisation
version of the problem: we are given vertices s, t and a rational θ > 0, we must
accept if P

M (s � t) > τ + θ/2 for some M ∈ [M] and we must reject if
P

M (s � t) < τ − θ/2 for all M ∈ [M].
Let n be the number of vertices and let d := ε

(
1 − (1 + θ)−1/2n

)
. For each

interval-valued transition, split its interval into at most 1/d intervals of length at
most d each. For example, [l, r] partitions into [l, l+d), [l+d, l+2d), . . . , [l+kd, r],
where k is the largest natural number such that l + kd ≤ r. Call the endpoints
defining these subintervals grid points. Let 〈M〉 ⊆ [M] be the set of Markov
chains refining M such that the probabilities of all interval-valued transitions
are chosen from among the grid points. Observe that for all M1 ∈ [M], there
exists M2 ∈ 〈M〉 such that distA(M1,M2) ≤ d.

Our algorithm showing membership in NP is the following. We choose
M ∈ 〈M〉 nondeterministically and compute p := P

M (s � t) using Gaussian
elimination. Then if p ≥ τ − θ/2, we accept, and otherwise we reject.

To complete the proof, we need to argue two points. First, that 〈M〉 is at
most exponentially large in the size of the input, so that M can indeed be
guessed in nondeterministic polynomial time. Second, that if for all M ∈ 〈M〉
we have P

M (s � t) < τ − θ/2, then it is safe to reject, i.e. there is no M ′ with
P

M ′
(s � t) ≥ τ + θ/2. (Note that the procedure is obviously correct when it

accepts.)
To the first point, we apply Lemma 2 with x = −θ/(θ + 1) and r = 1/2n:

(1 + θ)−1/2n =
(

1 − θ

1 + θ

)1/2n

≤ 1 − 1
2n

θ

1 + θ

=⇒ d−1 = ε−1 1
1 − (1 + θ)−1/2n

≤ 1
ε
2n

1 + θ

θ
=

1
ε
2n

(

1 +
1
θ

)

.

This upper bound is a polynomial in n, 1/θ and 1/ε, and hence at most exponen-
tial in the length of the input data. Therefore, for each interval-valued transition,
we can write down using only polynomially many bits which grid point we wish
to use for the probability of that transition. Since the number of transitions is

Reachability in Augmented Interval Markov Chains 91

polynomial in the length of the input, it follows that an element of 〈M〉 may be
specified using only polynomially many bits, as required.

To the second point, consider M1,M2 ∈ [M] such that distA(M1,M2) ≤ d.
Noting that d < ε, by Lemma 1, we have

∣
∣PM1(s � t) − P

M2(s � t)
∣
∣ ≤

(

1 +
d

ε − d

)2n

− 1

=
(

ε

ε(1 + θ)−1/2n

)2n

− 1 = θ.

In other words, changing the transition probabilities by at most d does not alter
the reachability probability from s to t by more than θ. However, recall that we
chose 〈M〉 in such a way that for all M1 ∈ [M], there is some M2 ∈ 〈M〉 with
distA(M1,M2) ≤ d. In particular, if PM2(s � t) < τ − θ/2 for all M2 ∈ 〈M〉,
then certainly P

M1(s � t) < τ + θ/2 for all M1 ∈ [M], so it is safe to reject.
This completes the proof.
�

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

2. Bellman, R.: A Markovian decision process. Technical report, DTIC Document
(1957)

3. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
32–46. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 3

4. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. (New Ser.) Am. Math. Soc. 21(1), 1–46 (1989)

5. Chatterjee, K.: Robustness of structurally equivalent concurrent parity games. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 270–285. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9 18

6. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of
interval Markov chains. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp.
302–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-
9 22

7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM (JACM) 42(4), 857–907 (1995)

8. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in
pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 10

9. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., W ↪asowski, A.: Decision
problems for interval Markov chains. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide,
C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 274–285. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21254-3 21

https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1007/978-3-642-28729-9_18
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-642-21254-3_21

92 V. Chonev

10. Delahaye, B., Lime, D., Petrucci, L.: Parameter synthesis for parametric interval
Markov chains. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS,
vol. 9583, pp. 372–390. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49122-5 18

11. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM (JACM) 56(1), 1 (2009)

12. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric prob-
lems. In: Proceedings of the Eighth Annual ACM Symposium on Theory of Com-
puting, STOC 1976, pp. 10–22. ACM, New York (1976). https://doi.org/10.1145/
800113.803626

13. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

14. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

15. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proceedings of Sixth Annual IEEE Symposium on Logic in Computer Science.
LICS 1991, pp. 266–277. IEEE (1991)

16. O’Rourke, J.: Advanced problem 6369. Am. Math. Monthly 88(10), 769 (1981)
17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley, Hoboken (2014)
18. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-

thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

19. Randour, M., Raskin, J.F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. Formal Methods Syst. Des. 50(2–3), 207–248 (2017)

20. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-
algebraic sets. The decision problem for the existential theory of the reals. J. Symb.
Comput. 13(3), 255–299 (1992). https://doi.org/10.1016/S0747-7171(10)80003-3

21. Rutten, J.J.M.M., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Tech-
niques for Analyzing Concurrent and Probabilistic Systems. American Mathemat-
ical Society, Providence (2004)

22. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential
theory of the reals. Theory Comput. Syst. 60, 172–193 (2011)

23. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006). https://doi.org/10.1007/
11691372 26

24. Tarski, A.: A Decision Method for Elementary Algebra and Geometry (1951)
25. Tiwari, P.: A problem that is easier to solve on the unit-cost algebraic RAM. J.

Complex. 8(4), 393–397 (1992). https://doi.org/10.1016/0885-064X(92)90003-T

https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1145/800113.803626
https://doi.org/10.1145/800113.803626
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1016/S0747-7171(10)80003-3
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1016/0885-064X(92)90003-T

On Solving Word Equations Using SAT

Joel D. Day1, Thorsten Ehlers2, Mitja Kulczynski3(B), Florin Manea3,
Dirk Nowotka3, and Danny Bøgsted Poulsen3

1 Department of Computer Science, Loughborough University, Loughborough, UK
j.day@lboro.ac.uk

2 German Aerospace Center (DLR), Helmholtz Association, Hamburg, Germany
thorsten.ehlers@dlr.de

3 Department of Computer Science, Kiel University, Kiel, Germany
{mku,flm,dn,dbp}@informatik.uni-kiel.de

Abstract. We present Woorpje, a string solver for bounded word
equations (i.e., equations where the length of each variable is upper
bounded by a given integer). Our algorithm works by reformulating the
satisfiability of bounded word equations as a reachability problem for
nondeterministic finite automata, and then carefully encoding this as
a propositional satisfiability problem, which we then solve using the
well-known Glucose SAT-solver. This approach has the advantage of
allowing for the natural inclusion of additional linear length constraints.
Our solver obtains reliable and competitive results and, remarkably,
discovered several cases where state-of-the-art solvers exhibit a faulty
behaviour.

1 Introduction

Over the past twenty years, applications of software verification have scaled from
small academic programs to finding errors in the GNU Coreutils [7]. In princi-
ple, the employed verification strategies involve exploring the control-flow-graph
of the program, gathering constraints over program variables and passing these
constraints to a constraint solver. The primary worker of software verification is
thus the constraint solver, and the scalability of software verification achieved
by improving the efficiency of constraint solvers. The theories supported by con-
straint solvers are likewise highly influenced by the needs of software verification
tools (e.g. array theory and bitvector arithmetic). A recent need of software ver-
ification tools is the ability to cope with equations involving string constraints,
i.e. equations over string variables composing equality between concatenation of
strings and string variables. This need arose from the desire to do software verifi-
cation of languages with string manipulation as a core part of the language (e.g.
JavaScript and Java) [9,19]. To accomplish this goal, we have seen the advent of

Florin Manea’s work was supported by the DFG grant MA 5725/2-1.
Danny Bøgsted Poulsen’s work was supported by the BMBF through the ARAMiS2
(01IS160253) project.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 93–106, 2019.
https://doi.org/10.1007/978-3-030-30806-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_8

94 J. D. Day et al.

dedicated string solvers as well as constraint solvers implementing string solving
techniques. As an incomplete list we mention HAMPI [15], CVC4 [4], Ostrich [8],
Sloth [11], Norn [1], S3P [20] and Z3str3 [5].

Although the need for string solving only recently surfaced in the software
verification community, the problem is in fact older and known as Word Equa-
tions (a term that we will use from now on). The word equation satisfiability
problem is to determine whether we can unify the two strings, i.e., transform
them into two equal strings containing constant letters only, by substituting the
variables consistently by strings of constants. For example, consider the equation
defined by the two strings XabY and aXY b, denoted XabY =̇ aXY b, with vari-
ables X,Y and constants a and b. It is satisfiable because X can be substituted
by a and Y by b, which produces the equality aabb = aabb. In fact, substituting
X by an arbitrary amount of a’s and Y by an arbitrary amount of b’s unifies the
two sides of the equation.

The word equation problem is decidable [16] and NP-hard. In a series of
works, Jeż [12,13] showed that word equations can be solved in non-deterministic
linear space. It has been shown by Plandowski [18] that there exists an upper

bound of 22
O(n4)

for the smallest solution to a word equation of length n. Having
this in mind, a standard method for solving word equations is known as filling
the positions [14,17]. In this method a length for each of the string variables is
non-deterministically selected. Having a fixed length of the variables reduces the
problem to lining up the positions of the two sides of the equation, and filling
the unknown positions of the variables with characters, making the two sides
equal.

In this paper we present a new solver for word equation with linear length
constraints, Woorpje. In particular, it guesses the maximal length of vari-
ables and encodes a variation of filling the positions method into an automata-
construction, thereby reducing the search for a solution to a reachability question
of this automata. Preliminary experiments with a pure automata-reachability-
based approach revealed however, that this would not scale for even small word
equations. Woorpje therefore encodes the automata into SAT and uses the
tool Glucose [3] as a backend. Unlike other approaches based on the filling the
positions method (e.g. [6,19]), Woorpje does not need an exact bound for each
variable, but only an upper bound. Experiments indicate that Woorpje is not
only reliable but also competitive with the more mature CVC4 and Z3. Results
indicate that Woorpje is quicker on pure word equations (no linear length con-
straints), and that CVC4 and Z3 mainly have an edge on word equations with
linear constraints. This may be due to our naive solution for solving linear length
constraints.

2 Preliminaries

Let N be the set of natural numbers, let [n] be the set { 0, 1, 2, . . . , n − 1 } and
[n]0 the set [n] \ { 0 }. For a finite set Δ of symbols, we let Δ∗ be the set of all
words over Δ and ε be the empty word. For an alphabet Δ and a /∈ Δ, we let

On Solving Word Equations Using SAT 95

Δa denote the set Δ ∪ { a }. For a word w = x0x1 . . . xn−1 we let |w| = n refer
to its length. For i ∈ [|w|] we denote by w[i] the symbol on the ith position of
w i.e. w[i] = xi. For a ∈ Δ and w ∈ Δ∗ we let |w|a denote the number of as
in w. If w = v1v2 for some words v1, v2 ∈ Δ∗, then v1 is called a prefix of w
and v2 is a suffix of w. In the remainder of the paper, we let Ξ = Σ ∪ Γ where
Σ (Γ) is a set of symbols called letters (variables) and Σ ∩ Γ = ∅. We call a
word w ∈ Ξ∗ a pattern over Ξ. For a pattern w ∈ Ξ∗ we let var(w) ⊆ Γ denote
the set of variables from Γ occurring in w. A substitution for Ξ is a morphism
S : Ξ∗ → Σ∗ with S(a) = a for every a ∈ Σ and S(ε) = ε. Note, that to define
a substitution S, it suffices to define S(X) for all X ∈ Γ .

A word equation over Ξ is a tuple (u, v) ∈ Ξ∗ × Ξ∗ written u =̇ v. A sub-
stitution S over Ξ is a solution to a word equation u =̇ v (denoted S |=u =̇ v) if
S(u) = S(v). A word equation u =̇ v is satisfiable if there exists a substitution
S such that S |= u =̇ v. A system of word equations is a set of word equations
P ⊆ Ξ∗ ×Ξ∗. A system of word equations P is satisfiable if there exists a substi-
tution S that is a solution to all word equations (denoted S |= E). Karhumäki
et al. [14] showed that for every system of word equations, a single equation can
be constructed which is satisfiable if and only if the initial formula was satisfi-
able. The solution to the constructed word equation can be directly transferred
to a solution of the original word equation system.

Bounded Word Equations. A natural sub-problem of solving word equations is
that of Bounded Word Equations. In this problem we are not only given a word
equation u =̇ v but also a set of length constraints {|X| ≤ bX | X ∈ Γ ∧bX ∈ IN}.
The bounded word equation is satisfiable if there exists a substitution S such
S |=u =̇ v and |S(X)| ≤ bX for each X ∈ Γ . For convenience, we shall sometimes
refer to the set of bounds bX as a function B : Γ → IN such that bX = B(X).

Word Equations with Linear Constraints. A word equation with linear con-
straints is a word equation u =̇ v accompanied by a system θ of linear Dio-
phantine equations, where the unknowns correspond to the lengths of possible
substitutions of the variables in Γ . A word equation with linear constraints is
satisfiable if there exists a substitution S such that S |=u =̇ v and S satisfies θ.
Note that the bounded word equation problem is in fact a special case of word
equations with linear constraints.

SAT Solving. A Boolean formula ϕ with finitely many Boolean variables
var(ϕ) = { x1, . . . , xn } is usually given in conjunctive normal form. This is a
conjunction over a set of disjunctions (called clauses), i.e. ϕ =

∧
i

∨
j li,j , where

li,j ∈ ⋃
i∈[n] { xi,¬xi } is a literal. A mapping β : var(ϕ) → { 0, 1 } is called

an assignment ; for such an assignment, the literal l evaluates to true if and
only if l = xi and β(xi) = 1, or l = ¬xi and β(xi) = 0. A clause inside a
formula in conjunctive normal form is evaluated to true if at least one of its
literals evaluates true. We call a formula ϕ satisfied (under an assignment) if all
clauses are evaluated to true. If there does not exists a satisfying assignment, ϕ
is unsatisfiable.

96 J. D. Day et al.

3 Word Equation Solving

In this section we focus on solving Bounded Word Equations and Word Equations
with Linear Constraints. We proceed by first solving bounded word equations,
and secondly, we discuss a minor change, that allows solving word equations
with linear constraints.

3.1 Solving Bounded Word Equation

Recall that a bounded word equation consists of a word equation u =̇ v along
with a set of equations {|X| ≤ bX} providing upper bounds for the solution
of each variable X. In our approach we use these bounds to create a finite
automaton which has an accepting run if and only if the bounded word equation
is satisfiable.

Before the actual automata construction, we need some convenient transfor-
mations of the word equation itself. For a variable X with length bound bX ,
we replace X with a sequence of new ‘filled variables’ X(0) · · · X(bX−1) which
we restrict to only be substituted by either a single letter or the empty word. A
pattern containing only filled variables, as well as letters, is called a filled pattern.
For a pattern w ∈ Ξ∗ we denote its corresponding filled pattern by wξ. In the
following, we refer to the alphabet of filled variables by Γξ and by Ξξ = Σ ∪ Γξ

the alphabet of the filled patterns. Let S : Ξ∗ → Σ∗ be a substitution for
w ∈ Ξ∗. We can canonically define the induced substitution for filled patterns
as Sξ : (Σ ∪ Γξ) → Σλ with Sξ(a) = S(a) for all a ∈ Σ, Sξ(X(i)) = S(X)[i]
for all X(i) ∈ Γξ and i < |S(X)|, and Sξ(X(j)) = λ for all X(j) ∈ Γξ and
|S(X)| ≤ j < bX . Here, λ is a new symbol (λ /∈ Ξξ) to indicate an unused
position at the end of a filled variable. Note that the substitution of a single
filled variable always maps to exactly one character from Σλ, and, as soon as
we discover Sξ

(
X(j)

)
= λ for j ∈ [bX] it also holds that Sξ

(
X(i)

)
= λ for all

j ≤ i < bX . In a sense, the new element λ behaves in the same way as the
neutral element of the word monoid Σ∗, being actually a place holder for this
element ε. In the other direction, if we have found a satisfying filled substitution
to our word equation, the two filled patterns obtained from the left hand side
and the right hand side of an equation, respectively, we can transform it to a
substitution for our original word equation by defining S(X) as the concate-
nation Sξ

(
X(0)

)
. . . Sξ

(
X(i)

)
in which each occurrence of λ is replaced by the

empty word ε, for all X ∈ Γ and i ∈ [bX].
Our goal is now to build an automaton which calculates a suitable substi-

tution for a given equation. During the calculation there are situations where
a substitution does not form a total function. To extend a partial substitution
S : Ξ
→ Σ∗ we define for X ∈ Ξ and b ∈ Σ∗ the notation S

[
X
b

]
= S∪{ X
→ b }

whenever S(X) is undefined and otherwise S
[

X
b

]
= S. This definition can be

naturally applied to filled substitutions. We define a congruence relation which
sets variables and letters in relation whenever their substitution with respect to
a partial substitution Sξ is equal or undefined. For all a, b ∈ Ξξ ∪ {λ} we define

On Solving Word Equations Using SAT 97

a
Sξ∼ b iff Sξ (a) = Sξ (b) or Sξ (b) /∈ Σ∗

λ or Sξ (a) /∈ Σ∗
λ.

Definition 1. For a word equation u =̇ v for u, v ∈ Ξ∗ and a mapping B :
Γ → IN defining the bounds B(X) = bX , we define the equation automaton
A(u =̇ v,B) = (Q, δ, I, F) where Q = ([|uξ| + 1] × [|vξ| + 1]) × (Ξξλ

→ Σλ) is a
set of states consisting of two integers which indicate the position inside the two
words uξ and vξ and a partial substitution, the transition function δ : Q×Σλ → Q
defined by

δ (((i, j) , S) , a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
(i + 1, j + 1) , S

[
uξ[i]

a

] [
vξ[j]

a

])
if uξ[i]

Sξ∼ vξ[j]
Sξ∼ a,

(
(i + 1, j) , S

[
uξ[i]

λ

])
if uξ[i]

Sξ∼ λ = a,
(
(i, j + 1) , S

[
vξ[j]

λ

])
if vξ[j]

Sξ∼ λ = a.

an initial state I = ((0, 0) , { a
→ a | a ∈ Σλ }) and the set of final states F =
{ ((i, j) , Sξ) | i = |uξ|, j = |vξ| }.
The state space of our automaton is finite since the filled substitution Sξ maps
each input to exactly one character in Σ. The automaton is nondeterministic, as
the three choices we have for a transition are not necessarily mutually exclusive.

As an addition to the above definition, we introduce the notion of location as
a pair of integers (i, j) corresponding to two positions inside the two words uξ

and vξ. A location (i, j) can also be seen as the set of states of the form ((i, j), S)
for all possible partial substitutions S.

A run of the above nondeterministic automaton constructs a partial substi-
tution for the given equation which is extended with each change of state. The
equation has a solution if one of the accepting states (|uξ|, |vξ|, S), where S is a
total substitution, is reachable, because the automaton simulates a walk through
our input equation left to right, with all its positions filled in a coherent way.

Example 1. Consider the equation u =̇ v for u = aZXb, v = aXaY ∈ Ξ∗.
We choose the bounds bX = bY = bZ = 1. This will give us the words
uξ = aZ(0)X(0)b and vξ = aX(0)aY (0). Figure 1 visualizes the corresponding
automaton. A run starting with the initial substitution Si = { a
→ a | a ∈ Σλ }
reaching one of the final states gives us a solution to the equation. In this example
we get the substitutions Z
→ a,X
→ a, Y
→ b and Z
→ a,X
→ ε, Y
→ b.

Theorem 1. Given a bounded word equation u =̇ v for u, v ∈ Ξ∗,with bounds
B, then the automaton A(u =̇ v,B) reaches an accepting state if and only if there
exists S such that S |= u =̇ v and |S(X)| ≤ B(X) for all X ∈ Γ .

SAT Encoding. We now encode the solving process into propositional logic.
For that we impose an ordering on the finite alphabets Σ = { a0, . . . , an−1 }
and Γ = { X0, . . . , Xm−1 } for n,m ∈ N. Using the upper bounds given for all
variables X ∈ Γ , we create the filled variables alphabet Γξ. Further, we create

98 J. D. Day et al.

a Z(0) X(0) b

a

X(0)

a

Y (0)

(0, 0)

Si

(1, 1)

Si

(2, 1)

Si

[
Z(0)

λ

]

(1, 2)

Si

[
X(0)

λ

] (2, 2)

Si

[
Z(0)

λ

] [
X(0)

λ

]

Si

[
Z(0)

a

] [
X(0)

a

]

Si

[
Z(0)

b

] [
X(0)

b

]

(3, 2)

Si

[
Z(0)

λ

] [
X(0)

λ

]

(2, 3)

Si

[
Z(0)

a

] [
X(0)

λ

] (3, 3)

Si

[
Z(0)

a

] [
X(0)

a

]

Si

[
Z(0)

a

] [
X(0)

λ

]

(4, 4)

Si

[
Z(0)

a

] [
X(0)

a

] [
Y (0)

b

]

Si

[
Z(0)

a

] [
X(0)

λ

] [
Y (0)

b

]

a

λ

λ

λ

a

b

a

λ

a

λ

b

b

Fig. 1. Automaton for the word equation aZXb =̇ aXaY , with the states grouped
according to their locations. Only reachable states are shown.

the Boolean variables Ka
X(i) , for all X(i) ∈ Γξ, a ∈ Σλ and i ∈ [bX]. Intuitively,

we want to construct our formula such that an assignment β sets Ka
X(i) to 1, if

the solution of the word equation, which corresponds to the assignment β, is such
that at position i of the variable X an a is found, meaning Sξ

(
X(i)

)
= a. To make

sure Ka
X(i) is set to 1 for exactly one a ∈ Σλ we define the clause

∨
a∈Σλ

Ka
X(i)

which needs to be assigned true, as well the constraints Ka
X(i) → ¬Kb

X(i) , for all
a, b ∈ Σλ,X ∈ Γ, i ∈ [bX] where a �= b, which also need to be all true.

To match letters we add the variables Ca,a ↔ � and Ca,b ↔ ⊥ for all a, b ∈ Σλ

with a �= b. As such, the actual encoding of our equation can be defined as follows:
for w ∈ { uξ, vξ } and each position i of w and letter a ∈ Σλ we introduce a
variable which is true if and only if w[i] will correspond to an a in the solution
of the word equation. More precisely, we make a distinction between constant
letters and variable positions and define: worda

w[i] ↔ Cw[i],a if w[i] ∈ Σλ and
worda

w[i] ↔ Ka
w[i] if w[i] ∈ Γξ. The equality of two characters, corresponding to

position i in u and, respectively, j in v, is encoded by introducing a Boolean
variable wmi,j ↔ ∨

a∈Σλ
worda

u[i] ∧ worda
v[j] for appropriate i ∈ [|uξ|], j ∈ [|vξ|].

Based on this setup, each location of the automaton is assigned a Boolean
variable. As seen in Definition 1 we process both sides of the equation simul-
taneously, from left to right. As such, for a given equation u =̇ v we create
n · m = (|uξ| + 1) · (|vξ| + 1) many Boolean variables Si,j for i ∈ [n] and j ∈ [m].
Each variable corresponds to a location in our automaton. The location (0, 0)
is our initial location and (|uξ|, |vξ|) our accepting location. The goal is to find
a path between those two locations, or, alternatively, a satisfying assignment
β, which sets the variables corresponding to these locations to 1. Every path

On Solving Word Equations Using SAT 99

between the location (0, 0) and another location corresponds to matching pre-
fixes of u and v, under proper substitutions. We will call locations where an
assignment β sets a variable Si,j to 1, active locations. Our transitions are now
defined by a set of constraints. We fix i ∈ [n] and j ∈ [m] in the following.
The constraints are given as follows: The first constraint (1) ensures that every
active location has at least one active successor. The next three constraints
(2)–(4) ensure the validity of the paths we follow: from a location we can only
proceed to exactly one other location, in order to find a satisfying assignment;
therefore we disallow simultaneous steps in multiple directions. In (5), (6) we
forbid using an λ-transition whenever there is another possibility of moving for-
ward. In the same manner we proceed in the case of two matching λ in (7);
this part is especially important for finding substitutions which are smaller than
the given bounds. The idea applies in the same way for matching letters, whose
encoding is given in (8). The actual transitions which are possible from one state
to another are encoded in (9) by using our Boolean variables wmi,j which are
true for matching positions in the two sides of the equation. This constraint
allows us to move forward in both words if there was a match of two letters in
the previous location. When the transitions are pictured as movements in the
plane, this corresponds to a diagonal move. A horizontal or vertical move corre-
sponds to a match with the empty word. The last constraint (10) ensures a valid
predecessor. This is supposed to help the solver in deciding the satisfiability of
the obtained formula, i.e., to guide the search in an efficient way. It can be seen
as a local optimization step.

Si,j → Si+1,j ∨ Si,j+1 ∨ Si+1,j+1 (1)
(Si,j ∧ Si,j+1) → (¬Si+1,j+1 ∧ ¬Si+1,j) (2)
(Si,j ∧ Si+1,j) → (¬Si+1,j+1 ∧ ¬Si,j+1) (3)
(Si,j ∧ Si+1,j+1) → (¬Si,j+1 ∧ ¬Si+1,j) (4)

Si,j ∧ ¬wordλ
u[i] → ¬Si+1,j and Si,j ∧ wordλ

u[i] ∧ ¬wordλ
v[j] → Si+1,j (5)

Si,j ∧ ¬wordλ
v[j] → ¬Si,j+1 and Si,j ∧ ¬wordλ

u[i] ∧ wordλ
v[j] → Si,j+1 (6)

Si,j ∧ wordλ
u[i] ∧ wordλ

v[j] → Si+1,j+1 (7)

Si,j ∧ Si+1,j+1 → wmi,j (8)
Si,j ↔ (Si−1,j−1 ∧ wmi−1,j−1) ∨ (Si,j−1 ∧ ¬wmi,j−1) ∨ (Si−1,j ∧ ¬wmi−1,j) (9)
Si+1,j+1 → Si,j ∨ Si+1,j ∨ Si,j+1 (10)

The final formula is the conjunction of all constraints defined above. This formula
is true iff location (n,m) is reachable from location (0, 0), and this is true iff the
given word equation is satisfiable w.r.t. the given length bounds.

Lemma 1. Let u =̇ v be a word equation, B be the function giving the bounds
for the word equation variable, and ϕ the corresponding formula consisting of
the conjunction (1)–(10) and the earlier defined constraints in this section, then
ϕ ∧ S0,0 ∧ S|uξ|,|vξ| has a satisfying assignment if and only if A(u =̇ v,B) reaches
an accepting state.

100 J. D. Day et al.

Example 2. Consider the word equation u =̇ v where u = XaXbY bZ and v =
aXY Y bZZbaa ∈ Ξ∗ where Σ = { a } and Γ = { X,Y,Z }. Using the approach
discussed above, we find the solution S(X) = aaaaaaaa, S(Y) = aaaa and
S(Z) = aa using the bounds bX = 8 and bY = bZ = 6. We set up an automaton
with 32·38 = 1216 states to solve the equation. In Fig. 2 we show the computation
of the SAT-Solver. Light grey markers indicate states considered in a run of the
automaton. In this case only 261 states are needed. The dark grey markers
visualize the actual path in the automaton leading to the substitution. Non-
diagonal stretches are λ transitions.

3.2 Refining Bounds and Guiding the Search

Fig. 2. Solver compu-
tation on XaXbY bZ
=̇ aXY Y bZZbaa

Initial experiments revealed a major inefficiency of
our approach: most of the locations were not used
during the search and only increased the encoding
time. The many white markers in Fig. 2 indicat-
ing unused locations visualizes the problem. Since
we create all required variables x ∈ Γ and con-
straints for every position i < bX , we can reduce
the automaton size by lowering these upper bounds.
Abstracting a word equation by the length of the
variables gives us a way to refine the bounds bX

for some of the variables X ∈ Γ . By only consider-
ing length we obtain a Diophantine equation in the
following manner. We assume an ordering on the

variable alphabet Γ = { X0, . . . , Xn−1 }. We associate to each word equation
variable Xj an integer variable Ij .

Definition 2. For a word equation u =̇ v with Γ = { X0, . . . , Xn−1 } we define
its length abstraction by

∑
j∈[n]

(|u|Xj
− |v|Xj

)·Ij =
∑

a∈Σ |v|a−|u|a for j ∈ [n].

If a word equation has a solution S, then so does its length abstraction with
variable Ij = |S(Xj)|. Our interest is computing upper bounds for each variable
Xk ∈ Γ relative to the upper bounds of the bounded word equation problem.
To this end consider the following natural deductions

∑

j∈[n]

(|u|Xj
− |v|Xj

) · Ij =
∑

a∈Σ

(|v|a − |u|a)

⇐⇒ Ik =
∑

a∈Σ (|v|a − |u|a)
|u|Xk

− |v|Xk

−
∑

j∈[n]\k

(|u|Xj
− |v|Xj

) · Ij

|u|Xk
− |v|Xk

=⇒ Ik ≤
∑

a∈Σ (|v|a − |u|a)
(|u|Xk

− |v|Xk
)

−
∑

j∈κ

(|u|Xj
− |v|Xj

) · bXj

(|u|Xk
− |v|Xk

)
= bSXk

,

where κ = {m ∈ [n] \ k | (| u|Xk
− |v|Xk

) · (|u|Xm
− |v|Xm

) < 0 }. Whenever
0 < bSXk

< bXk
holds, we use bSXk

instead of bxk
to prune the search space.

On Solving Word Equations Using SAT 101

The length abstraction is also useful because it might give information about
the unsatisfiability of an equation: if there is no solution to the Diophantine
equation, there is no solution to the word equation. We use this acquired knowl-
edge and directly report this fact. Unfortunately whenever |u|X −|v|X = 0 holds
for a variable X we cannot refine the bounds, as they are not influenced by the
above Diophantine equation.

Guiding the Search. The length abstraction used to refine upper bounds can
also be used to guide the search in the automaton. In particular it can restrict
allowed length of one variable based on the length of others. We refer to the
coefficient of variable Ij in Definition 2 by Cou,v(Ij) =

(|u|Xj
− |v|Xj

)
.

To benefit from the abstraction of the word equation inside our propositional
logic encoding we use Reduced Ordered Multi-Decision Diagrams (MDD) [2]. An
MDD is a directed acyclic graph, with two nodes having no outgoing edges (called
true and false terminal nodes). A Node in the MDD is associated to exactly
one variable Ij , and has an outgoing edge for each element of Ij ’s domain. In the
MDD, a node labelled Ij is only connected to nodes labelled Ij+1. A row (r(Ij))
in an MDD is a subset of nodes corresponding to a certain variable Ij .

We create the MDD following Definition 2. The following definition creates
the rows of the MDD recursively. An MDD node is a tuple consisting of a variable
Ij and an integer corresponding the partial sum which can be obtained using
the coefficients and position information of all previous variables Ik for k < j.
We introduce a new variable I−1 labelling the initial node of the MDD. The
computation is done as follows:

r(Ii) = { (Ii, s + k · Cou,v(Xi)) | s ∈ { s′ | (Ii−1, s
′) ∈ r(Ii−1) } , k ∈ [bXi

] } (11)

and r(I−1) = { (I−1, 0) }. Since Ij is associated to the word equations variable
Xj , we let r(Xj) = r(Ij). We denote the whole set of nodes in the MDD by
MC =

⋃
X∈Γ∪{ I−1 } r(X). The true node of the MDD is (In−1, s#), where

s# =
∑

a∈Σ |v|a − |u|a. If the initial creation of nodes did not add this node,
the given equation (Definition 2) is not satisfiable hence the word equation has
no solution given the set bounds. Furthermore there is no need to encode the
full MDD, when only a subset of its nodes can reach (In−1, s#). For reducing
the MDD nodes to this subset, we calculate all predecessors of a given node
(Ii, s) ∈ MC as follows

pred((Ii, s)) =
{

(Ii−1, s
′)

∣
∣ s′ = s − k · Cou,v(Xi−1), k ∈ [bXi−1]

}
.

The minimized set M = F (T) of reachable nodes starting at the only accepting
node T = { (In, s#) } is afterwards defined through a fixed point by

T ⊆ F (T) ∧ (∀ p ∈ F (T) : q ∈ pred(p) ∧ q ∈ MC ⇒ q ∈ F (T)
)

(12)

We continue by encoding this into a Boolean formula. For that we need informa-
tion on the actual length of a possible substitution. We reuse the Boolean vari-
ables of our filled variables X ∈ Γξ. The idea is to introduce bX +1 many Boolean

102 J. D. Day et al.

variables (OHi(0) . . .OHi(bX + 1)) for each Xi ∈ Γ , where OHi(j) is true if and
only if Xi has length j in the actual substitution. This kind of encoding is known
as a one-hot encoding. To achieve this we add a constraint forcing substitutions
to have all λ in the end. We force our solver to adapt to this by adding clauses
Kλ

X(j) → Kλ
X(j+1) for all j ∈ [bXi

−1] and X
(j)
i ∈ Γξ. The actual encoding is done

by adding the constraints OHi(0) ↔ KλX
(0)
i and OHi(bXi

) ↔ ¬Kλ

X
(bXi

−1) , which
fixes the edge cases for the substitution by the empty word and no λ inside it. For
all j ∈ [bXi

]0, we add the constraints OHi(j) ↔ Kλ

X
(j)
i

∧ ¬Kλ

X
(j−1)
i

, which marks

the first occurrence of λ. The encoding of the MDD is done nodewise by associat-
ing a Boolean variable Mi,j for each i ∈ [|Γ |], where (Ii, j) ∈ M . Our goal is now
to find a path inside the MDD from node (I−1, 0) to (In−1, s#). Therefore we
enforce a true assignment for the corresponding variables M−1,0 and Mn−1,s# . A
valid path is encoded by the constraint Mi−1,j ∧OHi(k) → Mi,s for each variable
Xi ∈ Γ , k ∈ [bXi

]0, where s = j + k · Cou,v(Xi) and (Ii, s) ∈ M . This encodes
the fact that whenever we are at a node (Ii−1, s) ∈ M and the substitution for a
variable Xi has length k (|S(Xi)| = k), we move on to the next node, which corre-
sponds to Xi and an integer obtained by taking the coefficient of the variable Xi,
multiplying it by the substitution length, and adding it to the previous partial
sum s. Whenever there is only one successor to a node (Ii, j) within our MDD,

(I−1, 0)

(I0, 0)

(I1, −1)(I1, 0) (I1, −2)

(I2, 0) (I2, −1) (I2, −2)(I2, 1)(I2, 2)

truefalse

I0 ∈ [2]

I1 = 0
I1 = 1

I1 = 2

I2 = 0I2 = 1
I2 = 2

I2 = 1 I2 = 0I2 = 2
I2 = 2

I2 = 1
I2 = 0

Fig. 3. The MDD for aX2X0b
.
= aX0aX1

we directly force its correspond-
ing one hot encoding to be true
by adding Mi−1,j → OHi(j).
This reduces the amount of
guesses on variables.

Example 3. Consider the equa-
tion u =̇ v for u = aX2X0b, v =
aX0aX1 ∈ Ξ∗, where Σ =
{ a, b } and Γ = { X0,X1,X2 }.
The corresponding linear equa-
tion therefore has the form 0 ·
I0 + (−1) · I1 + 1 · I2 = 0
which gives us the coefficients
Cou,v(X0) = 0, Cou,v(X1) = −1
and Cou,v(X2) = 1. For given
bounds bX0 = bX1 = bX2 = 2 the induced MDD has the form shown in Fig. 3. In
this example s# = 0, and therefore (I2, 0) is the only node connected to the true
node. The minimization of the MDD by using the fixed point decribed in (12)
removes all grey nodes, since they are not reachable starting at the true node.
The solver returns the substitution S(X0) = ε, S(X0) = b and S(X0) = a. It took
the centred path consisting of the nodes (I−1, 0), (I0, 0), (I1,−1), (I2, 0), true
inside the MDD.

Adding Linear Length Constraints. Until now we have only concerned ourselves
with bounded word equations. As mentioned in the introduction however, bound-
ed equations with linear constraints are of interest as well. In particular, without

On Solving Word Equations Using SAT 103

Preprocessing Encoding SAT-Solver
Input

Model

Woorpje

unsat
sat

sat

unsat

unknown

Fig. 4. Architecture of Woorpje

loss of generality we restrict to linear constraints of the form [2] c0I0 + · · · +
cn−1In−1 ≤ c where c, ci ∈ Z are integer coefficients and Ii are integer variables
with a domain Di = { m ∈ IN | 0 ≤ m ≤ di } and a corresponding di ∈ IN. Each
Ii corresponds to the length of a substitution to a variable of the given word
equation.

Notice that the structure of the linear length constraint is similar to that
of Definition 2. For handling linear constraints we can adapt the generation of
MDD nodes to keep track the partial sum of the linear constraint, and define
the accepting node of the MDD to one where all rows have been visited and the
inequality is true. We simply extend the set T which was used in the fix point
iteration in (12) to the set T =

{
(In, s)

∣
∣ (In, s) ∈ MC ∧ s ≤ s#

}
.

4 Experiments

The approach described in the previous sections has been implemented in the
tool Woorpje. The inner workings of Woorpje is visualised in Fig. 4. Woor-
pje first has a preprocessing step where obviously satisfiable/unsatisfiable word
equations are immediately reported.

After the preprocessing step, Woorpje iteratively encodes the word equation
into a propositional logic formula and solves it with Glucose [3] for increasing
maximal variable lengths (i2, where i is the current iteration). If a solution is
found, it is reported. The maximal value of i is user definable, and by default
set to 2n where n is the length of the given equation. If Woorpje reaches the
given bound without a verdict, it returns unknown.

We have run Woorpje and state of the art word equation solvers (CVC4
1.6, Norn 1.0.1, Sloth 1.0, Z3 4.8.4) on several word equation benchmarks with
linear length constraints. The benchmarks range from theoretically-interesting
cases to variations of the real-world application set Kaluza [19]. All tests were
performed on Ubuntu Linux 18.04 with an Intel Xeon E5-2698 v4 @ 2.20 GHz
CPU and 512 GB of memory with a timeout of 30 s.

We used five different kind of benchmarks. The first track (I) was produced
by generating random strings, and replacing factors with variables at random,
in a coherent fashion. This guarantees the existence of a solution. The gener-
ated word equations have at most 15 variables, 10 letters, and length 300. The
second track (II) is based on the idea in Proposition 1 of [10], where the equa-
tion XnaXnbXn−1bXn−2 · · · bX1

.= aXnXn−1Xn−1bXn−2Xn−2b · · · bX1X1baa is

104 J. D. Day et al.

shown to have a minimal solution of exponential length w.r.t. the length of the
equation. The third track (III) is based on the second track, but each letter b is
replaced by the left hand side or the right hand side of some randomly generated
word equation (e.g., with the methods from track (I)). In the fourth track (IV)
each benchmark consists of a system of 100 small random word equations with at
most 6 letters, 10 variables and length 60. The hard aspect of this track is solving
multiple equations at the same time. Within the fifth track (V) each benchmark
enriches a system of 30 word equations by suitable linear constraints, as presented
in this paper. This track is inspired by the Kaluza benchmark set in terms of hav-
ing many small equations enriched by linear length constraints. All tracks, except
track II which holds 9 instances, consist of 200 benchmarks. The full benchmark
set is available at https://www.informatik.uni-kiel.de/∼mku/woorpje. Table 1 is
read as follows: is the count of instances classified as correctly, where marks
the incorrect classified cases. For instances marked with the solver returned no
answer but terminated before the timeout of 30 s was reached, where in marked
cases the solver was killed after 30 s. The row marked by states the overall solv-
ing time. The produced substitutions were checked regarding their correctness
afterwards. The classification of was done by ad-hoc case inspection whenever
not all solvers agreed on a result. In the cases one solver produced a valid solu-
tion, and others did not, we validated the substitutions manually. For the cases
where one solver determined an equation is unsatisfied and all others timed out,
we treated the unsat result as correct. This means that we only report errors if a
solver reports unsat and we know the equation was satisfiable. During our evalu-
ation of track I CVC4 crashed with a null-pointer exception regarding the word
equation dbebgddbecfcbbAadeeaecAgebegeecafegebdbagddaadbddcaeeebfabfef -
abfacdgAgaabgegagf =̇ dbebgddbeAfcbbAaIegeeAaDegagf , where lowercase
symbols are letters and uppercase symbols are variables. Worth mentioning is
the reporting of 14 satisfiable benchmarks by the tool Sloth without being able
to produce a valid model, while at least two other tools classified them as unsat-
isfiable. We treated this as an erroneous behaviour.

Table 1. Benchmark results (: correct classified, : reported unknown, : timed

out after 30 s, : incorrectly classified, : total Time in seconds)

The result shows that Woorpje produces reliable results (0 errors) in com-
petitive time. It outperforms the competitors in track I, III and IV and sticks

https://www.informatik.uni-kiel.de/~mku/woorpje

On Solving Word Equations Using SAT 105

relatively tight to the leaders Z3str3, Z3Seq and CVC4 on track V. On track
II Woorpje trails CVC4 and Z3Str3. The major inefficiency of Woorpje is
related to multiple equations with large alphabets and linear length constraints.

It is worth emphasising, that the benchmarks developed here seem of intrinsic
interest, as they challenge even established solvers.

5 Conclusion

In this paper we present a method for solving word equations by using a SAT-
Solver. The method is implemented in our new tool Woorpje and experiments
show it is competitive with state-of-the-art string solvers. Woorpje solves word
equations instances that other solvers fail to solve. This indicates that our tech-
nique can complement existing techniques in a portfolio approach.

In the future, we aim to extend our approach to include regular constraints.
As our approach relies on automata theory, it is expected that this could be
achievable. Another step is the enrichment of our linear constraint solving. We
currently do a basic analysis by using the MDDS. There are a few refinement
steps described in [2] which seem applicable. A next major step is to develop a
more efficient encoding of the alphabet of constants. Currently the state space
explodes due to the massive branching caused by the usage of large alphabets.

References

1. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

2. Ab́ıo, I., Stuckey, P.J.: Encoding linear constraints into SAT. In: O’Sullivan, B.
(ed.) CP 2014. LNCS, vol. 8656, pp. 75–91. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10428-7 9

3. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
27(01), 1840001 (2018)

4. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

5. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp.
55–59, October 2017

6. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, 8–10 December 2008, San Diego, California, USA, Proceedings,
pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/osdi08/
tech/full papers/cadar/cadar.pdf

https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-10428-7_9
https://doi.org/10.1007/978-3-319-10428-7_9
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

106 J. D. Day et al.

8. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL), 49 (2019)

9. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying Java bytecode. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 10

10. Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations.
In: Proceedings of MFCS 2017. LIPIcs, vol. 83, pp. 18:1–18:14 (2017)

11. Hoĺık, L., Jank P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. Proc. ACM Program. Lang.
2(POPL), 4 (2017)

12. Jeż, A.: Recompression: a simple and powerful technique for word equations.
In: 30th International Symposium on Theoretical Aspects of Computer Science,
STACS 2013, 27 February- 2 March 2013, Kiel, Germany, pp. 233–244 (2013).
https://doi.org/10.4230/LIPIcs.STACS.2013.233

13. Jeż, A.: Word equations in nondeterministic linear space. In: Proceedings of ICALP
2017. LIPIcs, vol. 80, pp. 95:1–95:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2017)

14. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM (JACM) 47(3), 483–505 (2000)

15. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver
for string constraints. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pp. 105–116. ACM (2009)

16. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Sbornik:
Math. 32(2), 129–198 (1977)

17. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055097

18. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
40th Annual Symposium on Foundations of Computer Science, pp. 495–500. IEEE
(1999)

19. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for Javascript. In: 2010 IEEE Symposium on Security and
Privacy, pp. 513–528. IEEE (2010)

20. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–
240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 12

https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.4230/LIPIcs.STACS.2013.233
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/978-3-319-41528-4_12

Parameterised Verification
of Publish/Subscribe Networks

with Exception Handling

Giorgio Delzanno(B)

DIBRIS, University of Genova, Genoa, Italy
giorgio.delzanno@unige.it

Abstract. We present a formal model of publish/subscribe network
architectures in which a central communication broker is in charge of
distributing messages to clients subscribed to certain topics. We con-
sider different semantics for the notification phase in order to take into
consideration exceptions due to node crashes. For the considered model,
we study decidability of verification problems formulated in terms of
coverability, a non trivial class of reachability problems well-suited to
validate properties of parameterised systems.

1 Introduction

Publish/subscribe protocols such as MQTT are widely used for interconnecting
heterogeneous collections of network services and devices, e.g., in Internet of
Things applications. In this paper we present a new formal model of publish/-
subscribe protocols such as MQTT in which a broker is in charge of distributing
messages to clients subscribed to certain topics. In this setting we use a tran-
sition system parametric on the specification of individual nodes to provide an
operational semantics to basic operations such as (un)subscription and push
notifications. Node crashes and connection failures are modelled via state infor-
mation included in the representation of individual nodes. We then provide a
formal specification of different implementations of the broker internal struc-
ture. The semantics is inspired to a working prototype of pub/sub broker that
we implemented in Java using RMI (Remote Method Invocation) communica-
tion. More in detail, we consider two scenarios in which to model the delivery of
a published message m to subscribers of a given topic t.

In the first scenario the broker acknowledges the request and, inside a syn-
chronisation block, forwards the message the other clients subscribed to topic
t. Communication failures are captured locally via a try-catch statement as in
Fig. 1. In the considered example the broker stores client communication data in
a shared Map protected by a synchronization region (the Map topicRelation). In
RMI the communication data are encapsulated in stub objects that act as inter-
faces when invoking remote methods on each client (in our example the method

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 107–120, 2019.
https://doi.org/10.1007/978-3-030-30806-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_9

108 G. Delzanno

boolean pub l i sh (S t r ing top ic , S t r ing news , S t r ing sender)
throws Exception {
C l i e n t I n t e r f a c e c l i e n t ;
synchronized (t op i cRe l a t i on) {

Map<Integer , C l i e n t I n t e r f a c e>
s ub s c r i b e rL i s t = top i cRe l a t i on . get (t op i c) ;

synchronized (s ub s c r i b e rL i s t) {
I t e r a t o r<Map. Entry<Integer , C l i e n t I n t e r f a c e>> e n t r i e s =

sub s c r i b e rL i s t . entrySet () . i t e r a t o r () ;
while (e n t r i e s . hasNext ()) {

Map. Entry<Integer , C l i e n t I n t e r f a c e>
entry = en t r i e s . next () ;

c l i e n t = entry . getValue () ;
try { stub . send (top ic , sender , news) ; }
catch (RemoteException e) {

System . out . p r i n t l n (” No t i f i c a t i o n e r r o r) ;
}

}
}

}
re turn true ;

}

Fig. 1. Broker in Java: first scenario.

send). Remote methods throw RemoteExceptions. In this example, since excep-
tions are handled locally, notification always reach all connected nodes leaving
the state of all other nodes unchanged.

In the second scenario we consider an implementation in which an exception
generated during a push notification sent to a certain client is propagated to the
caller of the publish method. Going back to our Java example, this scenario corre-
sponds to the implementation of the publish method with synchronized regions,
an iterator over a Map, and a remote callback on a client stub (method send) in
Fig. 2. In this scenario we assume that every invocation to the publish method
is embedded into a try-catch statement, e.g., to propagate error notifications to
the server or to modify the current list of active clients.

In the paper we give a formal account of the above mentioned scenarios
by introducing a transition system modelling configurations with an arbitrary
number of publishers and subscribers and a single broker. The behaviour of the
broker is hard-wired in the semantics of the transition system. For the considered
model, we focus our attention on decidability properties of verification problems
formulated in terms of coverability, a non trivial class of reachability problems
well-suited to validate properties of parameterised systems.

The reason why we consider parameterised formulations of verification prob-
lems is strictly related to the nature of distributed algorithms and protocols.
Indeed, protocols designed to operate in distributed systems are often defined

Parameterised Verification of Publish/Subscribe Networks 109

boolean pub l i sh (S t r ing top ic , S t r ing news , S t r ing sender)
throws Exception {

synchronized (t op i cRe l a t i on) {
Map<Integer , InfoSub> s ub s c r i b e rL i s t =

top i cRe l a t i on . get (t op i c) ;
synchronized (s ub s c r i b e rL i s t) {

I t e r a t o r<Map. Entry<Integer , InfoSub>>
e n t r i e s = sub s c r i b e rL i s t . entrySet () . i t e r a t o r () ;

while (e n t r i e s . hasNext ()) {
Map. Entry<Integer , InfoSub>

entry = en t r i e s . next () ;
entry . getValue () . send (top ic , sender , news) ;

}
}

}
return true ;

}

Fig. 2. Broker in Java: second scenario.

for an arbitrary number of components. Formal specification languages like Petri
nets and automata are often used to model skeletons of this kind of systems. In
this setting the coverability decision problem [1] is typically used to formulate
reachability of bad configurations independently from the number of components
of a system. Furthermore, to express safety properties of distributed systems we
can lift the coverability decision problem, in which the initial configuration is
fixed a priory, to a formulation in which the initial configuration is picked up
from an infinite set of initial configurations [3,4]. This formulation of the cover-
ability problem has been considered in [5,7–12] in order to reason on Broadcast
Protocols. Falsification of this decision problem provides a characterisation of
initial configurations from which it is possible to reach a bad configuration.

Plan of the Paper. In Sect. 2 we introduce our formal model of Pub/Sub Net-
works, inspired to extensions of Petri nets with data with a first formulation of
the notification phase. In Sect. 4 we study decidability properties for coverability
in parameterised formulations of Pub/Sub Networks. In Sect. 5 we consider an
extensions with retained messages inspired to the MQTT protocol. In Sect. 6
we introduce a variant of the notification phase in which we model exception
handling using a global conditions on the operating status of client nodes and
reconsider decidability properties for coverability in parameterised formulations
of the proposed variant of Pub/Sub Networks. In Sect. 7 we address some con-
clusions, consider other extensions and proposed some open problems.

110 G. Delzanno

2 Formal Model of Pub/Sub Architectures

In this section we introduce a formal model that will help us to analyse the
interactions between publishers and subscribers via a server with synchronized
operations on internal data structures. In the rest of the paper we will use the
following terminology. Multisets over elements e1, e2, . . . in a support set D will
be indicated as {{e1, e2, . . .}}, multiset union as ⊕, multiset difference as �, �,
� as multiset inclusion, and ∈ as membership. Furthermore, we will use the
standard notation such as ∪,∩, \,⊆,⊂ and ∈ for operations over sets. We will
use 2A to indicate the powerset of A. Finally, we will use 〈e1, . . . , en〉 to denote
tuples of elements in D.

Topics, States, Messages and Actions

We define T to be a finite set of, fixed a priori, labels representing topics names.
We define Q to be a finite set of labels of client states. Furthermore, we define
M to be a finite set of message labels. Finally, we consider a finite set of action
labels having the following form:

– local, that denotes a local transition,
– subscribe(s) for s ⊆ T that denotes subscription to a subset of topics,
– unsubscribe(s) for s ⊆ T that denotes unsubscription from a subset of topics,
– publish(m, t) with m ∈ M and t ∈ T , that denotes publishing of message m

on topic t.

The above listed type of actions are strictly related to the communication model
typical of publish/subscribe architecture in which every message is delivered to
all subscribers via a shared broker.

Client Specification

In the rest of the section we will first introduce the static specification of individ-
ual clients. The dynamic semantics of a client will be described only after having
introduced the notion network configuration. In this setting we will consider sys-
tems composed by a single server and an arbitrary number of client instances,
each one defined by the same client specification. A client configuration c is a
tuple 〈q, s, b, f〉, where q ∈ Q is the current client state, s ∈ 2T is the set of topics
for which the client is a subscriber, b ∈ 2M is the set of messages received so
far, and f ∈ {�,⊥} is a flag that defines the connection status of the client with
respect to the global network, namely � corresponds to the normal operating
status, whereas ⊥ corresponds to a disconnection event.

A client specification P is a tuple 〈Q, q0, R〉, where Q is a finite set of states,
q0 ∈ Q is the initial state, and R ⊆ Q × A × 2M × Q defines state transitions
induced by action labels. In other words a client specification can be viewed
as a finite state automata with labelled transitions which statically defines its
behavior. The tuple 〈q, a, s, q′〉 denotes a transition from q to q′ associated to
action a whose firing requires the presence of at least the set of messages s in the
local message list. For instance, 〈q1, local, {m,n}, q2〉 can be fired in 〈q1, s, b, f〉
only if {m,n} ⊆ b.

Parameterised Verification of Publish/Subscribe Networks 111

We assume here that disconnected clients cannot roll back to a normal status,
i.e., when they restart they will be assigned a new identity, their internal state
being completely reset. In other words we will simulate restart by using client
creation. The model can naturally be extended in order to consider a richer set
of operations for the manipulation of local message sets (e.g. remove messages,
reset buffers, etc.). For the sake of brevity, we will keep the model simple and
discuss how these extension affect the decidability of coverability when necessary.

2.1 Pub/Sub Networks

We are ready now to define a model for Pub/Sub Networks. In this paper we
will consider a single Pub/Sub broker. The client-server architecture of such a
server will be implicitly defined via the semantics of publish operations.

A Pub/Sub Network S consists of fixed sets A, Q, M , and a client speci-
fication P = 〈Q, q0, R〉. In this setting a network configuration is defined as a
multiset γ = {{c1, . . . , ck}} of client configurations, i.e., ci = 〈qi, si, bi, fi〉 with
qi ∈ Q, si ∈ 2T , b ∈ 2M and fi ∈ {⊥,�} for i : 1, . . . , k. We use N to denote
the set of Network Configurations of finite but arbitrary size. The set N0 of
Initial Network Configurations is the subset of N is which client configurations
are restricted to those with form c0 = 〈q0, ∅, ∅,�〉.
Operational Semantics

The operational semantics of a Pub/Sub Network η is defined via a transitions
system defined through a binary relation → over Network Configurations. To
specify the semantics of this operation we first introduce some auxiliary defini-
tions. Let t ∈ T and γ be a configuration, Ef (t, γ) is the multiset containing all
client configurations of the form 〈q, s, b, f〉 occurring in γ such that t ∈ s. Fur-
thermore, we use Addm(t, γ) to denote the multiset obtained from γ by adding
message m in all local message sets of configurations of subscribers of topic t
with flag f . More precisely, Addm(t, {{}}) = {{}}, Addm(t, {{〈q, s, b,�〉}} ⊕ γ) =
{{〈q, s, {m}∪ b,�〉}}⊕Addm(t, γ), if t ∈ s; Addm(t, {{c}}⊕γ) = {{c}}⊕Addm(t, γ)
otherwise. We also use Addm(t, γ) to denote the multiset obtained from γ by
adding message m in all local message sets of configurations of subscribers of
topic t with flag f . The relation →⊆ N × N is the least relation satisfying one
of the conditions listed below.

Local Operations. We first consider actions with local effect.

Local {{〈q, s, b,�〉}} ⊕ C → {{〈q′, s, b,�〉}} ⊕ C

under the assumption 〈q, local, q′〉 ∈ R. With this rule a client instance updates
its local state after firing a local action.

Subscription {{〈q, s, b,�〉}} ⊕ C → {{〈q′, s ∪ s1, b,�〉}} ⊕ C

under the assumption 〈q, subscribe(s1), q′〉 ∈ R. With this rule a client instance
subscribes to the set of topics s1.

Unsubscription {{〈q, s, b,�〉}} ⊕ C → {{〈q′, s \ s1, b,�〉}} ⊕ C

112 G. Delzanno

under the assumption 〈q, unsubscribe(s1), q′〉 ∈ R. With this rule a client unsub-
scribes from the set of topics s1.

Disconnection {{〈q, s, b,�〉}} ⊕ C → {{〈q, s, b,⊥〉}} ⊕ C

With this rule we can non-deterministically turn an active client instance into a
disconnected instance. This rule models a fairly realistic scenario in which the
broker is equipped with a background service for sending heartbeat messages to
each client in order to check their connection status.

Global Operations. We now turn our attention to global operations that
model the publish action. As discussed in the introduction, we first consider a
semantics based on a broadcast message embedded into synchronisation blocks
in which possible errors during individual notifications are handled locally, e.g.,
using try-catch statements. The semantics of publish is defined as follows.

Publish {{〈q, s,m,�〉}} ⊕ γ → {{〈q′, s,m,�〉}} ⊕ γ′

under the following assumptions:

– 〈q, publish(m, t), q′〉 ∈ R,
– ξ = E�(t, γ),
– μ = γ � ξ,
– γ′ = Addm(t, ξ) ⊕ μ.

With this rule a client sends a publish request for message m on topic t to
the server. The server acknowledges the request and, inside a synchronisation
block, forwards the message m to all other active clients subscribed (at least) to
topic t. We assume that m is not sent to the sender client. Since disconnected
clients are not selected in E�(t, γ), the server forwards the message only to
active clients. The state of all other clients (disconnected ones and clients that
are not subscribed to topic t) remain unchanged. Since our semantics does not
keep track of exact time information on node failures and message receptions,
the message m is not added to disconnected nodes in order to avoid confusion
when inspecting a final configuration.

Computations. A computation σ is a (possibly infinite) sequence of network
configurations σ = γ0 . . . γi . . . such that γi → γi+1 for i ≥ 0. Using a standard
notation, we will use →∗ to denote the transitive closure of →.

3 Example: Specification of an IoT System

Let us consider an example inspired to the standard workflow of an IoT applica-
tion based on MQTT. MQTT is often used for both device discovery and data
acquisition. In the discovery phase a subscriber registers to a topic exposing a
list of available sensors. After receiving access details for a specific sensor, a
subscriber can start listening to data coming from the sensor.

Parameterised Verification of Publish/Subscribe Networks 113

r1 = 〈init, subscribe(sensors), ∅, listen〉
r2 = 〈listen, local, {si}, auxi〉,
r3 = 〈auxi, unsubscribe(sensors), ∅, subi〉
r4 = 〈subi, subscribe(si), ∅, acquirei〉
r5 = 〈acquirei, {di1, . . . , dik}, ∅, oki〉
r6 = 〈oki, unsubscribe(si), ∅, init〉
r7 = 〈oki, unsubscribe(si), ∅, endi〉

Fig. 3. IoT subscriber

Subscriber. The workflow of a subscriber can be described as follows. Consider
the set of topics T = {sensors, s1, . . . , sn} and messages M = {s1, . . . , sn} ∪⋃n

i=1{di1, . . . , dik} in which di,j represents a piece of data coming from sensor
si. A subscriber can then be described by the specification in Fig. 3. In this
model the subscriber first register on topic sensors. Then he waits for message
si for some i and use the message label to register to topic si. After registration
the subscriber waits for messages di1, . . . , dik. Rule r6 specifies the completion
the reception phase, i.e., it simulates the reception of all data sent by sensor
si. Notice that communication is asynchronous, i.e., the subscriber accumulates
individual messages in its message set and then moves to state oki only when
all messages have been received. The subscriber then unsubscribes from si and
moves either to state init or to the halting state endi.

Discovery Service. A discovery service is in charge of generating from time
to time the list of available sensors on the sensor topic. This service can be
described via the following specification.

〈sinit, publish(si, sensors), sendi〉 for i : 1, . . . , n

Sensors. Each sensor si acts as a publisher that is in charge of sending data
along the corresponding topic si. The publisher associate to sensor si can be
described via the following model.

〈initi, publish(dij , si), initi〉 for i : 1, . . . , n, j : 1, . . . , k

In our model the broker is implicitly defined via the semantics of the subscribe,
unsubscribe, and publish operations. In Fig. 4 we present an example of com-
putation in the above defined Pub/Sub Network in which for clarity states are
labeled with process indexes. Notice that messages associated along with a cer-
tain topic are delivered only to the current set of subscribed clients. For instance,
in our example the client in state init2 never receives message s1 since it is not
subscribed to topic sensors when the publisher sends the message. In other
words clients do not read messages from a shared global memory. Subscriber
groups are formed dynamically and messages are delivered to the current set of
subscribers. In our example when sensor si is added to the public registry via

114 G. Delzanno

〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈init3, ∅, ∅,�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈listen, {sensors}, ∅,�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈listen, {sensors}, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈aux1, ∅, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈sub1, {s1}, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈sinit, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈acquire1, {s1}, {s1},�〉,
〈init4, ∅, ∅,�〉〉
〈〈send1, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈acquire1, {s1}, {s1, d1,3},�〉,
〈listen, {sensors}, {s1},�〉〉 . . .

〈〈send1, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈ok1, {s1}, {s1, d1,1, . . . , d1,k},�〉,
〈listen, {sensors}, {s1},⊥〉〉

〈〈send1, ∅, ∅,�〉, 〈init1, ∅, ∅,�〉, 〈init2, ∅, ∅,�〉, 〈end1, ∅, {s1, d1,1, . . . , d1,k},�〉,
〈listen, {sensors}, {s1},⊥〉〉

Fig. 4. Computations

the discovery service, each subscriber can receive its data and possibly reach its
halting state. For instance, it should not be possible to reach a configuration
in which a subscriber is in state endi from initial configurations in which there
are no discovery service nodes in state initi. This kind of property should hold
for any number of nodes. In the next section we will discuss how this kind of
properties can be stated formally on parameterised families of transition systems
of Pub/Sub Networks.

4 The Coverability Decision Problem

In this paper we will focus our attention on safety properties for Pub/Sub
Networks with a finite but arbitrary number of clients (parameterised system)
described via a decision problem called Coverability considered in other formal
models of concurrent and distributed systems such as Petri nets, Broadcast Pro-
tocols, Lossy FIFO systems, and Ad Hoc Networks (see e.g. [2,14]).

Reachability Sets. In order to formally define the problem we introduce some
auxiliary definitions. Given a set of configurations C ⊆ N , the Pre and Post
operators are defined as follows:

Post(C) = {γ′|∃γ ∈ C s.t. γ → γ′}
Pre(C) = {γ|∃γ′ ∈ C s.t. γ → γ′}

Post∗(C) [resp. Pre∗(C)] is defined as
⋃∞

i=0 Posti(C) [resp.
⋃∞

i=0 Prei(C)]. The
set of configurations reachable from C ⊆ N is defined as Post∗(C). For instance,

Parameterised Verification of Publish/Subscribe Networks 115

Post∗(N0) is the set of configurations reachable from initial configurations of
arbitrary size. Similarly, given a set of target configurations T , Pre∗(T) is the
set of predecessor configurations that can reach configurations in T after finitely
many steps.

Coverability. The Coverability Decision problem is strictly related to the above
mentioned correctness criterion. Let 〈N,≤〉 be a total ordering on Network con-
figurations. Furthermore, for a set of configurations S, let uc≤(S) = {γ′|γ ≤
γ′, γ ∈ S}.

Definition 1. Let 〈η,→〉 be a Pub/Sub Network defined over the sets A,M,Q
and the client specification P , with an associated predecessor operator Pre, with
an ordering ≤ on Network Configurations, and with a set N0 of Initial Net-
work Configuration. Given a finite set of configuration F ⊆ N , the Coverability
Decision Problem consists in checking whether N0∩Pre∗(uc≤(F)) = ∅ or, alter-
natively, Post∗(N0) ∩ uc≤(F) = ∅.
The rationale behind this definition is as follows. Assume that T = uc≤(F)
represents a set of bad configurations of arbitrary size (e.g. violations of a given
safety property) that can be finitely generated via the upward closure of F (if
γ represents a violations, then any γ′ larger than γ represents a violation). The
condition N0 ∩ Pre∗(T) = ∅ [resp. Post∗(N0) ∩ T = ∅] holds if and only if there
exist no finite computations that starting from some initial configuration (of any
size) can reach a bad configuration in T .

4.1 Decision Procedure for Coverability in Pub/Sub Networks

In this section we will study instances of the coverability problem that can
be applied to verify properties by considering both local states and received
messages.

Definition 2. Given two client configurations c1, c2, the ordering ≤c is defined
as follows: c1 = 〈q1, s1, b1, f1〉 ≤c c2 = 〈q2, s2, b2, f2〉 if and only if q1 = q2,
s1 = s2, b1 ⊆ b2, and f1 = f2.

The ordering on configurations can be lifted to Network configurations as follows.

Definition 3. Given two Network Configurations γ1, γ2, the ordering ≤c is
defined as follows: γ1 ≤n γ2 if and only if there exists an injective map h from
the configurations in γ1 = {c1, . . . , ck} to configurations in γ2 = {d1, . . . , dn}
such that ci ≤c h(ci) for i : 1, . . . , k.

Theorem 1. The Coverability Decision Problem is decidable for Pub/Sub Net-
works.

116 G. Delzanno

Proof. We apply the methodology introduced in [2,14] to prove that 〈→,≤n〉 is
a well-structured transition systems.

We first observe that the ordering ≤n is obtained embedding equality over
finite sets and finite set inclusion into multiset inclusion. By Higman Lemma’s
[16], the resulting ordering is a well-quasi-ordering, i.e., for any sequence γ1γ2 . . .
there exist indexes i, j s.t. γi ≤c γj .

The transition relation → induced by a client specification P is monotone
w.r.t. ≤n, i.e., if γ1 ≤n γ2 and γ1 → γ3, then there exists γ4 s.t. γ2 → γ4 and
γ3 ≤n γ4. The proof is based on the observation that enabling conditions for
a transition rely only on the occurrence of a certain control state and on the
presence of at least a certain sets of messages in the local message list. Thus,
augmenting the number of client configurations or the size of local message lists
cannot prevent the firing of a rule. In particular, this property holds for the
Publish rule of the operational semantics.

Given a finite set of configuration C it is possible to compute a finite repre-
sentation of Pre(uc≤n

(C)). An indirect proof can be given via the observation
that the semantics of Publish can be encoded using a transfer arc operation
on Petri Nets. The encoding is based on a preliminary flattening step in which
topics set, message lists and connection flag are hardwired into the control state
of individual components. In other words we can generate a flatten specification
in which control states have the form 〈q, s, b, f〉 and in which ≤n is multiset
inclusion (over finitely many labels).

The combination of all above properties proves that Pub/Sub Networks are a
well-structured transition systems w.r.t. ≤n. Decidability of coverability follows
then from the general results in [2,14]. ��

5 Notification with Retained Messages

In Pub/Sub protocols such as MQTT the broker can be instructed in order to
retained the last published message for every topic. Retained messages are then
distributed to new subscribers right after their first connection. The semantics
of this kind of operations requires the introduction of a global state to book-
keep published messages. For brevity, we assume here that all messages (a finite
set) are maintained in the broker. More specifically, a network configuration
with retained messages is defined as a multiset γ = 〈g, {{c1, . . . , ck}}〉 where
g : T → 2M is a mapping from topics to published messages, and ci is a client
configuration. We use g(s) to denote

⋃
t∈s{g(t)}.

The semantics of publish is redefined in order to update the global configu-
ration.

Publish 〈g, {{〈q, s,m,�〉}} ⊕ γ〉 → 〈g′, {{〈q′, s,m,�〉}} ⊕ γ′〉

under the following assumptions:

– 〈q, publish(m, t), q′〉 ∈ R,
– ξ = E�(t, γ),

Parameterised Verification of Publish/Subscribe Networks 117

– μ = γ � ξ,
– γ′ = Addm(t, ξ) ⊕ μ,
– g′(t) = g(t) ∪ {m}, g′(r) = g(r) for r �= t.

The semantics of subscribe is redefined in order to update the message set of a
node upon subscription to a given topic.

Subscription 〈g, {{〈q, s, b,�〉}} ⊕ γ → {{〈q′, s ∪ s1, b ∪ g(s1),�〉}} ⊕ γ〉
under the assumption 〈q, subscribe(s1), q′〉 ∈ R. With this rule a client instance
subscribes to the set of topics s1.

For the extended model, the following property then holds.

Theorem 2. The Coverability Decision Problem is decidable for Pub/Sub Net-
works with retained messages.

Proof. The proof of Theorem1 can be extended in order to deal with the seman-
tics with retained messages. Indeed, we observe that (1) the extended transition
system is still monotone and that (2) it is still possible to compute a finite rep-
resentation of predecessor states passing through a flattening of the transition
system that reduces configurations to multisets of control states. The resulting
system can then be viewed as a Petri net with transfer arc and a control unit
(the global state) for which coverability is known to be decidable [2,14]. ��
We notice that synchronisation steps with control unit can also be encoded via
simpler models such a Process Rewrite Systems with weak unit or finite state
constraints [17–19].

6 Handling Exceptions During Notifications

In this section we consider a semantics of the publish operation in which the
broker does not handle node failures locally to individual notification messages.
In this scenario the failure during a notification for a specific client, e.g. the
client is disconnected and the notification generates and exception, can lead to
a failure of the entire notification phase. As a consequence, the message might
be delivered to a strict subset of the active destination nodes. We assume that
the sender proceed with its execution without forcing the broker to roll-back to
a previous state. Let publishe denote the operation with the above described
implementation of the publish operation.

Operational Semantics for publishe . Let us first define Up⊥(γ) as the
multiset obtained by setting all connection flags occurring in γ to ⊥, namely
Up⊥({{}}) = {{}}, Up⊥({{〈q, s, b,�〉}}⊕γ) = {{〈q, s, b,⊥〉}}⊕Up⊥(γ), Up⊥(t, {{c}}⊕
γ) = {{c}} ⊕ Up⊥(γ) otherwise. The operational semantics of publishe is defined
as follows.

Publishe {{〈q, s,m,�〉}} ⊕ γ → {{〈q′, s,m,�〉}} ⊕ γ′

with the following assumptions:

118 G. Delzanno

– 〈q, publishe(m, t), q′〉 ∈ R,
• E�(t, γ) = ξ ⊕ η,
• μ = γ � (ξ ⊕ η),
• γ′ = Addm(ξ) ⊕ Up⊥(η) ⊕ μ.

With this rule a client sends a publish request for message m on topic t to
the broker. The server acknowledges the request and, inside a synchronisation
block, forwards the message m to all other active clients subscribed (at least)
to topic t. If during the notification phase (typically a scanning of an internal
data structure) a disconnected client is detected (i.e. the corresponding notifi-
cation operation fails) the procedure exits. This effect is modelled using a non-
deterministically chosen subset of active destination nodes ξ with ξ � E�(t, γ)
that represents subscribers ready to receive message m before failure detection.
The remaining potential receivers η are marked as disconnected. In this seman-
tics, among all possible executions, we consider the case in which, during the
notification phase, no disconnected clients are detected as well the case in which
none or a strict subset of clients receive the notification.

The semantics of the new operation is slightly different from the typical
broadcast operations adopted in Petri Nets that we took as target operation
to prove decidability of coverability in the first part of the paper. Indeed this
operation applies a non-deterministic split during the transfer phase in which
instances are transferred from one state to another. The non-deterministic split
redistributes all instances in a given state to a finite set of different states with-
out cancellations or duplications. Despite of the use of a non-standard transfer
operation, coverability is still decidable as proved in the following theorem.

Theorem 3. Coverability is decidable for Pub/Sub Networks with the publishe

operation.

Proof. The proof is based on a reduction of the considered decision problem
to coverability for parameterised systems composed by many finite-state compo-
nents with a single monitor in which each component reacts in a non determinis-
tic way to broadcast messages sent by the monitor. This kind of systems has been
introduced in [6] to model the behaviour of synchronous systems. The decision
procedure is based on a symbolic reachability algorithm based on a constraint
solver for linear integer (in)equalities. The reduction requires the following steps.
For the publish operation the encoding requires a preliminary flattening step in
which topics set, message lists and connection flag are hardwired into the control
state of individual clients. The flattening can then be used to associate finitely
many counters (to keep track of occurrences of states in network configurations)
to each control state in accord with the counting abstraction used e.g. to model
Petri nets as vector addition systems. The flattening and the counter represen-
tation of control states provides a way to represent transition rule using linear
integer inequalities over variables ranging over natural numbers. For instance,
enabling conditions of the publishe operation can be expressed via lower bounds
constraints of the form X ≤ 1 for the counter X that denotes a given control
state, e.g., a publisher state. The effect of a transition can be expressed as an

Parameterised Verification of Publish/Subscribe Networks 119

affine transformation, i.e., a linear combination defined on the current number of
client instances in different counters associated to control states. Differently from
other models such as transfer nets and affine well-structured Nets [15] the seman-
tics of publishe requires inequalities in special form in which the left hand side
may consists of an expression X ′

1 + . . .+X ′
n = X1 + . . .+Xn +Exp(Y1, . . . , Ym)

for variables X ′
i denoting the value of the counter in the next state and vari-

ables Xi and Yj denoting the current values of the counters for i : 1, . . . , n and
j : 1, . . . , m. In addition we need to insert the side conditions X ′

1 ≥ Xi to ensure
that variables occurring in X ′

1 + . . . + X ′
n will be incremented. As an example,

the transitions on counters X ′ + Y ′ = X + Y + Z,X ′ ≥ X,Y ′ ≥ Y,Z ′ = 0 can
be used to model the transfer of all instances in Z in X and Y . The effect of
the transfer is to distribute the instances in Z non-deterministically between X
and Y . Decidability of coverability in the resulting counter representation of the
flattened transition system follows by observing that the problem can be solved
by applying the symbolic backward reachability algorithm based on constraint
solvers for inequalities over natural numbers proposed in [6]. The algorithm main-
tains constraint-based representations of infinite set of configurations via unions
of constraints of the form X1 ≥ c1,Xn ≥ cn. To apply termination results based
on Dickson’s lemma [13] on the ≤v ordering to the resulting procedure, transi-
tions of the form X ′ + Y ′ = X + Y + Z,X ′ ≥ X,Y ′ ≥ Y, . . . require a further
normalization steps in order to eliminate constraints of the form X ′ ≥ X. The
idea here is to associate an auxiliary variable AuxZ to each variable Z whose
value must be split between several variables. Before firing the transfer action,
the transition system enters a special state in which instances in Z are moved
to AuxZ. This phase is non-deterministically terminated in order to start the
transfer arc from Z and AuxZ to variables X and Y respectively. ��

7 Conclusions

We have studied coverability problems for a formal model of Publish/Subscribe
Networks inspired to extensions of Petri nets with broadcast and transfer arcs.
Our model combines asynchronous communication with global operations and
non-deterministic actions to model the effect of exceptions generated during com-
munication between broker and individual clients. The proposed model, exten-
sions and variants seem to be different from other infinite-state models proposed
in the literature, see e.g., [1,3] for a survey on extensions of Petri nets used to
model distributed systems.

For the considered model, we prove preliminary results for the coverability
decision problem. The model discussed in this paper can be extended in different
directions. One possible extension consists of a new operation publishr(m, t, q)
in which m is a message, t is a topic name, and q ∈ Q denotes the state in which
the sender is redirected when an exception is generated during the notification
step. The operational semantics requires to detect absence/presence of crashed
nodes, i.e., global, universally quantified, condition for firing a transition. Finding
suitable semantics for this operation for which coverability remains decidable is
still an open problem.

120 G. Delzanno

References

1. Abdulla, P.A., Delzanno, G.: Parameterized verification. STTT 18(5), 469–473
(2016)

2. Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification methods
for infinite-state systems. Theor. Comput. Sci. 256(1–2), 145–167 (2001)

3. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

4. Bloem, R., et al.: Decidability in parameterized verification. SIGACT News 47(2),
53–64 (2016)

5. Conchon, S., Delzanno, G., Ferrando, A.: Parameterized verification of topology-
sensitive distributed protocols goes declarative. In: NETYS 2018, pp. 209–224
(2018)

6. Delzanno, G.: Constraint-based model checking for parameterized synchronous sys-
tems. In: Armando, A. (ed.) FroCoS 2002. LNCS (LNAI), vol. 2309, pp. 72–86.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45988-X 7

7. Delzanno, G.: A logic-based approach to verify distributed protocols. In: CILC
2016, pp. 86–101 (2016)

8. Delzanno, G.: A unified view of parameterized verification of abstract models of
broadcast communication. STTT 18(5), 475–493 (2016)

9. Delzanno, G.: Formal verification of internet of things protocols. In:
FRIDA@FLOC (2018)

10. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc net-
works. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp.
313–327. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-
4 22

11. Delzanno, G., Sangnier, A., Zavattaro, G.: On the power of cliques in the param-
eterized verification of ad hoc networks. In: Hofmann, M. (ed.) FoSSaCS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19805-2 30

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Verification of ad hoc networks with
node and communication failures. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 235–250. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30793-5 15

13. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

14. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

15. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
petri net extensions. Inf. Comput. 195(1–2), 1–29 (2004)

16. Higman, G.: Ordering by divisibility in abstract algebras. Proc Lond. Math. Soc.
2(7), 326–336 (1952)

17. Kret́ınský, M., Rehák, V., Strejcek, J.: On extensions of process rewrite systems:
rewrite systems with weak finite-state unit. Electr. Notes Theor. Comput. Sci. 98,
75–88 (2004)

18. Kret́ınský, M., Rehák, V., Strejcek, J.: Extended process rewrite systems: expres-
siveness and reachability. In: CONCUR 2004, pp. 355–370 (2004)

19. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1–2), 264–286 (2000)

https://doi.org/10.1007/3-540-45988-X_7
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-19805-2_30
https://doi.org/10.1007/978-3-642-19805-2_30
https://doi.org/10.1007/978-3-642-30793-5_15
https://doi.org/10.1007/978-3-642-30793-5_15

Cellular Automata for the
Self-stabilisation of Colourings and Tilings

Nazim Fatès1(B), Irène Marcovici2, and Siamak Taati3

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
nazim.fates@loria.fr

2 Université de Lorraine, CNRS, Inria, IECL, 54000 Nancy, France
irene.marcovici@univ-lorraine.fr

3 Bernoulli Institute, University of Groningen, Groningen, The Netherlands
siamak.taati@gmail.com

Abstract. We examine the problem of self-stabilisation, as introduced
by Dijkstra in the 1970’s, in the context of cellular automata stabilis-
ing on k-colourings, that is, on infinite grids which are coloured with k
distinct colours in such a way that adjacent cells have different colours.
Suppose that for whatever reason (e.g., noise, previous usage, tamper-
ing by an adversary), the colours of a finite number of cells in a valid
k-colouring are modified, thus introducing errors. Is it possible to reset
the system into a valid k-colouring with only the help of a local rule?
In other words, is there a cellular automaton which, starting from any
finite perturbation of a valid k-colouring, would always reach a valid k-
colouring in finitely many steps? We discuss the different cases depending
on the number of colours, and propose some deterministic and probabilis-
tic rules which solve the problem for k �= 3. We also explain why the case
k = 3 is more delicate. Finally, we propose some insights on the more
general setting of this problem, passing from k-colourings to other tilings
(subshifts of finite type).

Keywords: Cellular automata · Self-stabilisation · Self-correction ·
k-colourings · Subshifts of finite type

1 Introduction

Self-stabilisation is a property omnipresent in biological systems. Indeed, living
cells always need to correct their defects in order to keep their behaviour as
stable as possible (see e.g. Ref. [2]). The study of self-stabilisation in compu-
tational systems was proposed by Dijkstra [4]. The objective is to incorporate
self-stabilisation in discrete parallel models of computation.

In the present article, we explore the phenomenon of self-stabilisation in the
context of two-dimensional cellular automata which operate on k-colourings.

S. Taati—The work of ST was partially supported by NWO grant 612.001.409 of Tobias
Müller.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 121–136, 2019.
https://doi.org/10.1007/978-3-030-30806-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_10

122 N. Fatès et al.

To illustrate the problem, imagine that an artist has a plan to create a two-
dimensional tiling with the constraint that two adjacent tiles necessarily bear
different colours. When this tiling is realised, the artist realises that (a) some
mistakes have occurred during the tiling process and (b) the original tiling plan
has been lost. The question is to know whether it is possible to correct the tiling
to respect the constraints of non-adjacency of colours only by following local
rules. In other words, we can reformulate the question as a reachability problem:
given a set of admissible states of the system, under which conditions is this set
always reachable from the set of its finite perturbations?

The problem of designing self-correcting or self-stabilising cellular automata
has been explored since the 1970’s. Two main models of errors have been consid-
ered: (a) the errors can happen at each time step and are thus concurrent with
the correction process [7,8,11,12] or, (b) the errors are present at the beginning
and are then corrected [6]. Pippenger has studied this latter question, for the
binary case, where the configurations to correct are those which only contain a
unique colour [10]. He has shown that the problems can have positive or nega-
tive answers depending on the specification of the problem such as dimension,
symmetry constraints, etc.

We re-examine this problem in the setting of k-colourings. The cases k = 2
and k ≥ 5 are the simplest and the case k = 4 can be dealt with rather easily.
However, the case k = 3 is much more delicate. We will also explore the question
of symmetries of the rules we use. The case of k-colourings should be considered
as a first step towards a wider view of self-stabilisation in cellular automata. We
indicate some directions on how to consider more general tiling constraints.

2 Setting of the Problem

Let Σ be a finite set that represents the different colours of the tiling. Given two
configurations x, y ∈ ΣZ

2
, we write Δ(x, y) � {i ∈ Z

2 : xi �= yi} for the set of
sites at which x and y disagree.

A finite perturbation of a configuration x ∈ ΣZ
2

is a configuration y ∈ ΣZ
2

such that Δ(x, y) is finite. Given a set Λ ⊆ ΣZ
2
, representing the set of valid

configurations, we denote by Λ̃ the set of finite perturbations of the elements of
Λ, that is:

Λ̃ � {y ∈ ΣZ
2

: ∃x ∈ Λ,Δ(x, y) is finite}.

Our goal is to find a parallel procedure acting in a local way that would, from any
element of Λ̃, reach and stabilise on an element of Λ in a finite number of steps.
The locality of the rule is expressed by the definition of a neighbourhood, that
is, an ordered list N = (n1, . . . , nk) of k elements from Z

2, for some k ∈ N. We
use the model of cellular automata to take into account the distributed aspect of
the process: each cell c ∈ Z

2 is updated according to a local rule f that depends
only on the states of the cells c + n1, . . . , c + nk.

Formally, a two-dimensional cellular automaton (CA) with neighbourhood
N is a mapping F : ΣZ

2 → ΣZ
2

for which there exists a function f : Σk → Σ

Cellular Automata for the Self-stabilisation of Colourings and Tilings 123

satisfying:
∀c ∈ Z

2, F (x)c = f(xc+n1 , . . . , xc+nk
).

Now that we have set all the elements, we can define the notion of self-
stabilisation. We say that a cellular automaton F : ΣZ

2 → ΣZ
2

is self-stabilising
on Λ ⊆ ΣZ

2
if it satisfies the following conditions:

(i) The configurations of Λ are fixed points of F : ∀x ∈ Λ, F (x) = x.
(ii) The configurations of Λ̃ evolve to Λ in finitely many steps: ∀y ∈ Λ̃, ∃t ∈

N, F t(y) ∈ Λ.

We will in particular focus on the case where the set Λ is the set of colourings
of Z

2 with k distinct colours. Let k ≥ 2 be an integer, and let the set Σ =
{0, . . . , k − 1} represent the set of possible colours of the cells. We define the set
of k-colourings of Z

2 by:

Λk � {x ∈ ΣZ
2

: c, c′ ∈ Z
2, ||c − c′||1 = 1 =⇒ xc �= xc′}.

Our aim is to examine if there exist simple self-stabilising rules, depending
on the value of k. We also have a look at other families of subshifts of finite type,
that is, sets Λ defined by local constraints. More specifically, a nonempty set
Λ ⊆ ΣZ

2
is a subshift of finite type (SFT) if there exists a finite set B ⊆ Z

2 and
a function u : ΣB → {0, 1} such that:

Λ = {x ∈ SZ
d

: ∀c ∈ Z
d, u((xc′)c′∈c+B) = 1}.

In the definition above, the function u describes the set of allowed (image 1) and
forbidden (image 0) patterns of base B.

We will focus on cases where the SFT can be defined in terms of horizontal
and vertical constraints. We will call the elements of such an SFT a proximity
tiling. Formally, let us denote by (e1, e2) the standard basis of Z

2. A nonempty
set Λ ⊆ ΣZ

2
is a proximity tiling space if there exist functions v1, v2 : Σ2 → {0, 1}

such that:

Λ = {x ∈ ΣZ
2

: ∀c ∈ Z
2, v1(xc, xc+e1) = v2(xc, xc+e2) = 1}.

Note that the notion of proximity tilings we have introduced here is reminiscent
of tilings by Wang tiles, but this formalism is more adapted to our context. For
example, the set of k-colourings is simply the proximity tiling space defined by
the function v = v1 = v2 where v(a, b) = 1 if a �= b, and 0 if a = b.

In designing self-stabilising rules and proving their correctness, we will often
examine the set of cells where the constraints are not respected. We thus intro-
duce different notions of error. For a configuration x ∈ ΣZ

2
, a cell c ∈ Z

2 is said
to have an ei-error (with respect to vi) if vi(xc, xc+ei

) = 0. It has a (−ei)-error
if vi(xc−ei

, xc) = 0. We will also use the terminology E-error, W-error, N-error,
S-error instead of respectively e1-error, (−e1)-error, e2-error, and (−e2)-error.
The set of cells having an error is defined by:

E(x) � {c ∈ Z
2 : ∃e ∈ {±e1,±e2}, c has an e-error}.

124 N. Fatès et al.

A cell c ∈ Z
2 is said to be error-free if it does not belong to E(x), meaning that

it obeys the local constraints in the four directions. Note that in some cases,
even if E(x) contains only very few cells, it is necessary to modify a much larger
set of cells in order to reach a valid configuration (see Proposition 6).

We will also consider self-stabilising probabilistic CA. For probabilistic CA,
the outcome of the local rule is a probability distribution on Σ, and the cells
of the lattice are updated simultaneously and independently at each time step,
according to the distributions prescribed by the local rule. The local rule in this
case is given by a function ϕ : Σk → P(Σ), where P(Σ) denotes the set of
probability distributions on Σ. The probabilistic CA Φ defined by ϕ maps a
configuration x to a probability measure μ, where for each finite set C ⊆ Z

2, we
have

μ
({y : ∀c ∈ C, yc = vc}

)
=

∏

c∈C

ϕ(xc+n1 , xc+n2 , . . . , xc+nk
)({vc}).

The trajectory of a probabilistic CA Φ with initial configuration x is thus a
Markov process X0,X1, . . . with X0 = x such that, for every t > 0, conditioned
on the value of the configurations X0,X1, . . . , Xt−1, the configuration Xt is
distributed according to the measure Φ(Xt−1). We say that a probabilistic CA
Φ is self-stabilising on Λ if:

(i) The configurations of Λ are left unchanged by Φ: ∀x ∈ Λ,Φ(x) = δx.
(ii) For every y ∈ Λ̃, there exists a finite (random) time T such that XT ∈ Λ

almost surely.

3 The Case of 2-Colourings

In this section, we study the self-stabilisation problem for 2-colourings. We thus
set Σ = {0, 1}, and consider the set Λ2. Note that Λ2 contains only two elements,
corresponding to the two (odd and even) chequerboard configurations.

3.1 Directional Self-stabilisation by a Deterministic CA

Let us define a cellular automaton F on ΣZ
2

by:

∀c ∈ Z
2, F (x)c =

{
1 − xc if xc = xc+e1 = xc+e2 ,

xc otherwise.

The rule above is similar to the well-known majority rule of Toom used to
correct errors that appear on a uniform background [3,12].

Proposition 1. The cellular automaton F defined above is self-stabilising
on Λ2.

Cellular Automata for the Self-stabilisation of Colourings and Tilings 125

t = 0 t = 2 t = 4 t = 10

Fig. 1. Evolution of the cellular automaton for self-correction of the 2-colourings.
(Color figure online)

Proof. It is clear from the definition that ∀x ∈ Λ2, F (x) = x.
For each n ∈ N, define the triangle Tn = {(i, j) ∈ Z

2 : i + j ≤ n, i, j ≥ 0}
on the grid. Let x ∈ Λ2 (recall that x is thus a chequerboard configuration) and
take y ∈ Λ̃2 such that Δ(x, y) is finite. By translating x and y if needed, we can
assume without loss of generality that the difference set Δ(x, y) is included in the
triangle Tn for some n. It is then easy to verify that Δ

(
x, F (y)

) ⊆ Tn−1. Indeed,
for every cell outside Tn, the local rule does not modify the state, whereas for
the cells (i, j) which are inside Tn and satisfy i + j = n, we have F (y)i,j = xi,j .
Iterating F we obtain Δ

(
x, F t(y)

) ⊆ Tn−t for each t ≥ 0. That is, as time
goes by, the set of disagreements becomes smaller (see Fig. 1). In particular, for
t = n + 1, we get Δ

(
x, Fn+1(y)

) ⊆ T−1 = ∅, hence Fn+1(y) = x ∈ Λ2. This
means that the configuration y has been corrected in n + 1 steps. ��

3.2 Isotropic Self-stabilisation by a Probabilistic CA

The cellular automaton F above provides a directional solution: the cells need
to distinguish the North and East directions. In the context of deterministic
CA, Pippenger has shown that requiring all the symmetries for the local rule
can lead to negative results [10]. By contrast, we now propose a probabilistic
CA that achieves the self-stabilisation with an isotropic rule, that is, a rule
which treats the neighbours “equally” and does not distinguish between the four
directions of the grid. This shows that the use of randomness can extend the
range of possibilities. More precisely, the rule we propose consists in applying
a minority function with probability α, and keeping the state unchanged with
probability 1 − α. Such rules are called α-asynchronous and their study has
received a continuous attention in the last years [5]; this structure is here used
to get out of the potential cyclic behaviours that would prevent the system from
reaching the desired stable configurations.

Formally, let N denote the von Neumann neighbourhood N =
(0, e1, e2,−e1,−e2). We define a probabilistic cellular automaton Φ on ΣZ

2
by

the local rule ϕ : Σ5 → P(Σ) given by:

ϕ(q0, q1, . . . , q4) = αδminority (q0,q1,...,q4) + (1 − α)δq0 ,

126 N. Fatès et al.

where δq is the Dirac measure on q, meaning that δq({q′}) = 1 if q = q′, and 0
otherwise, and where minority (a, b, c, d, e) equals 1 if a + b + c + d + e ≤ 2 and
0 otherwise.

Proposition 2. For α ∈ (0, 1), the probabilistic cellular automaton Φ is self-
stabilising on Λ2.

Proof. Let us take x ∈ Λ2 (recall that x is thus a chequerboard configuration)
and y ∈ Λ̃2 such that Δ(x, y) is finite. Let X0,X1, . . . be the Markov process
described by Φ with initial configuration X0 = y. Let R be a rectangle such
that Δ(x, y) ⊆ R. For any c /∈ R, we have ϕ(xc, xc+e1 , xc+e2 , xc−e1 , xc−e2) =
ϕ(yc, yc+e1 , yc+e2 , yc−e1 , yc−e2) = δxc

, so that for all t ≥ 0, Δ(Xt, x) ⊆ R almost
surely. Furthermore, inside R, Φ behaves like an absorbing finite-state Markov
chain that eventually reaches the chequerboard configuration (xc)c∈R. Note that
from any state, with positive probability the chequerboard configuration can be
reached in at most |R| steps. This is because α < 1. Otherwise, a monochromatic
rectangle could blink between the two states all 0’s and all 1’s. ��

3.3 Extension to Finite SFT

The methods presented above for the case k = 2 can be readily extended to all
the cases where Λ is a subshift of finite type that contains only a finite number of
configurations (with an arbitrary set of symbols Σ). Indeed, the configurations
of such a finite SFT are necessarily spatially periodic.

Let us consider an arbitrary finite SFT Λ on Σ = {0, . . . , k − 1}, for some
k ≥ 1. Then, for each configuration x ∈ Λ, there exist integers m,n ≥ 1 such that
σh

m(x) = σv
n(x) = x, where σh and σv denote the horizontal and vertical shift

maps. Taking the least common multiple of the collection of integers obtained
for the different configurations x ∈ Λ (all these integers are bounded by the
cardinality of Λ), we can find horizontal and vertical periods ph, pv ≥ 1 such
that ∀x ∈ Λ, σv

pv(x) = σh
ph(x) = x. This means that the elements of Λ are

constant on every sublattice La,b = {(a + phi, b + pvj) : i, j ∈ Z
2}. Therefore,

we can simply use Toom’s majority rule on each sublattice, that is, we define a
cellular automaton F on ΣZ

2
by:

F (x)a,b = majority(xa,b, xa+ph,b, xa,b+pv),

where the majority function associates to three symbols the symbol which is
most present in this three symbols, with the convention that when the three
symbols are distinct, one can choose arbitrarily the value of the function. Note
however that even if Λ is a proximity tiling, the neighbourhood of the cellular
automaton F depends on the periods ph and pv and can be much larger than 1.

We can also design an isotropic probabilistic rule that corrects finite SFT. If
a state appears strictly more than twice among xa+ph,b, xa,b+pv , xa−ph,b, xa,b−pv ,
this state becomes the new value of xa,b. Otherwise, we randomly choose a new
state in the alphabet Σ. Again, all the errors stay within some enveloping rectan-
gle and are eventually corrected. We can replace both ph and pv by LCM(ph, pv)
in order to have an isotropic rule.

Cellular Automata for the Self-stabilisation of Colourings and Tilings 127

4 The Case of k-Colourings, for k ≥ 5

We now consider the case k ≥ 5. Recall that we have Σ = {0, 1, . . . , k − 1}.

4.1 Directional Self-stabilisation by a Deterministic CA

Let us introduce the following terminology. We say that a cell (i, j) has a NE-
error if it has either an N-error or an E-error. For x ∈ ΣZ

2
, we denote by ENE(x)

the set of cells having a NE-error, that is:

ENE(x) � {(i, j) ∈ Z
2 : xc = xc+e1 or xc = xc+e2}.

Let ψ : Σ4 → Σ be a function which assigns to each quadruplet of colours
(a, b, c, d) a colour which is not in the set {a, b, c, d}, for example ψ(a, b, c, d) =
min Σ \ {a, b, c, d}.

We define a cellular automaton F on ΣZ
2

by:

∀c ∈ Z
2, F (x)c =

{
ψ(xc−e1 , xc−e2 , xc+e1 , xc+e2) if c ∈ ENE(x)
xc otherwise.

Proposition 3. Let k ≥ 5, the cellular automaton F defined above is self-
stabilising on Λk.

Proof. It is clear from the definition that ∀x ∈ Λk, F (x) = x. Let us now take
x ∈ Λ̃k. Without loss of generality, we can assume that there exists an integer
n ≥ 0 such that ENE(x) ⊆ Tn. (Recall that Tn = {(i, j) ∈ Z

2 : i + j ≤ n, i, j ≥
0}). One can also check that after t steps, we have ENE(F t(x)) ⊆ Tn−t. Indeed,
the set of NE-errors can only decrease under the action of F : if c /∈ ENE(x),
then c /∈ ENE(F (x)), since by definition of F , if c + e1 or c + e2 takes a new
colour in F (x), that new colour is different from xc. Furthermore, if c ∈ ENE(x)
is such that c + e1, c + e2 /∈ ENE(x), then c /∈ ENE(F (x)), so that the set of
NE-errors is progressively eroded, from the NE to the SW. After n+1 steps, we
have: ENE(Fn+1(x)) = ∅, meaning that the configuration is thus fully corrected:
Fn+1(x) ∈ Λk. ��

4.2 Isotropic Self-stabilisation by a Probabilistic CA

Let ψ : Σ4 → Σ be a function as above. For x ∈ ΣZ
2
, let us recall that we denote

by E(x) the set of cells having an error, that is:

E(x) � {c ∈ Z
2 : xc ∈ {xc±e1 , xc±e2}}

We define a probabilistic cellular automaton Φ on ΣZ
2

which leaves the state of
cell c unchanged if c /∈ E(x) and updates it to a random value with distribution
αδψ(xc−e1 ,xc−e2 ,xc+e1 ,xc+e2)

+ (1 − α)δxc
if c ∈ E(x). Once again, the use of an α-

asynchronous rule is destined to break the potential cycles that could be created
by the situations where the value of the update function is not deterministic (in
the case where only one colour is missing in the neighbourhood).

128 N. Fatès et al.

Proposition 4. For k ≥ 5 and α ∈ (0, 1), the probabilistic cellular automaton
Φ defined above is self-stabilising on Λk.

Proof. Let x ∈ Λ̃k be an initial configuration. Let X0,X1, . . . denote the Markov
process described by Φ starting from X0 = x. For any c /∈ E(Xt), the state of cell
c remains unchanged, and the neighbouring cells of c cannot take the state Xt

c,
so that for each t′ ≥ t, E(Xt′

) ⊆ E(Xt) almost surely. Furthermore, inside E(x),
Φ behaves like an absorbing finite state Markov chain, that eventually reaches
an allowed configuration. Indeed, let us consider the cells of E(Xt) that have at
least two correct neighbouring cells (there necessarily exist such cells, since E(x)
is finite). If the function ψ is applied to such a cell c, and if the values of its
neighbours remain the same, then c /∈ E(Xt+1). This happens with probability
at least α(1 − α)2 > 0. Consequently, the probability of decreasing the set of
errors is strictly larger than this probability at each time step. ��

4.3 Extension to Single-Site Fillable Proximity Tilings

We say that a proximity tiling is single-site fillable if there exists a map ψ : Σ4 →
Σ such that, for any possible choice (a, b, c, d) ∈ Σ4 of symbols surrounding
a cell, assigning the value α = ψ(a, b, c, d) to the central cell ensures that it
is error-free [9]. The two constructions above (directional self-stabilisation by
a deterministic CA, and isotropic self-stabilisation by a probabilistic cellular
automaton) naturally extend to all proximity tiling spaces that are single-site
fillable.

5 The Case of 4-Colourings

5.1 Directional Self-stabilisation by a Deterministic CA that
Corrects by Blocks

The case of 4-colourings (Σ = {0, 1, 2, 3}) is more delicate. Obviously, it is no
longer possible to use a function ψ with the same properties as above. Neverthe-
less, we propose a solution where we show that the number of errors is decreased
by updating 2-squares, that is, 2×2-blocks of cells. We explain the possibility of
this update in the next lemma, and the show how to apply this update without
generating conflicts.

Lemma 1. For any possible choice (a, b, c, d, e, f, g, h) ∈ Σ8 of
symbols surrounding a 2-square (see right), there exist a choice
(α, β, γ, δ) ∈ Σ4 for the cells of the 2-square such that the four
cells of the 2-square are error-free.

α

β

δ

γ

a

b

c d

f

e

h g

Proof. If {a, d, e, h} � Σ, then we can choose a colour from Σ \ {a, d, e, h} and
assign it to both α and γ. We are then sure that we can find suitable colours for
the two remaining cells, since each of these two cells is surrounded by at most

Cellular Automata for the Self-stabilisation of Colourings and Tilings 129

three different colours. In the same way, if {b, c, f, g} � Σ, we can find a valid
pattern.

Let us now assume that {a, d, e, h} = {b, c, f, g} = Σ. Without loss of gener-
ality, we can assume that a = 0, h = 1, d = 2, e = 3. The set of allowed colours
for α is then {2, 3}, and the set of allowed colours for γ is {0, 1}. If the allowed
colours for β and δ are {0, 1} and {2, 3} respectively, then a valid pattern is given
by (α, β, γ, δ) = (2, 0, 1, 3). If the allowed colours for β and δ are {0, 2}, {1, 3}
respectively, then a valid pattern is given by (α, β, γ, δ) = (2, 0, 1, 3). The other
cases are analogous. ��

We can now design a CA that corrects finite perturbations of Λ4. Let ψ :
Σ8 → Σ4 be a function that maps some (a, b . . . , h) ∈ Σ8 to a quadruplet
(α, β, γ, δ) ∈ Σ4 such that the pattern formed by these values as illustrated
above is an error-free pattern.

Our aim is to use this function ψ to correct non-overlapping 2-squares, by
ensuring that the correcting rule applies without conflicts. In order to do this,
we first identify a set of cells that will play the role of the top-right cells of the
2-squares that will be updated.

For a configuration x ∈ ΣZ
2
, let us denote again the set of cells having a NE-

error by ENE(x) = {c ∈ Z
2 : xc = xc+e1 or xc = xc+e2}. We say that a cell c ∈ Z

2

is a NE-corner if: c ∈ ENE(x) and c+ e1, c− e1 + e2, c+ e2, c+ e1 + e2 �∈ ENE(x),
see Fig. 2 for an illustration of the definition. We denote by CNE(x) the set of
NE-corners in a configuration x ∈ ΣZ

2
, that is:

CNE(x) � {c ∈ ENE(x); c + e1, c − e1 + e2, c + e2, c + e1 + e2 /∈ ENE(x)}.

Note that if x ∈ Λ̃4, then E(x) �= ∅ ⇐⇒ CNE(x) �= ∅. Indeed, if E(x)
is a non-empty set, then it contains at least one NE-error. Let us sweep the
configuration x by NW-SE diagonals, from the NE to the SW. Since E(x) is
finite, we can consider the first diagonal which contains a NE-error, and on this
diagonal, we consider the leftmost NE-error (which is also the uppermost). By
definition of a NE-corner, this NE-error is a NE-corner.

We define a CA F by the following rule: if a cell c = (i, j) ∈ Z
2 is a NE-

corner, then apply ψ to the 2-square whose NE-corner is c, that is, we replace
the colours of the cells (i − 1, j − 1), (i − 1, j), (i, j), (i,−j − 1) by ψ(a, b, . . . , h),
where a = xi−2,j−1, b = xi−2,j , . . . , h = xi−1,j−2 (see above). Let us first observe
that the CA F given by this rule is well-defined. Indeed, by definition of a NE-
corner, one can check that there are no two consecutive NE-corners, vertically or
horizontally, or in diagonal. Consequently, at each step, the 2-squares that are
updated do not overlap (note however that they can share some edges, in which
case there can be errors at these edges after applying the CA rule).

Proposition 5. The cellular automaton F defined above is self-stabilising
on Λ4.

Proof. Since the initial configuration x is assumed to be a finite perturbation
of a valid colouring, the number of NE-corners is finite. We prove that on any

130 N. Fatès et al.

Fig. 2. Illustration of the definition of the cellular automaton used to correct 4-
colourings. The central cell is a NE-corner if one of the red/dark gray lines (North
or East or both) presents a mistake and all the green/light gray lines are free of errors.
The 2-square whose NE-corner is the central cell is then corrected by the cellular
automaton. (Color figure online)

configuration in Λ̃4 \ Λ4, the number of NE-corners is strictly decreasing. Since
every configuration in Λ̃4 \ Λ4 has at least one NE-corner, this implies that the
self-correction succeeds in finite time.

Let us consider the NE-corners of F t(x). The rule F consists in updating the
2-squares associated to these NE-corners. At the next time step, one can check
that all possible new NE-corners belong to these 2-squares that were updated.
Indeed, if a cell does not belong to such a 2-square, then it cannot become a
NE-corner at the next time step: if a neighbour of this cell were modified, then
its new colour respects the colour constraint. Furthermore, there is at most one
new NE-corner in each 2-square that is updated, by definition of a NE-corner.

Now, to end the proof, let us show that there exists at least one of these
2-squares that does not contain a NE-corner any more. This will prove that the
number of NE-corners is strictly decreasing. Let us sweep the configuration by
NW-SE diagonals, from the NE to the SW.

We consider the first diagonal which contains
a NE-corner. After applying F , the 2-squares
defined by the NE-corners that are on that
diagonal do not contain a NE-corner any more.
Indeed, our method of sweeping ensures that the
two cells to the North and the two cells to the
East of this 2-square were not modified; for an
illustration, see this figure: ��

5.2 Isotropic Self-stabilisation by a
Probabilistic CA

The problem of finding a rule which is isotropic and self-stabilising for four
colours is not straightforward. We now propose a rule which we believe answers
the problem, but for which we have no formal proof of success yet. Our idea is to
modify the method used for the case k ≥ 5, and make an exception when there
is no colour available to directly correct a cell.

Cellular Automata for the Self-stabilisation of Colourings and Tilings 131

So, we now define ψ as a random function which assigns to each quadruplet
of colours (a, b, c, d) a colour uniformly chosen in Σ \ {a, b, c, d} if this set is
not empty, and a colour uniformly chosen in Σ otherwise. We then consider the
probabilistic cellular automaton that, for any configuration x ∈ ΣZ

2
, updates

to state ψ(xc−e1 , xc−e2 , xc+e1 , xc+e2) the cell c if it has an error (c ∈ E(x)), and
keeps the value xc otherwise.

Experimentally, we observe that this rule succeeds in correcting rapidly most
of the initial perturbations of valid tilings. However, unlike the case k ≥ 5, for
k = 4, we cannot ensure with the PCA above that the errors stay in some
bounded area.

We conjecture that from any finite perturbation of a valid tiling, this proba-
bilistic cellular automaton almost surely reaches in finite time a valid 4-colouring.
To support this claim, one can try to find configurations for which this rule may
fail in correcting in finite time for some particular configurations.

Consider the following configuration:

1 2 3 0 1 2 3 0 1 2 3 0 1 2
3 0 1 2 3 0 1 2 3 0 1 2 3 0
2 3 0 1 2 3 0 0 1 2 3 0 1 2
0 1 2 3 0 1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2 3 0 1 2 3

It has two cells in error and is such that all cells, even the two that are in
error, see the three other colours in their neighbourhood. Consequently, if a cell
changes its state alone, it will remain in error. For this specific configuration,
some kind of coordination is thus necessary, which cannot here occur by a specific
mechanism as for the deterministic case.

It might thus be thought at first that errors may propagate arbitrary far from
their origin. However, we experimentally observe that it is not the case: errors
have a tendency to stay in the same area, and the correcting process is more
rapid than the error-diffusion process. Surprisingly enough, even when the cells
are updated successively at random (fully asynchronous case), we also noticed
that the rule succeeds in correcting errors. Indeed, when the errors propagate,
they modify the configuration in such a way that the property of seeing three
different colours in the neighbourhood is lost, which finally enables a correction
to take place. By comparison, we believe that for this configuration and this
rule, having the possibility to make parallel updates, even if it means using α-
asynchronous updates, can only increase the possibilities of correction. It is an
open problem to give a formal proof of this self-stabilisation property.

5.3 Extension to �-Fillable Proximity Tilings

We say that a proximity tiling is strongly
-fillable if there exists a map ψ :
Σ4� → Σ�2 such that, for any possible choice (a1, . . . , a2�) ∈ Σ4� of symbols
surrounding an
-square, assigning the values ψ(a1, . . . , a2�) to the inner cells of
the
-square ensures that each cell of the
-square is error-free. (Note that here,
we do not assume any further condition on (a1, . . . , a2�) ∈ Σ4�; we refer again
to [1] for a similar but weaker condition of
-fillability). The self-stabilisation

132 N. Fatès et al.

by a deterministic CA described above extends to all proximity tilings that
are strongly
-fillable. One can indeed extend the notion of NE-corner in that
context, see Fig. 3 for an illustration in the case
 = 3. The definition of the CA
and the proof that it is self-stabilising can then be easily adapted.

Fig. 3. Illustration of the definition of the cellular automaton used to correct a 3-fillable
proximity tiling. The central cell is a NE-corner if one of the red lines (North or East or
both) presents a mistake and all the green lines are free of errors. The 3-square whose
NE-corner is the central cell is then corrected by the cellular automaton. (Color figure
online)

6 The Case of 3-Colourings

6.1 Necessity to Correct Arbitrarily Far from the Locations of
Errors

For k ≥ 4, with the rules defined in the previous sections, one can correct the
errors in a local way: if we observe a finite island of errors, then we can always
correct the island without modifying the configuration at a distance larger from
1 or 2 from the island. Let us now show that this property no longer holds for
k = 3. To this end, we will change our representation and associate to each
configuration that is a 3-colouring a configuration in the so-called six-vertex
model.

This model is obtained by associating an arrow to each couple of neighbour-
ing cells (horizontal or vertical), these arrows are represented at the boundary
between the two cells according to the following rules. Let q and q′ be the colours
of the two neighbouring cells. As we have q′ �= q, it follows that we either have
q′ = q + 1 mod 3 or q′ = q − 1 mod 3. Depending on this, we draw the arrow
in one direction or the other.

– The vertical boundaries which separate q and q+1 (resp. q−1) have an arrow
pointing up (resp. down).

– The horizontal boundaries which separate q and q + 1 (resp. q − 1) have a
right (resp. left) arrow.

Cellular Automata for the Self-stabilisation of Colourings and Tilings 133

q q + 1

q q − 1
q

q + 1

q

q − 1

2 1 2 0

0 2 0 1

2 0 1 0

0 1 2 1

Fig. 4. The convention used for encoding 3-colouring configurations in the six-vertex
model and an example of a configuration with its associated six-vertex image. (Color
figure online)

These conventions are represented on Fig. 4.
One can then check that starting from a 3-colouring, the resulting arrow

configuration is such that at each vertex, there are exactly two incoming arrows
and two outgoing arrows. Conversely, from a six-vertex configuration, there are
three 3-colourings giving that arrow configuration. (Once we choose the colour
of one cell, all the other colours can be deduced).

Figure 4 shows an example of such an encoding of a valid colouring. By
contrast, Fig. 5 displays a configuration which holds a finite perturbation of a
3-colouring.

Notice that we have drawn in bold the arrows pointing to the South and the
ones pointing to the West. The knowledge of the position of these two types of
arrows is sufficient to fully describe the configuration; indeed, the other horizon-
tal or vertical arrows have to be East or North arrows, respectively.

In the example given, let us imagine that we have fixed the value of a set
of cells that are located at the boundary of a square. We call this set of cells
the boundary square, and we want to fill the inner part of that boundary square
with an admissible configuration. One can verify that the only way to fill this
inner part corresponds to a six-vertex configuration that would have a direct
South vertical line: indeed, there is only one bold incoming arrow and one bold
outgoing arrow in the boundary square, and we have to connect them. So, we
can construct finite perturbations of 3-colourings that present only two cells in
error (one single interface with same colours), but for which we need to modify
a domain of size arbitrary large in order to recover a valid configuration. This is
expressed by the following proposition.

Proposition 6. For any m ∈ N, there exists a configuration y ∈ Λ̃3 such that
card E(y) = 2, and ∀x ∈ Λ3, card Δ(x, y) ≥ m.

6.2 Deterministic Self-stabilisation by a CA with Additional States

In order to decide if a boundary square is fillable or not, we just need to know if it
is possible to associate each incoming arrow with an outgoing arrow. This is easy
to do with sequential operations and additional symbols which do not appear in

134 N. Fatès et al.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

0

0

0

0

1

1

1

1

1

2

2

2

Fig. 5. Example of a finite perturbation of a 3-colouring and its associated six-vertex
configuration. South and West arrows are shown in bold, dashed cells indicate the
boundary square. (Color figure online)

the initial condition. Starting from the NE-corner, let us enumerate the incoming
arrows on the North and then West sides, from 1 to ni, and the outgoing arrows
on the East and then South sides, from 1 to no. The boundary square is fillable
if we can match each incoming arrow number k with the outgoing arrow number
k by a SE-path of arrows (which implies that ni = no). In order to know if this
can be done, we try to match successively the incoming and outgoing arrows
from 1 to ni = no by disjoint paths, by moving E if the edge has not already
been selected, and S otherwise. As an additional condition, we need to ensure
at each time step that the path does not go beyond the corresponding outgoing
arrow or come across another path. This procedure succeeds if and only if there
is at least one admissible matching, see the diagram below for an illustration:

123

4

5

1

2

3
4

5

Cellular Automata for the Self-stabilisation of Colourings and Tilings 135

Using this method, let us sketch how to design a deterministic CA that
corrects finite perturbations of 3-colourings with additional states. First, we
mark error cells and create a boundary square around them. We then use a kind
of Turing machine that calculates if this boundary square is fillable or not, with
the procedure above. If it is fillable, we fill it with the solution associated to
the six-vertex configuration given by the procedure. Otherwise, we consider a
new boundary square with a box of size increased by one unit. When different
boundary squares meet, they merge and restart their process.

It is an open problem to know if a solution without additional symbols exists.
Moreover, in contrast with the previous the sections, here we cannot use

the method of taking an available colour or a random colour when no colour is
available. We noticed experimentally that the errors diffuse and we could not
find any rule that keeps them confined, even in statistical terms.

7 Conclusion

We presented the study of self-stabilisation problems for k-colourings and for
some more general tilings spaces. The easiest cases are k = 2 and k ≥ 5. For
k = 4, deterministic rules still exist but are not as straightforward to design.
In the probabilistic setting, we could propose symmetric rules, which experi-
mentally perform well, but for which no formal proofs are available yet. The
three-colour case is the most challenging and it is an open problem to know if
efficient deterministic solutions do exist.

In this work, we have searched for solutions that operate in a “reasonable”
time scale. However, when no such rules are found, it is still possible to use a
kind of “brute-force” process where errors are initially at the centre of a self-
correcting zone. The cellular automaton should then test sequentially if there
are admissible solutions inside this zone. If the answer is positive, then the part
is corrected, if not, then the zone is extended by one cell in each direction. When
two such zones meet, there should be some procedures to merge the zones and
“restart” the process. It is clear that even though each step can be thought of
separately in a clear way, putting all the steps together in a cellular automaton
that effectively works is a huge task. Moreover, the time needed for such a rule
to operate would be more than exponential in the number of errors.

The question might also be raised for the solutions which make use of addi-
tional symbols: can one find rules which also resist the introduction of additional
symbols in the initial condition? Another important problem that we are cur-
rently addressing is to consider the case where the errors are initially randomly
distributed on all the grid.

References

1. Alon, N., Briceño, R., Chandgotia, N., Magazinov, A., Spinka, Y.: Mixing proper-
ties of colorings of the Z

d lattice. Preprint arXiv:1903.11685 (2019)

http://arxiv.org/abs/1903.11685

136 N. Fatès et al.

2. Bȩbenek, A., Ziuzia-Graczyk, I.: Fidelity of DNA replication—a matter of proof-
reading. Curr. Genet. 64, 985–996 (2018)

3. Bušić, A., Fatès, N., Mairesse, J., Marcovici, I.: Density classification on infinite
lattices and trees. Electron. J. Probab. 18(51), 22 (2013)

4. Dijkstra, E.W.: Self-stabilization in spite of distributed control. In: Dijkstra, E.W.
(ed.) Selected Writings on Computing: A personal Perspective. Texts and Mono-
graphs in Computer Science, pp. 41–46. Springer, New York (1982). https://doi.
org/10.1007/978-1-4612-5695-3 7

5. Fatès, N.: Asynchronous cellular automata. In: Adamatzky, A. (ed.) Cellular
Automata. ECSSS, pp. 73–92. Springer, New York (2018). https://doi.org/10.
1007/978-1-4939-8700-9 671

6. Gach, P., Kurdyumov, G.L., Levin, L.A.: One-dimensional uniform arrays that
wash out finite islands. Probl. Inf. Transm. 14(3), 223–226 (1978)

7. Gács, P.: Reliable computation with cellular automata. J. Comput. Syst. Sci. 32(1),
15–78 (1986)

8. Gács, P., Reif, J.: A simple three-dimensional real-time reliable cellular array. J.
Comput. Syst. Sci. 36(2), 125–147 (1988)

9. Marcus, B., Pavlov, R.: An integral representation for topological pressure in terms
of conditional probabilities. Isr. J. Math. 207(1), 395–433 (2017)

10. Pippenger, N.: Symmetry in self-correcting cellular automata. J. Comput. Syst.
Sci. 49(1), 83–95 (1994)

11. Toom, A.L.: Nonergodic multidimensional system of automata. Probl. Peredachi
Inf. 10(3), 70–79 (1974)

12. Toom, A.L.: Stable and attractive trajectories in multicomponent systems. In: Mul-
ticomponent Random Systems. Advances in Probability. Related Topics, Dekker,
New York, vol. 6, pp. 549–575 (1980)

https://doi.org/10.1007/978-1-4612-5695-3_7
https://doi.org/10.1007/978-1-4612-5695-3_7
https://doi.org/10.1007/978-1-4939-8700-9_671
https://doi.org/10.1007/978-1-4939-8700-9_671

On the Termination Problem for Counter
Machines with Incrementing Errors

Christopher Hampson(B)

Department of Informatics, King’s College, London, UK
christopher.hampson@kcl.ac.uk

Abstract. In contrast to their reliable and lossy-error counterparts
whose termination problems are either undecidable or non-primitive
recursive, the termination problem for counter machines with incre-
menting errors is shown to be PSpace-hard but remains solvable
in ExpSpace. This is a notable decrease in complexity over that of
insertion-error channel systems (with emptiness testing) whose termina-
tion problem is known to be non-elementary. Furthermore, by fixing the
number of available counters, we obtain a tight NLogSpace-complete
bound for the termination problem.

Keywords: Termination · Halting problem ·
Unreliable counter machines · Incrementing error · Lossy error

1 Introduction

Reliable (Minsky) counter machines are well-known to be Turing-complete [12]
and their reachability and termination problems have served as invaluable ‘mas-
ter’ problems in establishing undecidable lower-bounds for a range of diverse
decision problems. Furthermore, two counters are sufficient to establish Turing-
completeness [12]. Lossy counter machines (LCMs), by contrast, were introduced
by Mayr [11] as a weakened version of Minsky’s counter machines whose counters
are permitted to spontaneously ‘leak’ their contents, analogous to that of the
much-studied lossy FIFO-channel systems [1,2,4,5]. Indeed, LCMs can be seen as
a degenerate case of lossy channel systems (with emptiness testing) in which the
channel alphabet comprises a single symbol. Mayr showed that the reachability
and termination problems for LCMs are both decidable [11], with the exact com-
plexity pinned at being Ackermann-complete by Schnoebelen [18] (see [17] for
a comprehensive survey of non-elementary complexity classes). Indeed, just five
counters are sufficient to establish non-elementary complexity, with each addi-
tional counter moving the problem further up the Fast Growing Hierarchy [18].

Less well-studied than LCMs are incrementing counter machines (ICMs)
which are permitted to spontaneously increase the value of their counters. Incre-
menting errors have been considered in the context of both counter machines
and their more expressive channel systems (both with and without emptiness

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 137–148, 2019.
https://doi.org/10.1007/978-3-030-30806-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_11

138 C. Hampson

testing) [4,6,13,15], but appear to have received far less attention than their
lossy counterparts.

Insertion channel systems (without emptiness testing) were first introduced
in [4], where the authors show that the termination problem (among others) is
trivially decidable as every transition can be traversed with the aid of timely
insertion errors. The problem thus reduces to that of cycle-finding in the under-
lying control-state diagram. In the presence of emptiness testing—more akin
to the operational semantics of incrementing counter machines—the termina-
tion problem was shown to be Tower-complete [3], being among the hardest
problems that are primitive recursive but not solvable in elementary time [17].

With regards to the control-state reachability problem, there is no dif-
ference between lossy errors and incrementing/insertion errors for counter
machines or channel systems, owing to a dualisation that reverses the ‘arrow of
time’ [6,14]. Consequently, the reachability problem for both LCMs and ICMs
is Ackermann-complete [6,18], while that of both lossy channel systems and
incrementing channel systems (with emptiness testing) is HyperAckermann-
complete [5,14].

It appears, however, that the problem of termination for incrementing counter
machines has remained unaddressed. In what follows we shall establish that
the termination problem is, in general, PSpace-hard but remains decidable
in ExpSpace. Furthermore, we show that the problem is even NLogSpace-
complete when restricted to a fixed (finite) number of counters. Table 1 summa-
rizes the known results relating to the termination problems for counter machines
and channel systems (with emptiness testing) in the presence of lossy and incre-
menting errors.

Table 1. Summary of termination known results for lossy and incrementing counter
machines and channel systems (with emptiness testing).

Lossy Incrementing

Channel Systems
(emptiness testing)

HyperAckermann-complete
[5]

Tower-complete [3]

Counter Machines Ackermann-complete [18] PSpace-hard in ExpSpace
Theorems 3.2 & 3.3

Counter Machines
with k counters

non-Elementary for k > 5
[18]

NLogSpace-complete
Theorems 3.4 & 3.4

2 Preliminaries

Definition 2.1. A counter machine is a tuple M = 〈Q,C, qinit,Δ〉 where
Q is a finite set of control-states with a designated initial state qinit ∈ Q,
C = {c1, . . . , cn} is a finite set of counters and Δ ⊆ Q × OpC × Q is a
finite set of state transitions labelled with one of the following operations

On the Termination Problem for Counter Machines 139

OpC = {(ci)++, (ci)--, (ci)?? : ci ∈ C} to increment, decrement, or test whether a
given counter is empty.

A configuration of M is a tuple (q,v) ∈ Q × N
C , where q ∈ Q dictates the

state of the machine and v : C → N is C-vector describing the contents of each
counter. We denote by ConfM the set of all possible configurations of M, and
define a well-quasiordering (wqo) ≤ on ConfM by taking

(q,v) ≤ (q′,v′) ⇐⇒ q = q′ and v(ci) ≤ v′(ci) for all ci ∈ C,

for (q,v), (q′,v′) ∈ ConfM. For each α ∈ OpC , we define a binary consecution
relation on the configurations of M by taking:

– (q,v)
(ci)

++

−→ (q′,v′) iff (q, (ci)++, q′) ∈ Δ and v′ = v + ei,

– (q,v)
(ci)

--

−→ (q′,v′) iff (q, (ci)--, q′) ∈ Δ and v′ = v − ei,

– (q,v)
(ci)

??

−→ (q′,v′) iff (q, (ci)??, q′) ∈ Δ and v = v′ with v(ci) = 0,

for all (q,v), (q,v′) ∈ ConfM, where ei is the unit vector with ei(ci) = 1 and
ei(cj) = 0 for j
= i. Note that transitions of the from (q, (ci)--, q′) are only

enabled when v(ci) is non-zero. We write (q,v) M−→ (q′,v) if (q,v) α−→ (q′,v′)
for some α ∈ OpC . A (reliable) computation / run of M is a sequence r =
〈(σk−1, αk, σk) ∈ ConfM × OpC × ConfM : 0 < k < L〉, for some 1 < L ≤ ω,
such that σ0 = (qinit,0), where 0 is the zero vector, and σk−1

αk−→ σk, for all
0 < k < L. We denote by Runs(M) the set of all reliable runs of M.

Lossy counter machines (LCMs) and incrementing counter machines (ICMs)
can be defined by way of a variation on the operational semantics of what it
means for two configurations to be consecutive.

Definition 2.2 (Lossy and Incrementing counter machines). Given a

counter machine M, we define the relations
α↓−→ and

α↑−→ on ConfM by taking
σ1

α↓−→ σ2 (resp. σ1
α↑−→ σ2) if and only if there are configurations σ′

1, σ
′
2 ∈ ConfM

such that σ1 ≥ σ′
1

α−→ σ′
2 ≥ σ2 (resp. σ1 ≤ σ′

1
α−→ σ′

2 ≤ σ2), which is to
say that we permit the value held in the counters to spontaneously decrease
(resp. increase) immediately prior to and subsequent to a reliable transition.

We write (q,v)
M↓−→ (q′,v) (resp. (q,v)

M↑−→ (q′,v)) if (q,v)
α↓−→ (q′,v′) (resp.

(q,v)
α↑−→ (q′,v)) for some α ∈ OpC .

However, for the purposes of control-state reachability and termination, it
is convenient to work with a more restrictive form of incrementing errors that
encroach upon our computations only at the point of decrementing an otherwise
empty counter. More precisely, we employ the following alternative definition for
(q,v)

α↑−→ (q′,v), for α ∈ OpC :

– (q,v)
(ci)

++↑−→ (q′,v′) iff (q,v)
(ci)

++

−→ (q′,v′),

– (q,v)
(ci)

--↑−→ (q′,v′) iff (q,v)
(ci)

--

−→ (q′,v′) or (q,v)
(ci)

??

−→ (q′,v′),

140 C. Hampson

– (q,v)
(ci)

??↑−→ (q′,v′) iff (q,v)
(ci)

??

−→ (q′,v′).

Such lazy ‘just-in-time’ incrementing semantics have been introduced for incre-
menting channel systems in [3] and used implicitly for counter machines in [6].

We define a lossy (resp. incrementing) computation / run of M to be a
sequence r = 〈(σk−1, αk, σk) ∈ ConfM × OpC × ConfM : 0 < k < L〉, for some

1 < L ≤ ω, such that σ0 = (qinit,0), where 0 is the zero vector, and σk−1
αk↓−→ σk

(resp. σk−1
αk↑−→ σk), for all 0 < k < L. We denote by Runs↓(M) and Runs↑(M)

the set of all lossy and incrementing runs of M, respectively.

In what follows, we will be primarily interested in the following decision problem:

ICM Termination:

Input: Given a counter machine M = 〈Q,C, qinit,Δ〉,
Question: Is every incrementing run r ∈ Runs↑(M) finite?

In addition to the termination problem, we will also consider the restricted case
where we admit only counter machines with a fixed number of counters.

k-ICM Termination:

Input: Given a counter machine M = 〈Q,C, qinit,Δ〉 such that |C| = k,
Question: Is every incrementing run r ∈ Runs↑(M) finite?

As noted above, for reliable counter machines the two problems are com-
putationally equivalent for k ≥ 2, but are known to differ in complexity for
lossy counter machines. We will show here that the two problems also differ in
complexity for incrementing counter machines.

3 Results

We first show that the termination problem for ICMs is decidable in ExpSpace
by establishing a doubly-exponential upper-bound on the length of all finite runs
that are possible for a terminating ICM. Any incrementing counter machine
exhibiting a finite run exceeding this bound must necessarily possess a non-
terminating run. The termination problem can therefore be decided by a non-
deterministic search for such a ‘long’ finite run which, once found, demonstrates
non-termination. Such a search can be performed using at most exponential
space. It then follows from Savitch’s Theorem [16] that the termination prob-
lem is decidable in ExpSpace. This is a marked contrast from the Tower-
completeness of the termination problem for incrementing channel systems (with
emptiness testing) [3].

Lemma 3.1. Let M = 〈Q,C, qinit,Δ〉 be a counter machine such that every
incrementing run r ∈ Runs↑(M) is finite. Then the length of each increment-
ing run is at most n2em!, where n = |Q|, m = |C|, and e is the base of the
natural logarithm.

On the Termination Problem for Counter Machines 141

Proof. Let M = 〈Q,C, qinit,Δ〉 be as described above, with |Q| = n and |C| = m,
and let r ∈ Runs↑(M) be any incrementing run of M. The case where n = 1 is
trivial, so we may assume that n ≥ 2. We shall refer to any sub-sequence of r
as an interval, with its length being the number of configuration transitions it
comprises. For brevity we shall refer to any transition of the form (σ, (ci)??, σ′) ∈
ConfM×OpC ×ConfM as a ci-gate and collectively as Σ-gates whenever ci ∈ Σ,
for Σ ⊆ C. An interval will be described as gate-free whenever it contains no
C-gates.

To facilitate the proof, we define a increasing function T : N → N recursively
by taking

T (0) = 1 and T (k) = k T (k − 1) + 2 (†)
for all k > 0. It follows from a straightforward induction that

T (k) = k!
(

1
0!

+
2
1!

+ · · · +
2

(k − 1)!
+

2
k!

)
< 2k!

∞∑
t=0

1
t!

= 2ek!

for all k ≥ 0, where e is the base of the natural logarithm.
For each subset Σ ⊆ C, let χr(Σ) denote the length of the longest interval in

which the only gates traversed belong to Σ. We prove by induction on the size
of Σ that

χr(Σ) < nT (|Σ|).

for all subsets Σ ⊆ C.

– Base Case. For the case where |Σ| = 0, we note that χr(∅) < n since oth-
erwise, by the pigeonhole principle, there would be some gate-free interval
I in which the same control-state appears twice. We could then construct
a non-terminating run by traversing the resulting loop indefinitely, as every
underlying state transition of the form (q, (ci)++, q′) or (q, (ci)--, q′) can always
be traversed. This contradicts our assumption that every incrementing com-
putation of M is terminating.

– Inductive Case. Suppose that the claim holds for all subsets of size ≤ k and
that |Σ| = (k + 1). Suppose to the contrary that χr(Σ) ≥ nT (k+1) and
let I = 〈(σt, αt, σt+1) : t < χ〉, be such an interval of length χ = χr(Σ). It
follows from that induction hypothesis that I contains at least one cj-gate,
for each cj ∈ Σ.
Choose ci ∈ Σ and partition I into subintervals I1, . . . , Is by abscising all ci-
gates, as illustrated in Fig. 1. Note that we can abscise at most n consecutive
ci-gates between each interval, else by the same argument as above, we could
construct a non-terminating run by traversing a loop of such gates indefinitely.
The resulting subintervals only contain Σ′-gates, where Σ′ = Σ−{ci}. Hence,
by the induction hypothesis, the length of each subinterval can be at most
χr(Σ′) < nT (k), since |Σ′| = k. It follows that

|I| ≤ s · χr(Σ′) + (s + 1)n

142 C. Hampson

which is to say that

s ≥ |I| − n

χr(Σ′) + n
>

nT (k+1) − n

nT (k) + n
≥ 1

2
· nT (k+1)−1

nT (k)−1
≥ nT (k+1)−T (k)−1

for n ≥ 2. It then follows from (†) that s > nk T (k)+1.

For each subinterval I�, let start(�) = (q, v � Σ′) denote the configuration at
the start of I� restricted to only those counters occurring in Σ′.
Note that for each cj ∈ Σ′, the first transition of I� must appear in some
interval I ′ in which no cj-gate appears, or else must be itself a cj-gate. In the
latter case, we require that the value of v(cj) at start(�) is zero. In the former
case, either the start of I ′ or the end of I ′ is contained within I, else I would
not contain any cj-gates.

– If the start of I ′ is contained in I then the value of v(cj) at the start
of start(�) can be at most χr(Σ′) since otherwise the counter could not
have been incremented (using the lazy semantics) since being emptied to
traverse the gate at the start of I ′.

– Alternatively, if the end of I ′ is contained in I then the value of v(cj) at
start(�) can be at most χr(Σ′) since otherwise the counter could not be
depleted in time to traverse the gate at the end of I ′.

Hence, for each � = 1, . . . , s, there are at most n choices for the state of start(�)
and χr(Σ′) < nT (k) choices for the values of each of the counters cj ∈ Σ′ in
start(�). This gives at most n·(nT (k))k = nk T (k)+1 possible choices for start(�).
However, since s > nk T (k)+1, by the pigeonhole principle there must be at
least two intervals I� and I�′ such that start(�) = start(�′), where 1 ≤ � <
�′ ≤ s.
Consequently, it is possible to construct a non-terminating run by traversing
the resulting loop indefinitely, as the two partial states agree on all counters
from Σ′, and the only cj-gates to be traversed are those from Σ′. Any counters
from (C−Σ′) are free to be incremented or decremented without impeding the
computation. Again, this contradicts our assumption that every incrementing
run r′ ∈ Runs↑(M) is terminating. Hence, by contradiction, we must have that
χr(Σ) < nT (k+1).

Hence, it follows that χr(Σ) < nT (|Σ|) for all Σ ⊆ C. In particular, we note that
the maximum length of r is given by χr(C) < nT (m) < n2em!, as required.
�

With this upper-bound placed on the maximum possible length of runs for
terminating ICMs, we are able to secure an ExpSpace upper-bound on the
complexity of the termination problem.

Theorem 3.2. The ICM Termination problem is decidable in ExpSpace.

Proof. By Lemma 3.1, it is sufficient to identify whether a given counter machine
has a finite run whose length exceeds n2em!, where n = |Q| and m = |C|. This
can be achieved via a non-deterministic search using at most exponential space,

On the Termination Problem for Counter Machines 143

I

I1 I2 I3 I4 I5

I ′
1 I ′

2 I ′
3 I ′

4

ci-partition

cj-partition

︸ ︷︷ ︸
<χr(Σ′)

︸ ︷︷ ︸
χr(Σ)

︸ ︷︷ ︸
<χr(Σ′)

c j
in
cr
ea
sin

gc
j decreasing

Fig. 1. Illustration of two partitionings of I into subintervals by abscising all ci-gates
and all cj-gates, respectively.

by storing only the current length and final configuration of the run as the search
progresses. Both the length and the final configuration can be encoded as binary
strings requiring at most O(log2(n)m!) bits of data, which is at most exponential
in m and logarithmic in n. Should a run exceeding the aforementioned bound
by found, we may conclude that the counter machine has a non-terminating
incrementing run.

Hence, the non-termination problem for incrementing counter machines is
decidable in NExpSpace, and so it follows that both the termination and non-
termination problems belong to ExpSpace, as required.
�

This result stands in marked contrast to the lofty Ackermann-completeness
of the termination problem for lossy counter machines [18], despite the equiva-
lence of the reachability problem for the two types of unreliable machines [13].
Moreover, this result also highlights a jump in complexity from the relatively
modest ExpSpace for incrementing counter machines to the non-Elementary
complexity for incrementing channel systems (with emptiness testing) [3].

Next, we will provide a lower-bound on the complexity of the termina-
tion problem for ICMs by showing that an incrementing counter machine with
m = |C| counters is capable of simulating a run of a reliable counter machine
whose counters are bounded by 2�m/2�. This, in turn, provides us with a mech-
anism by which we can simulate any Turing machine that operates in space
bounded by �m/2�, thereby providing us with a PSpace-hard lower-bound for
the termination problem for ICMs.

Theorem 3.3. The ICM Termination problem is PSpace-hard.

Proof. Let X ⊆ {0, 1}∗ be an arbitrary problem solvable in PSpace, which is to
say that there is some Turing machine TX and polynomial function p(n) such that
TX terminates on all inputs and accepts w ∈ {0, 1}∗ if and only if w ∈ X, using
at most p(|w|) tape cells. Following Minksy [12], we may translate TX together

144 C. Hampson

with a given input word w ∈ {0, 1}∗ into a reliable counter machine MX
w =

〈Q,C, qinit,Δ〉—polynomial in the size of w and constructible in polynomially
time—such that w is accepted by TX if and only if MX

w has a reliable run that
reaches some accepting state qaccept ∈ Q. Moreover, the value of the counters
of MX

w never exceeds 2N − 1, where N = p(|w|) is the maximum length of
tape required by TX on input w. We may modify MX

w by adding a looping
transition to qaccept so that MX

w has a non-terminating run if and only if w is
accepted by TX .

We may then construct an ICM M′ = 〈Q′, C ′, q′
init,Δ

′〉, polynomial in the
size of both MX

w and N , such that M′ has a non-terminating incrementing
run r′ ∈ Runs↑(M′) if and only if MX

w has a non-terminating reliable run r ∈
Runs(MX

w), along which the counters are bounded by 2N . To achieve this, we
first designate counters c0i , . . . , c

N−1
i ∈ C ′, for each ci ∈ C, so that the value of

counter ci for a given valuation v : C → N can be represented in binary as

θv (ci) =
N−1∑
j=0

2j min{1,v(cj
i)}

In other words, the emptiness (0) or non-emptiness (1) of each of the counters
cj
i collectively represent the value of ci in binary.

We also require a second copy c0i , . . . , c
N−1
i ∈ C ′, for each ci ∈ C, so that

any incrementing errors can be detected and the computation terminated as a
result. To achieve this we shall enforce that any increment (resp. decrement) to
cj
i is followed by a decrement (resp. increment) to cj

i so that, over reliable runs,
the pair (cj

i , c
j
i) acts like a binary switch with exactly one of the counters being

empty at any given time. For each (�, α, �′) ∈ Δ, we construct a circuit of

�in

(c0i)
?? (c1i)

??

. . . �out

(cN−1
i

)??

Fig. 2. Circuit emulating the operation (ci)
??.

transitions that emulates the effect of α on the corresponding value of θ.

– Case α = (ci)??: We can check whether θv (ci) = 0 by a series of emptiness
checks to confirm that each of the counters cj

i are empty, for j < N , as
illustrated in Fig. 2.

It is straightforward to check that there is an incrementing path (�in,v)
M↑−→

∗

(�out,v′) if and only if θv (ci) = 0.
– Case α = (ci)++: To increment the value of θv (ci) by one, we can execute the

circuit illustrated in Fig. 3.

On the Termination Problem for Counter Machines 145

�0in �1in �2in �N−1
in

�0out �1out �2out �N−1
out

�dead

(cN−1
i

)??(cN−1
i

)??

(cN−1
i

)++

(c0i)
??

(c0i)
++

(c0i)
??

(c0i)
++

(c1i)
??

(c1i)
++

(c1i)
??

(c1i)
++

(c2i)
??

(c2i)
++

(c2i)
??

(c2i)
++

(c0i)
-- (c0i)

--

. . .

(cN−2
i)--

(c1i)
??

(c1i)
??

(c2i)
??

(c2i)
??

. . .
(cN−1

i
)??

(cN−1
i

)??

(c0i)
-- (c1i)

-- (c2i)
-- (cN−1

i
)--

Fig. 3. Circuit emulating the operation (ci)
++.

A successful computation through this circuit from �0in to �N−1
out simulates

standard binary addition by one by ‘resetting’ each ci counters to zero in turn
until the first empty ci counter is found, which is then set to one, resetting ci

to zero in the process. Any remaining counters that have not been inspected
are then checked to ensure that exactly one of ci and ci are non-zero. It follows

that there is an incrementing path (�0in,v)
M↑−→

∗
(�N−1

out ,v′) if and only if:
(i) v(cj

i) + v(cj
i) = 1, for all j < N , and

(ii) If v′(cj
i) + v′(cj

i) = 1 then θv ′(ci) = θv (ci) + 1.
Note that in the case where θv (ci) = 2N − 1 (i.e. the counter is full) it is not
possible to reach �N−1

out and instead we terminate in a dead-end state �dead.
– Case α = (ci)--: To decrement the value of θv (ci) by one, we can use an

analogous set of a transitions, but with the roles of cj
i and cj

i exchanged, for
j < N . The resulting circuit simulates binary subtraction by one and then
ensures that exactly one of ci and ci are non-zero. It is similarly straightfor-

ward to check that there is an incrementing path (�0in,v)
M↑−→

∗
(�N−1

out ,v′) in
the resulting circuit if and only if:
(i) v(cj

i) + v(cj
i) = 1, for all j < N , and

(ii) If v′(cj
i) + v′(cj

i) = 1 then θv ′(ci) = θv (ci) − 1.
Similarly, in the case where θv (ci) = 0 it is not possible to reach �N−1

out and
we terminate in state �dead.

Note that each of the circuits are cycle-free and so do not allow for non-
terminating computations to arise within the individual circuit. It follows that
we can construct an equivalent ICM M′ by replacing each of the transitions of
MX

w with a copy of the appropriate circuit described above, each comprising at
most 8N transitions. The resulting machine is at most polynomial in the size
of MX

w and N , with |Q′| ≤ 8N · |Δ| ≤ 8Nn2 and |C ′| = 2Nm, and has a non-
terminating incrementing run if and only if MX

w has a reliable non-terminating
run with counters bounded by 2N . We could, as well, introduce a sequence of

146 C. Hampson

transitions to the initial state that first increment each of the ci variables by one
so that v(ci) + v(ci) = 1 at the start of the run. However, this is not required
as this can be achieved with a timely incrementing error, without which any
computation would quickly terminate.

As MX
w is at most polynomial in the size of w and constructible in polynomial

time, it follows that X is polynomially reducible to ICM Termination, thereby
demonstrating the problem to be PSpace-hard, as required.
�

Note that the above reduction requires an unbounded supply of counters for
ever larger values of N . Indeed, such a reduction is not possible using only a fixed
number of counters. Taking a closer look at the bound given in Lemma3.1, we
note that it is chiefly the number of counters m that is responsible for the doubly-
exponential bound on the length of the incrementing runs. By fixing the number
of counters, we obtain a far more tractable bound with little additional overhead.

Theorem 3.4. The k-Termination problem is NLogSpace-complete.

Proof. The lower-bound is trivial and follows from a straightforward logspace
reduction from the NLogSpace-hard reachability problem for directed
graphs [10]. For the upper-bound, the proof is the same as that of Theorem3.2,
noting that for a fixed number of counters the bound given in Lemma3.1 is
logarithmic in the number of states. This, therefore, gives us an NLogSpace
upper-bound for the non-termination problem. However, by the Immerman–
Szelepcsényi theorem [9,19] we have that NLogSpace is closed under comple-
ments, thereby completing the proof.
�

4 Discussion

1. The main problem left open by this present work is to establish where lies
the exact complexity of the termination problem for incrementing counter
machines. Using the same principle as in Theorem 3.3, it is not hard to con-
struct a terminating ICM with exponentially long runs; for example, by con-
necting the state �N−1

out back to state �0in in Fig. 3. The resulting circuit contains
no non-terminating computations, but is permitted to cycle through all binary
representations from zero to 2N − 1 before terminating in state �dead. Unfor-
tunately, it remains unclear whether it is possible to construct terminating
ICMs which have doubly-exponentially long runs that would be required for
the ExpSpace upper-bound given in Theorem3.2 to be tight.

2. Reductions from various counter machine reachability problems have been
used to establish lower-bounds for several first-order modal and temporal
logics endowed with additional counting quantifiers [8]. Their lossy and incre-
menting counterparts arise naturally in this context when we consider first-
order modal logics with decreasing or expanding domains, respectively [7,8].
In particular, the recurrence problem for ICMs can be reduced to the satisfia-
bility problem for the one-variable fragment of Linear Temporal Logic (LTL)

On the Termination Problem for Counter Machines 147

over expanding domains with both future and next-time operators, thereby
providing a Σ0

1 -hard lower-bound. Finite satisfiability, though decidable, can
be shown to be Ackermann-hard by a reduction from the ICM reachability
problem; this remains true even in the absence of the ‘next-time’ operator.
For the fragment having a single future operator, Theorem3.3 can be utilized
to provide a PSpace-lower bound for the satisfiability problem1. However, it
is reasonable to suspect that the exact complexity may be much higher and,
indeed, the decidability of this fragment still remains open.

Acknowledgements. I would like to thank the anonymous referees for their helpful
and invaluable suggestions.

References

1. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward
reachability analysis for verification of lossy channel systems. Form. Methods Syst.
Des. 25(1), 39–65 (2004)

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

3. Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, P., Worrell, J.: On termination
and invariance for faulty channel machines. Form. Asp. Comput. 24(4), 595–607
(2012)

4. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

5. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: 2008 23rd Annual IEEE Symposium on Logic in Computer Science,
pp. 205–216. IEEE (2008)

6. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. (TOCL) 10(3), 16 (2009)

7. Hampson, C.: Two-dimensional modal logics with difference relations. Ph.D. thesis,
King’s College London (2016)

8. Hampson, C., Kurucz, A.: Undecidable propositional bimodal logics and one-
variable first-order linear temporal logics with counting. ACM Trans. Comput.
Log. (TOCL) 16(3), 27:1–27:36 (2015)

9. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

10. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Com-
put. Syst. Sci. 11(1), 68–85 (1975)

11. Mayr, R.: Undecidable problems in unreliable computations. Theor. Comput. Sci.
297(1–3), 337–354 (2003)

12. Minsky, M.L.: Computation. Prentice-Hall, Englewood Cliffs (1967)
13. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal

logic over finite words. Log. Methods Comput. Sci. 3(1) (2007)

1 It is incorrectly claimed in [7] that the satisfiability problem for this logic is non-
elementary, erroneously stating that the termination problem for ICMs matches
that of incrementing channel systems with emptiness testing, as refuted here in
Theorem 3.2.

148 C. Hampson

14. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 188–197.
IEEE (2005)

15. Ouaknine, J., Worrell, J.: On metric temporal logic and faulty turing machines. In:
Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 217–230.
Springer, Heidelberg (2006). https://doi.org/10.1007/11690634 15

16. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

17. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Trans. Comput. The-
ory (TOCT) 8(1), 3:1–3:36 (2016)

18. Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and
reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
616–628. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-
2 54

19. Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Informatica 26(3), 279–284 (1988)

https://doi.org/10.1007/11690634_15
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1007/978-3-642-15155-2_54

Reachability Problems on Partially Lossy
Queue Automata

Chris Köcher(B)

Automata and Logics Group, Technische Universität Ilmenau, Ilmenau, Germany
chris.koecher@tu-ilmenau.de

Abstract. We study the reachability problem for queue automata and
lossy queue automata. Concretely, we consider the set of queue con-
tents which are forwards resp. backwards reachable from a given set
of queue contents. Here, we prove the preservation of regularity if the
queue automaton loops through some special sets of transformations.
This is a generalization of the results by Boigelot et al. and Abdulla et
al. regarding queue automata looping through a single sequence of trans-
formations. We also prove that our construction is effective and efficient.

Keywords: Partially lossy queue · Reachability · Queue automaton

1 Introduction

Nearly all problems in verification ask whether in a program or automaton one
can reach some given configurations from other given configurations. In some
computational models this question is decidable, e.g., in finite state machines,
pushdown automata [5,8,9] or one-counter automata. In some other, mostly
Turing-complete computational models this reachability problem is undecidable.

So, for queue automata reachability is undecidable [6], while this problem is
decidable for so-called lossy queue automata [1] which are allowed to forget any
parts of their content at any time. In this case, for a regular set of configurations,
the set of reachable configurations is regular [10] but it is impossible to com-
pute finite automata accepting these sets [14]. Surprisingly, the set of backwards
reachable configurations is effectively regular [1], even though this construction
is not primitive recursive [7,15].

Due to the undecidability resp. inefficiency of the reachability problem for
reliable and lossy queue automata, one may consider approximations of this
problem. One trivial approach is to simulate the automaton’s computation step
by step until a given configuration (or a given set of configurations) was found.
Then, starting from a given set of configurations we simply add or remove a single
letter from the queue’s contents. An even better and more efficient approach
is to consider so-called “meta-transformations” as described in [3,4]. Such a
meta-transformation is a combination of multiple transitions of the queue. In
particular, given a loop in the queue’s control component we combine iterations
c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 149–163, 2019.
https://doi.org/10.1007/978-3-030-30806-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_12&domain=pdf
http://orcid.org/0000-0003-4575-9339
https://doi.org/10.1007/978-3-030-30806-3_12

150 C. Köcher

of this loop to one big step of the queue automaton. With this trick it is possible
to explore infinitely many contents of the queue in a small amount of time.

Considering reliable queue automata, we know from Boigelot et al. [4] that,
starting from a regular language of queue contents, the set of reachable queue
contents after application of such meta-transformation is effectively regular. A
similar result was proven for lossy queue automata by Abdulla et al. in [2].

In this paper we consider a generalization of this result which regards itera-
tions through certain regular languages. Concretely, we consider so-called read-
write independent sets where for each two words s, t from this language there
is another word from this language consisting of the write actions from s and
the read actions from t. For these generalized meta-transformations we prove
the preservation of regularity of sets of configurations. We will see that our
construction is possible in polynomial time.

Additionally, we consider another type of meta-transformations: sets of trans-
formations which are closed under some special (context-sensitive) commuta-
tions of the atomic transformations. For such meta-transformations, the set of
reachable configurations is also effectively regular. Moreover, if we start from a
context-free set of configurations, the set of reachable configurations is effectively
context-free, again. Here, both constructions can be carried out in polynomial
time.

In this paper, we first prove the stated results for reliable queue automata.
Later we consider so-called partially lossy queue automata which were first intro-
duced in [12,13]. This is a generalization of reliable and lossy queue automata
where we can specify which letters can be forgotten at any time. We will see
then, that the sets of reachable configurations can be computed from the ones of
a reliable queue automaton. Hence, all of our results and the results from [2,4]
do also hold for arbitrary partially lossy queue automata.

2 Preliminaries

2.1 Words and Languages

At first, we have to introduce some basic definitions. To this end, let Γ be an
alphabet. A word v ∈ Γ ∗ is a prefix of w ∈ Γ ∗ iff w ∈ vΓ ∗. Similarly, v is a suffix
of w iff w ∈ Γ ∗v and v is an infix of w iff w ∈ Γ ∗vΓ ∗. The complementary prefix
(resp. suffix) of w wrt. v is the word w/v ∈ Γ ∗ (resp. v\w ∈ Γ ∗) with w = w/v · v
(resp. w = v · v\w). The right quotient of a language L ⊆ Γ ∗ wrt. K ⊆ Γ ∗ is
the language L/K = {u ∈ Γ ∗ | ∃v ∈ K : uv ∈ L}. Similarly, we can define the left
quotient K\L of L wrt. K.

For a word w = a1a2 . . . an ∈ Γ ∗ we define its reversal by wR := an . . . a2a1.
The reversal of a language L is LR = {wR |w ∈ L}. The shuffle of L and K is
the following language:

L�K :=
{

v1w1v2w2 . . . vnwn

∣∣∣∣ n ∈ N, vi, wi ∈ Γ ∗,
v1v2 . . . vn ∈ L,w1w2 . . . wn ∈ K

}
.

Reachability Problems on Partially Lossy Queue Automata 151

The word v ∈ Γ ∗ is a subword of w ∈ Γ ∗ (denoted by v � w) iff w ∈ {v}� Γ ∗.
Note that the relation � is a partial ordering on Γ ∗.

Let ≤ be a partial ordering on Γ ∗ and L ⊆ Γ ∗ be a language. The upclosure
of L wrt. ≤ is ↑≤L = {w ∈ Γ ∗ | ∃v ∈ L : v ≤ w}. Similarly, we can define the
downclosure ↓≤L = {v ∈ Γ ∗ | ∃w ∈ L : v ≤ w}.

Let ∼ be an equivalence relation on Γ ∗. The equivalence class of v ∈ Γ ∗

wrt. ∼ is [v]∼ = {u ∈ Γ ∗ |u ∼ v}. A language L ⊆ Γ ∗ is closed under ∼ if for
each v ∈ L we have [v]∼ ⊆ L.

Let S ⊆ Γ . Then the projection πS : Γ ∗ → S∗ to S is the monoid homomor-
phism induced by πS(a) = a for each a ∈ S and πS(a) = ε for each a ∈ Γ � S.
Additionally, for w ∈ Γ ∗ we write |w|S := |πS(w)|.

2.2 Automata

A finite automaton (NFA for short) is a quintuple A = (Q,Γ, I,Δ, F) where
Q is a finite set of states, I, F ⊆ Q are the sets of initial and final states, and
Δ ⊆ Q × (Γ ∪ {ε}) × Q is the transition relation. Then, the configuration graph
of A is GA := (Q,Δ) which is a finite, edge-labeled, and directed graph. For
p, q ∈ Q and w ∈ Γ ∗ we write p

w−→A q if there is a w-labeled path in GA
from p to q. The accepted language of A is L(A) := {w ∈ Γ ∗ | I w−→A F}. A
language L ⊆ Γ ∗ is regular, if there is an NFA A accepting L. The class of
regular languages is effectively closed under Boolean operations, left and right
quotients, shuffle, reversal, up- and downclosures wrt. the subword ordering, and
projections.

Let A = (Q,Γ, I,Δ, F) be an NFA, Qi, Qf ⊆ Q. Then we set AQi→Qf
:=

(Q,Γ,Qi,Δ,Qf), i.e., AQi→Qf
is the NFA constructed from A with initial states

Qi and final states Qf . For example, we have L(A) =
⋃

q∈Q L(AI→q)L(Aq→F).
A pushdown automaton (PDA for short) is a tuple P = (Q,Σ, Γ,#, I,Δ, F)

where Q is a finite set of states, Σ and Γ are alphabets, # ∈ Γ is the stack
bottom, I, F ⊆ Q are the sets of initial and final states, and Δ ⊆ Q × Γ ×
(Σ ∪ {ε}) × Q × Γ ∗ is the finite transition relation. A configuration of P is a
tuple from ConfP := Q × Γ ∗. We denote the set of initial configurations by
InitP := I × {#} and the set of accepting configurations by FinalP := F × Γ ∗.
For p, q ∈ Q, x, y ∈ Γ ∗, and a ∈ Σ ∪ {ε} we write (p, x) a−→P (q, y) if there
are X ∈ Γ and γ, z ∈ Γ ∗ with (p,X, a, q, γ) ∈ Δ, x = Xz, and y = γz.
Then, GP := (ConfP ,

⋃
a∈Σ∪{ε}

a−→P) is called the configuration graph of P.

For (p, x), (q, y) ∈ ConfP and w ∈ Σ∗ we write (p, x) w−→P (q, y) if there is
a w-labeled path from (p, x) to (q, y) in GP . The accepted language of P is
L(P) = {w ∈ Σ∗ | InitP

w−→P FinalP}. A language L ⊆ Σ∗ is context-free if
there is a PDA P with L = L(P).

Let C ⊆ ConfP be a set of configurations of P. Then we denote the set of
configurations of P reachable from C by

post∗(C) := {d ∈ ConfP | ∃w ∈ Σ∗ : C
w−→P d}.

152 C. Köcher

An NFA A recognizes C if L(A) = {qγ | (q, γ) ∈ C} holds. In this case we call C
regular.

Theorem 2.1 ([8,9]). Let P be a PDA and C ⊆ ConfP be a regular set of con-
figurations. Then post∗(C) is effectively regular. An NFA recognizing post∗(C)
can be computed from an NFA recognizing C in polynomial time. �

3 Queues and Queue Automata

In this section we want to recall basic knowledge on queues and queue automata.
A queue can store entries from a given alphabet A. Since A is the alphabet of
queue entries, the content of a queue is a word from A∗. For any letter a ∈ A we
have two actions: writing of a at the end of the queue (denoted by a) and reading
of a from the head of the queue (denoted by a). We assume that the alphabet A
containing each such reading operation a is a disjoint copy of A. By Σ := A ∪ A
we denote the set of all actions on the queue. For w = a1a2 . . . an ∈ A∗ we also
write w := a1 a2 . . . an and for L ⊆ A∗ we write L := {w |w ∈ L}. Formally, we
describe the queue’s behavior by a function ◦ associating a word v ∈ A∗ and a
sequence of atomic transformations t ∈ Σ∗ with another word v ◦ t ∈ A∗ which
is the queue’s content after application of t on the content v.

Definition 3.1. Let A be an alphabet and ⊥ /∈ A. Then the map ◦ : (A∗∪{⊥})×
Σ∗ → (A∗ ∪ {⊥}) is defined for each v ∈ A∗, a, b ∈ A with a �= b, and t ∈ Σ∗ as
follows:

(1) v ◦ ε = v
(2) v ◦ at = va ◦ t

(3) av ◦ at = v ◦ t
(4) bv ◦ at = ε ◦ at = ⊥ ◦ t = ⊥

We will say “v ◦ t is undefined” if v ◦ t = ⊥.

A queue automaton is a finite automaton on Σ equipped with such a queue.
Considering the expression “L ◦ T” then L ⊆ A∗ is a set of possible queue
inputs, T ⊆ Σ∗ is the set of transformations, and (L ◦ T) � {⊥} is the set of
outputs of the queue automaton. Since T is represented by a finite automaton,
the set T is always a regular language in this paper. All in all, we may define
our reachability problems as follows:

Definition 3.2. Let A be an alphabet, L ⊆ A∗ be a set of queue contents, and
T ⊆ Σ∗ be a regular set of transformations. The set of queue contents that are
reachable from L via T is

Reach(L, T) := (L ◦ T) � {⊥}

and the set of queue contents that can reach L via T is

BackReach(L, T) := {v ∈ A∗ | (v ◦ T) ∩ L �= ∅}.

Reachability Problems on Partially Lossy Queue Automata 153

In general, for a recursively enumerable language L ⊆ A∗ and a regular set
T ⊂ Σ∗ the language Reach(L, T) is (effectively) recursively enumerable. Since
a finite automaton with a queue can simulate a Turing machine [6], the language
Reach(L, T) can be any recursively enumerable language. This is true even if
|L| = 1 and T is the Kleene closure of a finite set of transformations, i.e., if L
and T are somewhat “simple” languages:

Remark 3.3. Let G = (N,Γ, P, S) be a (type-0) grammar and # /∈ N ∪ Γ . The
set of possible queue entries is A := N ∪ Γ ∪ {#}. We construct the set of
transformations T ⊆ Σ∗ as follows:

T :=
(
{�r | (�, r) ∈ P} ∪ {aa | a ∈ N ∪ Γ ∪ {#}}

)∗
,

i.e., the queue can apply any rule from G and move any letter from the head
to its end. Then we have Reach({#S}, T) ∩ #Γ ∗ = #L(G) which can be any
recursively enumerable language.

Due to Remark 3.3 there are sets L and T such that Reach(L, T) is undecid-
able. Therefore, we need some approximation to decide whether a given regular
set of configurations can be reached from the regular language L of queue inputs
by application of the transformations from T . A trivial approach is to compute
Reach(L, Tn) where Tn is the set of prefixes of T of length at most n for increas-
ing n ∈ N. Unfortunately, this algorithm is not very efficient: consider L ⊆ A∗

be a finite language of queue contents and T ⊆ Σ∗ be a regular language of
transformations. Then Tn is finite for any n ∈ N and, hence, Reach(L, Tn) is
finite as well.

Boigelot et al. improved this trivial approximation in [3,4] by introduction
of so-called meta-transformations. This means, that we partition the regular
language T into sequences of certain regular languages S ⊆ Σ∗ such that the
mappings L �→ Reach(L, S) and L �→ BackReach(L, S) can be computed
efficiently and preserve regularity. For example, such languages can be a regular
language of write actions or a regular language of read actions as considered in
the following proposition:

Proposition 3.4. Let A be an alphabet and L, T ⊆ A∗. Then the following
statements hold:
(1) Reach(L, T) = LT
(2) Reach(L, T) = T\L

(3) BackReach(L, T) = Reach(LR, TR)
R

(4) BackReach(L, T) = Reach(LR, TR)R �

Hence, for regular languages L ⊆ A∗ and T ⊆ A∗ (or T ⊆ A
∗
, resp.) we

can compute NFAs accepting Reach(L, T) and BackReach(L, T) in polyno-
mial time. In the following two sections we consider two further types of meta-
transformations T having efficiently computable mappings L �→ Reach(L, T)
and L �→ BackReach(L, T).

154 C. Köcher

4 Behavioral Equivalence

The first type of meta-transformations we want to consider are languages that
are closed under the so-called behavioral equivalence. In this connection, we say
that two sequences of transformations have the same behavior if for any queue
input the application of both transformations lead to the same output of the
queue automaton. Formally, this equivalence is defined as follows:

Definition 4.1. Let A be an alphabet and s, t ∈ Σ∗. Then s and t behave
equivalently (denoted by s ≡ t) if v ◦ s = v ◦ t for each v ∈ A∗. The relation ≡
is called the behavioral equivalence.

In other words, we have s ≡ t if the application of s and t have the same effect on
any queue’s content. For example, for a ∈ A the sequences aaa and aaa behave
equivalently: let v ∈ A∗ be any queue content. Then we have

v ◦ aaa = vaa ◦ a = (va ◦ a) · a = v ◦ aaa.

Nevertheless, we have aa �≡ aa since we have ε ◦ aa = ε �= ⊥ = ε ◦ aa.
This equivalence relation was first introduced by Huschenbett et al. in [11].

They proved in this paper that ≡ is a congruence on Σ∗ and is described by
a finite set of context-sensitive commutations. We recall these commutations in
the following theorem:

Theorem 4.2 ([11]). Let A be an alphabet. Then ≡ is the least congruence on
Σ∗ satisfying the following equations for each a, b ∈ A:

(1) ab ≡ ba if a �= b, (2) aab ≡ aab, and (3) baa ≡ baa. �

The behavioral equivalence was further considered in [12]. Concretely, we
regarded the languages which are regular and closed under the behavioral equiv-
alence ≡ and gave some interesting properties of these languages. In that paper,
we defined some kind of rational expressions constructing these sets as well as
some MSO-logic describing them. In particular, let T ⊆ Σ∗ be a language that
is closed under ≡. Then, we know that T is regular if, and only if, T ∩ A

∗
A∗A

∗

is regular.

Example 4.3 ([12]). Let W,R ⊆ A∗ be regular languages. Then [W � R]≡ =
W �R is regular and closed under ≡.

Now, let a ∈ A. Then [(aa)∗]≡ is not regular since (by Theorem 4.2) we can
prove [(aa)∗]≡ ∩ A

∗
A∗A

∗
= {anan |n ∈ N} which is not regular.

Let T ⊆ Σ∗ be regular. Using the equations from Theorem 4.2, we can decide
whether T is closed under behavioral equivalence:

Remark 4.4. We can understand the equations from Theorem 4.2 as a finite
Thue-system. Then for each rule (� → r) we can compute T� := T ∩ Σ∗�Σ∗

and Tr := T ∩ Σ∗rΣ∗. Applying (� → r) on T� we obtain a regular language
T ′

r. Finally, we have to check whether Tr = T ′
r holds. The language T is closed

under behavioral equivalence if, and only if, all of these tests succeed.

Reachability Problems on Partially Lossy Queue Automata 155

However, given a regular language T ⊆ Σ∗, it is impossible to compute the
closure of T under behavioral equivalence. Moreover, it is undecidable whether
the closure of T under ≡ is regular, again [12].

Next, we want to prove that, for meta-transformations T ⊆ Σ∗ that are reg-
ular and closed under behavioral equivalence, the mappings L �→ Reach(L, T)
and L �→ BackReach(L, T) preserve regularity. We do this with the help of
some corollary of Theorem 4.2:

Proposition 4.5 ([11,12]). Let A be an alphabet and t ∈ Σ∗. Then there is
s ∈ A

∗
A∗A

∗
with s ≡ t. From a given word t we can compute such a word s in

polynomial time. �

Now, we can prove the main theorem in this section:

Theorem 4.6. Let A be an alphabet, L ⊆ A∗ ∪ {⊥} be regular, and T ⊆ Σ∗

be regular and closed under ≡. Then Reach(L, T) and BackReach(L, T) are
effectively regular. In particular, from NFAs accepting L and T we can construct
NFAs accepting Reach(L, T) and BackReach(L, T) in polynomial time.

Proof. Let T = (Q,Σ, I,Δ, F) be an NFA with L(T) = T . Since T is closed
under ≡ we have, by Proposition 4.5,

Reach(L, T) = Reach(L, T ∩ A
∗
A∗A

∗
).

We partition T ∩ A ∗ A∗A
∗

as follows: let p, q ∈ Q be any pair of states. Then
we can compute the following three regular languages in polynomial time:

Kp,q
1 = L(TI→p) ∩ A

∗
, Kp,q

2 = L(Tp→q) ∩ A∗ , and Kp,q
3 = L(Tq→F) ∩ A

∗
.

Then it is easy to see that T ∩ A
∗
A∗A

∗
=

⋃
p,q∈Q Kp,q

1 Kp,q
2 Kp,q

3 holds.
Hence, due to Proposition 3.4 and the closure properties of the class of

regular languages Reach(L,Kp,q
1 Kp,q

2 Kp,q
3) is effectively regular and, hence,

Reach(L, T). �

Remark 4.7. Since the left or right quotient of a context-free language with a reg-
ular language is again context-free, we can compute, from a PDA accepting L and
an NFA accepting T , PDAs accepting Reach(L, T) resp. BackReach(L, T) in
polynomial time.

5 Read-Write Independence

Another kind of meta-transformations was first considered in the research of
Boigelot et al. [4] (and similarly for lossy queue automata by Abdulla et al. [2]).
There, the authors considered queue automata looping through a single sequence
of transformations. This means, we consider queue automata having exactly one
initial state which is the only final state and there is exactly one labeled path
from the initial state back to itself, again.

156 C. Köcher

Concretely, in that paper the authors have proven that beginning with a
regular language of queue contents we reach a regular set of queue contents,
again. In particular, one can compute infinitely many succeeding queue contents
at once in polynomial time. So, a natural question would be, whether this result
can be generalized to meta-transformations consisting of multiple such loops
starting from a single initial state. Unfortunately, already for queue automata
having two loops the set of reachable queue contents is not regular in general:

Example 5.1. Let A be an alphabet and a, b ∈ A be distinct letters. Then we have
Reach({a}, {abb, ba}∗) ∩ {a}∗ = {a2n |n ∈ N} which is not even context-free.

Moreover, in Remark 3.3 we have seen that such queue automata consisting of
a finite number of such loops are Turing-complete.

In both cases, there are two words s, t ∈ T having different sub-sequences
of write or read actions. One trivial solution would be considering only words
having the same sub-sequences of write and read actions. Another even stronger
approach is to choose a set T such that independently of which word from
πA(T) we read from the queue, we can write any word from πA(T). In this case,
it is impossible that a special queue content can enforce a unique, complicated,
infinite run of the queue automaton since we can now write any word from
πA(T) at any time into the queue. This can be understood as lifting of a word
having sub-sequences of write and read actions to an object having a set of sub-
sequences of write and read actions. Formally, we are considering the following
sets of transformations:

Definition 5.2. Let A be an alphabet. A set T ⊆ Σ∗ is read-write independent
if for each s, t ∈ T we have πA(s)πA(t) ∈ T .

We may see read-write independent sets as some kind of a Cartesian product of
a set of write actions W ⊆ A∗ with a set of read actions R ⊆ A

∗
where for each

element (w, r) ∈ W ×R we have the transformation wr. Some simple read-write
independent sets are given in the following example:

Example 5.3. Let W,R ⊆ A∗. Then WR and W�R are read-write independent.

Obviously, each language T ⊆ Σ∗ with πA(T)πA(T) ⊆ T is read-write inde-
pendent. Hence, for a given regular language it is clear how to check read-write
independency.

In the following we will prove that the mapping L �→ Reach(L, T ∗), for
any regular, read-write independent set T ⊆ Σ∗, preserves regularity and is
computable in polynomial time. But first we focus on a special case where the
read-write independent set is the product of a language of write actions W with
a language of read actions . Here, we consider regular subsets WR ⊆ A∗A

∗
where

A is some alphabet having a special letter $ which marks the begin of a word
from W and is used for synchronization between writing and reading actions.

Theorem 5.4. Let A be an alphabet and $ ∈ A be some letter. Additionally,
let L ⊆ (A � {$})∗, W ⊆ $(A � {$})∗, and R ⊆ A∗ be regular languages such

Reachability Problems on Partially Lossy Queue Automata 157

that R = $∗
� πA�{$}(R) holds. Then Reach(L, (WR)∗) is effectively regular.

In particular, from NFAs accepting L, W , and R we can construct an NFA
accepting Reach(L, (WR)∗) in polynomial time.

We prove Theorem 5.4 by reduction to the reachability problem in pushdown
automata. A first, trivial idea would be a simple replacement of the queue by a
stack, i.e., from the queue’s content v we reach w if, and only if, the PDA reaches
w# from v#. Unfortunately, this construction is not possible since our queue
automaton modifies its content at both ends which cannot be simulated with a
single stack. Hence, we need a more abstract presentation of the queue’s contents.
To this end, we consider some computation of the queue on a word v ∈ L. So,
let v0, . . . , vk ∈ A∗ and α0, . . . , αk−1 ∈ Σ with v0 = v, vi+1 = vi ◦ αi �= ⊥ for
each 0 ≤ i < k, and α0 . . . αk−1 be some prefix of (WR)∗. Consider an NFA
C accepting LW ∗. Then, there is some path from an initial state p0 to a final
state q0 of C with label v0. When applying α0 to v0 this corresponds either to
moving q0 by one edge labeled with α0 ∈ A to state q1 or to moving p0 by one
edge labeled with a (where α0 = a ∈ A) to state p1. Application of the following
actions αi similarly moves one of the states pi and qi by one edge to pi+1 resp.
qi+1. The result is that vk is the labeling of some path from pk to qk in C. In this
sense, we can abstract vk and its corresponding path in C by these two states
pk and qk and a number n ∈ N representing the number of W -loops in this path
(and hence, the number of words from W to be contained in vk or the number
of $ on this path). Additionally, since α0 . . . αn−1 is some prefix of (WR)∗ there
is some path in an NFA T accepting (WR)∗ from an initial state to some state
s labeled with α0 . . . αn−1.

Alternatively, we can understand the components pk, qk, and n as follows:
since the queue automaton starts with some word from L, adds a prefix of W ∗ at
the end, and removes some prefix of R∗ from the head, the word vk is some infix
of LW ∗. Hence, there is a suffix w0 of L ∪ W , some words w1, . . . , wn−1 ∈ W ,
and a prefix wn of W with vk = w0w1 . . . wn−1wn. In this case, w0 is the labeling

pi pi+1 fC qi qi+1

suffix of L ∪ W prefix of W

∈ W

w1, . . . , wn−1

a b

$

$w0 wn

Fig. 1. A path labeled with vi from pi to qi in C and its three components.

158 C. Köcher

of some path from pk to the final states of C and wn is the labeling of some path
from C’s final states to qk (cf. Fig. 1).

Now, we want to construct a PDA P which handles exactly the four com-
ponents named above. In this sense, P’s states contain the three states pk, qk,
and s of C and T and the number n is stored in the stack of P. To this end,
let C = (QC , A, IC ,ΔC , FC) be an NFA accepting LW ∗ (i.e., the possible queue
Contents) and T = (QT , Σ, IT ,ΔT , FT) be an NFA accepting (WR)∗ (i.e., the
possible Transformations). W.l.o.g., we can assume that both, C and T , are
reduced in the sense that each state is reachable from the initial state and can
reach some final state. Additionally, we assume that C and T have exactly one
final state called fC resp. fT . Note that we can compute these two automata in
polynomial time from NFAs accepting L, W , and R.

Recall that the queue’s content is abstracted by three states from C and T
and by some natural number. Then the PDA P = (QP , Σ, Γ,#, IP ,ΔP , FP) is
defined as follows:

– Γ := {$,#}
– QP := QC × QC × QT . Here, the first and second component represent the

two states characterizing the queue’s content as described above. The third
component represents the actions we have already executed on the queue.

– IP := IC × QL × IT where QL := {q ∈ QC | ∃v ∈ L : IC
v−→C q} is the set of

states being reachable via L (i.e., the final states of the NFA accepting L)
– FP := QC × FC × FT
– ΔP contains exactly the following transitions for a ∈ A � {$}, X ∈ Γ ,

p, p, q, q′ ∈ QC , and s, s′ ∈ QT :
(I) Simulate writing of the letter a into the queue:

((p, q, s),X, a, (p, q′, s′),X) ∈ ΔP if (q, a, q′) ∈ ΔC and (s, a, s′) ∈ ΔT .
(II) Simulate writing of the letter $ into the queue:

((p, q, s),X, $, (p, q′, s′), $X) ∈ ΔP if (q, $, q′) ∈ ΔC and (s, $, s′) ∈ ΔT .
(III) Simulate reading of the letter a from the queue:

((p, q, s),X, a, (p′, q, s′),X) ∈ ΔP if (p, a, p′) ∈ ΔC and (s, a, s′) ∈ ΔT .
(IV) Simulate reading of the letter $ from the queue:

((p, q, s), $, $, (p′, q, s′), ε) ∈ ΔP if (p, $, p′) ∈ ΔC and (s, $, s′) ∈ ΔT .

It is easy to see that the stack’s contents are words from $∗# at any time.
Now, we assign the configuration ((p, q, s), $n#) to the set of all words being

the labeling of some path from p to q in C, containing n appearances of the
letter $ (which marks the beginning of a word from W), and are reachable by
application of some infix of (WR)∗ that is the labeling of some path from IT to
s in T . Since we do not care about the queue’s control component and its states,
we only focus on the path from p to q in C and the n appearances of $. Formally,
our assignment is the mapping �.� : ConfP → 2A∗

with

�(p, q, s), $n#� = L(Cp→q) ∩ ($n
� (A � {$})∗)

for each p, q ∈ QC , s ∈ QT , and n ∈ N.
Next, we can prove that the set of reachable queue contents coincides with

this semantics of the reachable, accepting configurations of the PDA P.

Reachability Problems on Partially Lossy Queue Automata 159

Proposition 5.5. We have Reach(L, (WR)∗) =
⋃

σ∈post∗(InitP)∩FinalP �σ�. �

With Proposition 5.5 in mind, we are ready to prove the effective regularity of
the set of reachable configurations of our special queue automata:

Proof (of Theorem 5.4). From Theorem 2.1 we know that post∗(InitP) is effec-
tively regular. Let A be the NFA recognizing post∗(InitP) which can be com-
puted in polynomial time. Then the following language is effectively regular as
well:

K :=
⋃

(p,q,s)∈FP

(L(Cp→q) ∩ (π$(L(A) ∩ (p, q, s)$∗#)� (A � {$})∗)).

Hence, using Proposition 5.5, we can prove

K =
⋃

σ∈post∗(InitP)∩FinalP

�σ� = Reach(L, T ∗).

�

Until now we have seen the effective preservation of regularity if our read-
write independent set T ⊆ Σ∗ satisfies a special condition. From this special
case we infer now the effective preservation of regularity for arbitrary read-write
independent sets.

Theorem 5.6. Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗ be
read-write independent and regular. Then Reach(L, T ∗) is effectively regular.
In particular, from NFAs accepting L and T we can compute an NFA accepting
Reach(L, T ∗) in polynomial time.

Proof. First, we can prove that for each t ∈ T and v ∈ L with v ◦ t �= ⊥
there is t′ ∈ πA(T)πA(T) with v ◦ t′ = v ◦ t. Hence, we have Reach(L, T ∗) =
Reach(L, (πA(T)πA(T))∗). Now, let $ /∈ A be a new letter. Then we set W :=
$πA(T) and R := πA(T) � $

∗
which are effectively regular. By Theorem 5.4

the set Reach(L, (WR)∗) is effectively regular as well. Finally, we can prove
Reach(L, (WR)∗) = Reach(L, (πA(T)πA(T))∗) = πA(Reach(L, T ∗)). �

From Theorem 5.6 and Proposition 3.4 we can infer that also the set of
backwards reachable queue contents is effectively regular.

Corollary 5.7. Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗ be read-
write independent and regular. Then BackReach(L, T ∗) is effectively regular.
In particular, from NFAs accepting L and T we can construct an NFA accepting
BackReach(L, T ∗) in polynomial time. �

Theorem 5.6 can also be used to prove the effective regularity of other lan-
guage classes. First, with the help of the behavioral equivalence ≡ we can see
that the result of [4] is a direct corollary of the result above.

160 C. Köcher

Corollary 5.8. Let A be an alphabet, L ⊆ A∗ be regular, and T ⊆ Σ∗ be regular.
Then Reach(L, T ∗) and BackReach(L, T ∗) are effectively regular, if

(1) T = {t} for some t ∈ Σ∗ (cf. [4]),
(2) T = R1WR2 for some regular sets W,R1, R2 ⊆ A∗, or
(3) T ⊆ A∗ ∪ A

∗
.

In all of these cases the computation of NFAs accepting Reach(L, T ∗) and
BackReach(L, T ∗), respectively, is possible in polynomial time.

Proof. First, we prove (1). To this end, let s = uvw ∈ A
∗
A∗A

∗
with s ≡ t as

in Proposition 4.5. Then we have t∗ ≡ s∗ = u(vwu)∗vw ∪ {ε}. Since {vwu} is
read-write independent, Reach(L, t∗) = Reach(L, s∗) is effectively regular by
Proposition 3.4 and Theorem 5.6.

The proof of (2) is similar to (1).
Finally, we prove (3). Set S := (T ∩ A∗)∗(T ∩ A

∗
)∗. Then S is effectively

regular and read-write independent. Additionally, we have S∗ = T ∗ and, hence,
Reach(L, T ∗) = Reach(L, S∗). �

Note that Corollary 5.8(2) also implies that Reach(L, (RW)∗) is effectively
regular for some regular languages W,R ⊆ A∗.

Though, it is still open whether Reach(L, T ∗) is regular for each regular
T ⊆ Σ∗ with πA(T)πA(T) ⊆ T . At least the reduction in Theorem 5.6, where
we have de-shuffled the words from T , does not hold in this case. E.g., we
have Reach({ε}, {aaa, aaa}∗) = a∗ �= {ε} = Reach({ε}, {aaa}∗). However,
we believe that Reach(L, T ∗) is effectively (and efficiently) regular for each
T ⊆ Σ∗ such that for each s, t ∈ T there is r ∈ T with πA(r) = πA(s) and
πA(r) = πA(t). Possibly, the construction of our PDA P can be generalized to
this case.

6 Partially Lossy Queues

Until now we have only considered queue automata which are reliable. We can
also prove the results from the previous sections for (partially) lossy queue
automata. These partially lossy queue automata are queue automata with an
additional uncontrollable action which is forgetting parts of its contents that are
specified by a so-called lossiness alphabet.

Definition 6.1. A lossiness alphabet is a tuple L = (A,U) where A is an alpha-
bet (with |A| ≥ 2) and U ⊆ A.

In this connection, U contains the unforgettable letters of the partially lossy
queue and A � U contains the forgettable letters.

In fact, a partially lossy queue automaton is allowed to forget any letter from
A � U in its content at any time. Here, we first consider partially lossy queues
with restricted lossiness. Concretely, we consider only the computations of the
automata where the queue forgets letters when necessary. That is, if the queue
tries to read some letter which is preceded by some forgettable letters.

Formally, the transformations of a restricted partially lossy queue are defined
as follows:

Reachability Problems on Partially Lossy Queue Automata 161

Definition 6.2. Let L = (A,U) be a lossiness alphabet and ⊥ /∈ A. Then the
map ◦L : (A∗ ∪ {⊥}) × Σ∗ → (A∗ ∪ {⊥}) is defined for each v ∈ A∗, a, b ∈ A,
and t ∈ Σ∗ as follows:

(1) v ◦L ε = v
(2) v ◦L at = va ◦ t
(3) av ◦L at = v ◦L t

(4) bv ◦L at = v ◦L at if b ∈ A � (U ∪ {a})
(5) bv ◦L at = ⊥ if b ∈ U � {a}
(6) ε ◦L at = ⊥ ◦L t = ⊥

Let L = (A,U) be a lossiness alphabet and u, v ∈ A∗. We say that v is an
L-subword of w (denoted by v �L w) if πU (w) � v � w holds. It is easy to see,
that �(A,A) is the equality relation and �(A,∅) is the subword relation on A as
defined in the preliminaries.

Then a (non-restricted) partially lossy queue with some content w ∈ A∗ may
contain any L-subword of w after a single forgetting action. Moreover, for v ∈ A∗

and t ∈ Σ∗ with v ◦L t �= ⊥ the set ↓
L(v ◦L t) is the set of all reachable queue
contents after application of the transformation t on v (cf. [13]). Hence, we define
our reachability problems as follows:

Definition 6.3. Let L = (A,U) be a lossiness alphabet, L ⊆ A∗ be a set of
queue contents, and T ⊆ Σ∗ be a regular set of transformations. The set of
queue contents that are reachable from L via T is

ReachL(L, T) := ↓
L((L ◦L T) � {⊥})

and the set of queue contents that can reach L via T is

BackReachL(L, T) := ↑
L{v ∈ A∗ | (v ◦L T) ∩ L �= ∅}.

Now, we consider fully lossy queues: let L = (A, ∅) be a lossiness alphabet. Then,
for regular languages L ⊆ A∗ and T ⊆ Σ∗, the set ReachL(L, T) has a decidable
membership problem [1] and, since it is downwards closed under the subword
ordering � [10], it is regular. Though, we cannot compute an NFA accepting this
set - even if L = {w} [14]. Surprisingly, the set BackReachL(L, T) is effectively
regular [1], but the computation of an NFA accepting this set is not primitive
recursive [7,15].

Hence, again we try to approximate the reachability problem with the help
of meta-transformations. To this end, we need the following partial ordering:
we say v is a reduced L-subword of w (denoted by v �L w) if, and only if,
there are a1, . . . , an ∈ A and wi ∈ (A � (U ∪ {ai}))∗ with v = a1 . . . an and
w = w1a1 . . . wnan. Note that v �L w implies v �L w but not vice versa, since
for v �L w it is allowed to add some forgettable letters at the end of v. It is very
easy to verify that in the reliable case (i.e., A = U) this ordering is the equality
relation on A∗. With the help of �L we can prove the following statement:

Lemma 6.4. Let L = (A,U) be a lossiness alphabet and v, w, t ∈ A∗. Then we
have v ◦L t = w if, and only if, there is s ∈ A∗ with t �L s and v = sw. �

162 C. Köcher

With the help of Lemma 6.4 we can finally prove the following reductions from
reachability in partially lossy queues to reachability in reliable queues:

Proposition 6.5. Let L = (A,U) and K = (A,A) be lossiness alphabets and
L, T ⊆ A∗. Then the following statements hold:

(1) L ◦L T = L ◦K T
(2) L ◦L T = L ◦K ↑�LT
(3) ReachL(L, T) = ↓
LReachK(L, T)
(4) ReachL(L, T) = ↓
LReachK(L, ↑�LT)
(5) BackReachL(L, T) = ↑
LBackReachK(L, T)
(6) BackReachL(L, T) = ↑
LBackReachK(L, ↑�LT) �

Finally, we can prove that our results from the previous sections also hold for
arbitrary partially lossy queues:

Theorem 6.6. Let L = (A,U) be a lossiness alphabet, L ⊆ A∗ be regular, and
T ⊆ Σ∗ be regular. Then ReachL(L, T) and BackReachL(L, T) are effectively
regular, if

(1) T is closed under ≡L (where s ≡L t if v ◦L s = v ◦L t for each v ∈ A∗),
(2) T = S∗ for some regular, read-write independent S ⊆ Σ∗,
(3) T = t∗ for some t ∈ Σ∗ (cf. [2,4]),
(4) T = (R1WR2)∗ for some regular sets W,R1, R2 ⊆ A∗, or
(5) T = S∗ where S ⊆ A∗ ∪ A

∗
is regular.

In all of these cases the computation of NFAs accepting ReachL(L, T) and
BackReachL(L, T), respectively, is possible in polynomial time. �

7 Conclusion

In this paper we introduced so-called partially lossy queue automata (plq
automata for short) which are queue automata that are allowed to forget spec-
ified parts of their contents at any time. Here, we considered the forwards and
backwards reachability problem of such plq automata. Since those automata are
Turing-complete (except of the ones allowed to forget everything) Boigelot et al.
[4] and Abdulla et al. [1] tried to approximate the reachability problem with the
help of so-called meta-transformations. These are regular languages of transfor-
mations such that we can easily compute the set of reachable queue contents.
Here, we considered two special kinds of meta-transformations:

1. the set of possible sequences of queue transformations is closed under certain
(context-sensitive) commutations of the atomic transformations.

2. the plq automaton alternates between writing of words from a regular lan-
guage and reading of words from another regular language. This is a gener-
alization of the results [2,4] where the authors considered queue automata
looping through a single sequence of transformations.

Reachability Problems on Partially Lossy Queue Automata 163

In both cases we could prove that, starting with a regular language of queue
contents the queue reaches a regular set of new contents.

Acknowledgment. The author would like to thank Dietrich Kuske and the anony-
mous reviewers of this paper for their helpful suggestions to improve this paper.

References

1. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996). https://doi.org/10.1006/inco.1996.0053

2. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward
reachability analysis for verification of lossy channel systems. Formal Methods Syst.
Des. 25(1), 39–65 (2004). https://doi.org/10.1023/B:FORM.0000033962.51898.1a

3. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. Formal Methods Syst. Des. 14(3), 237–255
(1999). https://doi.org/10.1023/A:1008719024240

4. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs (extended
abstract). In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0032741

5. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

7. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy chan-
nel systems. In: LICS 2008, pp. 205–216. IEEE Computer Society Press (2008).
https://doi.org/10.1109/LICS.2008.47

8. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167 20

9. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Electron. Notes Theor. Comput. Sci. 9, 27–37 (1997). https://
doi.org/10.1016/S1571-0661(05)80426-8

10. Haines, L.H.: On free monoids partially ordered by embedding. J. Comb. Theory
6(1), 94–98 (1969). https://doi.org/10.1016/S0021-9800(69)80111-0

11. Huschenbett, M., Kuske, D., Zetzsche, G.: The monoid of queue actions. Semigroup
Forum 95(3), 475–508 (2017). https://doi.org/10.1007/s00233-016-9835-4

12. Köcher, C.: Rational, recognizable, and aperiodic sets in the partially lossy queue
monoid. In: STACS 2018. LIPIcs, vol. 96, pp. 45:1–45:14. Dagstuhl Publishing
(2018). https://doi.org/10.4230/LIPIcs.STACS.2018.45

13. Köcher, C., Kuske, D., Prianychnykova, O.: The inclusion structure of partially
lossy queue monoids and their trace submonoids. RAIRO - Theor. Inf. Appl. 52(1),
55–86 (2018). https://doi.org/10.1051/ita/2018003

14. Mayr, R.: Undecidable problems in unreliable computations. Theoret. Comput.
Sci. 297(1), 337–354 (2003). https://doi.org/10.1016/S0304-3975(02)00646-1

15. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Inf. Process. Lett. 83(5), 251–261 (2002). https://doi.org/10.1016/S0020-
0190(01)00337-4

https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1023/B:FORM.0000033962.51898.1a
https://doi.org/10.1023/A:1008719024240
https://doi.org/10.1007/BFb0032741
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1145/322374.322380
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/10722167_20
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1016/S0021-9800(69)80111-0
https://doi.org/10.1007/s00233-016-9835-4
https://doi.org/10.4230/LIPIcs.STACS.2018.45
https://doi.org/10.1051/ita/2018003
https://doi.org/10.1016/S0304-3975(02)00646-1
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4

On the Computation of the Minimal
Coverability Set of Petri Nets

Pierre-Alain Reynier1(B) and Frédéric Servais2

1 Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
pierre-alain.reynier@univ-amu.fr

2 École Supérieure d’Informatique de Bruxelles, Bruxelles, Belgium
frederic.servais@gmail.com,

https://pageperso.lis-lab.fr/~pierre-alain.reynier/

Abstract. The verification of infinite-state systems is a challenging
task. A prominent instance is reachability analysis of Petri nets, for
which no efficient algorithm is known. The minimal coverability set of a
Petri net can be understood as an approximation of its reachability set
described by means of ω-markings (i.e. markings in which some entries
may be set to infinity). It allows to solve numerous decision problems on
Petri nets, such as any coverability problem. In this paper, we study the
computation of the minimal coverability set.

This set can be computed using the Karp and Miller trees, which per-
form accelerations of cycles along branches [10]. The resulting algorithm
may however perform redundant computations. In a previous work [17],
we proposed an improved algorithm allowing pruning between branches
of the Karp and Miller tree, and proved its correctness. The proof of
its correctness was complicated, as the introduction of pruning between
branches may yield to incompleteness issues [5,9].

In this paper, we propose a new proof of the correctness of our algo-
rithm. This new proof relies on an original invariant of the algorithm,
leading to the following assets:
1. it is considerably shorter and simpler,
2. it allows to prove the correctness of a more generic algorithm, as

the acceleration used is let as a parameter. Indeed, we identify the
property that the acceleration should satisfy to ensure completeness.

3. it opens the way to a generalization of our algorithm to extensions
of Petri nets.

Keywords: Petri nets · Coverability · Acceleration

1 Introduction

Verification of Infinite-State Systems. Petri nets [14] constitute one of the most
popular formalism for the description and analysis of concurrent systems. While
their state space may be infinite, many verification problems are decidable. Deal-
ing with infinite-state systems is useful in numerous situations, such as consid-
ering an unbounded number of agents or modelling ressources.
c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 164–177, 2019.
https://doi.org/10.1007/978-3-030-30806-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_13

On the Computation of the Minimal Coverability Set of Petri Nets 165

When considering the verification of safety properties for Petri nets, an
important problem is the coverability problem, which can be understood as a
weakening of the reachability problem. It asks whether it is possible to reach a
marking larger than or equal to a given target marking, and thus exactly corre-
sponds to fireability of a transition. This problem is ExpSpace-complete [3,10,16]
and has attracted a lot of interest (see for instance [2,8,11]).

The Minimal Coverability Set. In this work, we are interested in a related prob-
lem, which consists in computing the so-called minimal coverability set of a Petri
net (MCS for short) [5]. This set can be understood as an approximation of its
reachability set described by means of ω-markings (i.e. markings in which some
entries may be set to infinity). Once it is computed, this set allows to solve any
coverability problem, and several other problems such as the (place) boundedness
and regularity problems (see [18]).

The MCS can be derived from the classical Karp and Miller algorithm [10].
This algorithm builds a finite tree representation of the (potentially infinite)
unfolding of the reachability graph of the given Petri net. It uses acceleration
techniques to collapse branches of the tree and ensure termination. By taking
advantage of the fact that Petri nets are strictly monotonic transition systems,
the acceleration essentially computes the limit of repeatedly firing a sequence
of transitions. However, this algorithm is not efficient as several branches may
perform similar computations. This observation led to the Minimal Coverability
Tree (MCT) algorithm [5], which introduces comparisons (and pruning) between
branches of the tree. However, it was shown that the MCT algorithm is incom-
plete [9,13]. The flaw is intricate and, according to [9], difficult to patch, with
wrong previous attempts [13].

The Monotone-Pruning Algorithm. As a solution to this problem, we introduced
in [17] the Monotone-Pruning algorithm (MP), an improved Karp and Miller
algorithm with pruning. This algorithm can be viewed as the MCT Algorithm
with a slightly more aggressive pruning strategy which ensures completeness. The
MP algorithm constitutes a simple modification of the Karp and Miller algorithm
and thus enjoys the following assets: it is easily amenable to implementation,
any strategy of exploration of the Petri net is correct: depth first, breadth first,
random . . . , and experimental results based on a prototype implementation in
Python show promising results [17]. Recently, the MP algorithm has been used
successfully in the context of the verification of data-driven workflows [12].

While MP algorithm is simple and includes the elegant ideas of the original
MCT Algorithm, the proof of its correctness presented in [17] is long and techni-
cal. The main difficulty is to prove the completeness of the algorithm, i.e. to show
that the set returned by the algorithm covers every reachable marking (recall
that the flaw of MCT algorithm identified in [9] is precisely its incompleteness).
In [17], to overcome this difficulty, we reduce the problem to the completeness
of the algorithm for a particular class of finite state systems, which we call
widened Petri nets (WPN). Yet, the proof of the completeness of MP algorithm

166 P.-A. Reynier and F. Servais

for WPN provided in [17] is approximately ten pages long, and goes through
several technical lemmas, making it hard to understand and to generalise.

Contributions of the Paper. In this paper, we present a new proof of the com-
pleteness of MP Algorithm for WPN. More precisely, we consider a more gen-
eral version of MP Algorithm, in which the acceleration used is considered as
a parameter. In the context of WPN, a concretisation function can be associ-
ated with an acceleration: it gives a concrete sequence of transitions allowing to
reach the ω-marking resulting from the acceleration. We identify a property of
the acceleration by means of its concretisation function, which we call coherence
and prove the completeness of MP Algorithm for WPN provided the accelera-
tion used is coherent. This new proof relies on a simple invariant of the property,
whose proof is less than two pages long.

We argue that this new proof has the following assets:

1. it is much more readable, increasing its confidence,
2. it is more general, as the acceleration is now a parameter of the algorithm,
3. it opens the way to a generalisation of MP algorithm to other classes of

well-structured transition systems [1,4,6,7].

Related Work. Other algorithms have been proposed to compute the MCS.
First, the CoverProc algorithm has been introduced in [9]. This algorithm fol-
lows a different approach and is not based on the Karp and Miller Algorithm.
Instead, it relies on pairs of markings, yielding an important overhead in terms
of complexity. Another algorithm has been proposed in [15]. This algorithm is
however very tailored to Petri nets and relies on ad-hoc tricks to improve its
efficiency. In addition, it does not offer the possibility to modify the exploration
strategy: it should be depth-first search.

Organisation of the Paper. Definitions of Petri nets are given in Sect. 2, together
with the notion of minimal coverability set. The Monotone-Pruning algorithm
is presented in Sect. 3, and the overall proof structure of its correctness is given
in Sect. 4. In Sect. 5, we present our new arguments to prove its completeness.
In Sect. 6, we show that a simple acceleration function satisfies the expected
property to ensure completeness of MP Algorithm.

2 Preliminaries

N denotes the set of natural numbers. A quasi order ≤ on a set S is a reflexive
and transitive relation on S. Given a quasi order ≤ on S, a state s ∈ S and a
subset X of S, we write s ≤ X iff there exists an element s′ ∈ X s.t. s ≤ s′.

Given a finite alphabet Σ, we denote by Σ∗ the set of words on Σ, and
by ε the empty word. We denote by ≺ the (strict) prefix relation on Σ∗: given
u, v ∈ Σ∗ we have u ≺ v iff there exists w ∈ Σ∗ such that uw = v and w �= ε.
We denote by � the relation obtained as ≺ ∪ =.

On the Computation of the Minimal Coverability Set of Petri Nets 167

2.1 Markings, ω-markings and Labelled Trees

Given a finite set P , a marking on P is an element of the set Mark(P) = N
P .

The set Mark(P) is naturally equipped with a partial order denoted ≤.
Given a marking m ∈ Mark(P), we represent it by giving only the positive

components. For instance, (1, 0, 0, 2) on P = (p1, p2, p3, p4) is represented by the
multiset {p1, 2p4}. An ω-marking on P is an element of the set Markω(P) =
(N∪{ω})P . The order ≤ on Mark(P) is naturally extended to this set by letting
n < ω for any n ∈ N, and ω ≤ ω. Addition and subtraction on Markω(P) are
obtained using the rules ω + n = ω − n = ω for any n ∈ N. The ω-marking
(ω, 0, 0, 2) on P = (p1, p2, p3, p4) is represented by the multiset {ωp1, 2p4}.

Given two sets Σ1 and Σ2, a labelled tree is a tuple T = (N,n0, E, Λ) where
N is the set of nodes, n0 ∈ N is the root, E ⊆ N × Σ2 × N is the set of edges
labelled with elements of Σ2, and Λ : N → Σ1 labels nodes with elements of Σ1.
We extend the mapping Λ to sets of nodes: for S ⊆ N , Λ(S) = {Λ(n) | n ∈ S}.
Given a node n ∈ N , we denote by AncestorT (n) the set of ancestors of n in T
(n included). If n is not the root of T , we denote by parentT (n) its first ancestor
in T . Finally, given two nodes x and y such that x ∈ AncestorT (y), we denote
by pathT (x, y) ∈ E∗ the sequence of edges leading from x to y in T . We also
denote by pathlabelT (x, y) ∈ Σ∗

2 the label of this path.

2.2 Petri Nets

Definition 1 (Petri net (PN)). A Petri net N is a tuple (P, T, I,O,m0)
where P is a finite set of places, T is a finite set of transitions with P ∩ T = ∅,
I : T → Mark(P) is the backward incidence mapping, representing the input
tokens, O : T → Mark(P) is the forward incidence mapping, representing output
tokens, and m0 ∈ Mark(P) is the initial marking.

The semantics of a PN is usually defined on markings, but can easily be
extended to ω-markings. We define the semantics of N = (P, T, I,O,m0) by its
associated labelled transition system (Markω(P),m0, ⇒) where ⇒⊆ Markω(P)×
Markω(P) is the transition relation defined by m ⇒ m′ iff ∃t ∈ T s.t. m ≥
I(t) ∧ m′ = m − I(t) + O(t). For convenience we will write, for t ∈ T , m

t⇒ m′ if
m ≥ I(t) and m′ = m − I(t) + O(t). In addition, we also write m′ = Post(m, t),
this defines the operator Post which computes the successor of an ω-marking by
a transition. We naturally extend this operator to sequences of transitions. Given
an ω-marking m and a transition t, we write m

t⇒ · iff there exists m′ ∈ Markω(P)
such that m

t⇒ m′. The relation ⇒∗ represents the reflexive and transitive closure
of ⇒. We say that a marking m is reachable in N iff m0 ⇒∗ m. We say that a
Petri net is bounded if the set of reachable markings is finite.

Example 1. We consider the Petri net N depicted on Fig. 1, which is the example
used in [17]. The initial marking is {p1}, depicted by the token in the place p1.
For any integer n, we have Post({p1}, t1(t3t4)n) = {p3, np5}. In particular, this
net is not bounded as place p5 is not. �

168 P.-A. Reynier and F. Servais

•p1

p3

p6

p4

p5t1

t5

t3

t6

t4

2

Fig. 1. A Petri net N .

2.3 Minimal Coverability Set of Petri Nets

We recall the definition of minimal coverability set introduced in [5].

Definition 2. A coverability set of a Petri net N = (P, T, I,O,m0) is a finite
subset C of Markω(P) such that the two following conditions hold:

(1) for every reachable marking m of N , there exists m′ ∈ C such that m ≤ m′,
(2) for every m′ ∈ C, either m′ is reachable in N or there exists an infinite

strictly increasing sequence of reachable markings (mn)n∈N converging to
m′.

A coverability set is minimal iff no proper subset is a coverability set.

One can prove (see [5]) that a PN N admits a unique minimal coverability
set, which we denote by MCS(N).

Note that every two elements of a minimal coverability set are incomparable.
Computing the minimal coverability set from a coverability set is easy. Note also
that if the PN is bounded, then the set of reachable markings is finite, and thus
the notion of reachable maximal marking is well-defined. In this case, a set of
markings is a coverability set iff it contains all maximal reachable markings.

Example 2. (Example 1 continued). The MCS of the Petri net N is composed
of the following ω-markings: {p1}, {p6}, {p3, ωp5}, and {p4, ωp5}. �

3 Presentation of the Monotone-Pruning Algorithm

3.1 Acceleration(s)

Following previous works, as Karp and Miller algorithm, MP algorithm involves
an acceleration function. Such a function takes as input a set of ω-markings M
and an ω-marking m, and returns an ω-marking m′, which can be used to replace
m. Several such functions have been considered in the literature. A classical one
is the mapping Accall : 2Markω(P) × Markω(P) → Markω(P) which is defined as
follows:

∀p ∈ P,Accall(M,m)(p) =
{

ω if ∃m′ ∈ M | m′ < m ∧ m′(p) < m(p) < ω
m(p) otherwise.

On the Computation of the Minimal Coverability Set of Petri Nets 169

A weaker acceleration computes the acceleration w.r.t. a single ω-marking
chosen in the set M . The mapping Accone : 2Markω(P) × Markω(P) → Markω(P)
is defined as follows:

– if there exists m′ ∈ M such that m′ < m, then we fix one such ω-marking
m′, and define Accone(M,m) as follows:

∀p ∈ P,Accone(M,m)(p) =
{

ω if m′(p) < m(p) < ω
m(p) otherwise.

– otherwise, we define Accone(M,m) = m.

In both functions, the acceleration uses one (or several) of the ω-markings
in M to build the new ω-marking. Note that these accelerations will always be
used along a branch of the tree constructed by the algorithm.

3.2 Definition of the Algorithm

The K&M Algorithm uses comparisons along the same branch to compute the
acceleration and stop the exploration. We present in this section the Monotone-
Pruning Algorithm which includes a comparison (and a pruning) between
branches. We denote this algorithm by MP. It has as a parameter an accel-
eration function Acc as defined in the previous section.

Algorithm 1. Monotone Pruning Algorithm for Petri Nets.
Require: A Petri net N = (P, T, I, O, m0) and an acceleration function Acc.
Ensure: A labelled tree C = (X, x0, B, Λ) with nodes (resp. edges) labelled with ele-

ments in Markω(P) (resp. T), and a set Act ⊆ X such that Λ(Act) = MCS(N).

1: Let x0 be a new node such that Λ(x0) = m0;

2: X := {x0}; Act := X; Wait := {(x0, t) | Λ(x0)
t⇒ ·}; B := ∅;

3: while Wait �= ∅ do
4: Pop (n, t) from Wait. m := Post(Λ(n), t);
5: if n ∈ Act and m �≤ Λ(Act) then
6: Let n′ be a new node such that Λ(n′) = Acc(Λ(AncestorC(n) ∩ Act), m);
7: X := X ∪ {n′}; B := B ∪ {(n, t, n′)};
8: Act := Act \ {x | ∃y ∈ AncestorC(x) s.t. Λ(y) ≤ Λ(n′) ∧ (y ∈ Act ∨ y /∈

AncestorC(n′))};

9: Act := Act ∪ {n′}; Wait := Wait ∪ {(n′, t′) | Λ(n′) t′⇒ ·};
10: end if
11: end while
12: Return C = (X, x0, B, Λ) and Act.

As Karp and Miller Algorithm, the MP Algorithm builds a tree C in which
nodes are labelled by ω-markings and edges by transitions of the Petri net.
Therefore it proceeds in an exploration of the reachability tree of the Petri net,

170 P.-A. Reynier and F. Servais

and uses acceleration along branches to reach the “limit” markings. In addi-
tion, it can prune branches that are covered by nodes on other branches. This
additional pruning is the source of efficiency, as it avoids to perform redundant
computations. It is also the source of difficulty, as a previous attempt of intro-
duction of such pruning led to an incomplete algorithm (MCT Algorithm [5]). In
order to obtain a complete algorithm, nodes of the tree are partitioned into two
subsets: active nodes, and inactive ones. Intuitively, active nodes will form the
minimal coverability set of the Petri net, while inactive ones are kept to ensure
completeness of the algorithm.

Given a pair (n, t) popped from Wait, the introduction in C of the new node
obtained from (n, t) proceeds in the following steps:

1. the “regular” successor marking is computed: m = Post(Λ(n), t) (Line 4) ;
2. node n should be active and marking m should not be covered by some active

node (test of Line 5) ;
3. the marking resulting from the acceleration of m w.r.t. the active ances-

tors of node n is computed and associated with a new node n′: Λ(n′) =
Acc(Λ(AncestorC(n) ∩ Act),m) (Line 6) ;

4. update of Act: some nodes are “deactivated”, i.e. removed from Act (Line 8).
5. the new node n′ is declared as active and Wait is updated (Line 9) ;

We detail the update of the set Act. Intuitively, one wants to deactivate nodes
(and their descendants) that are covered by the new node n′. In MP Algorithm
(see Line 8), node x is deactivated iff its ancestor y is either active (y ∈ Act), or
is not itself an ancestor of n′ (y �∈ AncestorC(n′)). In this case, we say that x is
deactivated by n′. This subtle condition constitutes the main difference between
MP and MCT Algorithms.

To illustrate the behaviour of MP Algorithm, consider the introduction of a
new node n′ obtained from (n, t) ∈ Wait, and a node y such that Λ(y) ≤ Λ(n′),
y can be used to deactivate nodes in two ways:

– if y �∈ AncestorC(n′), then no matter whether y is active or not, all its descen-
dants are deactivated (represented in gray on Fig. 2(a)),

– if y ∈ AncestorC(n′), then y must be active (y ∈ Act), and in that case all
its descendants are deactivated, except node n′ itself as it is added to Act at
Line 9 (see Fig. 2(b)).

4 Structure of the Proof of Correction of MP Algorithm

In this section, we describe the overall structure of the proof of [17]. Given an
input Petri net N , MP Algorithm returns a set Act of ω-markings. We say that
MP Algorithm is:

– sound if for every m ∈ Act, there exists n ∈ MCS(N) such that m ≤ n,
– complete if for every n ∈ MCS(N), there exists m ∈ Act such that n ≤ m.

It is easy to show that Act is composed of pairwise incomparable ω-markings.
Hence, if MP Algorithm is both sound and complete, then it returns exactly the
set MCS(N).

On the Computation of the Minimal Coverability Set of Petri Nets 171

root

y n

n′

x

(a) y �∈ AncestorC(n′)

root

y ∈ Act

n

n′x

(b) y ∈ AncestorC(n′) ∩ Act

Fig. 2. Deactivations of MP Algorithm.

4.1 Widened Petri Nets

Our proof involves a widening operation which turns a Petri net into a finite
state system. Let P be a finite set, and ϕ ∈ Mark(P) be a marking. We consider
the finite set of ω-markings whose finite components (i.e. values different from
ω) are less or equal than ϕ. Formally, we define:

Markω
ϕ(P) = {m ∈ Markω(P) | ∀p ∈ P,m(p) ≤ ϕ(p) ∨ m(p) = ω}.

The widening operator Widenϕ maps an ω-marking to an element of Markω
ϕ(P):

∀m ∈ Markω(P),∀p ∈ P,Widenϕ(m)(p) =
{

m(p) if m(p) ≤ ϕ(p)
ω otherwise.

Note that this operator trivially satisfies m ≤ Widenϕ(m).

Definition 3 (Widened Petri net). A widened Petri net (WPN for short)
is a pair (N , ϕ) composed of a PN N = (P, T, I,O,m0) and of a marking
ϕ ∈ Mark(P) such that m0 ≤ ϕ.

The semantics of (N , ϕ) is given by its associated labelled transition sys-
tem (Markω

ϕ(P),m0,⇒ϕ) where for m,m′ ∈ Markω
ϕ(P), and t ∈ T , we have

m
t⇒ϕ m′ iff m′ = Widenϕ(Post(m, t)). We carry over from PN to WPN the

relevant notions, such as reachable marking. We define the operator Postϕ by
Postϕ(m, t) = Widenϕ(Post(m, t)). Subscript ϕ may be omitted when it is clear
from the context. Finally, the minimal coverability set of a widened Petri net
(N , ϕ) is simply the set of its maximal reachable states as its reachability set is
finite. It is denoted MCS(N , ϕ).

Example 3 (Example 1 continued). Consider the mapping ϕ associating 1 to
places p1, p3, p4 and p6, and 3 to place p5, and the widened Petri net (N , ϕ).
Then from marking {p4, 3p5}, the firing of t4 results in the marking {p3, ωp5},
instead of the marking {p3, 4p5} in the standard semantics. One can compute
the MCS of this WPN. Due to the choice of ϕ, it coincides with MCS(N). �

172 P.-A. Reynier and F. Servais

In the sequel, we will consider the execution of MP Algorithm on widened
Petri nets, which we will denote by MPWPN. Let (N , ϕ) be a WPN. The only
difference is that the operator Post (resp. ⇒) must be replaced by the operator
Postϕ (resp. ⇒ϕ). Thus, all the ω-markings computed by the algorithm belong
to Markω

ϕ(P).

4.2 Structure of the Proof of Correction Presented in [17]

The structure of the proof of correction presented in [17] is depicted in Fig. 3.
In this proof, all results have rather simple proofs, except the completeness of
MPWPN. The proof of this property presented in [17] is approximately ten pages
long. The main contribution of this paper is a very short proof of this property.
It is presented in the next section, and stated as Theorem 1.

MP terminates
(Theorem 3.3 [17])

MPWPN is complete
(Theorem 3.4 [17]) MP() = MPWPN()

∀ , ∃φ ∣
, φ

MP is complete MP is sound (easy)

MP is correct

Fig. 3. Structure of the proof of [17]. The main difficulty lies in the completeness of
MPWPN, depicted in red. (Color figure online)

5 Completeness of MP Algorithm for WPN

In this section, we present the main contribution of this article, which is a new
and simple proof of the completeness of MP Algorithm for WPN.

5.1 Coherence of an Acceleration

MP Algorithm builds a labelled tree C. In this context, the acceleration is applied
along a branch β starting from the root, and leading to a node n whose marking
is m. More precisely, there exists a set N of nodes on β, which are active ancestors
of node n, and such that M is the set of markings of N . We recall the notion
of concretization that “explains” how the accelerated marking is computed, by
giving an explicit sequence of transitions leading to the accelerated marking.

On the Computation of the Minimal Coverability Set of Petri Nets 173

Definition 4. We consider an acceleration Acc and a labelled tree C =
(X,x0, B, Λ) obtained from a WPN (N , ϕ) using Acc. A concretization func-
tion is a mapping γ : B∗ → T ∗ associating to every path in C a sequence of
transitions of N . In addition, given x, y ∈ X such that y ∈ AncestorC(x), we
have Λ(x) = Postϕ(Λ(y), γ(pathC(y, x))).

In order to have a generic proof, independent of the acceleration considered,
we identify a property of the acceleration together with its concretization func-
tion which ensures that the algorithm is correct.

Definition 5. We consider an acceleration function Acc. We
say that Acc is coherent if it admits a concretization function
γ such that the following property holds: (†) Let x, y in C and
w = pathC(y, x) ∈ B∗. Then for every ρp � γ(w), there exist
two nodes x′ and y′ such that:

– Post(Λ(y), ρp) ≥ Λ(y′),
– x′ is an ancestor of x, used by some acceleration for node y1

on the path from y to x,
– y′ lies between x′ and y1.

root

x′

y′ y′

y y

y1 y1

x x

w

Acc

We prove now that when an acceleration Acc is coherent, then MP Algorithm
satisfies a property that we call the coherence of this algorithm.

Lemma 1 (MP Algorithm is coherent). We consider MP Algorithm with
a coherent acceleration Acc, with concretization γ. Then the following property
holds: consider three nodes x, y, z such that x, z ∈ Act and y ∈ AncestorC(x),
and define ρ = γ(pathC(y, x)). If Λ(z) ≥ Post(Λ(y), ρp) for some ρp � ρ, then
y ∈ AncestorC(z).

Proof. As the acceleration is coherent, we fix an adequate concretization function
γ. We consider nodes x, y, z and some ρp � ρ = γ(pathC(y, x)) as in the premises
of the statement. Thanks to property (†), there exist two nodes x′, y′ such that:

– Post(Λ(y), ρp) ≥ Λ(y′),
– x′ is an ancestor of x, used by some acceleration for node y1 on the path from

y to x,
– y′ lies between x′ and y1.

By contradiction, assume that y′ �∈ AncestorC(z). We have Λ(z) ≥
Post(Λ(y), ρp) and Post(Λ(y), ρp) ≥ Λ(y′), hence Λ(z) ≥ Λ(y′). Then, by def-
inition of MP Algorithm, x is deactivated by z. This is in contradiction with our
assumption that x and z are active. Thus, we have y′ ∈ AncestorC(z).

Assume now that y1 �∈ AncestorC(z). Recall that y1 used the node x′ when
the acceleration has been applied. By definition of MP Algorithm, it deactivated
everything below x′, except itself. As we have that y′ is between x′ and y1, y′ is
an ancestor of z, and y1 is not an ancestor of z, this entails that y1 deactivated
z, which is a contradiction. Thus, we have y1 ∈ AncestorC(z).

In particular, this implies y ∈ AncestorC(z), as expected. ��

174 P.-A. Reynier and F. Servais

5.2 New Proof

Our new proof relies on a simple invariant of the algorithm, from which com-
pleteness easily follows. This invariant is defined as the following property (P):

∀m ∈ Reach(N),∃(x, ρ) ∈ Act × T ∗ such that:⎧⎨
⎩

(1) Post(Λ(x), ρ) ≥ m
(2) ρ �= ε ⇒ (x, first(ρ)) ∈ Wait
(3) ∀ε �= ρp � ρ,¬∃z ∈ Act.Λ(z) ≥ Post(Λ(x), ρp)

Intuitively, the invariant states that for every reachable marking m, there
exists a pair (x, ρ) which allows to cover m (property (1)), whose exploration is
still in the waiting list (property (2)), and whose exploration will not be stopped
by another active node (property (3)).

We now prove that the MP Algorithm satisfies the invariant (P):

Lemma 2. When used with a coherent acceleration, the MP Algorithm satisfies
the property (P) at every step of its execution.

Proof. We proceed by induction on the number of steps of the algorithm.
Base case. Initially, the invariant is trivially satisfied as there is a single active
node corresponding to the initial marking.
Induction. P(k) ⇒ P(k + 1)

Let m ∈ Reach(N). By P(k), there exists (x, ρ) as given by P.
We consider different cases depending on what happens in the While loop of

the algorithm. At Line 4, a pair (n, t) is popped from the waiting list. If this pair
does not pass the test of Line 5, then nothing changes and the pair (x, ρ) still
satisfies the properties. The interesting case is when this pair passes the test of
Line 5. We distinguish three cases:

1. if x is not deactivated and no successor of x by prefixes of ρ is covered by n′,
then we can simply choose the pair (x, ρ).

2. otherwise, assume that some successor of x by a (possibly empty) prefix of
ρ is covered by n′. Then, let ρ1 be the longest prefix of ρ such that Λ(n′) ≥
Post(Λ(x), ρ1). We claim that we can choose the pair (n′, ρ′) where ρ′ = ρ−1

1 .ρ.
Indeed:

– n′ ∈ Act (Line 9),
– Property (1) follows from monotonicity of Petri nets and from Λ(n′) ≥

Post(Λ(x), ρ1),
– Property (2) follows from Line 9,
– In order to show that Property (3) holds, we proceed by contradiction.

Assume that there exists ρ′
p a non-empty prefix of ρ′ and an active node

z such that Λ(z) ≥ Post(Λ(n′), ρ′
p). Then we have:

Post(Λ(x), ρ1ρ′
p) ≤ Post(Λ(n′), ρ′

p) ≤ Λ(z)

As ρ1ρ
′
p �= ε and ρ1ρ

′
p � ρ, Property (3) of our invariant for (x, ρ) implies

that z is a new active node, i.e. z = n′. This is a contradiction with our
choice of ρ1 of maximal length.

On the Computation of the Minimal Coverability Set of Petri Nets 175

3. otherwise, x is deactivated by n′: n′ dominates a strict ancestor y of x such
that y ∈ Act or y �∈ AncestorC(n′) (see Line 8 of the algorithm). We fix such
a node y and let w = pathC(y, x). We define ρ0 = γ(w) and ρ1 as the longest
prefix of ρ0 such that Λ(n′) ≥ Post(Λ(n′), ρ1). We write ρ0 = ρ1ρ2 and claim
that the pair (n′, ρ2ρ) satisfies the properties of the invariant. Property (1)
follows directly from monotonicity of Petri nets. Property (2) follows from
the fact that n′ has just been added to C.
We prove now Property (3). By contradiction, assume that there exists
ρp a non-empty prefix of ρ2ρ and an active node z such that Λ(z) ≥
Post(Λ(n′), ρp). Then we also have, by monotonicity, Λ(z) ≥ Post(Λ(y), ρp).
First case: z = n′. As we are not in Case 2, ρp should be a prefix of ρ2. But
this in contradiction with the definition of ρ2.
Second case: z �= n′. In particular, z is already active at the previous iteration
of the algorithm. By Property (3) of the invariant for (x, ρ), ρp is a prefix of
ρ2.
We consider the prefix ρ1ρp of ρ0 = γ(w). We can apply Lemma 1 and deduce
that y ∈ AncestorC(z). Thus z is deactivated by the construction of n′ (see
Line 8 of the algorithm), yielding the contradiction as we supposed z is active.

��

Theorem 1. If Acc is coherent, then MP Algorithm for WPN is complete.

Proof. The result directly follows from Lemma 2 and from the termination of
the algorithm. Consider some reachable marking m and the set Act returned by
MP Algorithm after its termination. Thanks to Lemma2, there exists some pair
(x, ρ) as given by property (P). As the waiting list is empty, we have ρ = ε,
hence property (1) directly gives the completeness of Act. ��

6 Coherence of the Acceleration Accone

In this section, we exhibit a concretization function for the acceleration Accone
which allows to show that this acceleration is coherent.

Definition 6 (Concretization function for Accone). The concretization
function is a morphism γone from B∗ to T ∗. We let M = max{ϕ(p) | p ∈ P}+1.

Let b = (n, t, n′) ∈ B. We assume γone is defined on all edges (x, u, y) ∈ B
such that y ∈ AncestorC(n).

Let m = Postϕ(Λ(n), t), then there are two cases, either :

1. Λ(n′) = m (t is not accelerated), then we define γ(b) = t, or
2. Λ(n′) > m. Let x be the ancestor of n used for this acceleration, and w =

pathC(x, n) ∈ B∗. Then we define:
γone(b) = t.(γone(w).t)M

The following property can easily be proved by induction:

Lemma 3. The mapping γone is a concretization of the acceleration Accone.

176 P.-A. Reynier and F. Servais

By reasoning on γone and using again an induction, we can show the existence
of adequate ancestors, to prove the following property:

Lemma 4. The acceleration Accone is coherent.

7 Conclusion

In this paper, we have provided a new proof of the completeness of MP Algo-
rithm, an algorithm introduced in [17] to compute the minimal coverability set of
a Petri net. The new proof relies on an original invariant, is considerably shorter
than that of [17], and allows to identify the property that the acceleration should
meet to ensure the completeness of the algorithm.

As future work, we would like to extend MP Algorithm to more general
classes of well-structured transition systems. To this end, we plan to rely on the
representation of downward-closed sets using finite unions of ideals, as introduced
in [6,7]. This setting has recently been used to develop an ideal Karp and Miller
algorithm in [1], which should be a good basis for extending MP Algorithm to
well-structured transition systems.

References

1. Blondin, M., Finkel, A., Goubault-Larrecq, J.: Forward analysis for wsts, part III:
Karp-Miller trees. In: 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2017, vol. 93 of LIPIcs,
pp. 16:1–16:15. Leibniz-Zentrum fuer Informatik (2017)

2. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 480–496. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 28

3. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for
petri nets and commutative semigroups: preliminary report. In: Proceedings of the
8th Annual ACM Symposium on Theory of Computing, Hershey, Pennsylvania,
USA, 3–5 May 1976, pp. 50–54. ACM (1976)

4. Finkel, A.: A generalization of the procedure of Karp and Miller to well structured
transition systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499–
508. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18088-5 43

5. Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.)
ICATPN 1991. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56689-9 45

6. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: completions.
In: Proceedings of STACS 2009, vol. 3 of LIPIcs, pp. 433–444. Leibniz-Zentrum
für Informatik (2009)

7. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: complete
WSTS. Log. Methods Comput. Sci. 8(3) (2012)

8. Geeraerts, G., Raskin, J., Begin, L.V.: Expand, enlarge and check: new algorithms
for the coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/3-540-18088-5_43
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/3-540-56689-9_45

On the Computation of the Minimal Coverability Set of Petri Nets 177

9. Geeraerts, G., Raskin, J.-F., Van Begin, L.: On the efficient computation of the
coverability set for petri nets. Int. J. Found. Comput. Sci. 21(2), 135–165 (2010)

10. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

11. Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, inductive coverabil-
ity. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 158–173.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 10

12. Li, Y., Deutsch, A., Vianu, V.: VERIFAS: a practical verifier for artifact systems.
Proc. VLDB Endow. 11(3), 283–296 (2017)

13. Lüttge, K.: Zustandsgraphen von Petri-Netzen. Master’s thesis, Humboldt-
Universität (1995)

14. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut für Instru-
mentelle Mathematik, Bonn, Germany (1962)

15. Piipponen, A., Valmari, A.: Constructing minimal coverability sets. Fundam. Inf.
143(3–4), 393–414 (2016)

16. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6, 223–231 (1978)

17. Reynier, P.-A., Servais, F.: Minimal coverability set for Petri nets: Karp and Miller
algorithm with pruning. Fundam. Inf. 122(1–2), 1–30 (2013)

18. Schmidt, K.: Model-checking with coverability graphs. Form. Methods Syst. Des.
15(3), 239–254 (1999)

https://doi.org/10.1007/978-3-642-39799-8_10

Deciding Reachability for Piecewise
Constant Derivative Systems

on Orientable Manifolds

Andrei Sandler and Olga Tveretina(B)

Department of Computer Science, University of Hertfordshire, Hatfield, UK
{a.sandler,o.tveretina}@herts.ac.uk

Abstract. A hybrid automaton is a finite state machine combined with
some k real-valued continuous variables, where k determines the number
of the automaton dimensions. This formalism is widely used for mod-
elling safety-critical systems, and verification tasks for such systems can
often be expressed as the reachability problem for hybrid automata.

Asarin, Mysore, Pnueli and Schneider defined classes of hybrid
automata lying on the boundary between decidability and undecidabil-
ity in their seminal paper ‘Low dimensional hybrid systems - decidable,
undecidable, don’t know’ [9]. They proved that certain decidable classes
become undecidable when given a little additional computational power,
and showed that the reachability question remains unsolved for some 2-
dimensional systems.

Piecewise Constant Derivative Systems on 2-dimensional manifolds
(or PCD2m) constitute a class of hybrid automata for which decidability
of the reachability problem is unknown. In this paper we show that the
reachability problem becomes decidable for PCD2m if we slightly limit
their dynamics, and thus we partially answer the open question of Asarin,
Mysore, Pnueli and Schneider posed in [9].

Keywords: Hybrid systems · Reachability · Decidability

1 Introduction

A hybrid automaton is a formalism used to model dynamic systems that com-
prise both digital and analog components. Formally, it is a finite state machine
combined with some k real-valued continuous variables, where k determines the
number of the automaton dimensions. Examples of such systems can be found
among others in avionics, robotics and bioinformatics, and most of them are
safety-critical.

Verifying safety properties typically consists of construction of a set of reach-
able states and checking whether this set intersects with a set of unsafe states.
Therefore, one of the most fundamental problems in the analysis of hybrid
automata is the reachability problem. Formally, it is stated as follows: for a

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 178–192, 2019.
https://doi.org/10.1007/978-3-030-30806-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_14

Deciding Reachability for PCDs on Orientable Manifolds 179

given automaton determine if there is a trajectory from some initial state to a
target state.

Undecidability of reachability is usually proved by the simulation of a Turing
machine or any other Turing-complete abstraction on the given hybrid automa-
ton (see [3,9] for examples). This way, the existence of an algorithm deciding the
reachability problem would solve the halting problem, which is a contradiction.
On the other hand, decidability of reachability is typically shown by provid-
ing an algorithm which solves it, or by showing that the system admits finite
bisimulation [13,14].

The reachability problem is undecidable even for simple classes of hybrid
automata such as linear hybrid automata [1]. Nevertheless, there are classes of
hybrid systems for which it is decidable. Examples of decidable systems include
o-minimal systems [14] and initialized rectangular automata [11].

Despite the increasing interest in discovering new decidability results for
hybrid automata, there is still no clear boundary between what is decidable and
what is not for such systems [9].

Asarin et al. and Henzinger et al. presented hybrid automata that span the
boundary between decidability and undecidability for the reachability problem
in [9] and [11] respectively. Asarin et al. observed that certain decidable classes
become undecidable, when given a little additional computational power. Thus,
decidable 2-dimensional Piecewise Constant Derivative Systems (PCDs) become
undecidable for three dimensions or higher [3,15].

Asarin and Schneider considered 2-dimensional Hierarchical Piecewise Con-
stant Derivative Systems (HPCDs), an intermediate class lying between decid-
able 2-dimensional and undecidable 3-dimensional PCDs [4]. They proved that
2-dimensional HPCDs are equivalent to 1-dimensional Piecewise Affine Maps
(PAMs), a class of dynamical systems for which reachability is a well-known
open problem [8]. A 1-dimensional PAM is a piecewise function which is applied
to the 1-dimensional real line, and the function within each interval of the real
line is affine. It has been proven that a 1-dimensional PAM is equivalent to a
2-dimensional system called a planar pseudo-billiard system, also known as a
‘strange billiards’ model in bifurcation and chaos theory [12].

Variants of HPCDs called Restricted HPCDs (RHPCDs), have been consid-
ered in [7]. This class of systems has similarities with many well-known models
such as rectangular automata and stopwatch automata. The authors show that
3-dimensional RHPCDs are undecidable by encoding a Minsky machine.

Mysore and Pnueli raised the following question [17]: Is there any class, sim-
pler than 2-dimensional HPCDs, which is equivalent to 1-dimensional PAMs?
Asarin et al. came up with further classes of hybrid automata, including PCDs
on 2-dimensional manifolds (PCD2m), which are equivalent to 1-dimensional
PAMs [9].

We consider PCD2m with slightly limited dynamics by forbidding colliding
and branching trajectories. We call such systems Regular PCD2m (PCDr2m) and
show that the reachability problem is decidable in this case.

180 A. Sandler and O. Tveretina

As ‘reference systems’ we use dynamical systems on the closed orientable
surfaces and rely on the topological properties of their trajectories [16]. Further-
more, we study the properties of the language generated by the trajectories of
a PCDr2m by associating all generated words with a sequence of graphs, called
Rauzy graphs or factor graphs [18].

The remainder of the paper is organised as follows. In Sect. 2 we recall the
notion of 2-dimensional PCDs, and in Sect. 3 we extend it to orientable mani-
folds. Section 4 provides properties of dynamical systems on the closed orientable
surfaces. In Sect. 5 we introduce the language of PCDr2m, and in Sect. 6 we show
that the reachability problem for PCDr2m is decidable. Section 7 contains con-
cluding remarks.

2 Preliminaries

A Piecewise Constant Derivative System (PCD) can be viewed as a finite set
of regions, where each region is associated with a vector field which determines
the rate of change of the continuous variables. In this section we formally define
them including the reachability problem for such systems.

2.1 Piecewise Constant Derivative Systems on a Plane

In this paper we deal with a 2-dimensional Euclidean space X = R
2. An open

half-space in X is the set of all points x ∈ X satisfying a · x + b < 0 for some
rational a and b. A convex open polygonal set q is an intersection of a finite
number of half-spaces. Let also cl(S) denote the topological closure of a set
S ⊆ X.

A finite polygonal partition of X is a set Q = {q1, . . . , qk} of polygonal sets,
called regions, such that: (1) qi �= ∅ for all 1 ≤ i ≤ k; (2) qi ∩ qj = ∅ for all
1 ≤ i, j ≤ k such that i �= j; (3)

⋃k
i=1 cl(qi) = X

The boundary of each region q ∈ Q is bd(q) = cl(q)\q. The interior int(X ′)
of X ′ ⊆ X is the set of points x ∈ X ′ such that for some ε > 0 there exists an
ε-neighbourhood Nε(x) ⊆ X ′ of x. If X ′ is 1-dimensional then ε-neighbourhood
is assumed 1-dimensional too.

We use E(Q) to denote the set of edges of Q of the form e = int(cl(qi)∩cl(qj)),
where qi, qj ∈ Q, i �= j, and int(cl(qi) ∩ cl(qj)) �= ∅. Similarly, V(Q) denotes the
set of vertices of Q of the form v = cl(ei) ∩ cl(ej), where ei, ej ∈ E(Q), i �= j, and
cl(ei) ∩ cl(ej) �= ∅.

We say that Bd(Q) = E(Q) ∪ V(Q) is a set of border elements. Now the set
Q ∪ Bd(Q) forms a partition of X. We define the border elements of a region
q ∈ Q as Bd(q) = {b | b ⊆ cl(q)} ∩ Bd(Q).

Definition 1 (2-PCD). A 2-dimensional Piecewise Constant Derivative Sys-
tem (or 2-PCD) is a pair H = (Q,F) with Q = {qi}i∈I a finite polygonal partition
of R

2 and F = {vi}i∈I a set of vectors from R
2. The dynamics is determined by

the equation ẋ = vi for x ∈ qi.

Deciding Reachability for PCDs on Orientable Manifolds 181

We can also define a 2-PCD on a convex subset S ⊂ X and assume that the
rest of R

2 is split onto infinite convex parts with dynamics defined as a constant
flow going in or out from S, depending on the flow on the boundary of S.

The set Bd(q) consists of all boundary elements of a region q ∈ Q – edges
and vertices. Now we define the input and output boundary elements of q.

Definition 2 (Input and output edges). Assume q ∈ Q with dynamics v,
and an edge e ∈ Bd(q). We say that e in an input edge for q if for any x ∈ e
there is t > 0 such that x+vt ∈ q; and e in an output edge for q if for any x ∈ e
there is t < 0 such that x + vt ∈ q.

By Definition 1, for every vertex x ∈ bd(q) with q ∈ Q there are exactly two
edges e, e′ ⊆ bd(q) such that x ∈ cl(e) ∩ cl(e′).

Definition 3 (Input and output vertices). We say that x is an input vertex
for q if both e and e′ are input edges; x is an output vertex for q if both e and e′

are output edges; and x is neutral with respect to q if e is an input edge and e′

is an output edge.

We denote by In(q) ⊆ Bd(q) and Out(q) ⊆ Bd(q) the sets of input and output
border elements (edges and vertices) of some region q respectively. In the rest of
the paper and similar to [5] we assume that In(q) ∩ Out(q) = ∅.

2.2 Trajectories

In this section we define the notions of a trajectory, its discrete abstraction called
an edge signature, and successor functions similar to [5,6]1 (Fig. 1).

Definition 4 (Trajectory). A trajectory segment of H = (Q,F) with the
starting point x0 is a continuous and almost-everywhere (except on finitely many
points) derivable function τ : [0, T] → R

2 such that τ(0) = x0 and for any
t ∈ [0, T], if τ(t) ∈ qi then τ̇(t) = vi. If T = ∞ then τ is called a trajectory.

(a) (b)

Fig. 1. (a) An example of a 2-PCD; (b) an example of a trajectory segment

In the following we consider the discrete abstraction of a trajectory called an
edge signature.
1 A PCD can be seen as a special case of Polygonal Differential Inclusion Systems

(SPDIs).

182 A. Sandler and O. Tveretina

Definition 5 (Edge signature). The edge signature of a trajectory τ is the
sequence σ(τ) = e0e1e2 . . . of edges traversed by τ .

The edge signature of any trajectory segment τ can be represented in the
following form:

Sig(τ) = r1s
k1
1 r2s

k2
2 . . . rnskn

n rn+1,

where ski
i denotes the cycles si of edges repeated ki times, and ri denotes the

paths (sequence of edges) between cycles (see Theorem 4.1 in [6]). Cycles si are
simple, that is, an edge can not appear twice in the cycle.

Definition 6 (Signature type). The signature type of an edge signature
Sig(τ) = r1s

k1
1 r2 . . . rnskn

n rn+1 is the sequence type(τ) = r1s1r2 . . . rnsnrn+1.

The following theorem defines the set of signature types which has to be
examined to compute reachable states for a given 2-PCD.

Theorem 1 (Asarin, Schneider, Yovine, [6]). Only those signature types
having disjoint paths ri and unique (as sets of edges) cycles si, could correspond
to a trajectory starting in initial set S and ending in final set F . There are only
finite number of such signature types on any given 2-PCD.

For computing the successive interval images, it is convenient to introduce a
one-dimensional coordinate system on each edge e, with zero (0) denoting one
chosen vertex v0 of e and one (1) denoting the other vertex v1. Now each point
has the coordinate vλ = λv0 + (1 − λ)v1 with 0 < λ < 1. Then, a series of
successor functions on edges of the 2-PCD can be defined.

– Let x ∈ e for some e ∈ In(q). The successor Succ(x, q) of x is a point x′ ∈ e′

for some e′ ∈ Out(q) such that there is a trajectory segment that starts in x,
ends in x′ and goes only through q.

– Let (x1, x2) ⊆ e for some e ∈ In(q). The successor SuccInt(x1, x2, e
′, q) of

(x1, x2) on the interval e′ ∈ Out(q) is (x′
1, x

′
2) ⊆ e′ defined as follows:

x′
1 = min(1,Succ(x1, q))

x′
2 = max(0,Succ(x2, q))

If x′
1 > x′

2, then the interval successor is the empty set. In other words, the
successor of an interval (x1, x2) of an input edge e is the maximal interval
(x′

1, x
′
2) of an output edge e′ reachable under the region’s dynamics.

2.3 Reachability Problem

Reachability for PCD-like systems can typically be formulated as either point-to-
point or edge-to-edge reachability. In this paper we are interested in edge-to-edge
reachability.

Definition 7 (Point-to-point reachability). Let H = (Q,F) be a PCD. Then
a point b ∈ Bd(Q) is reachable from a point a ∈ Bd(Q) if there is a trajectory
segment that starts at a and ends at b.

Deciding Reachability for PCDs on Orientable Manifolds 183

Definition 8 (Edge-to-edge reachability). Let H = (Q,F) be a PCD. Then
an edge ef ∈ E(Q) is reachable from an edge es ∈ E(Q) if there are points as ∈ es

and bf ∈ ef such that there is a trajectory segment that starts at as and ends at
bf .

3 Piecewise Constant Derivative Systems on Manifolds

All the definitions in this section are similar to the respective definitions in [9]
and follow the combinatorial approach in [10].

Definition 9 (Triangulable space). A topological space is triangulable if it is
obtained from a set of triangles by the identification of edges and vertices, where
any two triangles are identified either along a single edge or at a vertex, or are
completely disjoint. The identification is done via an affine bijection.

By a closed surface we mean a compact surface without boundary, and it is
formally defined below.

Definition 10 (Closed surface). A closed surface (or a 2-dimensional mani-
fold) S is a compact triangulable space for which in addition the following holds:

(1) Each edge is identified with exactly one other edge;
(2) The triangles identified at each vertex can always be arranged in a cycle

T1, T2, . . . , Tk, T1 so that adjacent triangles are identified along an edge.

Examples of closed surfaces include a sphere, a torus (see Fig. 2) and pro-
jective planes. In the rest of the paper we only deal with orientable surfaces
(a sphere and a connected sum of tori) even though we do not always state it
explicitly.

(a) (b)

A B C A

D E F D

G H I G

A B C A

Fig. 2. Different representations of a torus: (a) A surface in R
3; (b) A triangulated

surface with identified edges

Definition 11 (PCD2m). We define a PCD on a 2-dimensional manifold (or
PCD2m) H = (Q,F) as a 2-PCD on a closed orientable surface S.

184 A. Sandler and O. Tveretina

Below we introduce the subclass of PCD2m which we will prove to be decid-
able. We define a Regular PCD2m by imposing additional restrictions on the
dynamics (the flow vectors do not collide or diverge on edges and vertices) to
guarantee that any point of the trajectory has exactly one predecessor and one
successor.

Definition 12 (PCDr2m). We say that a PCD2m H = (Q,F) is regular (or
PCDr2m) if the following holds:

1. For any q, q′ ∈ Q, if b ∈ Bd(q) ∩ Bd(q′) then either b ∈ In(q) and b ∈ Out(q′),
or b ∈ Out(q) and b ∈ In(q′).

2. The vector field in any q ∈ Q is not parallel to any e ∈ cl(q) ∩ E(Q).

Examples of the dynamics forbidden by Definition 12 are given in Fig. 3. Now
a manifold is a finite set of triangles with identified edges, and the constant vector
field in each triangle defines a successor relation between edges of the triangle
such that each triangle has either two input edges and one output edge or one
input and two output edges.

(a) (b) (c) (d)

Fig. 3. Forbidden dynamics in PCDr2m: (a) collision at an edge; (b) branching at an
edge; (c) collision and branching on a vertex; (d) flow vector parallel to an edge

The proof of decidability of reachability for 2-dimensional PCDs is based
on the Jordan theorem for R

2 which states that every non-self-crossing closed
curve divides the plane into an ‘interior’ region bounded by the curve and an
‘exterior’ region containing all other points of R

2, so that every continuous path
connecting a point of one region to a point of the other intersects with that
curve somewhere. This theorem is not applicable to manifolds, therefore we use
the topological properties of dynamical systems on the closed orientable surfaces
defined in Sect. 4.

4 Dynamical Systems on the Closed Orientable Surfaces

Dynamical systems on the closed orientable surfaces and topological properties
of their trajectories considered in [16] provide a formalism promising to serve as
a ‘reference system’ for showing decidability of reachability problem on PCDr2m.

Deciding Reachability for PCDs on Orientable Manifolds 185

Let Sg be a closed orientable 2-dimensional manifold (surface) with the genus
g � 0, and R be a covering of this manifold by a finite number of regions ri,
1 � i � n, homeomorphic to a Euclidean disc such that every region ri has its
own coordinate system (ϕi, ψi). Let the dynamics in each ri be defined by a
system of differential equations:

ϕ′
i = Φ(ϕi, ψi), ψ′

i = Ψ(ϕi, ψi) (1)

Furthermore, we assume the following:

1. Transformation of one coordinate system to another at the points which
belong to two regions or more is done by continuous functions with continuous
derivatives and nonzero Jacobian;

2. The right sides of the Eq. 1 are continuous functions and become zero only
at a finite number of points;

3. Dynamics change between regions is done by the functions transforming one
coordinate system to another.

For convenience we refer such systems as Regionwise Dynamical Systems on
2-dimensional manifolds (RDS2m) in the rest of the paper.

In this study we are concerned with three different types of trajectories. Two
of them, dense and orbital stable trajectories are defined below. The third type
of interest are trajectories on a subset of R

2 and their properties are described
in Sect. 2.

Definition 13 (Dense trajectory). A trajectory τ is dense on a set of inter-
vals e1, . . . , ek if for any x ∈ τ and any interval e′

i ⊆ ei, 1 � i � k, there is
y ∈ e′

i such that y is reachable from x.

Definition 14 (Orbital stable trajectory). A trajectory τ is called orbital
stable if for any ε > 0 there exists δ > 0 such that if a trajectory τ ′ starts in the
δ-neighbourhood of τ then it is also contained in the ε-neighbourhood of τ .

Along with the covering of the given manifold by the regions as described
above, we also consider another covering. Theorem2 below shows that any
RDS2m can be decomposed into components consisting of trajectories which
are equivalent topologically.

Theorem 2 (Mayer, [16]). A RDS2m Sg is a disjoint union of a finite number
of areas M1, . . . , Mk (referred later as dynamical components) of the following
types:

1. Type A: Any trajectory inside the area is orbital stable and non-closed. Fur-
thermore, all the trajectories have the same set of limit points; the area is flat
and at most 2-connected;

2. Type B: Any trajectory inside the area is closed; the area is either flat and
at most 2-connected or equals to the whole manifold in case of g = 1 (only
for a torus);

186 A. Sandler and O. Tveretina

3. Type C: Any trajectory inside the area is everywhere dense; the area is not
flat and the number of areas of this type does not exceed g.

All other trajectories, called separatrices, form boundaries between the areas
of the above types.

Proposition 1. Any PCDr2m is a RDS2m, and therefore it is a disjoint union
of a finite number of areas of Types A, B and C as defined in Theorem2 and
separatrices.

Proof. By definition of PCDr2m the dynamics change between regions is non-
degenerate and local coordinates change with nonzero Jacobian. The flow in each
region is constant, hence there is a local coordinate system where both ϕ′

i and
ψ′

i are nonzero. ��
Example 1. Let us consider the PCDr2m represented in Fig. 4. The dynamical
component highlighted with grey colour is of Type A and its borders (separatri-
ces) are depicted with dotted lines. The regions outside the grey area can form
dynamical components of Types A, B and C depending on their dynamics.

X X

X X

Fig. 4. The dynamical component of Type A is highlighted with grey colour

Proposition 2. Any separatrix of a PCDr2m H = (Q,F) starts and ends at a
vertex.

Proof. Let us assume that there is an infinite (or half-infinite) separatrix τs.
Then there is an ε-tube around τs (see Fig. 6) such that the trajectories from
different sides of τs belong to different dynamic components but never split,
which contradicts to the definition of a separatrix (a trajectory separating areas
of different types). ��

Note that some trajectories which start and end at vertices are not separa-
trices in the above sense. Such trajectories can divide, for example, a dynamical
component of Type B into several smaller components, each of which is of Type
B (see Example 2). For convenience and simplicity we still refer such trajectories
as separatrices.

Deciding Reachability for PCDs on Orientable Manifolds 187

Example 2. The PCDr2m depicted in Fig. 5 consists of one dynamical component
of Type B, which is divided into two areas by the trajectories starting and ending
at the vertices X and Y .

X X

X X

Y

Fig. 5. A PCDr2m consisting of one dynamical component of Type B

5 Language of PCDr2m

In the following we assume a finite non-empty set A called an alphabet, and the
elements of A are called letters. By A∗ we denote the set of all finite sequences
of A called words. A language L over A is a subset of A∗.

Definition 15 (Factorial language). A language L over an alphabet A is
factorial if u0u1 . . . un ∈ L implies u1u2 . . . un ∈ L and u0u1 . . . un−1 ∈ L for
arbitrary u0, . . . , un ∈ A.

Definition 16 (Prolongable language). A language L over an alphabet A is
prolongable if for any u ∈ L there exist a, b ∈ A such that au ∈ L and ub ∈ L.

In the following we consider the words induced by the trajectories of a
PCDr2m in the following sense: e1 . . . ek is a word if it is a signature of some
trajectory segment.

Proposition 3. Let H = (Q,F) be a PCDr2m, and L(H) be the set of all finite
words generated by the trajectories of H. Then L(H) is a factorial and prolongable
language over the alphabet Bd(Q).

Proof. By definition, L(H) is a language over Bd(Q). It is obviously factorial and
prolongable because for every boundary point x there are boundary points xsucc

and xpred such that xsucc is reachable from x and x is reachable from xpred. ��
A recurrent word is an infinite word over A in which every finite subword

occurs infinitely often.

188 A. Sandler and O. Tveretina

Definition 17 (Uniformly recurrent language). A language L is called
uniformly recurrent if for any n ∈ N there exists ηn ∈ N such that every
word from L of length ηn contains all of the words from L of length n as sub-
words.

The language of a dynamic component of PCDr2m can be naturally seen
as a constraint of a language of PCDr2m on a set of words produced by the
trajectories of this component. It is a language with the same properties as in
Proposition 3. The following lemma gives the sufficient condition for the language
of a dynamic component of a PCDr2m to be uniformly recurrent.

Lemma 1 (Uniformity condition). Density of the trajectories of a dynam-
ical component of Type C of a PCDr2m H = (Q,F) implies the uniformal recur-
rence of its language LC .

Proof. Let w = e1e2 . . . en be a word in LC , and sw ⊆ e1 be a maximal sub-
interval such that w is generated by a trajectory starting at some x ∈ sw.

The density of trajectories in C implies that the first-return map f : sw → sw

is defined for any x ∈ sw.
To prove the uniformal recurrence of LC it is sufficient to show that there

exists a constant C(sw) such that r(x) < C(sw) for any x ∈ sw, where r(x) is
the length of the word corresponding to the trajectory segment connecting x
and f(x). Then by choosing ηn = max

w:|w|=n
C(sw) we guarantee that any word of

length ηn contains any word of length n as a subword.

x

}ε. . .
e1 e2

e3
en−1

en

Fig. 6. An ‘ε-tube’ around the trajectory starting at x

We observe that for any inner point x ∈ sw there is a returning interval
ix ⊆ sw around x such that r(y) = r(x) for any y ∈ ix. This is because a
trajectory of x does not meet any vertex and there is always an “ε-tube” around
the subsequent images of x (see Fig. 6).

We also observe that any two adjacent returning intervals i(x) and i(y) are
divided by a trajectory of some vertex (see Fig. 7). As C contains a finite number
of vertices, we conclude that there is k ∈ N such that sw is a disjoint union of k
returning intervals corresponding to some x1, . . . , xk ∈ sw.

We define C(sw) = max
i∈{1,...,k}

r(ii) and this concludes the proof. ��

Corollary 1. The language of any dynamical component of Type B of any
PCDr2m is uniformly recurrent.

Deciding Reachability for PCDs on Orientable Manifolds 189

i(xj){
i(xj+1){

(a)

︸ ︷︷ ︸
sw

x1 x2 xk. . .
︸︷︷︸

i(x1)

︸︷︷︸

i(x2)

︸︷︷︸

i(xk)

(b)

Fig. 7. An example illustrating the proof of Lemma 1

6 Decidability of Reachability for PCDr2m

In this section we show that the reachability problem is decidable for PCDr2m.
Moreover, we provide an algorithm which decides in a finite number of steps if
a target edge is reachable from an initial edge.

6.1 Rauzy Graphs

A Rauzy graph of power k for a factorial language L is a directed graph formally
defined below.

Definition 18 (Rauzy graph). Rauzy graph of power k � 1 for a language L
is a directed graph Rk(L) = (V k, Ek) defined as follows:

– V k = {w ∈ L | |w| = k};
– For any two vertices u = u1u2 . . . uk ∈ V k and v = v1v2 . . . vk ∈ V k there is

an edge (u, v) ∈ Ek if u2 = v1, u3 = v2, . . . , uk = vk−1 and u1u2 . . . ukvk ∈ L.

In other words, any two words of length k are connected in the Rauzy graph
of power k if they are a prefix and a suffix of some word of length k + 1.

Example 3. Let L = {a, b, c, ab, bc, ba, ca, abc, aba, bab, bca, cab} be a language
over the alphabet A = {a, b, c}. The Rauzy graphs of power one and two for L,
R1(L) and R2(L) respectively, are depicted in Fig. 8.

a

b c

(a)

ca

bc

ab
ba

(b)

Fig. 8. (a) Rauzy graph of power one for the language in Example 3; (b) Rauzy graph
of power two for the same language

190 A. Sandler and O. Tveretina

6.2 Deciding Reachability of PCDr2m

To decide edge-to-edge reachability, we build a sequence of Rauzy graphs until
the criteria provided by the following theorem are satisfied.

Theorem 3. Let a PCDr2m H = (Q,F) have n dynamical components, and L
be the language of H. Then there exists tstop ∈ N such that any Ri(L), i � tstop,
consists of k � n disconnected components such that at least one of the following
conditions holds for each component Ki

j = (V i
j , Ei

j):

(1) All vertices in V i
j contain the same set of letters;

(2) There is t′ < tstop such that the set of signature types of V i
j equals to the set

of signature types of some component in the graph Rt′
(L).

Proof. By Theorem 2, H is divided into a finite number of regions with differ-
ent dynamics (regions of Types A, B and C, and the separatrices forming the
boundary of the regions). By Proposition 2 each separatrix starts and ends at
a vertex. Let m be the maximal length of a separatrix in H. Then any Ri(L),
i > m, contains at least n components as there could be no words of length
greater than m (see Fig. 9).

e1
e2 em

. . .

Fig. 9. An example illustrating the proof of Theorem 3

Each dynamical component DA of Type A is flat and therefore can be seen
as a 2-PCD. Then by Theorem 1, DA has a finite number of signature types.
All the signature types of DA will be constructed at some step in a sequence of
Rauzy graphs and thus no new signature type can be later discovered. Hence,
Condition (2) will eventually hold.

Each trajectory inside any component DB of Type B is closed and therefore
periodic. That is it will visit the same sequence of edges. Hence, Condition (1)
will eventually hold.

Each trajectory inside any component DC of Type C is dense in DC . Hence,
the underlying component is connected. By Lemma1, the language generated
by DC is uniformly recurrent. From this follows that there exists ηC such that
any word of length ηC generated by any trajectory of DC contains all words
of length 1 (singular letters) as subwords. Hence, Condition (1) will eventually
hold.

By Proposition 2, each separatrix starts and ends at a vertex and thus there
is a finite number of them. Let us assume that some separatrix ends at a vertex v.
Then, another separatrix starts at v, hence, all separatrices form a finite number

Deciding Reachability for PCDs on Orientable Manifolds 191

of cyclic trajectories on H. Depending on which vertex belongs to which region
of H, a cyclic trajectory s of any set of separatrices can generate either the same
words as the dynamical components or a finite set of words corresponding to
a special component Ks in Ri(L). Because each Ks is generated by a cyclic
trajectory, Condition (1) will eventually hold for each Ks. ��
Theorem 4. Edge-to-edge reachability for a PCDr2m is decidable.

Proof. First, let us prove that any Rk(L) can be constructed in finite time. For
any PCDr2m H = (Q,F), the set V k of vertices of Rk(L) consists of all the words
of length k over the finite alphabet on the edges of H. This set can be constructed
by applying the successor function k − 1 times to each edge. The edges of Rk(L)
can be computed in a finite time by checking if any two vertices have common
suffix and prefix of length k − 1.

To check reachability on H, it is sufficient to build a sequence Rk(L) until a
finite tstop, defined by Theorem3. An edge ef ∈ E(Q) is reachable from an edge
es ∈ E(Q) if and only if Rtstop(L) contains a component with a vertex labelled
by a word (. . . es . . . ef . . .). ��

7 Conclusions

In this paper we introduced a class of hybrid systems which we called Regular
PCD2m (or PCDr2m). It is a subclass of introduced earlier so-called PCDs on
manifolds (or PCD2m) [9]. While the reachability problem for the whole class
PCD2m is still an open question, we proved that under certain limitations on
the systems dynamics it becomes decidable.

As future work we consider to extend the current results to non-orentable
manifolds using properties of trajectories on non-orientable manifolds presented
in [2].

Acknowledgements. The authors thank Vincent Delecroix, Alexey Kanel-Belov,
Alexey Klimenko, Alexandra Skripchenko and Eugene Asarin for their kind help and
consultations.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

2. Aranson, S.H.: Trajectories on nonorientable two-dimensional manifolds. Math.
USSR-Sbornik 9(3), 297–313 (1969)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-
ing piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)

4. Asarin, E., Schneider, G.: Widening the boundary between decidable and unde-
cidable hybrid systems*. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P.
(eds.) CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45694-5 14

https://doi.org/10.1007/3-540-45694-5_14

192 A. Sandler and O. Tveretina

5. Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability
problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-45351-2 11

6. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid
systems, part I: reachability. Theor. Comput. Sci. 379(1–2), 231–265 (2007)

7. Bell, P.C., Chen, S., Jackson, L.: On the decidability and complexity of problems
for restricted hierarchical hybrid systems. Theor. Comput. Sci. 652, 47–63 (2016)

8. Bournez, O., Kurganskyy, O., Potapov, I.: Reachability problems for one-
dimensional piecewise affine maps. Int. J. Found. Comput. Sci. 29(4), 529–549
(2018)

9. Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems
- decidable, undecidable, don’t know. Inf. Comput. 211, 138–159 (2012)

10. Henle, M.: A Combinatorial Introduction to Topology. Dover Publications Inc.,
New York City (1979)

11. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

12. Kurganskyy, O., Potapov, I., Caparrini, F.S.: Computation in one-dimensional
piecewise maps. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 706–709. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71493-4 66

13. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems.
In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp.
137–151. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5 15

14. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control
Sig. Syst. 13(1), 1–21 (2000)

15. Maler, O., Pnueli, A.: Reachability analysis of planar multi-linear systems. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 194–209. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 17

16. Mayer, A.: Trajectories on the closed orientable surfaces. Rec. Math. [Mat. Sbornik]
N.S. 12(54), 1, 71–84 (1943)

17. Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid automata. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 261–272. Springer,
Heidelberg (2005). https://doi.org/10.1007/11590156 21

18. Rauzy, G.: Suites à termes dans un alphabet fini. In: Seminar on Number Theory
(1982–1983). University of Bordeaux I, Talence, vol. 25, pp. 1–16 (1983)

https://doi.org/10.1007/3-540-45351-2_11
https://doi.org/10.1007/978-3-540-71493-4_66
https://doi.org/10.1007/978-3-540-71493-4_66
https://doi.org/10.1007/3-540-48983-5_15
https://doi.org/10.1007/3-540-56922-7_17
https://doi.org/10.1007/11590156_21

Coverability Is Undecidable
in One-Dimensional Pushdown Vector

Addition Systems with Resets

Sylvain Schmitz1,2(B) and Georg Zetzsche3(B)

1 LSV, ENS Paris-Saclay & CNRS, Université Paris-Saclay, Cachan, France
sylvain.schmitz@lsv.fr

2 IUF, Paris, France
3 MPI-SWS, Kaiserslautern and Saarbrücken, Germany

georg@mpi-sws.org

Abstract. We consider the model of pushdown vector addition systems
with resets. These consist of vector addition systems that have access
to a pushdown stack and have instructions to reset counters. For this
model, we study the coverability problem. In the absence of resets, this
problem is known to be decidable for one-dimensional pushdown vector
addition systems, but decidability is open for general pushdown vector
addition systems. Moreover, coverability is known to be decidable for
reset vector addition systems without a pushdown stack. We show in
this note that the problem is undecidable for one-dimensional pushdown
vector addition systems with resets.

Keywords: Pushdown vector addition systems · Decidability

1 Introduction

Vector addition systems with states (VASS) play a central role for modelling
systems that manipulate discrete resources, and as such provide an algorith-
mic toolbox applicable in many different fields. Adding a pushdown stack to
vector addition systems yields so-called pushdown VASS (PVASS), which are
even more versatile: one can model for instance recursive programs with integer
variables [2] or distributed systems with a recursive server and multiple finite-
state clients, and PVASS can be related to decidability issues in logics on data
trees [9]. However, this greater expressivity comes with a price: the coverability
problem for PVASS is only known to be decidable in dimension one [12]. This
problem captures most of the decision problems of interest and in particular
safety properties, and is the stumbling block in a classification for a large family
of models combining pushdown stacks and counters [16].

Another viewpoint on one-dimensional PVASS [12] is to see those systems as
extensions of two-dimensional VASS, where one of the two counters is replaced

Work partially funded by ANR-17-CE40-0028 BraVAS.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 193–201, 2019.
https://doi.org/10.1007/978-3-030-30806-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_15&domain=pdf
http://orcid.org/0000-0002-4101-4308
http://orcid.org/0000-0002-6421-4388
http://bravas.labri.fr/
https://doi.org/10.1007/978-3-030-30806-3_15

194 S. Schmitz and G. Zetzsche

by a pushdown stack. In this context, a complete classification with respect
to decidability of coverability, and of the more difficult reachability problem,
was provided by Finkel and Sutre [6], whether one uses plain counters (N),
counters with resets (Nr), counters whose contents can be transferred to the other
counter (Nt), or counters with zero tests (Nz); see Table 1. In particular, two-
dimensional VASS with one counter extended to allow resets and one extended
to allow zero tests have a decidable reachability problem [6]: put differently,
the coverability problem for one-dimensional PVASS with resets (1-PRVASS) is
decidable if the stack alphabet is of the form {a,⊥} where ⊥ is a distinguished
bottom-of-stack symbol.

Table 1. Decidability status of the coverability and reachability problems in extensions
of two-dimensional VASS; our contribution is indicated in bold.

(a) Coverability problem.

N Nr Nt Nz PD

D [8] D [1] D [4] D [15] D [12] N
D [1] D [4] D [6] U Nr

D [4] U [6] U [6] Nt

U [14] U [14] Nz

U PD

(b) Reachability problem.

N Nr Nt Nz PD

D [7] D [15] D [15] D [15] ?? N

D [6] D [6] D [6] U Nr

D [6] U [6] U [6] Nt

U [14] U [14] Nz

U PD

Contributions. In this note, we show that Finkel and Sutre’s decidability result
does not generalise to one-dimensional pushdown VASS with resets over an arbi-
trary finite stack alphabet.

Theorem 1. The coverability problem for 1-PRVASS is undecidable.

As far as the coverability problem is concerned, this fully determines the decid-
ability status in extensions of two-dimensional VASS where one may also replace
counters by pushdown stacks (PD); see Table 1a.

Technically, the proof of Theorem1 presented in Sect. 3 reduces from the
reachability problem in two-counter Minsky machines. The reduction relies on
the ability to weakly implement [13] basic operations—like multiplication by a
constant—and their inverses—like division by a constant. This in itself would
not bring much; for instance, plain two-dimensional VASS can already weakly
implement multiplication and division by constants. The crucial point here is
that, in a 1-PRVASS, we can also weakly implement the inverse of a sequence
of basic operations performed by the system, by using the pushdown stack to
record a sequence of basic operations and later replaying it in reverse, and rely-
ing on resets to “clean-up” between consecutive operations. Note that without
resets, while PVASS are known to be able to weakly implement Ackermannian
functions already in dimension one [11], they cannot weakly compute sublinear
functions [10]—like iterated division by two, i.e., logarithms.

One-Dimensional Pushdown VASS with Resets 195

2 Pushdown Vector Addition Systems with Resets

For an alphabet Σ, we use Σ∗ to denote the set of words over Σ and ε for the
empty word. A (1-dimensional) pushdown vector addition system with resets (1-
PRVASS) is a tuple V = (Q,Γ,A), where Q is a finite set of states, Γ is a finite
set of stack symbols, and A ⊆ Q×I∗×Q is a finite set of actions. Here, transitions
are labelled by finite sequences of instructions from I def= Γ ∪ Γ̄ ∪ {�,�, r} where
Γ̄ def= {z̄ | z ∈ Γ} is a disjoint copy of Γ .

A 1-PRVASS defines a (generally infinite) transition system acting over con-
figurations (q, w, n) ∈ Q × Γ ∗ × N. For an instruction x ∈ I, w,w′ ∈ Γ ∗, and
n, n′ ∈ N, we write (w, n) x−→ (w′, n′) in the following cases:

push if x = z for z ∈ Γ , then w′ = wz and n′ = n,
pop if x = z̄ for z ∈ Γ , then w = w′z and n′ = n,
increment if x = �, then w′ = w and n′ = n + 1.
decrement if x = �, then w′ = w and n′ = n − 1, and
reset if x = r, then w′ = w and n′ = 0.

Moreover, for a sequence of instructions u = x1 · · · xk with x1, . . . , xk ∈ I,
we have (w0, n0)

u−→ (wk, nk) if for some (w1, n1), . . . , (wk−1, nk−1) ∈ Γ ∗ × N,
we have (wi, ni)

xi−→ (wi+1, ni+1) for all 0 ≤ i < k. For two configurations
(q, w, n), (q′, w′, n′) ∈ Q × Γ ∗ × N, we write (q, w, n) →V (q′, w′, n′) if there is
an action (q, u, q′) ∈ A such that (w, n) u−→ (w′, n′). Finally, →∗

V denotes the
reflexive transitive closure of →V .

The coverability problem for 1-PRVASS is the following decision problem.

given a 1-PRVASS V = (Q,Γ,A), states s, t ∈ Q.
question are there w ∈ Γ ∗ and n ∈ N with (s, ε, 0) →∗

V (t, w, n)?

3 Reduction from Minsky Machines

We present in this section a reduction from reachability in two-counter Minsky
machines to coverability in 1-PRVASS.

3.1 Preliminaries

Recall that a two-counter (Minsky) machine is a tuple M = (Q,A), where Q
is a finite set of states and A ⊆ Q × {0, 1} × {�,�, z} × Q a set of actions.
A configuration is now a triple (q, n0, n1) with q ∈ Q and n0, n1 ∈ N. We
write (q, n0, n1) →M (q′, n′

0, n
′
1) if there is an action (q, c, x, q′) ∈ A such that

n′
1−c = n1−c and

increment if x = �, then n′
c = nc + 1,

decrement if x = �, then n′
c = nc − 1, and

zero test if x = z, then n′
c = nc = 0.

196 S. Schmitz and G. Zetzsche

Finally, →∗
M denotes the reflexive transitive closure of →M.

The reachability problem for two-counter machines is the following undecid-
able decision problem [14].

given a two-counter machine M = (Q,A), and states s, t ∈ Q.
question does (s, 0, 0) →∗

M (t, 0, 0) hold?

Gödel Encoding. The first ingredient of the reduction is to use the well-known
encoding of counter values (n0, n1) ∈ N × N as a single number 2n03n1 ; for
instance, the pair (0, 0) ∈ N × N is encoded by 2030 = 1. In this encoding,
incrementing the first counter means multiplying by 2, decrementing the second
counter means dividing by 3, and testing the second counter for zero means
verifying that the encoding is not divisible by 3, etc. Note that, in each case, we
encode the instruction as a partial function g : N � N; let us define its graph
as the binary relation {(m,n) ∈ N × N | g is defined on m and g(m) = n}. Thus
the encoded instructions are the partial functions with the following graphs:

Rmf

def= {(n, f · n) | n ∈ N} for multiplication,

Rdf

def= {(f · n, n) | n ∈ N} for division, and

Rtf

def= {(n, n) | n �≡ 0 mod f} for the non-divisibility test,

for a factor f ∈ {2, 3}. This means that we can equivalently see

– a two-counter machine with distinguished source and target states s and t as
a regular language M ⊆ Δ∗ over the alphabet Δ def= {mf , df , tf | f ∈ {2, 3}},
and

– reachability as the existence of a word u = x1 · · · x� in the language M ,
with x1, . . . , x� ∈ Δ, such that the pair (1, 1) belongs to the composition
Rx1Rx2 · · · Rx�

.

Weak Relations. Here, the problem is that it does not seem possible to imple-
ment these operations (multiplication, division, divisibility test) directly in a
1-PRVASS. Therefore, a key idea of our reduction is to perform the instructions
of u weakly—meaning that the resulting value may be smaller than the correct
result—but twice: once forward and once backward. More precisely, for any rela-
tion R ⊆ N × N, we define the weak forward and backward relations

−→
R and

←−
R

by
−→
R def= {(m,n) ∈ N × N | ∃ñ ≥ n : (m, ñ) ∈ R}
←−
R def= {(m,n) ∈ N × N | ∃m̃ ≥ m : (m̃, n) ∈ R}.

Let us call a relation R ⊆ N × N strictly monotone if for (m,n) ∈ R and
(m′, n′) ∈ R, we have m < m′ if and only if n < n′. We shall rely on the
following proposition, which is proven in AppendixA.

Proposition 2. If R1, . . . , R� ⊆ N × N are strictly monotone relations, then
R1R2 · · · R� =

−→
R1

−→
R2 · · · −→R� ∩ ←−

R1
←−
R2 · · · ←−R�.

One-Dimensional Pushdown VASS with Resets 197

q1 q2 q3

ā�f

#̄mf#

�a

r

(a) Mf : Multiplication by f .

q1 q2 q3

āf�
#̄m̄f#

�a

r

(b) M̄f : Backward multiplication by f .

q1 q2 q3

āf�
#̄df#

�a

r

(c) Df : Division by f .

q1 q2 q3

ā�f

#̄d̄f#

�a

r

(d) D̄f : Backward division by f .

q1 q2 q3

āf�f

āg�g#̄tf#
(∀g ∈ {1, . . . , f − 1}) �a

r

(e) Tf : Test for non-divisibility by f .

q1 q2 q3

āf�f

āg�g#̄t̄f#
(∀g ∈ {1, . . . , f − 1}) �a

r

(f) T̄f : Backward test for non-divisibility
by f .

Fig. 1. Gadgets used in the reduction.

We shall thus construct in Sect. 3.2 a 1-PRVASS V in which a particular
state is reachable if and only if there exists a word u ∈ M with u = x1 · · · x� and
x1, . . . , x� ∈ Δ, such that (1, 1) ∈ −−→

Rx1 · · · −−→Rx�
and (1, 1) ∈ ←−−

Rx1 · · · ←−−
Rx�

. Since the
relations Rmf

, Rdf
, and Rtf

for f ∈ {2, 3} are strictly monotone, Proposition 2
guarantees that this is equivalent to (1, 1) ∈ Rx1 · · · Rx�

. Intuitively, if we make
a mistake in the forward phase

−−→
Rx1 · · · −−→Rx�

, then at some point, we produce a
number n that is smaller than the correct result ñ > n. Then, the backward
phase cannot compensate for that, because it can only make the results even
smaller, and cannot reproduce the initial value.

3.2 Construction

We now describe the construction of our 1-PRVASS V. Its stack alphabet is
Γ def= Δ ∪ {⊥,#, a}, where Δ = {mf , df , tf | f ∈ {2, 3}} as before. In V, each
configuration will be of the form (q,⊥w#an, k), where w ∈ Δ∗, and n, k ∈ N. In
the forward phase, we simulate the run of the two-counter machine so that n is
the Gödel encoding of the two counters. In order to perform the backward phase,
the word w records the instruction sequence of the forward phase. The resettable
counter is used as an auxiliary counter in each weak computation step.

Gadgets. For each weak computation step, we use one of the gadgets from Fig. 1.
Note that there, for instance, “�f” denotes the sequence of instructions � · · · �
of length f . Moreover, “�a” decrements the counter and pushes a on the stack.
Observe that we have:

198 S. Schmitz and G. Zetzsche

(q1,⊥u#am, 0) →∗
Mf

(q3,⊥v#an, 0) iff v = umf and (m,n) ∈ −−→
Rmf

(1)

(q1,⊥u#am, 0) →∗
M̄f

(q3,⊥v#an, 0) iff u = vmf and (n,m) ∈ ←−−
Rmf

(2)

and analogous facts hold for Df and D̄f (with df instead of mf) and also for Tf

and T̄f (with tf instead of mf). Let us explain this in the case Mf . In the loop
at q1, Mf removes a from the stack and adds f to the auxiliary counter. When
is on top of the stack the automaton moves to q2 and changes the stack from
⊥u# to ⊥umf#. Therefore, once Mf is in q2, it has set the counter to f · m.
In the loop at q2, it decrements the counter and pushes a onto the stack before
it resets the counter and moves to q3. Thus, in state q3, we have 0 ≤ n ≤ f · m.

Main Control. Let A = (Δ,Q,A, s, t) be a finite automaton accepting M ⊆ Δ∗

and thereby encoding the behaviour of the Minsky machine. Schematically, our
1-PRVASS V is structured as in the following diagram:

s′ s t b t′

M̄f

D̄f

f

⊥#a ā#̄#a ā#̄⊥̄

The part in the dashed rectangle is obtained from A as follows. Whenever
there is an action (q,mf , q′) in A, we glue in a fresh copy of Mf between q and q′,
including ε-actions from q to q1 and from q3 to q′. The original action (q,mf , q′)
is removed. We proceed analogously for actions (q, df , q′) and (q, tf , q′), where
we glue in fresh copies of Df and Tf , respectively. Clearly, the part in the dashed
rectangle realizes the forward phase as described above.

Once V reaches t, it can check whether the current number stored on the stack
equals 1 and if so, move to state b. In b, the backward phase is implemented.
The 1-PRVASS V contains a copy of M̄f , D̄f , and T̄f for each f ∈ {2, 3}. Each
of these copies can be entered from b and goes back to b when exited.

Finally, the stack is emptied by an action from b to t′, which can be taken
if and only if the stack content is ⊥#a. We can check that from (s′, ε, 0), one
can reach a configuration (t′, w,m) with w ∈ Γ ∗ and m ∈ N, if and only if
there exists u ∈ M with u = x1 · · · x� and x1, . . . , x� ∈ Δ such that (1, 1) ∈−−→
Rx1 · · · −−→Rx�

∩ ←−−
Rx1 · · · ←−−

Rx�
. According to Proposition 2, the latter is equivalent to

(1, 1) ∈ Rx1 · · · Rx�
.

4 Concluding Remarks

In this note, we have proven the undecidability of coverability in one-dimensional
pushdown VASS with resets (c.f. Theorem1). The only remaining open ques-
tion in Table 1 regarding extensions of two-dimensional VASS is a long-standing

One-Dimensional Pushdown VASS with Resets 199

one, namely the reachability problem for one-dimensional PVASS. Another fruit-
ful research avenue is to pinpoint the exact complexity in the decidable cases of
Table 1. Here, not much is known except regarding coverability and reachability in
two-dimensional VASS: these problems are PSPACE-complete if counter updates
are encoded in binary [3] and NL-complete if updates are encoded in unary [5].

A Proof of Proposition 2

It remains to prove Proposition 2. We will use the following lemma.

Lemma 1. Let R1, . . . , R� ⊆ N × N be strictly monotone relations and (m,n) ∈−→
R1 · · · −→R� and (m′, n′) ∈ ←−

R1 · · · ←−R�. If n′ ≤ n, then m′ ≤ m. Moreover, if n′ < n,
then m′ < m.

Proof. It suffices to prove the lemma in the case � = 1: then, the general version
follows by induction. Let (m,n) ∈ −→

R1 and (m′, n′) ∈ ←−
R1. Then there are ñ ≥ n

with (m, ñ) ∈ R1 and m̃ ≥ m′ with (m̃, n′) ∈ R1. If n′ < n, then we have the
following relationships:

m R1 ñ≥

n

>

m̃ R1 n′

≥

m′

Since R1 is strictly monotone, this implies m̃ < m and thus m′ < m. The case
n′ ≤ n follows by the same argument. ��

We are now ready to prove Proposition 2.

Proposition 2. If R1, . . . , R� ⊆ N × N are strictly monotone relations, then
R1R2 · · · R� =

−→
R1

−→
R2 · · · −→R� ∩ ←−

R1
←−
R2 · · · ←−R�.

Proof. Of course, for any relation R ⊆ N × N, one has R ⊆ −→
R and R ⊆ ←−

R . In
particular, R1R2 · · · R� is included in both

−→
R1

−→
R2 · · · −→R� and

←−
R1

←−
R2 · · · ←−R�.

For the converse inclusion, suppose (m,n) ∈ −→
R1

−→
R2 · · · −→R� ∩←−

R1
←−
R2 · · · ←−R�. Then

there are p0, . . . , p� ∈ N with p0 = m, p� = n, and (pi−1, pi) ∈ −→
Ri for 0 < i ≤ �.

There are also q0, . . . , q� ∈ N with q0 = m, q� = n, and (qi−1, qi) ∈ ←−
Ri for

0 < i ≤ �.
Towards a contradiction, suppose that (pi−1, pi) /∈ Ri for some 0 < i ≤ �.

Then there is a p̃i > pi with (pi−1, p̃i) ∈ Ri. With this, we have

m = p0
−→
R1 · · · −→Ri p̃i>

pi
−−→
Ri+1 · · · −→R� p�=

m = q0
←−
R1 · · · ←−Ri qi

←−−
Ri+1 · · · ←−R� q�

200 S. Schmitz and G. Zetzsche

Since p� = q�, Lemma 1 applied to Ri+1, . . . , R� implies qi ≤ pi and thus qi < p̃i.
Applying Lemma 1 to R1, . . . , Ri then yields q0 < p0, a contradiction. Therefore,
we have (pi−1, pi) ∈ Ri for every 0 < i ≤ � and thus (m,n) ∈ R1 · · · R�. ��

References

1. Arnold, A., Latteux, M.: Récursivité et cônes rationnels fermés par intersection.
CALCOLO 15(4), 381–394 (1978). https://doi.org/10.1007/BF02576519

2. Atig, M.F., Ganty, P.: Approximating Petri net reachability along context-free
traces. In: FSTTCS 2011. Leibniz International Proceedings in Informatics, vol.
13, pp. 152–163 (2011). https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152

3. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-
dimensional vector addition systems with states is PSPACE-complete. In: LICS
2015, pp. 32–43. IEEE (2015). https://doi.org/10.1109/LICS.2015.14

4. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055044

5. Englert, M., Lazić, R., Totzke, P.: Reachability in two-dimensional unary vector
addition systems with states is NL-complete. In: LICS 2016, pp. 477–484. ACM
(2016). https://doi.org/10.1145/2933575.2933577

6. Finkel, A., Sutre, G.: Decidability of reachability problems for classes of two coun-
ters automata. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp.
346–357. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3 29

7. Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci. 8, 135–159 (1979). https://doi.org/10.1016/
0304-3975(79)90041-0

8. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

9. Lazić, R.: The reachability problem for vector addition systems with a stack is not
elementary. arXiv:1310.1767 [cs.LO] (2013). Presented orally at RP 2012

10. Leroux, J., Praveen, M., Schnoebelen, Ph., Sutre, G.: On functions weakly com-
putable by pushdown Petri nets and related systems (2019). arXiv:1904.04090
[cs.FL]. extended abstract published in: RP 2014. Lect. Notes in Comput. Sci.,
vol. 8762, pp. 190–202. Springer (2014)

11. Leroux, J., Praveen, M., Sutre, G.: Hyper-Ackermannian bounds for pushdown vec-
tor addition systems. In: CSL-LICS 2014. IEEE (2014). https://doi.org/10.1145/
2603088.2603146

12. Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for pushdown vector
addition systems in one dimension. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 324–336. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 26

13. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for
Petri nets. J. ACM 28(3), 561–576 (1981). https://doi.org/10.1145/322261.322271

14. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines. Ann. Math. 74(3), 437–455 (1961). https://doi.org/
10.2307/1970290

https://doi.org/10.1007/BF02576519
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.152
https://doi.org/10.1109/LICS.2015.14
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1007/3-540-46541-3_29
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/S0022-0000(69)80011-5
http://arxiv.org/abs/1310.1767
http://arxiv.org/abs/1904.04090
https://doi.org/10.1145/2603088.2603146
https://doi.org/10.1145/2603088.2603146
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1145/322261.322271
https://doi.org/10.2307/1970290
https://doi.org/10.2307/1970290

One-Dimensional Pushdown VASS with Resets 201

15. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. In: RP 2008. Elec-
tronic Notes in Theoretical Computer Science, vol. 223, pp. 239–264 (2008).
https://doi.org/10.1016/j.entcs.2008.12.042. Based on a manuscript already avail-
able from the author’s webpage in 1995

16. Zetzsche, G.: The emptiness problem for valence automata over graph monoids.
Inform. Comput. (2018) arXiv:1710.07528 [cs.FL]. To appear; extended abstract
published in: RP 2015. Lect. Notes in Comput. Sci., vol. 9328, pp. 166–178. Springer
(2015)

https://doi.org/10.1016/j.entcs.2008.12.042
http://arxiv.org/abs/1710.07528

Synthesis of Structurally Restricted
b-bounded Petri Nets: Complexity

Results

Ronny Tredup(B)

Institut für Informatik, Theoretische Informatik, Universität Rostock,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Let b ∈ N
+. A b-bounded Petri net (b-net) solves a transi-

tion system (TS) if its reachability graph and the TS are isomorphic.
Synthesis (of b-nets) is the problem of finding for a TS A a b-net N that
solves it. This paper investigates the computational complexity of syn-
thesis, where the searched net is structurally restricted in advance. The
restrictions relate to the cardinality of the preset and the postset of N ’s
transitions and places. For example, N is choice-free (CF) if the postset-
cardinality of its places do not exceed one. If additionally the preset-
cardinality of N ’s transitions is at most one then it is fork-attribution.
This paper shows that deciding if A is solvable by a pure or test-free b-net
N which is choice-free, fork-attribution, free-choice, extended free-choice
or asymmetric-choice, respectively, is NP-complete. Moreover, we show
that deciding if A is solvable by a b-bounded weighted (m, n)-T-systems,
m, n ∈ N, is NP-complete if m, n belong to the input. On the contrary,
synthesis for this class becomes tractable if m, n ∈ N are chosen a priori.
We contrast this result with the fact that synthesis for weighted (m, n)-
S-systems, being the T-systems’s dual class, is NP-complete for any fixed
m, n ≥ 2.

1 Introduction

Examining the behaviour of a system and deducing its behavioral properties
is the task of system analyses. Its counterpart, synthesis, is the task to find
for a given behavioral specification an implementing system. A valid synthesis
procedure computes systems which are correct by design. However, the chances
for obtaining an (efficient) algorithm for both analyses and synthesis, depend
drastically on the given specification and the searched system: In [8] it has been
shown that deciding liveness (the behavioral property) is EXPSPACE-hard for
bounded Petri nets (the system), while it is NP-complete for free-choice Petri
nets and polynomial for 1-safe free-choice nets. Similarly, the reachability prob-
lem is EXPSPACE-hard for bounded Petri nets, PSPACE-complete for free-
choice 1-safe nets, NP-complete for acyclic 1-safe and conflict-free nets and poly-
nomial for 1-safe conflict-free nets [8,10].

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 202–217, 2019.
https://doi.org/10.1007/978-3-030-30806-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-30806-3_16

Synthesis of Structurally Restricted b-bounded Petri Nets 203

In [12] it has been shown that it is impossible to decide if a modal transition
system (the specification) can be implemented by a bounded Petri net, while syn-
thesis of bounded Petri nets can be done in polynomial time if the specification
is a transition system (TS, for short) [1]. An even better procedure for synthesis
from TS is possible if the searched bounded Petri net is to be choice-free or
a marked graph [4,7]. Moreover, restricting the searched system to b-bounded
Petri nets makes synthesis from modal TSs decidable for every fixed integer b
[13].

In this paper, we investigate the following instance of synthesis: The specifi-
cation is a TS A and the searched system is a b-bounded Petri net N (b-net, for
short). We demand that N implements A up to isomorphism, that is, N ’s reacha-
bility graph and A are isomorphic. Recently, in [15] we have shown that deciding
the existence of N is NP-complete for every fixed b ≥ 1. However, the former
examples provide several results where restricting the system makes the corre-
sponding analyses and synthesis problems easier. Encouraged by these results,
we continue our work of [15] in this paper and address whether structurally
restricting a searched b-net N influences positively the computational complex-
ity of synthesis. The restrictions relate to the preset- and postset-cardinality
of N ’s transitions and places and correspond to well-known subclasses of Petri
nets [3,6,9,14]. Surprisingly, it turns out that almost all applied net restrictions
do not bring the synthesis down to polynomial time. More exactly, we show
that synthesis remains intractable if N is pure or test-free and satisfies one
of the following properties: choice-free [6,14], fork-attribution [14], free-choice,
extended free-choice or asymmetric-choice [3]. Moreover, we adapt the classes
of (weighted) T -systems and (weighted) marked graphs [9] for b-nets and intro-
duce for m,n ∈ N their extension of weighted (m,n)-T-systems restricting the
cardinality of the preset and the postset of N ’s places by m and n, respec-
tively. We show that synthesis of weighted (m,n)-T-systems is hard if m,n are
part of the input and becomes tractable for every fixed m,n. In particular, syn-
thesis of b-bounded weighted T-systems is polynomial which answers partly a
question from [5, p.144]. Furthermore, we introduce their dual class of weighted
(m,n)-S-systems which restricts the cardinality of the preset and postset of N ’s
transitions by m and n, respectively. In contrast to the result of its dual class,
deciding if A is implementable by a pure or test-free b-net, being a weighted
(m,n)-S-system, is NP-complete for every fixed m,n ≥ 2. We get all intractabil-
ity results by a reduction of the cubic monotone one-in-three-3-sat-problem and
partly apply our methods from [15]. However, the reductions here are extremely
specialized and tailored to synthesis of restricted nets.

The next Sect. 2 introduces all necessary preliminary notions, Sect. 3 presents
our main result and Sect. 4 closes the paper.

2 Preliminaries

This section introduces all necessary preliminary notions and Fig. 1 gives cor-
responding examples. In the remainder of this paper, if not stated explicitly
otherwise then b ∈ N

+ is assumed to be arbitrary but fixed.

204 R. Tredup

Transition Systems. An initialized transition system (TS, for short) A =
(S,E, δ, s0) consists of a finite disjoint set S of states, E of events, a partial
transition function δ : S × E → S and an initial state s0 ∈ S. A can be
interpreted as edge-labeled directed graph where every triple δ(s, e) = s′ is an
e-labeled edge s e s′, called transition. An event e occurs at state s, denoted
by s e , if δ(s, e) = s′ for some state s′. This notation is extended to words

w′ = wa, w ∈ E∗, a ∈ E, by inductively defining s ε s for all s ∈ S and s w′
s′′

if and only if there is a state s′ ∈ S satisfying s w s′ and s′ a s′′. If w ∈ E∗

then s w denotes that there is a state s′ ∈ S such that s w s′. We assume all
TSs to be reachable: ∀s ∈ S,∃w ∈ E∗ : s0

w s.

b-bounded Petri Nets. A b-bounded Petri net (b-net, for short) N =
(P, T, f,M0) consists of finite and disjoint sets of places P and transitions
T , a (total) flow function f : P × T → {0, . . . , b}2 and an initial marking
M0 : P → {0, . . . , b}. If f(p, t) = (m,n) then f−(p, t) = m defines the consuming
effect of t on p. Similarly, f+(p, t) = n defines t’s producing effect on p. The preset
of a place p is defined by •p = {t ∈ T | f+(p, t) > 0}, the set of transitions that
produce on p. Accordingly, p’s postset is defined by p• = {t ∈ T | f−(p, t) > 0}
and contains the transitions that consume from p. Similarly, the preset •t =
{p ∈ P | f−(p, t) > 0} of a transition t is defined by the places from which t
consumes and its postset t• = {p ∈ P | f+(p, t) > 0} by the places on which t
produces. Notice that neither •p∩p• nor •t∩t• is necessarily empty. A transition
t ∈ T can fire or occur in a marking M : P → {0, . . . , b}, denoted by M t , if
M(p) ≥ f−(p, t) and M(p) − f−(p, t) + f+(p, t) ≤ b for all places p ∈ P . The
firing of t in marking M leads to the marking M ′(p) = M(p)−f−(p, t)+f+(p, t)

for p ∈ P , denoted by M t M ′. Again, this notation extends to sequences
σ ∈ T ∗ and the reachability set RS(N) = {M | ∃σ ∈ T ∗ : M0

σ M} contains
all of N ’s reachable markings. The firing rule preserves the b-boundedness of N
by definition: M(p) ≤ b for all places p and all M ∈ RS(N). The reachability
graph of N is the TS AN = (RS(N), T, δ,M0), where for every reachable mark-

ing M of N and transition t ∈ T with M t M ′ the transition function δ of AN

is defined by δ(M, t) = M ′.

Structurally Restricted Subclasses of b-nets. A b-net N is pure if ∀(p, t) ∈
P × T : f−(p, t) = 0 or f+(p, t) = 0, that is, ∀p ∈ P : •p ∩ p• = ∅; test-free
if ∀(p, t) ∈ P × T : f(p, t)
= (0, 0) ⇒ f−(p, t)
= f+(p, t); choice-free (CF) or
place-output-nonbranching if ∀p ∈ P : |p•| ≤ 1; fork-attribution (FA) if it is CF
and, additionally, ∀t ∈ T : |•t| ≤ 1; free-choice (FC) if ∀p, p̃ ∈ P : p• ∩ p̃•
= ∅ ⇒
|p•| = |p̃•| = 1; extended-free-choice (EFC) if ∀p, p̃ ∈ P : p• ∩ p̃•
= ∅ ⇒ p• = p̃•;
asymmetric-choice (AC) if ∀p, p̃ ∈ P : p• ∩ p̃•
= ∅ ⇒ (p• ⊆ p̃• or p̃• ⊆ p•); for
m,n ∈ N a weighted (m,n)-T-system if ∀p ∈ P : |•p| ≤ m, |p•| ≤ n; for m,n ∈ N

a weighted (m,n)-S-system if ∀t ∈ T : |•t| ≤ m, |t•| ≤ n.

b-bounded Regions. For the purpose of finding a b-net N implementing a TS
A, we want to synthesize N ’s components purely from the input A. Demanding A

Synthesis of Structurally Restricted b-bounded Petri Nets 205

s0 s1 s2 s3 s4 s5 s6
k k z o k k

sup s0 s1 s2 s3 s4 s5 s6 sig k z o

sup1 0 1 2 2 0 1 2 sig1 (0, 1) (0, 0) (2, 0)
sup2 2 1 0 2 2 1 0 sig2 (1, 0) (0, 2) (0, 0)
sup3 2 2 2 0 2 2 2 sig3 (0, 0) (2, 0) (0, 2)
sup4 0 0 0 2 2 2 2 sig4 (0, 0) (0, 2) (0, 0)
sup5 0 1 2 1 0 1 2 sig5 (0, 1) (1, 0) (1, 0)

R1

R2

k
(0,1)

(1,0)

z
(0,2)

o
(2,0)

R3

(2,0)

(0,2)

R4

(0,2)

Fig. 1. Top: Input TS A. Middle: For i ∈ {1, 2, 3, 4, 5} pure 2-regions Ri = (supi, sigi)
of A, where R1, . . . , R4 already solve all of A’s (E)SSP atoms. For example, the region
R1 solves (k, si), ∀i ∈ {2, 3, 6} and (o, si), ∀i ∈ {0, 1, 4, 5}. Bottom: Pure 2-net NR

A ,
built by R = {R1, R2, R3, R4}, where, for example, •R3 = {o} and R3

• = {z} and
•o = {R1} and o• = {R3}. Moreover, NR

A is FA because of |R•| ≤ 1 and |•eR| ≤ 1 for

all R ∈ R and e ∈ E(A). The net NR
A origins from NR′

A , where R′ = R ∪ { R5 }, by
removing R5. Both R and R′ are b-admissible sets. Thus, the reachability graphs of
their synthesized nets are both isomorphic to A. However, because z ∈ R3

• ∩ R5
• and

R5
• = {z, o}, the net NR′

A is not even free-choice.

and AN to be isomorphic suggests that A’s events correspond to N ’s transitions.
However, the notion of a place is not known for TSs. A b-bounded region R (b-
region, for short) of a TS A = (S,E, δ, s0) is a pair R = (sup, sig) of support
sup : S → {0, . . . , b} and signature sig : E → {0, . . . , b}2, where sig−(e) = m

and sig+(e) = n for sig(e) = (m,n), such that for every edge s e s′ of A
holds sup(s) ≥ sig−(e) and sup(s′) = sup(s) − sig−(e) + sig+(e). A region
(sup, sig) models a place p and the corresponding part of the flow function f :
sig+(e) models f+(e), sig−(e) models f−(e) and sup(s) models M(p) in the
marking M ∈ RS(N) corresponding to s ∈ S(A). Accordingly, a region R is
test-free if sig(e)
= (0, 0) implies sig−(e)
= sig+(e). The preset of R is defined
by •R = {e ∈ E | sig+(e) > 0} and its postset by R• = {e ∈ E | sig−(e) > 0}.
The Region R is pure if •R ∩ R• = ∅. For a set R of b-regions and e ∈ E
we define by •eR = {(sup, sig) ∈ R | sig−(e) > 0} the preset and by e•

R =
{(sup, sig) ∈ R | sig+(e) > 0} the postset of e (in accordance to R). Every set
R of b-regions of A defines the synthesized b-net NR

A = (R, E, f,M0) with flow
function f((sup, sig), e) = sig(e) and initial marking M0((sup, sig)) = sup(s0)
for all (sup, sig) ∈ R, e ∈ E. We emphasize once again that a region R of R
becomes a place of NR

A with the preset •R and the postset R•. Moreover, every

206 R. Tredup

event e ∈ E becomes a transition of NR
A with preset •e = •eR and postset

e• = eR•. It is well known that ANR
A

and A are isomorphic if and only if R’s
regions solve certain separation atoms [2], to be introduced next.

A pair (s, s′) of distinct states of A define a state separation atom (SSP
atom, for short). A b-region R = (sup, sig) solves (s, s′) if sup(s)
= sup(s′).
The meaning of R is to ensure that NR

A contains at least one place R such
that M(R)
= M ′(R) for the markings M and M ′ corresponding to s and s′,
respectively. If there is a b-region that solves (s, s′) then s and s′ are called b-
solvable. If every SSP atom of A is b-solvable then A has the b-state separation
property (b-SSP, for short).

A pair (e, s) of event e ∈ E and state s ∈ S where e does not occur at s, that is
¬s e , define an event state separation atom (ESSP atom, for short). A b-region
R = (sup, sig) solves (e, s) if sig−(e) > sup(s) or sup(s)−sig−(e)+sig+(e) > b.
The meaning of R is to ensure that there is at least one place R in NR

A such that
¬M e for the marking M corresponding to s. If there is a b-region that solves
(e, s) then e and s are called b-solvable. If every ESSP atom of A is b-solvable
then A has the b-event state separation property (b-ESSP, for short).

A set R of b-regions of A is called b-admissible if for every of A’s (E)SSP
atoms there is a b-region R in R that solves it. The following lemma, borrowed
from [2, p.163], summarizes the already implied connection between the existence
of b-admissible sets of A and (the solvability of) synthesis:

Lemma 1. ([2]). A b-net N has a reachability graph isomorphic to a given TS
A if and only if there is a b-admissible set R of A such that N = NR

A .

We say a b-net N solves A if AN and A are isomorphic. By Lemma 1, searching for
a restricted b-net reduces to finding a b-admissible set of accordingly restricted
regions. The following two examples illustrate this fact.

Example 1. If R is a b-admissible set of pure regions of A satisfying ∀R ∈ R :
|R•| ≤ 1 and ∀e ∈ E(A) : |•eR| ≤ 1 then NR

A is a pure FA b-net solving A.

Example 2. If R is a b-admissible set of pure regions of A and ∀e ∈ E(A) :
|•eR| ≤ 2, |eR•| ≤ 2 then NR

A is a pure solving b-net, being a weighted (2, 2)-S-
system.

3 Our Contribution

Theorem 1. For a given TS A the following conditions are true:

1. If P ∈ {CF,FA,FC,EFC,AC} then to decide if A is solvable by a pure or
a test-free b-net which is P is NP-complete.

2. Given integers �, �′ ∈ N, deciding if A is solvable by a pure or a test-free b-net,
being a weighted (�, �′)-T-System, is NP-complete.

3. For any fixed �, �′ ≥ 2, deciding if A is solvable by a pure or a test-free b-net,
being a weighted (�, �′)-S-system, is NP-complete.

Synthesis of Structurally Restricted b-bounded Petri Nets 207

4. For any fixed �, �′ ∈ N, one can decide in polynomial time if A is solvable by
a b-net, being a weighted (�, �′)-T-System.

To prove Theorem 1.1–Theorem 1.3 we show that the corresponding decision
problems are in NP and NP-hard. Membership in NP can be seen as follows: By
Lemma 1, if N is a b-net that solves A then there is a b-admissible set R′ of A such
that NR′

A = N . By definition, A has at most |S|2 SSP atoms and at most |E| · |S|
ESSP atoms. Thus, there is a b-admissible subset R ⊆ R′ with |R| ≤ |S|2 + |E| ·
|S|. In particular, NR

A originates from NR′
A = N by (possibly) removing places,

which can not increase any preset- or postset cardinality. Consequently, removing
places preserves property P ∈ {CA,FA,FC,EFC,AC}, the weighted (m,n)-T-
system property and the weighted (m,n)-S-system property. This makes NR

A

a searched net. A non-deterministic Turing machine can guess in polynomial
time a corresponding set R, check its b-admissibility, build NR

A and check its
structural properties in accordance to the regarded decision problem.

To show hardness we use the NP-complete problem cubic monotone
one-in-three-3-sat (cm 1-in-3 3sat) from [11] which is defined as fol-
lows: The input for cm 1-in-3 3sat is a negation-free boolean expression
ϕ = {ζ0, . . . , ζm−1} of three-clauses ζ0, . . . , ζm−1 with set of variables V (ϕ)
where every variable occurs in exactly three clauses. Notice that this implies
|V (ϕ)| = m. The question is whether there is a subset M ⊆ V (ϕ) satisfying
|M ∩ ζi| = 1, ∀i ∈ {0, . . . , m − 1}.

For Theorem 1.(1–2) we reduce an input instance ϕ with m clauses (in poly-
nomial time) to a TS Ab

ϕ satisfying the following condition:

Condition 1. 1. If a test-free b-net solves Ab
ϕ then ϕ is one-in-three satisfiable.

2. If ϕ is one-in-three satisfiable then there is a b-admissible set R of pure regions
of Ab

ϕ satisfying ∀R ∈ R : |R•| ≤ 1∧|•R| ≤ 7m+4 and ∀e ∈ E(A) : |•eR| ≤ 1.

A reduction that satisfies Condition 1 proves Theorem 1.(1–2) as follows: By
definition of test-freeness, every b-net of Theorem 1.(1–2) is at least test-free,
although possibly further restricted. Hence, Condition 1.1 ensures that if Ab

ϕ is
solvable by such a net then ϕ has a one-in-three model. Moreover, a b-admissible
set R that satisfies Condition 1.2 implies that NR

Ab
ϕ

is a pure b-net that is FA

and solves A, cf. Example 1. Every pure FA b-net is test-free (by f+(p, t) = 0
or f−(p, t) = 0) and CF (by definition). By NR

Ab
ϕ

being CF, all of its places p

satisfy |p•| ≤ 1. Thus, the net is also FC, EFC and AC. Finally, by � = 7m + 4
and �′ = 1, the net NR

Ab
ϕ

is a weighted (�, �′)-T-system. Altogether, Condition 1

ensures that Ab
ϕ is solvable by a b-net of Theorem 1.(1–2) if and only if ϕ is

one-in-three satisfiable.
For Theorem 1.3 we reduce ϕ to a TS Bb

ϕ that satisfies the following condition:

Condition 2. 1. If a test-free b-net solves Bb
ϕ then ϕ is one-in-three satisfiable.

2. If ϕ is one-in-three satisfiable then there is a b-admissible set R of pure regions
such that |•eR| ≤ 2 and |eR•| ≤ 2 for all e ∈ E(A).

208 R. Tredup

A reduction satisfying Condition 2 proves Theorem 1.3 as follows: By the
definition of test-freeness and weighted (m,n)-S-systems, a pure weighted (2, 2)-
S-system is a test-free weighted (m,n)-S-System for all m,n ≥ 2. Moreover, a
b-admissible set that satisfies Condition 2.2 implies that NR

Bb
ϕ

is a pure weighted

(2, 2)-S-system solving Bb
ϕ, cf. Example 2. Thus, Condition 2 ensures that Bb

ϕ is
solvable by a b-net of Theorem 1.3 if and only if ϕ is one-in-three satisfiable.

3.1 The Reduction and the Proof of Condition 1.1 and Condition 2.2

In accordance to Condition 1.1 and Condition 2.1, our goal is to combine the
existence of a b-admissible set R, the b-solvability of Ab

ϕ and Bb
ϕ, with the one-

in-three satisfiability of ϕ. For this purpose, both TSs (among others) apply
gadgets that represent ϕ’s clauses and use their variables as events. Moreover,
both Ab

ϕ and Bb
ϕ have a certain separation atom and the signature of a solving

region (sup, sig) defines a one-in-three model of ϕ via the variable events. So
far, this approach is like that of [15]. However, the main difference and the
biggest challenge is to consider the restrictions of Condition 1.1 and Condition 2.2.
To master this challenge, we apply refined, specialized and different gadgets.
Particularly noteworthy in this context is the representation of ϕ’s clauses by
{0, . . . , b}3-grids instead of simple sequences, as it has been done in [15].

We proceed by introducing the gadgets of Ab
ϕ and Bb

ϕ that represent ϕ’s
clauses. In particular, the clause-gadgets’ functionality will serve as motivation
for the remaining parts of Ab

ϕ and Bb
ϕ, which are presented afterwards.

Let i ∈ {0, . . . ,m − 1}. The TSs Ab
ϕ and Bb

ϕ have for the clause Ci =
{Xi,0,Xi,1,Xi,2} the {0, . . . , b}3-grid Cb

i with transitions that use the variables
of Ci as events. More exactly, the {0, . . . , b}3-grid Cb

i is built by the following
sequences P i,0

α,β , P i,1
α,β , P i,2

α,β , where α, β ∈ {0, . . . , b}. Figure 2 shows C2
i .

P i,0
α,β = ti

0,α,β ti
1,α,β

. . . ti
b−1,α,β ti

b,α,β

Xi,0 Xi,0 Xi,0 Xi,0

P i,1
α,β = ti

α,β,0 ti
α,β,1

. . . ti
α,β,b−1 ti

α,β,b

Xi,1 Xi,1 Xi,1 Xi,1

P i,2
α,β = ti

α,0,β ti
α,1,β

. . . ti
α,b−1,β ti

α,b,β

Xi,2 Xi,2 Xi,2 Xi,2

Among others, Cb
i provides the following sequence Pi where each of Xi,0,Xi,1

and Xi,2 occur b times in a row:

Pi = ti0,0,0
Xi,0 . . . Xi,0 tib,0,0

Xi,1 . . . Xi,1 tib,0,b
Xi,2 . . . Xi,2 tib,b,b

Notice that, except for tib,b,b, every variable of Ci occur at every state of Cb
i .

This has the advantage that we never have to solve an ESSP atom (X, s) such
that X ∈ {Xi,0,Xi,1,Xi,2} and s occur in the same grid and s is a source of
another variable event Y ∈ {Xi,0,Xi,1,Xi,2} \ {X}. This property is crucial

Synthesis of Structurally Restricted b-bounded Petri Nets 209

to ensure Condition 1.2 and Condition 2.2. In particular, it prevents atoms like
(Xi,1, t

i
b−1,0,0) which would be unsolvable for b ≥ 2.

The TSs Ab
ϕ and Bb

ϕ use the grid Cb
i as follows: Both TSs have at least one

separation atom such that a corresponding b-solving region (sup, sig) satisfies
either sup(ti0,0,0) = 0 and sup(tib,b,b) = b or sup(ti0,0,0) = b and sup(tib,b,b) = 0.
In the following, we assume sup(ti0,0,0) = 0 and sup(tib,b,b) = b and argue that
this implies that there is exactly one X ∈ {Xi,0,Xi,1,Xi,2} with sig(X)
=
(0, 0). If X ∈ {Xi,0,Xi,1,Xi,2} then, by sup(ti0,0,0) = 0 and ti0,0,0

X , we have
immediately sig−(X) = 0 (no consuming is possible). Moreover, by the definition
of regions, we have sup(s′) = sup(s)−sig−(e)+sig+(e) for every s e s′ ∈ Pi. We
use all this together and obtain inductively that b = sup(tib,b,b) = b ·(sig+(Xi,0)+
sig+(Xi,1)+sig+(Xi,2)) > 0 = sup(ti0,0,0). It is easy to see that this expression is
satisfied if and only if there is exactly one variable event with a positive value sig+

(and this value equals 1). Thus, there is exactly one event X ∈ {Xi,0,Xi,1,Xi,2}
with sig(X)
= (0, 0). By the arbitrariness of i this is simultaneously true for all
grids Cb

0, . . . , C
b
m−1. Consequently, the set M = {X ∈ V (ϕ) | sig(X)
= (0, 0)}

selects exactly one element of every clause Ci which makes it a one-in-three
model of ϕ. Similarly, if sup(ti0,0,0) = b and sup(tib,b,b) = 0 then M yields also a
one-in-three model of ϕ.

With the just presented functionality of Cb
i in mind, in what follows, we

introduce Ab
ϕ’s and Bb

ϕ’s remaining parts. In particular, we explain how they
collaborate to ensure the existence of a region satisfying sup(ti0,0,0) = 0 and
sup(tib,b,b) = b or sup(ti0,0,0) = b and sup(tib,b,b) = 0. Before we start, the following
lemma provides a basic result, to be used in the sequel, and shows how to connect
the signature of some events with the solvability of an ESSP atom.

Lemma 2. Let q0
e1 . . . e1 qb

e2 qb+1
e3 qb+2

e1 . . . e1 q2b+2 be a sequence
of a TS A = (S,E, δ, s0), where e1, e2, e3 are pairwise distinct events, which
starts and ends with e1 b-times in a row. A test-free b-region solves the ESSP
atom (e1, qb+1) if and only if sig(e1) = (0, 1), sig−(e2) = sig+(e2) and sig(e3) =
(b, 0) or sig(e1) = (1, 0), sig−(e2) = sig+(e2) and sig(e3) = (0, b).

We start by introducing the parts of Ab
ϕ. Figure 2 sketches a snippet of A2

ϕ.
The initial state of Ab

ϕ is s. Firstly, the TS Ab
ϕ has the sequence Qb:

Qb = s q0 . . . qb qb+1 qb+2 . . . q2b+2
a k k z o k k

The sequence Qb provides the ESSP-atom (k, qb+1). If Ab
ϕ is b-solvable then, by

Lemma 1, there is a b-admissible set R of (test-free) regions such that N = NR
Ab

ϕ
.

As R is b-admissible, there is a test-free b-region (sup, sig) ∈ R that solves
(k, qb+1). By Lemma 2, we have either sig−(z) = sig+(z) and sig(o) = (b, 0)
or sig−(z) = sig+(z) and sig(o) = (0, b). Let’s discuss the former case. The
region R implies for transitions s o s′ and s′′ z s′′′ (of Ab

ϕ) that sup(s) = b,
sup(s′) = 0 and sup(s′′) = sup(s′′′). The TS Ab

ϕ uses this to ensure a particular

210 R. Tredup

ti0

s

si

ti000 ti100 ti200

ti010 ti110 ti210

ti020 ti120 ti220

ti001 ti101 ti201

ti011 ti111 ti211

ti021 ti121 ti221

ti002 ti102 ti202

ti012 ti112 ti212

ti022 ti122 ti222

k2i

vi

ui

k2i+1

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,0 Xi,0

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

Xi,1

q0

q1

q2

q3

q4

q5

q6

k

k

z

o

k

k

mi,0mi,1mi,2mi,3mi,4mi,5mi,6
ok2izokk

ni,0ni,1ni,2ni,3ni,4ni,5ni,6
ok2i+1zokk

a

wi

yi

Fig. 2. A snippet of A2
ϕ showing the sequences Q2, M2

i , N2
i , the {0, 1, 2}3-grid C2

i for
the clause Ci = {Xi,0, Xi,1, Xi,2} and the paths Li,0 and Li,1. For clarity, edges labeled
by the same variable event have the same color. The coloring of the states corresponds
to the 2-region R1 which is defined in Table 1 and where Xi,0 ∈ M : Light (dark) red
colored states are mapped to 1 (2) and the others are mapped to 0. (Color figure online)

signature of the events k2i, k2i+1 that are provided by the following sequences
N b

i and M b
i , for all i ∈ {0, . . . , m − 1}:

Mb
i = s mi,0 mi,1 mi,2 mi,3 mi,4 . . . mi,b+4

wi o k2i z o k k

Nb
i = s ni,0 ni,1 ni,2 ni,3 ni,4 . . . ni,b+4

yi o k2i+1 z o k k

Synthesis of Structurally Restricted b-bounded Petri Nets 211

The TS Ab
ϕ uses M b

i , N b
i , R and the occurrences of z and o for the announced goal

as follows: By sig(o) = (b, 0), we have sup(mi,1) = sup(ni,1) = 0 and sup(mi,3) =
sup(ni,3) = b which, by sig−(z) = sig+(z), implies sup(mi,2) = sup(ni,2) = b.

By mi,1
k2i mi,2, ni,1

k2i+1 ni,2 this leads to sig(k2i) = sig(k2i+1) = (0, b). In

particular, for all edges s k2i s′ and s′′ k2i+1 s′′′ of Ab
ϕ holds sup(s) = sup(s′′) = 0

and sup(s′) = sup(s′′′) = b. Finally, Ab
ϕ uses other occurrences of k2i and k2i+1

to ensure sup(ti0,0,0) = 0 and sup(tib,b,b) = b. More exactly, Ab
ϕ installs the paths

Li,0 = s vi ti0,0,0
k2i ti0 and Li,1 = s ui si

k2i+1 tib,b,b. On the one hand, Li,0

ensures reachability of Ab
ϕ. On the other hand, by ti0,0,0

k2i ti0, si
k2i+1 tib,b,b and

the discussion above, Li,0, Li,1 ensure that sup0(ti0,0,0) = 0 and sup0(tib,b,b) = b.
Similarly, one argues that sig(o) = (0, b) and sig−(z) = sig+(z) yields

sig(k2i) = sig(k2i+1) = (b, 0), implying sup1(ti0,0,0) = b and sup1(tib,b,b) = 0.
By the discussed functionality of the grids, this proves that Ab

ϕ satisfies Condi-
tion 1.1.

We proceed by presenting the remaining gadgets of Bb
ϕ. The TS Bb

ϕ has the
initial state s and it has for every i ∈ {0, . . . , m − 1} the following six sequences:

F b
i = s ai

2m+5
. . . ai

1 fi
0

. . . fi
b fi

b+1 fi
b+2

. . . fi
2b+2

bi
2m+5 bi

0 k k z2i o k k

Gb
i = s ci

2m+5
. . . ci

1 gi
0

. . . gi
b gi

b+1 gi
b+2

. . . gi
2b+2

di
2m+5 di

0 k k z2i+1 o k k

Mb
i = s ri

2m+5
. . . ri

1 mi
0 mi

1 mi
2 mi

3 mi
4

. . . mi
2b+2

wi
2m+5 wi

0 o k2i z2i o k k

Nb
i = s si

2m+5
. . . si

1 ni
0 ni

1 ni
2 ni

3 ni
4

. . . ni
2b+2

yi
2m+5 yi

0 o k2i+1 z2i+1 o k k

Li,0 =s qi
2m+5

. . . qi
1 ti

0 ti
0

vi
2m+5 vi

0 k2i
Li,1 =s pi

2m+5
. . . pi

2 pi
1 ti

b,b,b

ui
2m+5 ui

1 k2i+1

In terms of Condition 2.2, the gadgets M b
i , N b

i , Li,0 and Li,1 work similar to the
corresponding ones of Ab

ϕ. However, Condition 2.2 requires to distribute the task
of one event to multiple events. For example, the events z0, . . . , z2m−1 of Bb

ϕ play
the same role as z of Ab

ϕ. This is achieved by F b
i and Gb

i . More exactly, if Bb
ϕ is b-

solvable then, by Lemma 1, every atom (k, f i
b+1) is too. By Lemma 2, if (sup, sig)

is a solving test-free b-region then sig(k) = (0, 1) and sig(o) = (b, 0) or sig(k) =
(1, 0) and sig(o) = (0, b). If sig(k) = (0, 1) then, by sup(f i

b) = sup(gi
b) = b ·

sig+(k) = b and sup(f i
b+1) = sup(f i

b+1) = b, we get sig+(zi) = sig−(zi) and,
thus, sig(ki) = (0, b), ∀i ∈ {0, . . . , 2m − 1}. Similarly, if sig(k) = (1, 0) then
sig(ki) = (b, 0), ∀i ∈ {0, . . . , 2m − 1}. Thus, by the grids’ functionality, the set
M = {X ∈ V (ϕ) | sig(X)
= (0, 0)} is a sought model.

212 R. Tredup

3.2 The Proof of Condition 1.2 and Condition 2.2

In this section, we provide b-admissible sets of Ab
ϕ and Bb

ϕ in accordance
to Condition 1.2 and Condition 2.2, respectively. For the sake of simplicity,
we present for every region (sup, sig) only its signature sig and the value
sup(s) of the initial state s. Because Ab

ϕ and Bb
ϕ are reachable and sup(s′′) =

sup(s′) − sig−(e) + sig+(e) for every transition s′ e s′′, this completely defines
the region. In the remainder of this section, unless stated explicitly otherwise,
let i ∈ {0, . . . , m − 1} and M be a one-in-three model of ϕ. Moreover, for
α ∈ {0, 1, 2} let βα, γα ∈ {0, . . . , m − 1} \ {i} be the distinct indices such that
Xi,α ∈ Ci∩Cβα

∩Cγα
, that is, βα, γα choose the other two clauses of ϕ containing

Xi,α.
We start with Condition 1.2 and provide a b-admissible set R of pure regions

of Ab
ϕ such that |R•| ≤ 1 and |•eR| ≤ 1 for all R ∈ R and e ∈ E(Ab

ϕ). Moreover,
because Ab

ϕ has exactly 7m+4 events, every region R of Ab
ϕ satisfies |•R| ≤ 7m+

4. For abbreviation, we define U = {u0, . . . , um−1}, V = {v0, . . . , vm−1},W =
{w0, . . . , wm−1}, Y = {y0, . . . , ym−1} and K = {k0, . . . , k2m−1}. We solve all
atoms concerning the events of {a}∪U∪V ∪W ∪Y with the region R = (sup, sig),
defined by sup(s) = 0 and sig(e) = (0, b) if e ∈ {a} ∪ U ∪ V ∪ W ∪ Y and,
otherwise, sig(e) = (0, 0). This region satisfies |R•| = 0 (no event consumes).
Moreover, none of the subsequently presented regions of Ab

ϕ is in the preset of
any of {a} ∪ U ∪ V ∪ W ∪ Y , thus, |•eR| ≤ 1 for e ∈ {a} ∪ U ∪ V ∪ W ∪ Y . We
proceed with presenting for every event k, z, o, v, k2i, k2i+1 and Xi,0,Xi,1,Xi,2

corresponding regions that solves it. Every row of Table 1 (below) defines a region
R = (supR, sigR) with supR(s) = 0 as follows: For every e ∈ E(Ab

ϕ) we have
either sigR(e) = (0, 0) or sigR(e) ∈ {(1, 0), (0, 1), (b, 0), (0, b)}. In the latter case,
e occurs according to its signature in the corresponding column either as a
single event or as member of the event set shown. For example, for R1 we have
sigR1(k) = (0, 1) and sigR1(e) = (0, 1) for e ∈ M .

Table 1. Pure regions of Ab
ϕ that solve k, z, o, k2i, k2i+1 and Xi,0, Xi,1, Xi,2.

R (1, 0) (0, 1) (b, 0) (0, b)

R1 k, M o W, Y, K

R2 k z, a

R3 z a, o, U, V

R4 z, U, V

Rz
k2i

k2i z, ui, vi, wi

Rz
k2i+1

k2i+1 z, ui, yi

Rα
k2i

for Xi,α a, Y , � ∈ {i, βα, γα} : u�, k2�,

Xi,α �∈ M W \ {w� | � ∈ {i, βα, γα}
Rk2i+1 k2i+1, a, W, V , U \ {u2i+1}, Y \ {y2i+1}
RXi,α Xi,α vi, vβα , vγα

Synthesis of Structurally Restricted b-bounded Petri Nets 213

The regions of Table 1 solve the events k, z, o, k2i, k2i+1 and Xi,0,Xi,1,Xi,2 as
follows. (k): R1 solves k at the sinks of z and R2 solves k at the remaining states.
(z): R2 solves z at the sources of k and R3 solves z at o’s sources and at s. Rz

k2i

and Rz
k2i+1

, where i ∈ {0, . . . , m − 1}, solve z at the sources of k0, . . . , k2m−1.
Finally, R4 solves z at the remaining states. (o): R1 solves o at the sources of k,
k0, . . . , k2m−1 and at s and R3 solves o at the remaining states. (k2i): R1 solves
k2i at all sources of o and all sources of Xi,α in Cb

i , where Xi,α ∈ M . Rz
k2i

solves
k2i at all sources of kj , where 2i
= j ∈ {0, . . . , 2m − 1} and at s. The remaining
atoms are solved by (the two regions defined by) Rα

k2i
, where α ∈ {0, 1, 2} such

that Xi,α
∈ M . (k2i+1): R1 solve k2i+1 at ni,0 and Rz
k2i+1

at s and Rk2i+1 at all
remaining states. (Xi,α): If Xi,α ∈ M then the region R1 solves it at ti0, otherwise,
Xi,α is solved at ti0 by Rα

k2i
. The remaining atoms are solved by RXi,α

.
In the following we argue that Ab

ϕ has the SSP, too: To separate S(Qb)
from S(Ab

ϕ) \ S(Qb) we use the region RQ = (supQ, sigQ) where supQ(s) = 0,
sigQ(a) = (0, b) and sigQ(e) = (0, 0) for the other events. Moreover, the
states of Qb are pairwise separated by R1, R2 and R4. To separate the states
S(M b

i) from S(Ab
ϕ) \ S(M b

i) we define the region RMi
= (supMi

, sigMi) where
supMi

(s) = 0, sigMi
(wi) = (0, b) and sigMi

(e) = (0, 0) for the other events.
The states of M b

i are pairwise separated by R1, R2, R3 and R4. Similarly, the
states S(N b

i) are separated by R1, R2, R3, R4 and RNi
= (supNi

, sigNi) where
supNi

(s) = 0, sigNi
(yi) = (0, b) and sigNi

(e) = (0, 0) for the other events. To
separate the states of S(Cb

i)∪{ti0, si} from all the other states we use the region
RCi

= (supCi
, sigCi

) where sup(Ci)(s) = 0, sigCi
(ui) = sigCi

(vi) = (0, b) and
sigCi

(e) = (0, 0) for the other events. Moreover, the states of S(Cb
i)∪{ti0, si} are

pairwise separated by R1, Rk2i+1 and Rα
Xi,α

, where Xi,α
∈ M .
Altogether, the set R = R1 ∪ R2 ∪ R3 ∪ R4 where R1 = {R1, R2, R3, R4},

R2 = {Rz
k2i

, Rz
k2i+1

, Rα
k2i

, Rk2i+1 | i ∈ {0, . . . , m − 1}, α ∈ {0, 1, 2},Xi,α
∈ M},
R3 = {RXi,α

| i ∈ {0, . . . , m − 1}, α ∈ {0, 1, 2}} and R3 = {RQ, RMi
, RNi

, RCi
|

i ∈ {0, . . . , m − 1}}, is an admissible set of Ab
ϕ. We briefly argue that it is FA:

It is easy to see that every presented region R ∈ R satisfy |R•| ≤ 1. Moreover,
|•eR| ≤ 1 is also true for e ∈ E(Ab

ϕ): The regions R1 ∈ •o, R2 ∈ •k, R3 ∈ •z and
Rz

k2i
∈ •k2i and Rz

k2i+1
∈ •k2i+1 are unique. Furthermore, if Xi,α = Xj,β = X�,γ

then RXi,α
= RXj,β

= RX�,γ
where i, j, � ∈ {0, . . . , m − 1}, α, β, γ ∈ {0, 1, 2}. As

R is a set, this region is the only element in •Xi,α. No other region (sup, sig) ∈ R
satisfies sig−(e) > 0 for any e ∈ E(Ab

ϕ). Thus, Ab
ϕ satisfies Condition 1.2.

To prove Condition 2.2 we provide a b-admissible set R of pure regions of
Bb

ϕ such that |eR•| ≤ 2 and |•eR| ≤ 2 for all e ∈ E(Bb
ϕ). For brevity, we

define for j ∈ {0, . . . , m − 1} the following sets: Bj = {bi
j | i ∈ {0, . . . , m − 1}},

Dj = {di
j | i ∈ {0, . . . , m − 1}}, Uj = {ui

j | i ∈ {0, . . . , m − 1}}, Vj = {vi
j | i ∈

{0, . . . , m − 1}}, Wj = {wi
j | i ∈ {0, . . . , m − 1}}, Yj = {yi

j | i ∈ {0, . . . , m − 1}},
K = {ki | i ∈ {0, . . . , 2m − 1}} and Z = {zi | i ∈ {0, . . . , 2m − 1}}. By a little
abuse of notation, we let Ci = F b

i ∪ Gb
i ∪ M b

i ∪ N b
i ∪ F b

i ∪ Cb
i ∪ Li,0 ∪ Li,1 and

δi = 2m + 5 − i. Table 2 (below) defines a regions R of Bb
ϕ with supR(s) = 0.

214 R. Tredup

Table 2. Pure b-regions of Bb
ϕ that solve several separation atoms.

R (1, 0) (0, 1) (b, 0) (0, b)

R1 k, M o W0, Y0, K

R2 k Z, B0, D0

R3 o Z, W3, Y3

Rz2i z2i bi
1, w

i
1

R0
z2i+1 z2i+1 vi

5, k2i+1, d
i
1

R1
z2i+1 z2i+1 di

0, y
i
1

Rk2i+1 k2i+1 bi
1, w

i
1

R2
2i z2i k2i, b

i
0, (Vδi ∪ Uδi ∪ Bδi ∪ Dδi ∪ Wδi ∪ Yδi) \ E(Ci)

(k), (o): The regions R1 and R2 solve k and the regions R1 and R3 solve o.
(z2i), (z2i+1): The region R2 solves z2i, z2i+1 at k’s sources and R3 solves them at
o’s sources, at si,1, si,2, si,3 and at ri,1, ri,2, ri,3. R2

2i solves z2i at the remaining
states of Ci \{ti0} and Rz2i

solves z2i at the remaining states of Bb
ϕ. R0

z2i+1
solves

z2i+1 at ni
0, n

i
1 and si,1 and R1

z2i+1
solves it at the remaining states.

(k2i): For a correct referencing, we need the following definitions: If j ∈
{0, . . . , m − 1} then let αj ∈ {0, 1, 2} be the index such that Xj,αj

∈ M and let
by βj < γj ∈ {0, 1, 2}\{αj} the other variable events of Cb

j be chosen. Moreover,
let �
= j ∈ {0, . . . , m − 1} such that Xi,βi

∈ Ci ∩ C�,∩Cj and let �′
= j′ ∈
{0, . . . , m − 1} such that Xi,γi

∈ Ci ∩ C�′ ,∩Cj′ . That is, �, j and �′, j′ choose
the other two clauses where Xi,βi

,Xi,γi
occur. We use this to define the region

R0
2i = (sup02i, sig

0
2i) where sup02i(s) = 0, sig(Xi,βi

) = (1, 0) and for δ ∈ {i, �, j}
it is sig02i(k2δ) = (b, 0) and sig02i(w

δ
0) = (0, b) if Xi,βi

= Xδ,βδ
and sig02i(w

δ
2) =

(0, b) if Xi,βi
= Xδ,γδ

. Similarly, we define the region R1
2i = (sup12i, sig

1
2i) by

sup12i(s) = 0, sig(Xi,γi
) = (1, 0) and for δ ∈ {i, �′, j′} it is sig12i(k2δ) = (b, 0) and

sig12i(wδ,2) = (0, b) if Xi,γi
= Xδ,γδ

and sig12i(wδ,0) = (0, b) if if Xi,γi
= Xδ,βδ

.
Notice that if Xi,βi

= Xδ,γδ
then R0

2i = R1
2δ and if Xi,γi

= Xδ,βδ
then R1

2i = R0
2δ.

This is our way to correctly, restrict the postset of the events w···
0 and w···

2 . The
region R1 solves k2i at mi

0 and the sinks of Xi,αi
. R0

2i and R1
2i solve k2i at all

states of Cb
i ∪ {s} and

⋃2m+5
j=1 {q�

j , p
�
j , a

�
j , c

�
j , r

�
j , s

�
j | � ∈ {0, . . . , m − 1} \ {i}}.

Finally, to solve k2i at the remaining states we use the region R2
2idefined as

follows: If α = 2m + 5 − i then R2
2i = (sup22i, sig

2
2i) is defined by sup22i(s) = 0,

sig22i(k2i) = sig22i(bi,0) = sig22i(e), where e ∈ {vj,α, uj,α, bj,α, dj,α, wj,α, yj,α | j ∈
{ 0, . . . , m − 1} \ {i}} and sig22i(z2i) = (b, 0).

(k2i+1): R1 and Rk2i+1 solve k2i+1 at all states of Bb
ϕ.

(Xi,0,Xi,1,Xi,2): Let αi, βi, γi be defined as above. To separate Xi,αi
=

X�,α�
= Xj,αj

, i, j, � pairwise distinct, from qi
1, q

i
2, q

�
1, q

�
2, q

j
1, q

j
2, respectively, we

use the region Ri
q = R�

q = Rj
q that maps s to 0, Xi,α1 to (0, b), vi

0, v
�
0, v

j
0 to (b, 0),

vi
2, v

�
2, v

j
2 to (0, b) and the other events to (0, 0). This region is necessary as the pre-

sets •vi
0,

•v�
0,

•vj
0 have already two elements. To separate Xi,αi

from the remain-

Synthesis of Structurally Restricted b-bounded Petri Nets 215

ing states, we use Ri
αi

= (supi
αi

, sigi
αi

), where supi
αi

(s) = 0, sigi
αi

(Xiαi
) = (1, 0)

sigi
αi

(vi
1) = sigi

αi
(v�

1) = sigi
αi

(vj
1) = (0, b) and Xi,αi

∈ Ci ∩ C� ∩ Cj .
The regions Ri

βi
for Xi,βi

and Ri
γi

for Xi,γi
are defined accordingly, where we

use v...
3 and v...

4 (without repetition or confusion) as preset events, respectively.
Notice that, so far, Xi,βi

,Xi,γi
are already separated from q1, . . . , q2m+5 by R0

2i

and R1
2i, respectively.

(ui
j , v

i
j , b

i
j , d

i
j , w

i
j , y

i
j , j ∈ {1, . . . , 2m − 5}): So far, for all of these events

e holds |•eR| = 0 and, even more, if j
= 1 then |eR•| ≤ 1. Hence, for

e, e′ ∈ {ui
j , v

i
j , b

i
j , d

i
j , w

i
j , y

i
j , j ∈ {1, . . . , 2m − 4}} with e′

x e ∈ Bb
ϕ we use

the region (supe, sige) where supe(s) = 0, sige(e′) = (0, b) and sige(e) = (b, 0)
and sige(e′′) = (0, 0) for E(Bb

ϕ) \ {e, e′}. Notice that e, e′ are unique and that
this region also separates x. For the 2m + 5-indexed events we use the region
where all these (and only these) events are mapped to (b, 0) and s is mapped
to b.

So far, the presented regions justify Bb
ϕ’s b-ESSP. It remains to justify its

b-SSP: One verifies that all distinct states s, s′ ∈ Ci are separated by the
already presented regions. If e ∈ {ui

j , v
i
j , b

i
j , d

i
j , w

i
j , y

i
j | i ∈ {0, . . . , m − 1}, j ∈

{1, . . . , 2m − 5}} and s e then s is separated by the region defined for the sep-
aration of e. Moreover, so far, if e ∈ {ui

j , v
i
j , b

i
j , d

i
j , w

i
j , y

i
j | i ∈ {0, . . . , m− 1}, j ∈

{m, . . . , 2m + 6}} then |eR•| = 1. Hence, we choose for every i ∈ {0, . . . , m − 1}
the region RCi

= (supCi
, sigCi

) where supCi
(s) = 0, sigCi

(e) = (0, b) if
e ∈ {ui

j , v
i
j , b

i
j , d

i
j , w

i
j , y

i
j | j = 2m + 5 − i}} and, otherwise, sigCi

(e) = (0, 0).
Clearly, RCi

separates the remaining states in question from S(Bb
ϕ) \ Ci. More-

over, the regions RC0 , . . . , RCm−1 preserve the (2, 2)-S-system property.
Altogether, the union of all introduced regions yields a b-admissible set R of

pure regions that has the (2, 2)-S-system property.

3.3 The Proof of Theorem1.4

By Lemma 1, a b-net N , being a weighted (m,n)-T-system, solves A if and only if
there is a b-admissible set R with N = NR

A . By definition, every R = (sup, sig) ∈
R satisfies |•R| = |{e ∈ E(A) | sig+(e) > 0}| ≤ m and |R•| = |{e ∈ E(A) |
sig−(e) > 0}| ≤ n. The maximum set R of A′s b-regions that satisfy the (m,n)-
condition is computable in polynomial time: To define R = (sup, sig) ∈ R we
have for � ∈ {1, . . . , m} and �′ ∈ {1, . . . , n} at most

(|E|
�

)
and

(|E|
�′

)
events for •R

and R•, respectively. This makes at most
(|E|

�

) · (|E|
�′

) · (b + 1)�+�′
possibilities for

sig, each of it is to combine with the at most b+1 values for sup(s0). As b,m and
n are not part of the input, altogether, there are at most O(|E|m+n) b-regions.
Moreover, one can decide in polynomial time if sup(s0) and sig define actually
a fitting b-region as follows: Firstly, compute a spanning tree A′ of A, having at
most |S(A)| paths, in time O(|E(A)|·|S(A)|3) [16]. Secondly, use sup(s0) and sig

to determine sup(sj) for all sj ∈ S(A) by the unique path s0
e1 . . . ej sj ∈ A′.

Thirdly, check for the at most |S|2 ·|E| edges s e s′ ∈ A if both sup(s) ≥ sig−(e)
and sup(s′) = sup(s) + sig−(e) + sig+(e) ≤ b are satisfied.

216 R. Tredup

Having computed the (maximum) set R, it remains to check (in polynomial
time) whether the at most |S|2 + |S| · |E| separation atoms of A are solved by
R.

4 Conclusion

This paper shows that deciding if a TS is solvable by a b-net which is CF, FA,
FC, EFC or AC remains NP-complete. Moreover, our proof imply that synthesis
is also hard if the searched net is to be behaviorally free choice, behaviorally
asymmetric choice or reducedly asymmetric choice [3]. Furthermore, we show
that synthesis of (m,n)-S-systems is NP-complete for every fixed m,n ≥ 2. While
synthesis of weighted (m,n)-T-systems, being dual to the S-systems, is also hard
if m,n are part of the input, it becomes tractable for any fixed m,n. In particular,
fixing m,n puts the problem into the complexity class XP. Consequently, for
future work, it remains to be investigated whether the synthesis of weighted
(m,n)-T-systems parameterized by m + n is fixed parameter tractable.

Acknowledgements. I would like to thank the reviewers for their helpful comments.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. An EATCS
Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

3. Best, E.: Structure theory of petri nets: the free choice hiatus. In: Brauer, W.,
Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 168–205.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 8

4. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph petri nets. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-
L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04921-2 13

5. Best, E., Devillers, R.R.: State space axioms for t-systems. Acta Inf. 52(2–3), 133–
152 (2014). https://doi.org/10.1007/s00236-015-0219-0

6. Best, E., Devillers, R.R.: Synthesis and reengineering of persistent systems. Acta
Inf. 52(1), 35–60 (2015). https://doi.org/10.1007/s00236-014-0209-7

7. Best, E., Devillers, R.R.: Synthesis of bounded choice-free petri nets. In: CONCUR.
LIPIcs, vol. 42, pp. 128–141. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.128

8. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor.
Comput. Sci. 147(1&2), 117–136 (1995). https://doi.org/10.1016/0304-
3975(94)00231-7

9. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph petri
nets. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877,
pp. 19–39. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4 2

https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-540-47919-2_8
https://doi.org/10.1007/978-3-319-04921-2_13
https://doi.org/10.1007/s00236-015-0219-0
https://doi.org/10.1007/s00236-014-0209-7
https://doi.org/10.4230/LIPIcs.CONCUR.2015.128
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1007/978-3-319-91268-4_2

Synthesis of Structurally Restricted b-bounded Petri Nets 217

10. Howell, R.R., Rosier, L.E.: Completeness results for conflict-free vector replacement
systems. J. Comput. Syst. Sci. 37(3), 349–366 (1988). https://doi.org/10.1016/
0022-0000(88)90013-X

11. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discret. Comput.
Geom. 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-001-0047-6

12. Schlachter, U.: Bounded petri net synthesis from modal transition systems is
undecidable. In: CONCUR. LIPIcs, vol. 59, pp. 15:1–15:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.
CONCUR.2016.15

13. Schlachter, U., Wimmel, H.: k-bounded petri net synthesis from modal transition
systems. In: CONCUR. LIPIcs, vol. 85, pp. 6:1–6:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.6

14. Teruel, E., Colom, J.M., Suárez, M.S.: Choice-free petri nets: a model for determin-
istic concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man
Cybern. Part A 27(1), 73–83 (1997). https://doi.org/10.1109/3468.553226

15. Tredup, R.: Hardness results for the synthesis of b-bounded petri nets. In: Donatelli,
S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 127–147. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 9

16. Turau, V.: Algorithmische Graphentheorie, (2. Aufl). Oldenbourg (2004)

https://doi.org/10.1016/0022-0000(88)90013-X
https://doi.org/10.1016/0022-0000(88)90013-X
https://doi.org/10.1007/s00454-001-0047-6
https://doi.org/10.4230/LIPIcs.CONCUR.2016.15
https://doi.org/10.4230/LIPIcs.CONCUR.2016.15
https://doi.org/10.4230/LIPIcs.CONCUR.2017.6
https://doi.org/10.1109/3468.553226
https://doi.org/10.1007/978-3-030-21571-2_9

Reachability of Five Gossip Protocols

Hans van Ditmarsch1 , Malvin Gattinger2 , Ioannis Kokkinis3(B) ,
and Louwe B. Kuijer4

1 CNRS, LORIA, University of Lorraine, Nancy, France
hans.van-ditmarsch@loria.fr

2 University of Groningen, Groningen, The Netherlands
malvin@w4eg.eu

3 TU Dortmund, Dortmund, Germany
ioannis.kokkinis@tu-dortmund.de

4 University of Liverpool, Liverpool, UK
l.b.kuijer@gmail.com

Abstract. Gossip protocols use point-to-point communication to spread
information within a network until every agent knows everything. Each
agent starts with her own piece of information (‘secret’) and in each call
two agents will exchange all secrets they currently know. Depending on
the protocol, this leads to different distributions of secrets among the
agents during its execution. We investigate which distributions of secrets
are reachable when using several distributed epistemic gossip protocols
from the literature. Surprisingly, a protocol may reach the distribution
where all agents know all secrets, but not all other distributions. The five
protocols we consider are called ANY, LNS, CO, TOK, and SPI. We find
that TOK and ANY reach the same distributions but all other protocols
reach different sets of distributions, with some inclusions. Additionally,
we show that all distributions are subreachable with all five protocols:
any distribution can be reached, if there are enough additional agents.

Keywords: Gossip · Networks · Reachability

1 Introduction

Let each of a set of agents {a, b, c, . . .} know a single secret {A,B,C, . . .}, respec-
tively. The agents can communicate via telephone calls. When they call, they
share all the secrets they know at the moment the call takes place. An agent
who knows all secrets is an expert. The goal is to turn all agents into experts. A
protocol to achieve this state of knowledge is called a gossip protocol [10,11].

Here we consider five gossip protocols of a distributed nature [1–4]:

ANY Any call is allowed, i.e., for every two agents a and b, a is allowed to call b.
CO Short for “call once”. An agent a may call b iff they have not spoken before,

i.e., if a has not called b before and b has not called a before.

c© Springer Nature Switzerland AG 2019
E. Filiot et al. (Eds.): RP 2019, LNCS 11674, pp. 218–231, 2019.
https://doi.org/10.1007/978-3-030-30806-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30806-3_17&domain=pdf
http://orcid.org/0000-0003-4526-8687
http://orcid.org/0000-0002-2498-5073
http://orcid.org/0000-0001-7521-0553
https://doi.org/10.1007/978-3-030-30806-3_17

Reachability of Five Gossip Protocols 219

LNS Short for “learn new secrets”. Agent a may call b iff a doesn’t yet know B.
During the execution of this protocol after every call at least one new secret
is learned, hence the protocol name.

TOK Short for “token”. Agent a may call b iff a has a token. The caller passes
her token to the callee.
Every agent starts with a token. After a call all tokens held by an agent merge
to one. In this protocol an agent who lost her token can get it back when she
receives a new call.
Equivalently, we can say that a may call b iff a has either not been involved
in any calls, or a was the callee in the last call a was involved in.

SPI Short for “spider”. Agent a may call b iff a has a token. The callee passes
her token to the caller.
Every agent starts with a token. After a call all tokens held by an agent
merge to one. In this protocol an agent who has been called loses her token
permanently and can never initiate a call again. This protocol tends to lead
to a small number of agents making many calls. When drawn as a graph, this
looks like a spider web with the agent making the calls at the centre, hence
the name “spider”.
Equivalently, we can say that a may call b iff a has never received any calls.

All protocols run in a sequential manner as follows: starting from the situation
where each agent only knows her own secret, each moment in time a single call
satisfying the protocol condition is selected and executed. The selection of calls
continues until all agents are experts. Here we investigate which distributions
of secrets may be reached during the protocol execution (under any sequence of
calls), hence we do not have to fix a specific algorithm for call selection.

Knowing which distribution can be reached by which protocol can help the
agents (or an external observer) understand which protocol is being used during
the exchange of information. Moreover, reachability can be of importance for
security or privacy reasons.

Let us illustrate the topic of reachability by an example with three agents.
We represent a distribution of secrets by listing the secrets known by each agent.
Given initial distribution (A,B,C), the call ab (the call from a to b) results in
(AB,AB,C). (Strictly, we go from ({A}, {B}, {C}) to ({A,B}, {A,B}, {C}).)
This is therefore ANY-reachable. After the call sequence ab; bc; ac, which is per-
mitted in ANY, LNS, and CO, all three agents are experts. But already for three
agents there is a difference between the five protocols. The sequence ab; bc; ca is
CO-permitted but not LNS-permitted: as c already knows A, the call ca is not
allowed in LNS. The sequence ab; bc; ab is not CO-permitted (repeating ab is not
allowed); and clearly if a call is not CO-permitted it is also not LNS-permitted.
Call sequence ab; ba; ab is TOK-permitted but not SPI-permitted, whereas call
sequence ab; ab is SPI-permitted but not TOK-permitted.

We assume that communication between all agents is possible, i.e., a complete
network topology. Unreachability results in this setting are very strong: if one
of the five protocols cannot reach a distribution s assuming a complete network
topology, then this protocol also cannot reach s assuming any other topology. It

220 H. van Ditmarsch et al.

is not difficult to see that already for two agents, unreachable distributions can
occur: the distribution (AB,A) cannot be reached by any of the five protocols.

We also study a less restrictive notion called subreachability. Given
agents a, b, c, if b calls c, and then c calls a, the resulting distribution is
(ABC,BC,ABC). The restriction of that distribution to the agents a and b
only is (AB,B). We say that distribution (AB,B), although not reachable, is
subreachable. Knowing the knowledge situations that can be subreached by a
protocol is particularly interesting when the number of agents is not common
knowledge among the agents, or when the agents have limited reasoning power
and cannot reason like “there are two agents beside me and a call has taken place,
so these agents now know each other’s secrets”. In such a situation the agents
should not only consider the reachable but also the subreachable distributions
possible.

We further investigate reachability under unordered distributions (“given n
agents and n subsets of the set of all secrets, is there a bijection between these
sets of agents and subsets?”). Unordered distributions should be taken into con-
sideration by an observer who is uncertain about which agent holds which sets
of secrets in a distribution.

Our Contributions. For up to three agents all five protocols can reach the same
distributions. Thus, with at most three agents present, an observer cannot tell
which protocol is currently used, by simply observing the distributions of secrets.
But with four or more agents there is a difference in the reachability strength.
In Fig. 1 we give a complete overview of each protocol’s reachability strength.
Figure 1 (together with the relevant theorems) can serve as guide for an (internal
or external observer) that wants to know which protocol the agents are using for
information exchange. For example, if the observer finds out that the distribution
of secrets (ABCD,ABCD,ABC,ABD) has appeared, then she can be certain
that agents are not using the CO-protocol since this distribution is not CO-
reachable (see Theorem 3).

LNS CO

TOK

SPI

ANY ALL

�
Thm. 4

�

Cor. 1

�

Co
r.
1

=
Thm. 2

�
Thm. 1

Fig. 1. Overview of results, in which a protocol’s name stands for the set of distribu-
tions reachable by it and ALL stands for the set of all distributions. Besides transitivity
no other inclusions hold, i.e., SPI and CO properly intersect (see Theorem 3 and Corol-
lary 1), and so do SPI and LNS (see Theorems 4 and 5).

In Theorem 6 we show that all distributions are subreachable by all five pro-
tocols. As we mentioned before this has the consequence that an observer cannot

Reachability of Five Gossip Protocols 221

infer which of the five protocols is being used if, for example, she does not know
how many agents there are, since every distribution of secrets can possibly occur
among a subset of the agents using any of the five protocols. Finally in Theorem7
we show that SPI, ANY and TOK reach the same set of unordered distributions.
The consequence of the latter theorem is that the observer cannot distinguish
between the protocols SPI, ANY and TOK if she is uncertain about which agent
holds which set of secrets in a given distribution.

Related Work. The combinatorial properties of gossip protocols have been inves-
tigated several times in the literature. In [1] the focus is on distributed gossip,
including information change in one direction only, and termination. The exten-
sion (permitted call sequences of the protocols) and the characterization of the
classes of graphs where the (dynamic versions) of our protocols terminate were
investigated in [5], where their main result is for LNS (in [9] the same question
was answered for the (static) protocol CO). In [2,3] the focus is on the logical
dynamics of call exchange. In [6,7] the gossip protocols were treated as random
processes and it was shown that TOK and SPI have the same expectation. As
simulations (some of which where theoretically corroborated) in [6,7] indicate,
the expected duration of all protocols considered here is of the order n log n,
the ‘usual’ suspect in the gossiping community, but the constant factor may be
different.

Organization of the Paper. In Sect. 2 we present all the definitions and relevant
notions that are necessary for understanding our results. In Sect. 3 we present
our main result which is the comparison of the reachability strength of the 5
protocols. In Sect. 4 we study the subreachability strength of our protocols and
their reachability strength in unordered distributions. Finally in Sect. 5 we give
directions for further work, mainly on parallel calls.

2 Terminology for Gossip Protocols and Reachability

In this section we give formal definitions for the notions of secret
(sub)distributions and (sub)reachability. We always assume a complete network
topology. A set of agents is represented by A. We use the lower-case letters
a, b, c, d, . . . for agents. At the start of any gossip protocol each agent has a
unique secret. We denote the secrets by the corresponding upper-case letters
A,B,C,D, . . . and there are no other secrets.

Definition 1 (Distribution of Secrets). An n-distribution of secrets for a
set of agents A = {a1, . . . , an} is an ordered n-tuple (Sa1 , . . . , San

) where each
Sai

is a subset of the set of all secrets {A1, . . . , An}. In the initial distribution
every agent knows only her own secret, i.e. Sai

= {Ai} for all ai. An agent ai

is an expert iff she knows all secrets, i.e. iff Sai
= {A1, . . . , An}. In the final

distribution every agent is an expert.

In general, a distribution (Sa1 , . . . , San
) represents the situation in which

each agent ai knows exactly the secrets in Sai
. We drop the references to A, n

222 H. van Ditmarsch et al.

and secrets if this causes no confusion. We write (ABC,AB,ABC) instead of
({A,B,C}, {A,B}, {A,B,C}). We use the letters s, t (possibly primed or with
subscripts) to represent a distribution. Finally, we observe that a distribution of
secrets implicitly assumes an ordering on the agents.

Definition 2 (Call). A call is an ordered pair (a, b), where a �= b for some
agents a, b. We write ab instead of (a, b). A call sequence is a (possibly empty)
finite or infinite sequence of calls. We write ab; cd; . . . for a call sequence. If ab
occurs in a call sequence σ, we also write ab ∈ σ, slightly abusing language. By
(ab) we mean the call ab or the call ba. Let s = (Sa1 , . . . , San

) be a distribution
and consider (aiaj) for some i < j. We apply any of the two calls aiaj and ajai

to (Sa1 , . . . , San
) as follows and obtain the new distribution

saiaj := sajai :=
(Sa1 , . . . , Sai−1 , Sai

∪ Saj
, Sai+1 , . . . , Saj−1 , Sai

∪ Saj
, Saj+1 , . . . , San

) .

We apply a finite call sequence σ to a distribution s as follows:

sσ :=

{
s, if σ = ε

(sab)τ
, if σ = ab; τ .

For example, we have (A,B,C)ab;bc = (AB,AB,C)bc = (AB,ABC,ABC).
A call sequence σ is P-permitted if the restrictions of P allow every call in σ

to be executed in the order given in σ. A P-permitted call sequence will also be
called P-call sequence. A call sequence σ is called successful if the application of
σ to an initial distribution leads to the final distribution where all agents know
all secrets. If the applications of either σ or τ to the initial distribution lead to
the same distribution we write σ ≈ τ .

Definition 3 (Reachability). A distribution s is P-reachable if s can be
obtained by applying a P-permitted call sequence on the initial distribution.

The ANY-permitted calls are also called the possible calls and an ANY-
reachable distribution is also called a possible distribution.

From a given n-distribution we can derive the set of possible calls that could
have contributed to reaching that distribution, including an order on their exe-
cution. It is defined as follows.

Definition 4. Let s be a distribution. The set of potential calls for s is PC(s) :=
{ab | A ∈ Sb and B ∈ Sa, for some agents a, b}. The order <s on PC(s) is
defined as follows. For any ab, cd ∈ PC(s):

ab < cd if a = c and D �∈ Sb, or
b = c and D �∈ Sa, or
a = d and C �∈ Sb, or
b = d and C �∈ Sa.

The pair (PC(s), <s) is called the set of potential call sequences (for s).

Reachability of Five Gossip Protocols 223

A call sequence σ consisting of calls from PC(s) respects the order <s if, for
every ab <s cd, no occurrence of (ab) in σ is after any occurrence of (cd) in σ.

Let (ab) <s (cd) denote: ab <s cd, ba <s cd, ab <s dc, and ba <s dc. Now
let σ and τ be call sequences. By σ <s τ we mean that for every xy ∈ σ and
every zw ∈ τ if xy is related to zw then xy <s zw; and that no pair of calls in
σ are comparable and that the same holds for τ . We may additionally employ
(σ) <s (τ) meaning that for every xy ∈ σ and every zw ∈ τ , if xy and zw are
comparable then (xy) <s (zw).

The proof of the next proposition is obvious.

Proposition 1. Each distribution s uniquely determines a pair (PC(s), <s).
Distribution s can only be obtained by a call sequence in which only calls in
PC(s) occur, and that respects the order <s.

We note (i) that a pair (PC(s), <s) does not uniquely determine a given
distribution s, (ii) that calls may occur more than once (for example, in both
directions, and as long as the order <s is respected), and (iii) that not all
calls in PC(s) need occur in a sequence reaching s. The proof of Theorems 5
demonstrates (i) and (iii). Concerning (ii), note that any call ab can be followed
by (if the protocol so permits) the dual call ba as long as neither a nor b have
been involved in other calls, without the second call ba affecting the distribution
at that time.

Example 1. Consider the 4-distribution s = (ABCD,ABCD,ABCD,ABCD).
We have PC(s) = {ab, ac, ad, bc, bd, cd, ba, ca, da, cb, db, dc} and <s = ∅. Two
different call sequences reaching s are ab; cd; ac; bd and ac; bd; ab; cd. There are
also call sequences that respect <s and do not reach s (e.g. ab; ac; bd; cd).

As a second example, consider the 3-distribution t = (AB,ABC,BC). Then
PC(t) = {ab, bc, ba, cb} and (ab) <t (bc) and (bc) <t (ab). No call sequence
respecting <t reaches t. Indeed, t is not ANY-reachable.

Finally we present the notion of subreachability that uses that of the restric-
tion of a distribution.

Definition 5. Suppose we have A′ ⊆ A with m = |A′| and n = |A|. The
A′-restriction of an n-distribution (Sa1 , . . . , San

) for A is the m-distribution
(Sa′

1
, . . . , Sa′

m
) such that for all a′

j ∈ A′, if ai = a′
j then Sa′

j
= {Ak ∈ Sai

| ak ∈
A′}.
Definition 6 (Subreachability). A distribution s for a set of agents A′ is P-
subreachable if there is a distribution t for an extended set of agents A ⊇ A′

such that t is P-reachable and s is the A′-restriction of t.

Note that P-reachable implies P-subreachable, namely when A′ = A above.

224 H. van Ditmarsch et al.

3 Reachability

In this section we provide an answer to the question: “are all P1-reachable dis-
tributions also P2-reachable?” for any P1 and P2 from the five protocols. It is
interesting that although all five protocols can reach the final distribution on
complete graphs [5], their reachability strength on intermediate distributions
varies.

Theorem 1.

1. There is a distribution that is not reachable by any of the five protocols.
2. Every CO-, LNS-, SPI- and TOK-distribution is ANY-reachable.
3. Every LNS-reachable distribution is CO-reachable.

Proof. This follows from the protocol definitions and because (AB,A) is not
reachable by any of the protocols.

Our next, rather unexpected, result is that, although TOK has a stricter calling
condition than ANY, these two protocols reach the same set of distributions.
Recall that TOK can be thought of as demanding that, in order to make a call,
an agent has to possess a token. Every agent starts out with a token, and in a
call ab the token of a is given to b. In the following lemma we use the fact that
a call ab can be followed by a call ba in which the token is returned to a.

Lemma 1 (Token Density Lemma). Let s be a TOK-reachable distribution
and let a, b be two agents. Then s can be reached by a TOK-call sequence σ such
that after the execution of σ at least one of a and b have a token.

Proof. The Lemma follows easily from the following more general claim.

Claim. Let σ be any TOK sequence, let k ∈ N, I = {1, . . . , k} and let f, g : I → A
be injections such that f(I) ∩ g(I) = ∅ for some set of agents A. Then there is
a TOK sequence σ′ such that (i) σ ≈ σ′ and (ii) for every 1 ≤ i ≤ k at least one
of f(i) and g(i) has a token after σ′.

Proof (of the Claim and the Lemma). By induction on the length of σ. If σ is
of length 1 the claim is trivial. Assume then as induction hypothesis that the
claim holds for all sequences shorter than σ. Now, let σ = τ ; ab. We distinguish
whether the agents of the final call in σ are in the images of f and g.

– Suppose a, b �∈ f(I) ∪ g(I). Then let f ′, g′ : I ∪ {k + 1} → A be extensions of
f and g with f ′(k + 1) = a, g′(k + 1) = b. By the induction hypothesis, there
is τ ′ such that τ ≈ τ ′ and for every 1 ≤ i ≤ k + 1 either f(i) or g(i) has a
token after τ ′. Then τ ′; (ab) ≈ σ and for every 1 ≤ i ≤ k, either f(i) or g(i)
has a token after τ ′; (ab).

– Suppose a ∈ f(I) ∪ g(I) and b �∈ f(I) ∪ g(I). Without loss of generality,
suppose that f(1) = a. Now, let f ′, g′ be as f, g except g′(1) = b. By the
induction hypothesis, there is a τ ′ such that τ ≈ τ ′ and either f ′(i) or g′(i)

Reachability of Five Gossip Protocols 225

ends up with a token. In particular, either a or b has a token after τ ′. If a
has the token, let σ′ = τ ′; ab; ba, otherwise let σ′ = τ ′; ba. In either case, (i)
σ′ ≈ σ, (ii) for i > 1 either f(i) or g(i) has a token because they had it after
τ ′ and (iii) a has a token so either f(1) or g(1) has a token.

– Suppose a = f(i) and b = g(i). By the induction hypothesis τ ′ exists, and
σ′ = τ ′; (ab) suffices.

– Suppose a = f(i) and b ∈ f(I) ∪ g(I) \ g(i). Without loss of generality,
b = f(j). Let f ′, g′ be as f, g except g′(i) = b and f ′(j) = g(i). Let τ ′ be such
that τ ≈ τ ′ and for every l either f ′(l) or g′(l) ends up with a token. Since
f ′(i) = a and g′(i) = b, the sequence τ ′; (ab) is TOK. Note furthermore that
f ′(j) = g(i) and g′(j) = g(j), so one of the pairs (a, g(i)) and (f(j), b) has
at least one token. By inverting the (ab) call if necessary, we can ensure that
the other pair keeps the token of the (ab) call. As such, either τ ′; (ab); (ba) or
τ ′; (ab) satisfies the conditions of the claim. �

Theorem 2. Every ANY-reachable distribution is TOK-reachable.

Proof. We will show that for every ANY sequence σ there is a TOK sequence
σ′ such that σ ≈ σ′. The proof proceeds by induction on the length of the call
sequence σ and by repeatedly applying Lemma1.

If σ is of length 1, then σ is a TOK sequence. Assume then as induction
hypothesis that the theorem holds for all sequences shorter than σ, and let
σ = τ ; ab. By the induction hypothesis, there is a TOK sequence τ ′ such that
τ ≈ τ ′. Because τ ′ is a TOK sequence it follows from Lemma 1 that there is a
TOK sequence τ ′′ such that (i) τ ′ ≈ τ ′′ and (ii) either a or b has a token after
τ ′′. It follows that σ′ = τ ′′; (ab) is a TOK sequence, and σ ≈ σ′. �

We continue to compare the sets of distributions reachable by all other pro-
tocols. Theorems 3 and 4 are generalized versions of [6, Theorems 3 and 4].

Theorem 3. There is a SPI-reachable distribution that is not CO-reachable.

Proof. Consider the 4-distribution t = (ABCD,ABCD,ABC,ABD). We show
that in order to reach t one has to choose the same call twice.

– The initial 4-distribution is (A,B,C,D).
– Since c and d must not learn each others secret, the first call cannot be cd.

Furthermore, if the first call is ac then, when d learns a’s secret, she will also
learn c’s secret. With similar arguments we can show that the first call cannot
be ad, bc or bd. Thus in order to reach t we have to select ab which leads to
(AB,AB,C,D).

– Now, d has to learn A and B. So, without loss of generality the next call is
ad which leads to (ABD,AB,C,ABD).

– Now, c has to learn A and B. The only way of achieving this is by selecting
cb which leads to (ABD,ABC,ABC,ABD).

– Until now we have made the CO-permitted call sequence: ab; ad; bc. The only
way of reaching t is by selecting call ab again, which is a violation of CO.

226 H. van Ditmarsch et al.

The call sequence that reached t is: σ = ab; ad; cb; ab. No agent who has been
called initiates a call, hence σ is SPI-permitted. �

Theorem 4. There is a CO- and SPI-reachable distribution that is not LNS-
reachable.

Proof. Consider the 6-distribution:

t = (ABCDEF,ABC,ABCDE,ABCDEF,DEF,ABDEF) .

We will show that we can reach t without violating CO or SPI, but at the price
of having to make a call between agents that already know each other’s secrets.

– The initial 6-distribution is (A,B,C,D,E, F).
– Agent b has to learn A and C and nothing else and e has to learn d and

f and nothing else. So, without loss of generality, the first four calls can be
ab; cb; ed; ef , which are clearly both SPI-and CO-permitted and lead to

(AB,ABC,ABC,DE,DEF,DEF) .

– Now c has to learn everything but F . The only way of achieving this is by
selecting the call cd. Similarly in order for f to learn everything but c we need
to select call af . So, until now we have made the LNS- and SPI-permitted call
sequence ab; cb; ed; ef ; cd; af which leads to

(ABDEF,ABC,ABCDE,ABCDE,DEF,ABDEF) .

– Only the CO- and SPI-permitted call ad will now lead to t. But ad is not
LNS-permitted. �

Theorem 5. There is an LNS-reachable distribution that is not SPI-reachable.

Proof. We will show that there is a 16-distribution reachable by LNS but not by
SPI. Recall that (ab) represents a call between a and b, which can be instantiated
as either ab or ba. Consider the following call sequence σ := σ1;σ2;σ3, where

σ1 = (12); (34); (56); (78); (ab); (cd); (ef); (gh)
σ2 = (23); (45); (67); (81); (bc); (de); (fg); (ha)
σ3 = (1a); (4c); (7h); (6f).

This sequence has three phases σ1, σ2, σ3, as shown on different lines. We can
represent this sequence visually as in Fig. 2, where the solid lines are calls that
happen in σ1, dashed lines happen in σ2, and dotted lines in σ3.

We will show that σ is not SPI-permitted (nor any of its order variants).
Suppose towards a contradiction that it is.

In the first stage, the callee member of each pair loses its token. In the second
stage, every agent is involved in one more call. If agent 1 still has a token, then
2 does not. So 3 must have a token, otherwise (23) could not take place. But
then 4 does not have a token, so 5 must have it, and so on. It follows that in

Reachability of Five Gossip Protocols 227

a b c d

efgh

1 2 3 4

5678

Fig. 2. The call sequence σ = σ1; σ2; σ3.

both blocks, either all even agents have lost their token or all odd agents have
lost their token (where a, c, e, g are “odd” and b, d, f, h are “even”).

Now, consider the third stage. Here, calls (1a), (4c), (7h) and (6f) are sup-
posed to happen. Note that these include every combination of even/odd from
both groups: odd number and odd letter (1a), even number and odd letter (4c),
odd number and even letter (7h), and even number and even letter (6f). So at
least one of these calls is between two agents that do not have their token any
more. It follows that the sequence σ is not SPI-permitted.

We still need to show that there is no sequence of other calls that is SPI-
permitted and reaches the same distribution of secrets. However, this is fairly
straightforward. The distribution s produced by the sequence σ is as follows (let
the secret by agent named i ∈ N be also i):

1 : 1278ABGH
2 : 1234
3 : 1234
4 : 3456ABCD

5 : 3456
6 : 5678EFGH
7 : 5678ABGH
8 : 1278

a : 1278ABGH
b : ABCD
c : 3456ABCD
d : CDEF

e : CDEF
f : 5678EFGH
g : EFGH
h : 5678ABGH

Given this s, we now compute the set of potential call sequences (PC(s), <s). It
is easy to show that the set PC(s) consists of all calls in σ plus (7a) and (6h).

Our first observation is that since A �∈ S6 and 6 �∈ Sa it holds that (67) <s

(7a) and that (7a) <s (67). Thus (67) and (7a) cannot exist in the same call
sequence leading to s. It is not difficult to see that (67) is necessary in order
to produce s since give the order constraints there is no other way for 6 and 7
to exchange their secrets. Hence, (7a) cannot be used to a call sequence leading
to s. In a similar fashion we obtain that (ha) <s (6h) and that (6h) <s (ha)
and since (ha) is again necessary we conclude that (6h) cannot be used to a call
sequence leading to s.

Additional we observe that (σ1) <s (σ2) and that (σ2) <s (σ3). Therefore,
except for the order of calls within σ1, σ2, and σ3, and the call directions, only
σ leads to s. Finally, one can easily verify that σ is also LNS-permitted. �

228 H. van Ditmarsch et al.

Theorems 1, 3 and 5 lead to the following corollary. Together with some
already discussed inclusions this completes the comparison of the reachability
strength between the five protocols (see also Fig. 1).

Corollary 1.

1. There is a TOK-reachable distribution that is not CO-reachable.
2. There is a TOK-reachable distribution that is not SPI-reachable.
3. There is a CO-reachable distribution that is not SPI-reachable.

We presented several examples of distributions that are reachable by some of
the protocols and unreachable by others. A natural question to ask is “are these
distributions optimal counter-examples?”, i.e., “did we use the smallest possible
number of agents?”. We implemented an algorithm that counts the reachable
distributions for all five protocols modulo isomorphism (i.e., modulo renaming
the agents) [13]. The results of this implementation can be found in Table 1.

Given the inclusions of Theorem 1, Table 1 tells us that all protocols reach the
same set of distributions for up to 3 agents. This implies that the 4 distribution
in Theorem 3 is optimal. We also see that LNS and CO reach the same set of
distributions for up to 5 agents, which implies that the 6-distribution in Theo-
rem 4 is optimal. We do not know whether the non-SPI reachable 16-distribution
in the proof of Theorem 5 is optimal (due to a huge combinatorial explosion the
implementation in [13] can only count distributions up to at most 7 agents).

Table 1. Number of non-isomorphic reachable distributions for up to 5 agents. For
LNS and ANY these numbers are also in the On-Line Encyclopedia of Integer Sequences
(OEIS) as https://oeis.org/A307085 and https://oeis.org/A318154, respectively.

n LNS CO SPI TOK = ANY

2 2 2 2 2

3 4 4 4 4

4 15 15 16 16

5 97 97 111 111

4 Subreachability, Unorderded Distributions

Subreachability in Ordered Distributions. While there are distributions that are
not even ANY-reachable, all possible distributions are subreachable by any of the
five protocols we consider. In [8] this was shown for a more general setting using
incomplete network topologies that change dynamically when agents exchange
‘phone numbers’, but only for the protocol ANY.

Theorem 6. All distributions are ANY-, CO-, LNS-, SPI-, TOK-subreachable.

https://oeis.org/A307085
https://oeis.org/A318154

Reachability of Five Gossip Protocols 229

Proof. We adapt the proof of [8, Section 6.2]. Given a distribution s for agents
A, let the number of secrets known by the agents in s be defined as sec(s) =
Σa∈A|Sa|, where Sa is the set of secrets known by a in s.

For any protocol P and for any distribution s, we prove by induction on
m = sec(s) that s is P-subreachable. In the base case m = 1 the distribution must
have shape (A) for a single agent a. This distribution is clearly (sub)reachable
by all protocols and the empty call sequence.

Assuming that the result holds for m secrets we will show that it holds for
m + 1 secrets. We need to distinguish two subcases: either there is an agent a
who knows a single secret (i.e., an agent who has not made any call yet), or not.

In the first subcase, as Σb∈A\{a}|Sb| = m, by induction hypothesis there is
a call sequence σ such that the (A \ {a})-restriction of s is P-subreachable by
σ from the initial distribution for the set of agents A \ {a}. Clearly, s is then
P-subreachable by the same call sequence σ from the initial distribution for the
set of agents A, as agent a has not been involved in any call. This holds for all
five protocols ANY,CO, LNS,SPI,TOK.

In the second subcase, there must be an agent a who knows at least one other
secret B than its own secret A. As |Sa \ {B}| + Σb∈A,b �=a|Sb| = m, by induction
there is a call sequence σ such that s′ is P-subreachable by σ, where s′ is as s
(and defined for the same set of agents) except that S′

a = Sa \ {B}.
First, assume that P is one of ANY, CO, or LNS. Let c �∈ A. The role of agent

c will be to inform a of B and nothing else. Let s′′ be the distribution reached by
executing bc;σ; ca in the initial distribution for agents A∪{c}. Observe that s is
the restriction to A of s′′. Also, call bc is ANY-, CO-, and LNS-permitted, as it
is the first call. The last call ca is obviously ANY-permitted. It is CO-permitted
because prefix bc;σ does not contain a call between c and a. It is also LNS
permitted, since c did not learn a in the first call and was not involved in σ.
Therefore bc;σ; ca is an ANY- CO- and LNS-permitted call sequence reaching s.

Now let P = SPI. Let in this case c, d �∈ A, and consider call sequence
bc; dc;σ; da for set of agents A ∪ {c, d}, resulting in distribution s′′. In first call
bc, b keeps its token, as in the initial distribution for A, but c loses its token
(so c can no longer inform a of B at the end, as in the previous case). In the
second call dc, d keeps it token and learns B from c. Therefore, in the last call
da, d can inform a of B, as desired. Also note that s is the restriction to A of
s′′. Therefore bc; dc;σ; da is a SPI-permitted call sequence reaching s.

Finally, let P = TOK. This subcase is fairly similar to the subcase SPI. Again,
as for SPI, let c, d �∈ A. However, now consider call sequence cb; dc;σ; ca. In the
first call c hands its token to b. So b can still engage in σ as before. In the second
call dc agent d hands back a token to agent c. Therefore, the final call ca (instead
of da, for SPI) is TOK-permitted resulting in c again informing a of B. Therefore
cb; dc;σ; ca is a TOK-permitted call sequence reaching s. �

Reachability in Unordered Distributions. To illustrate the difference between
reachability in unordered and ordered distributions, let us consider the fol-
lowing example. In Theorem 3 we have shown that the ordered distribution
(ABCD,ABCD,ABC,ABD) is not CO-reachable. However, this holds only if

230 H. van Ditmarsch et al.

we understand it as an ordered distribution. It is not difficult to see that the
unordered distribution {ABCD,ABCD,ABC,ABD} is CO-reachable by the
call sequence ab; ac; bd; cd.

Theorem 7. The protocols ANY, TOK and SPI reach the same unordered dis-
tributions.

Proof. The fact that ANY and TOK reach the same set of ordered distribu-
tions (Theorem 2) implies that they also reach the same set of unordered ones.
To show that TOK and SPI also reach the same set of unordered distribu-
tions we proceed as follows: assume that we have the unordered distribution
{Sa1 , . . . , Sai

, Saj
, . . . San

} wherein (at least) the agent knowing Sai
possesses a

token. Both the TOK and the SPI-call between agents knowing Sai
and Saj

will
lead to {Sa1 , . . . , Sai

∪ Saj
, Sai

∪ Saj
, . . . San

} where exactly one of the agents
that know Sai

∪ Saj
possesses a token. These two unordered distributions are

the same, which proves the theorem. �

5 Further Research: Parallel Gossip

We very succinctly describe some results for the setting wherein agents may
make calls in parallel. Instead of sequences of individual calls, one now considers
sequences of rounds of calls, where a round of calls consists of a set of calls
made in parallel. Different semantics for parallel calls include the ‘classical’ 1970s
setting of gossip [12] wherein calls made in parallel must be mutually disjoint, and
the ‘modern’ 1990s setting of gossip [11] wherein agents, instead, may receive
multiple calls. The latter leads to novel reachable distributions, for example,
(AB,ABC,BC) is reachable by the simultaneous calls ab, ba, cb, wherein agent
b simultaneously receives A from a and C from c. Let us call such a distribution
parallel reachable, where the notion used so far is sequential reachable.

Although (ABCD,ABCD,ABC,ABD) is not sequential CO-reachable (see
Theorem 3), it is parallel CO-reachable by the sequence {ad, bc, ca, db}; {ab} in
two rounds. Similarly, (ABCDEF,ABC,ABCDE,ABCDEF,DEF,ABDEF)
is not sequential LNS-reachable (Theorem 4), but it is parallel LNS-reachable by
the sequence {ab, cb, de, fe}; {ca, dc, fd, af}; {da} in three rounds. Hence reach-
ability in parallel gossip is very different and should be further investigated.

As we mentioned in the introduction the main motivation for studying reach-
ability issues in gossip protocols is to provide an observer with some tools for
understanding which protocol is currently being used by the agents. Some further
research in this setting could also involve determining the reasoning power that
such an observer should have or studying the design of a procedure/determining
the resources needed for constructing such observers.

Beyond parallel calls and the observer construction, while in this paper we
restricted our attention to only five protocols, our aim is to investigate reachabil-
ity for protocols that have epistemic conditions. Examples are “call if you know
that/consider it possible that an agent will learn a secret” and “don’t call if you
are an expert”. In general, our results should be received as part of a bigger
effort to compare the combinatorial properties of epistemic gossip protocols.

Reachability of Five Gossip Protocols 231

Acknowledgements. We would like to thank the anonymous reviewers for their help-
ful corrections and suggestions. Hans van Ditmarsch is also affiliated to IMSc, Chennai,
as associate researcher.

References

1. Apt, K., Grossi, D., van der Hoek, W.: Epistemic protocols for distributed gossip-
ing. In: Proceedings of 15th TARK (2015). https://doi.org/10.4204/EPTCS.215.
5

2. Attamah, M., van Ditmarsch, H., Grossi, D., van der Hoek, W.: Knowledge and
gossip. In: Proceedings of 21st ECAI, pp. 21–26. IOS Press (2014). https://doi.
org/10.3233/978-1-61499-419-0-21

3. Attamah, M., van Ditmarsch, H., Grossi, D., van der Hoek, W.: The pleasure of
gossip. In: Başkent, C., Moss, L.S., Ramanujam, R. (eds.) Rohit Parikh on Logic,
Language and Society. OCL, vol. 11, pp. 145–163. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-47843-2 9

4. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Epistemic protocols for dynamic gossip. J. Appl. Logic 20, 1–31 (2017). https://
doi.org/10.1016/j.jal.2016.12.001

5. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Dynamic gossip. Bull. Iran. Math. Soc. 45(3), 701–728 (2019). https://doi.org/10.
1007/s41980-018-0160-4

6. van Ditmarsch, H., Kokkinis, I., Stockmarr, A.: Reachability and expectation in
gossiping. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.)
PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 93–109. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69131-2 6

7. van Ditmarsch, H., Kokkinis, I.: The expected duration of sequential gossiping.
In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT 2017. LNCS (LNAI), vol.
10767, pp. 131–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01713-2 10

8. Gattinger, M.: New directions in model checking dynamic epistemic logic. Ph.D.
thesis, University of Amsterdam (2018). https://malv.in/phdthesis (ILLC Disser-
tation Series DS-2018-11)

9. Göbel, F., Cerdeira, J.O., Veldman, H.J.: Label-connected graphs and the gos-
sip problem. Discrete Math. 87(1), 29–40 (1991). https://doi.org/10.1016/0012-
365X(91)90068-D

10. Hedetniemi, S., Hedetniemi, S., Liestman, A.: A survey of gossiping and broadcast-
ing in communication networks. Networks 18, 319–349 (1988). https://doi.org/10.
1002/net.3230180406

11. Kermarrec, A.M., van Steen, M.: Gossiping in distributed systems. SIGOPS Oper.
Syst. Rev. 41(5), 2–7 (2007). https://doi.org/10.1145/1317379.1317381

12. Knödel, W.: New gossips and telephones. Discrete Math. 13, 95 (1975). https://
doi.org/10.1016/0012-365X(75)90090-4

13. Kokkinis, I.: Implementation for reachability and expectation in gossiping. https://
github.com/Jannis17/gossip protocol expectation

https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.3233/978-1-61499-419-0-21
https://doi.org/10.3233/978-1-61499-419-0-21
https://doi.org/10.1007/978-3-319-47843-2_9
https://doi.org/10.1007/978-3-319-47843-2_9
https://doi.org/10.1016/j.jal.2016.12.001
https://doi.org/10.1016/j.jal.2016.12.001
https://doi.org/10.1007/s41980-018-0160-4
https://doi.org/10.1007/s41980-018-0160-4
https://doi.org/10.1007/978-3-319-69131-2_6
https://doi.org/10.1007/978-3-030-01713-2_10
https://doi.org/10.1007/978-3-030-01713-2_10
https://malv.in/phdthesis
https://doi.org/10.1016/0012-365X(91)90068-D
https://doi.org/10.1016/0012-365X(91)90068-D
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1016/0012-365X(75)90090-4
https://doi.org/10.1016/0012-365X(75)90090-4
https://github.com/Jannis17/gossip_protocol_expectation
https://github.com/Jannis17/gossip_protocol_expectation

Author Index

Avni, Guy 1

Blažej, Václav 33
Brihaye, Thomas 48
Bruyère, Véronique 48, 63

Chonev, Ventsislav 79

Day, Joel D. 93
Delzanno, Giorgio 107
Dutta, Souradeep 22

Ehlers, Thorsten 93

Fatès, Nazim 121

Gattinger, Malvin 218
Goeminne, Aline 48

Hampson, Christopher 137
Henzinger, Thomas A. 1

Ibsen-Jensen, Rasmus 1

Köcher, Chris 149
Kokkinis, Ioannis 218
Křišt’an, Jan Matyáš 33
Kuijer, Louwe B. 218
Kulczynski, Mitja 93

Manea, Florin 93
Marcovici, Irène 121
Mover, Sergio 22

Novotný, Petr 1
Nowotka, Dirk 93

Pérez, Guillermo A. 63
Poulsen, Danny Bøgsted 93
Protasov, Vladimir Yu. 13

Raskin, Jean-François 63
Reynier, Pierre-Alain 164

Sandler, Andrei 178
Sankaranarayanan, Sriram 22
Schmitz, Sylvain 193
Servais, Frédéric 164

Taati, Siamak 121
Tamines, Clément 63
Thomasset, Nathan 48
Tredup, Ronny 202
Tveretina, Olga 178

Valla, Tomáš 33
van Ditmarsch, Hans 218

Zetzsche, Georg 193

	Preface
	Organization
	Abstracts of Invited Talks
	Bidding Games on Markov Decision Processes
	The Reachability Problem for Petri Nets is Not Elementary
	Primitivity and Synchronizing Automata: A Functional Analytic Approach
	Game Graphs for Reactive Synthesis
	Reaching Out Towards Fully Verified Autonomous Systems
	Contents
	Bidding Games on Markov Decision Processes
	1 Introduction
	2 Preliminaries
	3 Qualitative Bidding Games on MDPs
	4 Mean-Payoff Bidding Games on Strongly-Connected MDPs
	5 Discussion
	References

	Primitivity and Synchronizing Automata: A Functional Analytic Approach
	1 Introduction
	2 Contraction Operators and Reachability Theorems
	3 Contractive Families and Functional Equations
	4 m-primitivity and m-syncronising Automata
	References

	Reaching Out Towards Fully Verified Autonomous Systems
	1 Introduction
	2 Preliminaries: Neural Networks
	2.1 Neural Networks

	3 Verification of Neural Networks
	3.1 Abstract Interpretation for Neural Networks
	3.2 Training with Robustness
	3.3 Closed Loop Verification
	3.4 Falsification and Testing

	4 Challenges
	5 Conclusion
	References

	On the m-eternal Domination Number of Cactus Graphs
	1 Introduction
	2 The m-eternal Domination of Christmas Cactus Graphs
	3 Upper Bound on the m-eternal Domination Number of Cactus Graphs
	4 Linear-Time Algorithm
	5 Future Work
	References

	On Relevant Equilibria in Reachability Games
	1 Introduction
	2 Preliminaries and Studied Problems
	3 Existence Problems
	4 Solving Decision Problems
	4.1 -Consistent Play
	4.2 Characterizations
	4.3 Sufficiency of Lassoes
	4.4 Algorithms
	4.5 Results

	References

	Partial Solvers for Generalized Parity Games
	1 Introduction
	2 Preliminaries
	3 Zielonka's Algorithm with Partial Solvers
	4 Algorithms BüchiSolver and GenBüchiSolver
	5 Algorithms GoodEpSolver and GenGoodEpSolver
	6 Algorithms LaySolver and GenLaySolver
	7 Empirical Evaluation
	References

	Reachability in Augmented Interval Markov Chains
	1 Introduction
	2 Preliminaries
	3 Qualitative Case
	4 Quantitative Case: Upper Bound
	5 Quantitative Case: Lower Bound
	6 Approximate Case
	References

	On Solving Word Equations Using SAT
	1 Introduction
	2 Preliminaries
	3 Word Equation Solving
	3.1 Solving Bounded Word Equation
	3.2 Refining Bounds and Guiding the Search

	4 Experiments
	5 Conclusion
	References

	Parameterised Verification of Publish/Subscribe Networks with Exception Handling
	1 Introduction
	2 Formal Model of Pub/Sub Architectures
	2.1 Pub/Sub Networks

	3 Example: Specification of an IoT System
	4 The Coverability Decision Problem
	4.1 Decision Procedure for Coverability in Pub/Sub Networks

	5 Notification with Retained Messages
	6 Handling Exceptions During Notifications
	7 Conclusions
	References

	Cellular Automata for the Self-stabilisation of Colourings and Tilings
	1 Introduction
	2 Setting of the Problem
	3 The Case of 2-Colourings
	3.1 Directional Self-stabilisation by a Deterministic CA
	3.2 Isotropic Self-stabilisation by a Probabilistic CA
	3.3 Extension to Finite SFT

	4 The Case of k-Colourings, for k5
	4.1 Directional Self-stabilisation by a Deterministic CA
	4.2 Isotropic Self-stabilisation by a Probabilistic CA
	4.3 Extension to Single-Site Fillable Proximity Tilings

	5 The Case of 4-Colourings
	5.1 Directional Self-stabilisation by a Deterministic CA that Corrects by Blocks
	5.2 Isotropic Self-stabilisation by a Probabilistic CA
	5.3 Extension to -Fillable Proximity Tilings

	6 The Case of 3-Colourings
	6.1 Necessity to Correct Arbitrarily Far from the Locations of Errors
	6.2 Deterministic Self-stabilisation by a CA with Additional States

	7 Conclusion
	References

	On the Termination Problem for Counter Machines with Incrementing Errors
	1 Introduction
	2 Preliminaries
	3 Results
	4 Discussion
	References

	Reachability Problems on Partially Lossy Queue Automata
	1 Introduction
	2 Preliminaries
	2.1 Words and Languages
	2.2 Automata

	3 Queues and Queue Automata
	4 Behavioral Equivalence
	5 Read-Write Independence
	6 Partially Lossy Queues
	7 Conclusion
	References

	On the Computation of the Minimal Coverability Set of Petri Nets
	1 Introduction
	2 Preliminaries
	2.1 Markings, -markings and Labelled Trees
	2.2 Petri Nets
	2.3 Minimal Coverability Set of Petri Nets

	3 Presentation of the Monotone-Pruning Algorithm
	3.1 Acceleration(s)
	3.2 Definition of the Algorithm

	4 Structure of the Proof of Correction of MetapostAlgorithm
	4.1 Widened Petri Nets
	4.2 Structure of the Proof of Correction Presented in RS13

	5 Completeness of MetapostAlgorithm for WPN
	5.1 Coherence of an Acceleration
	5.2 New Proof

	6 Coherence of the Acceleration Accone
	7 Conclusion
	References

	Deciding Reachability for Piecewise Constant Derivative Systems on Orientable Manifolds
	1 Introduction
	2 Preliminaries
	2.1 Piecewise Constant Derivative Systems on a Plane
	2.2 Trajectories
	2.3 Reachability Problem

	3 Piecewise Constant Derivative Systems on Manifolds
	4 Dynamical Systems on the Closed Orientable Surfaces
	5 Language of PCDr2m
	6 Decidability of Reachability for PCDr2m
	6.1 Rauzy Graphs
	6.2 Deciding Reachability of PCDr2m

	7 Conclusions
	References

	Coverability Is Undecidable in One-Dimensional Pushdown Vector Addition Systems with Resets
	1 Introduction
	2 Pushdown Vector Addition Systems with Resets
	3 Reduction from Minsky Machines
	3.1 Preliminaries
	3.2 Construction

	4 Concluding Remarks
	A Proof of Proposition 2
	References

	Synthesis of Structurally Restricted b-bounded Petri Nets: Complexity Results
	1 Introduction
	2 Preliminaries
	3 Our Contribution
	3.1 The Reduction and the Proof of Condition 1.1 and Condition2.2
	3.2 The Proof of Condition1.2 and Condition2.2
	3.3 The Proof of Theorem1.4

	4 Conclusion
	References

	Reachability of Five Gossip Protocols
	1 Introduction
	2 Terminology for Gossip Protocols and Reachability
	3 Reachability
	4 Subreachability, Unorderded Distributions
	5 Further Research: Parallel Gossip
	References

	Author Index

