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Abstract. Treatment recommendations within Clinical Practice Guide-
lines (CPGs) are largely based on findings from clinical trials and case
studies, referred to here as research studies, that are often based on
highly selective clinical populations, referred to here as study cohorts.
When medical practitioners apply CPG recommendations, they need to
understand how well their patient population matches the characteristics
of those in the study cohort, and thus are confronted with the challenges
of locating the study cohort information and making an analytic com-
parison. To address these challenges, we develop an ontology-enabled
prototype system, which exposes the population descriptions in research
studies in a declarative manner, with the ultimate goal of allowing medi-
cal practitioners to better understand the applicability and generalizabil-
ity of treatment recommendations. We build a Study Cohort Ontology
(SCO) to encode the vocabulary of study population descriptions, that
are often reported in the first table in the published work, thus they are
often referred to as Table 1. We leverage the well-used Semanticscience
Integrated Ontology (SIO) for defining property associations between
classes. Further, we model the key components of Table 1s, i.e., collec-
tions of study subjects, subject characteristics, and statistical measures
in RDF knowledge graphs. We design scenarios for medical practitioners
to perform population analysis, and generate cohort similarity visualiza-
tions to determine the applicability of a study population to the clinical
population of interest. Our semantic approach to make study popula-
tions visible, by standardized representations of Table 1s, allows users to
quickly derive clinically relevant inferences about study populations.

Resource Website: https://tetherless-world.github.io/study-cohort-
ontology/.
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1 Introduction

Our goal is to build a semantic solution to model the descriptions of study pop-
ulations and to assist medical practitioners in determining the applicability of a
study to their clinical population. Through Fig. 1, we describe the components of
a prototype system, that utilizes knowledge representation (KR) techniques to
model tabular representations of study population descriptions, often captured
in the first table of the scientific publication. We build a Study Cohort Ontology
(SCO) (Sect. 4) to support the vocabulary in these Table 1s (plural form) and
to model their structure. Further, we encode Table 1s as Resource Description
Framework (RDF) knowledge graphs (KGs) [3] (Sect. 5) to expose in a declara-
tive manner1 these study populations. We demonstrate our ontology and the use
of our knowledge graphs with two applications (Sect. 6): one aimed at helping
medical practitioners determine the similarity of a patient or a clinical popu-
lation to the study population, and another aimed at supporting retrospective
analysis of a study to expose possible biases or population gaps, such as racial
underrepresentations.

Fig. 1. An overview of the cohort analytics workflow which (1) ingests terms from
population descriptions of research studies, (2) standardizes their representations via
KR techniques and (3) supports study applicability applications. The numbering is
in-line with the figure and is indicative of data flow.

1.1 Use Case

Evidence-based Medicine (EBM) has been gaining popularity, and medical prac-
titioners are using it more often. However, it is challenging to design the CPGs
1 Declarative manner: in a clear, unambiguous, and computer understandable manner.
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to stay current with the growing body of clinical literature. Additionally, medi-
cal literature is continuously being revised, e.g., typically, new versions of CPGs
are released annually. Treatment recommendations in CPGs are often supported
by evidence from cited research studies, i.e. clinical trials and observational case
studies, targeting highly selective populations with sociodemographic and comor-
bid characteristics. In clinical practice, it is well-known that there are biases in
clinical evidence that reduce their generalizability. The widely-cited research
article, “Trustworthy Clinical Practice Guidelines: Challenges and Potential,”
[8] states some of the problems in existing guideline practices, such as “Failure
to include major population subgroups in the evidence base thwarts our ability
to develop clinically relevant, valid guidelines.”

Furthermore, when medical practitioners are faced with the treatment of
complicated patients who do not wholly align with guideline recommendations,
they may want to consult research studies with relevant findings to determine if
the study applies to their clinical population. Hence, we are developing a seman-
tic solution to address these challenges, by providing medical practitioners access
to high-quality and applicable guideline evidence. We evaluate our solution on
the American Diabetes Association’s (ADA) Standards of Medical Care 2018
CPG2 cited research studies, which we will introduce in Sect. 3.

2 Related Work

Existing ontologies for study design and clinical trials are more focused on the
study design and methodology aspects of clinical trials, and their vocabulary
is insufficient to support cohort descriptions. ProvCaRe [22], an “Ontology for
provenance + healthcare research,” was developed to assess the scientific rigor
and reproducibility of scientific literature. Based on the NIH “Rigor and Repro-
ducibility” guidelines [13], this ontology identifies three components of a study
contributing to provenance: study methods (study protocol followed), study
instruments (equipment and software used in the study), and study data (meta-
data about data collection). However, within the ProvCaRe ontology, support for
study data is limited to that of inclusion and exclusion criteria, and there is no
support for Table 1 terminology, such as subject characteristics and study arms.
The Ontology of Clinical Research (OCRE) [20], a widely cited study design
ontology used to model the study lifecycle, addresses goals similar to our study
applicability scenario. They adopt an Eligibility Rule Grammar and Ontology
(ERGO) [21] annotation approach for modeling study eligibility criteria to enable
matching a study’s phenotype against patient data.

Since we encode a provenance component of guideline evidence, we searched
for ontologies for scientific publications. We found that most clinical trial ontolo-
gies, e.g., CTO-NDD [24], are domain specific and not directly reusable for a
population modeling scenario. Other ontologies, such as the EPOCH suite of
clinical trial ontologies [19], that was developed to track patients through their
2 ADA 2018 CPG at: https://diabetesed.net/wp-content/uploads/2017/12/2018-
ADA-Standards-of-Care.pdf.

https://diabetesed.net/wp-content/uploads/2017/12/2018-ADA-Standards-of-Care.pdf
https://diabetesed.net/wp-content/uploads/2017/12/2018-ADA-Standards-of-Care.pdf
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clinical trial visits, had class hierarchies that were insufficient to represent the
types of publications cited in the ADA Standards of Care CPG. Additionally,
there is another cohort ontology [11] being developed. However, our modeling of
the association of descriptive statistics with subject characteristics differs from
their modeling decision to define new properties to represent these associations.
Instead, we introduce classes to accommodate new subject characteristic terms
upon Table 1 ingestion, and we limit the number of descriptive statistics to a
standard set of central tendency measures and boundary values. Hence, we do
not leverage their ontology. Further, their ontology is domain specific, includ-
ing many sleep disorder classes. In SCO we provide a generalized and richer,
domain-agnostic Table 1 vocabulary (sufficient to support research studies tar-
geting various diseases).

Clinical trial matching has been attempted multiple times, largely as a Nat-
ural Language Processing problem, including a KR approach that improves
the quality of the cohort selection process for clinical trials [17]. Clinical trial
matching work [17] was carried out with the help of an ontology, and TBOX
(knowledge-based) assertions were created from SNOMED-CT for supporting
ABOX (real-world) assertions of patient records. However, the focus of their
effort was mainly on efficient KR of patient data, and study eligibility criteria
was formulated as SPARQL queries on the patient schema. We tackle the con-
verse problem of identifying studies that are applicable to a clinical population
based on the study populations reported. We address this problem from the
perspective of modeling the study populations.

3 Dataset

Our evaluation dataset is comprised of research studies, cited in the ADA Stan-
dards of Medical Care 2018 CPG. We manually reviewed the entire guideline
to understand the types of evidence utilized to support treatment recommenda-
tions. ADA treatment recommendations are supported through citations within
the discussion, which serve as implicit evidence for the recommendation. Fur-
ther, we used PubMed APIs3 on the Medline4 publications, cited in evidence
sentences across chapters of the ADA CPG, to retain only those publications
that met the qualifications for our definition of research studies. We only con-
sidered publications tagged with Pubmed Publication types5 of: Randomized
Controlled Trial, Clinical Trial, and Multicenter Study.

We focused on the pharmaceutical treatments and comorbidities associated
with type-2 diabetes, and we filtered our evaluation dataset to contain cited
research studies from the Pharmacologic Interventions (Chapter 8) [1] and the
Cardiovascular Complications (Chapter 9) [2] of the ADA 2018 CPG. We did a
thorough, manual investigation of research studies from these chapters, looking
3 https://pypi.org/project/pubmed-lookup/.
4 https://www.nlm.nih.gov/bsd/medline.html.
5 Find the list of all supported publication types at https://www.ncbi.nlm.nih.gov/
books/NBK3827/table/pubmedhelp.T.publication types/.

https://pypi.org/project/pubmed-lookup/
https://www.nlm.nih.gov/bsd/medline.html
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.publication_types/
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.publication_types/
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for any variance in Table 1s and identifying important study data that explained
Table 1 variables. Furthermore, although we were able to gather full-text links
for Medline citations through programmatic means, we had to manually follow
these links to ensure they are freely available, and, if not, we checked for the
availability of the study in other sources. Due to these challenges, we narrowed
down the number of research studies to 20 that we list on our resources website.

4 Study Cohort Ontology

As introduced in Sect. 1, we build a Study Cohort Ontology (SCO) to serve as a
vocabulary to model the components of a Table 1, the study arms (columns) and
their characteristics (rows). We also ensure that the implicit associations exhib-
ited between these components are reflected in SCO. We adopt a bottom-up
approach to modeling, that follows, as a by-product of our investigative efforts,
the description in Sect. 3. Further, we have attempted to keep our main SCO
ontology as domain-agnostic as possible to ensure easy reuse and longevity. In
Subsect. 4.1, we introduce the main concepts in our ontology to provide a con-
textual understanding of the descriptions of populations reported in Table 1s,
and walk through our approach to ontology reuse in Subsect. 4.2.

4.1 Primary Classes and Property Associations

The descriptions of study populations that are reported in Table 1s follow a
pattern in which columns represent study arms, a group of study subjects who
receive an intervention or control regime. The subject characteristics are pre-
sented in rows, and are aggregated upon and reported via descriptive statistical
measures in the cells of the table. In a conceptual model of SCO as shown in
Fig. 2, we depict our modeling of these Table 1 components and the additional
details that are necessary to describe a study population in the context of a
research study. A more detailed version can be found on our resources website.

As will become evident from a representative Table 1 example shown in Fig. 3,
the row and column headers in Table 1s contain specific medical codes and vari-
ables that can further be grouped into broad general classifications: Anthropo-
metric Properties (chear:Anthropometry),6 Demographics (chear:Demographic),
Laboratory Results (ncit:C36292), Diseases (doid:0004), and Medical Interven-
tions (provcare:Intervention). Further, we associate all these broad, general clas-
sifications we just identified, such as subject characteristics, diseases, interven-
tions etc., via sio:hasAttribute and sio:hasProperty relations to the study sub-
ject. More specifically, for properties such as disease and interventions that per-
6 We use the ontology prefixes: (1) sio: SemanticScience Integrated Ontology (2) uo:
The Units of Measurement Ontology (3) chear: Children’s Health Exposure Analy-
sis Resource Ontology (4) ncit: National Cancer Institute Thesaurus (5) provcare:
ProveCaRe (6) doid: Human Disease Ontology (7) sco: Study Cohort Ontology (8)
hasco: Human-Aware Science Ontology (9) prov: The PROV ontology (10) dct:
Dublin Core Terms (11) vann: A vocabulary for annotating vocabulary descriptions.
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Fig. 2. (A) A high-level overview of SCO that captures the vocabulary and associations
needed to model the descriptions of study populations. (B) We depict associations that
cannot be realized without actual instantiation of Table 1 data.

sist over time and are characterized by the state the study subject exhibits,7 we
use a sub-property of sio:hasAttribute, i.e. sio:hasProperty, to link them to the
study subject. Additionally, we do not maintain certain property associations
(e.g. compositional relation between the study arm and study subject) in our
ontology and only create them upon the representation of actual Table 1 content
in RDF KGs. For the ease of understanding, we depict instances in pink in Fig. 2
to help visualize the realism in our modeling.

To summarize, essentially through SCO, we build a framework to model a
set of study subjects, who participate (sio:isParticipantIn) in a research study
and belong to a study arm and whose subject characteristics are measured
(sio:hasUnit) in units, and are aggregated upon via descriptive statistics. Since
we are dealing with the biomedical domain, where multiple definitions may exist
for a term, through blank nodes and reification techniques we allow support for
this and we maintain provenance for our definitions via prov:wasAttributedTo
(person) and dct:source (online source). For example; hasco:ResearchStudy
sio:hasAttribute [a skos:definition; sio:hasValue ‘A scientific investigation that
involves testing a hypothesis’; prov:wasAttributedTo AmarDas]. Additionally,
we also provide example usages of our terms via vann:example, to help future
users/contributors of our ontology get an idea of the intended usage of the class.
Our main SCO ontology, and our accompanying suite of ontologies, Lab Results,

7 View the definition of sio:hasProperty and sio:hasAttribute relations at: https://
raw.githubusercontent.com/micheldumontier/semanticscience/master/ontology/
sio/release/sio-subset-labels.owl.

https://raw.githubusercontent.com/micheldumontier/semanticscience/master/ontology/sio/release/sio-subset-labels.owl
https://raw.githubusercontent.com/micheldumontier/semanticscience/master/ontology/sio/release/sio-subset-labels.owl
https://raw.githubusercontent.com/micheldumontier/semanticscience/master/ontology/sio/release/sio-subset-labels.owl


Making Study Populations Visible Through Knowledge Graphs 59

Diseases, Drugs, and Therapies, in which we maintain diabetes specific content,
are available as resources. Further, we tested our ontology with the Hermit rea-
soner.

4.2 Ontology Reuse

We reuse classes and properties from existing biomedical ontologies as much as
possible, and only define them ourselves when they do not exist. We primarily
reused ontologies available from Bioportal [16] that are regularly maintained and
have significant reuse. We have tried to reuse terms from a small set of appli-
cable ontologies to avoid enlarging the ontology when we bring in new classes
and additional axioms. We categorize the ontologies, from which we reuse terms,
broadly into Study Design ontologies (ProvCaRe, HASCO), Mid-Level ontolo-
gies (SIO), Medical ontologies (NCIT, CHEAR, etc.), and Statistical ontologies
(STATO, UO). We present a list of our reused ontologies against their groupings
on our resources website.

In our approach to ontology reuse, we include minimum information to ref-
erence a term (MIREOT) [5] for most of our reused ontologies, such as Prov-
Care and NCIT, unless we leverage their structure completely. However, we
do import a light-weight version of the Child Health Exposure Analysis and
Resource (CHEAR) ontology, by applying the MIREOT technique to extract
the demographics and anthropometric branches alone. We prefer to import the
CHEAR ontology, as it builds off SIO and additionally imports the HAScO
human aware science ontology, that we leverage. We utilized an online tool,
Ontofox [23], to apply the MIREOT technique to a few ontologies that were
supported on this platform. However, for ontologies that were not available on
Ontofox, we designed our own SPARQL query to gather subclass and superclass
trees for a given ontology class. On our resources website, we make our MIREOT
Python script available. This runs the SPARQL query against a Blazegraph end-
point and returns the RDF version of the subset class tree.

5 Knowledge Graph Modeling

We use an annotated example of a Table 1, seen in Fig. 3, to explain our approach
of modeling the collections of study subjects, subject characteristics defined on
collections, and the descriptive statistics used to summarize these characteris-
tics. We present an RDF snippet in Listing 1.1, and explain smaller sub-portions
of our modeling in each subsequent subsection. These snippets form the funda-
mental pieces of our Table 1 KG. On our resources website, we release the KG
representations of the studies in our evaluation dataset, for interested readers to
run their analyses.
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Fig. 3. An annotated example of Table 1 from a clinical trial “Telmisartan, ramipril,
or both in patients at high risk for vascular events” [10] cited in the Cardiovascular
Complications (Chapter 9) of the ADA CPG.

Listing 1.1. Representation of a portion of the Ramipril Study Arm

sco -i:RamiprilArm

a owl:Class , sco:InterventionArm;

rdfs:subClassOf sio:StudySubject;

sio:isParticipantIn sco -i:TelmisartanRamiprilStudy ;

sio:hasAttribute

[ a sco:PopulationSize; sio:hasValue 8576],

[ a sio:Age; sio:hasUnit sio:Year;

sio:hasAttribute

[ a sio:Mean; sio:hasValue 66.4],

[a sio:StandardDeviation; sio:hasValue 7.2 ]

] .

5.1 Modeling of Collections of Study Subjects

Study arms are specific subpopulations of study cohorts comprised of a subset of
enrolled study subjects. Hence, they are a natural fit for modeling as classes in
the OWL web ontology language [4], “Classes provide an abstraction mechanism
for grouping resources with similar characteristics. Like RDF classes, every OWL
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class is associated with a set of individuals, called the class extension.”, and
model collections as classes.

As discussed earlier in Subsect. 4.1, study arms are represented as columns
in Table 1s. Further, the RDF snippet in Listing 1.1 shows a semantic definition
of a particular study arm as an instance of the sco:InterventionArm. Study arm
definitions are either those of InterventionArm or ControlArm and they are
gathered from the Table 1 columns themselves, if sufficient, if not we consult the
study data to find relevant content that describes the arms.

In some Table 1s, there also exist subsets of study arms, created by the pres-
ence of categorical row variables (e.g. percentage of Asians), expressed in per-
centages8. Such subsets are expressed as rdfs:subClassOf the main study arm,
and have an owl:Restriction defined on them for membership. An example of
the representations of these subsets, can be viewed as a part of the KG creation
documentation on our resources website.

5.2 Modeling of Characteristics and Descriptive Statistics

As briefly introduced in Subsect. 4.1, subject characteristics are the phenotype
properties that are collected for study subjects. In our evaluation dataset, we
have observed that all study arms belonging to a study share the same set of
characteristics. However, the range of values for these characteristics differ across
study arms depending on their composition. Borrowing from our grouping of
characteristics from Sect. 4, we reemphasize that characteristics persisting over
a period of time are modeled as sio:hasProperty, and the rest are modeled via
sio:hasAttribute property. From this discussion it becomes apparent that our
modeling of characteristics on study arms is fairly straightforward and we only
utilize two SIO property associations. In Listing 1.1, we depict the association of
age as a sio:hasAttribute of the Ramipril study arm. Further, characteristics can
also be classified broadly as categorical, discreet, and continuous. Categorical
characteristics are represented in subsets, and their representation is discussed
in the previous subsection.

5.3 Modeling of Descriptive Statistics

Another problem we address in this paper is the KR of aggregate statistics on
subject characteristics of study populations. Although aggregate statistics are
reported in multiple domains, there has been little work on a convention for
supporting the modeling of aggregations in RDF. The support for aggregations
in Linked Data is presented in [6]. However, their process is more focused on
the publishing of statistical data and the metadata than on the representation
of statistical data itself.

Descriptive statistics have conventionally been defined, as statistical mea-
sures that summarize the data.9 In Table 1s, they are used to describe summa-
rized values of the characteristics of study subjects, who belong to a study arm.
8 More Table 1 reporting style and composition details at https://prsinfo.clinicaltrials.
gov/webinars/module6/resources/BaselineCharacteristics Handouts.pdf.

9 Definition adapted from: https://en.wikipedia.org/wiki/Descriptive statistics.

https://prsinfo.clinicaltrials.gov/webinars/module6/resources/BaselineCharacteristics_Handouts.pdf
https://prsinfo.clinicaltrials.gov/webinars/module6/resources/BaselineCharacteristics_Handouts.pdf
https://en.wikipedia.org/wiki/Descriptive_statistics
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From our analysis of Table 1s, we have seen a limited set of descriptive statistics
measures: mean +/− standard deviation, median +/− interquartile range, and
percentages. We model these aggregations and descriptive statistics, seen as rei-
fied triples on a property. Reification is an RDF technique developed to “make
statements about statements” [18]. As can be seen in the RDF snippet above, we
define descriptive statistics as reified triples on an age characteristic. Addition-
ally, since we only reuse SIO object and data properties, we eliminate the need
for further punning techniques, to represent these descriptive statistic properties
as instances of sio:hasAttribute. In this paper, we only present an example of a
mean +/− standard deviation measure. Examples of representing median +/−
interquartile via sio:MinimalValue and sio:MaximalValue boundary classes, and
percentage association, can be viewed on our resources website.

6 Applications

Our study applicability applications leverage the declarative specifications of
study populations in our Table 1 KG. In Subsect. 6.1, we frame three scenarios
of clinical relevance that mimic the decision-making of a medical practitioner to
determine study applicability. Additionally, we present a cohort similarity visu-
alization strategy in Subsect. 6.2. In Subsect. 6.3, we describe a faceted browser
interactive visualization tool aimed at medical practitioners. Moreover, as shown
in Fig. 1, we include study details in our application results. Hence, we provide
medical practitioners with provenance-justified results that could be used for
future analyses and investigation.

6.1 Population Analysis Scenarios

As discussed in Sect. 1.1, there exist challenges with study biases and the vary-
ing quality in research studies. Medical practitioners need to be aware of these
issues when deciding on applicable studies for their clinical population. Three
scenarios of clinical relevance were suggested by our medical expert on the Health
Empowerment by Analytics, Learning and Semantics (HEALS) project. Through
queries to our Table 1 KG we address a representative competency question for
each of these scenarios: (1) Study match: Is there a study that matches this
patient on a feature(s)? (2) Study limitation: Is there an absence or an under-
representation of population groups in this study? (3) Study quality evaluation:
Are there adequate population sizes and is there a heterogeneity of treatment
effects among arms? Our declarative representations of Table 1s, allow us to trig-
ger retrospective queries that combine subject characteristics (SPARQL AND
clauses), various descriptive statistical representations (limited patterns of mod-
eling as seen in Sect. 5), and aggregate study arms or study cohorts (leveraging
SPARQL math constructs such as SUM). Our competency questions and their
SPARQL queries10 can be found on our resources website.
10 https://tetherless-world.github.io/study-cohort-ontology/application#

scenarioquery.

https://tetherless-world.github.io/study-cohort-ontology/application#scenarioquery
https://tetherless-world.github.io/study-cohort-ontology/application#scenarioquery
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Fig. 4. A snapshot of our faceted browser tool that provides medical practitioners with
the ability to customize cohort analyses. Currently, the feature facets are limited to
the patient features from NHANES, that overlap with, Table 1 data. If a study doesn’t
contain some of these 5 features, they will be disabled.

6.2 Cohort Similarity Visualizations

We define cohort similarity as an analytical problem to determine the similar-
ity or closeness of a patient to a given study population. We currently support
determination of cohort similarity by generating visualizations, such as a star
plot (Fig. 4), by overlaying features of patient records against study arm charac-
teristics. For the purpose of visualization, we select a few sample type-2 diabetes
patient records from the National Health and Nutrition Examination Survey
(NHANES)11. Additionally, we adopt different visual strategies for continuous
and categorical variables. In this paper, on the resources website and through
our faceted browser we only support star plot visualizations for continuous vari-
ables, and we are exploring visualizations such as a pie chart for categorical
variables. Visualizations are generated on a per study arm, per patient basis,
through results of SPARQL queries triggered to our Table 1 KG. Our visualiza-
tions are built by Python plotting modules such as Seaborn12 and Matplotlib13,
and our visualization code is made available as a resource.

11 Dataset Information Page. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/
default.aspx?BeginYear=2015.

12 https://seaborn.pydata.org/.
13 https://matplotlib.org/.

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2015
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2015
https://seaborn.pydata.org/
https://matplotlib.org/
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Since our visualizations serve the purpose of being quick assessors, we design
them with reduced complexity. Specifically, we aim for them to (1) contain suffi-
cient detail that is not considered overwhelming and (2) carry information such
as variable ranges and the extent of the patient match, to serve as indicators for
future analysis.

6.3 Faceted Browser

We built a faceted browser tool for medical practitioners by utilizing a Python
model-view-controller framework, Flask14. On the backend (model), we utilized
the RDFLib15 module to trigger SPARQL queries on the ingested ontology and
KG files. Through this tool medical practitioners can interact with our Table 1
KGs, and run cohort similarity analyses on studies of their choice. They can
choose from a list of studies and, subsequently, a faceted view will be rendered for
the study arms of this selected study. As seen in Fig. 4, they can also choose the
variables that they would like to visualize. Hence, our prototype faceted browser
interface serves as a per-study inspection tool and uses NHANES patient records
to illustrate the facets.

7 Results

In the Study Analysis Table 1, shown below, we present a quantitative summa-
rization of the results of each competency question (described in Subsect. 6.1).
Some interesting, medically relevant inferences that we output, and that are
often spoken about in medical literature, include the lack of a representation of
adults above 70,16 and the lack of heterogeneity in treatment effects.17 We were
surprised that only 6% of the studies in our evaluation dataset were conducted on
a large-scale, that their study arms were evenly divided, and all their study sub-
jects were put on the basic, antidiabetes treatment of guanidines. We also find
that the SCO ontology is epistemologically adequate for representing all Table 1s
in our evaluation dataset. We cover 360 (≈ 17 in each study on average) sub-
ject characteristics from 20 cited research studies, and 28 study arm definitions.
The study arm definitions included terms belonging to classes such as medical
interventions, control regimes, and, less commonly occurring, diseases, dosage,
year of follow-ups, and titration targets. We found that 19 cohort variables (a
term we use to collectively describe interventions and subject characteristics)
commonly occur across studies.

14 http://flask.pocoo.org/.
15 https://rdflib.readthedocs.io/en/stable.
16 https://www.statnews.com/2019/01/31/nih-rule-make-clinical-research-inclusive/.
17 NIH Collaboratory run grand-round presentation: https://www.nihcollaboratory.

org/Pages/Grand-Rounds-02-28-14.aspx.

http://flask.pocoo.org/
https://rdflib.readthedocs.io/en/stable
https://www.statnews.com/2019/01/31/nih-rule-make-clinical-research-inclusive/
https://www.nihcollaboratory.org/Pages/Grand-Rounds-02-28-14.aspx
https://www.nihcollaboratory.org/Pages/Grand-Rounds-02-28-14.aspx


Making Study Populations Visible Through Knowledge Graphs 65

Table 1. Percentage of studies meeting the competency question criteria for the pop-
ulation analysis scenarios.

Question Percentage Population analysis type

Studies with a representation of Male
African American study subjects

75% Study match

Study Arms with adults below the age of
70

47.6% Study limitations

Studies with cohort sizes > 1000 and
study arm administered drugs of the
guanidines family, with sizes 1/3rd those
of the cohort size

6% Study quality evaluation

8 Resource Contributions

We expect the following publicly available artifacts, along with the applicable
documentation, to be useful resources for anyone interested in performing anal-
ysis on study populations reported in research studies.

1. Ontologies:
(a) Study Cohort Ontology (SCO)

2. Knowledge Graphs:
(a) Table 1 Knowledge Graph

3. Source Code:

(a) MIREOT Script
(b) Cohort Similarity Visualization

4. Data:

(a) NHANES Patient Records

9 Future Work

Having demonstrated our ability to apply semantic techniques to make study
populations visible, we plan to incorporate interdiscplinary methods to improve
on a few aspects of our solution. We have found that there exist variances
in Table 1 reporting styles ranging from differences in row and column head-
ers, table formats etc. These variances pose challenges for the scalability and
automation aspects of the KG construction. Furthermore, often some subject
characteristics and column headers require a contextual understanding for dis-
ambiguation, that is present in the unstructured body of the study. Hence, we
are exploring a combination of natural language processing and semantic tech-
niques to support an ontology-driven parsing and clean-up of Table 1 data and
to develop a contextualized and medical standards compliant Table 1 KG. Fur-
ther, to ensure longevity and easy reuse of SCO, we plan to develop a set of
tools/algorithms to predict the best-fit position for a new term in our SCO suite
of ontologies. We also plan to expand and refine our set of competency questions,
based on feedback from medical practitioners, and to allow for partial and fuzzy
matches using query relaxation [9] and semantically targeted analytics [14].



66 S. Chari et al.

10 Discussion

We have utilized KR techniques, i.e. OWL encodings of SCO and a knowledge
graph of Table 1 content to model and expose descriptions of study populations
in an attempt to make scientific data more accessible. Further, we have uti-
lized our semantic modeling to support analytical use cases to determine study
applicability. Our evaluation dataset currently is solely comprised of type-2 dia-
betes research studies. We have kept our descriptions and examples minimally
domain specific. We believe that our ontology and KG documentation can serve
as resources for researchers interested in the pan-disease analysis of study pop-
ulations.

Our ontology, SCO, is developed using best-practice ontology principles, some
of which are listed at [7]. Specifically, we reuse SIO properties and do not define
any new properties. We reuse classes from a limited yet standard set of biomed-
ical ontologies in order to increase the interoperability of SCO.

There have been attempts at improving the reporting of Table 1s in the medi-
cal community, such as the Table 1 project [15]. However, they have been confined
to the identification of desirable properties for standardization. Our semantic
solution presented in this paper, that at its heart utilizes a KR approach, is
a step towards achieving this standardization. This can be seen in Listing 1.1
where we have presented an RDF snippet representing fundamental building
blocks of our Table 1 KG, i.e. our modeling of collections, subject characteris-
tics, and statistical measures. These identified patterns are reused as templates
to realize the association of various variables with study populations reported in
Table 1s.

Our Table 1 KGs allows us to address study applicability scenarios motivated
from medical literature and to support visualizations that clearly depict cohort
similarity. By these capabilities, we demonstrate how our solution addresses our
use case of determining study applicability. We believe there is potential for this
work to be reused by researchers performing study population analyses. Also in
this paper we make assumptions on the content a medical practitioner might
want to see, and, from a medical practitioner user survey we are conducting, we
will incorporate feedback on their additional requirements.

Our solution does not address or include support for the modeling of study
eligibility criteria, i.e. inclusion and exclusion criteria. However, we reuse meta-
data expression terms from Dublin Core Terms (DCT) to include a link to reg-
istries such as ClinicalTrials.gov or International Standard Randomised Con-
trolled Trial Number (ISRCTN),18 where the criteria is made available as a part
of the study data. We expect that the SCO vocabulary is sufficient to express
the criteria, but since we are still investigating the merge of the criteria with the
Table 1 content, we defer it to future work.

Finally, all the resources that we listed in Sect. 8, are made publicly available
in a Github repository and the ontology is hosted on Bioportal. SCO is released

18 http://www.isrctn.com/page/about.

http://www.isrctn.com/page/about
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under the Apache 2.0 license specification. Our resources will be maintained
periodically by the authors.

11 Conclusion

We have presented a prototype KR system that can be used to model study
populations, to aid in the assessment of study applicability. Our model is tai-
lored around use cases aimed at assisting medical practitioners in the treatment
of complex patients and who also often require “efficient-literature searching”
[12] capabilities. We presented a solution to make descriptions of study popula-
tions more accessible for quick decision-making. We believe that the resources
we release, especially SCO, can serve as an extensible schema to represent pop-
ulation descriptions across diseases. We have demonstrated the adequacy of the
ontology through a set of what we believe are representative applications sup-
porting a range of use cases contributed by our medical expert. We plan to
continue our outreach and ontology reuse in additional diverse evidence-based
medicine application settings.
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7. Garijo, D., Poveda-VillalÃşn, M.: A checklist for complete vocabulary metadata.
List of Desirable Ontology Best-Practices. http://dgarijo.github.io/Widoco/doc/
bestPractices/index-en.html

8. Graham, R., et al.: Trustworthy clinical practice guidelines: challenges and poten-
tial. In: Clinical Practice Guidelines We Can Trust, pp. 53–75. National Academies
Press (US), Washington D.C. (2011)

https://www.w3.org/TR/owl-ref/
http://ceur-ws.org/Vol-628/
http://dgarijo.github.io/Widoco/doc/bestPractices/index-en.html
http://dgarijo.github.io/Widoco/doc/bestPractices/index-en.html


68 S. Chari et al.

9. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. J. Data
Semant. X 4900, 31–61 (2008)

10. Ontarget Investigators: Telmisartan, ramipril, or both in patients at high risk for
vascular events. N. Engl. J. Med. 358(15), 1547–1559 (2008)

11. Jang, M., Jahanshad, N., Espiritu, R.: The cohort ontology. Enigma Knowledge
Capture and Discovery Project. https://knowledgecaptureanddiscovery.github.io/
EnigmaOntology/release/cohort/1.0.0/index-en.html

12. Masic, I., Miokovic, M., Muhamedagic, B.: Evidence based medicine-new
approaches and challenges. Acta Inform. Med. 16(4), 219 (2008)

13. National Institute of Health (NIH): Rigor and Reproducibility. Introduction and
need for principles. https://www.nih.gov/research-training/rigor-reproducibility

14. New, A., Rashid, S.M., Erickson, J.S., McGuinness, D.L., Bennett, K.P.:
Semantically-aware population health risk analyses. Presented as a Poster at
Machine Learning for Health (ML4H) Workshop, NeurIPS, Montreal, Canada
(2018). https://arxiv.org/abs/1811.11190. Accessed 20 Mar 2019

15. NIH Colloboratory: Table 1 project. Rethinking Clinical Trials. https://sites.duke.
edu/rethinkingclinicaltrials/ehr-phenotyping/table-1-project/

16. Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click
of a mouse. Nucleic Acids Res. 37(suppl2), W170–W173 (2009)

17. Patel, C., et al.: Matching patient records to clinical trials using ontologies. In:
Aberer, K., et al. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 816–829. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0 59

18. Reinhardt, S.: Property reification vocabulary. A Strawman Draft. https://www.
w3.org/wiki/PropertyReificationVocabulary

19. Shankar, R.D., Martins, S.B., O’Connor, M.J., Parrish, D.B., Das, A.K.: Epoch: an
ontological framework to support clinical trials management. In: Proceedings of the
International Workshop on Healthcare Information and Knowledge Management,
pp. 25–32. ACM, Arlington (2006)

20. Sim, I., et al.: The ontology of clinical research (OCRe): an informatics foundation
for the science of clinical research. J. Biomed. Inform. 52, 78–91 (2014)

21. Tu, S.W., et al.: A practical method for transforming free-text eligibility criteria
into computable criteria. J. Biomed. Inform. 44(2), 239–250 (2011)

22. Valdez, J., Kim, M., Rueschman, M., Socrates, V., Redline, S., Sahoo, S.S.: Prov-
care semantic provenance knowledgebase: evaluating scientific reproducibility of
research studies. In: AMIA Annual Symposium Proceedings, vol. 2017, p. 1705.
American Medical Informatics Association, Washington D.C., USA (2017)

23. Xiang, Z., Courtot, M., Brinkman, R.R., Ruttenberg, A., He, Y.: OntoFox: web-
based support for ontology reuse. BMC Res. Notes 3(1), 175 (2010)

24. Younesi, E.: A knowledge-based integrative modeling approach for in-silico iden-
tification of mechanistic targets in neurodegeneration with focus on Alzheimer’s
disease. Ph.D. thesis, Department of Mathematics and Natural Sciences, Univer-
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