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Abstract. With healthcare fraud accounting for financial losses of billions of
dollars each year in the United States, the task of investigating regulation
adherence is key to reduce the impact of Fraud, Waste and Abuse (FWA) on the
healthcare industry. Providers rendering services to patients typically submit
claims to healthcare insurance agencies. Such claims must follow specific
compliance criteria specified by state and federal policies. This paper presents an
ontology-based system that aims to support the FWA claim investigation pro-
cess by extracting graph-based actionable knowledge from policy text
describing those compliance criteria. We discuss the process of creating a
domain-specific ontology to model human experts’ conceptualisations and to
incorporate early-on the feedback of FWA investigators, who are the early
adopters of our solution. We explore whether the ontology is expressive and
flexible enough to model the diverse compliance processes and complex rela-
tionships defined in policy documents. The ontology is then used, in combi-
nation with natural language understanding and semantic techniques, to guide
the extraction of a Knowledge Graph (KG) from policies. Our solution is val-
idated in terms of correctness and completeness by comparing the extracted
knowledge to a ground truth created by investigators. Lastly, we discuss further
challenges our deployed semantic system needs to tackle in this novel scenario,
with the prospect of supporting the investigation process.

1 Introduction and Business Scenario

The National Health Care Anti-Fraud Association estimates that the financial losses due
to health care fraud in the US are in the tens of billions of dollars each year [1].
According to Truven Health research, approximately $125 to $175 billion is wasted
each year on healthcare fraud and abuse [2]. The Health Care Fraud and Abuse Control
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Program (HCFAC), established under the Health Insurance Portability and Account-
ability Act (HIPAA), directs federal and state agencies to audit healthcare expenditure
with the objective of improving the quality of care and recover tax payer dollars.

Medicare and Medicaid have been designated as high-risk federal programs [3],
because of their size, complexity and susceptibility to improper payments. The Pro-
gram Integrity investigation units established under the HCFAC aim to assert that the
correct payment has been made for the correct member for the correct service to the
correct provider. Healthcare providers (hospitals, pharmacies, clinics etc.) submit
claims to state and federally-administered health insurance agencies (such as Medicare
or Medicaid) for services rendered to a patient. Policy guidelines set out which claims
are permissible based on eligibility criteria for a particular service and generally
accepted medical practices. Invalid claims are those that infringe policy criteria either
intentionally (fraudulent) or unintentionally (providing services that are unnecessary,
inefficient or inconsistent with accepted medical practices). FWA investigators need to
prioritize investigations based on likelihood of recovery (dollars) and maximum return
on investigation resources. However, understanding policy, consisting of hundreds of
text pages describing compliance criteria that investigators have to review and refer to
in an investigation for further recovery actions, is a manual and labor-intensive task.
Investigation does not guarantee recovery, since the policy may turn out to be too
vague to be enforced, or the recoverable amounts too low to warrant action – any of
which take scarce investigation resources away from other recovery opportunities.
Comprehensively understanding policy is a key step to ensuring recovery of inap-
propriately paid claims.

We present a semantic solution that extracts compliance knowledge from healthcare
policy documents. This knowledge can facilitate FWA investigations in several ways -
for example, helping in the development of claims-inspection algorithms. Semantics
play a key role in extracting machine-readable knowledge about Benefit Rules from the
human-oriented policy documents. Benefit Rules (BRs) describe structured compliance
criteria, such as: eligible service providers (e.g. role: physician, nurse); eligible places
of service (e.g., home, hospital); maximum billable units of service or equipment per-
patient in a given period; services that should not be billed together for a patient on a
single date, services (in)appropriate for a patient’s age or gender, etc. An experienced
team of FWA Investigator consultants, working with the state and federal government
to help them meet their obligations under the HCFAC and to shape policy, acted as
early adopters of our solution, providing robust evaluation feedback and ground truth
data along the way.

Our contributions in this paper are twofold. First, we describe the lessons learned
and the best practices adopted while working with investigators throughout the entire
lifecycle: validating the value proposition; modelling a domain ontology with the
purpose of supporting claims investigations; and capturing experts’ feedback to build a
Ground Truth (GT) on BRs, i.e., knowledge that an investigator would learn from
policy text, enabling us to provide performance metrics that validate the accuracy and
completeness of our solution’s automatically extracted knowledge. Secondly, we
describe the research challenges, design choices and the approach to build a semantic-
based system that applies natural language understanding techniques to policy text to
transform it into relevant, semantic, graph-based BRs, guided by the ontology.
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The rest of the paper is organised as follows. Section 2 presents related work.
Section 3 discusses the advantages as well as the challenges of using semantic tech-
nologies in our solution, while Sect. 4 gives an overview on the technical imple-
mentation. Section 5 presents a validation of the system in-use with policies from two
different domains. We conclude with discussing and summarizing the ongoing work in
Sect. 5.

2 Background and Related Work

2.1 Medical Claims Audit

The role of analytics to identify FWA in healthcare insurance claims has been explored
in [4] through different analytical approaches on top of claims data (e.g., text mining,
social network analysis, time series analysis).

Supervised and unsupervised data mining approaches to support fraud detection on
claims data are presented in the surveys [5, 6]. For example, they are applied to detect
anomalies in the utilisation of certain procedure codes, or to create a risk profile about
providers to report to third-party payers (such as health insurance organizations like
Medicaid/Medicare).

A significant differentiator of our approach with respect to claim-based state of the
art analytical approaches is that this is the first system, that we are aware of, that aims to
interpret unstructured policy with the purpose of supporting policy investigators’ work.
Investigator time is precious, and policy is vast, hard to understand and hard to relate to
claims. Our goal is to extract BRs that can facilitate policy comprehension to support
investigators on the analysis of potentially-inappropriate payments.

2.2 Knowledge Base Population

Ontology guided Information Extraction (IE) [7] and Knowledge Base Population
(KBP) from text, has been addressed by both the computational linguistics and
semantic web communities for several years (for a survey see [8]). For instance, the
Text Analysis Conference (TAC) has a Cold Start KB evaluation track to build a KB
from scratch, using just a predefined schema and a corpus of text [9]. Effective systems
in these competitions combine many approaches such as rule-based relation extraction
and distantly supervised linear and neural network extractors. Domain-independent
relation extraction has been studied by a wide range of approaches, however relation
extraction and KBP from text often requires building IE analytics to discover facts
about entities in text for the domain, as generic models rarely work well on the
customer specific data.

Statistical supervised IE approaches, based on term frequency and co-occurrence of
specific terms, require substantial effort from domain experts to manually label each
mention of an entity or relation on hundreds of documents. Background knowledge can
alleviate the need for human supervision for domain adaptation. A knowledge and
linguistic-based approach is presented in [10] to extract first, medical entities from
sentences to determine their categories, and second, semantic relations between a pair
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of entities by using lexical patterns built semi-automatically using a corpus (PubMed)
and six relations types from UMLS. Distance supervision approaches do not require
manual data labeling, instead training data is provided in the form of entity pairs
belonging to a specific relation [11]. For example, [12] exploits a partially populated
KB and a corpus of text to train a set of deep learning classifier to find paraphrases, i.e.
different expressions with similar meaning in text, and to augment and extend a par-
tially populated KG. With the exception of [12], most state of the art approaches are
only able to recognize explicit pairwise relations within the same sentence [13]. [13]
explores a cross- sentence neural architecture for n-ary relation extraction, by building
paths connecting two identified arguments through related entities in a biomedical
domain.

An ontology guided IE approach is presented in [14], based on the linguistic
platform GATE entities are annotated in documents (e.g., to capture facts about a
company) and mapped into ontology concepts, and then documents that refer to the
same entity (e.g., company) are cluster together using on a cosine similarity vector
representation. PIKES is a frame-based framework to extract instances and relation-
ships in text [15], each frame is a reified object connecting instances through properties
describing their semantic role based on the FrameBase ontology. Semantics are often
applied in the healthcare domain to integrate data from heterogeneous sources, model
diverse business process, and to build declarative rules to capture measures on the
quality of care expressing complex relationships [16].

We believe that recognizing the many explicit and implicit N-ary relationships
needed to extract multiple BRs from a policy document requires substantial domain
background knowledge and the ability to perform inference. In this paper we describe a
first implementation that combines NLP, knowledge representation and ontology-
guided reasoning, to automatically capture the complex BR relationships into a KG.
Labelled data is required for evaluation only.

3 Semantics in Practice

3.1 Advantages and Challenges of an Ontology-Based Solution

Ontologies serve as explicit, conceptual knowledge models to share a common
understanding of the information in a domain and make that knowledge available to
information systems [17]. This knowledge includes machine-interpretable definitions
of concepts and relations in the domain, makes domain assumptions explicit and
separates the domain knowledge from the operational knowledge. In our scenario, the
role of the ontology is central to guide the IE process and for visually representing
auto-extracted knowledge to investigators for curation.

In the following, we describe the advantages to using a domain ontology as a
foundation for our solution.

• Interoperability: the ontology is the only domain-dependent resource. It contains
the schema of the relations and entities to be extracted from policy text, and the
labels (surface forms) needed to match ontological resources to entities and relations
in the policy. It also acts as central hub to link to other relevant domain sources. In
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particular: (1) medical codes used during the billing process to describe clinical
procedures, such as the American Medical Association’s CPT (Current Procedural
Terminology) code set; (2) body parts, e.g. in the dental domain a procedure may be
only applicable on a subset of teeth; (3) healthcare programs available for a specific
State; and (4) eligible places of service. The ontology also links to medical tax-
onomies such as UMLS to define diagnoses or treatments, that are typically referred
to by patient’s medical history or high-risk status.

• Flexible and incremental model: it is not feasible to define a complete domain
model a priori. We started by identifying high-value BR types with our investi-
gators (for example, a Service Limitation subtype is shown in Table 1). We then
extended the ontology incrementally to cover more BR subtypes, as well as new
policy domains. As the coverage of the ontology increased, the extractor’s ability to
capture more-relevant knowledge and to infer missing relations also increased.
Using semantics there is no need to impose a fixed BR template. Extractors can
automatically instantiate a BR in the KG using any combination of criteria known in
the ontology (property-values) as long as they are semantically consistent.

• Semantically sound: specific domain constraints can be defined in the ontology to
ensure that consistent and meaningful BRs are extracted from a portion of text when
consolidating multiple BRs and identifying information conflicts. For example, the

Table 1. Table with three BR examples based on a Service Limitation template, which describes
unit or dollar limits for services for a single beneficiary on a date of service.

Policy text Template Ground truth (BRs)

Dental prophylaxis (i.e., teeth
cleanings) is recommended
every 6 months, and may be
reimbursed twice per 12 months
per member

Members who [qualifying
criteria] can receive up to [max
units/monetary amount] of [list
of applicable services] per [body
part] in [applicable time period]
requires [requirements] unless
[list of non-applicable services]
and [exclusions]

[qualifying criteria] -
all-members
[max units] - 2
[applicable services]
- prophylaxis
[time period] - 12
month

Members determined to be at
high risk for periodontal disease
or high risk for caries (decay) is
eligible for additional services.
These services include [..] up to
four (4) prophylaxis procedures

[applicable services]
- prophylaxis
[member - high risk
of] - umls-caries,
umls-periodontal-
disease
[max units] - 4

Fluoride rinse is not an
acceptable treatment for any
child member and will not be
reimbursed

[qualifying criteria -
min age] - 0
[qualifying criteria -
max age] - 21
[non-applicable
services] - fluoride-
rinse
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content of a BR can span across different sentences in the same paragraph and/or
other connected portions of the policy, e.g. section headings. In this scenario, the
constraints in the ontology help in understanding when a BR can be enriched with
contextual information or merged with another BR extracted from a connected
sentence (see Sect. 4.2).

An ontological model can faithfully represent an expert Investigator’s conceptu-
alization and be sufficiently flexible to capture diverse compliance processes in
knowledge graphs. However, a significant challenge is that the knowledge graphs
cannot be understood or curated by an Investigator. Two important goals in our
scenario were to enable investigators to curate the extracted knowledge and to create
GT through an approachable user interface (UI). To achieve this goal, graph BRs are
transformed in a user-friendly flat-representation (see Fig. 3), hiding the complexity of
the underlying graph ontology (see Sect. 4.1). To help users understand extracted
conditions, descriptive labels were added to the ontology for each field (i.e. condition)
to be displayed. Users can curate the user-friendly representation of a BR by modi-
fying, deleting or adding new fields and values.

Keeping track of the provenance of each BR is also a key requirement, not only to
link the BRs in the KG to the original text in the policy, but also to reason about the
origin of the information, e.g. which extractor extracted the BR, and to keep track of
ontology updates. Ontology maintenance to reflect updates in policies and generaliz-
ability of the ontology is a challenge, e.g., context dependent default values, like a
“fiscal year” may have different start and end date based on the state the policy applies
to.

3.2 Ontology Definition and Ground Truth Collection with Investigators

Investigators expertise is crucial to understand the business area, to validate whether
technical representations of BRs reflect the original policy accurately, and to assess the
generalisability of this approach (schema) across policies from different geographies.

When processing unstructured data (text), the same information can often be rep-
resented and interpreted in many different ways. To collect a formal, abstract repre-
sentation of domain knowledge from the Investigators, we adopted the following
strategy:

– Investigators highlighted sentences containing BRs in the policy text and associated
them with BR templates. The templates are abstract definitions of common BR
patterns, expressed as a set of entities and relations. The templates are intended to be
transferable - i.e. to generalize well to other policy areas and geographies.

– Guided by these templates, we (manually) created a first-draft of a formal onto-
logical model (classes, relations and some instances) and began an iterative process
of modeling, reviewing and incrementally improving the ontology with the
Investigators. Investigators also helped identify other domain-related data sources,
e.g. procedures codes, healthcare programs, body parts, places of service, etc.

– Using these templates, the investigators created a set of ground truth BRs from
policies – a standard against which extractor output quality could be validated.
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Table 1 showcases an example of a Service Limitation BR template and GT from
policy text. These templates play the same role as competency questions (i.e., the set of
questions that an ontology must be able to answer) typically used for ontology
development, as they describe the ontology requirements to model different types of
BRs.

4 Approach and Technical Components

We will introduce the components of the system, illustrated in Fig. 1 through the
typical processing workflow. The first step when dealing with a new policy document,
in PDF format, is to process it (1) together with its metadata in order to transform it in a
machine-friendly tree structure in which the content is hierarchically organised, e.g.
sections, paragraphs. After the document is ingested, the extraction service triggers the
following steps: concepts annotation (2), based on the content of the BRs ontology
and/or on external named entities annotators (NER) (Sect. 4.2); BRs extraction (3, 4),
performed with different available extractors, currently WatsonX-based (3a) and
SystemT-based (3b) (Sect. 4.2); across extractors consolidation and filtering (5) in
order to merge the extracted rules and remove potential noise; BRs conversion (6) from
the KG representation to a more user-friendly representation that can be easily dis-
played in the UI (8) to allow both the internal team and the investigators to inspect the
extracted BRs, collect GT data and analyse the performance metrics computed on
different extraction configurations (7). It’s worth noticing that all the described com-
ponents are domain independent, as they rely on the ontology to retrieve all the needed
domain information. Existent KGs, e.g. some of the relevant types in the UMLS
semantic network, are linked with the main ontology. External data in tabular form, e.g.
relevant procedure codes, are normalised and lifted automatically (based on the cre-
ation of a file providing mappings between tabular columns and ontological entities)
into a KG (0), following W3C recommendations [18], and linked to the ontology. All
mentioned components are implemented as microservices and deployed on IBM Cloud.
The ontology is currently loaded in-memory and accessed through the Jena Ontology
APIs.

Fig. 1. Architecture of the system
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4.1 Benefit Rules Ontology and Knowledge Graph Definition

The ontology has been iteratively and incrementally built pursuing two main goals:
represent as correctly and unambiguously as possible the domain of interest, i.e. the
BRs that are expressed in the policy text, and that is fit for purpose for the automatic IE,
i.e. capturing the connections between the entities of interest and how they appear in
text. The ontology was built based on the methodology described in [19] and the
collaboration with a team of investigators. Based on the corresponding templates
manually identified by the investigators (Sect. 3.2), we started by defining the class
hierarchy, the object and data properties and semantic constraints that the ontology
needs to cover. Different data sources, e.g. procedure codes, policy programs, places of
service, have been identified and lifted in the ontology to populate the instances space.

Since the templates and the ontology are a commercially sensitive asset and they
cannot be reasonably shared, we will focus the remaining of this section on a subset of
it (see Fig. 2) that is meant to model the information encoded in the sentence “Adult
members may receive up to $1,000 in dental benefits per year (July1 through June
30)”. The subset of the ontology used to model Service Limitations contains 21 object
and 8 datatype properties of interest, 31 classes, 1034 individuals. The Policy class is
the root node in the ontology. A Policy individual represents a document and may be
associated with multiple BenefitRule individuals. A subtype of BenefitRule is created
for each independent rule template we want to address, e.g. BrServiceLimitation.
A subtype inherits all the properties of a generic BR class while at the same time allows
us to capture the semantics particular to each. The principal BR properties modelled in
Fig. 2 are: service limitation, that is meant to model a monetary or a unit limit range for
a specific service under certain circumstances; applicable services, that model the
services the BR applies to; applicable time period, represented in this case with start
and end date, but that in other examples can be modelled as a frequency, e.g. “every 6
months”; member eligibility, to model all the eligibility criteria regarding the group of
patients affected by the BR, in our example the only mentioned criteria was regarding
the age group of the patient, but other criteria like the enrolment in a State plan, or the
history of a particular disease, are covered as well. The ontology contains some pre-
populated instances to model predefined nodes with default values, e.g. adult as an
instance of AgeRange with predefined min and max ages.

Fig. 2. Subset of the ontology to model the information in the policy text “Adult members may
receive up to $1,000 in dental benefits per year (July 1 through June 30).”.
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Different ontological constraints can be expressed on the ontology properties and
will be used during the extraction process and enforced in the extracted KG, e.g. owl:
propertyDisjointWith, owl:minCardinality, owl:maxCardinality or owl:Func-
tionalProperty. User-defined datatypes, associated to entity types extracted with the
concept annotators ((2) in Fig. 1), are created to represent additional constraints that
restrict the range of allowed datatype values to help in the disambiguation task, e.g., the
string “$1,000” is annotated by the concept annotators as MonetaryAmount which is
valid range for the datatype property hasMaxReimbursedAmount.

We divide classes and properties in the ontology in: root, e.g. BenefitRule,
hasMemberEligibilit; intermediate, e.g. TimePeriod, hasAgeRange; or leaf, e.g. Ser-
vice, hasMinAge, hasService. The user-friendly flat representation (Fig. 3) of a BR is
created by taking all and only the leaf properties, also called conditions, in the BR with
the corresponding range values. In order to be able to convert the KG into a flat
representation without leading to ambiguities, the portion of the ontology that describes
a BR type, i.e. the subgraph rooted in the benefit rule type class and generated by
following the domain-property-range relations, must be in the shape of a tree; the
proper ontological constraints are also added in the ontology to enforce the tree-shape
of the KG as well. Given an instantiated BR, if the same condition has more than one
different range value, these values are considered to be in disjunction with each other,
e.g., if the BR mentions multiple applicable services we will consider the union of
them. In contrast, two different conditions are considered to represent a conjunction,
e.g. if both an age and a history of a particular disease are mentioned as eligibility
criteria, the rule applies only to patients that are satisfying both criteria. A confidence
score is assigned to each relevant KG statement. It is calculated based on the reliability
of the applied extraction approach and the considered contextual information. Confi-
dence information, as well as the approach used to extract each statement, are stored as
reified statements.

4.2 Ontology-Based Information Extraction

Two extractors were implemented on top of two different NLP technologies WatsonX
[20] and SystemT [21]. Due to space limitations we cannot give an in-depth description
of the two, but we give an overview of how they work and discuss their capabilities in

Fig. 3. KG of the BR (left) and the user-friendly flat representation (right) for sentence “Adult
members may receive up to $1,000 in dental benefits per year (July 1 through June 30).”
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what follows. Currently, both extractors work at a sentence level, taking as input a set
of concept annotations computed by entity annotators, e.g. UMLS annotator, and a
custom concept annotator that exploits the surface forms present in the ontology, and
returning a KG of BRs. Internally, a first graph consolidation step is performed in order
to verify that the KGs are consistent with the ontology definitions.

WatsonX Approach. WatsonX is built as a classical NLP deep parsing pipeline
implemented as an Apache UIMA application. Originally it was part of the IBM
Watson system that won the Jeopardy challenge against human experts in 2011 [20]. It
receives as input a sentence and identifies syntactic, morphological and semantic ele-
ments of the sentence, building a dependency parse tree (see example in Fig. 5). In a
dependency tree, nodes are dependant of other nodes on the tree and that dependency is
a labelled edge representing grammatical relations like nominal subject, direct object,
object of a preposition. Dependency representations are useful for relation extraction
because they can connect terms even if they are not subsequent in the original sentence.

From the dependency tree, a set of linguistic-based subtree extraction rules are
executed in order to identify potentially interesting linguistic PAS (Predicate Argument
Structure) tuples. These tuples represents relationships across the textual entities, in the
form of <subject, predicate, object, object modifiers>, and other functional depen-
dencies that can be expressed as linguistic rules over the dependency tree, such as a
noun with object prepositions or adjective modifiers, e.g. in Fig. 5 <member, receive,
$1000, up to>, <adult, member>, <$1000, benefits, dental>, <$1000, benefits, year>.
Then, an ontology reasoning component translates functional dependencies in the
sentences (PAS) to semantic relations, i.e. ontological statements. First, the textual
entities in the PAS tuple are matched to ontological entities, based on a search over the
entity labels. Second, PAS tuples are matched into a Graph Patterns (GPs).

The search of GPs across the combination of relevant entities and datatypes within
a PAS is guided by domain-independent pattern templates. Given any of the combi-
nations between the candidate entities matched in a PAS, the system searches for the
patterns (or combinations) that better translate the PAS tuple, i.e. cover most of the
terms in the tuple, and if the found GPs are semantically compliant with the ontology it
adds them to the output KG. A pattern consists of variables (preceded by “?”) that must
bind to an ontological resource, parameters to substitute by the candidate matches of
the type sought, e.g., a class, property, instance or datatype (in between <>) and the
target variable (?target) to instantiate. In our example, for the PAS tuple <adult,
member>, the pattern fired between the matched instance adult (of type AgeRange) and
the class MemberEligibility is: ?target rdf:type <Class>. ?target ?property <Instance>,
that identifies hasAge as a valid binding for ?property, resulting in the instantiated
pattern ?target rdf:type <MemberEligibility>. ?target <hasAge> <adult>. For other
PAS tuples multiple combinations of patterns can be executed and intermediate nodes
may be inferred in order to find a path between two resources connected in the
ontology. A BR is then created by joining together all GPs obtained from the connected
PAS tuples, i.e. those that have a join term. The resulting BR (shown in Fig. 3) can be
consolidated with other BRs created from other subtrees in the sentence or across
sentences.
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SystemT Approach. SystemT is an industrial-strength declarative rule-based IE sys-
tem. Borrowing ideas from database systems, commonly used text operations are
abstracted away as built-in operators […] and exposed through a formal declarative
language called AQL (Annotation Query Language) [21]. The output of the execution of
an AQL query is a set of tuples in tabular form (see example in Fig. 4). As a first step, the
implemented extractor explores the ontology structure and annotations to dynamically
generate, for each property of interest in the ontology, a corresponding set of extraction
queries in AQL based on multiple property templates. These extraction queries aim at
extracting candidate ontology pairs, i.e. <property, range>, based on the annotations
resulting from the available concepts annotators, ((2) in Fig. 1). For example, given the
annotations in Fig. 5, <receive, dental benefits> may be selected as a candidate pair for
the hasApplicableService property. These queries combine different extraction approa-
ches based on the characteristics of the target property, e.g. property type, range types,
polarity, as well as the syntactic and semantic information available for the examined
sentence. The property-range extraction approaches can be divided into two main cate-
gories: (1) semantic-based approaches, that make use of the results of a shallow semantic
parsing of the input text1, and they reason over semantic roles, actions and contextual
information, (2) distance-based approaches, used as fall-back strategies when the
semantic information is partial or missing, e.g. due to incomplete or grammatically
incorrect sentences, and are based on the sequence and distance between a property-
trigger and a corresponding candidate range annotation. For example Fig. 5, in a strategy
of type (1) extracts the condition ‘applicable service: dental benefits’ by taking into
account themain action, its polarity and the connected theme (see Fig. 4), while a strategy
of type (2) extracts the condition ‘max reimbursement: 1000$’ by considering the
proximity of the property’s trigger “up to” and the candidate range value “1000$”.

Fig. 4. Example of simplified AQL query and resulting tabular output

Fig. 5. Example of annotations extracted from the Concepts Annotation component and from
the WatsonX and SystemT tools.

1 The shallow semantic parsing of the sentence is performed through a natural language understanding
capability of SystemT, currently under development, that computes and exposes information
regarding the semantic roles present in the sentence, e.g. actions, agents, themes and contextual
information of those actions, together with information regarding voice, polarity, etc.
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All the applicable extraction queries are executed for each property of interest
producing a set of candidate ontology triples where the domain can be inferred due to
the previously described constraints on the ontology. The confidence score of each
triple is dependent on the approach that generated the triple and on the information
taken into account, e.g. semantic approaches are usually stronger than distance-based
approaches and an explicit property trigger is stronger than an inferred trigger. As a last
step, the extracted candidate pairs are then filtered and ranked, based on the associated
confidence scores, in order to enforce the intuition that a specific span of text in the
sentence can be associated only to a single condition in the resulting benefit rule, e.g.
“1” can be either part of a date range or of a unit limitation. For each sentence, a BR is
populated with all the selected triples.

Filtering and Consolidation. A fundamental step is the consolidation and filtering of
the KGs created by the different extractors. This phase try to accomplish various goals:
(1) enforce all the constraints expressed in the ontology, e.g. disjointness between two
properties, min and max cardinality; (2) consolidate BRs extracted from different
portions of the policy text, currently different sentences of the same paragraph;
(3) consolidate BRs extracted by different extractors on the same policy text; (4) dis-
card BRs that are noisy. We give an overview of the approaches adopted in the
following.

Ontology Constraints Enforcement. The consolidation strategies that fall in this cat-
egory are meant to find and solve ontological constraints violations, e.g. max cardi-
nality constraints to enforce, for example, the presence of a single age range per BR.
These are the main strategies executed in the internal consolidation stage for each
extractor and are based on the statements’ confidence scores.
Consolidation Across Sentences. These consolidation strategies are meant to merge
information extracted from different sentences in a policy. Consider the example
“Adult members may receive up to $1,000 in dental benefits per year (July 1 through
June 30). Emergency and denture benefits are not subject to this limit.” we would like
to capture the information that emergency benefits and denture benefits are not covered
by this rule. As a first implementation, assuming that the extractors capture the relevant
information in two BRs, one per sentence, these BRs are merged if the resulting BR
does not violate any ontological constraint. In our example, the merge will succeed
extending the BR in Fig. 3 with the additional condition excluded services. Instead, if
considering the following as second sentence in our example “Emergency and denture
benefits are not covered for children.” the merge would fail due to the conflict between
the different age range conditions, i.e. adults and children. Currently, only the sen-
tences belonging to the same paragraph of text are considered as candidate for this kind
of consolidation, but we aim to improve the results of this strategy, e.g. by looking at
explicit co-references between sentences.

Consolidation Across Extractors. When different extractors generate a BR for the
same policy text, we want to output a consolidated result, if possible, to avoid repe-
titions and duplication. As a baseline strategy all BRs that are a subset of another BR
from the same sentence are merged together. More elaborated strategies can be
implemented i.e. to merge BRs that share most of the properties and can be merged
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without leading to (ontology) conflicts. More work is needed to implement strategies
able to handle the disagreement between extractors, e.g., based on the confidence
scores.

Noise Filtering. Finally, we implemented some filtering strategies to remove BRs
whose structure are too simple to be valid, as such we filter out: (a) BRs with only one
root property, e.g. describing only a member eligibility requirement; (b) sentences, and
corresponding BRs, that do not contain any explicit property trigger (i.e., no onto-
logical relation was detected across any of the entities mentioned in the sentence) for
the specific BR type; (c) BRs that contain less than n condition values. Different
strategies can be selected depending on if we want to maximise precision or recall.

5 Evaluation

Here we describe the ground truth, first set of metrics and evaluation framework used to
assess the quality of the KGs extracted from policy text. To obtain a Ground Truth
(GT), expert Investigators sampled pages from Medicaid policy documents and
modelled an ‘expected’ set of structured BRs for them. The BRs were modelled using
the same user-friendly ‘flat’ UI representation described in Sect. 4.1 (see Fig. 2).
Guided by the ontology, this UI enables investigators to express policy knowledge by
selecting structured combinations of conditions and entities or datatype values (to
define BRs). Two investigators and a senior investigator lead worked together to create
and agree on the GT, which was subsequentially peer-reviewed by a wider investi-
gation team. To measure how well our approach generalises across different policy
areas, Ground Truth was created for two areas: Physical Therapy and Dental Services.
Once the investigators input the GT in the system, the evaluation framework is fully
automated (configurable to use one or both extractors and different consolidation
strategies). This enables us to incorporate and evaluate new policy domains.

Standard Precision(P) and Recall(R) metrics are adapted to measure the quality of
extracted knowledge against the GT. However, in this scenario we cannot focus only
on the quality of an individual pair of condition and value, but we need to consider the
overall quality of the BRs extracted which combines multiple conditions and values.
We focus our performance evaluation at both an overall knowledge-extraction
(BR) level (how well the extracted BRs match the Investigators’ expectations), as well
as the contribution of individual elements (condition and values) to overall
performance.

5.1 Performance Metrics and Results

The evaluation metrics are calculated by comparing automatically-extracted BRs to
investigator-defined BRs (GT) on the same policy text. BRs are always compared in
their ‘flattened’ form and are sorted based on the order they appeared in the policy text.
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Ground truth BRs RGT ¼ RGT
j

n o
; j ¼ 1; . . .; nGT are paired with those automati-

cally extracted from the same policy text RE ¼ RE
i

� �
; i ¼ 1; . . . ; nE. They are iden-

tified as (a) Exact matches, if all condition-value pairs ck : vkf g; k ¼ 1; . . .; Li are
identical; (b) Partial matches, if some conditions are missing or values of identical
conditions differ, or (c) Not matched, if no identical condition was identified or if there
was no rule coming from the same policy text. For every pair of partial matches BR

RGT
j ;RE

i

� �
, a similarity score Sji is calculated (1) and the GT BR is matched to the

extracted BR with the highest similarity score. This pair is then removed from each set
before the process continues.

Sji ¼
min Li; Lj

� �

max Li; Lj
� � � 1

Lj
�
XLj

k¼1
scoreck ð1Þ

where Lj and Li are the sizes of RGT
j and RE

i correspondingly (i.e., how many conditions

each BR consists of),
min Li;Ljð Þ
max Li;Ljð Þ represents a penalizing factor when the sizes of the two

BR are not the same (rule length similarity). The score for each condition value pair
ck : vkf g is calculated (2)

scoreck ¼
0; if ck is captured in RGT

j ; but not in RE
i

1; if ck is captured in both RGT
j ;RE

i and vk is the same

0:5þ 0:5 � f1 � 1� 1
Cak

� �
; if ck is captured in both RGT

j ;RE
i and vk differ

8><
>:

ð2Þ

Here, f1 is the harmonic P-R mean generated by comparing the values of ck in RGT
j

and RE
i and Cakf g is the number of semantically compatible candidate values a con-

dition may have in the ontology (i.e., instances of the same type, such as all known
medical programs), for datatypes Cak is 1.

Precision (P) measures the proportion of extracted rules that match the GT. Recall
(R) measures the proportion of GT rules correctly extracted. f1 combines these two.
Specifically, they are defined as follows (3):

P ¼ n� exact matchesþ n� partial matches
n� extracted rules

R ¼ n� exact matchesþ n� partial matches
n� GT rules

f1 ¼ 2 � P � R
PþR

ð3Þ

In the GT, we have 50 manually created BRs extracted from 27 pages of Dental
policy, and 25 manually created BRs extracted from 14 pages of Physical Therapy
policy. The evaluation metrics for each scenario are presented in Table 2.
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As expected, WatsonX deep-parsing, yields more precise BRs but also misses
relations that were not captured from the dependency tree (e.g. because of ill-formed or
complex sentences). SystemT applies a shallower NLP approach as well as different
techniques to maximize recall. Two consolidation strategies are compared, the first one
merges all BRs that are subset of another and the second one merges BRs if it doesn’t
lead to ontology conflicts. They offer a good compromise between (P) and (R).
Combining both extractors increases (R) with a relatively small impact on (P). Further
work could look at more sophisticated consolidation strategies that are able to leverage
the confidence scores assigned by the extractors when merging statements across BRs,
while detecting unresolved conflicts that require investigator input.

The evaluation framework also measures the contribution of individual elements to
overall performance – specifically, P and R for each condition-value pair (see examples
in Fig. 6), which helps with iterative enhancement and debugging of the extractors.

5.2 Discussion

Here we look at areas where further work is likely to improve performance:

Automatic Extraction of Condition-Value Pairs: (1) a parse tree may not capture
implicit semantic relationships present in policy text which can lead to failures cap-
turing values. For example, a date range in brackets at the end of a sentence about

Table 2. Evaluation results: P, R, f1, n° of exact and partial matches, average scoreck , n° of
extracted BRs not matched to the GT (FP) and n° GT BRs not matched by extracted BRs (FN)

P R f1 n° exact n° partial Avg. sc FP FN

Approach (dental policy)
WatsonX only 0.84 0.54 0.66 4 23 0.5 5 23
SystemT only 0.70 0.66 0.68 5 28 0.56 14 17
Consolidated (subsets) 0.75 0.82 0.78 6 35 0.54 14 9
Consolidated (non-conflicts) 0.78 0.64 0.70 6 26 0.61 9 18
Approach (Physical Therapy)
WatsonX only 0.94 0.64 0.76 6 10 0.63 1 9
SystemT only 0.64 0.72 0.68 4 14 0.56 10 7
Consolidation (subsets) 0.64 0.84 0.73 7 14 0.60 12 4
Consolidation (non-conflicts) 0.69 0.80 0.74 7 13 0.60 9 5

Fig. 6. Visualisation of P/R results on a subset of conditions when considering condition values.
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waiver programs describes the period when that program is active. If the parse tree does
not pick up the dependency, no values will be extracted for the relevant date range (in
order to balance P & R, our extractors avoid making relational inferences in these
cases); (2) Contextual values may be set outside of the sentence or paragraph being
extracted - e.g. by titles like “Orthotics for Adults” or introductory sentences, or table
headings (for text inside table cells). (3) Parsing errors can be introduced during the
policy PDF ingestion which in turn lead to incorrect value extraction downstream in the
extractors.

Mismatches Between GT and Extracted Condition-Value Pairs: (1) Some fields may
have alternative valid representations leading to them being incorrectly measured as
misses during the automatic evaluation - e.g. when the GT contains ‘1 year’ but an
extractor gets ‘12 months’; (2) Investigators modelling expected BRs (GT) may include
knowledge that does not come from the policy text - e.g. modelling “high risk for
caries” in the GT when they see a type of tooth surface in policy text that they happen
to know is prone to caries. While extractors cannot make these inferences per-se, some
progress may be achievable via an ontology hierarchy (specifically subclassOf and
partOf). This could be used to infer some relationships, such as ‘anterior teeth’ from a
reference ‘canine’ or ‘incisor’. More work is needed here, in particular for temporal
expressions.

Invalid Condition-Value Pairs and BRs: (1) Paragraphs that mention relevant entities
(e.g. a healthcare service and a program, or body parts) but do not describe limitations
or other policy knowledge may still result in an BR being extracted, we describe these
BRs as false positives or ‘noise’ and measure them via Precision (P). (2) Different
extractors may produce conflicting BRs that cannot be merged. When this happens, one
is selected and the other is measured as ‘noise’. For performance measurement, the one
with the best-matching similarity score to the GT is selected; (3) A sentence may lead
to two different BRs, for example, an ‘orthotic’ policy, expressing different service
coverage for adults and children will be extracted as one BR for adult orthotics and
another BR for child orthotics. Similarly two BRs may be consolidated into a ‘logical’
BR. For example, a unit limitation might refer to either a combination of procedures,
implying the need to create only one BR covering all procedures, or to each procedure
individually, in which case a separate BR limitation should be created for each. Due to
ambiguity in text, two BRs may be have been erroneously consolidated into one (e.g.,
“Members [] are eligible for any combination of up to four (4) prophylaxes or up to
four (4) periodontal maintenance visits”). We aim to address this challenge firstly, by
more advanced BR consolidation strategies utilising confidence scores, and secondly
by exploiting information redundancy in policies.

Human/Machine ‘Co-reasoning’: The goal of our work is to enable Investigators to
collaborate and ‘co-reason’ with tools like these, not merely to automate knowledge
extraction from policy text. A central element of this is empowering human Investi-
gators to interact with, curate and use the extracted knowledge. This was the rationale
for creating the UI (see Fig. 2) and ‘flat’ KG representation early on. These have been
central to both iteratively reviewing extractor output with expert Investigators, as well
as helping them to construct a GT to support formal performance measurement.
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Informal feedback from the Investigators about the UI representation has been very
positive. In particular, we were gratified to find that they could take new policy areas
and rapidly construct high-quality GT for them after only a few hours of acclimatising
to the UI tool. In large part, this is due to the ontology (and hence the UI) being driven
by concepts and structure derived from on their own BR templates. In future, we hope
to use this approach to speed up the process of obtaining formal GT for measuring
performance on new policy domains. Specifically, by automatically extracting BRs and
having Investigators manually curate them into a formal GT (rather than creating GT
manually by hand).

Impact on the Investigators’ Workflow: Computable policies in the form of benefit
rules enables a wide range of downstream benefits that can have a significant
improvement to the investigators workflow. Examples of this include:

• Investigators always have a large backlog of investigations and they lack objective
data on which to prioritize the opportunity landscape. Automatically constructed
benefit rules could be executed against claims data to quantify systematic policy
violations and support prioritization.

• Investigators need to provide strong evidence to support allegations of policy
violations particularly for legal proceedings. Automatically constructed BRs can
explicitly tie invalid claims to the policy constraints that they are violating.

• Additionally, through curation of the automatically constructed BRs we are building
institutional knowledge on correct and complete policy BRs relevant for investi-
gation cases. This enables consistency in policy reviews. The BR representation
serve as a means for policy data insights, validation and sharing of knowledge
across team members with varied levels of expertise and diverse skillsets. As such
the BRs can inform development of new algorithms or enable modification of
existing algorithms to make them more precise, targeted and complete.

6 Conclusion and Future Directions

We have developed a semantic system to extract a KG of actionable BRs from
healthcare policies. The ontology is designed to balance expressiveness of the extracted
knowledge with the ability to represent it in a simple, unambiguous, human-readable
way to support policy comprehension and curation. The engagement with our target
users (investigators) early in the development and throughout the continuous delivery
process was key for the successful adoption of our semantic solution.

We presented a first validation of the semantic solution with investigators and
showed solid progress in two vertical domains. Most of the effort required to generalise
is on identifying external data linked to the ontology (i.e., instance data) that is state-
specific, such as programs and codes that are not part of the federal code set.
Nonetheless, we found a strong degree of re-usability in the core concepts between the
two domains (i.e., same BR modelling was applicable), making this an excellent
domain for the application of SW technologies. More BR types are being incrementally
added for the next version of the system, thus incrementally improving the scope of
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information available to Investigators doing policy research. By tying together these
BRs and the policy text from which they are derived, investigators can build the
evidence necessary to make a case for recovery of inappropriately paid claims.

Further planning is in process to cover more policy areas and assessing both the
value and viability of this technology for large-scale deployment across several
domains. We aim to provide quantitative metrics on usability, increased productivity in
the context of investigations (e.g., not just on time-saved but on whether this solution
supports our users’ prioritization of investigations that are likely to result in additional
money recovery) and generalisability, scaled across policy domains. To this end, we
hope to transition from manually-created GT to automatically extracted and manually-
curated GT, which we expect to be considerably more efficient.

There is much room to improve performance, such as the ability to induce domain
specific reasoning patterns. We aim to investigate approaches for classifying policy
paragraphs that contain BRs (using labelled data collected via the UI), as this will
reduce noise BRs by filtering out irrelevant paragraphs; as well as approaches for
learning patterns not yet be explicitly captured in the ontology. We aim to experiment
with unsupervised approaches to find paraphrases and to augment partially-populated
KG. Finally, our hope is that extracting high-quality, computable representations of
policy knowledge will ultimately lead to new, policy-informed ways of analysing
claims data.
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