
VLog: A Rule Engine for Knowledge
Graphs

David Carral1, Irina Dragoste1, Larry González1, Ceriel Jacobs2,
Markus Krötzsch1, and Jacopo Urbani2(B)

1 TU Dresden, Dresden, Germany
{david.carral,irina.dragoste,larry.gonzalez,

markus.kroetzsch}@tu-dresden.de
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

{ceriel,jacopo}@cs.vu.nl

Abstract. Knowledge graphs are crucial assets for tasks like query
answering or data integration. These tasks can be viewed as reasoning
problems, which in turn require efficient reasoning systems to be imple-
mented. To this end, we present VLog, a rule-based reasoner designed to
satisfy the requirements of modern use cases, with a focus on performance
and adaptability to different scenarios. We address the former with a
novel vertical storage layout, and the latter by abstracting the access to
data sources and providing a platform-independent Java API. Features
of VLog include fast Datalog materialisation, support for reasoning with
existential rules, stratified negation, and data integration from a variety
of sources, such as high-performance RDF stores, relational databases,
CSV files, OWL ontologies, and remote SPARQL endpoints.

1 Introduction

Semantic web research covers a wide range of topics from knowledge representa-
tion, over information integration, to query answering and data analysis. Only a
few concepts are important throughout all of these areas. One is the Knowledge
Graph (KG) concept, that is, a knowledge base that can be represented as an
entity-relationship graph. Another one is the rule concept, used to derive implicit
consequences from given inputs: combinations of rules and (OWL) ontologies
have a long tradition [22,28], and recent works introduce rules as ontology lan-
guages in their own right [3,12]. Moreover, rules play a key role in many reasoning
algorithms [20,21,40]; database dependencies are rules used in data access and
information integration [13]; and rules are also the basis of expressive query lan-
guages [1] used in graph analysis [34]. It is therefore not surprising that many
new rule engines have been created in recent years [4,5,7,14,29,37].

These rule engines are used to solve many different use cases. For instance,
the engine Llunatic [14] is tailored to solve data integration issues [13]; that is,
to translate data from one or more sources into a single target database. The
system RDFox [29] has been used to perform sophisticated data analysis for

c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11779, pp. 19–35, 2019.
https://doi.org/10.1007/978-3-030-30796-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30796-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-30796-7_2


20 D. Carral et al.

the healthcare provider Kaiser Permanente in [31] (more RDFox use cases are
described at https://www.oxfordsemantic.tech/usecases). Furthermore, using
acyclicity notions [8,12] or consequence preserving DL-to-Datalog translations
in [9–11], one can effectively employ rule engines to solve reasoning tasks over
a large subset of OWL ontologies. Note that when it comes to reasoning over
ontologies with large amounts of assertions, rule engines are much faster and
scalable than state-of-the-art DL reasoners (see the evaluations in [9–11]).

We have recently extended our own rule engine VLog [37] with a highly effi-
cient bottom-up computation strategy for existential rules (i.e, rules that allow
for existential quantifiers in the head), and showed that it can outperform effi-
cient rule engines such as RDFox [29] in a range of widely common benchmarks
[38]. This performance enables rule-based reasoning over KGs with hundreds of
millions of facts on a regular laptop, making this system valuable for semantic
web applications that involve large KGs such as Wikidata [39].

In spite of these technical achievements, the research prototype used in our
previous evaluations was hardly a polished software product, and deployment
and practical usage was challenging. Moreover, VLog could originally only be
controlled from the command line, making it difficult to interface with it from
software applications – arguably one of the main uses of a knowledge representa-
tion and data analysis platform. To overcome these obstacles, we have developed
VLog from a research prototype into a re-usable software package that bundles
many new functionalities:

• Existential rule reasoning support using an optimised version of the restricted
and skolem chase algorithms.

• Support for stratified negation [1], allowing negated atoms in rule bodies.
• Translation of OWL and RDFS ontologies into equivalent rule and fact sets.
• Integration with the Graal rule library [4] and its data structures (e.g., exis-

tential rules, facts, and queries). This includes support for loading rules in
Graal’s DLGP syntax.

• Methods for static analysis of rule sets, e.g., to verify the termination of
reasoning over sets of existential rules using acyclicity notions [8,12].

• A data federation layer to integrate – seamlessly and on demand – data from
many sources, including various database management systems, file formats,
SPARQL endpoints, and data provided from Java programs.

• All these features are accessible through the Java library VLog4j, which pro-
vides a full-fledged API for rule representation and reasoning.

VLog (C++) and VLog4j (Java) are free and open source, and use public
repositories for development, issue tracking, and continuous integration.1 This
paper is based on VLog v1.2.0 and Vlog4j v0.3.0. Packages for simple installation
are distributed via Maven.

We present VLog(4j) through a practical example (Sect. 2) and then give
a detailed system overview (Sect. 3). Further sections include a performance
evaluation (Sect. 4), a detailed discussion of related tools (Sect. 5), and practical
hints on how to obtain VLog (Sect. 6).
1 https://github.com/karmaresearch/vlog and https://github.com/knowsys/vlog4j.

https://www.oxfordsemantic.tech/usecases
https://github.com/karmaresearch/vlog
https://github.com/knowsys/vlog4j


VLog: A Rule Engine for Knowledge Graphs 21

Fig. 1. Example for rule reasoning and data integration; geneon:id and rdfs:subClassOf
are shortcuts for <http://www.geneontology.org/formats/oboInOwl#id> and
<http://www.w3.org/2000/01/rdf-schema#subClassOf>, respectively

2 Functionality Overview

In this section we present an example that illustrates the use of VLog for data
integration and reasoning, which allows us to explain VLog’s main features in an
intuitive way. We use two data sources: the Disease Ontology (DOID),2 which
contains information about human diseases and their relationships, and Wiki-
data [39], from which we retrieve information about recent fatalities attributed
to certain diseases. This data will be integrated and reasoned over using the rules
shown in Fig. 1, which we will explain step by step. Rules are written as in logic
programming, with premise (body) on the right and conclusion (head) on the
left. The overall code for running the example is available as part of VLog4j.3

Basic Rule Reasoning. We first configure VLog to use DOID as the only data
source. Triples from the RDF serialisation of this ontology are mapped to facts of
the form doidRdf(s, p, o). Then we can use rules (1) and (2) to compute the sub-
class hierarchy of diseases. Rule engines can capture much more complex OWL
inferences [9], but RDFS reasoning suffices for this simple example. Rule (3) now
extracts a string identifier for each disease IRI, and rule (4) combines this with
the disease hierarchy to find all types of cancer (id DOID:162).

Combining Facts from Different Input Sources. VLog can load data from many
different sources, including files of various formats and databases. In this exam-
ple, we add data that is fetched from the live SPARQL endpoint of Wiki-
data [26]. For example, we can query for humans who died in 2018 as follows:
SELECT ?human WHERE { ?human wdt:P31 wd:Q5; wdt:P570 ?deathDate .

FILTER (YEAR(?deathDate)=2018)}

2 More information about the disease ontology at http://disease-ontology.org/.
3 See file DoidExample.java in the vlog4j-examples module (VLog4j repository).

http://www.geneontology.org/formats/oboInOwl#id
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://disease-ontology.org/
https://github.com/knowsys/vlog4j/blob/master/vlog4j-examples/src/main/java/org/semanticweb/vlog4j/examples/DoidExample.java


22 D. Carral et al.

where we use Wikidata IRI such as wdt:P570 (date of death) or wd:Q5 (human).
The result of this query is mapped to VLog facts recentDeaths(hum). We fur-
ther define SPARQL-based facts recentDeathsCause(hum, cau) (recent deaths
with known cause of death) and diseaseId(dis, doid) (diseases in Wikidata with
a DOID identifier). We can now find all people who died of cancer in 2018, using
rule (5). For the moment, let’s assume that deathCause in the body holds just
the data from recentDeathsCause, as inferred from rule (9). Using VLog, we find
562 cancer-related deaths in 2018.

Negation. VLog supports stratified negation, which relies on a simple syntactic
check to ensure that no inference can depend recursively on its own negation [1].
Using ∼ for negation, rule (6) finds all recently deceased humans who died of a
cause that was not cancer. However, there are also people whose cause of death
cannot be found in DOID. To include these, we use rule (8), where hasDoid
defines Wikidata diseases with a DOID (7). Overall, we thus find 1849 non-
cancer casualties in Wikidata.

Existentials and Incomplete Information. These result could lead us to believe
that 23% of recent deaths in Wikidata were due to cancer. However, many
deceased have no cause of death stated, and are therefore not counted. We can
state that every death must have some (possibly unknown) cause using rule exis-
tential quantifiers: rule (10) uses a variable Y that occurs only in the head to
denote that some such Y must exist, i.e., the rule corresponds to the logical for-
mula ∀x.∃y.deathCause(x, y) ← recentDeaths(x). This rule allows us to apply (8)
even in cases where no cause was specified, leading to a total of 16,173 deaths
that are not known to be caused by cancer.

Rule Syntax. Figure 1 uses a common logic programming syntax for illustration.
In practice, VLog uses the Graal rule library for Java to read rules from files
[4]. This library uses the DLGP format, which supports most of Fig. 1 as shown.
Only negation is not supported by Graal yet, and our example program therefore
constructs rules (6) and (8) directly in Java code.

OWL Support. Another way of defining rules is to load them from OWL ontolo-
gies. VLog has built-in methods for converting a (disjunction-free) subset of
OWL into rules. In this transformation, OWL classes and properties become
unary and binary predicates in VLog, which is different from our example, where
classes (diseases) were represented as individual constants to achieve data inte-
gration with diseases from Wikidata. In practice, it is important to chose the
right perspective on ontological data, and VLog provides this flexibility.

Reasoning Implementation. VLog’s main approach for fast inference com-
putation is bottom-up materialisation of consequences. The standard (a.k.a.
restricted) chase is used as the main algorithm, but the skolem (a.k.a. semi-
oblivious) chase is also supported [38]. In addition, VLog implements some



VLog: A Rule Engine for Knowledge Graphs 23

Fig. 2. Overview of the system architecture of VLog

heuristic optimisations based on goal-directed approaches such as QSQR and
Magic Sets [37].

Since existential rules can entail new (unknown) values, reasoning may pro-
duce an unbounded number of new facts and thus fail to terminate. Detecting this
is undecidable in general, but VLog supports several recently proposed checks
that were found to determine chase termination in many practical cases [8].

3 System Overview

In this section we provide a high-level view of our design and overall architec-
ture before elaborating on the details on individual components in the following
sections. The design of VLog has been driven by five main requirements: perfor-
mance, efficiency, expressiveness, portability, and the ability of interfacing with
existing technologies.

Performance and efficiency, i.e., the ability to solve tasks quickly and with
a minimum of resources, are obviously central to any reasoner. Performance
is important because reasoning can be a time-consuming operation and some
use cases introduce time constraints, e.g., to guarantee an interactive usage of
the system. Efficiency is crucial to apply our solution also to platforms where
the hardware is limited, e.g., IoT devices [35]. Expressiveness broadly refers to
the system’s ability to use rules that can describe the conceptual relationships
of many relevant use cases. There is a well-known trade-off between expressive
power and complexity of related computational tasks, so one has to balance this
requirement with our considerations for performance.

Portability of a tool refers to its applicability on many different platforms,
and as such is well-appreciated in general, and in the particularly diverse appli-
cation scenarios encountered in the semantic web in particular. It can be chal-
lenging to provide portability without compromising performance. Our related
requirement of interfacing with existing technologies is a natural consequence
of the intention to use our rule engine as a key component for integrating and
analysing knowledge from a variety of data sources, including legacy sources and
sources that are not under the full control of the user.



24 D. Carral et al.

In order to achieve good performance and efficiency, VLog takes the distinc-
tive approach of using a vertical storage layout that stores derivations column-
by-column rather than row-by-row (this approach has been described in more
detail in [37]). This strategy is beneficial because it allows memory savings due
to data-structure sharing, and is able to avoid much unnecessary computation.
Expressiveness is addressed in several ways. Already on the level of the basic
Datalog rule language, VLog supports predicates of arbitrary arity. Even in the
world of triples, predicates with more than three parameters can be crucial for
performing certain computations [21] and they have applications in utilising less
strongly normalised data models, as, e.g., in modern knowledge graphs [39].
In addition, VLog supports existential rules that extend significantly beyond
standard Datalog. Finally, portability and the ability of interfacing to existing
sources are addressed at the system level by reducing the external dependencies
to the minimum, and by imposing a strict separation between the underlying
databases and the set of derivations. This leads to an architecture that can make
use of many different data sources during reasoning.

VLog is a complex system where four major components are responsible
for different tasks. The components and their interactions are illustrated in
Fig. 2. They comprise: the input layer, which provides access to the underlying
databases; the derivation storage, which stores the derivations in main memory;
the reasoner, which is responsible for the computation of the derivations; and
the system interface, which provides access to the functionalities to the system.

The components on the right of Fig. 2 are integral parts of the backend of
VLog, which is implemented in C++. The system interface involves the Java API
VLog4j, which is software project that uses VLog’s backend as a dependency and
comprises further sub-modules. Each of these components is described in more
detail in the following sections.

3.1 Backend Components: Input and Derivation Storage, Reasoning

Input Layer. VLog keeps a strict distinction between data that is available
in some external sources and data that is inferred by the rules. To enable a
seamless integration with different data structures, we abstracted the access to
these sources into a small API. We implemented this API so that our engine can
read information from sources like RDF Triple stores, MySQL, ODBC (standard
relational database API), remote SPARQL endpoints, and CSV tables. Extend-
ing the support to other sources is an operation that does not require a deep
knowledge of the system. Note that internally VLog uses numerical IDs to com-
press the storage of strings. The conversion between strings into IDs (dictionary
encoding) is not trivial if the data comes from multiple independent sources. In
VLog, we addressed this challenge implementing a sophisticated mechanism to
translates on-the-fly terms that are read from multiple sources to shared IDs.

Derivation Storage. A characteristic design choice of VLog is its optimised,
“vertical” derivation storage that represents all facts that are computed during
reasoning. These are stored in a series of in-memory data structures following the



VLog: A Rule Engine for Knowledge Graphs 25

distinctive columnar layout [37]. Moreover, the derivation storage also provides
access to derivations in a similar way as the input layer.

Internally, columns of terms can be stored with different data structures.
The most commonly used data structure is a plain in-memory array, but other
representations are also possible to save memory. For instance, a special rep-
resentation is used if the column consists of a list of the same repeated term.
Another special data structure is used in case the column is a projection of a
column of an input predicate. To illustrate this last case, consider as example
the Datalog rule H(Y,X) :- B(X,Y ) where B is a predicate that maps to an
underlying data source. In this case, the column that represents the first field
of the H predicate (i.e., Y ) is equivalent to the column X in B (assuming that
no H-facts have been previously derived, which might require duplicate elimina-
tion). To save space, the column Y used in H does not contain a physical copy
of all values retrieved from the input layer, but simply stores a query that will
allow VLog to retrieve them as needed. This is possible because columns are
immutable objects, and in practice results in large memory savings.

Reasoner. VLog supports two types of reasoning: full materialisation (i.e., the
bottom-up computation of derived facts) and query-driven reasoning (i.e., the
top-down search for answers to a given conjunctive query). Computing the full
materialisation is perhaps the most common reasoning task in the Semantic Web
community while query-driven reasoning is useful whenever full materialisation
is not possible. The algorithm for performing full materialisation is conceptually
simple as it can be seen as a single-threaded loop where all rules are executed
one-by-one until saturation. VLog implements the usual “semi-naive” optimisa-
tion that largely reduces the amount of duplicates that are inferred, with slight
modifications to account for the more fine-grained columnar data structures [37].

When dealing with existential rules, the process becomes significantly more
complicated. A blind application of rules would almost always lead to the cre-
ation of unbounded numbers of new objects, and the process would not termi-
nate. We therefore implement an additional restriction that checks if existing
objects can be re-used to satisfy the conclusion of rules before creating any new
objects. In detail, our approach is a variant of the 1-parallel restricted chase
in the terminology of Benedikt et al. [6]. We further refine this approach by
ensuring that non-existential (plain Datalog) rules are always saturated before
considering an existential rule, which achieves termination in additional cases
that occur in real-world knowledge bases [8]. As an optional setting, we also
implement the skolem chase, which uses a simpler check for deciding on rule
applications and terminates in fewer cases. However, experiments suggest that
this approach leads to lower performance and higher memory usage across all
common benchmarks [38], so this algorithm is not used by default.

In contrast, query-driven reasoning considers an input query and only returns
derivations that match it. Two well-known procedures are supported for query-
driven reasoning: Magic Sets and QSQR [1]. The first is a rewriting technique
which rewrites the rules so that the derivations produced by the rewritten rules
are relevant for the input query while the second procedure is a set-based



26 D. Carral et al.

variant of the well-known SLD procedure [1]. Since Magic Sets is a rewriting
procedure, it does not perform any reasoning in itself but instead offloads it to
the materialisation engine. In contrast, the QSQR algorithm has a dedicated
implementation which uses in-memory lightweight data structures to store the
intermediate derivations. This makes it suitable for answering queries which
do not trigger substantial reasoning due to its small overhead. Magic sets, in
contrast, exploits the efficient full materialisation engine so it is able to han-
dle the remaining cases. VLog implements both procedures, and it is the user
who can choose the method to use. The query-driven methods can optionally be
enabled to heuristically increase reasoning performance even when using materi-
alisation [37]. However, the methods are not applicable to rules with existential
quantifiers in their common form, so we do not invoke them in such cases.

3.2 System Interface: Java Integration and Stand-Alone Programs

The system interface component of VLog comprises several independent modules
for invoking the reasoner in a variety of application contexts. Concretely, VLog
ships with two stand-alone programs – a command-line client and an interactive
Web interface –, and is integrated into the Java library VLog4j, which allows
the engine to be used within larger applications.

The Java API VLog4j. We have developed a new API for tight integration
with Java, which is a popular language in the Semantic Web community. The
purpose of this interface is not only to control VLog from Java, but also to
provide a complete framework for working with rules and facts. We have therefore
designed an object model for representing such data, and provided classes for
configuring the reasoning process. Through several extension modules, the Java
library can be used to obtain facts from RDF files and to extract rules and facts
from OWL. Besides loading facts and rules directly from objects in memory, this
library can also configure VLog to use multiple possible data sources, including
SPARQL federation, and the results of the materialisation are streamed back
using iterators.

This interface also includes some functionalities to simplify the use of the
underlying rule engine. In particular, it supports punning, i.e., the use of the
same predicate name for predicates of different arity. This is not currently allowed
in VLog, but it is enabled by the Java interface by renaming predicates before
passing them on to the backend. This library also provides methods for trans-
forming rules and sets of rules; more specifically it can ensure that predicates
that map to input sources are distinct from all predicates used in rule heads.
Further algorithms for transformation and analysis of rule sets are planned for
future development.

Conceptually, VLog4j includes some aspects of a data format representation
library, making it more similar to Graal [4] than to RDFox in this respect. The
successful OWL API [19] is an example of a similar project for OWL ontologies,
and indeed has been a model for some of our design. When comparing VLog4j to
Graal, we can see that the latter currently provides a larger set of transformation



VLog: A Rule Engine for Knowledge Graphs 27

Fig. 3. VLog’s Web interface during full materialisation

algorithms, whereas VLog4j comes with a significantly faster reasoning engine [6,
38]. We plan to interface with some components of Graal in upcoming releases
so as to establish interoperability between the two projects – unfortunately, no
standard for representing rules is widely accepted today, so rule representation
APIs often have subtle structural or syntactic differences.

An important goal of VLog4j is to simplify usage, and we take several steps
to support this. The online repository includes a Javadoc code documentation
and a set of simple example programs to illustrate how to use VLog4j in several
scenarios. The Java API is released as a multi-module project through Maven
Central to ease its integration into existing projects.

Stand-Alone Programs. Two stand-alone executables are available to run
VLog services without the additional Java layer.

Web Interface. We built a web interface to offer the user the ability to specify the
rules without using any programming language, and for inspecting the results of
the materialisation in a convenient way. The first reason is especially useful for
educational purposes, while the second can ease the debugging of the system. A
screenshot of the Web interface in action is shown in Fig. 3. On the left side, it
reports some useful statistics about the resource consumption and other details
about the input layer while the right side allows the user to specify the rules
and inspect statistics which are shown as the materialisation progresses. Further
information about how to use this interface can be found online4.

4 https://github.com/karmaresearch/vlog/wiki/Web-Interface.

https://github.com/karmaresearch/vlog/wiki/Web-Interface


28 D. Carral et al.

Command Line. From the command line, the user can launch reasoning (both
full materialisation and query-driven procedures) and export the results into a
number of different formats. For instance, the user can request that all deriva-
tions are being exported as RDF triples or simply as CSV files. Moreover, if
Trident is used as only input backend, then the reasoner can add back deriva-
tions to the original database to enable SPARQL queries on both original and
derived triples.

4 Evaluation

A comparison between the performance of VLog and other state-of-the-art sys-
tems in computing the materialisation of KBs with large ABoxes is available
at [37,38]. In this section, we evaluate the practical feasibility of solving con-
junctive query (CQ) answering over data-intensive OWL ontologies using VLog.

Efficient DL reasoning support is highly relevant for our tool, as known rule
engines are significantly faster than DL reasoners for solving standard reasoning
tasks over ontologies with large data [9–11]. Moreover, (CQ) answering is a non-
standard reasoning task that cannot be solved by DL reasoners [15,36].

To solve CQ answering, we use our implementation of the Datalog-first
restricted chase (see Sect. 2). All test ontologies, queries, and result tables con-
sidered in this section are available online.5 All experiments were conducted on
a Mac Book Pro with 16 GB of RAM, and a 2,2 GHz Intel Core i7 processor.

We consider three real-world OWL ontologies and a benchmark. Each of
these ontologies consists of a TBox (a terminological axiom set) and an ABox
(a fact set).

• ChEMBL, Reactome, and Uniprot are real-world ontologies available
from the European Bioinformatics Institute (EBI) online platform.6 In order
to test scalability on these large datasets, we make use of a data sampling
algorithm based on random walks [25], and compute ABox subsets of increas-
ing size. This algorithm was reimplemented for RDF-based data and used in
[40].

• LUBM is a widely used ontology benchmark [18] modelling universities. The
TBox in these ontologies has been manually created and is fixed, whilst an
arbitrarily large ABox can be instantiated using an automatic generator.

For simplicity, we filter all axioms containing annotations, data properties, or
datatypes. Since VLog does not support non-deterministic rules, we also remove
(1) non-Horn axioms that cannot directly be transformed into deterministic exis-
tential rules (e.g., “subclass of” axioms containing a disjunction of class names
in the superclass). Moreover, we ignore (2) all axioms that, if transformed into
rules, would require the use of equality or inequality (e.g., functionality restric-
tions, or axioms featuring “at most” restrictions or “at least” restrictions with

5 Evaluation materials at https://github.com/knowsys/eval-2019-ISWC-VLog.
6 https://www.ebi.ac.uk.

https://github.com/knowsys/eval-2019-ISWC-VLog
https://www.ebi.ac.uk


VLog: A Rule Engine for Knowledge Graphs 29

Table 1. Statistics for TBoxes and translated rule sets: the columns report the number
of classes and properties in the TBoxes, and the number of existential, Datalog, and
non-Datalog rules in the translated rule sets in that order

#Classes #Properties #Rules #∀-Rules #∃-Rules

Uniprot 161 52 245 242 3

Reactome 68 55 210 209 1

ChEMBL 134 55 200 200 0

LUBM 43 25 97 89 8

Table 2. Number of atoms and answers per query; in each cell of the table we include
the values corresponding to each of the 3 queries considered for each ontology

Ont. #Atoms #Answers for samples 1–4

Chem. 5/7/6 123/738K/60 1K/5.4M/129 7K/26.1M/241 21K/90.2M/339

React. 2/6/6 338K/24/64K 1M/90/123K 2M/319/170K 2.5M/1K/185K

Unip. 2/5/7 9K/5K/15K 20K/10K/32K 30K/16K/50K 39K/23K/68K

LUBM 3/3/2 647K/738K/507K 1.3M/1.5M/1M 2M/2.2M/1.5M 2.6M/2.9M/2M

cardinality strictly larger than (1) because VLog only supports reasoning over
equality via axiomatisation and this might be too slow in practice. All axioms
removed in steps (1) and (2) were simply commented in the ontology files and
can be consulted if desired.

Then, we transform the TBoxes into equivalent rules using the transformation
implemented by VLog (see Sect. 2). We include statistics for the ontologies and
translated rule sets in Table 1. Finally, we use the acyclicity checks implemented
in VLog to determine that the chase does terminate for the translated rule sets
(see Sect. 2). Since this is the case, our implementation of the chase can be
effectively used to solve CQ answering over the output rules sets (and thus, over
the considered ontologies).

For each ontology, we consider three example queries and four ABox samples
with an increasing number of facts. The queries are manually designed for each
ontology to retrieve significant numbers of answers. Table 2 reports the number of
atoms composing each query, and the number of query answers obtained for each
of the four samples of facts. Figure 4 reports the execution times of the queries
on each of the ontologies. The reported times include performing materialisation
and returning all query answers to Java by the C++ reasoner. We exclude time
needed to parse the CSV-files that contained the facts.

We find that VLog can efficiently compute answers in all cases, even if the
ABox is relatively large. We consider all query answering times to be practi-
cally feasible, since they are well within the usual timeouts of, e.g., SPARQL
endpoints. When interpreting the times, it must be taken into account that
ontological reasoning has a major performance impact in this case as compared
to plain query answering on SPARQL.



30 D. Carral et al.

23.9M 45.9M 65.4M 82.3M
0

5

10

15

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

ChEMBL Query 1

23.9M 45.9M 65.4M 82.3M
0

200

400

600

800

Abox Size (in millions)
T
im

e
(i
n
se
co
nd

s)

ChEMBL Query 2

23.9M 45.9M 65.4M 82.3M
0

5

10

15

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

ChEMBL Query 3

2.4M 3.8M 4.9M 6.3M
0

2

4

6

8

10

12

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

Reactome Query 1

2.4M 3.8M 4.9M 6.3M
0

0.5

1

1.5

2

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)
Reactome Query 2

2.4M 3.8M 4.9M 6.3M
0

1

2

3

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

Reactome Query 3

9M 17.7M 26M 33.9M
0

2

4

6

8

10

12

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

Uniprot Query 1

9M 17.7M 26M 33.9M
0

2

4

6

8

10

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

Uniprot Query 2

9M 17.7M 26M 33.9M
0

2

4

6

8

10

12

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)
Uniprot Query 3

2.3M 4.5M 6.8M 9M
0

2

4

6

8

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

LUBM Query 1

2.3M 4.5M 6.8M 9M
0

2

4

6

8

10

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

LUBM Query 2

2.3M 4.5M 6.8M 9M
0

2

4

6

Abox Size (in millions)

T
im

e
(i
n
se
co
nd

s)

LUBM Query 3

Fig. 4. OWL query answering evaluation results; each table includes results for each
of the four different samples considered, one ontology (ChEMBL, Reactome, Uniprot,
and LUBM) and one query

We observe an interesting result for answering Query 1 on ChEMBL ontology:
the smaller third sample took more than one second longer than the larger fourth
sample. This may be due to the fact that VLog uses some heuristics to decide
between several join algorithms at runtime, based on cardinalities.



VLog: A Rule Engine for Knowledge Graphs 31

The introduction of an additional Java layer did not seem to hamper per-
formance, and indeed the times needed to convert ontologies to rules and to
transfer results back to Java were negligible. Our experiments demonstrate that
the use of VLog for CQ answering over data-heavy DL ontologies is feasible.

5 Related Work

To better compare VLog against other state-of-the-art, recursive rule engines,
we separate these systems into two broad categories.

1. RDBMS-based Systems [7,14,30], which use existing database technologies
to implement the chase. This category includes systems such as Demo [30],
Llunatic [14], and PDQ [7] which run on top of PostgreSQL.

2. In-memory Systems, which rely on the use of RAM memory to compute the
chase. This category includes systems such as Graal [4], DLV 2 [2], RDFox [29],
and Vadalog [5] as well as our own tool, VLog.

This classification is not perfect. Systems in the second category, such as Graal or
VLog, rely on database technologies to store and query input data. Furthermore,
systems such as Bash Datalog [33] cannot be categorised as either.

Even if we restrict our focus to “in-memory” tools, it is difficult to com-
pare VLog with the other systems in (2) as these support very distinct features.
For instance, DLV 2 supports disjunctions in the head of the rules, Graal can
recognise specific logic fragments and use this knowledge to apply specific opti-
mised algorithms, Vadalog can reason over a non-acyclic fragment of existential
rules [16], and RDFox is optimised for parallel [27] and even distributed [32]
computation. Nevertheless, unlike the other systems, VLog can ingest data from
a great variety of heterogenous formats. Furthermore, VLog implements the
Datalog-first restricted chase [38], a variant of the chase that terminates more
often than Skolem and restricted, and has been conjectured to be more com-
putationally powerful [23]. Table 3 compares different features of these Datalog
reasoners, based on publications and software released as of June 2019.

In recent work [38], we conduct an extensive evaluation to compare the per-
formance of our tool in comparison with that of RDFox, repeating experiments
from [6] and adding several more based on further real-world datasets. We find
that, for reasoning with plain existential rules on a reasonably powerful laptop,
VLog can often deliver comparable or even better performance than RDFox,
while consistently needing much less memory. Note that RDFox greatly outper-
forms both Graal and DLV [24] in the evaluation presented in [6] (note that
DLV is different from DLV 2, which was not considered in [6]). We re-ran our
earlier experiments with the current version of VLog, but the results were largely
similar (with an average speed-up of 12%), so we do not restate them here.

6 Accessing VLog

VLog is written in C++11, has only very few external dependencies, and com-
piles with GNU GCC, CLang, and Microsoft’s Visual C++ compilers. Binaries



32 D. Carral et al.

Table 3. Features of in-memory Datalog reasoners: Inputs (1: RDBMS, 2: RDF files, 3:
CSV files, 4: SPARQL endpoints); Neg. (negation semantics); Eq. (optimised equality
reasoning); Incr. (incremental updates); Mult. (integrating data from multiple sources)

Engine Inputs Neg. Eq. Incr. Mult. Free license

DLV 2 [2,24] 1 + (ASP) + + – –

Graal [4] 1, 2 – – – + + (CeCILL)

RDFox [29] 2 – + + – –

Vadalog [5,17] 1, 2, 3 – + – + –

VLog 1, 2, 3, 4 + (strat.) – – + + (Apache2)

are available for Linux, MacOS, and Windows. The codebase uses CMake in
order to simplify and automate the compilation and in most of the tested sce-
narios this process reduced to the execution of two commands.

VLog and VLog4j are available on github (see Footnote 1). Both projects are
free and open-source. They have been released under Apache License 2.0, are
available via Maven under artifact id org.semanticweb.vlog4j, and their develop-
ment is monitored by Travis CI to ensure compliance with unit tests.

Furthermore, VLog is also available as Docker image in the Docker repository
karmaresearch/vlog. Docker images are automatically built when the master
branch is updated to ensure the availability of the latest version. The Docker
images are useful because they allow the user to either launch the Web interface
or use the command line without any prior manual installation. Moreover, they
enable a easy deployment of VLog in a cloud environment.

7 Conclusion

We presented VLog, an efficient rule engine that is suitable for scenarios that
require expressive reasoning on large KGs. Moreover, the Java API VLog4j allows
its usage in complex pipelines, while the ability of the system to interface with
existing data sources opens the door to the application of reasoning to novel sce-
narios (e.g., federated reasoning). VLog and VLog4j support a range of semantic
web technologies, including RDF, OWL, and SPARQL, and integrate with other
relevant software components, such as Graal. To facilitate the adoption, all the
code and documentation is freely available and the development process is open
to contributors in the spirit of collaborative open source projects.

The project is under active development and we are considering several new
features for implementation. Important directions for extensions of the expressive
power will support equality and incremental reasoning, and introduce support
for datatypes, especially numbers. We are also considering new optimisations
that take advantage of the high level of control that we have on the execution
order of rules in VLog. While these are definitely enough to keep us busy, we are
also looking forward to inputs from users in the semantic web community, who
might encounter completely unforeseen needs in their rule-based applications.



VLog: A Rule Engine for Knowledge Graphs 33

Acknowledgements. This work is partly supported by DFG in projects 389792660
(TRR 248, Center for Perspicuous Systems) and KR 4381/1-1 (DIAMOND).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Boston (1994)

2. Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.)
LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61660-5 19

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: walking the decidability line. J. Artif. Intell. Res. 175, 1620–1654 (2011)

4. Baget, J.-F., Leclère, M., Mugnier, M.-L., Rocher, S., Sipieter, C.: Graal: a toolkit
for query answering with existential rules. In: Bassiliades, N., Gottlob, G., Sadri,
F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 328–344.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6 21

5. Bellomarini, L., Sallinger, E., Gottlob, G.: The vadalog system: datalog-based rea-
soning for knowledge graphs. J. PVLDB 11(9), 975–987 (2018)

6. Benedikt, M., et al.: Benchmarking the chase. In: Proceedings of the 36th Sympo-
sium on Principles of Database Systems (PODS) (2017)

7. Benedikt, M., Leblay, J., Tsamoura, E.: PDQ: proof-driven query answering over
web-based data. J. PVLDB 7, 1553–1556 (2014)

8. Carral, D., Dragoste, I., Krötzsch, M.: Restricted chase (non)termination for exis-
tential rules with disjunctions. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI) (2017)

9. Carral, D., Dragoste, I., Krötzsch, M.: The combined approach to query answer-
ing in Horn-ALCHOIQ. In: Proceedings of the 16th International Conference on
Principles of Knowledge Representation and Reasoning (KR) (2018)

10. Carral, D., Feier, C., Hitzler, P.: A practical acyclicity notion for query answer-
ing over Horn-SRIQ ontologies. In: Groth, P., et al. (eds.) ISWC 2016. LNCS,
vol. 9981, pp. 70–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46523-4 5

11. Carral, D., González, L., Koopmann, P.: From Horn-SRIQ to datalog: a data-
independent transformation that preserves assertion entailment. In: Proceedings
of the 33rd Conference on Artificial Intelligence (AAAI) (2019)

12. Cuenca Grau, B., et al.: Acyclicity notions for existential rules and their application
to query answering in ontologies. J. Artif. Intell. Res. 47, 741–808 (2013)

13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. J. Theor. Comput. Sci. 336, 89–124 (2005)

14. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: That’s all folks! LLUNATIC goes
open source. J. PVLDB 7(13), 1565–1568 (2014)

15. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

16. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI) (2015)

17. Gottlob, G., Pieris, A., Sallinger, E.: Vadalog: recent advances and applications. In:
Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468,
pp. 21–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0 2

https://www.perspicuous-computing.science/
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-319-21542-6_21
https://doi.org/10.1007/978-3-319-46523-4_5
https://doi.org/10.1007/978-3-319-46523-4_5
https://doi.org/10.1007/978-3-030-19570-0_2


34 D. Carral et al.

18. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3, 158–182 (2005)

19. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. J.
Semant. Web 2, 11–21 (2011)

20. Kazakov, Y.: Consequence-driven reasoning for Horn-SHIQ ontologies. In: Pro-
ceedings of the 21st International Joint Conferences on Artificial Intelligence
(IJCAI) (2009)

21. Krötzsch, M.: Efficient rule-based inferencing for OWL EL. In: Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI) (2011)

22. Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL:
nominal schemas for integrating rules and ontologies. In: Proceedings of the 20th
International Conference on World Wide Web (WWW) (2011)

23. Krötzsch, M., Marx, M., Rudolph, S.: The power of the terminating chase (invited
talk). In: Proceedings of the 22nd International Conference on Database Theory
(ICDT) (2019)

24. Leone, N., et al.: The DLV system for knowledge representation and reasoning. J.
ACM Trans. Comput. Log. 7, 499–562 (2006)

25. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the
12th International Conference on Knowledge Discovery and Data Mining (ACM
SIGKDD) (2006)

26. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph.
In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00668-6 23

27. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In: Proceedings
of the 28th Conference on Artificial Intelligence (AAAI) (2014)

28. Motik, B., Sattler, U., Studer, R.: Query answering for OWL DL with rules. J.
Web Semant. 3, 41–60 (2005)

29. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp.
3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 1

30. Pichler, R., Savenkov, V.: Demo: data exchange modeling tool. J. PVLDB 2, 1606–
1609 (2009)

31. Piro, R., et al.: Semantic technologies for data analysis in health care. In: Groth,
P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 400–417. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46547-0 34

32. Potter, A., Motik, B., Nenov, Y., Horrocks, I.: Dynamic data exchange in dis-
tributed RDF stores. J. IEEE Trans. Knowl. Data Eng. 30, 2312–2325 (2018)

33. Rebele, T., Tanon, T.P., Suchanek, F.: Bash datalog: answering datalog queries
with unix shell commands. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol.
11136, pp. 566–582. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00671-6 33

34. Seo, J., Guo, S., Lam, M.S.: SociaLite: an efficient graph query language based on
datalog. J. IEEE Trans. Knowl. Data Eng. 27, 1824–1837 (2015)

35. Siow, E., Tiropanis, T., Hall, W.: SPARQL-to-SQL on internet of things databases
and streams. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 515–531.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4 31

36. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web
Semant. 27, 78–85 (2014)

https://doi.org/10.1007/978-3-030-00668-6_23
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1007/978-3-319-46547-0_34
https://doi.org/10.1007/978-3-030-00671-6_33
https://doi.org/10.1007/978-3-030-00671-6_33
https://doi.org/10.1007/978-3-319-46523-4_31


VLog: A Rule Engine for Knowledge Graphs 35

37. Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented datalog materialization for
large knowledge graphs. In: Proceedings of the 30th Conference on Artificial Intel-
ligence (AAAI) (2016)

38. Urbani, J., Krötzsch, M., Jacobs, C., Dragoste, I., Carral, D.: Efficient model con-
struction for horn logic with VLog: system description. In: Galmiche, D., Schulz,
S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 680–688.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 44

39. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. J.
Commun. ACM 57, 78–85 (2014)

40. Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., Horrocks, I.: PAGOdA: pay-
as-you-go ontology query answering using a datalog reasoner. J. Artif. Intell. Res.
54, 309–367 (2015)

https://doi.org/10.1007/978-3-319-94205-6_44

	VLog: A Rule Engine for Knowledge Graphs
	1 Introduction
	2 Functionality Overview
	3 System Overview
	3.1 Backend Components: Input and Derivation Storage, Reasoning
	3.2 System Interface: Java Integration and Stand-Alone Programs

	4 Evaluation
	5 Related Work
	6 Accessing VLog
	7 Conclusion
	References




