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Abstract. Over the last years, Linked Data has grown continuously. Today, we
count more than 10,000 datasets being available online following Linked Data
standards. These standards allow data to be machine readable and inter-operable.
Nevertheless, many applications, such as data integration, search, and interlink-
ing, cannot take full advantage of Linked Data if it is of low quality. There exist a
few approaches for the quality assessment of Linked Data, but their performance
degrades with the increase in data size and quickly grows beyond the capabilities
of a single machine. In this paper, we present DistQualityAssessment – an open
source implementation of quality assessment of large RDF datasets that can scale
out to a cluster of machines. This is the first distributed, in-memory approach for
computing different quality metrics for large RDF datasets using Apache Spark.
We also provide a quality assessment pattern that can be used to generate new
scalable metrics that can be applied to big data. The work presented here is inte-
grated with the SANSA framework and has been applied to at least three use
cases beyond the SANSA community. The results show that our approach is more
generic, efficient, and scalable as compared to previously proposed approaches.

Resource type Software Framework
Website http://sansa-stack.net/distqualityassessment/
Permanent URL https://doi.org/10.6084/m9.figshare.7930139

1 Introduction

Large amounts of data are being published openly to Linked Data by different data
providers. A multitude of applications such as semantic search, query answering, and
machine reading [18] depend on these large-scale1 RDF datasets. The quality of under-
lying RDF data plays a fundamental role in large-scale data consuming applications.
Measuring the quality of linked data spans a number of dimensions including but
not limited to: accessibility, interlinking, performance, syntactic validity or complete-
ness [22]. Each of these dimensions can be expressed through one or more quality

1 http://lodstats.aksw.org/.
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metrics. Considering that each quality metric tries to capture a particular aspect of the
underlying data, numerous metrics are usually provided against the given data that may
or may not be processed simultaneously.

On the other hand, the limited number of existing techniques of quality assess-
ment for RDF datasets are not adequate to assess data quality at large-scale and these
approaches mostly fail to capture the increasing volume of big data. To date, a limited
number of solutions have been conceived to offer quality assessment of RDF datasets
[4,10,11,13]. But, these methods can either be used on a small portion of large datasets
[13] or narrow down to specific problems e.g., syntactic accuracy of literal values [4],
or accessibility of resources [17]. In general, these existing efforts show severe defi-
ciencies in terms of performance when data grows beyond the capabilities of a single
machine. This limits the applicability of existing solutions to medium-sized datasets
only, in turn, paralyzing the role of applications in embracing the increasing volumes
of the available datasets.

To deal with big data, tools like Apache Spark2 have recently gained a lot of interest.
Apache Spark provides scalability, resilience, and efficiency for dealing with large-scale
data. Spark uses the concepts of Resilient Distributed Datasets (RDDs) [21] and per-
forms operations like transformations and actions on this data in order to effectively
deal with large-scale data.

To handle large-scale RDF data, it is important to develop flexible and extensible
methods that can assess the quality of data at scale. At the same time, due to the broad-
ness and variety of quality assessment domain and resulting metrics, there is a strong
need to provide a generic pattern to characterize the quality assessment of RDF data in
terms of scalability and applicability to big data.

In this paper, we borrow the concepts of data transformation and action from Spark
and present a pattern for designing quality assessment metrics over large RDF datasets,
which is inspired by design patterns. In software engineering, design patterns are gen-
eral and reusable solutions to common problems. Akin to design pattern, where each
pattern acts like a blueprint that can be customized to solve a particular design prob-
lem, the introduced concept of Quality Assessment Pattern (QAP) represents a gener-
alized blueprint of scalable quality assessment metrics. In this way, the quality metrics
designed following QAP can exhibit the ability to achieve scalability to large-scale
data and work in a distributed manner. In addition, we also provide an open source
implementation and assessment of these quality metrics in Apache Spark following the
proposed QAP.

Our contributions can be summarized in the following points:

– We present a Quality Assessment Pattern QAP to characterize scalable quality met-
rics.

– We provide DistQualityAssessment3 – a distributed (open source) implementation
of quality metrics using Apache Spark.

– We perform an analysis of the complexity of the metric evaluation in the cluster.

2 https://spark.apache.org/.
3 https://github.com/SANSA-Stack/SANSA-RDF/tree/develop/sansa-rdf-spark/src/main/scala/

net/sansa stack/rdf/spark/qualityassessment.

https://spark.apache.org/
https://github.com/SANSA-Stack/SANSA-RDF/tree/develop/sansa-rdf-spark/src/main/scala/net/sansa_stack/rdf/spark/qualityassessment
https://github.com/SANSA-Stack/SANSA-RDF/tree/develop/sansa-rdf-spark/src/main/scala/net/sansa_stack/rdf/spark/qualityassessment
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– We evaluate our approach and demonstrate empirically its superiority over a previ-
ous centralized approach.

– We integrated the approach into the SANSA4 framework. SANSA is actively main-
tained and uses the community ecosystem (mailing list, issues trackers, continues
integration, web-site etc.).

– We briefly present three use cases where DistQualityAssessment has been used.

The paper is structured as follows: Our approach for the computation of RDF dataset
quality metrics is detailed in Sect. 2 and evaluated in Sect. 3. Related work on the com-
putation of quality metrics for RDF datasets is discussed in Sect. 5. Finally, we conclude
and suggest planned extensions of our approach in Sect. 6.

2 Approach

In this section, we first introduce basic notions used in our approach, the formal defini-
tion of the proposed quality assessment pattern and then describe the workflow.

2.1 Quality Assessment Pattern

Data quality is commonly conceived as a multi-dimensional construct [2] with a popu-
lar notion of ‘fitness for use’ and can be measured along many dimensions D such as
accuracy (daccu ∈ D), completeness (dcomp ∈ D) and timeliness (dtmls ∈ D). The assess-
ment of a quality dimensions d is based on quality metrics QM = m1,m2 . . . ...mk where
mi is a heuristic that is designed to fit a specific assessment dimension. The following
definitions form the basis of QAP.

Definition 1 (Filter). Let F = f1, f2 . . . ... fl be a set of filters where each filter fi sets
a criteria for extracting predicates, objects, subjects, or their combination. A filter fi
takes a set of RDF triples as input and returns a subgraph that satisfies the filtering
criteria.

Definition 2 (Rule). Let R = r1, r2 . . . ...r j be a set of rules where each rule ri sets a
conditional criteria. A rule takes a subgraph as input and returns a new subgraph that
satisfies the conditions posed by the rule ri.

Definition 3 (Transformation). A transformation τ : G → G′ is an operation that
applies rules defined by R on the RDF graph G and returns an RDF subgraph G′. A
transformation τ can be a union ∪ or intersection ∩ of other transformations.

Definition 4 (Action). An action α : G → R is an operation that triggers the transfor-
mation of rules on the filtered RDF graph G′ and generates a numerical value. Action
α is the count of elements obtained after performing a τ operation.

Definition 5 (Quality Assessment Pattern QAP). The Quality Assessment Pattern
QAP is a reusable template to implement and design scalable quality metrics. The
QAP is composed of transformations and actions. The output of a QAP is the outcome
of an action returning a numeric value against the particular metric.

4 http://sansa-stack.net/.

http://sansa-stack.net/
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QAP is inspired by Apache Spark operations and designed to fit different data qual-
ity metrics (for more details see Table 1). Each data quality metric can be defined fol-
lowing the QAP. Any given data quality metric mi that is represented through the QAP
using transformation τ and action α operations can be easily transformed into Spark
code to achieve scalability.

Table 1. Quality assessment pattern

Table 2 demonstrates a few selected quality metrics defined against proposed QAP.
As shown in Table 2, each quality metric can contain multiple rules, filters or actions. It
is worth mentioning that action count(triples) returns the total number of triples in the
given data. This can also be seen that the action can be an arithmetic combination of
multiple actions i.e. ratio, sum etc. We illustrate our proposed approach on some metrics
selected from [10,22]. Given that the aim of this paper is to show the applicability of
the proposed approach and comparison with existing methods, we have only selected
those which are already provided out-of-box in Luzzu.

2.2 System Overview

In this section, we give an overall description of the data model and the architecture of
DistQualityAssessment. We model and store RDF graphs G based on the basic build-
ing block of the Spark framework, RDDs. RDDs are in-memory collections of records
that can be operated in parallel on a large distributed cluster. RDDs provide an inter-
face based on coarse-grained transformations (e.g map, filter and reduce): operations
applied on an entire RDD. A map function transforms each value from an input RDD
into another value while applying τ rules. A filter transforms an input RDD to an output
RDD, which contains only the elements that satisfy a given condition. Reduce aggre-
gates the RDD elements using a specific function from τ.

The computation of the set of quality metrics QM is performed using Spark as
depicted in Fig. 1. Our approach consists of four steps:

Defining Quality Metrics Parameters (Step 1). The metric definitions are kept in a ded-
icated file which contains most of the configurations needed for the system to evaluate
quality metrics and gather result sets.
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Table 2. Definition of selected metrics following QAP.
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Retrieving the RDF Data (Step 2). RDF data first needs to be loaded into a large-scale
storage that Spark can efficiently read from. We use Hadoop Distributed File-System5

(HDFS). HDFS is able to fit and stores any type of data in its Hadoop-native format and
parallelizes them across a cluster while replicating them for fault tolerance. In such a
distributed environment, Spark automatically adopts different data locality strategies to
perform computations as close to the needed data as possible in HDFS and thus avoids
data transfer overhead.

Parsing and Mapping RDF into the Main Dataset (Step 3). We first create a distributed
dataset called main dataset that represent the HDFS file as a collection of triples. In
Spark, this dataset is parsed and loaded into an RDD of triples having the format
Triple<(s, p, o)>.

Quality Metric Evaluation (Step 4). Considering the particular quality metric, Spark
generates an execution plan, which is composed of one or more τ transformations and
α actions. The numerical output of the final action is the quality of the input RDF
corresponding to the given metric.

2.3 Implementation

We have used the Scala6 programming language API in Apache Spark to provide the
distributed implementation of the proposed approach.

The DistQualityAssessment (see Algorithm 1) constructs the main dataset (line 1)
while reading RDF data (e.g. NTriples file or any other RDF serialization format) and
converts it into an RDD of triples. This latter undergoes the transformation operation
of applying the filtering through rules in R and producing a new filtered RDD (G′) (line
5). At the end, G′ will serve as an input to the next step which applies a set of α actions
(line 8). The output of this step is the metric output represented as a numerical value
(line 8). The result set of different quality metrics (line 12) can be further visualized and
monitored using SANSA-Notebooks [12].

The user can also choose to extract the output in a machine-readable format (line
10). We have used the data quality vocabulary7 (DQV) to represent the quality metrics.

Furthermore, we also provide a Docker image of the system integrated within the
BDE platform8 - an open source Big Data processing platform allowing users to install
numerous big data processing tools and frameworks and create working data flow appli-
cations.

The work done here (available under Apache License 2.0) has been integrated into
SANSA [16], an open source9 data flow processing engine for scalable processing of
large-scale RDF datasets. SANSA uses Spark offering fault-tolerant, highly available

5 https://hadoop.apache.org/docs/r1.2.1/hdfs design.html.
6 https://www.scala-lang.org/.
7 https://www.w3.org/TR/vocab-dqv/.
8 https://github.com/big-data-europe.
9 https://github.com/SANSA-Stack.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.scala-lang.org/
https://www.w3.org/TR/vocab-dqv/
https://github.com/big-data-europe
https://github.com/SANSA-Stack
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Algorithm 1. Spark-based parallel quality assessment algorithm.
input : RDF: an RDF dataset, param: quality metrics parameters.
output: dqv description or metric numerical value

1 triples = spark.rdf(lang)(input)
2 triples.persist()
3 dqv← ∅
4 foreach m ∈ param.getListO f Metrics do
5 triples← triples.Tran f orm { t =>
6 rule← m.Rule
7 t.apply(rule) }
8 metric← triples.apply(m.Action)
9 if m.hasDQVdescription then

10 dqvi f y← metric.dqvi f y()

11 dqv.add(dqvi f y)

12 return (dqv,metric)

and scalable approaches to process massive sized datasets efficiently. SANSA pro-
vides the facilities for semantic data representation, querying, inference, and analyt-
ics at scale. Being part of this integration, DistQualityAssessment can take advantage
of having the same user community as well as infrastructure build via SANSA project.
Doing so, it can also ensure the sustainability of the tool given that SANSA is supported
by several grants until at least 2021.

Complexity Analysis. We deem that the overall time complexity of the distributed qual-
ity assessment evaluation is O(n). The performance of metrics computation depends on
data shuffling (while filtering using rules in R) and data scanning. Our approach per-
forms a direct mapping of any quality metric designed using QAP into a sequence of
Spark-compliant Scala-commands, as a consequence, most of the operators used are
a series of transformations like map, f ilter and reduce. The complexity of map and
f ilter is considered to be linear with respect to the number of triples associated with it.
The complexity of a metric then depends on the α operation that returns the count of the
filtered output. This later step works on the distributed RDD between p nodes which
imply that the complexity of each node then becomes O(n/p), where n is number of
input triples. Let be O(τ) a complexity of τ, then the complexity of the metric will be
O(n/p ∗ O(τ)). This indicates that the runtime increases linearly when the size of an
RDD increases and decreases linearly when more nodes p are added to the cluster.

3 Evaluation

The main aim of DistQualityAssessment is to serve massive large-scale real-life RDF
datasets. We are interested in addressing the following additional questions.

– Flexibility: How fast our approach processes different types of metrics?
– Scalability: How large are the RDF datasets that DistQualityAssessment can scale

to? What is the system speedup w.r.t the number of nodes in a cluster mode?
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– Efficiency: How well our approach performs compared with other state-of-the-art
systems on real-world datasets?

In the following, we present our experimental setup including the datasets used. There-
after, we give an overview of our results.

3.1 Experimental Setup

We chose two real-world and one synthetic datasets for our experiments:

1. DBpedia [15] (v 3.9) – a cross domain dataset. DBpedia is a knowledge base
with a large ontology. We build a set of 3 pipelines of increasing complexity: (i)
Men

DBpedia (≈813M triples); (ii) Mde
DBpedia (≈337M triples); (iii) Mfr

DBpedia (≈341M
triples). DBpedia has been chosen because of its popularity in the Semantic Web
community.

2. LinkedGeoData [20] – a spatial RDF knowledge base derived from OpenStreetMap.
3. Berlin SPARQL Benchmark (BSBM) [6] – a synthetic dataset based on an e-

commerce use case containing a set of products that are offered by different vendors
and reviews posted by consumers about products. The benchmark provides a data
generator, which can be used to create sets of connected triples of any particular
size.

Properties of the considered datasets are given in Table 3.

Table 3. Dataset summary information (nt format).

−→ LinkedGeoData DBpedia BSBM

en de fr 2 GB 20 GB 200 GB

#nr. of triples 1,292,933,812 812,545,486 336,714,883 340,849,556 8,289,484 81,980,472 817,774,057

Size (GB) 191.17 114.4 48.6 49.77 2 20 200

We implemented DistQualityAssessment using Spark-2.4.0, Scala 2.11.11 and Java
8, and all the data were stored on the HDFS cluster using Hadoop 2.8.0. The experi-
ments in local mode are all performed on a single instance of the cluster. Specifically,
we compare our approach with Luzzu [10] v4.0.0, a state-of-the-art quality assessment
system10. All distributed experiments were carried out on a small cluster of 7 nodes (1
master, 6 workers): Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz (32 Cores), 128 GB
RAM, 12 TB SATA RAID-5. The machines were connected via a Gigabit network. All
experiments have been executed three times and the average value is reported in the
results.

10 https://github.com/Luzzu/Framework.

https://github.com/Luzzu/Framework
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3.2 Results

We evaluate the proposed approach using the above datasets to compare it against
Luzzu [10]. We carry out two sets of experiments. First, we evaluate the runtime of
our distributed approach in contrast to Luzzu. Second, we evaluate the horizontal scal-
ability via increasing nodes in the cluster. Results of the experiments are presented in
Table 4, Figs. 2 and 3. Based on the metric definition, some metrics make use of external
access (e.g. Dereferenceability of Forward Links) which leads to a significant increase
in Spark processing due to network latency. For the sake of the evaluation we have sus-
pended such metrics. As of that, we choose seven metrics (see Table 2 for more details)
where the level of difficulty vary from simple to complex according to combination of
transformation/action operations involved.

Performance Evaluation on Large-Scale RDF Datasets. We started our experiments
by evaluating the speedup gained by adopting a distributed implementation of qual-
ity assessment metrics using our approach, and compare it against Luzzu. We run the
experiments on five datasets (DBpediaen, DBpediade, DBpedia f r, LinkedGeoData and
BS BM200GB). Local mode represent a single instance of the cluster without any tuning
of Spark configuration and the cluster mode includes further tuning. Luzzu was run in
a local environment on a single machine with two strategies: (1) streaming the data for
each metric separately, and (2) one stream/load – all metrics evaluated just once.

Table 4. Performance evaluation on large-scale RDF datasets.

Table 4 shows the performance of two approaches applied to five datasets. In Table 4
we indicate “Timeout” whenever the process did not complete within a certain amount
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of time11 and “Fail” when the system crashed before this timeout delay. Column
Luzzu(a) represents the performance of Luzzu on bulk load – considering each met-
ric as a sequence of the execution, on the other hand, the column Luzzu(b) reports on
the performance of Luzzu using a joint load by evaluating each metric using one load.
The last columns reports on the performance of DistQualityAssessment run on a local
mode (c), cluster mode (d) and speedup ratio of our approach compared to Luzzu(b)

(d)/b) − 1) and itself evaluated on local mode (d)/c) − 1) is reported on the column (e).
We observe that the execution of our approach finishes with all the datasets whereas
this is not the case with Luzzu which either timeout or fail at some point.

Unfortunately, Luzzu was not capable of evaluating the metrics over large-scale
RDF datasets from Table 4 (part one). For that reason we run yet another set of experi-
ments on very small datasets which Luzzu was able to handle. Second part of the Table 4
shows a performance evaluation of our approach compared with Luzzu on very small
RDF datasets. In some cases (e.g. RC1, SV3) for a very small dataset Luzzu performs
better than our approach with a small margin of runtime in the local mode. It is due to the
fact that in the streaming mode, when Luzzu(a) finds the first statement which fulfills the
condition (e.g.finding the shortest URIs), it stops the evaluation and return the results.
On the contrary, our approach evaluates the metrics over the whole dataset exploiting
the fault-tolerance and resilient features build in Spark. In other cases Luzzu suffers
from significant slowdowns, which are several orders of magnitude slower. Therefore,
its average runtime over all metrics is worst as compared to our approach. It is important
to note that our approach on these very small datasets degrades while running on the
cluster mode. This is because of the network overhead while shuffling the data, but it
outperforms Luzzu(a),(b) when considering “average runtime” over all the metrics (even
for very small datasets).

Findings shown in Table 4 depict that our approach starts outperforming when the
size of the dataset grows (e.g. BS BM2GB). The runtime in the cluster mode stays con-
stant when the size of the data fits into the main memory of the cluster. On other hand,
Luzzu is not able to evaluate the metrics when the size of data starts increasing, the time
taken lasts beyond the delay we set for small datasets. Because of the large differences,
we have used a logarithmic scale to better visualize these results.

Scalability Performance Analysis. In this experiment we evaluate the efficiency of our
approach. Figures 2 and 3 illustrates the results of the comparative efficiency analysis.

Data Scalability. To measure the performance of size-up scalability of our approach,
we run experiments on five different sizes. We fix the number of nodes to 6 and grow
the size of datasets to measure whether DistQualityAssessment can deal with larger
datasets. For this set of experiments we consider BSBM benchmark tool to generate
synthetic datasets of different sizes, since the real-world dataset are considered to be
unique in their size and attributes.

We start by generating a dataset of 2 GB. Then, we iteratively increase the size of
datasets. On each dataset, we run our approach and the runtime is reported on Fig. 2.
The x-axis shows the size of BSBM dataset with an increasing order of 10x magnitude.

11 We set the timeout delay to 24 hours of the quality assessment evaluation stage.
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Fig. 2. Sizeup performance evaluation.

By comparing the runtime (see Fig. 2), we note that the execution time increases lin-
early and is near-constant when the size of the dataset increases. As expected, it stays
near-constant as long as the data fits in memory. This demonstrates one of the advan-
tages of utilizing the in-memory approach for performing the quality assessment com-
putation. The overall time spent in data read/write and network communication found
in disk-based approaches is saved. However, when the data overflows the memory, and
it is spilled to disk, the performance degrades. These results show the scalability of our
algorithm in the context of size-up.

Node Scalability. In order to measure node scalability, we vary the number of the work-
ers on our cluster. The number of workers have varied from 1, 2, 3, 4 and 5 to 6.

Fig. 3. Node scalability performance evaluation.
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Figure 3 shows the speedup for BS BM200GB with the various number of worker
nodes. We can see that as the number of workers increases, the execution time cost-
decrease is almost linear. The execution time decreases about 14 times (from 433.31 min
down to 28.8 min) as cluster nodes increase from one to six worker nodes. The results
shown here imply that our approach can achieve near linear scalability in performance
in the context of speedup.

Furthermore, we conduct the effectiveness evaluation of our approach. Speedup S
is an important metric to evaluate a parallel algorithm. It is defined as a ratio S =
Ts/Tn, where Ts represents the execution time of the algorithm run on a single node
and Tn represents the execution time required for the same algorithm on n nodes with
the same configuration and resources. Efficiency is defined as a ratio E = S/n = Ts/nTn

which measures the processing power being used, in our case the speedup per node. The
speedup and efficiency curves of DistQualityAssessment are shown in Fig. 5. The trend
shows that it achieves almost linearly speedup and even super linear in some cases.
The upper curve in the Fig. 5 indicates super linear speedup. The speedup grows faster
than the number of worker nodes. This is due to the computation task for the metric
being computationally intensive, and the data does not fit in the cache when executed
on a single node. But it fits into the caches of several machines when the workload is
divided amongst the cluster for parallel evaluation. While using Spark, the super linear
speedup is an outcome of the improved complexity and runtime, in addition to efficient
memory management behavior of the parallel execution environment.

Correctness of Metrics. In order to test the correctness of implemented metrics, we
assess the numerical values for metrics like L1, L2, and RC1 on very small datasets
and the results are found correct w.r.t Luzzu. For metrics like I2 and CN2, Luzzu uses
approximate values for faster performance, and that is not the same as getting the exact
number as in the case of our implementation.

Overall Analysis by Metrics. We analyze the overall run-time of the metric evaluation.
Figure 4 reports on the run-time of each metric considered in this paper (see Table 2) on
both BS BM20GB and BS BM200GB datasets.

Fig. 4. Overall analysis by metric in the
cluster mode (log scale).

Fig. 5. Effectiveness of DistQualityAssess-
ment.
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DistQualityAssessment implements predefined quality assessment metrics from
[22]. We have implemented these metrics in a distributed manner such that most of
them have a run-time complexity of O(n) where n is the number of input triples. The
overall performance of analysis for BSBM dataset with two instances is shown in Fig. 4.
The results obtained show that the execution is sometimes a little longer when there is a
shuffling involved in the cluster compared to when data is processed without movement
e.g. Metric L2 and L1. Metric SV3 and CN2 are the most expensive ones in terms of
runtime. This is due to the extra overhead caused by extracting the literals for objects,
and checking the lexical form of its datatype.

Overall, the evaluation study carried out in this paper demonstrates that distributed
computation of different quality measures is scalable and the execution ends in reason-
able time given the large volume of data.

4 Use Cases

The proposed quality assessment tool is being used in many use cases. These includes
the projects QROWD, SLIPO, and an industrial application by Alethio12.

QROWD – Crowdsourcing Streaming Big Data Quality Assessment Use Case.
QROWD13 is a cross-sectoral streaming Big Data integration project including geo-
graphic, transport, meteorological, cross domain and news data, aiming to capitalize on
hybrid Big Data integration and analytics methods. One of the major challenges faced in
QROWD, is to investigate options for effective and scalable data quality assessment on
integrated (RDF) datasets using their crowdsourcing platform. In order to perform this
task efficiently and effectively, QROWD uses DistQualityAssessment as an underlying
quality assessment framework.

Blockchain – Alethio Use Case. Alethio14 has build an Ethereum analytics platform
that strives to provide transparency over the transaction pool of the whole Ethereum
ecosystem. Their 18 billion triple data set15 contains large scale blockchain transaction
data modelled as RDF according to the structure of the Ethereum ontology16. Alethio is
using SANSA in general and DistQualityAssesment in particular, for performing large-
scale batch quality checks, e.g. analysing the quality while merging new data, comput-
ing attack pattern frequencies and fraud detection. Alethio uses DistQualityAssesment
on a cluster of 100 worker nodes to assess the quality of their ≈7 TB of data.

SLIPO – Scalable Integration and Quality Assured Fusion of Big POI Data. SLIPO17

is a project which leverages semantic web technologies for scalable and quality assured
integration of large Point of Interest (POI) datasets. One of the key features of the
project is the fusion process. SLIPO-fusion receives two different RDF datasets con-
taining POIs and their properties, as well as a set of links between POI entities of

12 https://goo.gl/mJTkPp.
13 http://qrowd-project.eu/.
14 https://aleth.io/.
15 https://medium.com/alethio/ethereum-linked-data-b72e6283812f.
16 https://github.com/ConsenSys/EthOn.
17 http://slipo.eu/.

https://goo.gl/mJTkPp
http://qrowd-project.eu/
https://aleth.io/
https://medium.com/alethio/ethereum-linked-data-b72e6283812f
https://github.com/ConsenSys/EthOn
http://slipo.eu/
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the two datasets. SLIPO is using DistQualityAssessment to assess the quality of both
input datasets. The SLIPO-fusion produces a third, final dataset, containing consoli-
dated descriptions of the linked POIs. This process is often data and processing inten-
sive, therefore, it requires a scalable mechanism for data quality check. SLIPO uses
DistQualityAssessment for fusion validation and quality statistics/assessment to facili-
tate and assure the quality of the fusion process.

5 Related Work

Even though quality assessment of big datasets is an important research area, it is still
largely under-explored. There have been a few works discussing the challenges and
issues of big data quality [3,8,19]. Only recently, a few of them have started to address
the problem from a practical point of view [10], which is the focus of our work as stated
in Sect. 1. In the following, we divide the section between conceptual and practical
approaches proposed in the state of the art for big data quality assessment. In [9] the
authors propose a big data processing pipeline and a big data quality pipeline. For each
of the phases of the processing pipeline they discuss the corresponding phase of the
big data quality pipeline. Relevant quality dimensions such as accuracy, consistency
and completeness are discussed for the quality assessment of RDF datasets as part of
an integration scenario. Given that the quality dimensions and metrics have somehow
evolved from relational to Linked Data, it is relevant to understand the evolution of
quality dimensions according to the differences between the structural characteristics
of the two data models [1]. This allows to manage the huge variability of methods
and techniques needed to manage data quality and understand which are the quality
dimensions that prevail when assessing large-scale RDF datasets.

Most of the existing approaches can be applied to small/medium scale datasets and
do not horizontally scale [10,14]. The work in [14] presents a methodology for assess-
ing the quality of Linked Data based on a test case generation analogy used for software
testing. The idea of this approach is to generate templates of the SPARQL queries (i.e.,
quality test case patterns) and then instantiate them by using the vocabulary or schema
information, thus producing quality test case queries. Luzzu [10] is similar in spirit
with our approach in that its objective is to provide a framework for quality assess-
ment. In contrast to our approach, where data is distributed and also the evaluation of
metrics is distributed, Luzzu does not provide any large-scale processing of the data.
It only uses Spark streaming for loading the data which is not part of the core frame-
work. Another approach proposed for assessing the quality of large-scale medical data
implements Hadoop Map/Reduce [7]. It takes advantage of query optimization and join
strategies which are tailored to the structure of the data and the SPARQL queries for
that particular dataset. In addition, this work, differently from our approach, does not
assess any data quality metric defined in [22]. The work in [5] propose a reasoning
approach to derive inconsistency rules and implements a Spark-based implementation
of the inference algorithm for capturing and cleaning inconsistencies in RDF datasets.
The inference generally incurs higher complexity. Our approach is designed for scala-
bility, and we also use Spark-based implementation for capturing inconsistencies in the
data. While the approach in [5] needs manual definitions of the inconsistency rules, our
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approach runs automatically, not only for consistency metrics but also for other qual-
ity metrics. In addition, we test the performance of our approach on large-scale RDF
datasets while their approach is not experimentally evaluated. LD-Sniffer [17], is a tool
for assessing the accessibility of Linked Data resources according to the metrics defined
in the Linked Data Quality Model. The limitation of this tool, besides that it is a central-
ized version, is that it does not provide most of the quality assessment metrics defined
in [22]. In addition to above, there is a lack of unified structure to propose and develop
new quality metrics that are scalable and less computationally expensive.

Based on the identified limitations of these aforementioned approaches, we have
introduced DistQualityAssessment which bases its computation and evaluations mainly
in-memory. As a result the computation of the quality metrics show a high performance
for large-scale datasets.

6 Conclusions and Future Work

The data quality assessment becomes challenging with the increasing sizes of data.
Many existing tools mostly contain a customized data quality functionality to detect
and analyze data quality issues within their own domain. However, this process is both
data-intensive and computing-intensive and it is a challenge to develop fast and efficient
algorithms that can handle large scale RDF datasets.

In this paper, we have introduced DistQualityAssessment, a novel approach for dis-
tributed in-memory evaluation of RDF quality assessment metrics implemented on top
of the Spark framework. The presented approach offers generic features to solve com-
mon data quality checks. As a consequence, this can enable further applications to build
trusted data utilities.

We have demonstrated empirically that our approach improves upon previous cen-
tralized approach that we have compared against. The benefit of using Spark is that its
core concepts (RDDs) are designed to scale horizontally. Users can adapt the cluster
sizes corresponding to the data sizes, by dropping when it is not needed and adding
more when there is a need for it.

Although we have achieved reasonable results in terms of scalability, we plan to
further improve time efficiency by applying intelligent partitioning strategies and persist
the data to an even higher extent in memory and perform dependency analysis in order
to evaluate multiple metrics simultaneously. We also plan to explore near real-time
interactive quality assessment of large-scale RDF data using Spark Streaming. Finally,
in the future we intend to develop a declarative plugin for the current work using Quality
Metric Language (QML) [10], which gives users the ability to express, customize and
enhance quality metrics.
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