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Abstract. This paper introduces an evolving cybersecurity knowledge
graph that integrates and links critical information on real-world vul-
nerabilities, weaknesses and attack patterns from various publicly avail-
able sources. Cybersecurity constitutes a particularly interesting domain
for the development of a domain-specific public knowledge graph, par-
ticularly due to its highly dynamic landscape characterized by time-
critical, dispersed, and heterogeneous information. To build and contin-
ually maintain a knowledge graph, we provide and describe an integrated
set of resources, including vocabularies derived from well-established
standards in the cybersecurity domain, an ETL workflow that updates
the knowledge graph as new information becomes available, and a set of
services that provide integrated access through multiple interfaces. The
resulting semantic resource offers comprehensive and integrated up-to-
date instance information to security researchers and professionals alike.
Furthermore, it can be easily linked to locally available information, as
we demonstrate by means of two use cases in the context of vulnerability
assessment and intrusion detection.

Keywords: Knowledge graph · Cybersecurity · Security vocabularies ·
Security standards · Security analysis · Intrusion detection

1 Introduction

Security and privacy have become key issues in today’s modern societies charac-
terized by a strong dependence on Information and Communication Technolo-
gies (ICT). Security incidents, such as ransomware and data theft, are widely
reported in the media and illustrate the ongoing struggle to protect ICT sys-
tems. In their mission to secure systems, security professionals rely on a wealth
of information such as known and newly identified vulnerabilities, weaknesses,
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threats, and attack patterns. Such information is collected and published by, e.g.,
Computer Emergency Response Teams (CERTs), research institutions, govern-
ment agencies, and industry experts. Whereas a lot of relevant information is
still shared informally as text, initiatives to make security information avail-
able in well-defined structured formats, largely driven by MITRE1 and NIST2,
have made significant progress and resulted in a wide range of standards [1].
These standards define high-level schemas for cybersecurity information and
have resulted in various structured lists that are available for browsing on the
web and for download in heterogeneous structured formats. This wealth of cyber-
security data is highly useful, but the current approach for sharing it is associated
with several limitations: First, individual entities and data sets remain isolated
and cannot easily be referenced and linked from other data sets. Second, whereas
the governed schemas provide a well-defined structure, the semantics are not as
well-defined. This limits the potential for integration and automated machine
interpretation. Consequently, the resulting abundance of data raises challenges
for security analysts and professionals who have to keep track of all the available
sources and identify relevant information within them.

In this paper, we propose that integrating cybersecurity information into a
regularly updated, public knowledge graph can overcome these limitations and
open up exciting opportunities for cybersecurity research and practice. Thereby,
it is possible not only to query public cybersecurity information, but also to
use it to contextualize local information. As we illustrate with two example use
cases in this paper, this facilitates applications such as (i) improved vulnerabil-
ity assessment by automatically determining which new vulnerabilities affect a
given infrastructure, and (ii) improved incident response through better contex-
tualization of intrusion detection alerts.

Our main contributions can be summarized as follows: For cybersecurity
research and practice, we advance the state of the art by providing an inte-
grated up-to-date view on cybersecurity knowledge in a semantically explicit
representation. Furthermore, we provide tools and services to query and make
use of this interlinked knowledge graph. From a semantic web research perspec-
tive, we illustrate how Linked Data principles can be applied to combine local
and public knowledge in a highly dynamic environment characterized by fast-
changing, dispersed, and heterogeneous information. To this end, we develop an
ETL pipeline that integrates newly available structured data from public sources
into the knowledge graph, which involves acquisition, extraction, lifting, linking,
and validation steps. We provide the following resources3: (i) vocabularies for
the rich representation and interlinking of security-related information based on
five well-established standards in the cybersecurity domain. (ii) a comprehensive
SEPSES Cybersecurity Knowledge Graph (KG)4 with detailed instance data5

1 https://www.mitre.org.
2 https://nist.gov.
3 Available at https://w3id.org/sepses/cyber-kg.
4 Semantic Processing of Security Event Streams is an ongoing research project.
5 36,594,388 triples as of July 2, 2019.

https://www.mitre.org
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accessible through multiple interfaces. (iii) an ETL workflow published as open
source that updates the knowledge graph as new information becomes available.
(iv) a website6 that provides documentation, status information, and pointers
to the various access mechanisms provided. (v) a set of services to access the
data, i.e., a SPARQL endpoint, a triple pattern fragments interface, a Linked
Data interface, and download options for the whole data set as well as various
subsets.

This semantic approach can provide a foundation for tools and services
that support security analysts in applying external security knowledge and effi-
ciently navigating dynamic security information. Ultimately, this should con-
tribute towards improved cybersecurity knowledge sharing and increased situa-
tional awareness, both in large organizations that have dedicated security experts
who are often overwhelmed by the large amount of information, and in smaller
organizations that do not have the resources to invest in specialized tools and
experts.

The remainder of this paper is organized as follows: Sect. 2 provides an
overview of related work; Sect. 3 covers construction and maintenance of the KG,
including vocabularies, data acquisition mechanisms, and updating pipelines;
Sect. 4 provides an overview of the provided mechanisms to access the data in
the KG and discusses its sustainability, maintenance and extensibility; Sect. 5
illustrates the usefulness of the resource by means of two example use cases;
Sect. 6 concludes the paper with an outlook on future work.

2 Related Work

Various information security standards, taxonomies, vocabularies, and ontolo-
gies have been developed in academia, industry, and government agencies. In
this section, we review these lines of related work, which fall into two broad cat-
egories: (i) standard data schemas for information sharing in the cybersecurity
domain (covered in Sect. 2.1) and (ii) higher-level conceptualizations of security
knowledge (covered in Sect. 2.2). We conclude the section by identifying the gap
between those strands of work.

2.1 Standard Data Schemas

Efficient information exchange requires common standards, particularly in highly
diverse and dynamic domains such as cybersecurity. Hence, a set of standards has
emerged that define the syntax of description languages for structured cybersecu-
rity information and the semantics associated with those descriptions in natural
language. Some of these standards are driven by traditional standardization bod-
ies such as ISO, ITU, IEEE or IETF. The majority, however, are contributed
by open source communities or other entities such as MITRE7, a not-for-profit
research and development cooperation.8

6 https://sepses.ifs.tuwien.ac.at.
7 https://www.mitre.org.
8 For a review of standards for the exchange of security information, cf. [1].

https://sepses.ifs.tuwien.ac.at
https://www.mitre.org
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Salient examples for information sharing standards, all of which are inte-
grated in the knowledge graph presented in this paper, include Common Vul-
nerabilities and Exposures (CVE)9 for publicly known vulnerabilities, Common
Attack Pattern Enumeration and Classification (CAPEC)10 for known attack
patterns used by adversaries, Common Weakness Enumeration (CWE)11 for soft-
ware security weaknesses, Common Platform Enumeration (CPE)12 for encoding
names of IT products and platforms, and Common Vulnerability Scoring System
(CVSS)13 for vulnerability scoring. These standards are widely used by security
practitioners and integrated into security products and services, but they also
serve as an important point of reference for research.

2.2 Security Ontologies

A related line of academic research aims at a high-level conceptualization of
information security knowledge, which has resulted in numerous ontologies (e.g.,
[2,3,6,7,10,11,15]) that typically revolve around core concepts such as asset,
threat, vulnerability, and countermeasure. The resulting security ontologies are
typically scoped for particular application domains (e.g., risk management, inci-
dent management). The high-level ontology developed in [8], for instance, mainly
focuses on malware and aspects such as actors, victims, infrastructure, and capa-
bilities. The authors argue that expressive semantic models are crucial for com-
plex security applications and name Open Vulnerability and Assessment Lan-
guage (OVAL), CPE, Common Configuration Enumeration (CCE), and CVE
as the most promising starting points for the development of a cybersecurity
ontology. Inspired by that work, Oltramari et al. [9] introduce an ontological
cyber security framework that comprises a top-level ontology based on DOLCE,
a mid-level ontology with security concepts (e.g., threat, attacker, vulnerability,
countermeasure), and a domain ontology of cyber operations including defen-
sive and offensive actions. A comprehensive survey and classification of similar
security ontologies can be found in [12].

More recently, various initiatives aimed at developing security ontologies that
cover the standard schemas outlined in Sect. 2.1, including an ontology for CVE
vulnerabilities [4,16,17] that can be used to identify vulnerable IT products.
Ulicny et al. [14] take advantage of existing standards and markup languages
such as Structured Threat Information eXpression (STIX), CAPEC, CVE and
CybOX and transform their respective XML schemas through XSLT translators
and custom code into a Web Ontology Language (OWL) ontology. Furthermore,
they integrate external information, e.g., on persons, groups and organizations,
IP addresses (WhoIs records), geographic entities (GeoNames), and “killchain”
phases. In an application example, the authors illustrate how this can help to

9 https://cve.mitre.org.
10 https://capec.mitre.org.
11 https://cwe.mitre.org.
12 https://cpe.mitre.org.
13 https://www.first.org/cvss/.

https://cve.mitre.org
https://capec.mitre.org
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inspect intrusion detection events, e.g., by mapping events to kill chain stages
and obtaining more information about threat actors based on IP addresses.

As part of a research project (STUCCO), Iannacone et al. [5] outline an app-
roach for a cybersecurity knowledge graph and note that they aim to integrate
information from both structured and unstructured data sources. Some extrac-
tion code and JSON schema data is available on the project website14 but no
integrated knowledge graph has been published. In a similar effort, Syed et al.
[13] integrate heterogeneous knowledge schemas from various cybersecurity sys-
tems and standards and create a Unified Cybersecurity Ontology (UCO) that
aligns CAPEC, CVE, CWE, STIX, Trusted Automated eXchange fo Indica-
tor Information (TAXII)15 and Att&ck16. Whereas most ontologies proposed in
the literature are not publicly available, UCO is offered for download17, includ-
ing some example instances from industry standard repositories. However, the
instance data in the dump is neither complete nor updated, and there is no
public endpoint available. Finally, the Cyber Intelligence Ontology18 is another
example of an ontology that is available for download in RDF and offers classes,
properties and restrictions on many industry standards, but no instance data.

Overall, a review of related work shows that although basic concepts in
the cybersecurity domain have been formalized repeatedly, no model has so far
emerged as a standard. Furthermore, the proposed high-level conceptualizations
typically lack concrete instance information.

On the other hand, there are many standards for cybersecurity information
sharing and the information is published in various structured formats19, navi-
gable on the web and/or available for download; however, there is no integrated
view on this scattered, heterogeneous information. Hence, each application that
makes use of the published data has to parse and interpret each source indi-
vidually, which makes reuse, machine interpretation, and integration with local
data difficult. In the following section, we describe how an evolving cybersecurity
knowledge graph that provides an integrated perspective on the cybersecurity
landscape can fill this gap.

3 Knowledge Graph Construction and Evolution

To construct and regularly update the SEPSES Cybersecurity KG, we define a
set of vocabularies, described in Sect. 3.1, and an architecture for initial ingestion
and incremental updating of the graph, covered in Sect. 3.2. Publication via
Linked Data (LD), Triple Pattern Fragments (TPF), a SPARQL endpoint, and
RDF dumps are covered in Sect. 4.

14 https://github.com/stucco.
15 https://oasis-open.github.io/cti-documentation/.
16 https://attack.mitre.org.
17 https://github.com/Ebiquity/Unified-Cybersecurity-Ontology.
18 https://github.com/daedafusion/cyber-ontology.
19 Most commonly as XML or JSON files.

https://github.com/stucco
https://oasis-open.github.io/cti-documentation/
https://attack.mitre.org
https://github.com/Ebiquity/Unified-Cybersecurity-Ontology
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3.1 Conceptualization and Vocabularies

To model the domain of interest, we started with a survey and found that the
vast majority of conceptualizations described in the literature are not available
online. Those that were available did not provide sufficiently detailed classes
and properties to represent all the information available in the cybersecurity
repositories we target.

Hence, we opted for a bottom-up approach starting from a set of well-
established industry data sources. We structured our vocabularies based on the
schemas used to publish existing instance data and chose appropriate terms
based on the survey of existing conceptualizations. In choosing this approach,
our main design goal was to include the complete information from the original
data sources and make the resulting knowledge graph self-contained. To facilitate
mapping to other existing conceptualizations, we kept the Resource Description
Framework (RDF) model structurally similar to the data models of the original
sources. This should make it easy for users already familiar with the original data
sources to navigate and integrate our semantic resource. Furthermore, we can
easily refer to the original documentation and examples in the vocabularies. We
then created a schema that covers the following security information repositories
(cf. Fig. 1 for a high-level overview).20

Fig. 1. SEPSES knowledge graph vocabulary high-level overview

CVE is a well-established industry standard that provides a list of iden-
tifiers for publicly known cybersecurity vulnerabilities. In addition to CVE, we

20 The figure omits detailed concepts for the sake of clarity. The complete vocabularies
can be found at https://github.com/sepses/vocab.

https://github.com/sepses/vocab
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integrate the National U.S. Vulnerability Database (NVD), which enriches CVEs
with additional information, such as security checklist references, security-related
software flaws, misconfigurations, product names, and impact metrics. We rep-
resent this information in the CVE class, which includes data type properties
such as cve:cveId, cve:description, cve:issued and cve:modified times-
tamps. Based on the NVD information, we can link CVE to affected products
(cve:hasCPE), vulnerable configurations (cve:hasVulnerableConfiguration),
impact scores (cve:hasCVSS), related weaknesses (cve:hasCWE), and external
references (cve:hasReference).

CVSS provides a quantitative model to describe characteristics and impacts
of IT vulnerabilities. It is well-established as a standard measurement system
for organizations worldwide. We integrate the CVSS scores provided by NVD,
and model the CVSS metrics by means of the CVSSBaseMetric, CVSSTem-
poralMetric, and CVSSEnvironmentalMetric classes to comply with the
CVSS specification21.

CPE provides a structured naming scheme for IT systems, software, and
packages based on URIs. NIST hosts and maintains the CPE Dictionary, which
currently is based on the CPE 2.3 specification. We represent CPEs with the
CPE class and reference product information with cpe:hasProduct. Further-
more, we define a set of properties that describe a product, such as product
name, version, update, edition, language, etc. The vendor of each product is
modeled as a Vendor and referenced by cpe:hasVendor.

CWE is a community-developed list of common software security weaknesses
that contains information on identification, mitigation, and prevention. NVD
vulnerabilities are mapped to CWEs to offer general vulnerability information.
This information is modeled using the CWE class and a set of datatype prop-
erties such as cwe:id, cwe:name, cwe:description, and cwe:status, as well
as object properties, to e.g., link applicable platforms (cwe:hasApplicable-
Platform), attack patterns (cwe:hasCAPEC), consequences (cwe:hasCommon-
Consequence), related weaknesses to model the CWE hierarchy (cwe:has-
RelatedWeakness) and potential mitigations (cwe:hasPotentialMitigation).

CAPEC is a dictionary of known attack patterns used by adversaries to
exploit known vulnerabilities, and can be used by analysts, developers, testers,
and educators to advance community understanding and enhance defenses. We
model CAPEC patterns in the CAPEC class with datatype properties such as
capec:id, capec:name, capec:likelihoodOfAttack, and capec:description.
Additional information is linked via object properties such as consequences
capec:hasConsequences, required skills capec:hasSkillRequired, attack
prerequisites capec:prerequisites, and attack consequences capec:has-
Consequence.

Most of these data sets define identifiers for key entities such as vulnera-
bilities, weaknesses, and attack patterns and reuse some concepts from other
standards (e.g., CPE names and CVSS scores are used within CVE). In the next
section, we will describe how we leverage these references to link the data.

21 https://www.first.org/cvss/specification-document.

https://www.first.org/cvss/specification-document


The SEPSES Knowledge Graph: An Integrated Resource for Cybersecurity 205

3.2 ETL Process

Figure 2 illustrates the overall architecture and the data acquisition, resource
extraction, entity linking and validation, storage and publication steps neces-
sary to provide a continuously updated cybersecurity knowledge graph. In the
following, we describe the steps in the core Extraction, Transformation, Loading
(ETL) process that periodically checks and digest data from the various sources.

Fig. 2. Architecture: ETL process and publishing

Data Acquisition. We populate our KG using data from various sources that
provide data on their respective web sites for download in heterogeneous formats
such as CSV, XML, and JSON. These cybersecurity data sources are updated
regularly to reflect changes in the real-world. CVE data, for instance, is typically
updated once every two hours.22 In order to capture changes and reflect them in
the knowledge graph, our ETL engine will regularly poll for updates and ingest
the latest version of the sources.

Resource Extraction. We use the caRML engine23 to transform the original
source files from their various formats. Furthermore, we use Apache Jena24 to
transform the raw RDF data obtained from the RML mappings into the structure
of the final ontology. Initially, we developed RDF Mapping Language (RML)
transformation mappings that utilized specific features from caRML, such as
carml:multiJoinCondition. Due address performance issues, however, we decided

22 cf. https://nvd.nist.gov/vuln/data-feeds.
23 https://github.com/carml/carml.
24 https://jena.apache.org.

https://nvd.nist.gov/vuln/data-feeds
https://github.com/carml/carml
https://jena.apache.org
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to restructure the initial mapping into generic RML mappings that do not involve
specific constructs from caRML, which improved performance considerably.25

Because the original data sources have an established ID system, instance ID
generation was straightforward for most sources (i.e., CWE, CVE CAPEC, and
CVSS). For CPE, however, the instance name is a composite of several naming
elements (e.g., product name, part, vendor, version, etc.), separated by special
characters. To solve the issue, we use XPath functions to clean and produce a
unique name for each CPE instance.

Entity Linking and Validation. In this part of the ETL process, we link data
from different sources based on common identifiers in the data. Each CWE weak-
ness, for example, typically references several CAPEC attack patterns. Based on
these identifiers, we create direct links between associated resources. Specifi-
cally for CPE, we deploy the exact same XPath functions for its identifier in
the two sources (CPE and CVE) where CPE instances are generated, to make
sure that these data can be linked correctly. To ensure data quality, we validate
the generated RDF with SHACL to make sure that the necessary properties are
included for each generated individual. Furthermore, we validate whether the
resulting resources are linked correctly, as references to identifiers that are not
or no longer available in other data sets are unfortunately a common issue. As
an example, a CVE instance may have a relation to another resource such as
a CPE identifier. In this case, the validation mechanism will check whether the
referenced CPE instance exists in the extracted CPE data, log missing instances
and create temporary resources for them.

Data Storage. We store the extracted data in a triple store and generate statistics
such as parsing time, parsing status (success or fail), counts of instances, links,
and generation time. To make sure that the data is continuously up to date, we
wrote a set of bash scripts that are set to be executed in regular intervals to
trigger the knowledge generation process and store the result in the triple store.
To date, this resulted in more than half a million instances and 36 million triples;
Table 1 provides a breakdown of the generated data.

Table 1. SEPSES knowledge graph statistics (As per July 2, 2019.)

CVE CVSS CPE CWE CAPEC SnortRules

Axioms 68 248 111 256 149 486

Class count 7 9 5 10 8 10

Object property Count 6 8 4 9 6 10

Data property count 8 37 18 40 22 103

Individual count 123,005 123,220 393,695 808 516 3,488

25 In some cases, this reduced processing time from appr. an hour to less than a minute.
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4 Knowledge Graph Access

The SEPSES web site26 provides pointers to the various resources covered in
this paper, i.e., the LD resources27, the SPARQL28 and TPF query interfaces29,
a download link for the complete RDF snapshots30, and the ETL engine source
code31. This allows users to choose the most appropriate access mechanism for
their application context.

4.1 Sustainability, Maintenance and Extensibility

The SEPSES KG is being developed jointly by TU Wien and SBA Research, a
well-established research center for information security that is embedded within
a network of more than 70 companies as well as 15 Universities and research insti-
tutions. Endpoints and data sets are hosted at TU Wien and maintained as part
of the research project SEPSES, which aims to leverage semantic web technolo-
gies for security log interpretation. During this project, we will extend the KG
and leverage it as background knowledge in research on semantic monitoring and
forensic analysis.

To keep the KG in sync with the evolving cybersecurity landscape, we will
continue to automatically poll and process updates of the original raw data
sources. We choose our polling strategy according to the varying update intervals
of the data sources: CVEs are typically updated once every two hours, CPEs are
typically updated daily. CWE and CAPEC are less dynamic and are updated
approximately on a yearly schedule.

Furthermore, SBA Research has an active interest in developing and diffusing
the KG internally and within its partner network, which will secure long-term
maintenance beyond the current research project. We also expect the KG to
grow and establish an active external user community during that time. To this
end, we publish our vocabularies and the source code under an open source
MIT license32 and encourage community contributions.33 Adoption success will
be measured (i) based on access statistics (web page access, SPARQL queries,
downloads, etc.), and (ii) the emergence of a community around the knowl-
edge graph (code contributions, citations, attractiveness as a linked data target,
number of research and community projects that make use of it, etc.).

26 https://w3id.org/sepses.
27 e.g., https://w3id.org/sepses/resource/cve/CVE-2014-0160.
28 https://w3id.org/sepses/sparql.
29 https://ldf-server.sepses.ifs.tuwien.ac.at.
30 https://w3id.org/sepses/dumps/.
31 https://github.com/sepses/cyber-kg-converter.
32 https://opensource.org/licenses/MIT.
33 The original raw data are published by MITRE with a no-charge copyright license

and by NVD without copyright.

https://w3id.org/sepses
https://w3id.org/sepses/resource/cve/CVE-2014-0160
https://w3id.org/sepses/sparql
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https://github.com/sepses/cyber-kg-converter
https://opensource.org/licenses/MIT
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5 Use Cases

In this section, we illustrate the applicability of the cybersecurity knowledge
graph by means of two example scenarios.

5.1 Vulnerability Assessment

In security management, identifying, quantifying, and prioritizing vulnerabilities
in a system is a key activity and a necessary precondition for threat mitigation
and elimination and hence for the successful protection of valuable resources.
This Vulnerability Assessment (VA) process can involve both active techniques
such as scanning and penetration testing and passive techniques such as moni-
toring the wealth of public data sources for relevant vulnerabilities and threats.
For the latter, keeping track of all the relevant information and determining rele-
vance and implications for the assets in a system is a challenging task for security
professionals. In this scenario, we illustrate how the developed knowledge graph
can support security analysts by linking organization-specific asset information
to a continuously updated stream of known vulnerabilities.

Setting: To illustrate the approach, we modeled a simplified example net-
work comprising of three Hosts – two workstations, a server – and Net-
workDevices. All hardware components are sub classes of ITAssets. Fur-
thermore, we model the software installed on each Host by means of the
hasInstalledProduct property that links the host to a CPE specification. To
determine the potential severity of an impact, we also include DataAssets,
their classification (public, private, restricted), and their storage location
(storedOn Host) in the model. In practice, the modeling of a system can be
supported by existing IT asset/software discovery and inventory tools.

Query 1: Once a model of the local system has been created, the vulnerability
information published in the cybersecurity knowledge graph can be applied and
contextualized by means of a federated SPARQL query. Note that we also provide
a TPF interface for efficient querying. In particular, a security analyst may be
interested in all known vulnerabilities that potentially apply to each host, based
on the software that is installed on it (cf. Listing 1). Table 2 shows an example
query result. Each resource in the table points to its Linked Data representation,
which can serve as a starting point for further exploration. Note that as new
vulnerability information becomes available and is automatically integrated into
the knowledge graph through the process described in Sect. 3, the query results
will automatically reflect newly identified vulnerabilities.

Table 2. Vulnerability assessment query 1 – results

hostName IP product cveIds

DBServer1 192.168.1.3 Windows Server 2016 CVE-2016-3332, . . . , CVE-2017-8746

Workstation1 192.168.1.1 Windows 10 CVE-2016-3302, . . . , CVE-2015-2554

https://w3id.org/sepses/resource/cpe/cpeomicrosoftwindows_server_2016
https://w3id.org/sepses/page/page/cve/CVE-2016-3332
https://w3id.org/sepses/page/cve/CVE-2017-8746
https://w3id.org/sepses/resource/cpe/cpeomicrosoftwindows_10
https://w3id.org/sepses/resource/cve/CVE-2016-3302
https://w3id.org/sepses/resource/cve/CVE-2015-2554
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX asset: <http://w3id.org/sepses/vocab/bgk/assetKnowledge#>
PREFIX cve: <http://w3id.org/sepses/vocab/ref/cve#>
PREFIX cpe: <http://w3id.org/sepses/vocab/ref/cpe#>
PREFIX cvss: <http://w3id.org/sepses/vocab/ref/cvss#>
PREFIX cwe: <http://w3id.org/sepses/vocab/ref/cwe#>

SELECT distinct ?hostName str(?ip) as ?IP ?product
(group_concat(?cveId) as ?cveIds) from
<http://localhost:8890/localdata2>
WHERE {

?s a asset:Host.
?s rdfs:label ?hostName.
?s asset:ipAddress ?ip.
?s asset:hasProduct ?p.

SERVICE <http://sepses.ifs.tuwien.ac.at/sparql> {
?cve cve:hasCPE ?p .
?cve cve:id ?cveId.

?p cpe:title ?product .
}

}
group by ?hostName ?ip ?product

Listing 1: Vulnerability Asessment Query 1 – Vulnerable Assets

Query 2: In order to assess the potential impact that a newly identified vulner-
ability may have, it is critical to asses which data assets might be exposed if an
attacker can successfully exploit it. In the next step, we hence take advantage of
the modeled data assets and formulate a query (cf. Listing 2)34 to retrieve the
most severe vulnerabilities, i.e., those that affect hosts that store sensitive pri-
vate data (classification value = 1) and have a complete confidentiality impact
(as specified in CVSS). Table 3 shows the query result and illustrates how such
immediate analysis can save time by avoiding manual investigation steps.

Exploration: The query results can serve as a starting point for further explo-
ration of the Linked Data in the knowledge graph35. By navigating it, a security
analyst can access information from various sources such as, e.g., attack pre-
requisites and potential mitigations from CAPEC, weakness classifications and
potential mitigations from CWE, and scorings from CVSS.

Table 3. Vulnerability assessment query 2 – results

hostName cveId conf score dataAsset class consequence

Workstation2 2016-1646 COMPLETE 9.3 EmpData Private Read Memory

Workstation2 2016-1653 COMPLETE 9.3 EmpData Private DoS: Crash, Exit. . .

Workstation2 2016-1583 COMPLETE 7.2 EmpData Private DoS: Resource Cons. . .

Workstation2 2016-1583 COMPLETE 9.3 EmpData Private Execute Unauthorized . . .

34 Prefixes identical to Listing 1.
35 e.g., https://w3id.org/sepses/resource/cve/CVE-2016-1646.

https://w3id.org/sepses/page/cve/CVE-2016-1646
https://w3id.org/sepses/page/cve/CVE-2016-1653
https://w3id.org/sepses/page/cve/CVE-2016-1583
https://w3id.org/sepses/page/cve/CVE-2016-1583
https://w3id.org/sepses/resource/cve/CVE-2016-1646
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SELECT DISTINCT ?hostName ?cveId
?confidentiality as ?conf ?cvssScore AS ?score ?dataAsset ?classification AS ?class

?consequence↪→
FROM <http://localhost:8890/localdata>
WHERE {

?s a asset:Host.
?s rdfs:label ?hostName.
?s asset:hasProduct ?product.
?s asset:hasDataAsset ?dt.
?dt rdfs:label ?dataAsset.
?dt asset:hasClassification ?c.
?c rdfs:label ?classification.
?c asset:dataClassificationValue ?cv

FILTER (?confidentiality = "COMPLETE")
FILTER (?cv = 1)

SERVICE <http://sepses.ifs.tuwien.ac.at/sparql> {
?cve cve:hasCPE ?product .
?cve cve:id ?cveId.
?cve cve:hasCVSS2BaseMetric ?cvss2.
?cvss2 cvss:confidentialityImpact ?confidentiality.
?cvss2 cvss:baseScore ?cvssScore.
?cve cwe:hasCWE ?cwe.
?cwe cwe:hasCommonConsequence ?cc.
?cc cwe:consequenceImpact ?consequence

}
}

Listing 2: Vulnerability Assessment Query 2 – Critical Vulnerabilities

5.2 Intrusion Detection

In this scenario, we illustrate how alerts from the Network Intrusion Detec-
tion System (NIDS) Snort36 can be connected to the SEPSES Cybersecurity
KG in order to obtain a deeper understanding of potential threats and ongoing
attacks. As a first step, we acquired the Snort community rule set37 and inte-
grated it into our cybersecurity repository using a defined vocabulary38. Snort
can monitor these rules and trigger alerts once it finds matches to these patterns
in the network traffic. We represent SnortRules as a class with two linked
concepts SnortRuleHeader and SnortRuleOption. For SnortRuleOp-
tion we include properties such as sr:hasClassType and sr:hasCVEReference,
which will be used to link incoming alerts to CVEs.

Setting: We use a large data set collected during the MACCDC 201239 cyberse-
curity competition as a realistic set of real-world intrusion detection alerts (cf.
Listing 3 for an example). We provide and use a Snort alert log vocabulary40 to
map those alerts into RDF.

36 https://www.snort.org.
37 https://www.snort.org/downloads.
38 https://w3id.org/sepses/vocab/rule/snort.
39 https://maccdc.org/2012-agenda/, source: https://www.secrepo.com.
40 https://w3id.org/sepses/vocab/log/snort-alert.

https://www.snort.org
https://www.snort.org/downloads
https://w3id.org/sepses/vocab/rule/snort
https://maccdc.org/2012-agenda/
https://www.secrepo.com
https://w3id.org/sepses/vocab/log/snort-alert
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[**] [1:1807:12] WEB-MISC Chunked-Encoding transfer attempt [**]
[Classification: Web Application Attack] [Priority: 1]
11/10-11:10:12.321349 10.2.189.248:54208 -> 154.241.88.201:80
TCP TTL:61 TOS:0x0 ID:36462 IpLen:20 DgmLen:1200 DF
***A**** Seq: 0xCFAD1EE0 Ack: 0xB27D1032 Win: 0xB7 TcpLen: 32
TCP Options (3) => NOP NOP TS: 2592976 143157138

Listing 3: IDS Alert Example from MACCDC

Query: When a Snort alert is triggered, a security expert typically has to analyze
its relevance and decide about potential mitigations. False positives are common
in this context. For instance, a particular attack pattern may be detected fre-
quently in a network, but it may not be relevant if the targeted host configu-
ration is not vulnerable. To support security analysts in this time-critical and
information-intensive analysis task, we identify the corresponding Snort rule that
triggered each particular alert. These rules often include a reference to a CVE,
which we can use to query our knowledge graph for detailed CVE information
related to an alert. Furthermore, by matching the installed software on the host
to the vulnerable product configuration defined in CVE (cf. Scenario 1), we can
automatically provide security decision makers a better foundation to estimate
the relevance of a Snort alert wrt. to their protected assets. To illustrate this
process, Listing 441 shows an example query to obtain CVE Ids and vulnera-
ble products from Snort alerts. Based on the result Table 4, a security analyst
can query if the attacked host has the vulnerable software installed (similar to
Listing 1).

PREFIX cve: <http://w3id.org/sepses/vocab/ref/cve#>
PREFIX cpe: <http://w3id.org/sepses/vocab/ref/cpe#>
PREFIX snort: <http://w3id.org/sepses/vocab/ref/snort#>
PREFIX snort-rule: <http://w3id.org/sepses/vocab/rule/snort#>
PREFIX snort-alert: <http://w3id.org/sepses/vocab/log/snort-alert#>

SELECT DISTINCT ?alert ?message ?sid ?sourceIp ?destinationIp ?cveId ?cpeId
FROM <http://localhost:8890/snortalert>
WHERE {

?alert a snort-alert:IDSSnortAlertLogEntry ;
snort:signatureId ?sid ;
snort:message ?message ;
snort:sourceIp ?sourceIp ;
snort:destinationIp ?destinationIp .

SERVICE <http://w3id.org/sepses/sparql> {
?rule a snort-rule:SnortRule ;

snort-rule:hasRuleOption ?ruleOption .
?ruleOption snort:signatureId ?sid ;

snort-rule:hasCveReference ?cve .
?cve cve:id ?cveId ;

cve:hasCPE/cpe:id ?cpeId
}

}

Listing 4: Intrusion Detection query

41 Prefixes from Listing 1 are reused.
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Table 4. Intrusion detection query results

alert message sid sourceIP targetIP cveId cpeId

Alert001 WEB-MISC Chunked. . . 1807 10.2.190.254 154.241.88.201 2002-0392 cpe:/a:apa. . .

Alert002 WEB-MISC WebDAV. . . 1070 10.2.190.254 154.241.88.201 2000-0951 cpe:/a:micr. . .

Alert003 WEB-MISC TRACE. . . 2056 10.2.197.241 154.241.88.201 2004-2320 cpe:/a:bea:w. . .

Alert004 WEB-FRONTPAGE. . . 1248 10.2.190.254 154.241.88.201 2001-0341 cpe:/o:micr. . .

Alert005 WEB-MISC Netscape. . . 1048 10.2.197.241 154.241.88.201 2001-0250 cpe:/a:netsc. . .

6 Conclusions

In this resource paper, we highlight the need for semantically explicit representa-
tions of security knowledge and the current lack of interlinked instance data. To
tackle this challenge, we present a cybersecurity knowledge graph that integrates
a set of widely adopted, heterogeneous cybersecurity data sources.

To maintain the knowledge graph and integrate newly available informa-
tion, we developed an ETL process that updates it as new security information
becomes available. In order to make this resource publicly available and easy to
use, we offer multiple services to access the data, including a SPARQL endpoint,
a triple pattern fragments interface, a Linked Data interface, and download
options for the complete data set.

We demonstrated the usefulness of the graph by means of two example use
cases in vulnerability assessment and semantic interpretation of alerts generated
by intrusion detection systems. Given the compelling need for efficient exchange
of machine-interpretable cybersecurity knowledge, we expect the KG to be use-
ful for practitioners and researchers, and hope that the resource will ultimately
facilitate novel and innovative semantic security tools and services. Future work
will focus on disseminating the resource in the security domain, building a com-
munity of users and contributors around it, and growing the knowledge graph by
integrating additional security standards and information extracted from struc-
tured and unstructured sources.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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