
Unsupervised Discovery of Corroborative
Paths for Fact Validation

Zafar Habeeb Syed1(B), Michael Röder1,2, and Axel-Cyrille Ngonga Ngomo1,2

1 Data Science Group, Paderborn University, Paderborn, Germany
zsyed@mail.uni-paderborn.de, {michael.roeder,axel.ngonga}@upb.de

2 Institute for Applied Informatics, Leipzig, Germany

Abstract. Any data publisher can make RDF knowledge graphs avail-
able for consumption on the Web. This is a direct consequence of the
decentralized publishing paradigm underlying the Data Web, which has
led to more than 150 billion facts on more than 3 billion things being pub-
lished on the Web in more than 10,000 RDF knowledge graphs over the
last decade. However, the success of this publishing paradigm also means
that the validation of the facts contained in RDF knowledge graphs has
become more important than ever before. Several families of fact valida-
tion algorithms have been developed over the last years to address several
settings of the fact validation problems. In this paper, we consider the
following fact validation setting: Given an RDF knowledge graph, com-
pute the likelihood that a given (novel) fact is true. None of the current
solutions to this problem exploits RDFS semantics—especially domain,
range and class subsumption information. We address this research gap
by presenting an unsupervised approach dubbed COPAAL, that extracts
paths from knowledge graphs to corroborate (novel) input facts. Our
approach relies on a mutual information measure that takes the RDFS
semantics underlying the knowledge graph into consideration. In partic-
ular, we use the information shared by predicates and paths within the
knowledge graph to compute the likelihood of a fact being corroborated
by the knowledge graph. We evaluate our approach extensively using 17
publicly available datasets. Our results indicate that our approach out-
performs the state of the art unsupervised approaches significantly by
up to 0.15 AUC-ROC. We even outperform supervised approaches by
up to 0.07 AUC-ROC. The source code of COPAAL is open-source and
is available at https://github.com/dice-group/COPAAL.

1 Introduction

The participatory paradigm underlying the Data Web has led to more than 150
billion facts on more than 3 billion things being published on the Web in more
than 10,000 RDF knowledge graphs.1 For example, DBpedia [2], YAGO [20] and
WikiData [13] contain information about millions of entities and comprise bil-
lions of facts about these entities. These facts are used in the backend of a growing
number of applications including in-flight applications [13], community-support
1 http://lodstats.aksw.org/.

c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 630–646, 2019.
https://doi.org/10.1007/978-3-030-30793-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30793-6_36&domain=pdf
https://github.com/dice-group/COPAAL
http://lodstats.aksw.org/
https://doi.org/10.1007/978-3-030-30793-6_36

Unsupervised Discovery of Corroborative Paths for Fact Validation 631

systems [1] and even personal assistants such as Apple’s Siri [13]. Ensuring the
veracity of the facts contained in knowledge graphs is hence of critical impor-
tance for an increasing number of end users and applications. Manual solutions
to the computation of the veracity of facts are clearly an impractical feat due
to the volume and the velocity of the data of the Data Web.2 Consequently,
automated solutions to this computation, dubbed fact validation [11,17] (also
called fact checking in some of the literature, e.g., [8]) have been devised over
the last years.

The goal of fact validation can be summarized as follows: Given a fact, com-
pute the likelihood that the given fact is true. Two main families of approaches
have been devised to address this problem (see Sect. 2 for more details). The
first family of approaches encompasses solutions which verbalize the input fact
and use textual evidence (e.g., large corpora such as the Web or Web crawls)
to find statements which support or refute the input fact [8,22,24]. We focus
on the second family of approaches. These approaches use a knowledge graph
G as background knowledge and use the facts contained therein to evaluate
the likelihood that the given fact is true [5,9,18]. These approaches use sets
of facts as evidence to compute the likelihood of a given fact. For example,
when using DBpedia version 2016-10 as background knowledge, they might
use facts such as (Barack Obama, birthPlace, Hawaii) and (Hawaii, country,
United States of America) to conclude that (Barack Obama, nationality,
United States of America) holds—a fact which is not to be found in the back-
ground knowledge base.

Our work is based on the following observation: While most approaches
which use a knowledge graph as background knowledge have been deployed on
RDF knowledge graphs, none has made use of the semantics of the accompa-
nying schema in RDFS to the full. In particular, none of the state-of-the-art
approaches makes use of the combination of domain, range and subsumption
hierarchy expressed in the schema of most RDF datasets in RDFS. However, the
RDFS schema contains crucial information (e.g., type information) necessary to
detect facts which can be used to validate or invalidate other facts.

In this paper, we address this research gap by presenting an unsupervised
fact validation approach for RDF knowledge graphs which identifies paths that
support a given fact (s, p, o). This approach is based on the insight that the
predicate p (e.g., nationality) carries mutual information with a set of other
paths (e.g., paths pertaining to birthPlace and country) in the background
knowledge graph G. Hence, the presence of certain sets of paths in G that begin
in s and end in o can be regarded as evidence which corroborates the veracity
of (s, p, o). Our approach is the first to take the domain and range information
of p, the type of s and o as well as the subsumption relations between types
in the RDFS schema of G into consideration while identifying these paths. Our
results show conclusively that using this information leads to significantly higher
AUC-ROC results on 17 benchmark datasets.

Our approach has several advantages over the state of the art: (i) It uses
data which can be directly queried via SPARQL from G, i.e., there is no need to

2 See https://lod-cloud.net/ for data on the growth of the Linked Open Data Cloud.

https://lod-cloud.net/

632 Z. H. Syed et al.

alter the representation mechanism of G or to use an internal representation of
G in our implementation. Moreover, our approach can exploit the large body of
work on scaling up triple stores to competitive runtimes. (ii) The proposed co-
occurrence measure for the similarity calculation between predicates and paths
is not bound to path lengths and can hence be exploited to detect paths of any
finite length. (iii) Our approach is completely unsupervised and neither training
nor labeled data is required.

The rest of the paper is organized as follows: Sect. 2 present details pertaining
to related fact validation approaches. In Sect. 3, we present a brief overview of
the formal notation used in this paper. We also introduce the formal specification
we use throughout this work. Section 4 details the formal model underlying our
approach. In particular, it gives a formal specification of corroborative paths and
how they can be used to measure the likelihood of a fact being true. Section 5
provides the details of our implementation. We present our experimental setup
in Sect. 6 and discuss our results in Sect. 7. Finally, we conclude in Sect. 8.

2 Related Work

Approaches to fact validation can be broadly classified into two categories: (i)
approaches that use unstructured textual sources [8,22,24] and (ii) approaches
that use structured information sources [3,17–19]. The latter—in particular
approaches that use a given knowledge graph for fact validation—are more rel-
evant to the work presented herein. Several approaches view a given knowledge
graph as labeled graph connecting nodes (entities) and edges (relations). Given
an input triple (s, p, o), the goal is then to search for paths of length up to a
given threshold k and use them to validate/invalidate the given input triple.
For instance, in [5,18] a knowledge graph is viewed as undirected network of
paths. The task is then to find shortest paths that connect s and o and are
semantically related to p. These approaches are unsupervised and do not require
prior training data. However, these approaches do not take into consideration the
terminological information (in particular the semantics of RDFS) of the input
knowledge graph while defining semantic proximity metrics. Other approaches
view KBs as graphs and search for metapaths to extract features [9,21,25]. These
features are then used to train a classification model to label unseen facts as true
or false. However, these approaches require training data in the form of labeled
metapaths and hence required significantly more human effort that the approach
presented herein. In PredPath [17], the authors propose a novel method to auto-
matically extract metapaths—called anchored predicate paths—given a set of
labeled examples. To achieves this goal, PredPath uses the rdf:type informa-
tion contained in the input knowledge graph. However, the anchored predicate
paths used for learning features are selected based on the type information of
subject and object irrespective of the predicate connecting them. This means
that they do not consider the domain, range and class subsumption provided by
the RDFS schema of the given knowledge graph. Consequently, their ability to
generalize over paths is limited as shown in Sect. 7 of this paper. Additionally,
PredPath requires labeled training data. Hence, porting it to previously unseen

Unsupervised Discovery of Corroborative Paths for Fact Validation 633

predicates is significantly more demanding that porting our approach, which is
fully unsupervised.

Alternative to graph models, several approaches encode the entities and rela-
tions in a KB using vector embeddings [3,12,19,23]. The fact validation problem
is then formulated as calculating the similarity between the entities and predicate
of a given input triple. Embedding-based methods for link prediction address a
related but different problem. Given a KG G, they compute a score function,
which expresses how likely it is that any triple whose subject, predicate and
object belong to the input graph G should belong to G [14]. Fact validation
approaches addresses a different but related goal: Given a graph G and a triple
t, they aim to compute the likelihood that t is true [8,18,22]. A core repercussion
of these two different problem formulations are the runtimes and the applications
of link prediction and fact checking. While fact validation algorithms are used in
online scenarios embedding-based algorithms are often used offline. Approaches
such as [6,7] mine Horn rules that can be used for knowledge base completion
tasks. However, they often fail to scale to large knowledge graphs.

Our approach, is inspired by approaches that discover metapaths. We propose
a novel approach for finding paths which corroborate a given triple (s, p, o). In
addition, we present a novel measure to calculate association strength these paths
and the input triple. In contrast to approaches based on metapaths, our approach
does not need training examples and does not require any supplementary effort
to deployed to previously unseen relations.

3 Preliminaries

Throughout this paper, we consider RDF knowledge graphs with RDFS seman-
tics. We use the notation presented in Table 1.

Table 1. List of symbols

Notation Description

G A knowledge graph

B,C,E,L, P Set of all blank nodes, RDFS classes, RDF resources, Literals and

RDF predicates, respectively

πk(v0, vk) Directed path of length k between nodes v0 and vk in G
μk(v0, vk) Undirected path of length k between nodes v0 and vk in G
Πk(p) Set of corroborative paths for a predicate p

Πk
(tx,ty) Set of typed directed paths of length k between nodes v0 and vk in G

Mk
(tx,ty) Set of typed undirected paths of length k between nodes v0 and vk in G

�q Vector of k predicates in G
Πk

(tx,ty),�q Set of �q-restricted typed directed paths of length k between nodes v0 and vk in G
Mk

(tx,ty),�q Set of �q-restricted typed undirected paths of length k between nodes v0 and vk in G
γ(x) Function mapping each element of E ∪ P ∪ B ∪ L to its type

λ(tx) Function mapping the type tx to a set of resources that are instances of this type

D(p) The domain of the predicate p

R(p) The range of the predicate p

634 Z. H. Syed et al.

3.1 Knowledge Graph

Definition 1. An RDF knowledge graph G is a set of RDF triples, i.e.,

G = {(s, p, o)|s ∈ E ∪ B, p ∈ P, o ∈ E ∪ B ∪ L}, (1)

where E is the set of all RDF resources, B is the set of all blank nodes, P ⊆ E is
the set of all RDF predicates and L represents the set of all literals.

Intuitively, an RDF knowledge graph can be understood as an edge-labeled
directed graph in which the node s is connected to the node o via an edge
with the label p iff the triple (s, p, o) ∈ G. This is the approach we use to dis-
play knowledge graphs graphically (see, e.g., Fig. 1). We use the notation s

p−→ o
to denote that (s, p, o) ∈ G. We denote the set of all RDFS classes as C (with
C ⊆ E). For A ∈ C and B ∈ C, we write A � B to signify that AI ⊆ BI for any
interpretation ·I .

Example 1. An excerpt of an example RDF knowledge graph—which we will
use as a running example—is displayed in Fig. 1. The example shows a sub-
graph extracted from DBpedia3 consisting of nodes (resources) (e.g., Barack
Obama and United States) and edges (relations) connecting these entities either
directly or via intermediate nodes (e.g., birthplace).

nationality

alumni country

party

country

birthPlace
country

Barack_Obama

Democratic_Party
_(United_States)

Hawaii

East_Greenwich
_High_School

United_States

Honolulu

birth
Place

isPartOf

Facts missing in DBpedia

Facts present in DBpedia

Fig. 1. A subgraph of DBpedia version 10-2016.

Definition 2. Path: A path of length k in a knowledge graph G is a cycle-free
sequence of triples from G of the form (v0, p1, v1), (v1, p2, v2), ..., (vk−1, pk, vk).

This means in particular that ∀i, j ∈ [0, k], i �= j → vi �= vj . We use πk(v0, vk)
to denote paths between v0 and vk. For the sake of legibility, we use the nota-
tion v0

p1−→ . . .
pk−1−−−→ vk to denote paths. Note that several paths can exist

between v0 and vk. For example, BarackObama birthPlace−−−−−−−→ Hawaii
country−−−−−→ USA

and BarackObama
party−−−→ DemocraticParty

country−−−−−→ USA are both paths of length
2 between the resources BarackObama and USA in our running example.
3 http://downloads.dbpedia.org/2016-10/.

http://downloads.dbpedia.org/2016-10/

Unsupervised Discovery of Corroborative Paths for Fact Validation 635

Definition 3. Undirected path: An undirected path of length k in a graph G is a
cycle-free sequence of triples of the form (v0, p1, v1), (v1, p2, v2), ..., (vk−1, pk, vk)
where ∀i ∈ [0, k − 1] (vi, pi+1, vi+1) ∈ G ∨ (vi+1, pi+1, vi) ∈ G.
Again, this means that ∀i, j ∈ [0, k], i �= j → vi �= vj . We denote undirected
paths with μk(v0, vk). For example, BarackObama alumni←−−−− GreenwichHighSchool
country−−−−−→ USA is an undirected path of length 2 between BarackObama and USA in
our example.

4 Corroborative Paths

4.1 Intuition

In this paper, we address the following problem: Given an RDF knowledge graph
G and a triple (s, p, o), compute the likelihood that (s, p, o) is true. For example,
we would have good reasons to believe that BarackObama is a citizen of the
USA given that BarackObama was born in Hawaii and Hawaii is located in the
USA. Clearly, we cannot formally infer that x is a national of z by virtue of the
existence of x

birthplace−−−−−−−→ y
country−−−−−→ z. Still, this path is a strong indicator (i.e.,

strongly corroborates) triples of the form x
nationality−−−−−−−→ z. The basic intuition

behind our work is correspondingly that the existence of certain paths πk(s, o)
between s and o is a strong indicator for the correctness (i.e., corroborate the
existence) of (s, p, o) and can hence be used to compute its likelihood.

4.2 Formal Model

Let γ be a function which maps each element of E ∪ P ∪ B ∪ L to its type. For
example, γ(BarackObama) = Person � Agent � Politician � President and
γ(UnitedStates) = Place � Location � Country � PopulatedPlace in our
running example.4 Further, let λ be a function which maps a given type tx to a
set of resources that are instances of tx by virtue of RDFS semantics. Extending
the formal model in [17], we now define the set Πk

(tx,ty)
of typed paths of length

k between pairs of resources of type tx and ty in a knowledge graph G as follows:

Πk
(tx,ty)

= {πk(v0, vk) | γ(v0) � tx ∧ γ(vk) � ty}. (2)

For tx = {Person} and ty = {Place}, the path BarackObama
birthPlace−−−−−−−→ Hawaii

country−−−−−→ USA is an element of the set Π2
(tx,ty)

in our running example. We define
the set Mk

(tx,ty)
of typed undirected paths analogously.

4 We use � to denote the conjunction of classes. Note that given that President

� Person � Agent, we could write the type BarackObama in an abbreviated form.
Similar considerations holds for the type of UnitedStates. We chose to write the
types out to remain consistent with the output of our example knowledge graph,
DBpedia 2016-10.

636 Z. H. Syed et al.

Let �q = q1, . . . , qk be a vector of properties of length k. We define the set of
�q-restricted typed paths Πk

(tx,ty),�q
⊆ Πk

(tx,ty)
as follows:

Πk
(tx,ty),�q

=
{
πk(v0, vk)

∣
∣ πk(v0, vk) ∈ Πk

(tx,ty)
,

∀i ∈ [0, k − 1] : (vi, pi+1, vi+1) ∈ πk(v0, vk) → pi+1 = qi+1

}
.

(3)

Put simply, this is the set of typed paths such that the sequence of properties in
each path is exactly �q. For example, let tx={Person}, ty = {Place} and �q = (
birthPlace, country). Then the path BarackObama

birthPlace−−−−−−−→ Hawaii
country−−−−−→

USA is the only element of Π2
(tx,ty),�q

in our running example. We call the elements
of Πk

(tx,ty),�q
similar as they share a sequence of predicates (i.e., �q). We define

sets of �q-restricted undirected typed paths Mk
(tx,ty),�q

analogously to Πk
(tx,ty),�q

.
We can now use restricted typed paths to compute how well a predicate is

corroborated in a knowledge graphs as follows: Let D(p) be the domain of p and
R(p) be its range. Given that we assume RDF knowledge graphs, we can safely
assume the existence of an RDFS class hierarchy for the said graph (defined via
the rdf:type predicate). Consequently, we can derive the following important
condition on paths πk(s, o) which are to corroborate the correctness of (s, p, o):
Only typed paths in Πk

(D(p),R(p)) can corroborate facts with the predicate p. This
particular insight is one of the major differences between this and previous works
(see Sect. 2), in which the consequences of RDFS semantics were not taken into
consideration. In particular, while previous approaches [17] used at most γ(s)
and γ(o) to measure the strength of the association between paths and predi-
cates, we use D(p) and R(p) as well as the RDFS class hierarchy in the input
knowledge graph G to determine the degree to which a path πk(s, o) corroborates
a predicate p.

Given an RDF knowledge graph G, we hence define the corroborative paths
for a predicate p formally as follows:

Πk(p) =
k⋃

j=1

Πj
(D(p),R(p)). (4)

Simply put, corroborative paths in Πk(p) are paths of length at most k that
carry similar information to p.

4.3 Association Strength

We base our computation of the strength of the association between Πj
(tx,ty),�q

and
p on their normalized pointwise mutual information [4]. To this end, we define
probability P(Πj

(tx,ty),�q
) of pairs of instances of tx resp. ty being connected via

a �q-restricted path of length j is as follows:
∣
∣
∣{(a, b) : γ(a) � tx ∧ γ(b) � ty ∧ (∃πj(a, b) ∈ Πj

(tx,ty),�q
)}

∣
∣
∣

|λ(tx)| · |λ(ty)| . (5)

Unsupervised Discovery of Corroborative Paths for Fact Validation 637

The probability P(p) of the predicate p linking resources of type tx and ty is

|{(a, p, b) : γ(x) � tx ∧ γ(y) � ty ∧ (a, p, b) ∈ G}|
|λ(tx)| · |λ(ty)| (6)

Finally, the joint probability P(Πj
(tx,ty),�q

, p) is defined as
∣
∣
∣{(a, b) : γ(a) � tx ∧ γ(b) � ty ∧ (∃πj(a, b) ∈ Πj

(tx,ty),�q
) ∧ (a, p, b) ∈ G}

∣
∣
∣

|λ(tx)| · |λ(ty)| . (7)

We could now compute the NPMI of Πj
(tx,ty),�q

and p as defined in [4]. How-
ever, a direct implementation of the original definition of the NPMI would be
expensive as it would require deduplicating the sets of pairs (a, b) connected by
the paths in Πj

(tx,ty)
.5 Hence, our approach implements an approximation of the

NPMI based on counting the number of paths which connect pairs (a, b) instead
of the pairs themselves. We hence end up with the following approximations
(note that these values are not probabilities):

P̂(Πj
(tx,ty),�q

) =
|Πj

(tx,ty),�q
|

|λ(tx)| · |λ(ty)| (8)

P̂(Πj
(tx,ty),�q

, p) =
|{πj(a, b) ∈ Πj

(tx,ty),�q
: (a, p, b) ∈ G}|

|λ(tx)| · |λ(ty)| . (9)

These approximations can be computed by using SPARQL queries without
DISTINCT clause, which makes the computation an order of magnitude faster
(see Table 7 for some of the scores returned by this function). Note that P(p)
remains unchanged and the number of paths a

p−→ b is exactly equal to the num-
ber of pairs (a, b) connected by p. Based on these approximations we can now
approximate the NPMI of Πj

(tx,ty),�q
and p as follows:

N̂PMI(Πj
(tx,ty),�q

, p) =

log

(
̂P

(

Πj
(tx,ty),�q

,p
)

̂P
(

Πj
(tx,ty)

)

·P(p)

)

− log
(

P̂
(
Πj

(tx,ty),�q
, p

)) (10)

5 Method and Implementation

This section presents our implementation of the formal model presented above
in detail. In particular, we show how some of the core computations of our model
can be implemented using SPARQL queries, ensuring practicable runtimes for
our approach. As above, we explain the approach using directed paths for the
sake of legibility. The approach was also implemented using undirected paths.
An evaluation of the performance of the approach with directed and undirected
paths is presented in Sect. 7.
5 Preliminary experiments suggest a 20-fold increase in runtime without any significant

increase in AUC-ROC.

638 Z. H. Syed et al.

5.1 Algorithm

Given an input triple t = (s, p, o), a knowledge graph G and a maximum path
length k, our implementation begins by identifying a set of paths of varying
lengths connecting s and o, respectively. For each path, it calculates a score,
which explicates the degree to which the path corroborate t. Finally, the scores
are amalgamated to a single score τ which expresses the veracity of t. The
complete algorithm is shown in Algorithm 1 and can be separated into the 4
steps (i) Initialization, (ii) Path discovery, (iii) Path scoring and (iv) Veracity
calculation.

Algorithm 1. COPAAL - Corroborative Fact Validation
Input : The input triple t = (s, p, o), the knowledge graph G and

the maximum path length k
Output: A veracity score τ for t
// Initialization

1 prune(G)

2 cD(p) ←− countInstances(D(p))
3 cR(p) ←− countInstances(R(p))
4 cp ←− countTriples(p)
5 List Z ←−{}; List Q ←−{}

// Path Discovery

6 for j = 1 to k do
7 QT ←− generateQueryTemplates(j)
8 for qt ∈ QT do
9 sq ←− qt(vo = s, vk = o)

10 Q ←− execute(sq)
11 prune(Q)

12 for �q ∈ Q do
13 Q.add((qt, �q))

14 end

15 end

16 end
// Path scoring

17 for (qt, �q) ∈ Q do
18 sq ←− generatePathCountQuery (qt, πj(s, o), D(p), R(p))
19 cΠ ←− execute(sq)
20 sq ←− generateCoocCountQuery (sq, t)
21 cΠ,p ←− execute(sq)
22 Z.add(calcNPMI(cΠ,p, cΠ , cp, cD(p), cR(p)))

23 end
// Veracity calculation

24 τ ←− 1
25 for ζ ∈ Z do
26 τ ←− τ × (1 − ζ)
27 end
28 return 1 − τ

Unsupervised Discovery of Corroborative Paths for Fact Validation 639

Initialization. Firstly, we prune G by removing all nodes from domain outside
the union of (i) base namespace(s) of G, (ii) the namespace for RDF, RDFS and
OWL. We carry out this preprocessing because we are interested in relations
(edges) that are defined by the ontology of the given G (line 1). Thereafter, the
domain D(p) and range R(p) of the given triple’s predicate p are determined.6

The number of instances of these two types as well as the number of triples
containing p as predicate are retrieved via SPARQL count queries (lines 2–4).

Path Discovery. In the second step, the properties of all paths πj(s, o) (i.e.,
their �q restrictions) of length j ∈ [1, k] between s and o are retrieved. To this
end, we generate SPARQL7 query templates (line 7). The query template which
retrieves directed paths of length j = 2 between ?v0 and ?v2 from an RDF
graph is:

SELECT ?p1 ?p2

WHERE {

?v0 ?p1 ?v1 .

?v1 ?p2 ?v2 .

}

Note that the query has to be modified with UNION to cover undirected paths.
Still, a single query can be used to detect paths of any length. Hence, our app-
roach generates k queries in this step.

After generating all necessary query templates up to the given length k, we
replace the variables ?v0 and ?vj with s and o respectively in the query (line 9).
We prune the results of the query (line 11) by removing results containing pred-
icates which define the terminology (e.g., class membership through rdf:type,
class hierarchy through rdfs:subClassOf).8 The remaining �q-restrictions are
stored as pairs together with the template which was used to retrieve them in
the list Q (line 12–14). We store the template to ensure that we can reconstruct
the direction of the predicates in case undirected paths are used.

Path Scoring. Pairs in Q are used to define the �q-restricted typed path sets
Πj

(D(p),R(p)),�q. For each of these pairs, a score ζ is calculated based on the NPMI
approximation in Eq. 10 (lines 16–23). For the sake of efficiency, we use SPARQL
queries to obtain the necessary counts of typed paths which are generated based
on the query template and �q (line 18). However, as pointed out in [7], a direct
translation of the needed counts into queries leads to time-consuming computa-

6 If D(p) or R(p) are not available, the types of the given subject or object will be
used, respectively.

7 https://www.w3.org/TR/rdf-sparql-query/.
8 We are aware that the terminology (especially concept similarity scores) used in G

can potentially inform the fact validation process further. Studying the integration
of assertional and terminological information will be the object of future work and
is out of the scope of this paper.

https://www.w3.org/TR/rdf-sparql-query/

640 Z. H. Syed et al.

tions9 which require optimization. Therefore, we generate the SPARQL queries
needed for our counts with a recursive structure. Listing 1.1 shows a sample query
used to count the number of paths ?vo birthP lace−−−−−−−→ ?v1

country−−−−−→ ?v2 between enti-
ties with the types Person and Country, respectively.

Listing 1.1. SPARQL query to count all paths of an example �q

SELECT SUM(?b1*?b2) as ?sum WHERE {

SELECT COUNT (?v1) as ?b2, ?b1 WHERE {

?v0 <http :// dbpedia.org/ontology/birthPlace > ?v1 .

?v0 a <http :// dbpedia.org/ontology/Person > .

{

SELECT COUNT(?v2) as ?b1 , ?v1 WHERE {

?v1 <http :// dbpedia.org/ontology/country > ?v2 .

?v2 a <http :// dbpedia.org/ontology/Country > .

} GROUP BY ?v1

}

} GROUP BY ?v0 ?b1

}

Veracity Calculation. We treat the association strength of each �q-restricted
typed path as the confidence with which the path supports the existence of the
input predicate p. We hence combine the ζ values by checking whether at least
one path supports p. Let Z be the set of scores of all single paths, the veracity
score τ can be calculated with the following equation (see lines 23–28):

qτ = 1 −
∏

ζ∈Z

(1 − ζ) . (11)

6 Experiments and Results

In this section, we provide details of the data and hardware we used in our
experiments. We compare the results of our approach with those achieve by
state-of-the-art approaches in the subsequent section.

6.1 Setup

Knowledge Graph. For our experiments, we chose DBpedia version 2016-
10 as background knowledge. We chose this dataset because it is the reference
dataset of a large number of fact validation benchmarks. We used the latest
dumps10 of ontology, instance types, mapping-based objects and infobox
properties. We filtered out triples that (i) contain literals and datatypes or

9 We used Virtuoso and Fuseki for our experiments and our runtime findings sup-
port [7].

10 http://downloads.dbpedia.org/2016-10/.

http://downloads.dbpedia.org/2016-10/

Unsupervised Discovery of Corroborative Paths for Fact Validation 641

(ii) link the entities in DBpedia to external sources. The final graph contains 44
million triples, which we stored using an instance of Openlink Virtuoso v7.2.5.1
hosted on VM with 16GB memory and 256GB disk space. To ensure the com-
parability of our results, we ran our evaluation using GERBIL [16]—a bench-
marking platform that facilitates the evaluation of fact validation systems across
different datasets.11 We used the AUC-ROC as an evaluation metric and set
k = 2 for the sake of comparability with previous works.

Competing Approaches. We compare our approach (COPAAL) to three
state-of-the-art graph-based fact validation approaches: (i) Knowledge Stream
(KS), (ii) its variant Relational Knowledge Linker (KL-REL) [18] and (iii) Dis-
criminative Path Mining (PredPath) [17]. For all these approaches, we use the
implementation provided by the authors [18].12 We considered the configuration
suggested in the original paper: (i) PredPath [17] uses the top-100 features while
learning positive and negative facts. (ii) KS [18] and KL-REL [18] use the top-5
paths and single best path, respectively, for validating input triples.

6.2 Benchmarks

We evaluated all the approaches using two publicly available sets of benchmarks:
(i) the Real-World and (ii) Synthetic datasets13 made available by the authors
of the literature [18]. In addition, we generated a new set of benchmarks dubbed
FactBench-DBpedia from the FactBench14 dataset. All the facts in FactBench
are automatically extracted from DBpedia and Freebase for 10 different rela-
tions15 and stored in the form of RDF models. In FactBench, the positive facts
are generated by querying DBpedia and Freebase and selecting top 150 results
returned for each relation. The negative facts are generated by modifying the
positive facts while still following domain and range restrictions. The positive and
negative facts are collected into 6 different benchmarks dubbed Domain, Range,
Domain-Range, Mix, Random, Property. FactBench-DBpedia restricts the gen-
eration process of FactBench to DBpedia by extracting all facts belonging to
DBpedia and facts from Freebase whose resources can be mapped to resources
in DBpedia. Table 2 shows the stats for the different datasets.

7 Results

7.1 Comparison of Directed and Undirected Paths

We first aimed to determine the type of paths for which our approach performs
best. We hence compared the AUC achieved by both variations of our approach
11 All the datasets and result files can be found at https://hobbitdata.informatik.uni-

leipzig.de/COPAAL/.
12 https://github.com/shiralkarprashant/knowledgestream.
13 https://github.com/shiralkarprashant/knowledgestream/tree/master/datasets.
14 https://github.com/DeFacto/FactBench.
15 award, birthPlace, deathPlace, foundationPlace, leader, team, author, spouse, starring,

subsidiary.

https://hobbitdata.informatik.uni-leipzig.de/COPAAL/
https://hobbitdata.informatik.uni-leipzig.de/COPAAL/
https://github.com/shiralkarprashant/knowledgestream
https://github.com/shiralkarprashant/knowledgestream/tree/master/datasets
https://github.com/DeFacto/FactBench

642 Z. H. Syed et al.

Table 2. Summary of benchmark datasets

Dataset FactBench-DBpedia Real-World Synthetic

Subset D
om

ai
n

D
om

ai
n-
R
an
ge

R
an
ge

M
ix

Pr
op
er
ty

R
an
do
m

B
ir
th
-P
la
ce

D
ea
th
-P
la
ce

E
du
ca
tio

n

N
at
io
na
lit
y

U
S-
C
A
P

N
B
A
-T
ea
m

O
sc
ar
s

C
E
O

U
S-
W
A
R

U
S-
V
P

FL
O
T
U
S

Positive 1,124 1,124 1,124 1,124 1,124 1,124 273 126 466 50 50 41 78 201 126 47 16
Negative 1,119 1,006 1,123 1,014 1,153 511 819 378 1,395 150 250 123 4,602 1,007 584 227 240
Total 2,243 2,130 2,247 2,138 2,277 1,635 1,092 504 1,861 200 300 164 4,680 1,208 710 274 256

Table 3. Comparison of AUC-ROC achieved using directed and undirected paths

Domain Domain-Range Range Mix Random Property

Undirected paths 0.9348 0.9389 0.8937 0.8561 0.9411 0.7307

Directed paths 0.7741 0.7824 0.7416 0.5914 0.6411 0.4713

on FactBench-DBpedia (see Table 3). The results are clear: Using undirected
paths (average AUC-ROC = 0.87) always outperforms using directed paths (avg.
AUC-ROC = 0.66) and are 0.21 better on average w.r.t. the AUC-ROC they
achieve. We studied the results achieved using the two types of paths. It became
quickly evident that using undirected paths allows to detect significantly more
corroborative evidence. Therewith, undirected paths achieve a better approxi-
mation of the probability of a triple being true (see Table 7 for examples). Con-
sequently, we only consider our approach with undirected paths in the following.

7.2 Comparison with Other Approaches

Tables 4 and 5 show the AUC-ROC results of all the approaches on the bench-
marks contained in the Real-World and Synthetic datasets, respectively. Our
approach outperforms other approaches on most of these datasets. In the best
case, we are roughly 4.5% (absolute value, Birth Place benchmark) better than
PredPath and more than 20% (absolute value, Birth Place benchmark) better
than KS on real data. A careful study of our results reveals that the anchored
predicate paths used by PredPath for learning features are restricted by the types
of subject and object irrespective of predicate of the input triple. Hence they

Table 4. AUC-ROC results of all approaches on Real-World datasets

Birth place Death place Education Nationality

COPAAL 0.9441 0.8997 0.8731 0.9831

PredPath 0.8997 0.8054 0.8644 0.9520

KL-REL 0.9254 0.9095 0.8547 0.9692

KS 0.7197 0.8002 0.8651 0.9789

Unsupervised Discovery of Corroborative Paths for Fact Validation 643

Table 5. ROC-AUC results of all approaches on Synthetic datasets

US-CAP NBA-Team Oscars CEO US-WAR US-VP FLOTUS

COPAAL 1.000 0.999 0.995 0.912 0.999 0.953 1.000

PredPath 0.996 0.923 0.999 0.897 0.995 0.944 1.000

KL-REL 1.000 0.999 0.976 0.898 0.873 0.891 0.983

KS 1.000 0.999 0.950 0.811 0.865 0.798 0.980

someetimes fail to generalize well. On the other hand, KL-REL uses single best
paths, which sometimes limits its ability to validate facts if it is not able to rank
the path which conveys the most evidence for the input triple to the first posi-
tion. This is made evident by the examples shown in Table 7: We computed the
union of the top-3 paths identified by our approach and all other approaches on
the three datasets for which the difference in AUC values were the largest. We
also computed the weights assigned by each of the approaches (i.e., N̂PMI for
our approach, average flow values of paths for KS and KL-REL [18] and weights
learned by the classifier for PredPath [17]). While our approach finds all paths
and allocated them weights, the other approach sometimes fail to detect relevant
paths (marked by dashes in Table 7) and are hence not able to use them in their
evidence computation. Having a large number of paths available however also
means that our scores are (even if rarely) overoptimistic w.r.t. evidence for a
triple, which explain the marginally lower scores we achieve on Death Place and
Oscars.

The results on FactBench-DBpedia (see Table 6) confirm the insight we
gained on the previous two datasets. Our approach outperforms the state of
the art and achieve a better AUC-ROC on most datasets. We ran a Wilcoxon
signed ranked test (significance = 99%) on all results we collected. The results
state that our approach is significantly better than the state of the art.

One could assume that our approach is slower than the state of the art due
to the larger amount of evidence it collects. Hence, we measured the average
throughput of all the approaches including all phases of the processing. The
average throughput of our approach was 21.02 triples/min. KS, which follows an
approach similar to ours, achieves an average throughput of 10.05 triples/min
while its counterpart KL-REL achieves 29.78 triples/min. PredPath’s average
throughput was 21.67 triples/min. Overall, our results show that our approach
scales as well as the state of the art while achieving significantly better results.

Table 6. ROC-AUC results of all approaches on FactBench-DBpedia datasets

Domain DomainRange Mix Property Random Range

COPAAL 0.9348 0.9389 0.8561 0.7307 0.9411 0.8937

PredPath 0.9301 0.9447 0.8408 0.7154 0.9354 0.8992

KL-REL 0.8453 0.8619 0.7721 0.6154 0.8547 0.8219

KS 0.8019 0.8124 0.7215 0.6047 0.7911 0.8047

644 Z. H. Syed et al.

Table 7. Union of the top-3 paths identified by the different approaches and their
weighting. The weights allocated by each of the approaches are given in the corre-
sponding column. A dash (-) means that the approach was not able to find the said
path.

Dataset Path COPAAL KS/KL-REL PredPath

BirthPlace
hometown−−−−−→ 0.65 0.28 –
birthPlace−−−−−−→ isPartOf←−−−−− 0.65 0.23 26
highSchool−−−−−−→ city−−→ 0.62 0.21 –
parent−−−−→ birthPlace−−−−−−→ 0.63 0.08 29
child−−−→ birthPlace−−−−−−→ 0.60 0.04 21

CEO
foundedBy−−−−−→ 0.72 0.28 3
owningCompany−−−−−−−−→ 0.70 – –
owner−−−→ 0.70 – –
parentCompany←−−−−−−−− keyPerson−−−−−→ 0.70 0.08 7
employer−−−−−→ 0.64 0.23 9

US-VP
successor←−−−−− 0.62 0.19 5
predecessor−−−−−−−→ 0.61 0.12 7
vicePresident←−−−−−−−− president−−−−−→ 0.55 – –
associate−−−−−→ president−−−−−→ 0.49 – 2
predecessor−−−−−−−→ successor←−−−−− 0.48 0.02 13

8 Conclusion and Future Work

In this paper, we present a novel unsupervised approach for the validation of
facts using an RDF knowledge graph G as background knowledge. Our approach
uses domain, range and class subsumption information found in the schema of G
to outperform both supervised and unsupervised fact validation approaches. We
evaluated our results on 17 datasets against three state-of-the-art approaches.
Our results show that our approach outperforms the state of the art significantly
(Wilcoxon signed ranked test, p < 0.01). We studied the difference between the
approaches and concluded that our approach performs better because it is able
to score corroborative paths more accurately as it uses more information from
the schema of G. These results point to the importance of using the semantics
of the data contained in RDF knowledge graphs when aiming to validate them.
Another advantage of our approach is that it allows to verbalize the evidence
found to support a given input triple.

The main limitation of our approach lies in its relying on the existence of type
information. Well-defined ontologies are not always given in real world datasets
and therefore our approach cannot be applied on them. Previous works have
aimed at improving type information in noisy knowledge graphs [15]. We will
evaluate whether combining our approach with such algorithms leads to bet-

Unsupervised Discovery of Corroborative Paths for Fact Validation 645

ter corroborative paths in future works. Additionally, the approaches evaluated
herein are limited to evidence found in one RDF graph. In future work, we will
consider performing fact validation at a larger scale. In particular, we will use
the linked nature of Linked Data sets to detect paths across several knowledge
graphs. We will focus on the scalability and the distributed execution of this novel
solution. Moreover, we will consider relaxing the requirements to types used in
the definition of Πk

(tx,ty),�q
by using well-defined semantic similarities [10].

Acknowledgements. This work has been supported by the BMVI projects LIMBO
(project no. 19F2029C) and OPAL (project no. 19F20284), the BMBF project SOLIDE
(project no. 13N14456) and the EU project KnowGraphs (project no. 860801).

References

1. Athreya, R.G., Ngonga Ngomo, A.C., Usbeck, R.: Enhancing community interac-
tions with data-driven chatbots-the DBpedia chatbot. In: Companion of the the
Web Conference 2018 on The Web Conference, pp. 143–146 (2018). International
World Wide Web Conferences Steering Committee (2018)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

4. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction.
In: Proceedings of GSCL, pp. 31–40 (2009)

5. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.:
Computational fact checking from knowledge networks. PloS One 10(6), e0128193
(2015)

6. d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the semantic web:
what does it buy? Semant. Web 1(1, 2), 53–59 (2010)

7. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: Amie: association rule min-
ing under incomplete evidence in ontological knowledge bases. In: Proceedings of
the 22nd International Conference on World Wide Web, pp. 413–422. ACM (2013)

8. Gerber, D., et al.: DeFacto–temporal and multilingual deep fact validation. Web
Semant. Sci. Serv. Agents World Wide Web 35, 85–101 (2015)

9. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Mach. Learn. 81(1), 53–67 (2010)

10. Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity measures
for ELH-concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS (LNAI), vol. 7519, pp. 307–319. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33353-8 24

11. Lin, P., Song, Q., Wu, Y.: Fact checking in knowledge graphs with ontological
subgraph patterns. Data Sci. Eng. 3(4), 341–358 (2018)

12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence (2015)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-642-33353-8_24
https://doi.org/10.1007/978-3-642-33353-8_24

646 Z. H. Syed et al.

13. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of wikidata: semantic technology usage in wikipedia’s knowledge graph.
In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00668-6 23

14. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for
linked data. In: Proceedings of the 21st International Conference on World Wide
Web, pp. 271–280. ACM (2012)

15. Paulheim, H., Bizer, C.: Type Inference on noisy RDF data. In: Alani, H., et al.
(eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41335-3 32

16. Röder, M., Usbeck, R., Ngonga Ngomo, A.: GERBIL - benchmarking named entity
recognition and linking consistently. Semant. Web 9(5), 605–625 (2018)

17. Shi, B., Weninger, T.: Discriminative predicate path mining for fact checking in
knowledge graphs. Knowl.-Based Syst. 104, 123–133 (2016)

18. Shiralkar, P., Flammini, A., Menczer, F., Ciampaglia, G.L.: Finding streams in
knowledge graphs to support fact checking. In: 2017 IEEE International Conference
on Data Mining (ICDM), pp. 859–864. IEEE (2017)

19. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in Neural Information Process-
ing Systems.,pp. 926–934 (2013)

20. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge.
In: Proceedings of the 16th InternationalCconference on World Wide Web, pp.
697–706. ACM (2007)

21. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k sim-
ilarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11),
992–1003 (2011)

22. Syed, Z.H., Röder, M., Ngonga Ngomo, A.C.: Factcheck: Validating rdf triples
using textual evidence. In: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pp. 1599–1602. ACM (2018)

23. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translat-
ing on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence
(2014)

24. Yin, X., Han, J., Philip, S.Y.: Truth discovery with multiple conflicting information
providers on the web. IEEE Trans. Knowl. Data Eng. 20(6), 796–808 (2008)

25. Zhao, M., Chow, T.W., Zhang, Z., Li, B.: Automatic image annotation via compact
graph based semi-supervised learning. Knowl.-Based Syst. 76, 148–165 (2015)

https://doi.org/10.1007/978-3-030-00668-6_23
https://doi.org/10.1007/978-3-642-41335-3_32

	Unsupervised Discovery of Corroborative Paths for Fact Validation
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Knowledge Graph

	4 Corroborative Paths
	4.1 Intuition
	4.2 Formal Model
	4.3 Association Strength

	5 Method and Implementation
	5.1 Algorithm

	6 Experiments and Results
	6.1 Setup
	6.2 Benchmarks

	7 Results
	7.1 Comparison of Directed and Undirected Paths
	7.2 Comparison with Other Approaches

	8 Conclusion and Future Work
	References

