
Uncovering the Semantics of Wikipedia
Categories

Nicolas Heist(B) and Heiko Paulheim

Data and Web Science Group, University of Mannheim, Mannheim, Germany
{nico,heiko}@informatik.uni-mannheim.de

Abstract. The Wikipedia category graph serves as the taxonomic back-
bone for large-scale knowledge graphs like YAGO or Probase, and has
been used extensively for tasks like entity disambiguation or semantic
similarity estimation. Wikipedia’s categories are a rich source of tax-
onomic as well as non-taxonomic information. The category German
science fiction writers, for example, encodes the type of its resources
(Writer), as well as their nationality (German) and genre (Science Fic-
tion). Several approaches in the literature make use of fractions of this
encoded information without exploiting its full potential. In this paper,
we introduce an approach for the discovery of category axioms that uses
information from the category network, category instances, and their lex-
icalisations. With DBpedia as background knowledge, we discover 703k
axioms covering 502k of Wikipedia’s categories and populate the DBpe-
dia knowledge graph with additional 4.4M relation assertions and 3.3M
type assertions at more than 87% and 90% precision, respectively.

Keywords: Knowledge graph completion ·
Wikipedia category graph · Ontology learning · DBpedia

1 Introduction

Two of the most prominent public knowledge graphs, DBpedia [16] and YAGO
[18], build rich taxonomies using Wikipedia’s infoboxes and category graph,
respectively. They describe more than five million entities and contain multi-
ple hundred millions of triples [27]. When it comes to relation assertions (RAs),
however, we observe – even for basic properties – a rather low coverage: More
than 50% of the 1.35 million persons in DBpedia have no birthplace assigned;
even more than 80% of birthplaces are missing in YAGO. At the same time, type
assertions (TAs) are not present as well for many instances – for example, there
are about half a million persons in DBpedia not explicitly typed as such [23].

Missing knowledge in Wikipedia-based knowledge graphs can be attributed
to absent information in Wikipedia, but also to the extraction procedures of
knowledge graphs. DBpedia uses infobox mappings to extract RAs for indi-
vidual instances, but it does not explicate any information implicitly encoded
in categories. YAGO uses manually defined patterns to assign RAs to entities
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 219–236, 2019.
https://doi.org/10.1007/978-3-030-30793-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30793-6_13&domain=pdf
http://orcid.org/0000-0002-4354-9138
http://orcid.org/0000-0003-4386-8195
https://doi.org/10.1007/978-3-030-30793-6_13

220 N. Heist and H. Paulheim

of matching categories. For example, they extract a person’s year of birth by
exploiting categories ending with births. Consequently, all persons contained in
the category 1879 births are attributed with 1879 as year of birth [29]. Like-
wise, most existing works, such as [17] and [32] leverage textual patterns in the
category names.

There are some limitations to such approaches, since, in many cases, very
specific patterns are necessary (e.g. county, Chester County for the category
Townships in Chester County, Pennsylvania), or the information is only
indirectly encoded in the category (e.g. timeZone, Eastern Time Zone for the
same category). In order to capture as much knowledge as possible from cat-
egories, we propose an approach that does not learn patterns only from the
category names, but exploits the underlying knowledge graph as well.

While category names are plain strings, we aim at uncovering the semantics
in those category names. To that end, we want to extract both type as well as
relation information from categories. In the example in Fig. 1, we would, e.g.,
learn type (1) as well as relation (2–3) axioms, such as:

∃category. {Reggae albums} � Album (1)
∃category. {Nine Inch Nails albums} � ∃artist. {Nine Inch Nails} (2)

∃category. {Reggae albums} � ∃genre. {Reggae} (3)

Once those axioms are defined, they can be used to fill in missing type and
relation assertions for all instances for which those categories have been assigned.

In this paper, we propose the Cat2Ax approach to enrich Wikipedia-based
knowledge graphs by explicating the semantics in category names. We combine
the category graph structure, lexical patterns in category names, and instance
information from the knowledge graph to learn patterns in category names
(e.g., categories ending in albums), and map these patterns to type and rela-
tion axioms. The contributions of this paper are the following:

– We introduce an approach that extracts axioms for Wikipedia categories using
features derived from the instances in a category and their lexicalisations.

– We extract more than 700k axioms for explicating the semantics of category
names at a precision of more than 95%.

– Using those axioms, we generate more than 7.7M new assertions in DBpedia
at a precision of more than 87%.

The rest of this paper is structured as follows. Section 2 frames the approach
described in this paper in related works. Section 3 lays out the preliminaries of
our work, followed by an introduction of our approach in Sect. 4. In Sect. 5, we
discuss an empirical evaluation of our approach. We close with a summary and
an outlook on future developments.

2 Related Work

With the wider adoption of general purpose knowledge graphs such as DBpedia
[16], YAGO [18], or Wikidata [31], their quality has come into the focus of

Uncovering the Semantics of Wikipedia Categories 221

Albums

Albums
by genre

Albums
by artist

Nine Inch
Nails
albums

The Doors
albums

Rock
albums

Pop
albums

Reggae
albums

The
Beatles
albums

... ...

...

Fig. 1. Excerpt of the Wikipedia category graph showing the category Albums together
with some of its subcategories.

recent research [3,33]. The systematic analysis of knowledge graph quality has
inspired a lot of research around an automatic or semi-automatic improvement
or refinement [22].

Generally, knowledge graph refinements can be distinguished along various
dimensions: the goal (filling missing knowledge or identifying erroneous axioms),
the target (e.g., schema or instance level, type or relation assertions, etc.), and
the knowledge used (using only the knowledge graph as such or also external
sources of knowledge). The approach discussed in this paper extracts axioms
on schema level and assertions on instance level using Wikipedia categories as
external source of knowledge.

There are quite a few refinement strategies using additional sources in
Wikipedia especially for the extraction of new RAs. Most of them use the text
of Wikipedia pages [1,7,9,19], but also Wikipedia-specific structures, such as
tables [20,28] or list pages [13,24].

For extracting information from categories, there are two signals that can be
exploited: (1) lexical information from the category’s name, and (2) statistical
information of the instances belonging to the category. YAGO, as discussed
above, uses the first signal. A similar approach is Catriple [17], which exploits
manually defined textual patterns (such as X by Y) to identify parent categories
which organize instances by objects of a given relation: for example, the category
Albums by genre has child categories whose instances share the same object for
the relation genre, and can thus be used to generate axioms such as the one in
Eq. 3 above. The Catriple approach does not explicitly extract category axioms,
but finds 1.27M RAs. A similar approach is taken in [21], utilizing POS tagging
to extract patterns from category names, but not deriving any knowledge graph
axioms from them.

In the area of taxonomy induction, many approaches make use of lexical
information when extracting hierarchies of terms. Using Hearst patterns [8] is
one of the most well known method to extract hypernymy relations from text.
It has been extended multiple times, e.g., by [12] who enhance their precision by
starting with a set of pre-defined terms and post-filtering the final results. [30]

222 N. Heist and H. Paulheim

use an optimal branching algorithm to induce a taxonomy from definitions and
hypernym relations that have been extracted from text.

The C-DF approach [32] is an approach of the second category, i.e., it relies
on statistical signals. In a first step, it uses probabilistic methods on the category
entities to identify an initial set of axioms, and from that, it mines the extraction
patterns for category names automatically. The authors find axioms for more
than 60k categories and extract around 700k RAs and 200k TAs.

The exploitation of statistical information from category instances is a setting
similar to ontology learning [26]. For example, approaches such as DL-Learner
[15] find description logic patterns from a set of instances. These approaches
are very productive when there is enough training data and they provide exact
results especially when both positive and negative examples are given. Both
conditions are not trivially fulfilled for the problem setting in this paper: many
categories are rather small (75% of categories have fewer than 10 members) and,
due to the open world assumption, negative examples for category membership
are not given. Therefore, we postulate that both, statistical and lexical informa-
tion, have to be combined for deriving high-quality axioms from categories.

With Catriple and C-DF, we compare against the two closest approaches
in the literature. While Catriple relies solely on lexical information in the cate-
gory names, and C-DF relies solely on statistical information from the instances
assigned to categories, we propose a hybrid approach which combines the lexi-
cal and statistical signals. Moreover, despite exploiting category names, we do
not use any language-specific techniques, so that our approach is in principle
language-agnostic.

There are other studies using Wikipedia categories for various tasks. Most
prominently, taxonomic knowledge graphs such as WiBi [4] and DBTax [6] are
created by cleaning the Wikipedia category graph (which is not an acyclic graph
and therefore cannot directly be used as a taxonomy). Implicitly, they also learn
type axioms and assertions, but no relation axioms and assertions.

3 Preliminaries

The Cat2Ax approach uses three kinds of sources: The Wikipedia category
graph, background knowledge from a knowledge graph, and lexicalisations of
resources and types in the knowledge graph. In this section, we provide relevant
definitions and give background information about the respective sources.

Wikipedia Categories. In the version of October 2016,1 the Wikipedia cat-
egory graph contains 1,475,015 categories that are arranged in a directed, but
not acyclic graph, although often referred to as a category hierarchy. This graph
does not only contain categories used for the categorisation of content pages, but

1 We use this version in order to be compatible with the most recent release of DBpedia
from October 2016: https://wiki.dbpedia.org/develop/datasets.

https://wiki.dbpedia.org/develop/datasets

Uncovering the Semantics of Wikipedia Categories 223

also ones that are used for administrative purposes. We follow an approach sim-
ilar to [25] and use only categories below Main topic classifications while
also getting rid of categories having one of the following words in their name:
wikipedia, lists, template, stub. This leaves us with 1,299,665 categories.

Background Knowledge. As background knowledge, our approach requires
a knowledge graph KG that is based on Wikipedia. The knowledge graph is
comprised of a set of resources which are connected by relations, and an ontology
which defines their classes, interrelations, and restrictions of usage. A resource
in the knowledge graph describes exactly one article in Wikipedia. When we are
referring to DBpedia in our examples and experiments, we use the prefix dbr:
for resources and dbo: for properties and types.

With resources(c) we refer to the set of resources with a corresponding article
assigned to the category c. To get an estimate of how likely a combination of a
property p and a value v occurs within the resources of a category c, we calculate
their frequencies using background knowledge from the knowledge graph KG:

freq(c, p, v) =
| {r|r ∈ resources(c) ∧ (r, p, v) ∈ KG} |

|resources(c)| (4)

For p = rdf:type, we compute type frequencies of c.

Example 1. The category The Beatles albums has 24 resources, 22 of which
have the type dbo:Album. This results in a type frequency freq(The Beatles
albums, rdf:type, dbo:Album) of 0.92.

For p being any other property of KG, we compute relation frequencies of c.

Example 2. Out of the 24 resources of The Beatles albums, 11 resources have
dbr:Rock and roll as dbo:genre, resulting in a relation frequency freq(The
Beatles albums, dbo:genre, dbr:Rock and roll) of 0.46.

Resource/Type Lexicalisations. A lexicalisation is a word or phrase used in
natural language text that refers to a resource or type in the knowledge graph.
For an entity e, lex(e) contains all its lexicalisations, and lexCount(e, l) is the
count of how often a lexicalisation l has been found for e. When the count of a
lexicalisation l is divided by the sum of all counts of lexicalisations for an entity
e, we have an estimate of how likely e will be expressed by l.

We are, however, interested in the inverse problem: Given a lexicalisation l,
we want the probability of it expressing an entity e. We define lex−1(l) as the
set of entities having l as lexicalisation. The lexicalisation score – the probability
of an entity e being expressed by the lexicalisation l – is then computed by the
fraction of how often l expresses e compared to all other entities:

lexScore(e, l) =
lexCount(e, l)

∑
e′∈lex−1(l) lexCount(e′, l)

(5)

224 N. Heist and H. Paulheim

Example 3. We encounter the word lennon in Wikipedia and want to find
out how likely it is that the word refers to the resource dbr:John Lennon, i.e.
we compute lexScore(dbr:John Lennon, lennon). In total, we have 357 occur-
rences of the word for which we know the resource it refers to. 137 of them
actually refer to dbr:John Lennon, while others refer, e.g., to the soccer player
dbr:Aaron Lennon (54 times) or dbr:Lennon, Michigan (14 times). We use the
occurrence counts to compute a lexScore(dbr:John Lennon, lennon) of 0.42.

We compute lexicalisation scores for both resources and types in our experi-
ments with DBpedia. The lexicalisations of resources are already provided by
DBpedia [2]. They are gathered by using the anchor texts of links between
Wikipedia articles. For types, however, there is no such data set provided.

To gather type lexicalisations from Wikipedia, we apply the following
methodology: For every type t in the DBpedia ontology, we crawl the articles
of all resources having type t and extract hypernymy relationships using Hearst
patterns [8]. To ensure that we are only extracting relationships for the correct
type, we use exclusively the ones having a lexicalisation of the page’s resource as
their subject. To increase the coverage of type lexicalisations, we intentionally do
not count complete phrases, but individual words of the extracted lexicalisation.
For the calculation of the lexicalisation scores of a phrase, we simply sum up the
counts of the phrase’s words.

Example 4. We extract lexicalisations for the type dbo:Band. The resource
dbr:Nine Inch Nails has the appropriate type, hence we extract hypernymy
relationships in its article text. In the sentence “Nine Inch Nails is an American
industrial rock band [..]” we find the subject Nine Inch Nails and the object
American industrial rock band. As the subject is in lex(dbr:Nine Inch Nails),
we accept the object as lexicalisation of dbo:Band. Consequently, the lexicali-
sation count of the words American, industrial, rock, band is increased by one,
and, for each of those words encountered, the lexicalisation score for the class
dbo:Band increases.

4 Approach

The overall approach of Cat2Ax is shown in Fig. 2. The external inputs have
already been introduced in Sect. 3. The outputs of the approach (marked in bold
font) are twofold: A set of axioms which define restrictions for resources in a
category and thus can be used to enhance an ontology of a knowledge graph,
and a set of assertions which are novel facts about resources in the graph.

The approach has four major steps: The Candidate Selection uses hierarchical
relationships in the Wikipedia category graph to form sets of categories that are
likely to share a property that can be described by a textual pattern.

In the Pattern Mining step, we identify such patterns in the names of cat-
egories that are characteristic for a property or type. To achieve that, we use

Uncovering the Semantics of Wikipedia Categories 225

L

Background
Knowledge

B

Wikipedia
Categories

C

Resource/Type
Lexicalisations

L

Candidate Selection

STEP 1

Pattern Mining

STEP 2

Pattern Application

STEP 3

Axiom Application
& Post-Filtering

STEP 4

Candidate
Category Sets

Category
Patterns

Category
Axioms

Type/Relation
Assertions

C
B

BL
B
C

C

External
Inputs

Fig. 2. Overview of the Cat2Ax approach.

background knowledge about resources in the respective categories as well as lex-
icalisations. Furthermore, we promote a pattern only if it applies to a majority
of the categories in a candidate set.

In the Pattern Application step, we apply the extracted patterns to all cat-
egories in order to find category axioms. Here, we again rely on background
knowledge and lexicalisations for the decision of whether a pattern is applicable
to the category.

Finally, we generate assertions by applying the axioms of a category to its
resources and subsequently use post-filtering to remove assertions that would
create contradictions in the knowledge graph.

4.1 Candidate Selection

In this first step, we want to extract sets of categories with names that indicate
a shared relation or type. We base the extraction of such candidate category sets
on two observations:

The first one is inspired by the Catriple approach [17]. They observed that in
a parent-child relationship of categories, the parent often organizes its children
according to a certain property. Contrary to Catriple, we do not use the parent
category to identify this property, but we rather use the complete set of children
to find their similarities and differences.

As we now know from the first observation, the children of a category can
have certain similarities (which are the reason that they have the same parent
category) and differences (which are the reason that the parent was split up into
child categories). As a second observation, we discovered that, when the children
of a category are organized by a certain property, their names have a shared part
(i.e. a common prefix and/or postfix) and a part that differs for each category.
We found that the shared part is often an indicator for the type of resources

226 N. Heist and H. Paulheim

that are contained in the category, while the differing part describes the value
of the property by which the categories are organized.

Using these observations, we produce the candidate category sets by looking
at the children of each Wikipedia category and forming groups out of children
that share a prefix and/or postfix.

Example 5. In Fig. 1, we see parts of two candidate category sets that both
have the postfix albums. The first one contains 143 children of the category
Albums by artist. The second one contains 45 children of the category Albums
by genre.

Note that we sometimes form multiple candidate category sets from cate-
gory’s children as there might be more than one shared pre- or postfix.

Example 6. The children of the category Reality TV participants yield
three candidate sets ending on participants, contestants, and members.

4.2 Pattern Mining

For each of the candidate category sets, we want to discover a characteristic prop-
erty and type. Therefore, we identify patterns that will be used in the subsequent
steps to extract category axioms. Each of the patterns consists of a textual pat-
tern (i.e. the shared part in the names of categories) and the implication (i.e.
the shared property or type).

To determine the characteristic property, we inspect every individual cate-
gory in the candidate set and compute a score for every possible relation in the
category. As mentioned in Sect. 4.1, the value of a relation differs for the cate-
gories in a set. We thus focus on finding the property with the highest score and
disregard relation values. To that end, we aggregate the scores from all categories
and choose the property that performs best over the complete category set. For
this property, we learn a pattern that covers the complete candidate category
set.

The score of a relation (p, v) for a category c consists of two parts with one
being based on background knowledge and the other on lexical information. The
latter uses the part cvar of a category’s name that differs between categories
in the set to compute an estimate of how likely cvar expresses the value of the
relation. The score is computed as follows:

scorerel(c, p, v) = freq(c, p, v) ∗ lexScore(v, cvar) (6)

Note that freq(c,p,v) is only greater than zero for relations of the resources in
resources(c) which drastically reduces the amount of scores that have to be
computed.

Example 7. For the category The Beatles albums, we compute an indi-
vidual relation score for each property-value pair in KG having a resource
in resources(The Beatles albums) as their subject. To compute, e.g.,

Uncovering the Semantics of Wikipedia Categories 227

scorerel(The Beatles albums, dbo:artist, dbr:The Beatles), we multiply
the frequency freq(The Beatles albums, dbo:artist, dbr:The Beatles)
with the lexicalisation score lexScore(dbr:The Beatles, The Beatles).

As an aggregation function for the scores we use the median. Heuristically,
we found that the property with the highest median of scores is suited to be the
characteristic property for a category set. To avoid learning incorrect patterns,
we discard the property if it cannot be found in at least half of the categories in
the set, i.e., if the median of scores is zero.

Example 8. After computing all the relation scores for all categories in the
category set formed by the 143 children of Albums by artist, we aggregate
the computed scores by their property and find dbo:artist to have the highest
median score.

The support of a pattern is the count of how often a pattern has been learned
for a category. If we discover a valid property for a category set, the support of
the respective property pattern is increased by the number of categories in the
set. We assume hereby that, if this property is characteristic for the majority of
categories, then it is characteristic for all categories in the set.

For the extraction of characteristic types we apply the exact same method-
ology, except for the calculation of the score of a type. We compute the score
of a type t in the category c using its frequency in c and a lexicalisation score
derived from the shared part cfix in a category’s name:

scoretype(c, t) = freq(c, rdf:type, t) ∗ lexScore(t, cfix) (7)

Example 9. For the category sets formed by the children of Albums by artist
and Album by genre in Fig. 1, we find the following property patterns to have
the highest median scores:

– PP1 = “<lex(dbr:res)> albums” � ∃dbo:artist.{dbr:res}
– PP2 = “<lex(dbr:res)> albums” � ∃dbo:genre.{dbr:res}
We increase the support of PP1 by 143 and PP2 by 45. For both sets, we extract
the type pattern TP1 = “<lex(dbr:res)> albums” � dbo:Album and increase its
support by 188 (respectively using the counts from Example 5).

4.3 Pattern Application

Before we can apply the patterns to the categories in Wikipedia to identify
axioms, we need to define a measure for the confidence of a pattern. This is
especially necessary because, as shown in Example 9, we can find multiple impli-
cations for the same textual pattern. We define the confidence conf(P) of a
pattern P as the quotient of the support of P and the sum of supports of all the
patterns matching the same textual pattern as P.

228 N. Heist and H. Paulheim

Example 10. Assuming PP1 and PP2 of Example 9 are the only property pat-
terns that we found, we have a pattern confidence of 0.76 for PP1 and 0.24 for
PP2.

Next, we apply all our patterns to the categories of Wikipedia and compute
an axiom confidence by calculating the fit between the category and the pattern.
Therefore, we can reuse the scores from Eqs. 6–7 and combine them with the
confidence of the pattern. As a relation pattern only specifies the property of
the axiom, we compute the axiom confidence for every possible value of the
axiom’s property in order to have a ranking criterion. For a category c, a property
pattern PP with property pPP and a possible value v, we compute the confidence
as follows:

conf(c, PP, v) = conf(PP) ∗ scorerel(c, pPP , v) (8)

And similarly, for a type pattern TP with type tTP :

conf(c, TP) = conf(TP) ∗ scoretype(c, tTP) (9)

Using the confidence scores, we can control the quality of extracted axioms
by only accepting those with a confidence greater than a threshold τ . To find a
reasonable threshold, we will inspect and evaluate the generated axioms during
our experiments.

Example 11. Both patterns, PP1 and PP2, from Example 9 match the cate-
gory Reggae albums. Using PP1, we can not find an axiom for the category as
there is no evidence in DBpedia for the property dbo:artist together with any
resources that have the lexicalisation Reggae (i.e. scorerel is equal to 0). For
PP2, however, we find the axiom (Reggae albums, dbo:genre, dbr:Reggae)
with a confidence of 0.18.

For a single category, multiple property or type patterns can have a confidence
greater than τ . The safest variant for property and type patterns is to accept
only the pattern with the highest confidence and discard all the others. But we
found that multiple patterns can imply valid axioms for a category and thus
follow a more differentiated selection strategy.

For relation axioms, we accept multiple axioms as long as they have different
properties. When the properties are equal, we accept only the axiom with higher
confidence.

Example 12. For the category Manufacturing companies established in
1912 (short: c1), we find the axioms (c1, dbo:foundingYear, 1912) and (c1,
dbo:industry, dbr:Manufacturing). As they have different properties, we
accept both.

Example 13. For the category People from Nynäshamn Municipality (short:
c2), we find the axioms (c2, dbo:birthPlace, dbr:Nynäshamn Municipality)
and (c2, dbo:birthPlace, dbr:Nynäshamn). As they have the same property, we
only accept the former as its confidence is higher.

Uncovering the Semantics of Wikipedia Categories 229

For type axioms, we accept the axioms with the highest confidence and any
axioms with a lower confidence that imply sub-types of the already accepted
types.

Example 14. For the category Missouri State Bears baseball coaches
(short: c3), we find the axioms (c3, rdf:type, dbo:Person) and (c3, rdf:type,
dbo:CollegeCoach). Despite the latter having a lower confidence than the for-
mer, we accept both because dbo:CollegeCoach is a sub-type of dbo:Person.

4.4 Axiom Application and Post-filtering

With the category axioms from the previous step, we generate new assertions
by applying the axiom to every resource of the category.

Example 15. We apply the axiom (Reggae albums, dbo:genre, dbr:Reggae)
to all resources of Reggae albums and generate 50 relation assertions, 13 of which
are not yet present in DBpedia.

Categories can contain special resources that do not actually belong to the
category itself but, for example, describe the topic of the category. The cate-
gory Landforms of India, for example, contains several actual landforms but
also the resource Landforms of India. To avoid generating wrong assertions
for such special resources, we filter all generated assertions using the existing
knowledge in the knowledge base.

For relation assertions, we use the functionality of its property to filter invalid
assertions. Accordingly, we remove a relation assertion (s, p, o) if the property
p is functional2 and there is an assertion (s, p, o’) with o �= o′ already in the
knowledge base.

Example 16. Out of the 13 new dbo:genre axioms generated for the category
Reggae albums in the previous example, nine refer to resources which do not
have a dbo:genre at all, and four add a genre to a resource which already has
one or more values for dbo:genre. The latter is possible since dbo:genre is not
functional.

Example 17. The relation assertion (dbr:Bryan Fisher, dbo:birthYear,
1982) is removed because DBpedia contains the triple (dbr:Bryan Fisher,
dbo:birthYear, 1980) already, and dbo:birthYear is functional.

To identify invalid type assertions, we use the disjointness axioms of the ontology
of the knowledge base, and remove any type assertion that, if added to the
knowledge base, would lead to a conflict of disjointness.

Example 18. The assertion (dbr:Air de Paris, rdf:type, dbo:Person) is
removed because the subject has already the type dbo:Place, which is disjoint
with dbo:Person.
2 Since the DBpedia ontology does not define any functional object properties, we use

a heuristic approach and treat all properties which are used with multiple objects on
the same subject in less than 5% of the subjects as functional. This heuristic marks
710 out of 1,355 object properties as functional.

230 N. Heist and H. Paulheim

5 Experiments

In this section, we first provide details about the application of the Cat2Ax
approach with DBpedia as background knowledge. Subsequently, we discuss the
evaluation of Cat2Ax and compare it to the related approaches. For the imple-
mentation of the approaches we used the Python libraries spaCy3 and nltk4. The
code of Cat2Ax5 and all data6 of the experiments are freely available.

5.1 Axiom Extraction Using DBpedia

The following results are extracted using the most recent release of DBpedia.7

Candidate Selection. We find 176,785 candidate category sets with an average
size of eight categories per set. From those sets, 60,092 have a shared prefix,
76,791 a shared postfix, and 39,902 both a shared prefix and postfix.

Pattern Mining. We generate patterns matching 54,465 different textual pat-
terns. For 24,079 of them we imply properties, for 54,096 we imply types. On
average, a property pattern implies 1.22 different properties while a type pattern
implies 1.08 different types. Table 1 lists exemplary patterns that match a prefix
(rows 1–2), a postfix (rows 3–4), and both a prefix and a postfix (rows 5–6).

Pattern Application. We have to determine a threshold τ for the minimum
confidence of an accepted axiom. Therefore, we have sampled 50 generated
axioms for 10 confidence intervals each ([0.01, 0.02), [0.02, 0, 03), ..., [0.09, 0.10)
and [0.10, 1.00]), and manually evaluated their precision. The results are shown
in Fig. 3. We can observe that the precision considerably drops for a threshold
lower than τ = 0.05, i.e., for those axioms which have a confidence score less
than 5%. Hence, we choose τ = 0.05 for a reasonable balance of axiom precision
and category coverage.

With a confidence threshold τ of 0.05, we extract 272,707 relation axioms and
430,405 type axioms. In total, they cover 501,951 distinct Wikipedia categories.

Axiom Application and Post-filtering. Applying the extracted axioms to
all Wikipedia categories results in 4,424,785 relation assertions and 1,444,210
type assertions which are not yet contained in DBpedia. For the type assertions,
we also compute the transitive closure using the rdfs:subclassOf statements
in the ontology (e.g., also asserting dbo:MusicalWork and dbo:Work for a type
axiom learned for type dbo:Album), and thereby end up with 3,342,057 new type
assertions (excluding the trivial type owl:Thing).

Finally, we remove 72,485 relation assertions and 15,564 type assertions with
our post-filtering strategy. An inspection of a small sample of the removed asser-
tions shows that approximately half of the removed assertions are actually incor-
rect.
3 https://spacy.io/.
4 https://www.nltk.org/.
5 https://github.com/nheist/Cat2Ax.
6 http://data.dws.informatik.uni-mannheim.de/Cat2Ax.
7 Release of October 2016: https://wiki.dbpedia.org/develop/datasets.

https://spacy.io/
https://www.nltk.org/
https://github.com/nheist/Cat2Ax
http://data.dws.informatik.uni-mannheim.de/Cat2Ax
https://wiki.dbpedia.org/develop/datasets

Uncovering the Semantics of Wikipedia Categories 231

Table 1. Examples of discovered textual patterns and possible implications.

Textual pattern Implication Sup. Conf.

1 Films directed by
<lex(dbr:res)>

� ∃dbo:director.{dbr:res} 7661 1.00

2 Films directed by
<lex(dbr:res)>

� dbo:Film 7683 1.00

3 <lex(dbr:res)> albums � ∃dbo:artist.{dbr:res}
� ∃dbo:genre.{dbr:res}
� ∃dbo:recordLabel.{dbr:res}

31426
552
411

0.97
0.02
0.01

4 <lex(dbr:res)> albums � dbo:Album 33542 1.00

5 Populated places in
<lex(dbr:res)> district

� ∃dbo:isPartOf.{dbr:res}
� ∃dbo:district.{dbr:res}

269
51

0.84
0.16

6 Populated places in
<lex(dbr:res)> district

� dbo:Settlement 362 1.0

Fig. 3. Performance of the pattern application for varying confidence intervals. The
precision values have been determined by the authors by manual evaluation of 50
examples per interval.

5.2 Comparison with Related Approaches

We compare Cat2Ax with the two approaches that also use Wikipedia categories
to learn axioms and/or assertions for DBpedia: Catriple [17] and C-DF [32]. As
both of them use earlier versions of DBpedia and there is no code available, we
re-implemented both approaches and run them with the current version in order
to have a fair comparison. For the implementation, we followed the algorithm
descriptions in their papers and used the variant with the highest reported pre-
cision (i.e., for Catriple, we do not materialize the category hierarchy, and for
C-DF, we do not apply patterns iteratively). Running Cat2Ax, Catriple, and
C-DF with DBpedia takes 7, 8, and 12 h, respectively.

232 N. Heist and H. Paulheim

Table 2. Total number of axioms/assertions and precision scores, based on the crowd-
sourced evaluation. Numbers in parentheses denote the total number of assertions gen-
erated (including those already existing in DBpedia), as well as the precision estimation
of those total numbers. The latter were derived as a weighted average from the human
annotations and the overall correctness of existing assertions in DBpedia according
to [3].

Approach Count Precision [%] Count Precision [%]

Relation axioms Type axioms

Cat2Ax 272,707 95.6 430,405 96.8

C-DF 143,850 83.6 28,247 92.0

Catriple 306,177 87.2 – –

Relation assertions Type assertions

Cat2Ax 4,424,785
(7,554,980)

87.2
(92.1)

3,342,057
(12,111,194)

90.8
(95.7)

C-DF 766,921
(2,856,592)

78.4
(93.4)

198,485
(2,352,474)

76.8
(97.1)

Catriple 6,260,972
(6,836,924)

74.4
(76.5)

– –

Table 2 shows the extraction and evaluation results of the three approaches.
For both kinds of axioms and assertions, we evaluate 250 examples per app-
roach. Since the Catriple approach does not produce type information, this adds
up to a total of 2,500 examples (1,250 axioms and 1,250 assertions). Each exam-
ple is labeled by three annotators from the crowdsourcing marketplace Amazon
Mechanical Turk.8 For the labeling, the axioms and assertions are presented in
natural language (using labels from DBpedia) and have to be annotated as being
either correct or incorrect. The annotators evaluate batches of 50 examples which
are selected from the complete example pool and displayed in a random order.
The inter-annotator agreement according to Fleiss’ kappa [5] is 0.54 for axioms
and 0.53 for assertions which indicates moderate agreement according to [14].

In comparison with existing approaches, Cat2Ax outperforms C-DF both in
quality and quantity of the created axioms. Catriple produces about 40% more
relation assertions, but at a considerably lower precision, and is not able to
generate type axioms and assertions.

Despite our efforts of post-filtering generated assertions, a large gap between
the precision of axioms and assertions can be observed. This is more evident
when looking at new assertions, while the overall precision considering both
kinds of assertions, which are in DBpedia and which are not, is typically higher.
Moreover, there is a small number of axioms which are incorrect and at the same
time very productive, i.e., they contribute a lot of new incorrect assertions. To

8 https://www.mturk.com/.

https://www.mturk.com/

Uncovering the Semantics of Wikipedia Categories 233

(a) Fraction of (1) categories with at
least one axiom, (2) resources with at
least one assertion, (3) properties with
at least 100 assertions.

(b) Number of resources without assertions
in DBpedia for which (1) a relation asser-
tion or (2) type assertion has been found.

Fig. 4. Comparison of the extracted results.

further look into these issues, we manually inspected some of those axioms and
identified three major causes of errors:

Incorrect Data in DBpedia. We extract the axiom (Roads on the National
Register of Historic Places in Arizona, rdf:type, dbo:Building) bec-
ause many roads in DBpedia are typed as buildings.

Correlation Instead of Causation. We extract the axiom (University of
Tabriz alumni, dbo:birthPlace, dbr:Tabriz) because people often study in
the vicinity of their birthplace.

Incorrect Generalisation. We extract the axiom (Education in Nashik
district, rdf:type, dbo:University), which holds for many instances in the
category, but not for all of them. This kind of error is most often observed for
mixed categories – as in the example, the category contains both universities
and schools.

In Fig. 4 we compare the results of the three approaches regarding their
coverage of DBpedia. Figure 4a shows the number of covered (1) categories,
(2) resources, and (3) properties. At (1) we see that Cat2Ax finds an axiom
for almost 40% of Wikipedia’s categories. The difference between Cat2Ax and
Catriple is, however, not visible in (2) anymore. This can be traced back to
Catriple not using any background knowledge during their creation of results and
thus producing axioms that are more productive in terms of generated assertions.
Furthermore, (3) shows that all approaches find assertions for a comparable
number of properties.

Figure 4b shows statistics for resources that are currently not described by
any relation or type in DBpedia. While Cat2Ax and Catriple both find relations
for almost one million resources, Cat2Ax additionally finds types for more than
one million untyped resources.

234 N. Heist and H. Paulheim

6 Conclusion

In this paper, we have presented an approach that extracts high-quality axioms
for Wikipedia categories. Furthermore, we used the axioms to mine new asser-
tions for knowledge graphs. For DBpedia, we were able to add 4.4M relation
assertions at a precision of 87.2% and 3.3M type assertions at a precision of
90.8%. Our evaluation showed that we produce significantly better results than
state-of-the-art approaches.

So far, we have only considered direct assignments to categories. Exploit-
ing the containment relations between categories and materialising the category
assignments would help the approach in two respects – the extraction of axioms
is supported by more precise relation and type frequencies, and the extracted
axioms can be applied to a larger number of resources, leading to a higher num-
ber of generated assertions. However, this materialisation is not straightforward
as the Wikipedia category graph is not acyclic. Currently, we are working on
extracting a proper hierarchy from the Wikipedia category graph, which can
then be used as a basis for a refined approach.

Moreover, we currently consider all the generated patterns in isolation. But
we plan to combine patterns on two dimensions. Firstly, we want to investi-
gate methods to form more generalised patterns out of the currently extracted
ones. We expect this to improve the quality of pattern confidence values and
the patterns are applicable to more categories. Secondly, property and type pat-
terns and their generated axioms can be combined to provide a better post-
filtering of assertions. Given that we know that a relation axiom and a type
axiom belong together, and we encounter a single inconsistency in their set of
generated axioms, we can discard the complete set.

In previous works, the exploitation of list pages has been discussed for learn-
ing new type and relation assertions for instances [13,24]. We plan to extend the
approach in this paper to list pages as well. To that end, we need to robustly
extract entities from a list page (which is not straightforward since not all links
on a list page necessarily link to entities of the corresponding set), and we need
to allocate a list page to a position in the category graph.

It is important to note that, although we carried out experiments with DBpe-
dia, the approach is not limited to only this knowledge graph. Any knowledge
graph linked to Wikipedia (or DBpedia) can be extended with the approach
discussed in this paper. This holds, e.g., for YAGO and Wikidata. Moreover, the
approach could also be applied to knowledge graphs created from other Wikis,
such as DBkWik [11], or used with different hierarchies, such as the Wikipedia
Bitaxonomy [4] or WebIsALOD [10]. Hence, Cat2Ax has general potential which
goes beyond DBpedia and Wikipedia.

Uncovering the Semantics of Wikipedia Categories 235

References

1. Aprosio, A.P., Giuliano, C., Lavelli, A.: Extending the coverage of DBpedia prop-
erties using distant supervision over Wikipedia. In: NLP-DBpedia@ ISWC (2013)

2. Bryl, V., Bizer, C., Paulheim, H.: Gathering alternative surface forms for DBpedia
entities. In: Workshop on NLP&DBpedia, pp. 13–24 (2015)

3. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpe-
dia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9, 1–53 (2016)

4. Flati, T., et al.: Two is bigger (and better) than one: the Wikipedia bitaxonomy
project. In: 52nd Annual Meeting of the ACL, vol. 1, pp. 945–955 (2014)

5. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull.
76(5), 378 (1971)

6. Fossati, M., Kontokostas, D., Lehmann, J.: Unsupervised learning of an extensive
and usable taxonomy for DBpedia. In: 11th International Conference on Semantic
Systems, pp. 177–184. ACM (2015)

7. Gerber, D., Ngomo, A.C.N.: Bootstrapping the linked data web. In: 1st Workshop
on Web Scale Knowledge Extraction@ ISWC, vol. 2011 (2011)

8. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: 14th
Conference on Computational Linguistics, vol. 2, pp. 539–545 (1992)

9. Heist, N., Hertling, S., Paulheim, H.: Language-agnostic relation extraction from
abstracts in Wikis. Information 9(4), 75 (2018)

10. Hertling, S., Paulheim, H.: WebIsALOD: providing hypernymy relations extracted
from the Web as linked open data. In: d’Amato, C., Fernandez, M., Tamma, V.,
Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017.
LNCS, vol. 10588, pp. 111–119. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68204-4 11

11. Hertling, S., Paulheim, H.: DBkWik: a consolidated knowledge graph from thou-
sands of Wikis. In: IEEE International Conference on Big Knowledge, ICBK (2018)

12. Kozareva, Z., Hovy, E.: Learning arguments and supertypes of semantic relations
using recursive patterns. In: 48th Annual Meeting of the ACL, pp. 1482–1491. ACL
(2010)

13. Kuhn, P., Mischkewitz, S., et al.: Type inference on Wikipedia list pages. Infor-
matik 46, 2101–2111 (2016)

14. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33, 159–174 (1977)

15. Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn.
Res. 10(Nov), 2639–2642 (2009)

16. Lehmann, J., Isele, R., Jakob, M., et al.: Dbpedia-a large-scale, multilingual knowl-
edge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

17. Liu, Q., Xu, K., Zhang, L., Wang, H., Yu, Y., Pan, Y.: Catriple: extracting triples
from wikipedia categories. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008.
LNCS, vol. 5367, pp. 330–344. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89704-0 23

18. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from mul-
tilingual Wikipedias. In: CIDR (2013)

19. Mintz, M., Bills, S., et al.: Distant supervision for relation extraction without
labeled data. ACL-AFNLP 2, 1003–1011 (2009)

20. Muñoz, E., Hogan, A., Mileo, A.: Triplifying Wikipedia’s tables. In: LD4IE@ ISWC,
vol. 1057 (2013)

https://doi.org/10.1007/978-3-319-68204-4_11
https://doi.org/10.1007/978-3-319-68204-4_11
https://doi.org/10.1007/978-3-540-89704-0_23
https://doi.org/10.1007/978-3-540-89704-0_23

236 N. Heist and H. Paulheim

21. Nastase, V., Strube, M.: Decoding Wikipedia categories for knowledge acquisition.
AAAI 8, 1219–1224 (2008)

22. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation
methods. Semant. Web 8(3), 489–508 (2017)

23. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al.
(eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41335-3 32

24. Paulheim, H., Ponzetto, S.P.: Extending DBpedia with Wikipedia list pages. NLP-
DBpedia ISWC 13, 1–6 (2013)

25. Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. AAAI
7, 1440–1445 (2007)

26. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic
web. Data Min. Knowl. Discov. 24(3), 613–662 (2012)

27. Ringler, D., Paulheim, H.: One knowledge graph to rule them all? Analyzing
the differences between DBpedia, YAGO, Wikidata & co. In: Kern-Isberner, G.,
Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS, vol. 10505. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-67190-1 33

28. Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: 5th
International Conference on Web Intelligence, Mining and Semantics, p. 10. ACM,
New York (2015)

29. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)

30. Velardi, P., Faralli, S., Navigli, R.: OntoLearn reloaded: a graph-based algorithm
for taxonomy induction. Comput. Linguist. 39(3), 665–707 (2013)

31. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

32. Xu, B., Xie, C., et al.: Learning defining features for categories. In: IJCAI, pp.
3924–3930 (2016)

33. Zaveri, A., Rula, A., Maurino, A., et al.: Quality assessment for linked data: a
survey. Semant. Web 7(1), 63–93 (2016)

https://doi.org/10.1007/978-3-642-41335-3_32
https://doi.org/10.1007/978-3-319-67190-1_33

	Uncovering the Semantics of Wikipedia Categories
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Approach
	4.1 Candidate Selection
	4.2 Pattern Mining
	4.3 Pattern Application
	4.4 Axiom Application and Post-filtering

	5 Experiments
	5.1 Axiom Extraction Using DBpedia
	5.2 Comparison with Related Approaches

	6 Conclusion
	References

