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Preface

Knowledge graphs, linked data, linked schemas and AI … on the Web.

Now in its 18th edition, the ISWC conference is the most important international venue
to discuss and present latest advances and applications of the Semantic Web, Linked
Data, Knowledge Graphs, Knowledge Representation, and Intelligent Processing on
the Web. At the beginning of the 2000s this research community was formed, starting
with the first international Semantic Web Working Symposium (SWWS), a workshop
held in Stanford, Palo Alto, held during July 30 to August 1, 2001. The following year
the symposium became the International Semantic Web Conference (ISWC) series in
Sardinia, Italy, and at that time the website was predicting that it would be a major
international forum at which research on all aspects of the Semantic Web would be
presented. And indeed, as in previous editions, ISWC 2019 brought together
researchers and practitioners from all over the world to present fundamental research,
new technologies, visionary ideas, new applications, and discuss experiences. It fea-
tured a balanced mix of fundamental research, innovations, scientific artefacts such as
datasets, software, ontologies, or benchmarks, and applications that showcase the
power and latest advances of semantics, data, and artificial intelligence on the Web.

In 2019 we celebrated the 30th anniversary of the Web [2]. Happy birthday to you,
Web! But our community also remembers that 25 years ago, Tim Berners-Lee et al.
were already proposing in an article of the Communications of the ACM August 1994,
to provide on the Web “more machine-oriented semantic information, allowing more
sophisticated processing” [1]. And since the beginning, the Semantic Web community
in general, and ISWC participants in particular, have always been interested in
providing intelligent processing of the linked data and linked schemata of the Web,
starting with querying, reasoning, and learning [3, 4]. This remains a core challenge of
our community, tackling problems in using open data of very different sources and
quality, as well as ensuring the best results possible and scaling the methods so they
can face the real World Wide Web. For these reasons, and to explore the links between
the Semantic Web and the latest advances in AI and knowledge graphs, the motto for
ISWC 2019 was “knowledge graphs, linked data, linked schemas and AI on the Web.”

Several facets of this topic were addressed in three distinguished keynote talks and a
panel. Dougal Watt’s keynote is entitled “Semantics: the business technology disruptor
of the future” and defends the role of semantics in bringing meaning to business data.
The keynote of Jerôme Euzenat is entitled “For Knowledge” and defends the grand
goal of formally expressing knowledge on the Web and supporting its evolution,
distribution, and diversity. After this keynote, a panel entitled “How Much Semantics
Goes How Long a Way?” continued the discussion on linked knowledge, schemas, and
ontologies on the Web. Finally, in her keynote entitled “Extracting Knowledge from
the Data Deluge to Reveal the Mysteries of the Universe,” Melanie Johnston-Hollitt



introduced us to one of the most data-intensive research fields (radio astronomy) that
requires many innovations to achieve scalability and the “big data” regime.

The proceedings of ISWC 2019 are presented in two volumes: the first one
containing the research track papers and the second one the resource track and in-use
track papers. All these papers were peer reviewed. Combined, these tracks received a
total of 283 submissions of which 443 reviewers accepted 74 papers: 42 in the research
track, 11 in the in-use track, and 21 in the resource track. Beyond these three tracks and
at the moment of writing this preface, this edition of the international conference ISWC
already involved more than 1,300 authors of submitted papers, demos, posters, etc. and
more than 660 reviewers for all the tracks, amounting to them being of 44 different
nationalities. This year again, the number of papers in the resources category attests the
commitment of the community to sharing and collaboration.

The excellent reputation of ISWC as a prime scientific conference was confirmed
again this year. The research track received 194 valid full paper submissions, out of
which 42 papers were selected, leading to an acceptance rate of 21.6%. This year, a
double-blind approach was applied to the reviewing process; that is, the identity of the
submission authors was not revealed to the reviewers and vice versa. The Program
Committee (PC) comprised 26 Senior PC members and 270 regular PC members. In
addition, 70 sub-reviewers were recruited to help with the review process. The PC
chairs thank all these committee members for the time and energy they have put into
the process. ISWC has very rigorous reviewing criteria. The papers were assessed for
originality, novelty, relevance and impact of the research contributions, soundness,
rigor and reproducibility, clarity and quality of presentation, and grounding in the
literature. This year, the vast majority of papers were reviewed by a team comprising
four reviewers and a senior PC member, who engaged in a discussion phase after the
initial reviews were prepared and the authors responses were made available. Each
paper was then discussed among the research track PC chairs and the senior PC
members, so as to reach a consensus on the final list of accepted papers.

For the first time in the history of ISWC, we organized a specific initiative to
evaluate the reproducibility of research papers. This innovative track was led by
Alejandra Gonzalez-Beltran and Michael Cochez. Authors of accepted papers were
invited to share their experimental setup and code for evaluation. We received 11
submissions which were assessed in their varying degrees of reproducibility by a
member of the Reproducibility Committee. The ‘reproducer’, rather than reviewer,
interacted with the authors and aimed to execute the code and obtain results similar to
what was reported in the paper. If the results were reproducible, the paper received the
reproducibility label.

The resources track promoted the sharing of high-quality information artifacts that
have contributed to the generation of novel scientific work. Resources could be datasets,
ontologies, vocabularies, ontology design patterns, benchmarks, crowdsourcing
designs, software frameworks, workflows, protocols, or metrics, among others. This
track demonstrates how important it is for our community to share reusable resources in
order to allow other researchers to compare new results, reproduce experimental
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research, and explore new lines of research, in accordance with the FAIR principles for
scientific data management. All published resources address a set of requirements:
persistent URI, indicator for impact, support for reuse, license specification, to mention a
few. This year the track chairs Maria Maleshkova and Vojtěch Svátek received 64
submissions, of which 21 were accepted (a 33% acceptance rate), covering a wide range
of resource types such as benchmarks, ontologies, datasets, and software frameworks, in
a variety of domains such as music, health, scholar, drama, and audio, and addressing
multiple problems such as RDF querying, ontology alignment, linked data analytics, or
recommending systems. The reviewing process involved 87 PC members and 7
sub-reviewers, supported by 8 senior PC members. The average number of reviews per
paper was 3.1 (at least three per paper), plus a meta-review provided by a senior PC
member. Papers were evaluated based on the availability of the resource, its design and
technical quality, impact, and reusability; owing to the mandatory dereferenceability and
community-visibility of the resources (precluding the author anonymity), the papers
were reviewed in a single-blind mode. The review process also included a rebuttal phase
and further discussions among reviewers and senior PC members, who provided
recommendations. Final decisions were taken following a detailed analysis and
discussion of each paper conducted by the program chairs and the senior PC.

The in-use track aimed to showcase and learn from the growing adoption of
Semantic Web and related technologies in real-world settings, in particular to address
questions such as: where are such technologies being used, what are their benefits, and
how can they be improved with further research? The track chairs Isabel Cruz and
Aidan Hogan received 25 paper submissions and 11 papers were accepted, giving an
acceptance rate of 44%; this reflects a significant increase in papers accepted over
previous years, indicative of a growing maturation and adoption of Semantic Web and
related technologies. In the in-use track, 39 PC members contributed three reviews per
paper and took part in an extensive discussion on each paper, to ensure a high-quality
program. The accepted papers describe successful applications of technologies
including ontologies, knowledge graphs, linked data, and RDB2RDF. The results
described by these papers were developed in whole, or with collaboration from, both
large companies (e.g., Pinterest, Springer Nature, IBM, and JOT Internet Media),
start-ups (Capsenta), as well as public organizations (e.g., Norwegian Institute for
Water Research and European Commission).

The industry track provided an opportunity for industry adopters to highlight and
share the key learnings and challenges faced by real world implementations. This year,
the track chairs Anna Lisa Gentile and Christophe Guéret received 24 submissions
from a wide range of companies of different sizes and 16 submissions were accepted.
The submissions were assessed in terms of: quantitative and/or qualitative value
proposition provided; amount of discussion of innovative aspects, experiences, impact,
lessons learned, and business value in the application domain; and degree to which
semantic technologies are critical to the offering. Each paper received 3 assigned
reviewers from a panel of academic and industry Semantic Web experts.
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The main conference program was complemented by presentations from the journal,
industry, and posters and demos tracks, as well as the Semantic Web Challenge and a
panel on future trends in knowledge graphs.

The journal track was intended as a forum for presenting significant Semantic
Web-related research results that have been recently published in well-known and
well-established journals but that have not been presented at a Semantic Web-related
conference. The goal was to highlight these results at ISWC and promote discussions
potentially leading to meaningful multi-disciplinary collaborations. Traditionally only
articles published in the Journal of Web Semantics (JWS) and the Semantic Web
Journal (SWJ) were considered for the ISWC journal track. However, with the goal of
enabling cross-fertilization with other related communities, this year our two chairs
Claudia d’Amato and Lalana Kagal included additional journals such as: the Journal of
Network and Computer Applications, IEEE Transactions on Neural Networks and
Learning Systems, the Journal of Machine Learning Research, the Data Mining and
Knowledge Discovery Journal, ACM Transactions on the Web, ACM Computing
Surveys, IEEE Transactions on Knowledge and Data Engineering, ACM Transactions
on Computer-Human Interaction, Artificial Intelligence Journal, Proceedings of the
Very Large Database Endowment, and the Journal of Information Science. Papers that
fell within the ISWC topics which had been published within the listed journals starting
from January 1, 2017, were considered eligible for submission to the journal track. We
received 24 extended abstract submissions, out of which 13 were accepted and
collected as CEUR proceedings. Each submission was reviewed by at least two
members of the PC in order to assess how interesting it was as well as its novelty,
relevance, and attractiveness for the ISWC audience. Also taken into consideration was
the quality of the extended abstracts and the diversity of the topics, spanning from
scalable reasoning and triple storage, machine translation, fact predictions on
(probabilistic) knowledge graphs, modeling linked open data for different domains, and
semantic sensor networks.

The conference included several events appreciated by the community, which
created more opportunities to present and discuss emerging ideas, network, learn, and
mentor. Thanks to H. Sofia Pinto and 武田 英明 (Hideaki Takeda), the workshops and
tutorials program included a mix of established topics such as ontology matching,
ontology design patterns, and semantics-powered data mining, as well as analytics
alongside newer ones that reflect the commitment of the community to innovate and
help create systems and technologies that people want and deserve, including semantic
explainability or blockchain enabled Semantic Web. Application-centric workshops
ranged from solutions for large-scale biomedical data analytics to health data
management. The tutorials covered topics such as scalable sustainable construction of
knowledge bases, linked data querying, reasoning and benchmarking, GraphQL, solid
and comunica, blockchain and Semantic Web, provenance for scientific reproducibility,
and an historical perspective and context on the roots of knowledge graphs.

The conference also included a Doctoral Consortium (DC) track, which was chaired
by 乔淼 (Miao Qiao) and Mauro Dragoni. The DC afforded PhD students from the
Semantic Web community the opportunity to share their research ideas in a critical but
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supportive environment, where they received feedback from both the senior members
of the community and the other students. Indeed, students participated also in the
review process in order to have a first tangible experience of it. This year the PC
accepted 13 papers for oral presentation out of the 16 submissions received. All student
participants were paired with mentors from the PC who provided guidance on
improving their research, producing slides and giving presentations.

This program was complemented by activities put together by our student coordi-
nating chairs (Oshani Seneviratne) and 岑超榮 (Bruce Sham),
who secured funding for travel grants, managed the grants application process, and
organized the mentoring lunch alongside other informal opportunities for students and
other newcomers to get to know the community.

Posters and demos are one of the most vibrant part of every ISWC. This year, the
track was chaired by Mari Carmen Suárez-Figueroa and 程龚 (Gong Cheng). For the
first time, poster submissions were subject to double-blind review, whereas demo
submissions were single-blind as in previous years due to the possible inclusion of
online demos. We received 59 poster and 43 demo submissions. We had to remove
four poster and one demo submissions, as they exceeded the page limit. The PC,
consisting of 41 members for posters and 44 members for demos, accepted 39 posters
and 37 demos. Decisions were mainly based on relevance, originality, and clarity.
Additionally, we conditionally accepted one poster that was transferred from the
industry track.

The Semantic Web Challenge has now been a part of ISWC for 16 years. The 2019
edition of the challenge followed a new direction started in 2017: all challenges define
fixed datasets, objective measures, and provide their participants with a benchmarking
platform. In contrast to 2017 and 2018, this year the challenges were open. This means
that a call for challenge was issued and potential challenge organizers submitted pro-
posals for challenges, which were reviewed by the organizers. Two challenges made
the cut. The aim of the first challenge was to evaluate the performance of matching
systems for tables. The participants were to devise means to link entries in tables to
classes, resource, or relations from a predefined knowledge graph. The second chal-
lenge evaluated the performance of fact validation systems. For each fact in the
benchmark data, the participants were to return a score which expressed how likely said
fact was to be true. The best solutions were then presented and discussed at the
conference in a dedicated challenge session and during the poster session.

Newly reintroduced last year after an initial showing in 2011, the outrages ideas
track solicits visionary ideas, long term challenges, and opportunities for the Semantic
Web. This track was chaired by Maria Keet and Abraham Bernstein and it featured a
special award funded by the Computer Community Consortium’s Blue Sky Ideas
initiative. We received nine submissions of which two were accepted.

Finally, the Minute Madness is a tradition at the International Semantic Web
Conference that started back in 2011. It usually provides conference participants with a
quick and fun overview of the presented works at the conference, since each speaker is
allowed to pitch his/her work with a 60 second speech. This year, the two chairs Irene
Celino and Armin Haller split the Minute Madness into two separate sessions, both in

Preface ix



plenary: the traditional slot for poster and demo authors, to generate interest and
traction for the following dedicated event, and a stand-alone session, open to all
conference participants, allowed to submit their contribution proposal through the
dedicated Minute Madness call.

Organizing a conference is so much more than assembling a program. An inter-
national event of the scale and complexity of ISWC requires the commitment, support,
resources, and time of hundreds of people, organizers of satellite events, reviewers,
volunteers, and sponsors. We are very grateful to our local team at the University of
Auckland, and in particular to the local chairs, 孙敬 (Jing Sun) and Gill Dobbie as well
as their Conference Coordinator Alex Harvey. They expertly managed the conference
logistics down to every detail and make it a splendid event that we want to attend every
year. This year again, they helped us grow this exciting scientific community and
connect with the local scientific community of the venue.

Our thanks also go to Valentina Ivanova and طيلبزداؤف (Fouad Zablith), our
proactive publicity chairs, and (Nacha Chondamrongkul) our
hyper-responsive Web chair - they played a critical role in ensuring that all conference
activities and updates were communicated and promoted on the Web and across
mailing lists and on social media. Maribel Acosta and Andrea Giovanni Nuzzolese
were the metadata chairs this year and their ensured that all relevant information about
the conference was available in a format that could be used across all applications,
continuing a tradition established at ISWC many years ago. Also, we are especially
thankful to our proceedings chairs, 宋劼 (Jie Song) and Maxime Lefrançois, who
oversaw the publication of these volumes.

Sponsorship is crucial to realize the conference in its current form. We had a highly
committed trio of sponsorship chairs, 彭麗姬 (Lai Kei Pang), Cédric Pruski, and Oktie
Hassanzadeh, who went above and beyond to find new ways to engage with sponsors
and promote the conference to them. Thanks to them, the conference now features a
social program that is almost as exciting as the scientific one.

Finally, our special thanks go to the Semantic Web Science Association (SWSA) for
their continuing support and guidance and to the organizers of the conference from
2017 and 2018 who were a constant inspiration, role models, and source of knowledge,
advice, and experience.

August 2019 Chiara Ghidini
Olaf Hartig

Maria Maleshkova
Vojtěch Svátek

Isabel Cruz
Aidan Hogan

宋劼 (Jie Song)
Maxime Lefrançois

Fabien Gandon

x Preface



References

1. T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The
World-Wide Web. Commun. ACM, 37(8):76–82, Aug. 1994.

2. F. Gandon. For everything: Tim Berners-Lee, winner of the 2016 Turing award for
having invented… the Web. 1024: Bulletin de la Société Informatique de France,
(11):21, Sept. 2017.

3. F. Gandon. A Survey of the First 20 Years of Research on Semantic Web and
Linked Data. Revue des Sciences et Technologies de l’Information - Série ISI:
Ingénierie des Systèmes d’Information, Dec. 2018.

4. F. Gandon, M. Sabou, and H. Sack. Weaving a Web of Linked Resources. Semantic
Web Journal Sepcial Issue, 2017.

Preface xi



Organization

Organizing Committee

General Chair

Fabien Gandon Inria, Université Côte d’Azur, CNRS, I3S Sophia
Antipolis, France

Local Chairs

孙敬 (Jing Sun) The University of Auckland, New Zealand
Gill Dobbie The University of Auckland, New Zealand

Research Track Chairs

Chiara Ghidini Fondazione Bruno Kessler (FBK), Italy
Olaf Hartig Linköping University, Sweden

Resources Track Chairs

Maria Maleshkova SDA, University of Bonn, Germany
Vojtěch Svátek University of Economics in Prague, Czech Republic

In-Use Track Chairs

Isabel Cruz University of Illinois at Chicago, USA
Aidan Hogan DCC, Universidad de Chile, Chile

Reproducibility Track Chairs

Alejandra Gonzalez-Beltran Science and Technology Facilities Council, UK
Michael Cochez Fraunhofer Institute for Applied Information

Technology, RWTH Aachen University, Germany,
and University of Jyvaskyla, Finland

Industry Track Chairs

Anna Lisa Gentile IBM Research, USA
Christophe Guéret Accenture Labs Dublin, Ireland

Journal Track Chairs

Claudia d’Amato University of Bari, Italy
Lalana Kagal MIT, USA



Workshop and Tutorial Chairs

H. Sofia Pinto INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

武田 英明

(Hideaki Takeda)
National Institute of Informatics, Japan

Semantic Web Challenges Track Chairs

Gianluca Demartini The University of Queensland, Australia
Valentina Presutti STLab-ISTC, National Research Council, Italy
Axel Ngonga Paderborn University, Germany

Poster and Demo Track Chairs

Mari Carmen
Suárez-Figueroa

Universidad Politécnica de Madrid (UPM),
Ontology Engineering Group (OEG), Spain

程龚 (Gong Cheng) Nanjing University, China

Doctoral Consortium Chairs

乔淼 (Miao Qiao) The University of Auckland, New Zealand
Mauro Dragoni Fondazione Bruno Kessler, Italy

Student Coordination Chairs

(Oshani Seneviratne)
Oshani Rensselaer Polytechnic Institute, USA

岑超榮 (Bruce, Chiu-Wing
Sham)

The University of Auckland, New Zealand

Minute Madness Chairs

Irene Celino Cefriel, Italy
Armin Haller Australian National University, Australia

Outrageous Ideas Track Chairs

Maria Keet University of Cape Town, South Africa
Abraham Bernstein University of Zurich, Switzerland

Proceedings Chairs

宋劼 (Jie Song) Memect Technology, China
Maxime Lefrançois MINES Saint-Étienne, France

Metadata Chairs

Maribel Acosta Karlsruhe Institute of Technology, Germany
Andrea Giovanni Nuzzolese STLab, ISTC-CNR, Italy

xiv Organization



Publicity Chairs

Valentina Ivanova RISE Research Institutes of Sweden, Sweden
(Fouad Zablith) American University of Beirut, Lebanon

Sponsorship Chairs

(Lai Kei Pang) University of Auckland Libraries and Learning
Services, New Zealand

Cédric Pruski Luxembourg Institute of Science and Technology,
Luxembourg

Oktie Hassanzadeh IBM Research, USA

Web Site Chair

(Nacha Chondamrongkul)
The University of Auckland, New Zealand

Program Committee

Senior Program Committee – Research Track

Lora Aroyo Google
Paul Buitelaar Insight Centre for Data Analytics, National University

of Ireland Galway
Emanuele Della Valle Politecnico di Milano
Gianluca Demartini The University of Queensland
Armin Haller Australian National University
Annika Hinze University of Waikato
Katja Hose Aalborg University
Andreas Hotho University of Wuerzburg
Wei Hu Nanjing University
Mustafa Jarrar Birzeit University
Sabrina Kirrane Vienna University of Economics and Business
Markus Luczak-Roesch Victoria University of Wellington
David Martin Samsung Research America
Tommie Meyer University of Cape Town, CAIR
Matteo Palmonari University of Milano-Bicocca
Jorge Pérez Universidad de Chile
Achim Rettinger Trier University
Marco Rospocher Università degli Studi di Verona
Hideaki Takeda National Institute of Informatics
Valentina Tamma University of Liverpool
Kerry Taylor Australian National University and

University of Surrey
Tania Tudorache Stanford University
Axel Polleres WU Wien
Maria Esther Vidal Universidad Simon Bolivar
Paul Groth University of Amsterdam
Luciano Serafini Fondazione Bruno Kessler

Organization xv



Program Committee – Research Track

Maribel Acosta Karlsruhe Institute of Technology
Harith Alani The Open University
Jose Julio Alferes Universidade NOVA de Lisboa
Muhammad Intizar Ali Insight Centre for Data Analytics,

National University of Ireland Galway
Marjan Alirezaie Orebro University
Tahani Alsubait Umm Al-Qura University
José Luis Ambite University of Southern California
Renzo Angles Universidad de Talca
Mihael Arcan Insight @ NUI Galway
Manuel Atencia Université Grenoble Alpes
Maurizio Atzori University of Cagliari
Payam Barnaghi University of Surrey
Pierpaolo Basile University of Bari
Valerio Basile University of Turin
Srikanta Bedathur IIT Delhi
Zohra Bellahsene LIRMM
Ladjel Bellatreche LIAS/ENSMA
Maria Bermudez-Edo University of Granada
Leopoldo Bertossi Relational AI Inc., Carleton University
Eva Blomqvist Linköping University
Fernando Bobillo University of Zaragoza
Alex Borgida Rutgers University
Stefano Borgo Laboratory for Applied Ontology, ISTC-CNR (Trento)
Loris Bozzato Fondazione Bruno Kessler
Alessandro Bozzon Delft University of Technology
John Breslin NUI Galway
Carlos Buil Aranda Universidad Técnica Federico Santa Maria
Marut Buranarach NECTEC
Aljoscha Burchardt DFKI
Elena Cabrio Université Côte d’Azur, CNRS, Inria, I3S
Jean-Paul Calbimonte HES-SO University of Applied Sciences and Arts

Western Switzerland
David Carral TU Dresden
Vinay Chaudhri Independent Consultant, San Francisco Bay Area
Huajun Chen Zhejiang University
Huiyuan Chen Case Western Reserve University
Gong Cheng Nanjing University
Philipp Cimiano Bielefeld University
Michael Cochez Fraunhofer Institute for Applied Information

Technology
Jack G. Conrad Thomson Reuters

xvi Organization



Olivier Corby Inria
Oscar Corcho Universidad Politécnica de Madrid
Francesco Corcoglioniti Fondazione Bruno Kessler
Luca Costabello Accenture Labs
Fabio Cozman University of São Paulo
Isabel Cruz University of Illinois at Chicago
Philippe Cudre-Mauroux University of Fribourg
Olivier Curé Université Paris-Est, LIGM
Claudia d’Amato University of Bari
Mathieu D’Aquin Insight Centre for Data Analytics, National University

of Ireland Galway
Jérôme David Inria
Jeremy Debattista Trinity College Dublin
Thierry Declerck DFKI GmbH and University of Saarland
Daniele Dell’Aglio University of Zurich
Elena Demidova L3S Research Center
Chiara Di Francescomarino FBK-irst
Stefan Dietze GESIS – Leibniz Institute for the Social Sciences
Mauro Dragoni FBK-irst
Jianfeng Du Guangdong University of Foreign Studies
Michel Dumontier Maastricht University
Shady Elbassuoni American University of Beirut
Lorena Etcheverry Instituto de Computación, Universidad de la República
Jérôme Euzenat Inria, Université Grenoble Alpes
Stefano Faralli University of Rome Unitelma Sapienza
Alessandro Faraotti IBM
Catherine Faron Zucker University Nice Sophia Antipolis
Anna Fensel Semantic Technology Institute (STI) Innsbruck,

University of Innsbruck
Alba Fernandez Universidad Politécnica de Madrid
Miriam Fernandez Knowledge Media Institute
Javier D. Fernández Vienna University of Economics and Business
Besnik Fetahu L3S Research Center
Valeria Fionda Università della Calabria
Antske Fokkens Vrije Universiteit Amsterdam
Flavius Frasincar Erasmus University Rotterdam
Fred Freitas Universidade Federal de Pernambuco (UFPE)
Francesca Frontini Université Paul-Valéry Montpellier 3, Praxiling UMR

5267 CNRS
Naoki Fukuta Shizuoka University
Michael Färber University of Freiburg
Luis Galárraga Aalborg University
Raúl García-Castro Universidad Politécnica de Madrid
Daniel Garijo Information Sciences Institute
Anna Lisa Gentile IBM
Aurona Gerber CAIR, University of Pretoria

Organization xvii



Jose Manuel Gomez-Perez ExpertSystem
Rafael S. Gonçalves Stanford University
Guido Governatori CSIRO
Jorge Gracia University of Zaragoza
Dagmar Gromann TU Dresden
Tudor Groza The Garvan Institute of Medical Research
Claudio Gutierrez Universidad de Chile
Peter Haase metaphacts
Andreas Harth University of Erlangen-Nuremberg, Fraunhofer

IIS-SCS
Bernhard Haslhofer AIT Austrian Institute of Technology
Oktie Hassanzadeh IBM
Pascal Hitzler Wright State University
Rinke Hoekstra University of Amsterdam
Aidan Hogan DCC, Universidad de Chile
Geert-Jan Houben Delft University of Technology
Wen Hua The University of Queensland
Eero Hyvönen Aalto University and University of Helsinki (HELDIG)
Luis Ibanez-Gonzalez University of Southampton
Ryutaro Ichise National Institute of Informatics
Nancy Ide Vassar College
Oana Inel Delft University of Technology
Prateek Jain Nuance Communications Inc.
Krzysztof Janowicz University of California
Caroline Jay The University of Manchester
Ernesto Jimenez-Ruiz The Alan Turing Institute
Lucie-Aimée Kaffee University of Southampton
Evangelos Kalampokis University of Macedonia
Maulik R. Kamdar Stanford Center for Biomedical Informatics Research,

Stanford University
Megan Katsumi University of Toronto
Tomi Kauppinen Aalto University School of Science
Takahiro Kawamura Japan Science and Technology Agency
Maria Keet University of Cape Town
Mayank Kejriwal Information Sciences Institute
Thomas Kipf University of Amsterdam
Matthias Klusch DFKI
Stasinos Konstantopoulos NCSR Demokritos
Roman Kontchakov Birkbeck, University of London
Dimitris Kontokostas University of Leipzig
Manolis Koubarakis National and Kapodistrian University of Athens
Kouji Kozaki Osaka University
Adila A. Krisnadhi University of Indonesia
Tobias Kuhn Vrije Universiteit Amsterdam
Tobias Käfer Karlsruhe Institute of Technology
Jose Emilio Labra Gayo Universidad de Oviedo

xviii Organization



Patrick Lambrix Linköping University
Christoph Lange University of Bonn, Fraunhofer IAIS
Danh Le Phuoc TU Berlin
Roy Lee Singapore Management University
Maxime Lefrançois MINES Saint-Étienne
Maurizio Lenzerini Università di Roma La Sapienza
Juanzi Li Tsinghua University
Yuan-Fang Li Monash University
Chunbin Lin Amazon AWS
Alejandro Llaves Fujitsu Laboratories of Europe
Thomas Lukasiewicz University of Oxford
Carsten Lutz Universität Bremen
Gengchen Mai University of California
Ioana Manolescu Inria Saclay, LRI, Université Paris Sud-11
Miguel A. Martinez-Prieto University of Valladolid
John P. McCrae National University of Ireland Galway
Fiona McNeill Heriot Watt University
Christian Meilicke University of Mannheim
Albert Meroño-Peñuela Vrije Universiteit Amsterdam
Pasquale Minervini University College London
Daniel Miranker Institute for Cell and Molecular Biology,

The University of Texas at Austin
Dunja Mladenic Jožef Stefan Institute
Aditya Mogadala Universität des Saarlandes
Pascal Molli University of Nantes, LS2N
Elena Montiel-Ponsoda Universidad Politécnica de Madrid
Gabriela Montoya Aalborg University
Takeshi Morita Keio University
Regina Motz Universidad de la República
Hubert Naacke Sorbonne Université, UPMC, LIP6
Sven Naumann University of Trier
Axel-Cyrille Ngonga

Ngomo
University of Paderborn

Andriy Nikolov metaphacts GmbH
Leo Obrst MITRE
Alessandro Oltramari Bosch Research and Technology Center
Magdalena Ortiz Vienna University of Technology
Francesco Osborne The Open University
Ankur Padia UMBC
Jeff Z. Pan University of Aberdeen
Peter Patel-Schneider Samsung Research America
Terry Payne University of Liverpool
Tassilo Pellegrini University of Applied Sciences St. Pölten
Catia Pesquita LaSIGE, Faculdade de Ciências,

Universidade de Lisboa

Organization xix



Giulio Petrucci Google
Rafael Peñaloza University of Milano-Bicocca
Patrick Philipp Forschungszentrum Informatik (FZI)
Reinhard Pichler TU Wien
Giuseppe Pirrò Sapienza University of Rome
Alessandro Piscopo BBC
Dimitris Plexousakis FORTH
María Poveda-Villalón Universidad Politécnica de Madrid
Guilin Qi Southeast University
Yuzhong Qu Nanjing University
Alexandre Rademaker IBM Research Brazil, EMAp/FGV
Maya Ramanath IIT Delhi
David Ratcliffe Defence
Simon Razniewski Max Planck Institute for Informatics
Blake Regalia University of California
Georg Rehm DFKI
Juan L. Reutter Pontificia Universidad Católica
Martin Rezk DMM.com
Giuseppe Rizzo LINKS Foundation
Mariano Rodríguez Muro Google
Dumitru Roman SINTEF
Gaetano Rossiello University of Bari
Ana Roxin University of Burgundy, UMR CNRS 6306
Sebastian Rudolph TU Dresden
Anisa Rula University of Milano-Bicocca
Harald Sack FIZ Karlsruhe – Leibniz Institute for Information

Infrastructure, KIT Karlsruhe
Angelo Antonio Salatino The Open University
Muhammad Saleem AKSW, University of Leizpig
Kai-Uwe Sattler TU Ilmenau
Simon Scerri Fraunhofer
Ralph Schaefermeier University of Leipzig
Bernhard Schandl mySugr GmbH
Ralf Schenkel University of Trier
Stefan Schlobach Vrije Universiteit Amsterdam
Andreas Schmidt University of Kassel
Giovanni Semeraro University of Bari
Juan F. Sequeda Capsenta Labs
Gilles Serasset LIG, Université Grenoble Alpes
Yanfeng Shu CSIRO
Gerardo Simari Universidad Nacional del Sur, CONICET
Hala Skaf-Molli University of Nantes, LS2N
Sebastian Skritek TU Wien
Dezhao Song Thomson Reuters

xx Organization



Steffen Staab Institut WeST, University Koblenz-Landau and WAIS,
University of Southampton

Armando Stellato University of Rome
Simon Steyskal Siemens AG Austria
Markus Stocker German National Library of Science and

Technology (TIB)
Audun Stolpe Norwegian Defence Research Establishment (FFI)
Umberto Straccia ISTI-CNR
Heiner Stuckenschmidt University of Mannheim
York Sure-Vetter Karlsruhe Institute of Technology
Pedro Szekely USC – Information Sciences Institute
Mohsen Taheriyan Google
Naoya Takeishi RIKEN Center for Advanced Intelligence Project
Sergio Tessaris Free University of Bozen-Bolzano
Andrea Tettamanzi University Nice Sophia Antipolis
Kia Teymourian Boston University
Harsh Thakkar University of Bonn
Andreas Thalhammer F. Hoffmann-La Roche AG
Ilaria Tiddi Vrije University
David Toman University of Waterloo
Yannick Toussaint Loria
Sebastian Tramp eccenca GmbH
Cassia Trojahn UT2J, IRIT
Anni-Yasmin Turhan TU Dresden
Takanori Ugai Fujitsu Laboratories Ltd.
Jürgen Umbrich Vienna University of Economy and Business
Joerg Unbehauen University of Leipzig
Jacopo Urbani Vrije Universiteit Amsterdam
Dmitry Ustalov University of Mannheim
Alejandro A. Vaisman Instituto Tecnológico de Buenos Aires
Marieke van Erp KNAW Humanities Cluster
Jacco van Ossenbruggen CWI, VU University Amsterdam
Miel Vander Sande Ghent University
Ruben Verborgh Ghent University – imec
Serena Villata CNRS – Laboratoire d’Informatique, Signaux et

Systèmes de Sophia-Antipolis
Boris Villazon-Terrazas Majorel
Piek Vossen Vrije Universiteit Amsterdam
Domagoj Vrgoc Pontificia Universidad Católica de Chile
Simon Walk Graz University of Technology
Kewen Wang Griffith University
Xin Wang Tianjin University
Zhichun Wang Beijing Normal University
Grant Weddell University of Waterloo
Gregory Todd Williams Hulu

Organization xxi



Frank Wolter University of Liverpool
Josiane Xavier Parreira Siemens AG Österreich
Guohui Xiao KRDB Research Centre, Free University

of Bozen-Bolzano
Fouad Zablith American University of Beirut
Ondřej Zamazal University of Economics in Prague
Veruska Zamborlini University of Amsterdam
Amrapali Zaveri Maastricht University
Sergej Zerr L3S Research Center
Kalliopi Zervanou Eindhoven University of Technology
Lei Zhang FIZ Karlsruhe – Leibniz Institute for Information

Infrastructure
Wei Emma Zhang Macquarie University
Xiaowang Zhang Tianjin University
Ziqi Zhang Sheffield University
Jun Zhao University of Oxford
Lihua Zhao Accenture
Antoine Zimmermann MINES Saint-Étienne
Amal Zouaq University of Ottawa

Additional Reviewers – Research Track

Dimitris Alivanistos Elsevier
Andrea Bellandi Institute for Computational Linguistics
Mohamed Ben Ellefi Aix-Marseille University, Lis-Lab
Nabila Berkani ESI
Federico Bianchi University of Milan-Bicocca
Zeyd Boukhers University of Siegen
Marco Brambilla Politecnico di Milano
Janez Brank Jožef Stefan Institute
Angelos Charalambidis University of Athens
Marco Cremaschi Università di Milano-Bicocca
Ronald Denaux ExpertSystem
Dimitar Dimitrov GESIS
Monireh Ebrahimi Wright State University
Cristina Feier University of Bremen
Oliver Fernandez Gil TU Dresden
Giorgos Flouris FORTH-ICS
Jorge Galicia Auyon ISAE-ENSMA
Andrés García-Silva ExpertSystem
Genet Asefa Gesese FIZ Karlsruhe
Pouya Ghiasnezhad Omran Griffith University and Australian National University
Simon Gottschalk L3S Research Center
Jonas Halvorsen Norwegian Defence Research Establishment (FFI)
Dave Hendricksen Thomson Reuters
Annika Hinze University of Waikato

xxii Organization



Yuncheng Hua Southeast University
Gao Huan Southeast University
John Hudzina Thomson Reuters
Robert Isele eccenca GmbH
Chen Jiaoyan University of Oxford
Anas Fahad Khan Istituto di Linguistica Computazionale Antonio

Zampolli
Haris Kondylakis FORTH
George Konstantinidis University of Southampton
Cedric Kulbach FZI - AIFB
Artem Lutov University of Fribourg
Andrea Mauri Delft University of Technology
Sepideh Mesbah Delft University of Technology
Payal Mitra .
Piero Molino Università di Bari Aldo Moro
Anna Nguyen Karlsruhe Institute of Technology
Kristian Noullet University of Freiburg
Erik Novak Jožef Stefan Institute
Inna Novalija Jožef Stefan Institute
Wolfgang Otto GESIS
Romana Pernischová University of Zurich
Freddy Priyatna Universidad Politécnica de Madrid
Joe Raad Vrije Universiteit Amsterdam
Jan Rörden AIT Austrian Institute of Technology
Leif Sabellek University of Bremen
Filipe Santana Da Silva Fundação Universidade Federal de Ciências da Saúde

de Porto Alegre (UFCSPA)
Lukas Schmelzeisen University of Koblenz-Landau
Miroslav Shaltev L3S
Cogan Shimizu Wright State University
Lucia Siciliani University of Bari
Alisa Smirnova University of Fribourg
Blerina Spahiu Università degli Studi di Milano Bicocca
Nicolas Tempelmeier L3S Research Center
Elodie Thieblin IRIT
Riccardo Tommasini Politecnico di Milano
Philip Turk SINTEF
Rima Türker FIZ Karlsruhe
Roman Vlasov IDA GmbH, RSM Intelligence
Zhe Wang Griffith University
Kemas Wiharja University of Aberdeen
Bo Yan University of California
Dingqi Yang eXascale Infolab, University of Fribourg
Lingxi Yue Shandong University
Rui Zhu University of California
Thomas Zielund Thomson Reuters

Organization xxiii



Sarah de Nigris Institute WeST, Koblenz-Landau Universität
Remzi Çelebi Ege University

Senior Program Committee – Research Track

Anna Lisa Gentile IBM
Sebastian Rudolph TU Dresden
Heiko Paulheim University of Mannheim
Maria Esther Vidal Universidad Simon Bolivar
Agnieszka Lawrynowicz Poznan University of Technology
Stefan Dietze GESIS – Leibniz Institute for the Social Sciences
Steffen Lohmann Fraunhofer
Francesco Osborne The Open University

Program Committee – Resources Track

Muhammad Intizar Ali Insight Centre for Data Analytics, National University
of Ireland

Ghislain Auguste
Atemezing

Mondeca

Maurizio Atzori University of Cagliari
Elena Cabrio Université Côte d’Azur, CNRS, Inria, I3S
Irene Celino CEFRIEL
Timothy Clark University of Virginia
Francesco Corcoglioniti Fondazione Bruno Kessler
Victor de Boer Vrije Universiteit Amsterdam
Daniele Dell’Aglio University of Zurich
Emanuele Della Valle Politecnico di Milano
Anastasia Dimou Ghent University
Ying Ding Indiana University Bloomington
Mauro Dragoni FBK-irst
Mohnish Dubey University of Bonn
Marek Dudáš University of Economics in Prague
Fajar J. Ekaputra Vienna University of Technology
Ivan Ermilov Universität Leipzig
Diego Esteves Fraunhofer
Michael Färber University of Freiburg
Michael Galkin Fraunhofer IAIS University of Bonn and ITMO

University
Aldo Gangemi Università di Bologna, CNR-ISTC
Raúl Garcia-Castro Universidad Politécnica de Madrid
Daniel Garijo Information Sciences Institute
Jose Manuel Gomez-Perez ExpertSystem
Alejandra Gonzalez-Beltran University of Oxford
Rafael S. Gonçalves Stanford University
Alasdair Gray Heriot-Watt University
Tudor Groza The Garvan Institute of Medical Research

xxiv Organization



Amelie Gyrard Kno.e.sis – Ohio Center of Excellence in
Knowledge-enabled Computing

Armin Haller Australian National University
Karl Hammar Jönköping University
Rinke Hoekstra University of Amsterdam
Antoine Isaac Europeana, VU University Amsterdam
Ernesto Jimenez-Ruiz The Alan Turing Institute
Simon Jupp European Bioinformatics Institute
Tomi Kauppinen Aalto University School of Science
Elmar Kiesling Vienna University of Technology
Tomáš Kliegr University of Economics in Prague
Jakub Klímek Charles University
Adila A. Krisnadhi University of Indonesia
Markus Krötzsch TU Dresden
Christoph Lange University of Bonn, Fraunhofer IAIS
Maxime Lefrançois MINES Saint-Étienne
Ioanna Lytra Enterprise Information Systems, University of Bonn
Simon Mayer University of St. Gallen and ETH Zurich
Jim McCusker Rensselaer Polytechnic Institute
Fiona McNeill Heriot Watt University
Nicole Merkle FZI Forschungszentrum Informatik am KIT
Nandana

Mihindukula-sooriya
Universidad Politécnica de Madrid

Raghava Mutharaju IIIT Delhi
Lionel Médini LIRIS, University of Lyon
Giulio Napolitano Fraunhofer Institute, University of Bonn
Mojtaba Nayyeri University of Bonn
Martin Nečaský Charles University
Vinh Nguyen National Library of Medicine, NIH
Andrea Giovanni Nuzzolese University of Bologna
Alessandro Oltramari Bosch Research and Technology Center
Bijan Parsia The University of Manchester
Silvio Peroni University of Bologna
Guilin Qi Southeast University
Mariano Rico Universidad Politécnica de Madrid
German Rigau IXA Group, UPV/EHU
Giuseppe Rizzo LINKS Foundation
Mariano Rodríguez Muro Google
Edna Ruckhaus Universidad Politécnica de Madrid
Anisa Rula University of Milano-Bicocca
Michele Ruta Politecnico di Bari
Satya Sahoo Case Western Reserve University
Miel Vander Sande Ghent University
Marco Luca Sbodio IBM
Stefan Schlobach Vrije Universiteit Amsterdam
Gezim Sejdiu University of Bonn

Organization xxv



Nicolas Seydoux LAAS-CNRS, IRIT
Ruben Taelman Ghent University – imec
Harsh Thakkar University of Bonn
Allan Third The Open University
Krishnaprasad Thirunarayan Wright State University
Konstantin Todorov LIRMM, University of Montpellier
Priyansh Trivedi University of Bonn
Cassia Trojahn UT2J, IRIT
Federico Ulliana Université Montpellier
Natalia Villanueva-Rosales University of Texas at El Paso
Tobias Weller Karlsruhe Institute of Technology
Fouad Zablith American University of Beirut
Ondřej Zamazal University of Economics in Prague
Amrapali Zaveri Maastricht University
Jun Zhao University of Oxford

Additional Reviewers – Resources Track

Pierre-Antoine Champin Universite Claude Bernard Lyon 1
Nathan Elazar Australian National University
Kuldeep Singh Fraunhofer IAIS
Blerina Spahiu Bicocca University
Xander Wilcke Vrije Universiteit Amsterdam
Tianxing Wu Nanyang Technological University
Hong Yung Yip Wright State University

Program Committee – In-Use Track

Renzo Angles Universidad de Talca
Sonia Bergamaschi University of Modena
Carlos Buil-Aranda Universidad Técnica Federico Santa María
Irene Celino Cefriel
Oscar Corcho Universidad Politécnica de Madrid
Philippe Cudre-Mauroux University of Fribourg
Brian Davis National University of Ireland Maynooth
Mauro Dragoni Fondazione Bruno Kessler
Achille Fokoue IBM
Daniel Garijo Information Sciences Institute, University of Southern

California
Jose Manuel Gomez-Perez ExpertSystem
Rafael Gonçalves Stanford University
Paul Groth University of Amsterdam
Tudor Groza The Garvan Institute of Medical Research
Peter Haase metaphacts
Armin Haller Australian National University
Tomi Kauppinen Aalto University
Sabrina Kirrane Vienna University of Economics and Business

xxvi Organization



Craig Knoblock USC Information Sciences Institute
Freddy Lecue CortAIx, Canada, and Inria, Sophia Antipolis
Vanessa Lopez IBM Research Ireland
Andriy Nikolov metaphacts GmbH
Francesco Osborne The Open University
Matteo Palmonari University of Milan-Bicocca
Jeff Z. Pan University of Aberdeen
Josiane Xavier Parreira Siemens AG Österreich
Catia Pesquita LASIGE, University of Lisbon
Artem Revenko Semantic Web Company GmbH
Mariano Rico Universidad Politécnica de Madrid
Dumitru Roman SINTEF AS, University of Oslo
Anisa Rula University of Milan-Bicocca
Juan F. Sequeda Capsenta Labs
Dezhao Song Thomson Reuters
Thomas Steiner Google
Ilaria Tiddi VU Amsterdam
Anna Tordai Elsevier
Raphaël Troncy EURECOM
Benjamin Zapilko GESIS – Leibniz Institute for the Social Sciences
Matthäus Zloch GESIS – Leibniz Institute for the Social Sciences

Additional Reviewers – In-Use Track

Akansha Bhardwaj eXascale Infolab, University of Fribourg
Luca Gagliardelli Università degli Studi di Modena e Reggio Emilia
Elena Montiel-Ponsoda Universidad Politécnica de Madrid
Nikolay Nikolov University of Oxford
Joe Raad Vrije Universiteit Amsterdam
Giovanni Simonini MIT
Ahmet Soylu Norwegian University of Science and Technology

Organization xxvii



Sponsors

Gold Plus Sponsor

http://www.research.ibm.com

Gold Sponsor

https://metaphacts.com

Silver Sponsors

https://www.ge.com/research https://www.google.com

https://www.journals.elsevier.com/
artificial-intelligence

https://www.tourismnewzealand.com

xxviii Organization

http://www.research.ibm.com
https://metaphacts.com
https://www.ge.com/research
https://www.google.com
https://www.journals.elsevier.com/artificial-intelligence
https://www.journals.elsevier.com/artificial-intelligence
https://www.journals.elsevier.com/artificial-intelligence
https://www.tourismnewzealand.com


Bronze Sponsors

Other Sponsors

Student Travel Award Sponsors

https://www.springer.com https://www.auckland.ac.nz/en/science.html

https://franz.com https://www.inria.fr/en

http://swsa.semanticweb.org https://www.nsf.gov

http://aucklandconventions.co.nz http://cs.auckland.ac.nz

Organization xxix

https://www.springer.com
https://www.auckland.ac.nz/en/science.html
https://franz.com
https://www.inria.fr/en
http://swsa.semanticweb.org
https://www.nsf.gov
http://aucklandconventions.co.nz
http://cs.auckland.ac.nz


Abstracts of Keynotes



For Knowledge

Jérôme Euzenat

Inria, Grenoble, France

Abstract. A large range of animals are able to learn from their environment, but
human beings are special among them because they can articulate knowledge
and they can communicate it. Written expression and communication have
allowed us to get rid of time and space in knowledge transmission. They allow
learning directly from elaborated knowledge instead of by experience. These
key features have led the creation of whole cultures, providing a selective
advantage to the species. The World Wide Web facilitating cultural exchange is
a culminating point in this story, so far.
Hence, the idea of a semantic web allowing machines to have a grasp on this
knowledge is a tremendous idea. Alas, after twenty years, the semantic web field
is mostly focused on data, even when it is made of so-called knowledge graphs.
Of course, there are schemata and vocabularies, but they are only a simple kind
of knowledge. Although data may be open, knowledge eventually learnt by
machines is very often not disclosed nor prone to communication. This brings us
down the knowledge evolution ladder.
The grand goal of formally expressing knowledge on the Web must be reha-
bilitated. We do not need knowledge cast in stone forever, but knowledge that
can seamlessly evolve; we do not need to build one single knowledge source,
but encourage diversity which is source of disputation and robustness; we do not
need consistent knowledge at the Web scale, but local theories that can be
combined. We will discuss in particular how knowledge can be made live and
evolve by taking inspiration from cultural evolution and evolutionary
epistemology.



Extracting Knowledge from the Data Deluge
to Reveal the Mysteries of the Universe

Melanie Johnston-Hollitt

Curtin University, Perth, Australia

Abstract. Astrophysics is one of the most data intensive research fields of the
modern world and, as such, provides a unique context to drive many of the
required innovations in the “big data” regime. In particular, radio astronomy is
foremost in the field in terms of big data generation, and thanks to sustained
global investment in the discipline over the last decade, present telescopes
generate tens of petabytes of data per annum. The pinnacle of this so-called
on-going ‘radio renaissance’ will be the Square Kilometre Array (SKA)—a
global observatory tasked with probing the deepest mysteries of the Universe.
The SKA will create the highest resolution, fastest frame rate movie of the
evolving Universe ever and in doing so will generate 160 terrabytes of raw data
a day, or close to 5 zettabytes of data per annum. These data will be processed
into order of 1 petabyte of image cubes per day which will be processed,
curated, and ultimately distributed via a network of coordinated tiered compute
facilities to the global astronomical community for scientific exploitation.
However, this truly data-rich environment will require new automated and
semantic processes to fully exploit the vast sea of results generated. In fact, to
fully realize the enormous scientific potential of this endeavour, we will need not
only better data tagging and coordination mechanisms, but also improved
algorithms, artificial intelligence, semantics, and ontologies to track and extract
knowledge in an automated way at a scale not yet attempted in science. In this
keynote I will present an overview of the SKA project, outline the “big data”
challenges the project faces and discuss some of the approaches we are taking to
tame this astronomical data deluge.



Semantics: The Business Technology
Disruptor of the Future

Dougal Watt

Meaningful Technology, Auckland, New Zealand

Abstract. Semantics has a vital role to play in bringing meaning to business
data. In this talk I will show how semantic technology can help solve the
modern data complexity, integration, and flexibility issues for business com-
puting technologies, both from a technical and psychological perspective, and
suggest some challenges and opportunities for further research and
collaboration.
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Abstract. Despite the prospect of a vast Web of interlinked data, the
Semantic Web today mostly fails to meet its potential. One of the main
problems it faces is rooted in its current architecture, which totally relies
on the availability of the servers providing access to the data. These
servers are subject to failures, which often results in situations where
some data is unavailable. Recent advances have proposed decentral-
ized peer-to-peer based architectures to alleviate this problem. However,
for query processing these approaches mostly rely on flooding, a stan-
dard technique for peer-to-peer systems, which can easily result in very
high network traffic and hence cause high query response times. To still
enable efficient query processing in such networks, this paper proposes
two indexing schemes, which in a decentralized fashion aim at efficiently
finding nodes with relevant data for a given query: Locational Indexes
and Prefix-Partitioned Bloom Filters. Our experiments show that such
indexing schemes are able to considerably speed up query processing
times compared to existing approaches.

1 Introduction

While there is a huge potential of possible applications of Linked Data and
although more and more information is being published in RDF, it is currently
not possible to rely on the availability of these datasets. Data providers publish
their data as downloadable data dumps, queryable SPARQL endpoints or TPF
interfaces, or dereferenceable URIs.

As highlighted in several recent studies [1,3,10,22], it is a huge burden for
data providers to keep the data available at all times, making many endpoints
often unavailable. Multiple recent studies [1,4,8] therefore explored and evi-
denced the importance of avoiding a single point of failure, e.g. a central server,
and maintain a decentralized architecture where data is available even if the orig-
inal uploader fails through data replication. These approaches, however, either
introduce a structured overlay over a peer-to-peer (P2P) network [4], use unsta-
ble nodes with limited storage capabilities [8], or make use of inefficient query
processing algorithms, such as flooding [1]. Applying a structured overlay to a
network of peers restricts peer autonomy as some kind of global knowledge is
used to allocate the data at certain peers and to find relevant data for a given
query. Apart from general problems, such as finding an optimal way to allocate
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 3–20, 2019.
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data at peers, structured overlays need to adjust the overlay when new peers
leave or join the network, which may cause problems when a high number of
nodes leaves or joins.

Unstructured P2P networks, on the other hand, retain the maximum degree
of peer autonomy but with the lack of global knowledge about data placement
efficient query processing is considerably more challenging. Hence, unstructured
P2P systems typically rely on expensive algorithms, such as flooding, which
creates a large overhead and involves exchanging a high number of messages
between nodes until the relevant data is actually found and processed. Assuming
that each node in the network has N neighbors, flooding results in

∑ttl
i=1 N i

messages to reach all nodes within a hop distance of ttl (time-to-live value). For
example, given a network with N = 5 and ttl = 5, flooding results in 3,905
messages. Query processing in an unstructured architecture has been addressed
previously [8,9,16]. However, they either focus on reducing the load on servers by
splitting the query processing tasks between multiple clients or rely on unstable
nodes with limited storage capabilities. The lack of global knowledge impacts
the answer completeness as evidenced in [9], where the average completeness
remains under 45%.

In this paper, we do not aim to reduce the server loads or provide users
with low-cost but incomplete answers. Instead, to overcome the lack of global
knowledge in unstructured architectures and enable efficient query processing,
this paper proposes the use of novel indexes, inspired by routing indexes [6],
which are tailored for RDF datasets, and provide a node with information about
which data its neighbors can provide access to within a distance of several hops.
In summary, this paper makes the following contributions:

• Two indexing schemes to determine relevant data based on common subjects
and objects: (i) a baseline approach: Locational Index and (ii) an advanced
index based on bloom filters: Prefix-Partitioned Bloom Filters.

• Efficient query processing techniques for unstructured decentralized networks
using the proposed indexing schemes, and

• An extensive evaluation of the proposed techniques.

This paper is structured as follows: while Sect. 2 discusses related work, Sect. 3
describes preliminaries and provides background information. Section 4 proposes
the Locational Indexing scheme, followed by Prefix-Partitioned Bloom Filters in
Sect. 5. Query processing is described in Sect. 6. The results of our experimental
study are discussed in Sect. 7 and the paper concludes with a summary and an
outlook to future work in Sect. 8.

2 Related Work

Although decentralization is not an entirely novel concept, it has gained more
and more attention over the last couple of years, especially in the Semantic Web
community. The Solid platform [15], for instance, proposes to store personal
data in RDF format in a decentralized manner, in so-called Personal Online
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Datastores (PODs). A POD can be stored on any server at any location, and
applications can ask for access to some of its data. This means that data is
scattered around the world and that, even if a server fails, most peoples’ PODs
will still be available. The current focus of Solid, however, is more on protection
of private data, whereas we focus on indexing schemes and query processing in
decentralized architectures.

To improve availability of data by reducing the load at the servers running
SPARQL endpoints, Triple Pattern Fragments (TPF) [22] have been proposed.
By processing only triple pattern requests at the servers, query processing load
can be reduced and shifted to the clients that then have to process expensive
operations, such as joins. Bindings-Restricted TPF (brTPF) [10] further reduces
the server load, by bulking bindings from previously evaluated triple patterns,
thereby reducing the amount of requests. Other approaches [9,16] have similarly
sought to divide the query processing load among multiple clients, or multiple
RDF interfaces [17], in order to speed up query processing. While the previously
mentioned approaches greatly reduce the server load, they still have some limita-
tions. Some of these approaches [10,17,22] rely on a single server, or a fixed set of
servers, that are vulnerable to attacks and represent single points of failure; if the
servers fail, all their data will become unavailable, while other approaches [9,16]
rely on unstable nodes with limited storage capabilities. Instead, we focus on
architectures in which data is stored, and possibly replicated, in a decentralized
and more stable manner, and on reducing the amount of messages sent within
such an architecture.

Several decentralized architectures for RDF data are based on structured
overlays over a P2P network [4,13,14]. These overlays allow to easily identify
the nodes that have relevant data to evaluate queries. However, while they have
been shown to provide fast query processing, they are vulnerable to churn. This is
the case, since each time a node leaves or joins the network, the overlay has to be
adapted. This creates a frequent overhead, making such architectures inflexible
in unstable environments. Moreover, such structured overlays often impose the
placement of data within the network, which is not applicable to the scenario
considered in this paper. Therefore, such overlays are not applicable for source
selection in our case.

In unstructured networks where the placement of data to the nodes is not
imposed, several strategies have been proposed to access the data scattered
through the network. Accessing the data may rely on centralized indexes, where
one single node is responsible to maintain a full overview of the whole data in
the network, and distributed indexes, where nodes are only responsible to pro-
vide an overview of the data they store. Centralized indexes represent a single
point of failure and it is a challenge to keep the information up-to-date. Diverse
approaches, such as [6,7,23], represent improvements over the basic flooding
algorithm, which distributes the requests to all the nodes in the network, by
reducing the number of contacted nodes to answer a query. For instance, rout-
ing indexes [6] extend the information that each node includes in its distributed
index to include an entry for each of its neighbors and some aggregated infor-
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mation about what data can be accessed by contacting that neighbor within a
distance of several hops, locally or by routing the query to a neighbor that has
access to such information.

Diverse RDF indexing approaches have been proposed in contexts such as
query optimization and source selection [5,18,21]. These approaches are mainly
based on the structure of the graphs, such as finding representative nodes within
the graph, common patterns in the data, or statistical information, such as num-
ber of class instances. Our general approach can be combined with many of these
approaches, however for our concrete implementation we have focused on sum-
maries based statistical information, since they provide a good tradeoff between
index creation time and precision of the indexes. In our case, each node com-
putes its own statistical information, either a locational or PPBF index, and
exchanges this information with its neighbors.

3 Preliminaries

Today’s standard data format for semantic data is the Resource Description
Framework (RDF)1. RDF structures data into triples, which can be visualized
as edges in a knowledge graph.

Definition 1 (RDF Triple). Given the infinite and disjoint sets U (the set of
all URIs/IRIs), B (the set of all blank nodes), and L (the set of all literals), an
RDF triple is a triple of the form (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) where s
is called the subject, p the predicate, and o the object.

An RDF graph g is a finite set of RDF triples. In order to query an RDF graph
containing a set of RDF triples, SPARQL2 is widely used. The building block
of a SPARQL query is a triple pattern. Triple patterns, like RDF triples, have
three elements: subject, predicate, and object, but unlike RDF triples any of
these elements could be a variable.

Definition 2 (Triple Pattern). Given the infinite and disjoint sets U , B,
and L from Definition 1, and V (the set of all variables), a triple pattern is a
straightforward extension of an RDF triple, i.e., a triple of the form (s, p, o) ∈
(U ∪ B ∪ V ) × (U ∪ V ) × (U ∪ B ∪ L ∪ V ).

If there is a mapping from the variables in the triple pattern to elements in
U ∪ B ∪ L, such that the resulting RDF triple is in an RDF graph, then we say
that the triple pattern matches those RDF triples, and that the triple pattern has
solutions within the RDF graph. Moreover, in a SPARQL query triple patterns
are organized into Basic Graph Patterns (BGPs). A BGP matches only if all the
triple patterns within the BGP match. Furthermore, BGP may be combined with
other SPARQL operators, such as OPTIONAL or UNION. Even if our approach
works well for SPARQL queries with any SPARQL operators, we use examples

1 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.
2 http://www.w3.org/TR/rdf-sparql-query/.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-sparql-query/
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and descriptions with a single BGP as it makes the explanations simpler and
can be naturally extended to SPARQL queries with any number of BGPs.

In an unstructured P2P system, nodes function as both clients and servers.
Each node maintains a limited local datastore and a partial view over the net-
work. In the limited local datastore, the node may include one or more RDF
graphs. To ease the management of replicated graphs on several nodes, each
graph is identified by a URI g. Then, the set of graphs in the local repository
of node n is denoted as Gn. To keep the network structure stable and up-to-
date, peers periodically update their neighbors following certain protocols, such
as [23]. The specifics of the partial view over the network may vary from system
to system. For example, some systems [1,7] rank neighbors based on various
metrics, e.g., the issued queries or the degree to which the data can be joined.

In this paper, we provide a general approach to identify relevant RDF data
within a network. Our approach is based on indexing techniques that are defined
independently of specific data placement strategies or network infrastructure.
Therefore, our approach can be used in combination with different systems, in
particular unstructured P2P networks, which we provide specific details for in
Sect. 6. Furthermore, our general approach to identify relevant RDF data may
be used in combination with diverse RDF interfaces to efficiently process queries.

4 Locational Index

Let P (g) be a function that returns the set of predicates within a graph g and
Gn be the set of graphs in the local repository of node n. n’s locational index
Ii
L(n) then summarizes the graphs that can be reached within a distance of i

hops.

Definition 3 (Locational Index). Let N be the set of nodes, P the set of
predicates, and G the set of graphs, a locational index is a tuple Ii

L(n) = 〈γ, η〉,
with γ : P → 2G and η : G → 2N . γ(p) returns the set of graphs gs s.t. ∀g ∈
gs : p ∈ P (g). η(g) returns the set of nodes ns such that g ∈ Gni

such that ni is
within i hops from n.

More formally, given that a node n can be described as a triple n = 〈Gn, N, u〉,
with Gn being the set of graphs that n stores, N being the set of direct neighbors,
and u being a URI that identifies n, a locational index of depth 0 (covering only
local graphs) at node n is defined as I0L(n) = 〈γ, η〉, where:

γ(p) = {g | g ∈ Gn ∧ p ∈ P (g)} (1)
η(g) = {n},∀g ∈ Gn (2)
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The locational index of depth i for a node n is defined as Ii
L(n) = 〈γ, η〉, where:

γ = I0L(n).γ ⊕
⊕

n′∈n.N

Ii−1
L (n′).γ (3)

η = I0L(n).η ⊕
⊕

n′∈n.N

Ii−1
L (n′).η (4)

With (f ⊕ g)(x) = f(x) ∪ g(x) if f and g are defined at x and f(x), g(x) are
sets, (f ⊕ g)(x) = f(x) if only f is defined at x, and (f ⊕ g)(x) = g(x) if only g
is defined at x.

Example 1 (Locational Index). Consider the graphs in Table 1a and the nodes
and connections in Fig. 1b. Applying Eqs. 3–4 to create a locational index of
depth 2 for node n1 results in I2L(n1) as shown in Table 1c.

g1 g2 g3 g4

〈a p1 b〉 〈a p2 d〉 〈c p3 d〉 〈b p2 i〉
〈f p1 a〉 〈b p2 e〉 〈g p3 d〉 〈g p2 b〉
〈c p1 b〉 〈e p3 h〉 〈b p1 j〉
(a) Datasets and their triples

n1
g1, g2

n2
g2, g3

n3
g3, g4

(b) Connections between
nodes

p γ(p) g η(g)
p1 {g1, g4} g1 {n1}
p2 {g2, g4} g2 {n1, n2}
p3 {g3} g3 {n2, n3}

g4 {n3}
(c) I2

L(n1)

Fig. 1. Locational index obtained from a set of datasets and connections

In a real system, locational indexes are built by flooding the network for a
specified amount of steps, where each reached node replies with its precomputed
locational index.

The nodes that are relevant to evaluate a triple pattern tp, with
predicate ptp, are given by

⋃
g∈γ(ptp)

takeOne(η(g)), if ptp is a URI, or
⋃

g∈range(γ) takeOne(η(g)), if ptp is a variable. takeOne(s) returns one element
in the set s and it allows for evaluating the triple pattern only once against each
graph. Thereby, flooding an entire network can be avoided by only sending triple
patterns to relevant nodes. Even in the case of triple patterns with a variable as
predicate, the number of requests can be significantly reduced, especially when
replicas of graphs are stored at multiple nodes.

Example 2 (Node Selection with a Locational Index). Given node n1 that issues
the query, and the triple pattern tp = 〈?v1, p2, ?v2〉, the set of selected nodes from
I2L(n1) in Table 1c is {n1, n3}, since γ(p2) = {g2, g4}, n1 ∈ η(g2), and n3 ∈ η(g4).
The set of selected nodes could be {n2, n3} because n2 is also in η(g2), but n1

may be preferable as it corresponds to using the local repository.
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5 Prefix-Partitioned Bloom Filters

Building upon the baseline of locational indexes, this section presents Prefix-
Partitioned Bloom Filters (PPBFs). The idea is to summarize entities and prop-
erties in a graph as a Bloom Filter [2] and rely on efficient bitwise operations
on Bloom Filters to estimate if two graphs may have elements in common. We
use Bloom Filters since they provide space-efficient bit vectors, and have previ-
ously been shown beneficial in reducing information processing for distributed
systems [20]. Such knowledge can be used during query processing to reduce
intermediate results by only evaluating triple patterns with a join variable over
graphs that may have common elements. As such, PPBFs are not complemen-
tary to locational indexes, but encode similar information. As we shall see, this
further narrows down the list of relevant nodes for a given query.

A Bloom Filter B for a set S of size n is a tuple B = (b̂, H), where b̂ is a bit
vector of size m and H is a set of k hash functions. Each hash function maps the
elements from S to a position in b̂. To create the Bloom Filter of S, each hash
function in H is applied to each element in S, and the resulting positions in b̂ are
set. o is estimated to be an element of S if all the positions given by applying the
hash functions in H to o are set in b̂. If at least one corresponding bit is not set,
then it is certain that o 
∈ S. However, if all corresponding bits are set, it is still
possible that o 
∈ S, meaning a Bloom filter answers the question is o in S? with
either no or maybe, rather than no or yes. The probability of such false positives
is given by formula (1 − e−kn/m)k [2]. Furthermore, the cardinality of a set that
is represented by a Bloom Filter where t bits are set, can be approximated by
the following formula [19]:

Ŝ−1(t) =
ln(1 − t/m)

k · ln(1 − t/m)
(5)

Given two sets s1 and s2 and their Bloom Filters B1 and B2, with bit vectors
of the same size and with the same hash functions, B1 &B2 approximates the
Bloom Filter of s1 ∩ s2, and B1|B2 corresponds to the Bloom Filter of s1 ∪
s2 [12]. Therefore, the number of URIs in two graphs can be approximated
using Formula 5 on the Bloom Filter resulting of applying the bitwise and on
the graphs’ Bloom Filters.

5.1 Partitioning Bloom Filters

In order to have a relatively low false positive probability, the bit vectors should
have multiple bits per each possible element. However, in large scale scenarios,
e.g., with 500 million distinct URIs, so large bit vectors are not feasible to store
for all graphs. If we instead use as few bits as the largest PPBF use, we would still
have a high false-positive rate (just above 51% in our experiments). Therefore,
instead of having a unique Bloom Filter per graph, we will have a prefix-based
partitioning, with a Bloom Filter for each different URI prefix used in the graph.

This has the advantage that not only do most partitions have a low false-
positive rate (less than 0.1% in our experiments in Sect. 7), but even for the
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partitions that have a high false-positive rate, this is more tolerable since if
two URIs have the same prefix, they are more likely to be contained in the
same graph, since a prefix typically encodes the domain/source. The prefix of
a URI is the URI minus the name of the entity, e.g., the URI http://dbpedia.
org/resource/Auckland has the prefix http://dbpedia.org/resource and the name
Auckland.

Definition 4 (Prefix-Partitioned Bloom Filter). A PPBF BP is a 4-tuple
BP = 〈P, B̂, θ,H〉 with the following elements:

• a set of prefixes P ,
• a set of bit vectors B̂,
• a prefix-mapping function θ : P → B̂, and
• a set of hash functions H.

All bit vectors in B̂ have the same size. For each pi ∈ P , Bi = (θ(pi),H), is the
Bloom Filter that encodes the URIs’ names with prefix pi. Bi is called a partition
of BP .

The false positive risk of BP , is given by its partition with the highest risk. A
PPBF for a graph g is denoted BP (g) and corresponds to the PPBF for the set
of URIs in g. The cardinality of a PPBF is the sum its partitions’ cardinalities.

Example 3 (Prefix-Partitioned Bloom Filter). Inserting a URI into an Unparti-
tioned Bloom Filter is visualized in Fig. 2a. Inserting the same URI into a PPBF
is visualized in Fig. 2b. Only the name of the entity is hashed, and its hash values
set bits only in the partition of its prefix.

...

h1 h2 hk

http://dbpedia.org/resource/Auckland

...

(a) Unpartitioned Bloom Filter

...

h1 h2 hk

http://dbpedia.org/resource/Auckland

...

dbo

...
dbpdbr

......

(b) Prefix-Partitioned Bloom Filter

Fig. 2. Insertion of a URI into an Unpartitioned Bloom Filter and a Prefix-Partitioned
Bloom Filter. dbo, dbr and dbp are short for prefixes from DBpedia, ontology, resource
and property, respectively.

For simplicity, we say that a URI u with prefix p may be in a PPBF BP ,
denoted u

∃BP , iff all the positions given by the hash functions applied to u’s
name are set in the bit vector θ(p). Correspondingly, we say that a PPBF BP

is empty, denoted BP = ∅ iff no bit in any partition in BP is set, or it has
no partitions. Given that the intersection of two Bloom Filters is given by the
bitwise and operation, the intersection of two PPBFs is given by:

http://dbpedia.org/resource/Auckland
http://dbpedia.org/resource/Auckland
http://dbpedia.org/resource
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Definition 5 (Prefix-Partitioned Bloom Filter Intersection). The inter-
section of two PPBFs with the same set of hash functions H and bit vectors
of the same size, denoted BP

1 ∩ BP
2 , is BP

1 ∩ BP
2 = 〈P∩, B̂∩, θ∩,H〉, where

P∩ = BP
1 .P ∩ BP

2 .P , B̂∩ = {BP
1 .θ(p) and BP

2 .θ(p) | p ∈ P∩}, and θ∩ : P∩ → B̂∩.

That is, partitions with the same prefix are intersected, while other partitions
are not part of BP

1 ∩ BP
2 . The intersection of two PPBFs thereby approximates

the common URIs of the graphs that they represent, and Formula 5 can use used
to approximate the number of common URIs.

Example 4 (Prefix-Partitioned Bloom Filter Intersection). The intersection of
two Unpartitioned Bloom Filters is visualized in Fig. 3a. The intersection of two
PPBFs is visualized in Fig. 3b.

...

...and

...

B1

B2

B1 ∩ B2

(a) Unpartitioned Bloom Filter

dbr dbp dbo

and

B1

B2

B1 ∩ B2

(b) Prefix-Partitioned Bloom Filter

Fig. 3. Intersection of Unpartitioned Bloom Filters and Prefix-Partitioned Bloom Fil-
ters. dbo, dbr and dbp are short for prefixes from DBpedia, ontology, resource and
property, respectively.

Building a PPBF for a graph is straightforward. For each URI in the graph,
its prefix p identifies the relevant partition θ(p), and the application of hash
functions H to its name determines the bits to set in θ(p). If θ is not defined for
p, it is a bit vector with no bits set, before applying the hash functions.

The intersection of PPBFs can be used at query processing time to prune
graphs if they do not have joinable entities for queries with a join variable,
even if they contain corresponding URIs. Before execution time, each node can
compute PPBFs for the graphs in its local datastore and download PPBFs from
nodes in the neighborhood to compute the approximate number of URIs of the
graphs in the local datastore in common with the reachable graphs. Any network
maintenance strategy could be used to ensure regular updates in order to keep
the approximations up-to-date, e.g. periodic shuffles [1].

Definition 6 (Prefix-Partitioned Bloom Filter Index). Let N be the set
of nodes, U the set of URIs, and G the set of graphs, a PPBF index is a tuple
Ii
P (n) = 〈υ, η〉 with υ : U → 2G and η : G → 2N . υ(u) returns the set of graphs

gs such that u

∃BP (g), ∀g ∈ gs. η(g) returns the set of nodes ns such that
g ∈ Gni

∀ni ∈ ns and ni is within i hops from n.
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Algorithm 1. Match BGP To PPBF Index
Input: BGP bgp; Node n; PPBF Index Ii

P (n) = 〈υ, η〉
Output: Node Mapping Mn

1: function matchBGPToPPBFIndex(bgp,n,Ii
P )

2: Mg ← { (tp, range(Ii
P (n).υ) ∩ ⋂

t∈uris(tp) Ii
P (n).υ(t)) : tp ∈ bgp }

3: M ′
g ← { (tp, ∅) : tp ∈ bgp }

4: for all tp1, tp2 ∈ bgp s.t. vars(tp1) ∩ vars(tp2) �= ∅ do
5: G′

1, G
′
2 ← ∅

6: for all (g1, g2) s.t. g1 ∈ Mg(tp1) and g2 ∈ Mg(tp2) do
7: if BP (g1) ∩ BP (g2) �= ∅ then
8: G′

1 ← G′
1 ∪ {g1}

9: G′
2 ← G′

2 ∪ {g2}
10: if G′

1 �= ∅ ∧ G′
2 �= ∅ then

11: M ′
g(tp1) ← M ′

g(tp1) ∪ {G′
1}

12: M ′
g(tp2) ← M ′

g(tp2) ∪ {G′
2}

13: else
14: M ′

g ← {(tp, ∅) : tp ∈ bgp}
15: break
16: return { (tp,

⋃
g∈M′

g(tp)
takeOne(Ii

P (n).η(g))) : tp ∈ bgp }

5.2 Matching Triple Patterns to Nodes

The relevant nodes for a triple pattern have graphs containing all URIs given
in the triple pattern. PPBFs allow for efficiently checking if the graph has these
URIs. Similarly to matching triple patterns using the locational index, first, we
find the graphs with triples that match the triple patterns in the query. Then,
for every pair of triple patterns that share a join variable, we prune graphs that,
even if they are relevant for each triple pattern, do not have any common URI.
Finally, the set of relevant nodes for each triple pattern is obtained, from these
reduced set of relevant graphs, in the same way as when using the locational
index.

Algorithm 1 shows how a PPBF index is used to identify the relevant nodes to
evaluate the triple patterns in a BGP bgp. Given the PPBF index Ii

P (n) = 〈υ, η〉,
the graph mapping Mg, which associates triple patterns to set of graphs, is
initialized (line 2) for every tp ∈ bgp as the set of graphs gs such that u

∃BP (g)
for all g ∈ gs if the set of URIs in tp, uris(tp), is not empty, or range(Ii

P (n).υ)
otherwise. The function uris(tp) returns the set of URIs in the triple pattern tp.
Lines 4–15 select among all the relevant graphs for the triple patterns, computed
in line 2, the ones that have some URIs in common for triple patterns with a
common join variable. This is, the algorithm selects the graphs that may satisfy
the join condition. The PPBFs of the relevant graphs, BP (g1) and BP (g2) are
used to approximate if these graphs have any URI in common (line 7), and in
such case, these graphs are selected as relevant for tp1 and tp2, respectively (lines
8–9). Once all the relevant graphs have been considered, if any of them have
been selected, then the graph mapping M ′

g is extended with values for the triple
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patterns tp1 and tp2 (lines 11–12). In other case, it is not possible to find answers
for the given bgp and therefore the graph mapping M ′

g is initialized again and
the loop ends (lines 14–15). Finally, the node mapping Mn is computed in line 16
by using the selected graphs in M ′

g and the function Ii
P (n).η(g). The function

takeOne(ns) returns one of the nodes in ns, if the number of hops between
n and the nodes in ns is known, then takeOne(ns) could be implemented to
take the node closest to n. In that case, if triple pattern tp is mapped to {g1},
Ii
P (n).η(g1) = {n1, n2}, and n1 is closer to n than n2, takeOne({n1, n2})=n1,

and therefore Mn(tp) = {n1}. The returned node mapping Mn specifies which
nodes should be queried for each triple pattern.

Example 5 (Node Mapping). Consider the query Q in Listing 1.1 and the set of
graphs in Fig. 1a and Ii

P in Table 1a. Applying Algorithm1 to Q’s bgp results
in the set of mappings in Fig. 1b. Besides checking whether each URI in a triple
pattern is contained within a PPBF, the algorithm prunes g4 from the second
triple pattern. This is the case, since p2, b

∃BP (g4), but BP (g4) ∩ BP (g3) = ∅.
Since g3 is matched to the third triple pattern, and they join on ?v2, g4 is pruned.

1 SELECT ∗ WHERE {
2 ?v1 p1 b .
3 b p2 ?v2 .
4 ?v2 p3 ?v3
5 }

Listing 1.1. Example query Q.

Table 1. PPBF index for a set of graphs and the resulting node mappings

(a) Ii
P (n1)

u υ(u) g η(g)
p1 {g1, g4} g1 {n1}
p2 {g2, g4} g2 {n1, n2}
p3 {g3} g3 {n2, n3}
b {g1, g2, g4} g4 {n3}

(b) Mn

tp Mn(tp)
(?v1, p1, b) {n1}
(b, p2, ?v2) {n1}

(?v2, p3, ?v3) {n2}

Using intersections of PPBFs allows for reducing the set of graphs to con-
sider for a query. This is evident from our experiments (Sect. 7), where multiple
intersections of PPBFs with common prefixes were indeed empty, and less data
as a result was transferred between nodes.

6 Query Processing

For simplicity, and in-line with recent proposals on query processing [10,22],
we assume that queries are evaluated triple pattern by triple pattern, and that
expensive operations, such as joins, are executed locally at the issuer after exe-
cuting relevant triple patterns over graphs on nodes identified by our indexes.
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The evaluation of a triple pattern relies on evaluating the triple pattern against
the graphs in the local repositories of a set of nodes. Therefore, we define oper-
ators to evaluate a triple pattern using either a locational or PPBF index.

Definitions 7 and 8 formally specify operators for retrieving a set of nodes
given a triple pattern, using a locational index and PPBF index, respectively.
Definition 9 then specifies an operator for evaluating a triple pattern given such
a set of nodes.

Definition 7 (Locational Selection σL). Let the function I(Ii
L(n), p) denote

the set of nodes that is obtained by using Ii
L(n) to find the relevant nodes to

evaluate a triple pattern with predicate p, and n1 ∈ Ii
L(n) denote that n1 ∈

η(g) for some g ∈ Ii
L(n).γ(p). Locational selection for a triple pattern tp on a

locational index Ii
L(n) of depth i , denoted σL

tp(I
i
L(n)), is the set {n1 | n1 ∈ Ii

L(n)}
if ptp is a variable, or {n1 | n1 ∈ I(Ii

L(n), ptp)} otherwise.

Definition 8 (PPBF Selection σP ). Let Mn be the node mapping obtained
after applying Algorithm1 to the BGP which includes tp in the query Q. Given
a query Q, the PPBF selection for a triple pattern tp ∈ bgp and bgp a BGP of
Q, obtained using the PPBF index Ii

P (n) of depth i, denoted σP
tp,Q(Ii

P (n)), is the
selection of the nodes Mn(tp).

Definition 9 (Node Projection πN). Given a set of nodes N , node projec-
tion on a triple pattern, denoted πN

tp(N ), is the set of triples obtained by evalu-
ating tp on the local datastore of the nodes in N . Given the function T (n, tp),
that evaluates tp on n’s local datastore, node projection is formally defined as:
πN

tp(N ) =
⋃

n∈N
T (n, tp)

Implementation Details. The proposed indexes can be used in a broad range
of applications. However, motivated by recent efforts in the area of decentraliza-
tion [1], we show their benefits in the context of an unstructured P2P system.
Nodes in an unstructured P2P network often have a limited amount of space
for datastores. As such, it does not make sense for a node to download entire
graphs. Therefore, we adopt the basic setup outlined in Piqnic [1]. That is,
graphs are split into smaller subgraphs, called fragments, based on the predicate
of the triples. Each fragment is replicated among multiple nodes. For our setup,
we simply view a fragment as a graph and extend the original graph’s name with
the predicate in the subgraph. Hence, there is no need to encode predicates in
PPBFs, which therefore only contain URIs that are either a subject or object in
the fragment.

In Piqnic, query processing is based on the brTPF [10] style of processing
queries; triple patterns are flooded throughout the network individually, bound
by previous mappings. Locational indexes and PPBFs are useful for avoiding
flooding since the query processor can use them to identify precisely which nodes
are to be queried. Specifically, a query Q at a node n is processed as follows:

1. Reorder triple patterns in Q based on selectivity. More selective triple patterns
(estimated by variable counting) are evaluated first.
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2. Evaluate each triple pattern tp ∈ Q by the following steps:
(a) Apply either locational selection (σL) or PPBF selection (σP ) on n’s local

index in order to select the nodes Ntp that contain answers to tp.
(b) For each node ni ∈ Ntp, apply node projection (πN ) by evaluating tp on

ni’s local datastore.
3. Compute the answer to the query by combining intermediate results from

previous steps using the SPARQL operators specified in the query.

Since we use the brTPF style of query processing, the iterative process in step
2 is completed by sending bulks of bindings from previously evaluated triple
patterns to the nodes selected by the indexes.

7 Evaluation

To evidence the gains in performance and potential benefits of using our proposed
indexing schemes, we implemented locational indexes and PPBF indexes as a
module in Java 83. We modified Apache Jena4 to use the indexes during query
processing and extended Piqnic [1] with support for our module in order to
provide a fair comparison with an existing system.

7.1 Experimental Setup

Our experiments were run on a single server with 4xAMD Opteron 6373 proces-
sors, each with 16 cores (64 cores in total) running at 2.3 GHz, with 768 KB L1
cache and 16 MB L2 and L3 cache. The server has 516 GB RAM. We executed
several experiments with variations of some parameters, such as ttl, replication
factor, and number of neighbors. However, due to space restrictions, we only
show the most relevant results in this section. Additional results can be found
on our website5. The results presented in this section focus on experiments with
the following parameters: 200 nodes, TTL: 5, number of neighbors per node: 5.
The timeout was set to 1200 s (20 min). The replication factor was 5%, meaning
that with 200 nodes, fragments were replicated on 10 nodes. While, in theory,
these parameters should give nodes access to well over 200 nodes, in reality nodes
within the same neighborhood often share some neighbors, giving them access to
far less nodes. In our experiments, each node had, on average, access to 129.43
nodes. By increasing the TTL value to a sufficiently large number, our indexes
could provide a global view, however as nodes are free to join and leave the
network, keeping this global view up-to-date can easily become quite expensive.
Each dataset was assigned to a random owner, which replicated the fragments
across its neighborhood.

We use the queries and datasets in the extended LargeRDFBench [11]. Larg-
eRDFBench comprises 13 different datasets, some of them interconnected, with

3 The source code is available on our GitHub at https://github.com/Chraebe/PPBFs.
4 https://jena.apache.org/.
5 Additional results are available on our website at https://relweb.cs.aau.dk/ppbfs.

https://github.com/Chraebe/PPBFs
https://jena.apache.org/
https://relweb.cs.aau.dk/ppbfs
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over 1 billion triples. It includes 40 SPARQL queries, divided into four sets:
Simple (S), Complex (C), Large Data (L), and Complex and Large Data (CH).
We measure the following metrics:

• Execution Time (ET): The amount of time in milliseconds spent to process
a given query.

• Completeness (COM): The percentage of the query answers obtained by a
system. To determine completeness, we computed the results in a centralized
system and compared them to the results given by the decentralized setup.

• Number of Transferred Bytes (NTB): The total number of transferred bytes
between nodes in the network during query processing.

• Number of Exchanged Messages (NEM): The total number of messages
exchanged, in both directions, between nodes during query processing.

Queries were run sequentially on random nodes. At most 37 nodes were active
at the same time during our experiments. We report averages over three runs.

Storage and Building Times. As we shall see, in most real cases PPBFs out-
perform locational indexes in terms of performance and data transfer. However,
in our experiments, the index creation time was, on average 6,495 ms for loca-
tional indexes and 10,992 ms for PPBF indexes. PPBFs used 427 MB per node,
while locational indexes used 685 KB per node. Furthermore, matching triple
patterns to nodes is less complex for locational indexes. This means, that for
cases where resources are limited, locational indexes might overall be the best
choice, given that they still increase performance overall.

7.2 Experimental Results

During all experiments, we compared Piqnic without modifications, Piqnic
with locational indexes, and Piqnic with PPBF indexes. The objective is to
verify that locational indexes and PPBF indexes can improve query processing,
especially for the typically challenging queries.

Performance Gains Using Locational Indexes and PPBF Indexes.
Figure 4 shows ET for query group S. The extended versions with locational
indexes and PPBF indexes perform significantly better than the unmodified
version for all the queries. Moreover, the version extended with PPBF indexes
is more efficient than the version extended with locational indexes in all cases
except queries S6 and S7. For queries S6 and S7, using the PPBF indexes does
not allow for pruning any additional nodes than using the locational indexes,
and so the slightly larger overhead of testing the graphs for common URIs leads
to slightly larger query processing times. However, since all these times are below
100 ms, this is negligible compared to the improvements that PPBF indexes pro-
vide for other queries. Moreover, for query S9, a locational index does not help.
This is due to a triple pattern where all constituents are variables. Because of
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this, the locational index returns all nodes within the neighborhood, the same
set of nodes that Piqnic uses. The version extended with the PPBF indexes is
able to eliminate some of these nodes and thus improve performance.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
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Fig. 4. ET for Piqnic, Piqnic with locational indexes, and Piqnic with PPBF indexes
over query group S. Note that the y-axis is in log scale.

Figure 5 shows ET for query groups L and CH. Generally, queries which
were not computable before, are computable with PPBF indexes, alluding to
a significantly improved performance. For some queries, such as S14, CH3 and
CH6, the improvement was especially significant. Though, some especially large
queries could not be processed within the time out. Given enough time, however,
we were able to execute these with ET between 2K–10K s. The only exception
was L5, which has proven to be particularly challenging for state of the art
federated processors [11]. Even though we do not show the results for query
group C, they showed the same pattern; an improvement in performance using
locational indexes, and further improvement using PPBF indexes.
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Fig. 5. ET for Piqnic, Piqnic with locational index, and Piqnic with PPBF indexes
over query groups L and CH. Note that the y-axis is in log scale.

In our experiments, all queries that finished had the same completeness for
all approaches. Figure 6b shows the average COM over query groups. Since the
indexes make query processing more efficient, we experienced fewer timeouts,
which caused the higher completeness for some query groups.
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Index Impact on Network Traffic. One of the major advantages of the
indexes presented in this paper is the fact that flooding can be avoided, thus the
number of messages exchanged between nodes is significantly reduced.

To evidence the improvement wrt. the network traffic, we measured the
amount of messages exchanged between nodes, and the amount of transferred
data in bytes, during the execution of the queries in the query load. Figure 6a
shows the number of exchanged messages, averaged over the query groups. As
expected, both indexes reduce the amount of messages sent throughout the net-
work by avoiding flooding. This reduction has a stronger impact when the num-
ber of messages for the unmodified approach is very high. Furthermore, the
PPBF indexes can further reduce the number of nodes queried, thereby further
reducing the number of messages sent throughout the network during query
processing.
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Fig. 6. Average NEM and COM for Piqnic, locational index, and PPBFs over query
groups. Note that for (a), the y-axis is in log scale.

The amount of transferred bytes during query execution (Fig. 7 for query
group S), shows the same general tendency. Using indexes can reduce the num-
ber of nodes queried and thereby the amount of transferred bytes since some
fragments are pruned. Furthermore, a PPBF index ensures that only relevant
fragments are queried, thus reducing NTB even further. The reduced NTB in
practice means, that less time is spent transferring data during query execu-
tion. This increases performance, especially for queries with large intermediate
results.

Impact of Other Parameters. We ran experiments where we varied the time-
to-live value, replication factor, and the number of neighbors for each node. For
all these experiments, query execution times for the modified approaches were
only negligibly affected by the varied network structure, since node matching
still only require simple lookups. For the unmodified approach, query execution
times were much more affected by the varied network structure. This means, that
in terms of completeness, we saw a much greater improvement for the modified
approaches than in Fig. 6b, since less queries were completed by the unmodified
approach.
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Fig. 7. NTB for Piqnic, Piqnic with locational index, and Piqnic with PPBF indexes
over query group S. Note that the y-axis is in log scale.

8 Conclusions

In this paper, we proposed two schemes for indexing RDF nodes in decentralized
architectures: Locational Indexes and Prefix-Partitioned Bloom Filter (PPBF)
indexes. Locational indexes establish a baseline, that PPBF indexes extend to
provide much more precise indexes. PPBF indexes are based on Bloom Fil-
ters and provide summaries of the graph’s constituents that are small enough
to retrieve the indexes of the reachables nodes without using too much time
or space. We implemented both indexing schemes in a module, that could be
adapted for use in any decentralized architecture or federated query processing
engine. Our experiments show, that both indexing schemes are able to reduce
the amount of traffic within the network, and thereby improve query processing
times. In the case of PPBF indexes, the improvement is more significant than for
locational indexes. Using PPBFs during join processing to check if a fragment
may contain matches given specific values to a join variable could further speed
up query processing. This, and studying the impact of using filters with varying
sizes, is part of our future work.
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Datalog Materialisation in Distributed
RDF Stores with Dynamic Data Exchange
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Abstract. Several centralised RDF systems support datalog reasoning
by precomputing and storing all logically implied triples using the well-
known seminäıve algorithm. Large RDF datasets often exceed the capac-
ity of centralised RDF systems, and a common solution is to distribute
the datasets in a cluster of shared-nothing servers. While numerous dis-
tributed query answering techniques are known, distributed seminäıve
evaluation of arbitrary datalog rules is less understood. In fact, most
distributed RDF stores either support no reasoning or can handle only
limited datalog fragments. In this paper, we extend the dynamic data
exchange approach for distributed query answering by Potter et al. [13]
to a reasoning algorithm that can handle arbitrary rules while preserving
important properties such as nonrepetition of inferences. We also show
empirically that our algorithm scales well to very large RDF datasets.

1 Introduction

Reasoning with datalog rules over RDF data plays a key role on the Semantic
Web. Datalog can capture the structure of an application domain using if-then
rules, and OWL 2 RL ontologies can be translated into datalog rules. Datalog
reasoning is supported in several RDF management systems such as Oracle’s
database [8], GraphDB,1 Amazon Neptune,2 VLog [18], and RDFox [11].3 All of
these system use a materialisation approach to reasoning, where all facts implied
by the dataset and the rules are precomputed and stored in a preprocessing
step. This is usually done using the seminäıve algorithm [2], which ensures the
nonrepetition property : no rule is applied to the same facts more than once.

Many RDF management systems are centralised in that they store and pro-
cess all data on a single server. To scale to workloads that cannot fit into a
single server, it is common to distribute the data in a cluster of interconnected,
shared-nothing servers and use a distributed query answering strategy. Abdelaziz
et al. [1] present a comprehensive survey of 22 approaches to distributed query
answering, and Potter et al. [13] discuss several additional systems. There is con-
siderable variation between these approaches: some use data replication, some

1 http://graphdb.ontotext.com/.
2 http://aws.amazon.com/neptune/.
3 http://www.cs.ox.ac.uk/isg/tools/RDFox/.
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compute joins on a dedicated server, others use distributed join algorithms, and
many leverage big data frameworks such as Hadoop and Spark for data storage
and query processing. In contrast, distributed datalog materialisation is less well
understood, and it is more technically challenging. Newly derived facts must be
stored so that they can be taken into account in future rule applications, but
without repeating derivations. Moreover, synchronisation between rule applica-
tions should be reduced to allow parallel computation.

Several theoretical frameworks developed in the 90s aim to address these
questions [5,14,16,20,22]. As we discuss in more detail in Sect. 3, they constrain
the rules so that each server performs only certain rule applications, and they
send the derived facts to all servers where these facts could participate in further
rule applications. Thus, the same facts can be stored on more than one server,
which can severely limit the scalability of such systems.

The Semantic Web community has recently developed several RDF-specific
approaches. A number of them are hardwired to fixed datalog rules, such as
RDFS [7,19] or the so-called ter Horst fragment [6,17]. Focusing on a fixed
set of rules considerably simplifies the problem. PLogSPARK [21] and SPOWL
[10] handle arbitrary rules, but they do not seem to use seminäıve evaluation.
Finally, several probabilistic algorithms aim to handle large datasets [10,12], but
these approaches are approximate and are thus unsuitable for many applications.
Distributed SociaLite [15] is the only system we are aware of that provides sem-
inäıve evaluation for arbitrary datalog rules. It uses a custom graph model, but
the approach can readily be adapted to RDF. Moreover, its rules must explicitly
encode the communication and storage strategy, which increases complexity.

In this paper we present a new technique for distributed materialisation of
arbitrary datalog rules. Unlike SociaLite, we do not require any distributed pro-
cessing hints in the rules. We also do not duplicate any data and thus remove an
obstacle to scalability. Our approach is based on the earlier work by Potter et al.
[13] on distributed query answering using dynamic data exchange, from which it
inherits several important properties. First, inferences that can be made within a
single server do not require any communication; coupled with careful data parti-
tioning, this can very effectively minimise network communication. Second, rule
evaluation is completely asynchronous, which promotes parallelism. This, how-
ever, introduces a complication: to ensure nonrepetition of inferences, we must
be able to partially order rule derivations across the cluster, which we achieve
using Lamport timestamps [9]. We discuss the motivation and the novelty in
more detail in Sect. 3, and in Sect. 4 we present the approach formally.

We have implemented our approach in a new prototype system called DMAT,
and in Sect. 5 we present the results of our empirical evaluation. We compared
DMAT with WebPIE [17], investigated how it scales with increasing data loads,
and compared it with RDFox to understand the impact of distribution on con-
currency. Our results show that DMAT outperforms WebPIE by an order of
magnitude (albeit with some differences in the setting), and that it can han-
dle well increasing data loads; moreover, DMAT’s performance is comparable to



Distributed Datalog Materialisation 23

that of RDFox on a single server. Our algorithms are thus a welcome addition
to the techniques for implementing truly scalable semantic systems.

2 Preliminaries

We now recapitulate the syntax and the semantics of RDF and datalog. A con-
stant is an IRI, a blank node, or a literal. A term is a constant or a variable. An
atom a has the form a = 〈ts, tp, to〉 over terms ts (subject), tp (predicate), and
to (object). A fact is an variable-free atom. A dataset is a finite set of facts.

Since the focus of our work is on datalog reasoning, we chose to follow ter-
minology commonly used in datalog literature. Constants are often called RDF
terms in RDF literature, but we do not use this notion to avoid confusion with
datalog terms, which include variables. For the sake of consistency, we then use
the datalog notions of atoms, facts, and datasets, instead of the corresponding
RDF notions of triple patterns, triples, and RDF graphs, respectively.

We define the set of positions as Π = {s, p, o}. Then, for a = 〈ts, tp, to〉 and
π ∈ Π, we define a|π = tπ—that is, a|π is the term that occurs in a at position
π. A substitution σ is a partial function that maps finitely many variables to
constants. For α a term or an atom, ασ is the result of replacing with σ(x) each
occurrence of a variable x in α on which σ is defined.

A query Q is a conjunction of atoms a1 ∧ · · · ∧ an. Substitution σ is an answer
to Q on a dataset I if aiσ ∈ I holds for each 1 ≤ i ≤ n.

A datalog rule r is an implication of the form h ← b1 ∧ · · · ∧ bn, where h is the
head atom, all bi are body atoms, and each variable occurring in h also occurs in
some bi. A datalog program is a finite set of rules. Let I be a dataset. The result
of applying r to I is r(I) = I ∪ {hσ | σ is an answer to b1 ∧ · · · ∧ bn on I}. For P
a program, let P (I) =

⋃
r∈P r(I); let P 0(I) = I; and let P i+1(I) = P (P i(I)) for

i ≥ 0. Then, P∞(I) =
⋃

i≥0 P i(I) is the materialisation of P on I. This paper
deals with the problem of computing P∞(I) where I is distributed across of a
cluster of servers such that each fact is stored in precisely one server.

3 Motivation and Related Work

We can compute P∞(I) using the definition in Sect. 2: we evaluate the body of
each rule r ∈ P as a query over I and instantiate the head of r for each query
answer, we eliminate duplicate facts, and we repeat the process until no new
facts can be derived. However, since P i(I) ⊆ P i+1(I) holds for each i ≥ 0, such
a näıve approach repeats in each round of rule applications the work from all
previous rounds. The semı̈naive strategy [2] avoids this problem: when matching
a rule r in round i + 1, at least one body atom of r must be matched to a
fact derived in round i. We next discuss now these ideas are implemented in
the existing approaches to distributed materialisation, and then we present an
overview of our approach and discuss its novelty.
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3.1 Related Approaches to Distributed Materialisation

Several approaches to distributed reasoning partition rule applications across
servers. For example, to evaluate rule 〈x,R, z〉 ← 〈x,R, y〉 ∧ 〈y,R, z〉 on � servers,
one can let each server i with 1 ≤ i ≤ � evaluate rule

〈x,R, z〉 ← 〈x,R, y〉 ∧ 〈y,R, z〉 ∧ h(y) = i, (1)

where h(y) is a partition function that maps values of y to integers between 1
and �. If h is uniform, then each server receives roughly the same fraction of
the workload, which benefits parallelisation. However, since a triple of the form
〈s,R, o〉 can match either atom in the body of (1), each such triple must be
replicated to servers h(s) and h(o) so they can participate in rule applications.
Based on this idea, Ganguly et al. [5] show how to handle general datalog;
Zhang et al. [22] study different partition functions; Seib and Lausen [14] identify
programs and partition functions where no replication of derived facts is needed;
Shao et al. [16] further break rules in segments; and Wolfson and Ozeri [20]
replicate all facts to all servers. The primary motivation behind these approaches
seems to be parallelisation of computation, which explains why the high rates of
data replication were not seen as a problem. However, high replication rates are
not acceptable when data distribution is used to increase a system’s capacity.

Materialisation can also be implemented without any data replication. First,
one must select a triple partitioning strategy: a common approach is to assign
each 〈s, p, o〉 to server h(s) for a suitable hash function h, and another popular
option is to use a distributed file system (e.g., HDFS) and thus leverage its parti-
tioning mechanism. Then, one can evaluate the rules using a suitable distributed
query algorithm and distribute the newly derived triples using the partitioning
strategy. These principles were used to realise RDFS reasoning [7,19], and they
are also implicitly present in approaches implemented on top of big data frame-
works such as Hadoop [17] and Spark [6,10,21]. However, most of these can
handle only fixed rule sets, which considerably simplifies algorithm design. For
example, seminäıve evaluation is not needed in the RDFS fragment since these
nonrepetition of inferences can be ensured by evaluating rules in a particular
order [6]. PLogSPARK [21] and SPOWL [10] handle arbitrary rules using the
näıve algorithm, which can be detrimental when programs are complex.

Distributed SociaLite [15] is the only system known to us that implements dis-
tributed seminäıve evaluation for general datalog. It requires users to explicitly
specify the data distribution strategy and communication patterns. For exam-
ple, by writing a fact R(a, b) as R[a](b), one can specify that the fact is to be
stored on server h(a) for some hash function h. Rule (1) can then be written
in SociaLite as R[x](z) ← R[x](y) ∧ R[y](z), specifying that the rule should be
evaluated by sending each fact R[a](b) to server h(b), joining such facts with
R[b](c), and sending the resulting facts R[a](c) to server h(a). While the eval-
uation of some of these rules can be parallelised, all servers in a cluster must
synchronise after each round of rule application.
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3.2 Dynamic Data Exchange for Query Answering

Before describing our approach to distributed datalog materialisation, we next
recapitulate the earlier work by Potter et al. [13] on distributed query answering
using dynamic data exchange, which provides the foundation for our work.

This approach to query answering assumes that all triples are partitioned
into � mutually disjoint datasets I1, . . . , I�, with � being the number of servers.
The main objectives of dynamic exchange are to reduce communication and
eliminate synchronisation between servers. To achieve the former goal, each
server k maintains three occurrence mappings μk,s, μk,p, and μk,o. For each
constant c occurring in Ik, set μk,s(c) contains all servers where c occurs in the
subject position, and μk,p(c) and μk,o(c) provide analogous information for the
predicate and object positions. To understand how occurrences are used, con-
sider evaluating Q = 〈x,R, y〉 ∧ 〈y,R, z〉 over datasets I1 = {〈a,R, b〉, 〈b,R, c〉}
and I2 = {〈b,R, d〉, 〈d,R, e〉}. Both servers evaluate Q using index nested loop
joins. Thus, server 1 evaluates 〈x,R, y〉 over I1, which produces a partial answer
σ1 = {x �→ a, y �→ b}. Server 1 then evaluates 〈y,R, z〉σ1 = 〈b,R, z〉 over I1 and
thus obtains one full answer σ2 = {x �→ a, y �→ b, z �→ c}. To see whether 〈b,R, z〉
can be matched on other servers, server 1 consults its occurrence mappings for
all constants in the atom. Since μ1,s(b) = μ1,p(R) = {1, 2}, server 1 sends the
partial answer σ1 to server 2, telling it to continue matching the query. After
receiving σ1, server 2 matches atom 〈b,R, z〉 in I2 to obtain another full answer
σ3 = {x �→ a, y �→ b, z �→ d}. However, server 2 also evaluates 〈x,R, y〉 over I2,
obtaining partial answer σ4 = {x �→ b, y �→ d}, and it consults its occurrences to
determine which servers can match 〈y,R, z〉σ4 = 〈d,R, z〉. Since μ2,s(d) = {2},
server 2 knows it is the only one that can match this atom, so it proceeds without
any communication and computes σ5 = {x �→ b, y �→ d, z �→ e}.

This strategy has several important benefits. First, all answers that can be
produced within a single server, such as σ5 in our example, are produced without
any communication. Second, the location of every constant is explicitly recorded,
rather than computed using a fixed rule such as a hash function. We use this
to partition a graph based on its structural properties and thus collocate highly
interconnected constants. Combined with the first property, this can significantly
reduce network communication. Third, the system is completely asynchronous:
when server 1 sends σ1 to server 2, server 1 does not need to wait for server 2
to finish, and server 2 can process σ1 whenever it can. This eliminates the need
for synchronisation between servers, which is beneficial for parallelisation.

3.3 Our Contribution

In this paper we extend the dynamic data exchange framework to datalog materi-
alisation. We draw inspiration from the work by Motik et al. [11] on parallelising
datalog materialisation in centralised, shared memory systems. Intuitively, their
algorithm considers each triple in the dataset, identifies each rule and body atom
that can be matched to the triple, and evaluates the rest of the rule as a query.
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This approach is amenable to parallelisation since distinct processors can simul-
taneously process distinct triples; since the number of triples is generally very
large, the likelihood of workload skew among processors is very low.

Our distributed materialisation algorithm is based on the same general prin-
ciple: each server matches the rules to locally stored triples, but the resulting
queries are evaluated using dynamic data exchange. This approach requires no
synchronisation between servers, and it reduces communication in the same way
as described in Sect. 3.2. We thus expect our approach to exhibit the same good
properties as the approach to query answering by Potter et al. [13].

The lack of synchronisation between servers introduces a technical complica-
tion. Remember that, to avoid repeating derivations, at least one body atom in a
rule must be matched to a fact derived in the previous round of rule application.
However, due to asynchronous rule application, there is no global notion of a
rule application round (unlike, say, in SociaLite). A näıve solution would be to
associate each fact with a timestamp recording when the fact has derived in hope
that the order of fact derivation could be recovered by comparing timestamps.
However, this would require maintaining a high coherence of server clocks in
the cluster, which is generally impractical. Instead, we use Lamport timestamps
[9], which provide us with a simple way of determining a partial order of events
across a cluster. We describe this technique in more detail in Sect. 4.

Another complication is due to the fact that the occurrence mappings stored
in the servers may need to be updated due to the derivation of new triples. For
completeness, it is critical that all servers are updated before such triples are
used in rule applications. Our solution to this problem is fully asynchronous,
which again benefits parallelisation.

Finally, since no central coordinator keeps track of the state of the compu-
tation of different servers, detecting when the system as a whole can terminate
is not straightforward. We solve this problem using a well-known termination
detection algorithm based on token passing [4].

4 Distributed Materialisation Algorithm

We now present our distributed materialisation algorithm and prove its correct-
ness. We present the algorithm in steps. In Sect. 4.1 we discuss data structures
that the servers use to store their triples and implement Lamport timestamps.
In Sect. 4.2 we discuss the occurrence mappings. In Sect. 4.3 we discuss the com-
munication infrastructure and the message types used. In Sect. 4.4 we present
the algorithm’s pseudocode. In Sect. 4.5 we discuss how to detect termination.
Finally, in Sect. 4.6 we argue about the algorithm’s correctness.

4.1 Adding Lamport Timestamps to Triples

As already mentioned, to avoid repeating derivations, our algorithm uses Lam-
port timestamps [9], which is a technique for establishing a causal order of events
in a distributed system. If all servers in the system could share a global clock,
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we could trivially associate each event with a global timestamp, which would
allow us to recover the ‘happens-before’ relationship between events by com-
paring timestamps. However, maintaining a precise global clock in a distributed
system is technically very challenging, and Lamport timestamps provide a much
simpler solution. In particular, each event is annotated an integer timestamp in
a way that guarantees the following property (∗):

if there is any way for an event A to possibly influence an event B, then
the timestamp of A is strictly smaller then the timestamp of B.

To achieve this, each server maintains a local integer clock that is incremented
each time an event of interest occurs, which clearly ensures (∗) if A and B occur
within one server. Now assume that A occurs in server s1 and B occurs in s2;
clearly, A can influence B only if s1 sends a message to s2, and s2 processes this
message before event B takes place. To ensure that property (∗) holds in such a
case as well, server s1 includes its current clock value into the message it sends to
s2; moreover, when processing this message, server s2 updates its local clock to
the maximum of the message clock and the local clock, and then increments the
local clock. Thus, when B happens after receiving the message, it is guaranteed
to have a timestamp that is larger than the timestamp of A.

To map this idea to datalog materialisation, a derivation of a fact corresponds
to the notion of an event, and using a fact to derive another fact corresponds to
the ‘influences’ notion. Thus, we associates facts with integer timestamps.

More precisely, each server k in the cluster maintains an integer Ck called
the local clock, a set Ik of the derived triples, and a partial function Tk : Ik → N

that associates triples with natural numbers. Function Tk is partial because
timestamps are not assigned to facts upon derivation, but during timestamp
synchronisation. Before the algorithm is started, Ck must be initialised to zero,
and all input facts (i.e., the facts given by the user) partitioned to server k should
be loaded into Ik and assigned a timestamp of zero.

To capture formally how timestamps are used during query evaluation, we
introduce the notion of an annotated query as a conjunction of the form

Q = a��1
1 ∧ · · · ∧ a��n

n , (2)

where each a��i
i is called an annotated atom and it consists of an atom ai and a

symbol ��i which can be < or ≤. An annotated query requires a timestamp to
be evaluated. More precisely, a substitution σ is an answer to Q on Ik and Tk

w.r.t. a timestamp τ if (i) σ is an answer to the ‘ordinary’ query a1 ∧ · · · ∧ an on
Ik, and (ii) for each 1 ≤ i ≤ n, the value of Tk is defined for aiσ and it satisfies
Tk(aiσ) �� τ . For example, let Q, I, and T be as follows, and let τ = 2.

Q = 〈x,R, y〉< ∧ 〈y, S, z〉≤ I = {〈a,R, b〉, 〈b, S, c〉, 〈b, S, d〉, 〈b, S, e〉}
T = {〈a,R, b〉 �→ 1, 〈b, S, c〉 �→ 2, 〈b, S, d〉 �→ 3}

Then, σ1 = {x �→ a, y �→ b, z �→ c} is an answer to Q on I and T w.r.t. τ . In
contrast, σ2 = {x �→ a, y �→ b, z �→ d} is not an answer to Q on I and T w.r.t. τ
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due to T (〈b, S, d〉) ≥ 2, and σ3 = {x �→ a, y �→ b, z �→ e} is not an answer because
the timestamp of 〈b, S, e〉 is undefined.

To incorporate this notion into our algorithm, we assume that each server
can evaluate a single annotated atom. Specifically, given an annotated a��, a
timestamp τ , and a substitution σ, server k can call Evaluate(a��, τ, Ik, Tk, σ).
The call returns each substitution ρ defined over the variables in a and σ such
that σ ⊆ ρ holds, aρ ∈ Ik holds, and Tk is defied on aρ and it satisfies T (aρ) �� τ .
In other words, Evaluate matches a�� in Ik and Tk w.r.t. τ and it returns each
extension of σ that agrees with a�� and τ . For efficiency, server k should index
the facts in Ik; any RDF indexing scheme can be used, and one can modify index
lookup to simply skip over facts whose timestamps do not match τ .

Finally, we describe how rule matching is mapped to answering annotated
queries. Let P be a datalog program to be materialised. Given a fact f , function
MatchRules(f, P ) considers each rule h ← b1 ∧ · · · ∧ bn ∈ P and each body
atom bp with 1 ≤ p ≤ n, and, for each substitution σ over the variables of bp

where f = bpσ, it returns (σ, bp, Q, h) where Q is the annotated query

b<
1 ∧ · · · ∧ b<

p−1 ∧ b≤
p+1 ∧ · · · ∧ b≤

n . (3)

Intuitively, MatchRules identifies each rule and each pivot body atom bp

that can be matched to f via substitution σ. This σ will be extended to all body
atoms of the rule by matching all remaining atoms in nested loops using function
Evaluate. The annotations in (3) specify how to match the remaining atoms
without repetition: facts matched to atoms before (resp. after) the pivot must
have timestamps strictly smaller (resp. smaller or equal) than the timestamp of
f . As is usual in query evaluation, the atoms of (3) may need to be reordered to
obtain an efficient query plan. This can be achieved using any known technique,
and further discussion of this issue is out of scope of this paper.

4.2 Occurrence Mappings

To decide whether rule matching may need to proceed on other servers, each
server k must store indexes μk,s, μk,p, and μk,o, called occurrence mappings,
that map constants to sets of server IDs. We say that a constant c is local to
server k is c occurs in Ik at any position. To ensure scalability, μk,s, μk,p, and μk,o

need only to be defined on local constants: if, say, μk,s is not defined on constant
c, we will assume that c can occur on any server. However, these mappings will
need to be correct during algorithm’s execution: if a constant c is local to Ik,
and if c occurs on some other server j in position π, then μk,π must be defined
on c and it must contain j. Moreover, all servers will have to know the initial
locations of all constants occurring in the heads of the rules in P .

Storing only partial occurrences at each server introduces a complication:
when a server processes a partial match σ received from another server, its local
occurrence mappings may not cover some of the constants in σ. Potter et al. [13]
solve this by accompanying each partial match σ with a vector λλλ = λs, λp, λo

of partial occurrences. Whenever a server extends σ by matching an atom, it
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also records in λλλ its local occurrences for each constant added to σ so that this
information can be propagated to subsequent servers.

Occurrence mappings are initialised on each server k for each constant that
initially occurs in Ik, but they may need to be updated as fresh triples are
derived. To ensure that the occurrences correctly reflect the distribution of con-
stants at all times, occurrence mappings of all servers must be updated before a
triple can be added to the set of derived triples of the target server.

Our algorithm must decide where to store each freshly derived triple. It is
common practice in distributed RDF systems to store all triples with the same
subject on the same server. This is beneficial since it allows subject–subject
joins—the most common type of join in practice—to be answered without any
communication. We follow this well-established practice and ensure that the
derived triples are grouped by subject. Consequently, we require that μk,s(c),
whenever it is defined, contains exactly one server. Thus, to decide where to
store a derived triple, the server from the subject’s occurrences is used, and, if
the subject occurrences are unavailable, then a predetermined server is used.

4.3 Communication Infrastructure and Message Types

We assume that the servers can communicate asynchronously by passing mes-
sages: each server can call Send(m, d) to send a message m to a destination
server d. This function can return immediately, and the receiver can processes
the message later. Also, our core algorithm is correct as long as each sent mes-
sage is processed eventually, regardless of whether the messages are processed
in the order in which they are sent between servers. We next describe the two
types of message used in our algorithm. The approach used to detect termination
can introduce other message types and might place constraints on the order of
message delivery; we discuss this in more detail in Sect. 4.5.

Message PAR[i, σ,Q, h, τ,λλλ] informs a server that σ is a partial match
obtained by matching some fact with timestamp τ to the body of a rule with
head atom h; moreover, the remaining atoms to be matched are given by an
annotated query Q starting from the atom with index i. The partial occurrences
for all constants mentioned in σ are recorded in λλλ.

Message FCT[f,D, kh, τ,λλλ] says that f is a freshly derived fact that should be
stored at server kh. Set D contains servers whose occurrences must be updated
due to the addition of f . Timestamp τ corresponds to the time at which the
message was sent. Finally, λλλ are the partial occurrences for the constants in f .

Potter et al. [13] already observed PAR messages correspond to partial join
results so a large number of such messages can be produced during query evalu-
ation. To facilitate asynchronous processing, the PAR messages may need to be
buffered on the receiving server, which can easily require excessive space. They
also presented a flow control mechanism that can be used to restrict memory
consumption at each server without jeopardising completeness. This solution is
directly applicable to our problem as well, so we do not discuss it any further.
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4.4 The Algorithm

With these definitions in mind, Algorithms 1 and 2 comprise our approach to
distributed datalog materialisation. Before starting, each server k loads its sub-
set of the input RDF graph into Ik, sets the timestamp of each fact in Ik to zero,
initialises Ck to zero, and receives the copy of the program P to be materialised.
The server then starts an arbitrary number of server threads, each executing the
ServerThread function. Each thread repeatedly processes either an unpro-
cessed fact f in Ik or an unprocessed message m; if both are available, they
can be processed in arbitrary order. Otherwise, the termination condition is
processed as we discuss later in Sect. 4.5.

Function Synchronise updates the local clock Ck with a timestamp τ . This
must be done in a critical section (i.e., two threads should not execute it simul-
taneously). The local clock is updated if Ck ≤ τ holds; moreover, all facts in Ik

without a timestamp are timestamped with Ck since they are derived before the
event corresponding to τ . Assigning timestamps to facts in this way reduces the
need for synchronising access to Ck between threads.

Function ProcessFact kickstarts the matching of the rules to fact f . After
synchronising the clock with the timestamp of f , the function simply calls the
MatchRules function to identify all rules where one atom matches to f , and
then it calls the FinishMatch function to finish matching the pivot atom.

A PAR message is processed by matching atom a��i
i of the annotated query

in Ik and Tk w.r.t. τ , and forwarding each match to FinishMatch.
A FCT message informs server k that fact f will be added to the set Ikh

of facts derived at server kh. Set D lists all remaining servers that need to be
informed of the addition, and partial occurrences λλλ are guaranteed to correctly
reflect the occurrences of each constant in f . Server k updates its μk,π(c) by
appending λπ(c) (line 19). Since servers can simultaneously process FCT mes-
sages, server k adds to D all servers that might have been added to μk,π(c) since
the point when λπ(c) had been constructed (line 18), and it also updates λπ(c)
(line 19). Finally, the server adds f to Ik if k is the last server (line 20), and
otherwise it forwards the message to another server d form D.

Function FinishMatch finishes matching atom alast by (i) extending λλλ with
the occurrences of all constants that might be relevant for the remaining body
atoms or the rule head, and (ii) either matching the next body atom or deriving
the rule head. For the former task, the algorithm identifies in line 30 each variable
x in the matched atom that either occurs in the rule head or in a remaining
atom, and for each π it adds the occurrences of xσ to λπ. Now if Q has been
matched completely (line 31), the server also ensures that the partial occurrences
are correctly defined for the constants occurring in the rule head (lines 32–33),
it identifies the server kh that should receive the derived fact as described in
Sect. 4.2, it identifies the set D of the destination servers whose occurrences need
to be updated, and it sends the FCT message to one server from D. Otherwise,
atom ai+iσ must be matched next. To determine the set D of servers that could
possibly match this atom, server k intersects the occurrences of each constant
from ai+iσ (line 44) and sends a PAR message to all servers in D.
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Algorithm 1. Distributed Materialisation Algorithm at Server k

1: function ServerThread

2: while cannot terminate do
3: if Ik contains an unprocessed fact f , or a message m is pending then
4: ProcessFact(f) or ProcessMessage(m), as appropriate
5: else if the termination token has been received then
6: Process the termination token

7: function ProcessFact(f)
8: Synchronise(Tk(f))
9: for each (σ, a, Q, h) ∈ MatchRules(f, P ) do

10: FinishMatch(0, σ, a, Q, h, Tk(f),∅∅∅)

11: function ProcessMessage(PAR[i, σ, Q, h, τ,λλλ]) where Q = a��1
1 ∧ · · · ∧ a��n

n

12: Synchronise(τ)
13: for each substitution σ′ ∈ Evaluate(a��i

i , τ, Ik, Tk, σ) do
14: FinishMatch(i, σ′, ai, Q, h, τ,λλλ)

15: function ProcessMessage(FCT[f, D, kh, τ,λλλ])
16: Synchronise(τ)
17: for each constant c in f and each position π ∈ Π do
18: D := D ∪ [

μk,π(c) \ λπ(c)
]

19: λπ(c) := μk,π(c) := λπ(c) ∪ μk,π(c)

20: if D = ∅ then Add f to Ik

21: else
22: Remove an element d from D, preferring any element over kh if possible
23: Send(FCT[f, D, kh, Ck,λλλ], d)

24: function Synchronise(τ) (must be executed in a critical section)
25: if Ck ≤ τ then
26: for each fact f ∈ Ik such that Tk is undefined on f do Tk(f) := Ck

27: Ck := τ + 1

4.5 Termination Detection

Since no server has complete information about the progress of any other server,
detecting termination is nontrivial; however, we can reuse an existing solution.

When messages between each pair of servers are guaranteed to be delivered
in order in which they are sent (as is the case in our implementation), one can
use Dijkstra’s token ring algorithm [4], which we summarise next. All servers in
the cluster are numbered from 1 to � and are arranged in a ring (i.e., server 1
comes after server �). Each server can be black or white, and the servers will
pass between them a token that can also be black or white. Initially, all servers
are white and server 1 has a white token. The algorithm proceeds as follows.

– When server 1 has the token and it becomes idle (i.e., it has no pending work
or messages), it sends a white token to the next server in the ring.
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Algorithm 2. Distributed Materialisation Algorithm at Server k (Continued)
28: function FinishMatch(i, σ, alast , Q, h, τ,λλλ) where Q = a��1

1 ∧ · · · ∧ a��n
n

29: for each var. x occurring in alast and in h or aj with j > i, and each π ∈ Π do
30: Extend λπ with the mapping xσ �→ μk,π(xσ)

31: if i = n then
32: for each constant c occurring in h and each π ∈ Π do
33: Extend λπ with the mapping c �→ μk,π(c)

34: kh := the owner server for the derived fact
35: D := {kh}
36: for each position π ∈ Π and c = hσ|π where kh 	∈ λπ(c) do
37: Add kh to λπ(c)
38: for each π′ ∈ Π do Add λπ′(c) to D

39: Remove an element d from D, preferring any element over kh if possible
40: if d = k then ProcessMessage(FCT[hσ, D, kh, Ck,λλλ])
41: else Send(FCT[hσ, D, kh, Ck,λλλ], d)

42: else
43: D := the set of all servers
44: for each position π ∈ Π where ai+1σ|π is a constant c do D := D ∩ λπ(c)

45: for each d ∈ D do
46: if d = k then ProcessMessage(PAR[i + 1, σ, Q, h, τ,λλλ])
47: else Send(PAR[i + 1, σ, Q, h, τ,λλλ], d)

– When a server other than 1 has the token and it becomes idle, the server
changes the token’s colour to black if the server is itself black (and it leaves
the token’s colour unchanged otherwise); the server forwards the token to the
next server in the ring; and the server changes its colour to white.

– A server i turns black whenever it sends a message to a server j < i.
– All servers can terminate when server 1 receives a white token.

The Dijkstra–Scholten algorithm extends this approach to the case when the
order of message delivery cannot be guaranteed.

4.6 Correctness

We next prove that our algorithm is correct and that it exhibits the nonrepetition
property. We present here only an outline of the correctness argument, and give
the full proof in an extended version of this paper [3].

Let us fix a run of Algorithms 1 and 2 on some input. First, we show that
Lamport timestamps capture the causality of fact derivation in this run. To
this end, we introduce four event types relating to an arbitrary fact f . Event
addk(f) occurs when f is assigned a timestamp on server k in line 26. Event
processk(f) occurs when server k starts processing a new fact in line 8. Event
PARk(f, i) occurs when server k completes line 12 for a PAR message with index i
originating from a call to MatchRules on fact f . Finally, event FCTk(f) occurs
when server k completes line 16 for a FCT message for fact f . We write e1 � e2 if
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event e1 occurs chronologically before event e2; this relation is clearly transitive
and irreflexive. Since each fact is stored and assigned a timestamp on just one
server, we define T (f) as Tk(f) for the unique server k that satisfies f ∈ Ik.
Lemma 1 then essentially says that the ‘happens-before’ relationship between
facts and events on facts agrees with the timestamps assigned to the facts.

Lemma 1. In each run of the algorithm, for each server k, and all facts f1 and
f2, we have T (f1) < T (f2) whenever one of the following holds:

– PARk(f1, i) � addk(f2) for some i,
– processk(f1) � FCTk(f2), or
– PARk(f1, i) � FCTk(f2) for some i.

Next, we show that then the occurrence mappings μk,π on each relevant server
k are updated whenever a triple is added to some Ij . This condition is formally
captured in Lemma 2, and it ensures that partial answers are sent to all relevant
servers that can possibly match an atom in a query. Note that the implication
in Lemma 2 is the only relevant direction: if μk,π(c) contains irrelevant servers,
we can have redundant PAR messages, but this does not affect correctness.

Lemma 2. At any point in the algorithm’s run, for all servers k and j, each
position π ∈ Π, and each constant c that is local to server k and that occurs in
Ij at position π, property j ∈ μk,π(c) holds at that point.

Using Lemmas 1 and 2, we prove our main claim.

Theorem 1. For I1, . . . , I� the sets obtained by applying Algorithms 1 and 2 to
an input set of facts I and program P , we have P∞(I) = I1 ∪ · · · ∪ I�. Moreover,
the algorithm exhibits the nonrepetition property.

5 Evaluation

To evaluate the practical applicability of our approach, we have implemented
a prototype distributed datalog reasoned that we call DMAT. We have used
RDFox—a state-of-the-art centralised RDF system—to store and index triples in
RAM, on top of which we have implemented a mechanism for associating triples
with timestamps. To implement the Evaluate function, we use the interface of
RDFox for answering individual atoms and then simply filter out the answers
whose timestamp does not match the given one. For simplicity, DMAT currently
uses only one thread per server, but this limitation will be removed in future.

We have evaluated our system’s performance in three different ways, each
aimed at analysing a specific aspect of the problem. First, to establish a baseline
for the performance of DMAT, as well as to see whether distributing the data can
speed up the computation, we compared DMAT with RDFox on a relatively small
dataset. Second, to compare our approach with the state of the art, we compared
DMAT with WebPIE [17]—a distributed RDF reasoner based on MapReduce.
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Third, we studied the scalability of our approach by proportionally increasing
the input data and the number of servers.

Few truly large RDF datasets are publicly available, so the evaluation of
distributed reasoning is commonly based on the well-known LUBM4 benchmark
(e.g., [10,17,21]). Following this well-established practice, in our evaluation we
used LUBM datasets of sizes ranging from 134 M to 6.5 G triples. We also used
the lower bound program, which was obtained by extracting the OWL 2 RL
portion of the LUBM ontology and translating it into datalog. The executable of
DMAT and the datalog program we used are available online,5 and the datasets
can be reproduced using the LUBM generator.

We conducted all tests with DMAT on the Amazon Elastic Compute Cloud
(EC2). We used the r4.8xlarge servers,6 each equipped with a 2.3 GHz Intel
Broadwell processors and 244 GB of RAM; such a large amount of RAM was
needed since we use RDFox to store triples, and RDFox is RAM-based. An
additional, identical server stored the dictionary (i.e., a data structure mapping
constants to integers): this server did not participate in materialisation, but was
used only to distribute the program and the data to the cluster. The servers
were connected using 10 Gbps network. In all tests apart from the ones where
we compared DMAT to WebPIE, we partitioned the dataset by using the graph
partitioning approach by Potter et al. [13]: this approach aims to place strongly
connected constants on the same server and thus reduce communication over-
head. Unfortunately, our graph partitioning algorithm ran out of memory on the
very large datasets we used to compare DMAT with WebPIE, so in these tests
we partitioned the data using subject hashing. For each test, we loaded the input
triples and the program into all servers, and computed the materialisation while
recording the wall-clock time. Apart from reporting this time, we also report the
reasoning throughput measured in thousands of triples derived per second and
worker (ktps/w). We next discuss the results of our experiments.

Comparison with RDFox. First, we ran RDFox and DMAT on a fixed dataset
while increasing the number of threads for RDFox and the numbers of servers for
DMAT. Since RDFox requires the materialised dataset to fit into RAM of a single
server, we used a small input dataset of just 134 M triples. The results, shown in
Table 1, provide us with two insights. First, the comparison on one thread estab-
lishes a baseline for the DMAT’s performance. In particular, DMAT is slower
than RDFox, which is not surprising: RDFox is a mature and tuned system,
whereas DMAT is just a prototype. However, DMAT is still competitive with
RDFox, suggesting that our approach is free of any overheads that might make it
uncompetitive. Second, the comparison on multiple threads shows how effective
our approach is at achieving concurrency. RDFox was specifically designed with
that goal in mind in a shared-memory setting. However, as one can see from our
results, DMAT also parallelises computation well: in some cases the speedup is

4 http://swat.cse.lehigh.edu/projects/lubm/.
5 http://krr-nas.cs.ox.ac.uk/2019/distributed-materialisation/.
6 http://aws.amazon.com/ec2/instance-types/.

http://swat.cse.lehigh.edu/projects/lubm/
http://krr-nas.cs.ox.ac.uk/2019/distributed-materialisation/
http://aws.amazon.com/ec2/instance-types/


Distributed Datalog Materialisation 35

Table 1. Comparison of centralised and distributed reasoning

Threads/servers

1 2 4 8

RDFox DMAT RDFox DMAT RDFox DMAT RDFox DMAT

Times (s) 86 256 56 140 35 82 16 53

Speed-up 1.0x 1.0x 1.5x 1.8x 2.5x 3.1x 5.4x 4.8x

Size 134M → 182M

Table 2. Comparison with WebPIE

Dataset Sizes (G) WebPIE (64 workers) DMAT (12 servers)

Input Output Time (s) ktps/w Time (s) ktps/w

4K 0.5 0.729 1920 4.1 224 85

8K 1 1.457 2100 7.5 461 81

36K 5 6.516 3120 24.9 2087 71

Table 3. Scalability experiments

Workers Dataset Input
size (G)

Output
size (G)

Time (s) Rate
(ktps/w)

2 4K 0.5 0.73 646 212

6 12K 1.6 2.19 769 173

10 20K 2.65 3.64 887 151

larger than in the case of RDFox. This seems to be the case mainly because data
partitioning allows each server to handle an isolated portion of the graph, which
can reduce the need for synchronisation.

Comparison with WebPIE. Next, we compared DMAT with WebPIE to see how
our approach compares with the state of the art in distributed materialisation.
To keep the experimentation effort manageable, we did not rerun WebPIE our-
selves; rather, we considered the same input dataset sizes as Urbani et al. [17]
and reused their published results. The setting of these experiments thus does
not quite match our setting: (i) WebPIE handles only the ter Horst fragment
of OWL and thus cannot handle all axioms in the OWL 2 RL subset of the
LUBM ontology; (ii) experiments with WebPIE were run on physical (rather
than virtualised) servers with only 24 GB of RAM each; and (iii) WebPie used
64 workers, while DMAT used just 12 servers. Nevertheless, as one can see from
Table 2, despite using more than five times fewer servers, DMAT is faster by
an order of magnitude. Hadoop is a disk-based system so lower performance is
to be expected to some extent, but this may not be the only reason: triples in
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DMAT are partitioned by subject so, unlike WebPIE, DMAT does not perform
any communication on subject–subject joins.

Scalability Experiments. Finally, to investigate the scalability of DMAT, we
measured how the system’s performance changes when the input data and the
number of servers increase proportionally. The results are shown in Table 3. As
one can see, increasing the size of the input does introduce an overhead for
each server. Our analysis suggests that this is mainly because handling a larger
dataset requires sending more messages, and communication seems to be the
main source of overhead in the system. This, in turn, leads to a moderate reduc-
tion in throughout. Nevertheless, the system still exhibits very high inferences
rates and clearly scales to very large inputs.

6 Conclusion

In this paper, we have presented a novel approach to datalog reasoning in dis-
tributed RDF systems. Our work extends the distributed query answering algo-
rithm by Potter et al. [13], from which it inherits several benefits. First, the
servers in our system are asynchronous, which is beneficial for concurrency. Sec-
ond, dynamic data exchange is effective at reducing network communication,
particularly when input data is partitioned so that related triples are co-located.
Third, we have shown empirically that our prototype system is an order of mag-
nitude faster than WebPIE [18], and that it scales to increasing data loads.

We see several interesting avenues for our future work. First, we shall extend
our evaluation to cover a broader range of systems, datasets, and rule sets. Sec-
ond, better approaches to partitioning the input data are needed: hash partition-
ing does not guarantee that joins other than subject–subject ones are processed
on one server, and graph partitioning cannot handle large input graphs. Third,
supporting more advanced features of datalog, such as stratified negation and
aggregation is also needed in many practical applications.
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Abstract. Model-based approaches to recommendation can recommend
items with a very high level of accuracy. Unfortunately, even when the
model embeds content-based information, if we move to a latent space
we miss references to the actual semantics of recommended items. Con-
sequently, this makes non-trivial the interpretation of a recommendation
process. In this paper, we show how to initialize latent factors in Factor-
ization Machines by using semantic features coming from a knowledge
graph in order to train an interpretable model. With our model, seman-
tic features are injected into the learning process to retain the original
informativeness of the items available in the dataset. The accuracy and
effectiveness of the trained model have been tested using two well-known
recommender systems datasets. By relying on the information encoded
in the original knowledge graph, we have also evaluated the semantic
accuracy and robustness for the knowledge-aware interpretability of the
final model.

1 Introduction

Transparency and interpretability of predictive models are gaining momentum
since they been recognized as a key element in the next generation of recommen-
dation algorithms. Interpretability may increase user awareness in the decision-
making process and lead to fast (efficiency), conscious and right (effectiveness)
decisions. When equipped with interpretability of recommendation results, a
system ceases to be just a black-box [36,40,45] and users are more willing to
extensively exploit the predictions [21,39]. Indeed, transparency increases their
trust [17] (also exploiting specific semantic structures [16]), and satisfaction in
using the system. Among interpretable models for Recommender Systems (RS),
we may distinguish between those based on Content-based (CB) approaches
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and those based on Collaborative filtering (CF) ones. CB algorithms provide
recommendations by exploiting the available content and matching it with a
user profile [10,26]. The use of content features makes the model interpretable
even though attention has to be paid since a CB approach “lacks serendipity
and requires extensive manual efforts to match the user interests to content pro-
files” [46]. On the other hand, the interpretation of CF results will inevitably
reflect the approach adopted by the algorithm. For instance, an item-based and
a user-based recommendation could be interpreted, respectively, as “other users
who have experienced A have experienced B” or “similar users have experienced
B”. Unfortunately, things change when we adopt more powerful and accurate
Deep Learning [8] or model-based algorithms and techniques for the computa-
tion of a recommendation list. Such approaches project items and users in a
new vector space of latent features [24] thus making the final result not directly
interpretable. In the last years, many approaches have been proposed that take
advantage of side information to enhance the performance of latent factor mod-
els. Side information can refer to items as well as users [43] and can be either
structured [38] or semi-structured [6,9,47]. Interestingly, in [46] the authors argue
about a new generation of knowledge-aware recommendation engines able to
exploit information encoded in knowledge graphs (KG) to produce meaningful
recommendations: “For example, with knowledge graph about movies, actors, and
directors, the system can explain to the user a movie is recommended because he
has watched many movies starred by an actor”.

In this work, we propose a knowledge-aware Hybrid Factorization Machine
(kaHFM) to train interpretable models in recommendation scenarios taking advan-
tage of semantics-aware information (Sect. 2.1). kaHFM relies on Factorization
Machines [29] and it extends them in different key aspects by making use of the
semantic information encoded in a knowledge graph. With kaHFM we address the
following research questions:

RQ1 Can we develop a model-based recommendation engine whose results are
very accurate and, at the same time, interpretable with respect to an explic-
itly stated semantics coming from a knowledge graph?

RQ2 Can we evaluate that the original semantics of items features is preserved
after the model has been trained?

RQ3 How to measure with an offline evaluation that the proposed model is really
able to identify meaningful features by exploiting their explicit semantics?

We show how kaHFM may exploit data coming from knowledge graphs as side
information to build a recommender system whose final results are accurate and,
at the same time, semantically interpretable. With kaHFM, we build a model in
which the meaning of each latent factor is bound to an explicit content-based
feature extracted from a knowledge graph. Doing this, after the model has been
trained, we still have an explicit reference to the original semantics of the fea-
tures describing the items, thus making possible the interpretation of the final
results. To answer RQ2, and RQ3 we introduce two metrics, Semantic Accu-
racy (SA@K) (Sect. 3.1) and Robustness (n-Rob@K) (Sect. 3.2), to measure the
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interpretability of a knowledge-aware recommendation engine. The remainder of
this paper is structured as follows: we evaluated kaHFM on two different publicly
available datasets by getting content-based explicit features from data encoded in
the DBpedia knowledge graph. We analyzed the performance of the approach in
terms of accuracy of results (Sect. 4.1) by exploiting categorical, ontological and
factual features (see Sect. 2.1). Finally, we tested the robustness of kaHFM with
respect to its interpretability (Sects. 4.2 and 4.3) showing that it ranks mean-
ingful features higher and is able to regenerate them in case they are removed
from the original dataset.

2 Knowledge-Aware Hybrid Factorization Machines for
Top-N Recommendation

In this section, we briefly recap the main technologies we adopted to develop
kaHFM. We introduce Vector Space Models for recommender systems, and then
we give a quick overview of Factorization Machines (FM).

Content-based recommender systems rely on the assumption that it is pos-
sible to predict the future behavior of users based on their personalized profile.
Profiles for users can be built by exploiting the characteristics of the items they
liked in the past or some other available side information. Several approaches
have been proposed, that take advantage of side information in different ways:
some of them consider tags [41], demographic data [49] or they extract infor-
mation from collective knowledge bases [14] to mitigate the cold start problem
[18]. Many of the most popular and adopted CB approaches make use of a Vec-
tor Space Model (VSM). In VSM users and items are represented by means of
Boolean or weighted vectors. Their respective positions and the distance, or bet-
ter the proximity, between them, provides a measure of how these two entities are
related or similar. The choice of item features may substantially differ depending
on their availability and application scenario: crowd-sourced tags, categorical,
ontological, or textual knowledge are just some of the most exploited ones. All
in all, in a CB approach we need (i) to get reliable items descriptions, (ii) a way
to measure the strength of each feature for each item, (iii) to represent users and
finally (iv) to measure similarities. Regarding the first point, nowadays we can
easily get descriptions related to an item from the Web. In particular, thanks to
the Linked Open Data initiative a lot of semantically structured knowledge is
publicly available in the form of Linked Data datasets.

2.1 From Factorization Machines to Knowledge-Aware Hybrid
Factorization Machines

Factorization models have proven to be very effective in a recommendation sce-
nario [31]. High prediction accuracy and the subtle modeling of user-item inter-
actions let these models operate efficiently even in very sparse settings. Among
all the different factorization models, factorization machines propose a unified
general model to represent most of them. Here we report the definition related
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to a factorization model of order 2 for a recommendation problem involving
only implicit ratings. Nevertheless, the model can be easily extended to a more
expressive representation by taking into account, e.g., demographic and social
information [4], multi-criteria [3], and even relations between contexts [50].

For each user u ∈ U and each item i ∈ I we build a binary vector xui ∈
R

1×n, with n = |U | + |I|, representing the interaction between u and i in the
original user-item rating matrix. In this modeling, xui contains only two 1 values
corresponding to u and i while all the other values are set to 0 (see Fig. 1). We
then denote with X ∈ R

n×m the matrix containing as rows all possible xui we
can build starting from the original user-item rating matrix as shown in Fig. 1.

Fig. 1. A visual representation of X for sparse real valued vectors xui.

The FM score for each vector x is defined as:

ŷ(xui) = w0 +
n∑

j=1

wj · xj +
n∑

j=1

n∑

p=j+1

xj · xp ·
k∑

f=1

v(j,f) · v(p,f) (1)

where the parameters to be learned are: w0 representing the global bias; wj giving
the importance to every single xj ; the pair v(j,f) and v(p,f) in

∑k
f=1 v(j,f) · v(p,f)

measuring the strength of the interaction between each pair of variables: xj

and xp. The number of latent factors is represented by k. This value is usually
selected at design time when implementing the FM.

In order to make the recommendation results computed by kaHFM as seman-
tically interpretable, we inject the knowledge encoded within a knowledge graph
in a Factorization Machine. In a knowledge graph, each triple represents the con-
nection σ

ρ−→ ω between two nodes, named subject (σ) and object (ω), through
the relation (predicate) ρ. Given a set of features retrieved from a KG [13] we
first bind them to the latent factors and then, since we address a Top-N rec-
ommendation problem, we train the model by using a Bayesian Personalized
Ranking (BPR) criterion that takes into account entities within the original
knowledge graph. In [15], the authors originally proposed to encode a Linked
Data knowledge graph in a vector space model to develop a CB recommender
system. Given a set of items I = {i1, i2, . . . , iN} in a catalog and their associated
triples 〈i, ρ, ω〉 in a knowledge graph KG, we may build the set of all possible
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features as F = {〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG with i ∈ I}. Each item can be then repre-
sented as a vector of weights i = [v(i,1), . . . , v(i,〈ρ,ω〉), . . . , v(i,|F |)], where v(i,〈ρ,ω〉)
is computed as the normalized TF-IDF value for 〈ρ, ω〉 as follows:

v(i,〈ρ,ω〉) =
|{〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG}|√ ∑

〈ρ,ω〉∈F

|{〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG}|2

︸ ︷︷ ︸
TF KG

· log |I|
|{j | 〈j, ρ, ω〉 ∈ KG and j ∈ I}|︸ ︷︷ ︸

IDF KG

(2)

Since the numerator of TFKG can only take values 0 or 1 and, each feature
under the root in the denominator has value 0 or 1, v(i,〈ρ,ω〉) is zero if 〈ρ, ω〉 �∈ KG,
and otherwise:

v(i,〈ρ,ω〉) =
log |I| − log |〈j, ρ, ω〉 ∩ KG|j ∈ I|√ ∑

〈ρ,ω〉∈F

|{〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG}|
(3)

Analogously, when we have a set U of users, we may represent them using
the features describing the items they enjoyed in the past. In the following, when
no confusion arises, we use f to denote a feature 〈ρ, ω〉 ∈ F . Given a user u,
if we denote with Iu the set of the items enjoyed by u, we may introduce the
vector u = [v(u,1), . . . , v(u,f) . . . , v(u,|F |)], where v(u,f) is:

v(u,f) =

∑
i∈Iu

v(i,f)

|{i | i ∈ Iu and v(i,f) �= 0}|
Given the vectors uj , with j ∈ [1 . . . |U |], and ip, with p ∈ [1 . . . |I|], we build

the matrix V ∈ R
n×|F | (see Fig. 2) where the first |U | rows have a one to one

mapping with uj while the last ones correspond to ip. If we go back to Eq. (1)
we may see that, for each x, the term

∑n
j=1

∑n
p=j+1 xj · xj′ · ∑k

f=1 v(j,f) · v(p,f)

Fig. 2. Example of real valued feature vectors for different items vj . For lack of space
we omitted the predicate dcterms:subject
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is not zero only once, i.e., when both xj and xp are equal to 1. In the matrix
depicted in Fig. 1, this happens when there is an interaction between a user and
an item. Moreover, the summation

∑k
f=1 v(j,f) ·v(p,f) represents the dot product

between two vectors: vj and vp with a size equal to k. Hence, vj represents a
latent representation of a user, vp that of an item within the same latent space,
and their interaction is evaluated through their dot product.

In order to inject the knowledge coming from KG into kaHFM, we keep Eq. (1)
and we set k = |F |. In other words, we impose a number of latent factors equal to
the number of features describing all the items in our catalog. We want to stress
here that our aim is not representing each feature through a latent vector, but
to associate each factor to an explicit feature, obtaining latent vectors that are
composed by explicit semantic features. Hence, we initialize the parameters vj

and vp with their corresponding rows from V which in turn represent respectively
uj and ip. In this way, we try to identify each latent factor with a corresponding
explicit feature. The intuition is that after the training phase, the resulting
matrix V̂ still refers to the original features but contains better values for v(j,f)
and v(p,f) that take into account also the latent interactions between users,
items and features. It is noteworthy that after the training phase uj and ip
(corresponding to v(j,f) and v(p,f) in V) contain non-zero values also for features
that are not originally in the description of the user u or of the item i. We extract
the items vectors vj from the matrix V̂, with the associated optimal values and
we use them to implement an Item-kNN recommendation approach. We measure
similarities between each pair of items i and j by evaluating the cosine similarity
of their corresponding vectors in V̂:

cs(i, j) =
vi · vj

‖ vi ‖ · ‖ vj ‖
Let us define N i as the set of neighbors for the item i, composed by the items

which are more similar to i according to the selected similarity measure. Denoted
as N i. It is possible to choose i such that i �∈ Iu and a user u, we predict the
score assigned by u to i as

score(u, i) =

∑
j∈Ni∩Iu

cs(i, j)
∑

j∈Ni

cs(i, j)
(4)

Factorization machines can be easily trained to reduce the prediction error via
gradient descent methods, alternating least-squares (ALS) and MCMC. Since we
formulated our problem as a top-N recommendation task, kaHFM can be trained
using a learning to rank approach like Bayesian Personalized Ranking Criterion
(BPR) [32]. The BPR criterion is optimized using a stochastic gradient descent
algorithm on a set DS of triples (u, i, j), with i ∈ Iu and j �∈ Iu, selected through
a random sampling from a uniform distribution. Once the training phase returns
the optimal model parameters, the item recommendation step can take place.

In an RDF knowledge graph, we usually find different types of encoded infor-
mation.
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Table 1. Top-10 features computed by kaHFM for the movie "Star Trek II - The

Wrath of Khan".

kaHFM TF-IDF Predicate Object

1.3669 0.2584 dct:subject dbc:Space adventure films

1.1252 0.2730 dct:subject dbc:Films set in the future

0.9133 0.2355 dct:subject dbc:American science fiction action films

0.8485 0.3190 dct:subject dbc:1980s science fiction films

0.6529 0.1549 dct:subject dbc:Paramount Pictures films

0.5989 0.3468 dct:subject dbc:Midlife crisis films

0.5940 0.1797 dct:subject dbc:American sequel films

0.5862 0.2661 dct:subject dbc:Film scores by James Horner

0.5634 0.2502 dct:subject dbc:Films shot in San Francisco

0.5583 0.1999 dct:subject dbc:1980s action thriller films

– Factual. This refers to statements such has The Matrix was directed by the
Wachowskis or Melbourne is located in Australia when we describe attributes
of an entity;

– Categorical. It is mainly used to state something about the subject of an
entity. In this direction, the categories of Wikipedia pages are an excellent
example. Categories can be used to cluster entities and are often organized
hierarchically thus making possible to define them in a more generic or specific
way;

– Ontological. This is a more restrictive and formal way to classify entities
via a hierarchical structure of classes. Differently from categories, sub-classes
and super-classes are connected through IS-A (transitive) relations.

In Table 1 we show an example for categorical values obtained after the training
(in the column kaHFM) together with the original TF-IDF ones computed for a
movie from the Yahoo! Movies1 dataset.

3 Semantic Accuracy and Generative Robustness

The proposed approach let us keep the meaning of the “latent” factors computed
via a factorization machine thus making possible an interpretation of the rec-
ommended results. To assess that kaHFM preserves the semantics of the features
in V after the training phase, we propose an automated offline procedure to
measure Semantic Accuracy. Moreover, we define as Robustness the ability to
assign a higher value to important features after one or more feature removals.

1 http://research.yahoo.com/Academic Relations.

http://research.yahoo.com/Academic_Relations
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3.1 Semantic Accuracy

The main idea behind Semantic Accuracy is to evaluate, given an item i, how
well kaHFM is able to return its original features available in the computed top-
K list vi. In other words, given the set of features of i represented by F i =
{f i

1, . . . , f
i
m, . . . f i

M}, with F i ⊆ F , we check if the values in vi, corresponding
to fm,i ∈ F i, are higher than those corresponding to f �∈ F i. For the set of
M features initially describing i we see how many of them appear in the set
top(vi,M) representing the top-M features in vi. We then normalize this number
by the size of F i and average on all the items within the catalog I.

Semantic Accuracy (SA@M) =

∑
i∈I

|top(vi,M)∩F i|
|F i|

|I|
In many practical scenarios we may have |F | 
 M . Hence, we might also

be interested in measuring the accuracy for different sizes of the top list. Since
items could be described with a different number of features, the size of the top
list could be a function of the original size of the item description. Thus, we
measured SA@nM with n ∈ {1, 2, 3, 4, 5, . . .} and evaluate the number of features
in F i available in the top-n · M elements of vi.

SA@nM =

∑
i∈I

|top(vi,n·M)∩F i|
|F i|

|I|

3.2 Robustness

Although SA@nM may result very useful to understand if kaHFM assigns weights
according to the original description of item i, we still do not know if a high
value in vi really means that the corresponding feature is important to define i.
In other words, are we sure that kaHFM promotes important features for i?

In order to provide a way to measure such “meaningfulness” for a given
feature, we suppose, for a moment, that a particular feature 〈ρ, ω〉 is useful to
describe an item i but the corresponding triple 〈i, ρ, ω〉 is not represented in the
knowledge graph. In case kaHFM was robust in generating weights for unknown
features, it should discover the importance of that feature and modify its value
to make it enter the Top-K features in vi. Starting from this observation, the
idea to measure robustness is then to “forget” a triple involving i and check
if kaHFM can generate it. In order to implement such process we proceed by
following these steps:

– we train kaHFM thus obtaining optimal values vi for all the features in F i;
– the feature f i

MAX ∈ F i with the highest value in vi is identified;
– we retrain the model again initializing f i

MAX = 0 and we compute v′
i.

After the above steps, if f i
MAX ∈ top(v′

i,M) then we can say that kaHFM
shows a high robustness in identifying important features. Given a catalog I, we
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may then define the Robustness for 1 removed feature @M (1-Rob@M) as the
number of items for which f i

MAX ∈ top(v′
i,M) divided by the size of I.

1-Rob@M =

∑
i∈I

|{i | f i
MAX ∈ top(v′

i,M)}|
|I|

Similarly to SA@nM , we may define 1-Rob@nM.

4 Experimental Evaluation

In this section, we will detail three distinct experiments. We specifically designed
them to answer the research questions posed in Sect. 1. In details, we want to
assess if: (i) kaHFM’s recommendations are accurate; (ii) kaHFM generally preserves
the semantics of original features; (iii) kaHFM promotes significant features.

Datasets. To provide an answer to our research questions, we evaluated the per-
formance of our method on two well-known datasets for recommender systems
belonging to movies domain. Yahoo!Movies (Yahoo! Webscope dataset ydata-
ymovies-user-movie-ratings-content-v1 0)2 contains movies ratings generated on
Yahoo! Movies up to November 2003. It provides content, demographic and rat-
ings information on a [1..5] scale, and mappings to MovieLens and EachMovie
datasets. Facebook Movies dataset has been released for the Linked Open Data
challenge co-located with ESWC 20153. Only implicit feedback is available for
this dataset, but for each item a link to DBpedia is provided. To map items
in Yahoo!Movies and other well-known datasets, we extracted all the updated
items-features mappings and we made them publicly available4. Datasets statis-
tics are shown in Table 2.

Experimental Setting. “All Unrated Items” [37] protocol has been adopted
to compare different algorithms. We have split the dataset using Hold-Out 80-
20 retaining for every user the 80% of their ratings in the training set and the
remaining 20% in the test set. Moreover, a temporal split has been performed
[19] whenever timestamps associated to every transaction is available.

Extraction. Thanks to the publicly available mappings, all the items from the
datasets represented in Table 2 come with a DBpedia link. Exploiting this refer-
ence, we retrieved all the 〈ρ, ω〉 pairs. Some noisy features (based on the following
predicates) have been excluded: owl:sameAs, dbo:thumbnail, foaf:depiction,
prov:wasDerivedFrom, foaf:isPrimaryTopicOf.

Selection. We performed our experiments with three different settings to ana-
lyze the impact of the different kind of features. The features have been chosen
as they are present in all the different domains and because of their factual,
categorical or ontological meaning:
2 http://research.yahoo.com/Academic Relations.
3 https://2015.eswc-conferences.org/program/semwebeval.html.
4 https://github.com/sisinflab/LinkedDatasets/.

http://research.yahoo.com/Academic_Relations
https://2015.eswc-conferences.org/program/semwebeval.html
https://github.com/sisinflab/LinkedDatasets/
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Table 2. Datasets statistics.

Dataset #Users #Items #Transactions #Features Sparsity

Yahoo! Movies 4000 2,626 69,846 988,734 99.34%

Facebook Movies 32143 3,901 689,561 180,573 99.45%

– Categorical Setting (CS): We selected only the features containing the
property dcterms:subject.

– Ontological Setting (OS): In this case the only feature we considered is
rdf:type.

– Factual Setting (FS): We considered all the features but those involving
the properties selected in OS, and CS.

Filtering. This last step corresponds to the removal of irrelevant features, that
bring little value to the recommendation task, but, at the same time, pose scal-
ability issues. The pre-processing phase has been done following [13], and [25]
with a unique threshold. Thresholds (corresponding to tm [13], and p [25] for
missing values) and the considered features for each dataset are represented in
Table 3.

Table 3. Considered features in the different settings

Categorical setting Ontological setting Factual setting

Datasets Threshold Total Selected Total Selected Total Selected

Yahoo!Movies 99.62 26155 747 38699 1240 950035 3186

Facebook Movies 99.74 8843 1103 13828 1848 166745 5427

4.1 Accuracy Evaluation

The goal of this evaluation is to assess if the controlled injection of Linked
Data positively affects the training of Factorization Machines. For this rea-
son, kaHFM is not compared with other state-of-art interpretable models but
with only the algorithms that are more related to our approach. We compared
kaHFM5 w.r.t. a canonical 2 degree Factorization Machine (users and items are
intended as features of the original formulation) by optimizing the recommen-
dation list ranking via BPR (BPR-FM). In order to preserve the expressiveness
of the model, we used the same number of hidden factors (see the “Selected”
column in Table 3). Since we use items similarity in the last step of our app-
roach (see Eq. (4)), we compared kaHFM against an Attribute Based Item-kNN
(ABItem-kNN) algorithm, where each item is represented as a vector of weights,

5 https://github.com/sisinflab/HybridFactorizationMachines.

https://github.com/sisinflab/HybridFactorizationMachines
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computed through a TF-IDF model. In this model, the attributes are com-
puted via Eq. (2). We also compared kaHFM also against a pure Item-kNN,
that is an item-based implementation of the k-nearest neighbors algorithm. It
finds the k-nearest item neighbors based on Pearson Correlation. https://github.
com/sisinflab/HybridFactorizationMachines Regarding BPR parameters, learn-
ing rate, bias regularization, user regularization, positive item regularization, and
negative item regularization have been set respectively to 0.05, 0, 0.0025, 0.0025
and 0.00025 while a sampler “without replacement” has been adopted in order to
sample the triples as suggested by authors [32]. We compared kaHFM also against
the corresponding User-based nearest neighbor scheme, and Most-Popular, a sim-
ple baseline that shows high performance in specific scenarios [11]. In our con-
text, we considered mandatory to also compare against a pure knowledge-graph
content-based baseline based on Vector Space Model (V SM) [15]. In order to
evaluate our approach, we measured accuracy through Precision@N (Prec@N)
and Normalized Discounted Cumulative Gain (nDCG@N). The evaluation has
been performed considering Top-10 [11] recommendations for all the datasets.
When a rating score was available (Yahoo!Movies), a Threshold-based relevant
items condition [5,7] was adopted with a relevance threshold of 4 over 5 stars
in order to take into account only relevant items. Figure 3 shows the results of
our experiments regarding accuracy. In all the tables we highlight in bold the
best result while we underline the second one. Statistically significant results
are denoted with a ∗ mark considering Student’s paired t-test with a 0.05 level.
Yahoo!Movies experiments show that in Categorical and Ontological settings
our method is the most accurate. In the Yahoo!Movies mapping, a strong pop-
ularity bias is present and it is interesting to notice that this affects only the
Factual setting leading our approach to be less precise than ABItem-kNN. In
Facebook Movies we see very a good improvement in terms of accuracy as
it almost doubles up the ABItem-kNN algorithm values. We compared kaHFM
against ABItem-kNN to check if the collaborative trained features may lead to
better similarity values. This hypothesis seems to be confirmed since in former
experiments kaHFM beats ABItem-kNN in almost all settings. This suggests that
collaborative trained features achieve better accuracy results. Moreover, we want
to check if a knowledge-graph-based initialization of latent factors may improve
the performance of Factorization Machines. kaHFM always beats BPR-FM, and
in our opinion, this happens since the random initialization takes a while to drive
the Factorization machine to reach good performance. Finally, we want to check
if collaborative trained features lead to better accuracy results than a purely
informativeness-based Vector Space Model even though it is in its knowledge-
graph-aware version. This seems to be confirmed in our experiments, since kaHFM
beats V SM in almost all cases. In order to strengthen the results we got, we com-
puted recommendations with 0, 1, 5, 10, 15, 30 iterations. For the sake of brevity
we report here6 only the plots related to Categorical setting (Fig. 3) It is worth
to notice that in every case we considered, we show the best performance in

6 Results of the full experiments: https://github.com/sisinflab/papers-results/tree/
master/kahfm-results/.

https://github.com/sisinflab/HybridFactorizationMachines
https://github.com/sisinflab/HybridFactorizationMachines
https://github.com/sisinflab/papers-results/tree/master/kahfm-results/
https://github.com/sisinflab/papers-results/tree/master/kahfm-results/
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Facebook Yahoo!

Categorical Setting (CS) P@10 P@10 nDCG@10
ABItem-kNN 0.0173∗ 0.0421∗ 0.1174∗

BPR-FM 0.0158∗ 0.0189∗ 0.0344∗

MostPopular 0.0118∗ 0.0154∗ 0.0271∗

ItemKnn 0.0262∗ 0.0203∗ 0.0427∗

UserKnn 0.0168∗ 0.0231∗ 0.0474∗

VSM 0.0185∗ 0.0385∗ 0.1129∗

kaHFM 0.0296 0.0524 0.1399

Ontological Setting (OS) P@10 P@10 nDCG@10
ABItem-kNN 0.0172 0.0427∗ 0.1223∗

BPR-FM 0.0155∗ 0.0199∗ 0.0356∗

MostPopular 0.0118∗ 0.0154∗ 0.0271∗

ItemKnn 0.0263∗ 0.0203∗ 0.0427∗

UserKnn 0.0168∗ 0.0232∗ 0.0474∗

VSM 0.0181∗ 0.0349∗ 0.1083∗

kaHFM 0.0273 0.0521 0.1380

Factual Setting (FS) P@10 P@10 nDCG@10
ABItem-kNN 0.0234 0.0619 0.1764
BPR-FM 0.0157 0.0177 0.0305
MostPopular 0.0123 0.0154 0.0271
ItemKnn 0.0273 0.0203 0.0427
UserKnn 0.0176 0.0232 0.0474
VSM 0.0219 0.0627 0.1725
kaHFM 0.0240 0.0564 0.1434

(a) Yahoo!Movies

(b) Facebook Movies

Fig. 3. Accuracy results for Facebook Movies, and Yahoo!Movies. In figures: Preci-
sion@10 varying # iterations 0, 1, 5, 10, 15, 30

one of these iterations. Moreover, the positive influence of the initialization of
the feature vectors is particularly evident in all the datasets, with performances
being very similar to the ones depicted in [32]. Given the obtained results we
may say that the answer to RQ1 is positive when adopting kaHFM.

4.2 Semantic Accuracy

The previous experiments showed the effectiveness of our approach in terms
of accuracy of recommendation. In practical terms, we proved that: (i) con-
tent initialization generally lead to better performance with our method, (ii)
the obtained items vectors are fine-tuned better than the original ones for a
top-N item recommendation task, (iii) results may depend on the features we
extract from the Knowledge Graph. However, we still do not know if the origi-
nal semantics of the features is preserved in the new space computed after the
training of kaHFM (as we want to assess by posing RQ2). In Sect. 3.1 we intro-
duced Semantics Accuracy (SA@nM) as a metric to automatically check if the
importance computed by kaHFM and associated to each feature reflects the actual
meaning of that feature. Thus, we measured SA@nM with n ∈ {1, 2, 3, 4, 5} and
M = 10, and evaluated the number of ground features available in the top-nM
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elements of vi for each dataset. Table 4 shows the results for all the different
datasets computed in the Categorical setting. In general, the results we obtain
are noteworthy. We now examine the worst one to better understand the actual
meaning of the values we get. In Yahoo!Movies, 747 different features compose
each item vector (see Table 3). After the training phase, on average, more than
10 (equal to 0.847 × 12.143) over 12 features (last column in Table 4) are equal
to the original features list. This means that kaHFM was able to compute almost
the same features starting from hundreds of them. Also in this case, given the
obtained results we may provide a positive answer to RQ2.

Table 4. Semantics Accuracy results for different values of M. F.A. denotes the Feature
Average number per item.

Semantics accuracy SA@M SA@2M SA@3M SA@4M SA@5M F.A.

Yahoo!Movies 0.847 0.863 0.865 0.868 0.873 12.143

Facebook Movies 0.864 0.883 0.889 0.894 0.899 12.856

4.3 Generative Robustness

The previous experiment showed that the features computed by kaHFM keep their
original semantics if already present in the item description. In Sect. 3.2, we intro-
duced a procedure to measure the capability of kaHFM to compute meaningful
features. Here, we computed 1-Rob@nM for the two adopted datasets. Results are
represented in Table 5. In this case, we focus on the CS setting which provides
the best results in terms of accuracy. For a better understanding of the obtained
results, we start by focusing on Yahoo!Movies which apparently has bad behav-
ior. Table 4 showed that kaHFM was able to guess 10 on 12 different features
for Yahoo!Movies. In this experiment, we remove one of the ten features (thus,
based on Table 4, kaHFM will guess an average of 10 − 1 = 9 features). Since the
number of features is 12 we have 3 remaining “slots”. What we measure now is
if kaHFM is able to guess the removed feature in these “slots”. Results in Table 5
show that our method is able to put the removed feature in one of the three slots
the 48.7% of the times starting from 747 overall features. This example should
help the reader to appreciate even more Facebook Movies results. Hence, we

Table 5. 1-Robustness for different values of M. Column F.A. denotes the Feature
Average number per item.

1-Robustness 1-Rob@M 1-Rob@2M 1-Rob@3M 1-Rob@4M 1-Rob@5M F.A.

Yahoo!Movies 0.487 0.645 0.713 0.756 0.793 12.143

Facebook Movies 0.821 0.945 0.970 0.980 0.984 12.856
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could confidently assess that kaHFM is able to propose meaningful features as we
asked with RQ3.

5 Related Work

In recent years, several interpretable recommendation models that exploit matrix
factorization have been proposed. It is well-known that one of the main issues of
matrix factorization methods is that they are not easily interpretable (since
latent factors meaning is basically unknown). One of the first attempts to
overcome this problem was proposed in [47]. In this work, the authors pro-
pose Explicit Factor Model (EFM). Products’ features and users’ opinions are
extracted with phrase-level sentiment analysis from users’ reviews to feed a
matrix factorization framework. After that, a few improvements to EFM have
been proposed to deal with temporal dynamics [48] and to use tensor factoriza-
tion [9]. In particular, in the latter the aim is to predict both user preferences on
features (extracted from textual reviews) and items. This is achieved by exploit-
ing the Bayesian Personalized Ranking (BPR) criterion [32]. Further advances
in MF-based interpretable recommendation models have been proposed with
Explainable Matrix Factorization (EMF) [1] in which the generated explanations
are based on a neighborhood model. Similarly, in [2] an interpretable Restricted
Boltzmann Machine model has been proposed. It learns a network model (with
an additional visible layer) that takes into account a degree of explainability.
Finally, an interesting work incorporates sentiments and ratings into a matrix
factorization model, named Sentiment Utility Logistic Model (SULM) [6]. In [28]
recommendations are computed by generating and ranking personalized expla-
nations in the form of explanation chains. OCuLaR [42] provides interpretable
recommendations from positive examples based on the detection of co-clusters
between users (clients) and items (products). In [22] authors propose a Multi
Level Attraction Model (MLAM) in which they build two attraction models,
for cast and story. The interpretability of the model is then provided in terms
of attractiveness of Sentence level, Word level, and Cast member. In [27] the
authors train a matrix factorization model to compute a set of association rules
that interprets the obtained recommendations. In [12] the authors prove that,
given the conversion probabilities for all actions of customer features, it is possi-
ble to transform the original historical data to a new space in order to compute
a set of interpretable recommendation rules. The core of our model is a general
Factorization Machines (FM) model [30]. Nowadays FMs are the most widely
used factorization models because they offer a number of advantages w.r.t. other
latent factors models such as SVD++ [23], PITF [35], FPMC [33]. First of all,
FMs are designed for a generic prediction task while the others can be exploited
only for specific tasks. Moreover, it is a linear model and parameters can be
estimated accurately even in high data sparsity scenarios. Nevertheless, several
improvements have been proposed for FMs. For instance Neural Factorization
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Machines [20] have been developed to fix the inability of classical FMs to cap-
ture non linear structure of real-world data. This goal is achieved by exploiting
the non linearity of neural networks. Furthermore, Attentional Factorization
Machines [44] have been proposed that use an attention network to learn the
importance of feature interactions. Finally, FMs have been specialized to better
work as Context-Aware recommender systems [34].

6 Conclusion and Future Work

In this work, we have proposed an interpretable method for recommendation
scenario, kaHFM, in which we bind the meaning of latent factors for a Factor-
ization machine to data coming from a knowledge graph. We evaluated kaHFM
on two different publicly available datasets on different sets of semantics-aware
features. In particular, in this paper we considered Ontological, Categorical and
Factual information coming from DBpedia and we have shown that the gen-
erated recommendation lists are more precise and personalized. Summing up,
performed experiments show that: (RQ1) the learned model shows very good
performance in terms of accuracy and, at the same time, is effectively inter-
pretable; (RQ2) the computed features are semantically meaningful; (RQ3) the
model is robust regarding computed features. In the future we want to test
the kaHFM performance in different scenarios, other than recommender systems.
Moreover, the model can be improved in many different ways. Different relevance
metrics could be beneficial in different scenarios, as the method itself is agnostic
to the specific adopted measure. This work focused on the items’ vector; how-
ever, an interesting key point would be analyzing the learned users’ vectors to
extract more accurate profiles. Furthermore, it would be useful to exploit kaHFM
in order to provide suggestions to knowledge graphs maintainers while adding
relevant missing features to the knowledge base. In this direction, we would like
to evaluate our approach in knowledge graph completion task.
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Abstract. This paper presents an empirical study aiming at under-
standing the modeling style and the overall semantic structure of Linked
Open Data. We observe how classes, properties and individuals are used
in practice. We also investigate how hierarchies of concepts are struc-
tured, and how much they are linked. In addition to discussing the
results, this paper contributes (i) a conceptual framework, including
a set of metrics, which generalises over the observable constructs; (ii)
an open source implementation that facilitates its application to other
Linked Data knowledge graphs.
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1 Analysing the Modeling Structure and Style of LOD

The interlinked collection of Linked Open Data (LOD) datasets forms the largest
publicly accessible Knowledge Graph (KG) that is available on the Web today.1

LOD distinguishes itself from most other forms of open data in that it has a
formal semantics. Various studies have analysed different aspects of the formal
1 This paper uses the following RDF prefix declarations for brevity, and uses the empty
prefix (:) to denote an arbitrary example namespace.

– dbo: http://dbpedia.org/ontology/.
– dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.
– foaf: http://xmlns.com/foaf/0.1/.
– org: http://www.w3.org/ns/org.
– rdfs: http://www.w3.org/2000/01/rdf-schema.
– owl: http://www.w3.org/2002/07/owl.

c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 57–74, 2019.
https://doi.org/10.1007/978-3-030-30793-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30793-6_4&domain=pdf
http://dbpedia.org/ontology/
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://xmlns.com/foaf/0.1/
http://www.w3.org/ns/org
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
https://doi.org/10.1007/978-3-030-30793-6_4


58 L. Asprino et al.

semantics of LOD. However, existing analyses have often been based on relatively
small samples of the ever evolving LOD KG. Moreover, it is not always clear
how representative the chosen samples are. This is especially the case when
observations are based on one dataset (e.g., DBpedia), or on a small number of
datasets that are drawn from the much larger LOD Cloud.

This paper presents observations that have been conducted across (a very
large subset of) the LOD KG. As such, this paper is not about the design of
individual ontologies, rather, it is about observing the design of the globally
shared Linked Open Data ontology. Specifically, this paper focuses on the globally
shared hierarchies of classes and properties, together with their usage in instance
data. This paper provides new insights about (i) the number of concepts defined
in the LOD KG, (ii) the shape of ontological hierarchies, (iii) the extent in which
recommended practices for ontology alignment are followed, and (iv) whether
classes and properties are instantiated in a homogeneous way.

In order to conduct large-scale semantic analyses, it is necessary to calcu-
late the deductive closure of very large hierarchical structures. Unfortunately,
contemporary reasoners cannot be applied at this scale, unless they rely on
expensive hardware such as a multi-node in-memory cluster. In order to han-
dle this type of large-scale semantic analysis on commodity hardware such as
regular laptops, we introduce the formal notion of an Equivalence Set Graph.
With this notion we are able to implement efficient algorithms to build the large
hierarchical structures that we need for our study.

We use the formalization and implementation presented in this paper to
compute two (very large) Equivalence Set Graphs: one for classes and one for
properties. By querying them, we are able to quantify various aspects of formal
semantics at the scale of the LOD KG. Our observations show that there is a
lack of explicit links (alignment) between ontological entities and that there is
a significant number of concepts with empty extension. Furthermore, property
hierarchies are observed to be mainly flat, while class hierarchies have varying
depth degree, although most of them are flat too.

This paper makes the following contributions:

1. A new formal concept (Equivalence Set Graph) that allows us to specify
compressed views of a LOD KG (presented in Sect. 3.2).

2. An implementation of efficient algorithms that allow Equivalence Set Graphs
to be calculated on commodity hardware (cf. Sect. 4).

3. A detailed analysis of how classes and properties are used at the level of the
whole LOD KG, using the formalization and implementation of Equivalence
Set Graphs.

The remaining of this paper is organized as follows: Sect. 2 summarizes
related work. The approach is presented in Sect. 3. Section 4 describes the algo-
rithm for computing an Equivalence Set Graph form a RDF dataset. Section 3.4
defines a set of metrics that are measured in Sect. 5. Section 6 discusses the
observed values and concludes.
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2 Related Work

Although large-scale analyses of LOD have been performed since the early years
of the Semantic Web, we could not find previous work directly comparable with
ours. The closest we found are not recent and performed on a much smaller scale.
In 2004, Gil and Garćıa [8] showed that the Semantic Web (at that time con-
sisting of 1.3 million triples distributed over 282 datasets) behaves as a Complex
System: the average path length between nodes is short (small world property),
there is a high probability that two neighbors of a node are also neighbors of one
another (high clustering factor), and nodes follow a power-law degree distribu-
tion. In 2008, similar results were reported by [14] in an individual analysis of
250 schemas. These two studies focus on topological graph aspects exclusively,
and do not take semantics into account.

In 2005, Ding et al. [6] analysed the use of the Friend-of-a-Friend (FOAF)
vocabulary on the Semantic Web. They harvested 1.5 million RDF datasets, and
computed a social network based on those data datasets. They observed that the
number of instances per dataset follows the Zipf distribution.

In 2006, Ding et al. [4] analysed 1.7 million datasets, containing 300 million
triples. They reported various statistics over this data collection, such as the
number of datasets per namespace, the number of triples per dataset, and the
number of class- and property-denoting terms. The semantic observation in this
study is limited since no deduction was applied.

In 2006, a survey by Wang et al. [16] aimed at assessing the use of OWL
and RDF schema vocabularies in 1,300 ontologies harvested from the Web. This
study reported statistics such as the number of classes, properties, and instances
of these ontologies. Our study provides both an updated view on these statistics,
and a much larger scale of the observation (we analysed ontological entities
defined in ∼650k datasets crawled by LOD-a-lot [7]).

Several studies [2,5,9] analysed common issues with the use of owl:sameAs
in practice. Mallea et al. [11] showed that blank nodes, although discouraged
by guidelines, are prevalent on the Semantic Web. Recent studies [13] experi-
mented on analysing the coherence of large LOD datasets, such as DBpedia, by
leveraging foundational ontologies. Observations on the presence of foundational
distinctions in LOD has been studied in [1].

These studies have a similar goal as ours: to answer the question how knowl-
edge representation is used in practice in the Semantic Web, although the focus
may partially overlap. We generalise over all equivalence (or identity) constructs
instead of focusing on one specific, we observe the overall design of LOD ontolo-
gies, analysing a very large subject of it, we take semantics into account by
analysing the asserted as well as the inferred data.



60 L. Asprino et al.

3 Approach

3.1 Input Source

Ideally, our input is the whole LOD Cloud, which is (a common metonymy for
identifying) a very large and distributed Knowledge Graph. The two largest
available crawls of LOD available today are WebDataCommons and LOD-a-lot.

WebDataCommons2 [12] consists of ∼31B triples that have been extracted
from the CommonCrawl datasets (November 2018 version). Since its focus is
mostly on RDFa, microdata, and microformats, WebDataCommons contains a
very large number of relatively small graph components that use the Schema.org3

vocabulary.
LOD-a-lot4 [7] contains ∼28B unique triples that are the result of merging

the graphs that have been crawled by LOD Laundromat [3] into one single graph.
The LOD Laundromat crawl is based on data dumps that are published as part
of the LOD Cloud, hence it contains relatively large graphs that are highly
interlinked. The LOD-a-lot datadump is more likely to contain RDFS and OWL
annotations than WebDataCommons. Since this study focuses on the semantics
of Linked Open Data, it uses the LOD-a-lot datadump.

LOD-a-lot only contains explicit assertions, i.e., triples that have been lit-
erally published by some data owner. This means that the implicit assertions,
i.e., triples that can be derived from explicit assertions and/or other implicit
assertions, are not part of it and must be calculated by a reasoner. Unfortu-
nately, contemporary reasoners are unable to compute the semantic closure over
28B triples. Advanced alternatives for large-scale reasoning, such as the use of
clustering computing techniques (e.g., [15]) require expensive resources in terms
of CPU/time and memory/space. Since we want to make running large-scale
semantic analysis a frequent activity in Linked Data Science, we present a new
way to perform such large-scale analyses against very low hardware cost.

This section outlines our approach for performing large-scale semantic anal-
yses of the LOD KG. We start out by introducing the new notion of Equivalence
Set Graph (ESG) (Sect. 3.2). Once Equivalence Set Graphs have been informally
introduced, the corresponding formal definitions are given in Sect. 3.3. Finally,
the metrics that will be measured using the ESGs are defined in Sect. 3.4.

3.2 Introducing Equivalence Set Graphs

An Equivalence Set Graph (ESG) is a tuple 〈V, E , peq, psub, pe, ps〉. The nodes
V of an ESG are equivalence sets of terms from the universe of discourse. The
directed edges E of an ESG are specialization relations between those equiva-
lence sets. peq is an equivalence relation that determines which equivalence sets
are formed from the terms in the universe of discourse. psub is a partial order
relation that determines the specialization relation between the equivalence sets.
2 See http://webdatacommons.org.
3 See https://schema.org.
4 See http://lod-a-lot.lod.labs.vu.nl.

http://webdatacommons.org
https://schema.org
http://lod-a-lot.lod.labs.vu.nl
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In order to handle equivalences and specializations of peq and psub (see below for
details and examples), we introduce pe, an equivalence relation over properties
(e.g., owl:equivalentProperty) that allows to retrieve all the properties that
are equivalent to peq and psub, and ps which is a specialization relation over
properties (e.g., rdfs:subPropertyOf) that allows to retrieve all the properties
that specialize peq and psub.

The inclusion of the parameters peq, psub, pe, and ps makes the Equiv-
alence Set Graph a very generic concept. By changing the equivalence rela-
tion (peq), ESG can be applied to classes (owl:equivalentClass), prop-
erties (owl:equivalentProperty), or instances (owl:sameAs). By changing
the specialization relation (psub), ESG can be applied to class hierarchies
(rdfs:subClassOf), property hierarchies (rdfs:subPropertyOf), or concept
hierarchies (skos:broader).

An Equivalence Set Graph is created starting from a given RDF Knowledge
Graph. The triples in the RDF KG are referred to as its explicit statements. The
implicit statements are those that can be inferred from the explicit statements.
An ESG must be built taking into account both the explicit and the implicit
statements. For example, if peq is owl:equivalentClass, then the following
Triple Patterns (TP) retrieve the terms ?y that are explicitly equivalent to a
given ground term :x:

{ :x owl:equivalentClass ?y } union { ?y owl:equivalentClass :x }

In order to identify the terms that are implicitly equivalent to :x, we also
have to take into account the following:

1. The closure of the equivalence predicate (reflexive, symmetric, transitive).
2. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of the equivalence

predicate (peq). E.g., the equivalence between :x and :y is asserted with the
:sameClass predicate, which is equivalent to owl:equivalentClass):

:sameClass owl:equivalentProperty owl:equivalentClass.
:x :sameClass :y.

3. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of predicates (i.e. pe
and ps) for asserting equivalence or specialization relations among properties.
E.g., the equivalence between :x and :y is asserted with the :sameClass
predicate, which is a specialization of owl:equivalentClass according to
:sameProperty, which it itself a specialization of owl:equivalentProperty:

:sameProperty rdfs:subPropertyOf owl:equivalentProperty.
:sameClass :sameProperty owl:equivalentClass.
:x :sameClass :y.

The same distinction between explicit and implicit statements can be made
with respect to the specialization relation (psub). E.g., for an Equivalence Set
Graph that uses rdfs:subClassOf as its specialization relation, the following
TP retrieves the terms ?y that explicitly specialize a given ground term :x:
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?y rdfs:subClassOf :x.

In order to identify the entities that are implicit specializations of :x, we
must also take the following into account:

1. The closure of the specialization predicate (reflexive, anti-symmetric, transi-
tive).

2. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of the specialization
predicate (psub). E.g, :y is a specialization of :x according to the :subClass
property, which is itself a specialization of the rdfs:subClassOf predicate:

:subClass rdfs:subPropertyOf rdfs:subClassOf.
:y :subClass :x.

3. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of predicates (i.e. pe
and ps) for asserting equivalence or specialization relations among properties:

:subProperty rdfs:subPropertyOf rdfs:subPropertyOf.
:subClass :subProperty rdfs:subClassOf.
:y :subClass :x.

Although there exist alternative ways for asserting an equivalence (specializa-
tion) relation between two entities e1 and e2 (e.g., e1 = e2�∃p.� implies e1 � e2),
we focused on the most explicit ones, namely, those in which e1 and e2 are con-
nected by a path having as edges peq (psub) or properties that are equivalent
or subsumed by peq (called Closure Path cf. Definition 2). We argue that for
statistical observations explicit assertions provide acceptable approximations of
the overall picture.

Figure 1 shows an example of an RDF Knowledge Graph (Fig. 1a). The equiv-
alence predicate (peq) is owl:equivalentClass; the specialization predicate
(psub) is rdfs:subClassOf, the property for asserting equivalences among predi-
cates (pe) is owl:equivalentProperty, the property for asserting specializations
among predicates (ps) is (rdfs:subPropertyOf). The corresponding Equiva-
lence Set Graph (Fig. 1b) contains four equivalence sets. The top node represents
the agent node, which encapsulates entities in DOLCE and W3C’s Organization
ontology. Three nodes inherit from the agent node. Two nodes contain classes
that specialize dul:Agent in the DOLCE ontology (i.e. dul:PhysicalAgent
and dul:SocialAgent). The third node represents the person concept, which
encapsulates entities in DBpedia, DOLCE, and FOAF. The equivalence of these
classes is asserted by owl:equivalentClass and :myEquivalentClass. Since
foaf:Person specialises org:Agent (using :mySubClassOf which specialises
rdfs:subClassOf) and dul:Person specialises dul:Agent the ESG contains
an edge between the person and the agent concept.
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dbo:Person
foaf:Person

dul:Person

dul:Agent

org:Agent

dul:SocialAgent dul:PhysicalAgent

:myEquivalentClass

owl:equivalentClass

:mySubClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

owl:equivalentClass

owl:equivalentClass

:myEquivalentClass

owl:equivalentProperty

rdfs:subClassOf:mySubClassOf
rdfs:subPropertyOf

(a) RDF Knowledge Graph

dul:Agent, org:Agent

dul:PhysicalAgent dbo:Person,
dul:Person,
foaf:Person

dul:SocialAgent

(b) Equivalence Set Graph

Fig. 1. An example of an RDF Knowledge Graph and its corresponding Equivalence
Set Graph.

3.3 Formalizing Equivalence Set Graphs

This section contains the formalization of ESGs that were informally introduced
above. An ESG must be configured with ground terms for the following param-
eters: (i) peq: the equivalence property for the observed entities; (ii) psub: the
specialization property for the observed entities; (iii) pe the equivalence property
for properties; (iv) ps the specialization property for properties.

Definition 1 specifies the deductive closure over an arbitrary property p with
respect to pe and ps. This is the set of properties that are implicitly equivalent
to or subsumed by p. It is worth noticing that, in the general case, a deductive
closure for a class of (observed) entities depends on all the four parameters:
peq and psub are needed for retrieving equivalences and specializations among
entities, and pe and ps are need for retrieving equivalences and specializations of
peq and psub. It is easy to see that when the subject of observation are properties
peq and psub coincide with pe and ps respectively.

Definition 1 (Deductive Closure of Properties). Cpe,ps
pe,ps(p) is the deductive

closure of property p with respect to pe and ps.

Definition 2 (Closure Path). p+⇐⇒ denotes any path, consisting of one or
more occurrences of predicates from Cpe,ps

pe,ps(p).

Once the four custom parameters have been specified, a specific Equivalence
Set Graph is determined by Definitions 3 and 4.

Definition 3 (ESG Nodes). Let G be the graph merge [10] of an RDF Knowl-
edge Graph. The set of nodes of the corresponding Equivalence Set Graph is:

Vpeq,psub
pe,ps := {v = {e1, . . . , en} | (∀ei, ej ∈ v)(eipeq+⇐⇒ ej ∈ G)}

Definition 4 (ESG Edges). Let G be the graph merge of an RDF Knowledge
Graph. The set of edges of the corresponding Equivalence Set Graph is:

Epeq,psub
pe,ps := {(v = {v1, . . . , vn}, z = {z1, . . . , zn}) |

(∃vi ∈ v)(∃zj ∈ z)(∃p ∈ Cpe,ps
pe,ps(psub))(〈vi, p, zj〉 ∈ G)}
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Definitions 5 and 6 define the concept of closure.

Definition 5 (Specialization Closure). Let G be the graph merge of an
RDF Knowledge Graph. The specialization closure of G is a function that maps
an entity e onto the set of entities that implicitly specialise e:

H+peq,psub
pe,ps (e) := {e′ | e′psub+

=⇒ e ∈ G}

Definition 6 (Equivalence and Specialization Closure). Let G be a graph
merge of an RDF Knowledge Graph, the equivalence and specialization closure
of G is a function that given an entity e returns all the entities that are either
implicitly equivalent to e, or implicitly specialize e. I.e.:

Cpeq,psub
pe,ps (e) := {e′ | (∃v ∈ Vpeq,psub

pe,ps )(e ∈ v ∧ e′ ∈ v)} ∪ H+peq,psub
pe,ps (e)

3.4 Metrics

In this section we define a set of metrics that can be computed by querying
Equivalence Set Graphs.

Number of Equivalence Sets (ES), Number of Observed Entities (OE),
and Ratio (R). The number of equivalence sets (ES) is the number of nodes in
an Equivalence Set Graph, i.e., |Vpeq,psub

pe,ps |. Equivalence sets contain equivalent
entities (classes, properties or individuals). The number of observed entities (OE)
is the size of the universe of discourse: i.e. |{e ∈ v | v ∈ Vpeq,psub

pe,ps }|. The ratio ES
OE

(R) between the number of equivalence sets and the number of entities indicates
to what extent equivalence is used among the observed entities. If equivalence is
rarely used, R approaches 1.0.

Number of Edges (E). The total number of edges is |Epeq,psub
pe,ps |.

Height of Nodes. The height h(v) of a node v is defined as the length of the
longest path from a leaf node until v. The maximum height of an ESG is defined
as Hmax = argmaxv∈V h(v). Distribution of the height : for n ranging from 0 to
Hmax we compute the percentage of nodes having that height (i.e. H(n)).

Number of Isolated Equivalent Sets (IN), Number of Top Level Equiv-
alence Sets (TL). In order to observe the shape and structure of hierarchies
in LOD, we compute the number Isolated Equivalent Sets (IN) in the graph,
and the number of Top Level Equivalence Sets (TL). An IES is a node without
incoming or outgoing edges. A TL is a node without outgoing edges.

Extensional Size of Observed Entities. Let c be a class in LOD, and t a
property in the deductive closure of rdf:type. We define the extensional size
of c (i.e. S(c)) as the number of triples having c as object and t as predicate
(i.e. S(c) =

∑
t∈C |{〈e, t, c〉|∃e.〈e, t, c〉 ∈ G}| where C is Cpe,ps

pe,ps). We define the
extensional size of a property p (i.e. S(p)) as the number of triples having p as
predicate (i.e. S(p) = |{〈s, p, o〉|∃p, o.〈s, p, o〉 ∈ G}|).
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Extensional Size of Equivalence Sets. We define two measures: direct exten-
sional size (i.e. DES) and indirect extensional size (i.e. IES). DES is defined as
the sum of the extensional size of the entities belonging to the set. The IES is
its DES summed with the DES of all equivalence sets in its closure.

Number of Blank Nodes. Blank nodes are anonymous RDF resource used (for
example) within ontologies to define class restrictions. We compute the number
of blank nodes in LOD and we compute the above metrics both including and
excluding blank nodes.

Number of Connected Components. Given a directed graph G, a strongly
connected component (SCC) is a sub-graph of G where any two nodes are con-
nected to each other by at least one path; a weakly connected component (WCC)
is the undirected version of a sub-graph of G where any two nodes are connected
by any path. We compute the number and the size of SCC and WCC of an ESG,
to observe its distribution. Observing these values (especially on WCC) provides
insights on the shape of hierarchical structures formed by the observed entities,
at LOD scale.

4 Computing Equivalence Set Graphs

In this Section we describe the algorithm for computing an equivalence set graph
from a RDF dataset. An implementation of the algorithm is available online5.

Selecting Entities to Observe. The first step of the procedure for computing
an ESG is to select the entities to observe, from the input KG. To this end, a
set of criteria for selecting these entities can be defined. In our study we want
to observe the behaviour of classes and properties, hence our criteria are the
followings: (i) A class is an entity that belongs to rdfs:Class. We assume that
the property for declaring that an entity belongs to a class is rdf:type. (ii) A
class is the subject (object) of a triple where the property has rdfs:Class as
domain (range). We assume that the property for declaring the domain (range)
of a property is rdfs:domain (rdfs:range). (iii) A property is the predicate
of a triple. (iv) A property is an entity that belongs to rdf:Property. (v) A
property is the subject (object) of a triple where the property has rdf:Property
as domain (range). We defined these criteria since the object of our observation
are classes and properties, but the framework can be also configured for observing
other kinds of entities (e.g. individuals).

As discussed in Sect. 3.2 we have to take into account possible equiva-
lences and/or specializations of the ground terms, i.e. rdf:type, rdfs:range,
rdfs:domain and the classes rdfs:Class and rdf:Property.

Computing Equivalence Set Graph. As we saw in the previous section,
for computing an ESG a preliminary step is needed in order to compute the
deductive closure of properties (which is an ESG itself). We can distinguish two
cases depending if condition peq = pe and psub = ps holds or not. If this condition

5 https://w3id.org/edwin/repository.

https://w3id.org/edwin/repository


66 L. Asprino et al.

holds (e.g. when the procedure is set for computing the ESG of properties), then
for retrieving equivalences and specializations of peq and psub the procedure has
to use the ESG is building (cf. UpdatePSets). Otherwise, the procedure has
to compute an ESG (i.e. Cpe,ps

pe,ps) using pe as peq and ps as psub. We describe how
the algorithm works in the first case (in the second case, the algorithm acts in
a similar way, unless that Pe and Ps are filled with Cpe,ps

pe,ps(peq) and Cpe,ps
pe,ps(psub)

respectively and UpdatePSets is not used).
The input of the main procedure (i.e. Algorithm 1) includes: (i) a set Pe of

equivalence relations. In our case Pe will contain owl:equivalentProperty for
the ESG of properties, and (the deductive closure of) owl:equivalentClass
for the ESG of classes; (ii) a set Ps of specialisation relations. In our case Ps

will contain rdfs:subPropertyOf for the ESG of properties, and (the deductive
closure of) rdfs:subClassOf for the ESG of classes. The output of the algorithm
is a set of maps and multi-maps which store nodes and edges of the computed
ESG:

ID a map that, given an IRI of an entity, returns the identifier of the ES it
belongs to;

IS a multi-map that, given an identifier of an ES, returns the set of entities it
contains;

H (H−) a multi-map that, given an identifier of an ES, returns the identifiers
of the explicit super (sub) ESs.

The algorithm also uses two additional data structures: (i) P ′
e is a set that stores

the equivalence relations already processed (which are removed from Pe as soon
as they are processed); (ii) P ′

s is a set that stores the specialisations relations
already processed (which are removed from Ps as soon as they are processed).

The algorithm repeats three sub-procedures until Pe and Ps become empty:
(i) Compute Equivalence Sets (Algorithm 2), (ii) Compute the Specialisation
Relation among the Equivalence Sets (Algorithm4), (iii) Update Pe and Ps (i.e.
UpdatePSets).

Algorithm 2 iterates over Pe, and at each iteration moves a property p from
Pe to P ′

e, until Pe is empty. For each triple 〈r1, p, r2〉 ∈ G, it tests the following
conditions and behaves accordingly:

1. r1 and r2 do not belong to any ES, then: a new ES containing {r1, r2} is
created and assigned an identifier i. (r1,i) and (r2,i) are added to ID, and (i,
{r1, r2}) to IS;

2. r1 (r2) belongs to the ES with identifier i1 (i2) and r2 (r1) does not belong
to any ES. Then ID and IS are updated to include r2 (r1) in i1 (i2);

3. r1 belongs to an ES with identifier i1 and r2 belongs to an ES with identifier
i2 (with i1 = i2). Then i1 and i2 are merged into a new ES with identifier
i3 and the hierarchy is updated by Algorithm3. This algorithm ensures both
the followings: (i) the super (sub) set of i3 is the union of the super (sub) sets
of i1 and i2; (ii) the super (sub) sets that are pointed by (points to) (through
H or H−) i1 or i2, are pointed by (points to) i3 and no longer by/to i1 or i2.
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The procedure for computing the specialization (i.e. Algorithm4) moves p
from Ps to P ′

s until Ps becomes empty. For each triple 〈r1, p, r2〉 ∈ G the algo-
rithm ensures that r1 is in an equivalence set with identifier i1 and r2 is in an
equivalence set with identifier i2:

1. If r1 and r2 do not belong to any ES, then IS and ID are updated to include
two new ESs {r1} with identifier i1 and {r2} with identifier i2;

2. if r1 (r2) belongs to an ES with identifier i1 (i2) and r2 (r1) does not belong
to any ES, then IS and ID are updated to include a new ES {r2} ({r1}) with
identifier i2 (i1).

At this point r1 is in i1 and r2 is in i2 (i1 and i2 may be equal) and then i2 is
added to H(i1) and i1 is added to H−(i2).

The procedure UpdatePSets (the last called by Algorithm 1) adds to Pe

(Ps) the properties in the deductive closure of properties in P ′
e (P ′

s). For each
property p in P ′

e (P ′
s), UpdatePSets uses ID to retrieve the identifier of the ES

of p, then it uses H− to traverse the graph in order retrieve all the ESs that are
subsumed by ID(p). If a property p′ belongs to ID(p) or to any of the traversed
ESs is not in P ′

e (Ps), then p′ is added to Pe (Ps).
Algorithm Time Complexity. Assuming that retrieving all triples having

a certain predicate and inserting/retrieving values from maps costs O(1). The
algorithm steps once per each equivalence or subsumption triple. FixHiearchy
costs in the worst case O(neq) where neq is the number of equivalence triples
in the input dataset. nsub is the number of specialization triples in the input
dataset. Hence, time complexity of the algorithm is O(n2

eq + nsub).
Algorithm Space Complexity. In the worst case the algorithm needs to

create an equivalence set for each equivalence triple and a specialization relation
for each specialization triple. Storing ID and IS maps costs ∼2n (where n is the
number of observed entities from the input dataset), whereas storing H and H−

costs ∼ 4n2. Hence, the space complexity of the algorithm is O(n2).

5 Results

In order to analyse the modeling structure and style of LOD we compute two
ESGs from LOD-a-lot: one for classes and one for properties. Both graphs are
available for download6. We used a laptop (3 Ghz Intel Core i7, 16 GB of RAM).
Building the two ESGs took ∼11 h, computing their extension took ∼15 h.
Once the ESG are built, we can query them to compute the metrics defined
in Sect. 3.4 and make observations at LOD scale within the order of a handful of
seconds/minutes. Queries to compute indirect extensional dimension may take
longer, in our experience up to 40 min.

The choice of analysing classes and properties separately reflects the distinc-
tions made by RDF(S) and OWL models. However, this distinction is sometimes
overlooked in LOD ontologies. We observed the presence of the following triples:

6 https://w3id.org/edwin/iswc2019 esgs.

https://w3id.org/edwin/iswc2019_esgs
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Algorithm 1. Main Procedure
1: procedure Main(Pe, Ps)

2: P
′
e = P

′
s = ∅

3: Init ID: IRI → IDIS

4: Init IS: IDIS → IS
5: Init H: IDIS → 2IDIS

6: Init H−: IDIS → 2IDIS

7: Init C: IDIS → 2IDIS

8: Init C−: IDIS → 2IDIS

9: while Pe �= ∅||Ps �= ∅ do
10: ComputeESs( )
11: ComputeHierarchy( )
12: UpdatePSets( )
13: end while
14: end procedure
15: procedure UpdatePSets( )
16: for p′

e ∈ P ′
e||p′

s ∈ P ′
s do

17: for pe s.t. Cpe,ps
pe,ps(p

′
e) do

18: Add pe to Pe if pe /∈ P ′
e

19: end for
20: for ps s.t. Cpe,ps

pe,ps(p
′
s) do

21: Add ps to Ps if ps /∈ P ′
s

22: end for
23: end for
24: end procedure

Algorithm 2. Compute Equivalence Sets
1: procedure ComputeESs( )
2: for pe ∈ Pe do
3: Remove p from Pe and Put p in P

′
e

4: for 〈r1, pe, r2〉 ∈ G do
5: if ID(r1) = ∅ ∧ ID(r2) = ∅ then
6: Let i be a new identifier
7: Put (r1, i) and (r2, i) in ID
8: Put (i, {r1, r2}) in IS
9: else if ID(r1) = i1 ∧ ID(r2) = ∅ then
10: Put (r2, i1) in ID and Put r2 in IS(i1)
11: else if ID(r1) = ∅ ∧ ID(r2) = i2 then
12: Put (r1, i2) in ID and Put r1 in IS(i2)
13: else if ID(r1)=i1∧ID(r2)=i2∧i1 �=i2 then
14: Let IS3 ← IS(i1) ∪ IS(i1)
15: Let i3 be a new identifier
16: Put (i3, IS3) in IS
17: Put (r3, i3) in ID for all r3 ∈ IS3

18: Remove (i1, IS(i1)) from IS
19: Remove (i2, IS(i2)) from IS
20: FixHierarchy(i1,i2,i3)
21: end if
22: end for
23: end for
24: end procedure

rdfs:subPropertyOf rdfs:domain rdf:Property . # From W3C
rdfs:subClassOf rdfs:domain rdfs:Class . # From W3C
rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf . # From BTC

The first two triples come from RDFS vocabulary defined by W3C, and the third
can be found in the Billion Triple Challenge datasets7. These triples imply that
if a property p1 is subsumed by a property p2, then p1 and p2 become classes.
Since our objective is to observe classes and property separately we can not
accept the third statement. For similar reasons, we can not accept the following
triple:

rdf:type rdfs:subPropertyOf rdfs:subClassOf . # From BTC

which implies that whatever has a type becomes a class. It is worth noticing
that these statements does not violate RDF(S) semantics, but they do have far-
reaching consequences for the entire Semantic Web, most of which are unwanted.

Equivalence Set Graph for Properties. We implemented the algorithm pre-
sented in Sect. 4 to compute the ESG for properties contained in LOD-a-lot [7]. Our
input parameters to the algorithm are: (i) Peq = {owl:equivalentProperty}; (ii)

7 https://github.com/timrdf/DataFAQs/wiki/Billion-Triples-Challenge.

https://github.com/timrdf/DataFAQs/wiki/Billion-Triples-Challenge
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Algorithm 3
1: procedure FixHierar-

chy(i1, i2, i3)
2: H(i3) = H(i1) ∪ H(i2)
3: H−(i3) = H−(i1) ∪ H−(i2)
4: for i11 ∈ H(i1) do
5: Remove i1 from H−(i11)
6: Add i3 to H−(i11)
7: end for
8: for i11 ∈ H−(i1) do
9: Remove i1 from H(i11)
10: Add i3 to H(i11)
11: end for
12: for i21 ∈ H(i2) do
13: Remove i2 from H−(i21)
14: Add i3 to H−(i21)
15: end for
16: for i21 ∈ H−(i2) do
17: Remove i2 from H(i21)
18: Add i3 to H(i21)
19: end for
20: end procedure

Algorithm 4
1: procedure ComputeHierarchy( )
2: for ps ∈ Ps do
3: Remove p from Ps and put p in P

′
s

4: for 〈r1, ps, r2〉 do
5: if ID(r1) = ∅ ∧ ID(r2) = ∅ then
6: Let i1 and i2 be new identifiers
7: Put (r1, i1) and (r2, i2) in ID
8: Put (i1, {r1}) and (i2, {r2}) in IS
9: else if ID(r1) = i1 ∧ ID(r2) = ∅ then
10: Let i2 be a new identifier
11: Put (r2, i2) in ID and (i2, {r2}) in IS
12: else if ID(r1) = ∅ ∧ ID(r2) = i2 then
13: Let i1 be a new identifier
14: Put (r1, i1) in ID
15: Put (i1, {r1}) in IS
16: end if
17: Put (i1, H(i1) ∪ {i2}) in H
18: Put (i2, H

−(i2) ∪ {i1}) in H−

19: end for
20: end for
21: end procedure

Ps = {rdfs:subPropertyOf}. Since owl:equivalentProperty is neither equiva-
lent to nor subsumed by any other property in LOD-a-lot, the algorithm used only
this property for retrieving equivalence relations. Instead, for computing the hier-
archy of equivalence sets the algorithm used 451 properties which have been found
implicitly equivalent to or subsumed by rdfs:subPropertyOf.

Table 1 presents the metrics (cf. Sect. 3.4) computed from the equivalence set
graph for properties. It is quite evident that the properties are poorly linked. (i)
The ratio (R) tends to 1, indicating that few properties are declared equivalent
to other properties; (ii) the ratio between the number of equivalence sets (ES)
and the number of isolated sets (IN) is 0.88, indicating that most of properties
are defined outside of a hierarchy; (iii) the height distribution of ESG nodes (cf.
Fig. 2a) shows that all the nodes have height less than 1; (iv) the high number
of Weakly Connected Components (WCC) is close to the total number of ES.
Figure 2c shows that the dimension of ESs follows the Zipf’s law (a trend also
observed in [6]): many ESs with few instances and few ESs with many instances.
Most properties (∼90%) have at least one instance. This result is in contrast
with one of the findings of Ding and Finin in 2006 [4] who observed that most
properties have never been instantiated. We note that blank nodes are present
in property hierarchies, although they cannot be instantiated. This is probably
due to some erroneous statement.

Equivalence Set Graph for Classes. From the ESG for properties we extract
all the properties implicitly equivalent to or subsumed by owl:equivalentClass
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Table 1. Statistics computed on the equivalent set graph for properties and classes,
from LOD-a-lot. They include the metrics defined in Sect. 3.4. IES(n) indicates the
Number of Equivalent Sets having indirect size n or greater. The term entity is here
used to refer to classes and properties.

Metrics Property Class

# of Observed Entities OE 1,308,946 4,857,653

# of Observed Entities without BNs OEbn 1,301,756 3,719,371

# of Blank Nodes (BNs) BN 7,190 1,013,224

# of Equivalence Sets (ESs) ES 1,305,364 4,038,722

# of Equivalence Sets (ESs) without BNs ESbn 1,298,174 3,092,523

Ratio between ES and OE R .997 .831

Ratio between ES and OE without BNs Rbn .997 .831

# of Edges E 147,606 5,090,482

Maximum Height Hmax 14 77

# Isolated ESs IN 1,157,825 288,614

# of Top Level ESs TL 1,181,583 1,281,758

# of Top Level ESs without BNs TLbn 1,174,717 341,792

# of OE in Top Level ESs OE-TL 1,185,591 1,334,631

# of OE in Top Level ESs without BNs OE-TLbn 1,178,725 348,599

Ratio between TL and OE-TL RTL .996 .960

Ratio between TL and OE-TL without BNs RTLbn .996 .980

# of Weakly Connected Components WCC 1,174,152 449,332

# of Strongly Connected Components SCC 1,305,364 4,038,011

# of OE with Empty Extension OE0 140,014 4,024,374

# of OE with Empty Extension without BNs OE0bn 132,824 2,912,700

# of ES with Empty Extension ES0 131,854 3,060,467

# of ES with Empty Extension without BNs ES0bn 124,717 2,251,626

# of ES with extensional size greater than 1 IES(1) 1,173,510 978,255

# of ES with extensional size greater than 10 IES(10) 558,864 478,746

# of ES with extensional size greater than 100 IES(100) 246,719 138,803

# of ES with extensional size greater than 1K IES(1K) 79,473 30,623

# of ES with extensional size greater than 1M IES(1M) 1,762 3,869

# of ES with extensional size greater than 1B IES(1B) 34 1,833

# of OE-TL with Empty Extension OE-TL0 26,640 1,043,099

# of OE-TL with Empty Extension w/o BNs OE-TL0bn 19,774 83,674

# of TL with Empty Extension TL0 18,884 869,443

# of TL with Empty Extension w/o BNs TL0bn 12,071 66,805
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(2 properties) and put them in Peq, the input parameter of the algorithm.
Ps includes 381 properties that are implicitly equivalent to or subsumed by
rdfs:subClassOf.

Table 1 reports the metrics (cf. Sect. 3.4) computed from the ESG for classes.
Although class equivalence is more common than property equivalence, the value
of R is still very high (0.83), suggesting that equivalence relations among classes
are poorly used. Differently from properties, classes form deeper hierarchies: the
maximum height of a node is 77 (compared to 14 for properties), only 7% of nodes
are isolated and only 31% are top level nodes, we observe from Fig. 2a that the
height distribution has a smoother trend than for properties but still it quickly
reaches values slightly higher than 0. We observe that (unlike properties) most
of class ES are not instantiated: only 31.7% of ES have at least one instance.
A similar result emerges from the analysis carried out in 2006 by Ding and
Finin [4] who reported that 95% of semantic web terms (properties and classes)
have no instances (note that in [4] no RDFS and OWL inferencing was done).
It is worth noticing that part (800K) of these empty sets contain only black
node that cannot be directly instantiated. As for properties, the dimension of
ES follows the Zipf’s distribution (cf. Fig. 2d), a trend already observed in the
early stages of the Semantic Web [4]. We also note that blank nodes are more
frequent in class hierarchies than in property hierarchies (25% of ES of classes
contain at least one blank node).

6 Discussion

We have presented an empirical study aiming at understanding the modeling
style and the overall semantic structure of the Linked Open Data cloud. We
observed how classes, properties and individuals are used in practice, and we
also investigated how hierarchies of concepts are structured, and how much they
are linked.

Even if our conclusions on the issues with LOD data are not revolutionarily
(the community is in general aware of the stated problems for Linked Data),
we have presented a framework and concrete metrics to obtain concrete results
that underpin these shared informal intuitions. We now briefly revisit our main
findings:

LOD Ontologies are Sparsely Interlinked. The values computed for metric
R (ratio between ES and OE) tell us that LOD classes and properties are sparsely
linked with equivalence relations. We can only speculate as to whether ontology
linking is considered less important or more difficult than linking individuals, or
whether the unlinked classes belong to very diverse domains. However, we find
a high value for metric TL (top level ES) with an average of ∼1.1 classes per
ES. Considering that the number of top level classes (without counting BN) is
∼348k, it is reasonable to suspect a high number of conceptual duplicates. The
situation for properties is even worse: the average number of properties per TL
ES is 1 and the number of top level properties approximates their total number.
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Fig. 2. (a) shows the normalised number of nodes per height, (b) shows the number
of weakly connected component per component size, (c) and (d) show the number of
ESs per indirect extensional size. (b), (c) and (d) are in logarithmic scale.

LOD ontologies are also linked by means of specialisation relations
(rdfs:subClassOf and rdfs:subPropertyOf). Although the situation is less
dramatic here, it confirms the previous finding. As for properties, ∼88.7% of ES
are isolated (cf. IN). Classes exhibit better behaviour in this regard, with only
7% of isolated classes. This confirms that classes are more linked than properties,
although mostly by means of specialisation relations.

LOD Ontologies are Mostly Flat. The maximum height of ESG nodes is 14
for properties and 77 for classes. Their height’s distribution (Fig. 2a) shows that
almost all ES (∼100%) belong to flat hierarchies. This observation, combined
with the values previously observed (cf. IN and R), reinforces the claim that
LOD must contain a large number of duplicate concepts.

As for classes, ∼50% of ES have no specialising concepts, i.e., height = 0
(Fig. 2a). However, a bit less than the remaining ES have at least one specialising
ES. Only a handful of ES reach up to 3 hierarchical levels. The WCC distribution
(Fig. 2b) confirms that classes in non-flat hierarchies are mostly organised as
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siblings in short-depth trees. We speculate that ontology engineers put more
care into designing their classes than they put in designing their properties.

LOD Ontologies Contain Many Uninstantiated Concepts. We find that
properties are mostly instantiated (∼90%), which suggests that they are defined
in response to actual need. However, most classes – even not counting blank
nodes – have no instances: ∼67% of TL ES have no instances. A possible inter-
pretation is that ontology designers tend to over-engineer ontologies beyond their
actual requirements, with overly general concepts.

6.1 Future Work

We are working on additional metrics that can be computed on ESGs, and
on extending the framework to analyse other kinds of relations (e.g. disjoint-
ness). We are also making a step towards assessing possible relations between
the domain of knowledge addressed by LOD ontologies and the observations
made.
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Abstract. The ontology-based data access (OBDA) paradigm can ease
access to heterogeneous and incomplete data sources in many applica-
tion domains. However, state-of-the-art tools are still based on the DL-
Lite family of description logics (DLs) that underlies OWL 2 QL, which
despite its usefulness is not sufficiently expressive for many domains.
Accommodating more expressive ontology languages remains an open
challenge, and the consensus is that Horn DLs like Horn-SHIQ are
particularly promising. Query answering in Horn-SHIQ, a prerequisite
for OBDA, is supported in existing reasoners, but many ontologies can-
not be handled. This is largely because algorithms build on an ABox-
independent approach to ontological reasoning that easily incurs in an
exponential behaviour. As an alternative to full ABox-independence, in
this paper we advocate taking into account general information about the
structure of the ABoxes of interest. This is especially natural in the set-
ting of OBDA, where ABoxes are generated via mappings, and thus have
a predictable structure. We present a simple yet effective approach that
guides ontological reasoning using the possible combinations of concepts
that may occur in the ABox, which can be obtained from the mappings
of an OBDA specification. We implemented and tested our optimization
in the Clipper reasoner with encouraging results.

1 Introduction

The ontology-based data access (OBDA) paradigm [22] eases access to possibly
heterogeneous and incomplete data sources using an ontology, a formal repre-
sentation of the conceptualization of the domain that is written in a shareable,
machine-readable language. The user queries can be expressed over the familiar
ontology vocabulary, and the knowledge in the ontology can be leveraged to infer
implicit facts and obtain more query answers. Different sources can be linked to
the same ontology, making OBDA a very effective alternative to the costly inte-
gration of data sources [23]. Let us consider a scenario where, to facilitate com-
pliance, a regulatory body shares with financial institutions an ontology that

This work was supported by the Austrian Science Fund (FWF) projects P30360,
P30873, W1255 and by the Free University of Bozen-Bolzano projects STyLoLa,
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includes, among others, the axiom Account � ∃hasOwner.PEP � MonitoredAcc
which states that accounts of politically exposed persons (PEP) must be moni-
tored. Queries of interest for the regulatory body could be similar to this one,
which returns the owners of accounts that interact with a monitored account:

q(y) ← Account(x), hasOwner(x, y), interactsWith(x, z),MonitoredAcc(z)

When evaluating the query we can infer which accounts are monitored, without
this flag being explicitly stored in the data. Moreover, the actual storage of the
accounts, owners and interactions may be rather complex, spanning different
tables and databases, and is likely to differ between different (sub)organizations
and financial institutions. In OBDA this is overcome by using mappings such as

sql1(x, y) � interactedWith(x, y),Account(x),Account(y)
sql2(x, y) � hasOwner(x, y)
sql3(x) � PEP(x)

where sql1 − sql3 are (possibly complex) SQL queries that specify how the data in
one specific organization’s database is mapped to the vocabulary of the ontology.

The ontology of an OBDA specification is usually in the so-called DL-Lite
family of description logics (DLs), which underlies OWL 2 QL [7]. DL-Lite is
tailored so that queries over the ontology can be transformed, using reason-
ing, into standard SQL queries that already incorporate the relevant ontological
knowledge and can be evaluated with existing database query engines. This cen-
tral property is key to OBDA being efficiently implementable on top of current
database management systems. However, many domains call for expressive fea-
tures not supported in DL-Lite. For example, the axiom above uses conjunction
� and a qualified existential restriction ∃r.B on the left-hand-side. Both con-
structs are not expressible in the DL-Lite family, but they are found in many
ontologies [4], and they are in fact the basis of the OWL 2 EL profile popular
for life science ontologies,1 e.g. SNOMED CT, NCI, and GENE ontologies.

Considerable research efforts have been devoted to more expressive DLs.
The so-called Horn DLs are particularly appealing: they can support the fea-
tures above while remaining computationally manageable. In contrast to their
non-Horn counterparts, the data complexity of reasoning in Horn DLs is in
PTime [3]. Some advanced reasoning problems, like query emptiness and query
inseparability, are more manageable for Horn DLs [1,5,6], and they have proved
much more amenable to implementation [9,11,13]. Horn-SHIQ, which can be
seen as the Horn fragment of OWL Lite, is a very popular Horn DL that,
additionally to the features above, supports transitive roles and some number
restrictions. In our example, we could make interactedWith transitive to detect
interactions through a chain of accounts, or we could use an axiom such as
Account� �1 hasOwner.Person to say that an account can have only one owner.

Horn-SHIQ is relatively well understood, and there are existing reasoners
for traditional reasoning problems like satisfiability and classification [13] as well
as for ontology mediated querying (OMQ) which, in a nutshell, is the simplifi-
cation of OBDA (and a prerequisite thereof) that omits the mapping layer: one
1 https://www.w3.org/TR/owl2-profiles/#OWL 2 EL.

https://www.w3.org/TR/owl2-profiles/#OWL_2_EL
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assumes that the data is already an ABox, that is, a set of facts over the ontology
vocabulary. Unlike DL-Lite, it is in general not possible to reduce query answer-
ing in the presence of a Horn-SHIQ ontology to plain SQL query evaluation.
Some alternative approaches have been proposed in order to make OBDA with
Horn-SHIQ feasible on top of existing database technologies. For example, to
rewrite (exactly or approximately) an ontology into a weaker DL [17,19], or to
compile some of the extra expressivity into the mappings [4]. Another possibility
is to compile the query and the ontology into a more expressive query language
than SQL, like Datalog, as done in the Clipper system [11].

Clipper is a query rewriting engine that takes as input an ontology and pos-
sibly a set of queries. After a so-called ‘saturation’ step that uses a consequence-
driven calculus to add axioms implied by the ontology, it generates a Datalog
rewriting of the given queries. Clipper can handle realistic ontologies and queries,
despite being a relatively simple prototype. It is among the richest query answer-
ing engines for Horn DLs, and has inspired recent adaptations [8,16]. However,
Clipper has stark limitations and there are many ontologies that it cannot pro-
cess in reasonable time [9]. This is largely due to the ABox independence of
the saturation step: some axioms that could be omitted for simpler tasks like
classification [13], must be inferred by Clipper since they may be made relevant
by the assertions in some input ABox.

To overcome this obstacle, we propose to mildly compromise ABox inde-
pendence, by allowing the saturation step to depend on the structure of the
possible ABoxes, but not on concrete assertions. Specifically, we propose a ver-
sion (described in Sect. 3) of the Clipper saturation that is parametrized by
a set of sets of concept names, which are used to guide the inference of new
axioms. Intuitively, these concept names are the concept combinations that may
occur in the relevant ABoxes. A nice feature of our approach is that if new
ABoxes become relevant, new sets of concepts can be added and the saturation
re-executed on top of the previous output, and all previous derivations remain
valid. Our approach is particularly meaningful for OBDA, where the virtual
ABoxes arising from the mappings have a restricted and predictable structure.
In Sect. 4 we show that, meaningful sets of concept sets for guiding the algorithm
can be easily extracted from the mappings of an OBDA specification. Our app-
roach is simple yet effective: as we show with an implemented proof of concept,
it significantly improves the efficiency of Clipper on existing ontologies; these
results are reported in Sect. 5.

2 Preliminaries

We recall the definition of Horn-SHIQ and the basics of OBDA.

The Description Logic Horn-SHIQ. We consider countably infinite pair-
wise disjoint sets NC ⊃ {�,⊥} of atomic concepts, NR of role names, and NI of
individual names. The set of roles is N±

R = NR ∪ {r− | r ∈ NR}. If r ∈ NR, then
inv(r) = r− and inv(r−) = r. Concepts are inductively defined as follows: (a)
each A ∈ NC is a concept, and (b) if C, D are concepts and r is a role, then
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C � D, C � D, ¬C, ∀r.C, ∃r.C, �n r.C and �n r.C, for n ≥ 1, are concepts.
An expression C � D, where C,D are concepts, is a general concept inclusion
axiom (GCI). An expression r � s, where r, s are roles, is a role inclusion (RI).
A transitivity axiom is an expression trans(r), where r is a role. A TBox T is
a finite set of GCIs, RIs and transitivity axioms. We let �∗

T denote the reflex-
ive transitive closure of {(r, s) | r � s ∈ T or inv(r)� inv(s) ∈ T }. We assume
w.l.o.g. that there are no r �= s in N±

R such that r �∗
T s and s �∗

T r. A role s is
transitive in T if trans(s) ∈ T or trans(s−) ∈ T . A role s is simple in T if there
is no transitive r in T s.t. r �∗

T s.
A TBox T is a Horn-SHIQ TBox (in normalized form), if each GCI in T

takes one the following forms:

(F1) A1 � . . . � An �B (F3) A1 � ∀r.B
(F2) A1 � ∃r.B (F4) A1 ��1 r.B

where A1, . . . , An, B are concept names and r is a role, and all roles in concepts
of the form �1 r.B are simple. Axioms (F2) are called existential. W.l.o.g. we
treat here only Horn-SHIQ TBoxes in normalized form; our results generalize
to full Horn-SHIQ by means of TBox normalization; see e.g. [13,14] for a defi-
nition and normalization procedures. A Horn-ALCHIQ TBox is a Horn-SHIQ
TBox with no transitivity axioms, and Horn-ALCHIQ� TBoxes are obtained
by additionally allowing role conjunction r1 � r2, where r1, r2 are roles. We let
inv(r1 � r2) = inv(r1) � inv(r2) and assume w.l.o.g. that for each role inclusion
r � s of an Horn-ALCHIQ� TBox T , s ∈ N±

R and inv(r) � inv(s) ∈ T .
An assertion is A(a) or r(a, b), where A ∈ NC, r ∈ NR, and a, b ∈ NI. An

ABox A is a finite set of assertions. Abusing notation, we may write r(a, b) ∈ A
for r ∈ N±

R , meaning r(a, b) ∈ A if r ∈ NR, and inv(r)(b, a) ∈ A otherwise.
The semantics for TBoxes and ABoxes is given by interpretations I =

〈ΔI , ·I〉 which map each a ∈ NI to some aI ∈ I, each A∈NC to some AI ⊆ ΔI ,
and each r ∈ NR to some rI ⊆ ΔI ×ΔI , such that �I = ΔI , ⊥I = ∅. The
map ·I is extended to all concepts and remaining roles as usual, and modelhood
is defined in the usual way, see [2] for details. As common in OBDA, we make
the unique name assumption (UNA), i.e., we require aI �= bI for all a, b ∈ NI

and every interpretation. We remark that our theoretical results also hold in the
absence of the UNA, however, the proposed optimization trivializes in that case.

Databases and Ontology Based Data Access. A database schema S con-
sists of a set of relations R and a set of functional dependencies (FD) F . The
columns of a relation R are identified by their positions 1, . . . , n. For a set i of
columns of R, and a tuple t of R, t[i] denotes the projection of t over i. An FD
F over R has the form R : i → j, where i and j are tuples of columns in R; we
call each j ∈ j a functional attribute in F . This FD holds in an instance D if
the values of i determine the values of j, i.e. t1[i] = t2[i] implies t1[j] = t2[j]
for every pair of tuples t1 and t2 such that {R(t1), R(t2)} ⊆ D.

An OBDA specification is a triple P = (T ,M,S), where T is a TBox (in e.g,
DL-Lite or Horn-SHIQ), S is a database schema, M is a mapping consisting
of mapping assertions that link predicates in T to queries over S. The standard
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W3C language for mappings is R2RML [10], however here we use a more concise
syntax that is common in the OBDA literature. Formally, a mapping M is a set
of mapping assertions m that take the form

conj(y) � X(f ,x)

consisting of a source part conj(y), which is a conjunction of database atoms
whose variables are y, and a target part X(f ,x), which is an atom whose pred-
icate is X over terms built using function symbols f and variables x ⊆ y. In
this paper X(f ,x) takes either the form C(f(x1)) for a concept name C, or the
form r(f(x1), g(x2)) for a role name r. We say that such mapping assertion m
defines the predicate X. We use body(m) to refer to the source part conj(y) of a
mapping m as above, and head(m) to refer to its head X(f ,x).

We make the following assumptions: (i) a �= b implies f(a) �= f(b), for any
f , and (ii) f1 �= f2 implies f1(a) �= f2(b), for any a, b. Both assumptions are
in-line with the use of function symbols in OBDA systems [18], where they act
as templates for producing a unique identifier for each input value. Assumption
(i) is ensured in the R2RML standard using “safe separators”, and although
(ii) is not built into R2RML, it is assumed in existing OBDA tools like Ontop
version 1 (implicitly in [20]).

For a database instance D and mapping M, the ABox M(D) is the set of
atoms X(f ,a), for all conj(y) � X(f ,x) ∈ M and all tuples a of constants in D
such that conj(a) holds in D. An OBDA instance is a pair (P,D), where P is an
OBDA specification and D is a database instance that satisfies the dependencies
in S from P. The semantics of (P,D) is given by the models of T and M(D)).

3 Restricting Horn-SHIQ Saturation

The query rewriting algorithm for Horn-SHIQ described in [11] first saturates
a given TBox T by adding axioms, and then uses the saturated TBox to rewrite
a given input query. The saturation step is critical and can be costly. Before
describing how we can improve it using information about the ABox structure,
we discuss in more detail how ABox-independence impacts scalability.

3.1 Bottleneck of ABox-Independent Saturation

The calculus of [11] is as shown in Table 1, but without the side conditions after
“:” and rules Λ∗, Λ+, Λ−, which represent the core of our optimization discussed
below. This algorithm is sound and complete for every possible ABox, and it can
be implemented in a relatively simple way. However, it is computationally expen-
sive. It is well-known that the algorithm is (unavoidably) worst-case exponential,
but the problem is that this is not just a hypothetical worst-case: an unmanage-
able combinatorial explosion of inferred axioms may occur for realistic ontologies
as well. Roughly, this is because there may be many axioms that are relevant for
building the universal model of some ABox, but which are not relevant for the
ABoxes we are interested in. We illustrate this through the example below:
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Table 1. Optimized inference calculus. Possibly primed M, N are conjunctions of con-
cept names, and S of roles; Λ is a set of activators and α, α′ are activators in Λ. The
calculus in [11] omits the side conditions and the rules Λ∗, Λ+, Λ−.

(Rc
�)

M � ∃S.(N � N ′) N � A

M � ∃S.(N � N ′ � A)
: M ⊆ α, α ∈ Λ

(Rr
�)

M � ∃(S � S′).N S � r

M � ∃(S � S′ � r).N
: M ⊆ α, α ∈ Λ

(R⊥)
M � ∃S.(N � ⊥)

M � ⊥ : M ⊆ α, α ∈ Λ

(R∀)
M � ∃(S � r).N A � ∀r.B

M � A � ∃(S � r).(N � B)
: M ∪ A ⊆ α, α ∈ Λ

(R−
∀ )

M � ∃(S � inv(r)).(N � A) A � ∀r.B

M � B
: M ⊆ α, α ∈ Λ

(R≤)

M � ∃(S � r).(N � B) A� �1 r.B
M ′ � ∃(S′ � r).(N ′ � B)

M � M ′ � A � ∃(S � S′ � r).(N � N ′ � B)
: M∪M ′∪A ⊆ α, α∈Λ

(R−
≤)

M � ∃(S � inv(r)).(N1 � N2 � A) A� �1 r.B
N1 � ∃(S′ � r).(N ′ � B � C)

M � B � C M � B � ∃(S � inv(S′ � r)).(N1 � N2 � A)
: M ∪ B ⊆ α, α ∈ Λ

(Λ∗)
M � B M ⊆ α

Λ = Λ ∪ {α ∪ {B}} (Λ+)
M � ∃R.N

Λ = Λ ∪ {N} (Λ−)
α′ ⊆ α

Λ = Λ \ α′

Example 1. The following axioms stipulate different flags for monitored accounts:

MonitoredAccount � ∃hasFlag.� IndividualAcc � ∀hasFlag.YellowFlag
SmallBusinessAcc � ∀hasFlag.RedFlag BigBusinessAcc � ∀hasFlag.YellowFlag

When running the calculus on this ontology we obtain several axioms of the form
MonitoredAccount � C � ∃hasFlag.D, where C is some conjunction of account
types such as IndividualAcc � SmallBusinessAcc, IndividualAcc � BigBusinessAcc,
etc., and D is some conjunction of flag colors. However, if we know that an
account will only have one account type, we do not need all these axioms. If the
ontology includes axioms stating the disjointness of account and flag types, the
algorithm would discard some of the axioms after inferring them. Our approach,
in contrast, is effective even when such axioms are not given, and allows us to
save the computation of this axioms in advance if we know that an account
is never declared to have two types in the data. Note also that the same role
hasFlag could be used to flag something other than accounts, such as transac-
tions, and then the calculus would also derive axioms for all combinations of
types of transactions and types of accounts. Our observations suggest that such
patterns are not uncommon, and obvious “common sense” disjointness asser-
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tions (such as saying that transactions are not accounts, or that accounts are
not persons) are often omitted. This may not affect other reasoning techniques
(such as tableau for consistency testing), but can have a major impact on this
kind of ABox independent saturation.

3.2 Constraining the Derivation

We propose to use knowledge about the structure of relevant ABoxes to guide
the calculus and avoid inferring irrelevant axioms as illustrated above.

Definition 1 (Propagating concepts and activators). Concept names in
NC and expressions of the form ∃r with r a role are called basic concepts.

Let a be an individual and A an ABox. The ABox type of a in A is the
following set of basic concepts:

atypA(a) = {A | A(a)∈ A} ∪ {∃r | r(a, b)∈ A}
For a TBox T and a set τ of basic concepts, the T -propagating concepts of τ
are:

prop(τ, T ) = {B|A � ∀s.B ∈ T , r �∗
T s,∃inv(r) ∈ τ}

An activator α is just a set of concept names. We say that a set Λ of activators
covers an ABox A w.r.t. a TBox T if for each individual a occurring in A, there
is some activator α ∈ Λ such that

τa|NC
∪ prop(τa, T ) ⊆ α

where τa = atypA(a) and τa|NC
denotes its restriction to concept names only.

Note that in covering sets of activators, we require that for each individual
there is an activator that contains not only its type, but also its propagating con-
cepts. In a way, this over-approximates its actual type in the universal model.
Given a TBox T , the singleton set that contains exactly the set of all concept
names occurring in T is a set of activators that covers any ABox over the signa-
ture of T . However, such a large activator would not prevent the derivation of
irrelevant axioms in our calculus. For a concrete ABox we can be more accurate,
and take as set of activators precisely the set of all αa = τa|NC

∪ prop(τa, T )
where a is an individual in A with τa = atypA(a). In fact, we use such activators
sets in our experiments in Sect. 5.

In Table 1 we present the optimized version of the calculus, which takes as
input and maintains a set of activators. Each rule has a side condition that
checks if the left hand side of the axiom we want to derive is contained in an
existing activator. There are three additional rules Λ∗,Λ+ and Λ− not present
in [11]. The rule Λ∗ is used to close the maintained activators under axioms of
the form (F1), while Λ+ is used to create fresh activators for inferred axioms of
the form (F2), and Λ− drops redundant activators.

Before saturation, we drop transitivity axioms from the input TBox, and
instead add axioms of the form (F3) that ensure the effect of transitivity is
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accounted for during saturation. The saturation starts from the resulting Horn-
ALCHIQ TBox, but since it may introduce role conjunctions, it keeps a set of
Horn-ALCHIQ� axioms.

Definition 2. Given an Horn-SHIQ ontology, let T ∗ be the result of dropping
all transitivity axioms trans(r) from T , and adding, for every A � ∀s.B ∈ T
and every transitive role r with r �∗

T s, the axioms A � ∀r.Br, Br � ∀r.Br and
Br � B, where Br is a fresh concept name.

We denote by ∇(T ,Λ) the result of saturating T ∗ with the rules in Table 1
and set of initial activators Λ.

Formally ∇(T ,Λ) is a pair of an Horn-ALCHIQ� TBox and a set of activa-
tors, but we may abuse notation and use ∇(T ,Λ) to denote the TBox alone.

Similarly as in [11], the saturated set of axioms contains all inferences from
the ontology that are relevant for reasoning about any covered ABox; not only
for checking consistency, but also for other problems like query rewriting.

Definition 3. For an ABox A, we denote by A∇(T ,Λ) the result of closing A
under the following rules:

– A1 � . . . � An � B ∈ ∇(T ,Λ) and {A1(a), . . . An(a)} ∈ A, then B(a) ∈ A;
– A � ∀r.B ∈ ∇(T ,Λ) and r(a, b) ∈ A, A(a) ∈ A, then B(b) ∈ A;
– r � s ∈ T and r(a, b) ∈ A, then s(a, b) ∈ A;
– A� �1 rB ∈ T and A(a), r(a, b), r(a, c), B(b), B(c), then ⊥(a) ∈ A
– A1� . . . �An � ∃(r1 � . . . � rm).(B1 � . . . � Bk), A� �1 r.B ∈ ∇(T ,Λ)

such that for some i, j we have r = ri,B = Bj and A(a), r(a, b) ∈ A,
then {B1(b), . . . , Bk(b), r1(a, b), . . . , rk(a, b)} ⊆ A.

We call A∇(T ,Λ) contradiction-free if there are no assertions of the form ⊥(a).

To test if a given ABox covered by Λ is consistent with T , it is enough to
check A∇(T ,Λ) for contradiction-freeness.

Proposition 1. Let A be an ABox covered by Λ. Then (T ,A) is consistent iff
A∇(T ,Λ) is contradiction-free.

However, we do not want to only test consistency. Our motivation is OBDA,
and we want support for instance and conjunctive queries for different ABoxes.
We thus provide the standard guarantee one would expect in this setting: from
the computed axioms and a consistent ABox, we can build a universal model. As
usual, the Horn-ALCHIQ� TBox that results from saturation is used to build
so-called pre-models with standard chase techniques, which become models once
the extensions of non-simple roles are updated to satisfy transitivity axioms.

Definition 4. (T -chase, universal model). Let T be a Horn-ALCHIQ�

TBox and I an interpretation. We say that an axiom of the form M � ∃S.N is
applicable at e ∈ ΔI if

(a) e ∈ MI ,
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(b) there is no e′ ∈ ΔI with (e, e′) ∈ SI and e′ ∈ NI ,
(c) there is no axiom M ′ � ∃S′.N ′ ∈ T such that e ∈ (M ′)I , S ⊆ S′, N ⊆ N ′,

and S ⊂ S′ or N ⊂ N ′.

If M � ∃S.N is applicable at e ∈ ΔI , then we obtain an interpretation I ′ by
applying M � ∃S.N in I as follows:

– ΔI′
= ΔI ∪ {e′} with e′ a new element not present in ΔI ,

– for each A ∈ NC, we have AI′
= AI ∪{e′} if A ∈ N , and AI′

= AI otherwise,
– for each r ∈ NR, we have rI′

= rI ∪ {(e, e′)} if r ∈ S, rI′
= rI ∪ {(e′, e)} if

r− ∈ S, rI′
= rI otherwise.

For a contradiction-free ABox A, we let IA denote the interpretation whose
domain are the individuals in A, and that has AIA

= {a | A(a) ∈ A} for all
A ∈ NC, and rIA

= {(a, b) | r(a, b) ∈ A} for all r ∈ NR.
The T -chase of a contradiction-free ABox A is the possibly infinite interpre-

tation obtained from IA by fairly applying the existential axioms in T (that is,
every applicable axiom is eventually applied).

Let J denote the T -chase of A∇(T ,Λ). Then I(T ,Λ,A) is the interpretation
with Δ(T ,Λ,A) = ΔJ , AI(T ,Λ,A)

= AJ for every A ∈ NC, and

rI(T ,Λ,A)
=

⋃

s�∗
T r

sJ
+ for every r ∈ N±

R

where sJ
+ is the transitive closure of sJ if trans(s) ∈ T , and sJ

+ = sJ otherwise.

It is standard to show that I(T ,Λ,A) is indeed a universal model:

Proposition 2. Let (T ,A) be a consistent Horn-SHIQ KB, and Λ a set of
activators, such that Λ covers A w.r.t. T . The following hold:

(a) if (T ,A) is consistent then I(T ,Λ,A) |= (T ,A), and
(b) I(T ,Λ,A) can be homomorphically embedded into any model of K.

This proposition is analogous to Proposition 2 in [11]. By guaranteeing that
we can build a universal model of any ABox that is consistent with T , we can
use ∇(T ,Λ) as a representation of models that is sufficient for query answering.
As in the work of Eiter et al., the finite ∇(T ,Λ) allows us to rewrite the query
in such a way that it can be evaluated over a small and easy to compute part of
the possibly infinite represented universal model, we refer to [11] for details.

Note that the output of the original algorithm in [11] coincides with ∇(T ,Λ)
if Λ contains only the set of all the concept names appearing in T . In terms
of computational complexity, the same upper bounds apply for the size of the
saturated sets obtained with either version of the calculus: it may be single
exponential in T , and this exponential blow-up is in general unavoidable. But
as we discuss in Sect. 5.1, in practice the version with activators is faster, builds
smaller sets, and can handle more ontologies.
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Incremental Computation. Assume that we have computed ∇(T ,Λ), and let T1

and Λ1 be the obtained TBox and set of activators. Now, suppose that we want
to query an ABox A that is not covered by Λ (this could be, for example, because
the underlying OBDA specification changed). Then we can simply take a set Λ′

of activators that covers the new ABox profiles. To compute T2 = ∇(T ,Λ ∪ Λ′),
we can reuse the previous output and simply compute T2 = ∇(T1,Λ1 ∪ Λ′). All
axioms in T1 are preserved, and new ones may be derived.

4 Activators from Mappings

In this section we show how one can obtain initial activators for our opti-
mized calculus directly from an OBDA specification P = (T ,M,S), so that
the extracted activators cover the ABox M(D) for any database D. In this
section, we will rely on our assumptions about the function symbols in OBDA
specifications, namely, that a �= b implies f(a) �= f(b) for every f , and that
f1 �= f2 implies f1(a) �= f2(b), for any a, b.

One simple way to obtain the activators would be take as an ABox type all
the head predicates of mappings that share the same functional symbol, roughly
treating each function symbol as the same constant in the ABox. After all, if all
the mappings that share some f(x) in the head would fire for some x, they can
all yield assertions for the same individual. Such an approach would be complete,
but could potentially generate quite large ABox types. As we report in Sect. 5.2,
we observed that real-world specifications do contain mappings that share the
same function symbol in the head, but frequently they cannot fire for the same
value of x due to the functional dependencies. To leverage this and obtain a
more fine-grained set of activators, we first define conflicting mappings.

Definition 5 (Conflicting mapping assertions). Let F = R : i → j a
functional dependency and let j ∈ j be one of its functional attributes. We call
a pair m,m′ of mapping assertions (F, j)-conflicting if the following hold:

– there are terms f(x) in head(m) and f(y) in head(m′), for some function
symbol f , and

– there are atoms R(t) ∈ body(m) and R(t′) ∈ body(m′) such that, for each
i ∈ i we have t[i] = xi, t′[i] = yi, where xi ∈ x, yi ∈ y, and there exists a
j ∈ j, such that t[j], t′[j] are two different constants.

Example 2. Consider the following M for the ontology from Example 1.

m1 : transfers(x, y) � interactedWith(f1(x), f1(y)),

Account(f1(x)),Account(f1(y))

m2 : account owners(x, y, ‘politician′) � PEP(f2(x))

m3 : account owners(x, y, z) � hasOwner(f1(x), f2(y))

m4 : account details(x, ‘business′, ‘big′) � BigBusinessAcc(f1(x))

m5 : account details(x, ‘business′, ‘small′) � SmallBusinessAcc(f1(x))

m6 : account details(x, ‘private′, y) � IndividualAcc(f1(x))
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Now consider a functional dependency F1 : id → type, size over the relation
account details(id, type, size). Then, according to Definition 5, pairs m4,m6 and
m5,m6 are (F1, type)-conflicting, while the pair m4,m5 is (F1, size)-conflicting.

Note that we define conflicts in a way that they are easy to identify, and
that we can guarantee that conflicting mapping assertions cannot fire to create
assertions about the same constant. There may be other reasons why two map-
pings do not fire together that we disregard, but this does not compromise the
correctness of our approach, it may simply result in larger activators, which may
lead to more irrelevant inferences.

For a functional symbol f , we denote by M(f) the set of all mapping asser-
tions in M such that f occurs in the head. A subset M′ of M(f) is conflict-free
if there are no mapping assertions m and m′ in M′ that are (F, j)-conflicting
for some F and j. With Mf we denote the set of maximal conflict-free subsets
of M(f). Then we can guarantee the coverage of M(D) by creating an ABox
type and an activator for each function symbol f and each Mi ∈ Mf .

The problem of computing maximal conflict-free subsets can be solved by
using the notions of maximal cliques from graph theory and the hitting set
problem. Recall that a clique in an undirected graph is a subset of the vertices
such that every two distinct vertices are adjacent; a maximal clique is a clique
that cannot be extended by adding one more vertex. For a set of sets Ω, H
is a hitting set of Ω if for all S ∈ Ω,H ∩ S �= ∅; a hitting set H is minimal
if there exists no other hitting set H ′, such that H ′ ⊆ H. To compute Mf ,
we first create a graph Gf where the node set is M(f) and the edge set is
{(m,m′) | m,m′ are (F, j)-conflicting for some (F, j)}. Next let Ωf be the set of
maximal cliques of Gf . Note that each set in Ωf also includes the set of conflict
free mapping assertions. Then every minimal hitting set of Ωf is a maximal
conflict-free subset of M(f). One can use any hitting set algorithm, e.g. [21], for
this task. We note that despite the lack of tractability, there are efficient algo-
rithms available for the maximal clique and minimal hitting set problems, and
in the sizes of the generated instances in this case are relatively small. Moreover,
the minimality of the hitting sets is not so critical, an efficient approximation
algorithm can also be employed.

Definition 6 (Activators from an OBDA specification). Given an OBDA
specification P = (T ,M,S), let f be a function symbol occurring in M, and let
Mf be the set of maximal conflict-free subsets of M(f). Then we define, for each
Mi ∈ Mf :

atypM(f,Mi) ={A | some m ∈ Mi has head(m) of the form A(f(x))} ∪
{∃r | some m ∈ Mi has head(m) of the form r(f(x), t)} ∪
{∃r− | some m ∈ Mi has head(m) of the form r(t, f(x))}

Finally, we denote by Λ(P) the set of activators whose elements are, for each
function symbols f occurring in M and each Mi ∈ Mf :

atypM(f,Mi)|NC
∪ prop(atypM(f,Mi), T )

where atypM(f,Mi)|NC
denotes the restriction of atypM(f,Mi) to NC only.
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Using the fact that, for all D, each assertion in M(D) comes from some
mapping in M, and that by our assumptions only non-conflicting mappings that
share a function symbol can produce assertions about a common individual, the
following is not hard to show.

Proposition 3. For every OBDA instance (P,D), Λ(P) covers the ABox
M(D).

Example 3. Let’s consider our running example. For the functional symbol f1,
the graph Gf1 = (Ef1 , Vf1), where Ef1 = {m1,m3,m4,m5,m6}, and Vf1 =
{(m4,m5), (m4,m6), (m5,m6)}. The maximal cliques are Ωf1 = {{m1}, {m3},
{m4,m5,m6}}. Thus, the maximal conflict-free sets Mf1 are the minimal hit-
ting sets of Ωf1 , i.e. Mf1 = {M1,M2,M3}, where M1 = {m1,m3,m4}, M2 =
{m1,m3,m5}, M3 = {m1,m3,m6}. Similarly, the maximal conflict-free sets for
f2 is Mf2 = {M4} where M4 = {m2,m3}. Then by Definition 6 we get:

atypf1(M1) = {∃interactedWith, ∃interactedWith−,Account, hasOwner,BigBusinessAcc}
atypf1(M2) = {∃interactedWith, ∃interactedWith−,Account, hasOwner,BigBusinessAcc}
atypf1(M3) = {∃interactedWith, ∃interactedWith−,Account, hasOwner, IndividualAcc}
atypf2(M4) = {∃hasOwner−,Politician}
and, the following set of activators:

Λ = {{Account,BigBusinessAcc}, {Account,SmallBusinessAcc},
{Account, IndividualAcc}, {Politician}}

Note that with this Λ, the R∀ rule of the optimized calculus will not derive the
irrelevant axioms discussed in Example 1.

5 Evaluation

We implemented the optimized calculus in Table 1 in the Clipper reasoner. From
here on we refer to Clipper with C-orig and to our implementation with C-opt.
We tested the feasibility of our approach in two directions:

Optimized TBox saturation. We tested C-opt on a large test set of ontologies
from the Oxford Ontology Repository,2 and compared its performance to C-

orig. The activators that were given as input to C-opt were obtained from
the respective ABoxes that these ontologies include.

Activator extraction from mappings. We extracted activators from three
large OBDA specifications, and analysed the resulting activators.

We remark that, on the one hand, the OBDA specifications that we used in
the second part come with DL-Lite ontologies, for which the combinatorial
behaviour of Horn-SHIQ does not arise and C-opt brings no improvement.
The expressive ontologies of the Oxford repository, on the other hand, have
no accompanying mapping specifications. The lack of test cases with both an

2 http://www.cs.ox.ac.uk/isg/ontologies/UID/.

http://www.cs.ox.ac.uk/isg/ontologies/UID/
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expressive ontology and realistic mappings, while unfortunate, is not surprising,
as existing OBDA engines only support DL-Lite.

The test ontologies, the compiled C-opt, and files with the mapping analysis
can be found in https://github.com/ghxiao/clipper-materials/tree/master/iswc-
2019.

5.1 Optimized TBox Saturation

The instances for these tests came from Oxford Ontology Repository, which
contains 797 ontologies. From those, only 370 had ABoxes, and out of them
18 yielded exceptions while loading on C-orig. From the remaining ontolo-
gies, 131 were uninteresting since their normalized TBoxes did not contain
existential axioms (F2) in which case the saturation step trivializes. From the
resulting 221 ontologies we dropped all axioms not expressible in Horn-SHIQ.
Table 2 shows the distribution of our 221 ontologies with respect to TBox and
ABox size. We categorized them into (S)mall, (M)edium, (L)arge and (V)ery
(L)arge, with boundaries of up to 100, up to 1000, up to 10000, and above 10000
axioms/assertions. There is a fair mix of sizes, and around half of the ontologies
have both ABox and TBox that are large or very large.

Table 2. Distribution of ontologies by their respective ABox and TBox sizes.

TBox sizes Total

S M L VL

ABox sizes S 5.12% 6.51% 4.65% 0.47% 16.75%

M 0% 9.3% 3.72% 0.93% 13.95%

L 0% 5.12% 12.09% 0.47% 17.68%

VL 0.47% 11.63% 14.88% 24.64% 51.62%

Total 5.59% 32.56% 35.34% 26.51%

All experiments were run on a PC with an Intel i7 2.4 GHz CPU with 4 cores
running 64 bit LinuxMint 17, and a Java heap of 4 GB. A time-out limit of 2 min
was set. This was the total time allowed for loading and normalizing the TBox,
saturating it, and in the case of C-opt, also the time used to obtain activators
from the ABox.

Additionally to successfully saturating all ontologies that C-orig succeeded
on, C-opt showed a 37.96% increase in the success rate: C-opt succeeded in 149
out of 221 (67.71%), while C-orig in 108 out of 221 (49.33%). Our of the 221
ontologies, 52 are in the DL-Lite or EL profiles. For them, C-opt succeeded in
49 vs 48 for C-orig. If we take into account only ontologies in more expressive
fragments, beyond DL-Lite and EL, the performance improvement is even more
pronounced: our C-opt succeeded in 100 cases our of 169 ontologies (59.17%),
while C-orig succeeds only in 60 cases (35.5%), resulting in an increase of 66.67%
in the success rate.

https://github.com/ghxiao/clipper-materials/tree/master/iswc-2019
https://github.com/ghxiao/clipper-materials/tree/master/iswc-2019
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Fig. 1. TBox rate of growth for both versions (C-orig= red, C-opt= blue). (Color
figure online)
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Fig. 2. TBox saturation run time for both versions (C-orig= red, C-opt= blue).
(Color figure online)

In what follows, we zoom in into three aspects of these tests. First we make a
more fine grained comparison of C-orig and C-opt, by comparing their behav-
ior on the 108 ontologies that both succeeded on (P1). Then we look at the
performance of C-opt on the 41 ontologies that it succeeded on while C-orig

did not (P2). Finally, to shed some light on the limits of our optimization, we
look more closely at the ontologies that C-opt could not saturate (P3).

(P1). We compare the sizes of the saturated sets and the run times of both
versions, on the 108 ontologies that both succeeded on. To understand how much
smaller the saturated set is in the optimized version, independently of the size
of the original TBox, we show the TBox rate of growth given by the number of
axioms of (F1)-(F2) in the saturated TBox, divided by their total in the initial
(normalized) TBox. Figure 1 depicts the TBox rate of growth for all ontologies;
blue bars for C-opt are plotted over red bars for C-orig. Note that the y-axis
is simply the 108 ontologies, ordered by the rate of growth of C-orig for better
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Fig. 3. Gained instances with C-opt.
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Fig. 4. Failed instances with both versions.

visualization. The x-axis is cut-off; the rate of growth of C-orig in fact reached
a 20-fold growth. The rate of growth of the optimized version was nearly always
smaller, often just a small fraction of the original, in the worst case they are
equal. For 88 ontologies instances the rate of growth for C-opt was 0, i.e. no new
axioms were derived (see the bars without blue color). This means that all the
axioms derived by C-orig were irrelevant for the ABox in the ontology, and for
any ABox covered by the same profiles.

Figure 2 shows the run time of the TBox saturation (x-axis) over all ontologies
(y-axis, ordered by runtime of C-orig). Similarly as in Fig. 1, the run time of
C-opt (blue) is plotted on top of C-orig (red). C-opt outperformed C-orig in
most of the cases. With one exception, these were ontologies where C-opt was
so fast (typically under 100 ms), that the overhead of handling the activators did
not pay off.

(P2). The growth rate and saturation run times of the 41 ontologies gained with
C-opt are shown in the Fig. 3. In both graphs, the ontologies are ordered by the
TBox rate of growth. The left graph shows that the rate of growth for these
ontologies is in line with the growth reported in (P1), remaining below double
the original size even in the worst-case. On the right we see that the run time
for most ontologies was under 10 s, also in line with the run times in (P1).

(P3). We analysed the ontologies that we could not saturate, and observed that
the maximal size of T -propagating concepts over ABox types plays a key role, for
both C-orig and C-opt. C-orig always failed when this number was above 20.
C-opt could handle some ontologies with up to almost a hundred, but failed in
all ontologies with more than that. The maximal size of T -propagating concepts
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over ABox types for all ontologies C-opt failed on is shown in Fig. 4. Note that
there are a few ontologies with no propagating concepts for which both versions
fail. These are hard to saturate for other reasons not related to our optimization.

From the evidence in (P1)–(P3), we can conclude that our approach yields
improvements in three dimensions: the number of ontologies we can saturate,
the run time of the calculus, and the size of the resulting saturated TBox.

5.2 Analysis of Activators Obtained from OBDA Specifications

With the purpose of understanding the feasibility of our approach when ABoxes
come from real OBDA specifications, we analysed three existing benchmarks
that have large specifications: NPD [15] (1173 mapping assertions), Slegge [12]
(62 mapping assertions), and UOBM [4] (96 mapping assertions). The latter
is synthetic, while the other two are from real-world scenarios. As already dis-
cussed, these OBDA specifications are paired with DL-Lite ontologies for which
testing C-opt is not meaningful. Our main goal here was to understand how the
activators obtained from OBDA specifications look, and to verify if they are in
line with the activators from ABoxes that we used for testing C-opt.

Using the approach in Sect. 4, that exploits functional dependencies, we
obtained a set of activators where the largest set has size 9 for NPD, 3 for
Slegge and 11 for UOBM. We expect these activator sizes to be quite man-
ageable for C-opt, since its average runtime was under 2 s over all ontologies
from the Oxford repository with similar ABoxes (namely, 5 or more assertions
in the ABox type of some individual). We remark than in all these cases, since
the ontologies are simple there are no propagating concepts, so the activators
coincide with the actual ABox types that the mappings induce.

The size of the obtained activator sets was over 600 for NPD, but only 4 for
Slegge and 12 for UOBM. We note that the number of mappings sharing the
same function symbol f in the head was up to 30 for NPD, 4 for Slegge, and 15
for UOBM, hence taking only one activator per function symbol would probably
result in a rather poor performance of C-opt.

6 Conclusion

In this paper we proposed an optimization of Horn-SHIQ reasoning that can
be useful for OBDA. We illustrated the problems of current ABox-independent
approaches to TBox saturation, which often manifests exponential behaviour,
and proposed a way to overcome this. In a nutshell, we avoid the derivation of
axioms that are useless since they consider combinations of concepts that can
not occur in the real data. We achieve this by constraining the axiom derivation
with activators that reflect the possible structure of the data. We implemented
our approach as an optimization of the Clipper reasoner [11], which scales well in
general, and can handle considerably more ontologies than the original Clipper.
Crucially, the ABox structure information that is needed in our approach can
be obtained directly from the mapping assertions of an OBDA specification; we
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corroborated this on existing OBDA specifications. We hope this work brings
closer the goal of realizing OBDA with ontologies beyond DL-Lite.

In future work, we plan to explore more fine-grained algorithms for extracting
activators from mappings, and more generally, to further develop approaches to
optimize reasoning techniques that are almost data-independent, but that allow
to leverage some general features of the data to improve performance.
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Abstract. Non-goal oriented, generative dialogue systems lack the abil-
ity to generate answers with grounded facts. A knowledge graph can be
considered an abstraction of the real world consisting of well-grounded
facts. This paper addresses the problem of generating well-grounded
responses by integrating knowledge graphs into the dialogue system’s
response generation process, in an end-to-end manner. A dataset for non-
goal oriented dialogues is proposed in this paper in the domain of soccer,
conversing on different clubs and national teams along with a knowledge
graph for each of these teams. A novel neural network architecture is
also proposed as a baseline on this dataset, which can integrate knowl-
edge graphs into the response generation process, producing well articu-
lated, knowledge grounded responses. Empirical evidence suggests that
the proposed model performs better than other state-of-the-art models
for knowledge graph integrated dialogue systems.

Keywords: Non-goal oriented dialogues ·
Knowledge grounded dialogues · Knowledge graphs

1 Introduction

With the recent advancements in neural network based techniques for language
understanding and generation, there is an upheaved interest in having systems
which are able to have articulate conversations with humans. Dialogue systems
can generally be classified into goal and non-goal oriented systems, based on the
nature of the conversation. The former category includes systems which are able
to solve specific set of tasks for users within a particular domain, e.g. restaurant
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or flight booking. Non-goal oriented dialogue systems, on the other hand, are
a first step towards chit-chat scenarios where humans engage in conversations
with bots over non-trivial topics. Both types of dialogue systems can benefit
from added additional world knowledge [9,11,38].

For the case of non-goal oriented dialogues, the systems should be able to
handle factoid as well as non-factoid queries like chit-chats or opinions on differ-
ent subjects/domains. Generally, such systems are realized by using an extrinsic
dialogue managers using intent detection subsequently followed by response gen-
eration (for the predicted intent) [1,2]. Furthermore, in case of factoid queries
posed to such systems, it is very important that they generate well articulated
responses which are knowledge grounded. The systems must be able to generate
a grammatically correct as well as factually grounded responses to such queries,
while preserving co-references across the dialogue contexts. For better under-
standing, let us consider an example dialogue and the involved knowledge graph
snippet in Fig. 1. The conversation consists of chit-chat as well as factoid queries.
For the factoid question “do you know what is the home ground of Arsenal?”, the
system must be able to answer with the correct entity (Emirates Stadium) along
with a grammatically correct sentence; as well as handle co-references(“its” in
the third user utterance meaning the stadium). Ideally, for an end-to-end system
for non-goal oriented dialogues, the system should be able to handle all these
kind of queries using a single, end-to-end architecture.

There are existing conversation datasets supported by knowledge graphs for
well-grounded response generation. [11] introduced an in-car dialogue dataset for
multi-domain, task-oriented dialogues along with a knowledge graph which can
be used to answer questions about the task the user wants to be assisted with.
The dataset consists of dialogues from the following domains: calendar schedul-
ing, weather information retrieval, and point-of interest navigation. For non-goal
oriented dialogues, [10] proposed a dataset in the movie domain. The proposed
dataset contains short dialogues for factoid question answering over movies or for
recommendations. They also provide a knowledge graph consisting of triples as
(s, r, o). Where s is the subject, r stands for relations and o being the object. An
example of a triple from the dataset is: (Flags of Our Fathers, directed by, Clint
Eastwood). The movie dialogues can utilize this provided knowledge graph for
recommendation and question answering purposes. However, this dataset only
tackles the problem of factual response generation in dialogues, and not well
articulated ones.

To cater to the problem of generating well articulated, knowledge grounded
responses for non-goal oriented dialogue systems, we propose a new dataset in
the domain of soccer. We also propose the KG-Copy network which is able
to copy facts from the KGs in case of factoid questions while generating well-
articulated sentences as well as implicitly handling chit-chats, opinions by gen-
erating responses like a traditional sequence-to-sequence model.

The contributions of the paper can be summarized as follows:

– A new dataset of 2,990 conversations for non-goal oriented dialogues in the
domain of soccer, over various club and national teams.
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Fig. 1. A conversation about the football club Arsenal and the Knowledge Graph
involved.

– A soccer knowledge graph which consists of facts, as triples, curated from
wikipedia.

– An end-to-end based, novel neural network architecture as a baseline app-
roach on this dataset. The network is empirically evaluated against other
state-of-the-art architectures for knowledge grounded dialogue systems. The
evaluation is done based on both knowledge groundedness using entity-F1
score and also standard, automated metrics (BLEU) for evaluating dialogue
systems.

The rest of the paper is organized as follows: we first introduce related work in
Sect. 2. Then we cover the soccer dataset, which serves as background knowledge
for our model in Sect. 3. The proposed model is explained in Sect. 4 and the
training procedure is detailed in Sect. 5. In Sect. 6, we compare our model with
other state-of-the-art models. We do a qualitative analysis of the model in Sect. 7,
followed by an error analysis. In Sect. 8, finally we conclude.

2 Related Work

Systems that are able to converse with humans have been one of the main focus
of research from the early days of artificial intelligence. Such conversational
systems can be designed as generative or retrieval based. A system produces
automatic responses from the training vocabulary for the former, while select-
ing a best response from a set of possible responses for the latter. Automatic
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response generation was previously devised by [24] using a phrased-based gener-
ative method. Later onwards, sequence-to-sequence based neural network mod-
els has been mainly used for dialogue generation [19,27,29]. These models are
further improved using hierarchical RNN based architectures for incorporating
more contextual information in the response generation process [26]. Reinforce-
ment learning-based end-to-end generative system were also proposed by [37] for
jointly learning dialogue state-tracking [32] and policy learning [5].

[17] introduced the first multi-turn, retrieval based dataset which motivated
a lot of further research on such systems. A lot of models are proposed on this
dataset using both CNN [3,36] and RNN [31,34] based architectures. Both gener-
ative and retrieval based models can benefit from additional world knowledge as
mentioned previously. However, the task of incorporating such additional knowl-
edge (both structured and unstructured) into dialogue systems is challenging and
is also a widely researched topic. [9,16,35] proposed architectures for incorpo-
rating unstructured knowledge into retrieval based systems. More recently, [12]
incorporated unstructured knowledge as facts into generative dialogue systems
as well.

Integration of structured knowledge comes in the form of incorporating
knowledge graphs into the response generation process. [11] proposed a Key-
Value retrieval network along with the in-car dataset (consisting of goal-oriented
dialogues) for KG integration into sequence-to-sequence model. [20] proposed
a generative model namely Mem2Seq for a task-oriented dialog system which
combines multi-hop attention over memories with pointer networks. The model
learns to generate dynamic queries to control the memory access. Mem2Seq is
the current state-of-the-art on the in-car dataset. Further improvements on the
task are proposed by [14] using joint embeddings and entity loss based regular-
ization techniques. However, they learn the KG embeddings globally instead of
per dialogue, so we evaluate our proposed system (KG-Copy network) against
Mem2Seq.

Alongside the previously mentioned datasets for knowledge grounded dia-
logues, there is also a challenging dataset for complex sequential question answer-
ing which was introduced by [25]. It contains around 200 K sequential queries
that require a large KG to answer. The dataset contains questions that require
inference and logical reasoning over the KG to answer. Although the dataset is
the first non-goal oriented dataset which aims at knolwedge graph integration,
but it lacks proper conversational turns between utterances.

3 Soccer Dialogues Dataset

3.1 Wizard-of-Oz Style Data Collection

The proposed dataset for conversations over soccer is collected using AMT (Ama-
zon Mechanical Turk) [8]. The dialogues are collected in an wizard-of-oz style
[23] setup. In such a setup, humans believe they are interacting with machines,
while the interaction is completely done by humans. The turkers, acting as users,
were instructed to initiate a conversation about the given team with any query
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or opinion or just have some small-talks. This initial utterance is again posted
as another AMT task for replying, this time a different turker is acting as a
system. Turkers assigned to the system role were asked to use Wikipedia to
answer questions posed by the user. We encouraged the turkers to ask factual
questions as well as posing opinions over the given teams, or have chit chat
conversations. After a sequence of 7–8 utterances, the turkers were instructed
to eventually end the conversation. A screenshot from the experimental setup is
shown in Fig. 2. We restricted the knowledge graph to a limited set of teams. The
teams are picked based on popularity, the national teams chosen are: Sweden,
Spain, Senegal, Portugal, Nigeria, Mexico, Italy, Iceland, Germany, France, Croa-
tia, Colombia, Brazil, Belgium, Argentina, Uruguay and Switzerland. The club
teams provided for conversing are: F.C. Barcelona, Real Madrid, Juventus F.C.,
Manchester United, Paris Saint Germain F.C., Liverpool F.C., Chelsea F.C.,
Atletico Madrid, F.C. Bayern Munich, F.C. Porto and Borussia Dortmund. We
also encouraged people to converse about soccer without any particular team.
The number of conversations are equally distributed across all teams. The statis-
tics of the total number of conversations are given in Table 1.

Fig. 2. AMT setup for getting conversations over soccer.

3.2 Ensuring Coherence

In order to ensure coherent dialogues between turkers, an additional task is cre-
ated for each dialogue, where turkers were asked to annotate if the give dialogue
is coherent or incoherent. Dialogues which are tagged incoherent by turkers are
discarded.
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Table 1. Statistics of soccer dataset.

Dataset # of dialogues # of utterances

Train 2,493 12,243

Validation 149 737

Test 348 1,727

3.3 Soccer Knowledge Graph

A KG in the context of this paper is a directed, multi-relational graph that
represents entities as nodes, and their relations as edges, which can be used as
an abstraction of the real world. KGs consists of triples of the form (s,r,o) ∈ KG,
where s and o denote the subject and object entities, respectively, and r denotes
their relation.

Following [6], we created a soccer knowledge graph from WikiData [30] which
consists of information such as a team’s coach, captain and also information such
as home ground and its capacity for soccer clubs. For information about players,
we have parsed individual wikipedia pages of the teams and mined goals scored,
position, caps, height and age of players. This ensures that the info in the KG
is up to date. Finally, we curated the knowledge graphs for each team manually
and added information such as jersey color. The KG schema is provided in Fig. 3
and additional statistics about KG and conversation is provided in Table 2.

Fig. 3. Schema of the proposed Knowledge Graph for Arsenal.
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Table 2. KG statistics.

Statistics Count

Total vocabulary words (v) 4782

Avg. number of conversations/team 83

Avg. number of triples/team 148

Avg. number of entities/ team 108

Avg. number of relations/team 13

4 KG-Copy Model

The problem we are tackling in this paper is: given a knowledge graph (KG),
and an input context in a dialogue, the model should be able to generate factual
as well as well articulated response. During the dialogue generation process, at
every time-step t, the model could either use the KG or generate a word from
the vocabulary. We propose the KG Copy model which tackles this particular
problem of producing well-grounded response generation.

KG-Copy is essentially a sequence-to-sequence encoder-decoder based neural
network model, where the decoder can generate words either from the vocabulary
or from the knowledge graph. The model is mainly influenced by the copynets
approach [13]. However, unlike copynets, KG-Copy copies tokens from the local
knowledge graph using a special gating mechanism. Here, local KG depicts the
KG for the team the dialogue is about. We introduce the KG-Copy’s encoder,
decoder and the gating mechanism below.

4.1 KG-Copy Encoder

The encoder is based on a recurrent neural network (RNN), more specifically
a long-short term memory network (LSTM). It encodes the given input word
sequence X = [x1, x2..., xT ] to a fixed length vector c. The hidden states are
defined by

ht = fenc(xt, ht−1) (1)

where fenc is the encoder recurrent function and the context vector c is given by

c = φ(h1, h2...hT ) (2)

Here in, φ is the summarization function given the hidden states ht. It can
be computed by taking the last hidden state hT or applying attention over the
hidden states [4,18] and getting a weighted value of the hidden states (attention).

4.2 KG-Copy Decoder

The decoder is an attention based RNN (LSTM) model. The input to the decoder
is the context c from the encoder along with hT . At time-step t, the hidden-state
of the decoder is given by
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hd
t = fdec(xt, ht−1) (3)

where fdec is the recurrent function of the decoder. The decoder hidden-states
are initialized using hT and the first token is <sos>. The attention mechanism
[18]. The attention weights are calculated by concatenating the hidden states hd

t

along with ht .
αt = softmax(Ws(tanh(Wc[ht;hd

t ])) (4)

Here in, Wc and Ws are the weights of the attention model. The final weighted
context representation is given by

h̃t =
∑

t

αtht (5)

This representation is concatenated (represented by ;) with the hidden states
of the decoder to generate an output from the vocabulary with size v.

The output is then given by

ot = Wo([ht; h̃d
t ]) (6)

In the above equation, Wo are the output weights with dimension RhdimXv.
hdim is the dimension of the hidden layer of the decoder RNN.

4.3 Sentient Gating

The sentient gating, as mentioned previously, is inspired mainly by [13,21]. This
gate acts as a sentinel mechanism which decides whether to copy from the local
KG or to generate a word from training vocabulary (v). The final objective
function can be written as the probability of predicting the next word during
decoding based on the encoder hidden-states and the knowledge graph (KG).

p(yt|ht..h1,KG) (7)

The proposed gating is an embedding based model. At every time-step t, the
input query and the input to the decoder are fed into the sentient gate. Firstly,
a simple averaging of the input query embedding is done generating embq, which
can be treated as an vector representation of the input context.

embq =
1
N

∑
(embw1....embwt) (8)

embwt is the embedding of the tth word in the context. N.B. we only consider
noun and verb phrases in the context to calculate embq. For the KG representa-
tion, an embedding average of the local KG’s subject entity and relation labels
for each triple is performed yielding a KG embedding embkg. We consider a total
of k triples in the local KG.

Finally, the query embedding is matched with these KG embeddings using a
similarity function (cosine similarity in this case).

kgsim = tanh(cos(embq, emb1kg), cos(embq, emb2kg)...cos(embq, embkkg)) (9)
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The input to the decoder at t is fed into the embedding too as mentioned
previously yielding embd.

The final sentient value at t is given by :

st = sigmoid(Wsent[embq + embd; kgsim; st−1]) (10)

Wsent is another trainable parameter of the model and “;” is the concatena-
tion operation. The final prediction is given by:

outt = st ∗ kgsim + (1 − st) ∗ ot (11)

The model is visualized in Fig. 4.

Fig. 4. KG-Copy model encoder-decoder architecture for Knowledge Grounded
response generation.

5 Training and Model Hyper-parameters

5.1 Training Objective

The model is trained based on a multi-task objective, where the final objective is
to optimize the cross-entropy based vocabulary loss (lvocab) and also the binary
cross-entropy loss (Lsentient) for the sentient gate (sg). This value is 1 if the
generated token at that step comes from the KG, otherwise 0. For example, in
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the example provided in Fig. 1, for the 2nd system utterance, this value would
be 1 for t = 5 (Emirates Stadium), but 0 for the previous time-steps.
The total loss is given by:

Ltot = Lvocab + Lsentient (12)

5.2 Training Details

To train the model, we perform a string similarity over KG for each of the
questions in training data set to find which questions are answerable from the
KG. Then we replace those answers with the position number of the triples where
the answer (object) belongs in the KG, during pre-processing. This is followed
by a manual step where we verify whether the input query is simple, factoid
question or not and also the correctness of answer (object). The vocabulary is
built only using the training data. No additional pre-processing is done for the
validation and test sets except changing words to their corresponding indices in
the vocabulary.

For training, a batch-size of 32 is used and the model is trained for 100
epochs. We save the model with the best validation f1-score and evaluate it on
the test set. We apply Adam [15] for optimization with a learning rate of 1e-3
for the encoder and 5e-3 for the decoder. The size of the hidden layer of both
the encoder and decoder LSTM is set to 64. We train the decoder RNN with
teacher-forcing [33]. The input word embedding layer is of dimension 300 and
initialized with pretrained fasttext [7] word embeddings. A dropout [28] of 0.3 is
used for the encoder and decoder RNNs and 0.4 for the input embedding. The
training process is conducted on a GPU with 3072 CUDA cores and a VRAM
of 12GB. The soccer dataset (conversation and KG) and the KG-Copy model’s
code are open-sourced1 for ensuring reproducibility.

6 Evaluation

We compare our proposed model with Mem2Seq and a vanilla encoder-decoder
with attention. We report the BLEU scores [22] and also the entity-F1 scores on
both the proposed soccer dataset and the In-car dialogue dataset. The results
show that our proposed model performs better than both the vanilla atten-
tion sequence-to-sequence models and Mem2Seq model across both metrics. Our
model outperforms Mem2Seq by 1.51 in BLEU score and 15 % on entity-F1 score.
It performs better than the vanilla sequence-to-sequence model by 1.21 on the
BLEU metric on the soccer dataset. Interestingly, Mem2Seq performs better
than the vanilla model on validation, but it fails to generalize on test set. The
proposed model although has lower BLEU on the in-car dialogue dataset, but
has a better entity f1 scores (by 19.4 %), implying stronger reasoning capabilities
over entities and relations [20] (Tables 3 and 4).

1 https://github.com/SmartDataAnalytics/KG-Copy Network.

https://github.com/SmartDataAnalytics/KG-Copy_Network
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Table 3. Results on soccer dataset.

Model BLEU Entity-F1

Valid Test Valid Test

Vanilla encoder-decoder with attention 1.04 0.82 − −
Mem2Seq [20] 1.30 0.52 6.78 7.03

KG Copy (proposed model) 2.56 2.05 24.98 23.58

Table 4. Results on the in-car dialogue dataset.

Model BLEU Entity-F1

Vanilla encoder-decoder with attention 8.4 10.3

Mem2Seq [20] 12.6 33.4

KG Copy (proposed model) 9.6 52.8

7 Discussion

7.1 Qualitative Analysis

In this section, we will qualitatively analyze the response generation of our model
along with the background knowledge integration (grounding) and compare it
with both Mem2Seq and vanilla sequence-to-sequence models.

Some example response from test are given in Table 6. As seen, the KG-copy
model is able to have more articulate responses compare to sequence-to-sequence
and Mem2Seq models. The model is also able to form well articulate opinions
compared to other models (2nd column)2.

Some more examples along with the response from our model are given in
Table 7. As observed, all those responses are well grounded. The first response is
factually correct and also a well-articulate one; interestingly, even the true human
response on the other hand is not. The last response is knowledge ground but
not well articulate. The model is also able to perform co-reference resolution
implicitly while generating responses. To verify, let us consider another conver-
sation between an user with the deployed KG-copy model.
User utterance: i like the team pretty much
Response: i don’t think they’re a lot of winning.
User utterance: who is the captain of argentina ?
Response: lionel messi is the captain
User utterance: do you know the name of their coach ?
Response: lionel scaloni is the coach
In the last response, the model is able to identify that the pronoun “their” refers
to the team and is able to maintain a knowledge grounded, as well as articu-
late responses even for relatively long dialogue turns. For time-step t = 0, the

2 Seq2Seq model has generated a more articulated response based on the given context
but it is factually wrong: Senegal is nicknamed the Lions of Teranga and not Nigeria.
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visualization of the sentient gating mechanism is provided in Fig. 5. The vocab-
ulary distribution is over v, and the object distribution here is over the local KG
for the team.

Fig. 5. Response generation during decoding for KG-Copy model.

Furthermore, following [11], we did an internal survey regarding the responses
generated by KG-Copy network, judging the quality of responses based on the
context on a scale of 1–5 on correctness and human-like sentence formation. The
former measures how correct the generated response is with respect to the true
response from the turker, and the latter how grammatically correct the produced
response is. We randomly pick 50 conversation utterances from the test set and
report this human evaluation both on Mem2Seq and KG-copy in Table 5.

7.2 Error Analysis

Although the model is able to generate some well articulated, knowledge
grounded responses for factual queries as seen in Tables 6 and 7, the model
often fails in producing factually correct responses as also evident from Table 5.
More of those cases are analyzed below.

Table 5. Human evaluation of generated responses.

Model Correctness Human-like

Mem2Seq 1.30 2.44

KG-Copy 2.26 3.88
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Table 6. KG-copy response for factoid and non-factoid queries.

Context type Factoid Opinions

Input contexts What is the name of
the captain of mexico?

I like this team

True response Andres guardado
(captain)

Nigeria is a very well performing
team and i like them a lot as well

Seq2Seq The is is They are nicknamed the Lions of
Teranga

Mem2Seq Mexico is the They are a

KG-Copy Andres guardado They are a good team

Table 7. KG Copy model’s knowledge grounded responses.

Input contexts Turker response KG copy response

Who is the captain
of iceland?

Aron gunnarsson Aron gunnarsson is the
captain

Who is the captain
of italy?

Chiellini Giorgio chiellini is the captain

Who is the coach for
italy?

I think roberto mancini Roberto mancini is the coach

Who is the coach of
bayern munich?

Niko kovac is the
current manager

Niko kovac

The model produces too generic and non-factual responses to queries about
opinions about favorite players as shown in Table 8. This is mostly because the
vocabulary size is relatively large compare to the size of training dialogues.
This can be improved with more training data, especially with more knowl-
edge grounded conversations. For the first response, the model is not able to
interpret the question and generates a generic response. For the second case, the
generated response is not factual because the question is about Argentina, but
Eden Hazard is from a different team (Belgium).

The KG-copy model also often suffers when more complex quantitative and
other reasoning skills are required to respond to the context. For example, for
the first context in Table 9, the model needs to perform a count operation over
the KG to answer it, which is currently unsupported. Similarly, for the second
case the model would require better language inferencing to respond. The model
also suffers from the problem of unknown words in the test set.
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Table 8. Incorrect opinionated responses from KG-Copy model.

Input contexts True response KG copy response

Who is senegal’s
best current player
not including mane?

Keita balde diao I think it is the best player in
the world cup

Who’s your favorite
player?

Messi I think eden hazard is the best
player

Table 9. Incorrect factual responses from KG Copy model.

Input contexts How many world cups has
the brazil team won?

Who was the top scorer in the world
cup for belgium?

True response Brazil has won the fifa
world cup five times

Eden hazard

Predicted They won the world cup I think it was the top scorer for the
world cup

8 Conclusion and Future Work

In this paper, we introduce a new dataset for non-goal oriented, factual conver-
sations over soccer (football). We also provide a knowledge graph for different
club and national football teams which are the topic of these conversations.

Furthermore, we propose a relatively simple, novel, neural network architec-
ture called KG-copy Network, as a baseline model, which can produce knowledge
grounded responses as well as articulate responses via copying objects from the
team KG based on the presented context of the question. Although the dataset
is relatively small, the model can still learn the objective of producing grounded
response as evident from the BLEU and entity-F1 scores compare to other mod-
els, and also from the examples provided in the paper. The proposed model also
produces more knowledge grounded response (better entity f1 scores) on the in-
car dialogue dataset [11] compared to other approaches. However, it should be
noted that the BLEU scores in case of the non-goal oriented soccer dataset is
lower compare to the goal oriented dataset (in-car). This can be attributed to
the fact that the vocabulary size in case of the former is much larger (3 times),
hence proving it to be a much harder problem. We also outlined weaknesses and
limitations, e.g. for building factually correct responses, which can spur future
research in this direction.

As a future work, we would like to consider a bigger study for gathering
more knowledge-grounded, non-goal oriented conversations extending to more
domains other than soccer. One of the problem with the dataset is that some
responses from the turkers themselves are not articulate enough as evident from
Table 7. To counter this, we would like to include more conversation verification
steps and filter out conversations based on inter annotator agreements (IAA)
between the turkers. Also, the proposed model can only respond to simple fac-
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toid questions based on word embedding based similarities between the context
and the KG. We would like to extend the model to do better entity and relation
linking between the query contexts and the knowledge graph in an end-to-end
manner. The handling of out-of-vocabulary words also provides room for further
research. Moreover, we would also like to investigate recently proposed trans-
former or BERT based sequence-to-sequence models for the task of knowledge
grounded response generation.

Acknowledgement. This work has been supported by the Fraunhofer-Cluster of
Excellence “Cognitive Internet Technologies” (CCIT).
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Abstract. Ontology-based knowledge bases (KBs) like DBpedia are
very valuable resources, but their usefulness and usability are limited
by various quality issues. One such issue is the use of string literals
instead of semantically typed entities. In this paper we study the auto-
mated canonicalization of such literals, i.e., replacing the literal with an
existing entity from the KB or with a new entity that is typed using
classes from the KB. We propose a framework that combines both rea-
soning and machine learning in order to predict the relevant entities and
types, and we evaluate this framework against state-of-the-art baselines
for both semantic typing and entity matching.

Keywords: Knowledge base correction · Literal canonicalization ·
Knowledge-based learning · Recurrent Neural Network

1 Introduction

Ontology-based knowledge bases (KBs) like DBpedia [2] are playing an increas-
ingly important role in domains such knowledge management, data analysis
and natural language understanding. Although they are very valuable resources,
the usefulness and usability of such KBs is limited by various quality issues
[10,22,31]. One such issue is the use of string literals (both explicitly typed and
plain literals) instead of semantically typed entities; for example in the triple
〈River Thames, passesArea, “Port Meadow, Oxford”〉. This weakens the KB as
it does not capture the semantics of such literals. If, in contrast, the object of the
triple were an entity, then this entity could, e.g., be typed as Wetland and Park,
and its location given as Oxford. This problem is pervasive and hence results in a
significant loss of information: according to statistics from Gunaratna et al. [14],
in 2016, the DBpedia property dbp:location has over 105,000 unique string liter-
als that could be matched with entities. Besides DBpedia, such literals can also
be found in some other KBs from encyclopedias (e.g., zhishi.me [21]), in RDF
graphs transformed from tabular data (e.g., LinkedGeoData [3]), in aligned or
evolving KBs, etc.
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One possible remedy for this problem is to apply automated semantic typing
and entity matching (AKA canonicalization1) to such literals. To the best of our
knowledge, semantic typing of KB literals has rarely been studied. Gunaratna et
al. [14] used semantic typing in their entity summarization method, first identi-
fying the so called focus term of a phrase via grammatical structure analysis, and
then matching the focus term with both KB types and entities. Their method
is, however, rather simplistic: it neither utilizes the literal’s context, such as the
associated property and subject, nor captures the contextual meaning of the
relevant words. What has been widely studied is the semantic annotation of KB
entities [13,23,28] and of noun phrases outside the KB (e.g., from web tables)
[4,9,18]; in such cases, however, the context is very different, and entity typ-
ing can, for example, exploit structured information such as the entity’s linked
Wikipedia page [13] and the domain and range of properties that the entity is
associated with [23].

With the development of deep learning, semantic embedding and feature
learning have been widely adopted for exploring different kinds of contextual
semantics in prediction, with Recurrent Neural Network (RNN) being a state-
of-the-art method for dealing with structured data and text. One well known
example is word2vec—an RNN language model which can represent words in a
vector space that retains their meaning [20]. Another example is a recent study
by Kartsaklis et al. [15], which maps text to KB entities with a Long-short Term
Memory RNN for textual feature learning. These methods offer the potential for
developing accurate prediction-based methods for KB literal typing and entity
matching where the contextual semantics is fully exploited.

In this study, we investigate KB literal canonicalization using a combination
of RNN-based learning and semantic technologies. We first predict the semantic
types of a literal by: (i) identifying candidate classes via lexical entity matching
and KB queries; (ii) automatically generating positive and negative examples
via KB sampling, with external semantics (e.g., from other KBs) injected for
improved quality; (iii) training classifiers using relevant subject-predicate-literal
triples embedded in an attentive bidirectional RNN (AttBiRNN); and (iv) using
the trained classifiers and KB class hierarchy to predict candidate types. The
novelty of our framework lies in its knowledge-based learning; this includes auto-
matic candidate class extraction and sampling from the KB, triple embedding
with different importance degrees suggesting different semantics, and using the
predicted types to identify a potential canonical entity from the KB. We have
evaluated our framework using a synthetic literal set (S-Lite) and a real literal
set (R-Lite) from DBpedia [2]. The results are very promising, with significant
improvements over several baselines, including the existing state-of-the-art.

1 Note this is different from canonical mapping of literal values in the RDF standard
by W3C.
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2 Method

2.1 Problem Statement

In this study we consider a knowledge base (KB) that includes both ontological
axioms that induce (at least) a hierarchy of semantic types (i.e., classes), and
assertions that describe concrete entities (individuals). Each such assertion is
assumed to be in the form of an RDF triple 〈s, p, o〉, where s is an entity, p is a
property and o can be either an entity or a literal (i.e., a typed or untyped data
value such as a string or integer).

We focus on triples of the form 〈s, p, l〉, where l is a string literal; such literals
can be identified by regular expressions, as in [14], or by data type inference as
in [8]. Our aim is to cononicalize l by first identifying the type of l, i.e., a set
of classes Cl that an entity corresponding to l should be an instance of, and
then determining if such an entity already exists in the KB. The first subtask
is modeled as a machine learning classification problem where a real value score
in [0, 1] is assigned to each class c occurring in the KB, and Cl is the set of
classes determined by the assigned score with strategies e.g., adopting a class
if its score exceeds some threshold. The second subtask is modeled as an entity
lookup problem constrained by Cl. It is important to note that:

(i) When we talk about a literal l we mean the occurrence of l in a triple 〈s, p, l〉.
Lexically equivalent literals might be treated very differently depending on
their triple contexts.

(ii) If the KB is an OWL DL ontology, then the set of object properties (which
connect two entities) and data properties (which connect an entity to a lit-
eral) should be disjoint. In practice, however, KBs such as DBpedia often do
not respect this constraint. In any case, we avoid the issue by simply com-
puting the relevant typing and canonicalization information, and leaving it
up to applications as to how they want to exploit it.

(iii) We assume that no manual annotations or external labels are given—the
classifier is automatically trained using the KB.

2.2 Technical Framework

The technical framework for the classification problem is shown in Fig. 1. It
involves three main steps: (i) candidate class extraction; (ii) model training and
prediction; and (iii) literal typing and canonicalization.

Candidate Class Extraction. Popular KBs like DBpedia often contain a large
number of classes. For efficiency reasons, and to reduce noise in the learning
process, we first identify a subset of candidate classes. This selection should
be rather inclusive so as to maximize potential recall. In order to achieve this,
we pool the candidate classes for all literals occurring in triples with a given
property; i.e., to compute the candidate classes for a literal l occurring in a
triple 〈s, p, l〉, we consider all triples that use property p. Note that, as discussed
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Fig. 1. The technical framework for KB literal canonicalization.

above, in practice such triples may include both literals and entities as their
objects. We thus use two techniques for identifying candidate classes from the
given set of triples. In the case where the object of the triple is an entity, the
candidates are just the set of classes that this entity is an instance of. In practice
we identify the candidates for the set of all such entities, which we denote EP ,
via a SPARQL query to the KB, with the resulting set of classes being denoted
CP . In the case where the object of the triple is a literal, we first match the
literal to entities using a lexical index which is built based on the entity’s name,
labels and anchor text (description). To maximize recall, the literal as well as
its sub-phrases are used to retrieve entities by lexical matching; this technique
is particularly effective when the literal is a long phrase. As in the first case, we
identify all relevant entities, which we denote EM , and then retrieve the relevant
classes CM using a SPARQL query. The candidate class set is simply the union
of CP and CM , denoted as CPM .

Model Training and Prediction. We adopt the strategy of training one
binary classifier for each candidate class, instead of multi-class classification, so
as to facilitate dealing with the class hierarchy [27]. The classifier architecture
includes an input layer with word embedding, an encoding layer with bidirec-
tional RNNs, an attention layer and a fully connected (FC) layer for modeling
the contextual semantics of the literal. To train a classifier, both positive and
negative entities (samples), including those from EM (particular samples) and
those outside EM (general samples) are extracted from the KB, with external
KBs and logical constraints being used to improve sample quality. The trained
classifiers are used to compute a score for each candidate class.

Literal Typing and Canonicalization. The final stage is to semantically
type and, where possible, canonicalize literals. For a given literal, two strategies,
independent and hierarchical, are used to determine its types (classes), with a
score for each type. We then use these types and scores to try to identify an
entity in the KB that could reasonably be substituted for the literal.
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2.3 Prediction Model

Given a phrase literal l and its associated RDF triple 〈s, p, l〉, our neural network
model aims at utilizing the semantics of s, p and l for the classification of l. The
architecture is shown in Fig. 2. It first separately parses the subject label, the
property label and the literal into three word (token) sequences whose lengths,
denoted as Ts, Tp and Tl, are fixed to the maximum subject, property and literal
sequence lengths from the training data by padding shorter sequences with null
words. We then concatenate the three sequences into a single word sequence
(wordt, t ∈ [1, T ]), where T = Ts + Tp + Tl. Each word is then encoded into a
vector via word embedding (null is encoded into a zero vector), and the word
sequence is transformed into a vector sequence (xt, t ∈ [1, T ]). Note that this
preserves information about the position of words in s, p and l.

The semantics of forward and backward surrounding words is effective in pre-
dicting a word’s semantics. For example, “Port” and “Meadow” are more likely
to indicate a place as they appear after “Area” and before “Oxford”. To embed
such contextual semantics into a feature vector, we stack a layer composed of
bidirectional Recurrent Neural Networks (BiRNNs) with Gated Recurrent Unit
(GRU) [5]. Within each RNN, a reset gate rt is used to control the contribution
of the past word, and an update gate zt is used to balance the contributions of
the past words and the new words. The hidden state (embedding) at position t
is computed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ht = (1 − zt) � ht−1 + zt � h̃t,

h̃t = τ(Whxt + rt � (Uhht−1) + bh),
zt = σ(Wzxt + Uzht−1 + bz),
rt = σ(Wrxt + Urht−1 + br),

(1)

where � denotes the Hadamard product, σ and τ denote the activation function
of sigmod and tanh respectively, and Wh, Uh, bh, Wz, Uz, bz, Wr, Ur and br

are parameters to learn. With the two bidirectional RNNs, one forward hidden
state and one backward hidden state are calculated for the sequence, denoted
as (

−→
ht , t ∈ [1, T ]) and (

←−
ht , t ∈ [T, 1]) respectively. They are concatenated as the

output of the RNN layer: ht =
[−→
ht ,

←−
ht

]
, t ∈ [1, T ].

We assume different words are differently informative towards the type of the
literal. For example, the word “port” is more important than the other words
in distinguishing the type Wetland from other concrete types of Place. To this
end, an attention layer is further stacked. Given the input from the RNN layer
(ht, t ∈ [1, T ]), the attention layer outputs ha = [αtht] , t ∈ [1, T ], where αt is
the normalized weight of the word at position t and is calculated as

⎧
⎨

⎩

αt = exp(uT
t uw)

∑
t∈[1,T ] exp(uT

t uw)

ut = τ(Wwht + bw),
(2)

where uw, Ww and bw are parameters to learn. Specifically, uw denotes the
general informative degrees of all the words, while αt denotes the attention
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Fig. 2. The architecture of the neural network.

of the word at position t w.r.t. other words in the sequence. Note that the
attention weights can also be utilized to justify a prediction. In order to exploit
information about the location of a word in the subject, property or literal, we
do not calculate the weighted sum of the BiRNN output but concatenate the
weighted vectors. The dimension of each RNN hidden state (i.e.,

←−
ht and

−→
ht),

denoted as dr, and the dimension of each attention layer output (i.e., αtht),
denoted as da, are two hyper parameters of the network architecture.

A fully connected (FC) layer and a logistic regression layer are finally stacked
for modeling the nonlinear relationship and calculating the output score respec-
tively:

f(s, p, l) = σ(Wfha + bf ), (3)

where Wf and bf are the parameters to learn, σ denotes the sigmod function,
and f denotes the function of the whole network.

2.4 Sampling and Training

We first extract both particular samples and general samples from the KB using
SPARQL queries and reasoning; we then improve sample quality by detecting
and repairing wrong and missing entity classifications with the help of external
KBs; and finally we train the classifiers.

Particular Sample. Particular samples are based on the entities EM that are
lexically matched by the literals. For each literal candidate class c in CM , its
particular samples are generated by:

(i) Extracting its positive particular entities: Ec
M = {e|e∈EM , e is an instance

of c};
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(ii) Generating its positive particular samples as

P+
c = ∪e∈Ec

M
{〈s, p, l〉|s ∈ S(p, e), l ∈ L(e)} , (4)

where S(p, e) denotes the set of entities occurring in the subject position in
a triple of the form 〈s, p, e〉, and L(e) denotes all the labels (text phrases)
of the entity e;

(iii) Extracting its negative particular entities E c̃
M as those entities in EM that

are instances of some sibling class of c and not instances of c;2

(iv) Generating its negative particular samples P−
c with E c̃

M using the same
approach as for positive samples.

General Sample. Given that the literal matched candidate classes CM are only
a part of all the candidate classes CPM , and that the size of particular samples
may be too small to train the neural network, we additionally generate general
samples based on common KB entities. For each candidate class c in CPM , all
its entities in the KB, denoted as Ec, are extracted and then its positive general
samples, denoted as G+

c , are generated from Ec using the same approach as for
particular samples. Similarly, entities of the sibling classes of c, denoted as E c̃,
are extracted, and general negative samples, denoted as G−

c , are generated from
E c̃. As for negative particular entities, we check each entity in E c̃ and remove
those that are instances of c.

Unlike the particular samples, the positive and negative general samples are
balanced. This means that we reduce the size of G+

c and G−
c to the minimum

of #(G+
c ), #(G−

c ) and N0, where #() denotes set cardinality, and N0 is a hyper
parameter for sampling. Size reduction is implemented via random sampling.

Sample Refinement. Many KBs are quite noisy, with wrong or missing entity
classifications. For example, when using the SPARQL endpoint of DBpedia,
dbr:Scotland is classified as dbo:MusicalArtist instead of as dbo:Country, while
dbr:Afghan appears without a type. We have corrected and complemented the
sample generation by combining the outputs of more than one KB. For exam-
ple, the DBpedia endpoint suggestions are compared against Wikidata and the
DBpedia lookup service. Most DBpedia entities are mapped to Wikidata enti-
ties whose types are used to validate and complement the suggested types from
the DBpedia endpoint. In addition, the lookup service, although incomplete,
typically provides very precise types that can also confirm the validity of the
DBpedia endpoint types. The validation is performed by identifying if the types
suggested by one KB are compatible with those returned by other KBs, that is, if
the relevant types belong to the same branch of the hierarchy (e.g., the DBpedia
taxonomy). With the new entity classifications, the samples are revised accord-
ingly.

2 We use sibling classes to generate negative examples as, in practice, sibling classes
are often disjoint.
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Training. We train a binary classifier fc for each class c in CPM . It is first
pre-trained with general samples G+

c ∪ G−
c , and then fine-tuned with particular

samples P+
c ∪ P−

c . Pre-training deals with the shortage of particular samples,
while fine-tuning bridges the gap between common KB entities and the entities
associated with the literals, which is also known as domain adaptation. Given
that pre-training is the most time consuming step, but is task agnostic, classifiers
for all the classes in a KB could be pre-trained in advance to accelerate a specific
literal canonicalization task.

2.5 Independent and Hierarchical Typing

In prediction, the binary classifier for class c, denoted as fc, outputs a score yc
l

indicating the probability that a literal l belongs to class c: yc
l = fc(l), yc

l ∈ [0, 1].
With the predicted scores, we adopt two strategies – independent and hierarchical
to determine the types. In the independent strategy, the relationship between
classes is not considered. A class c is selected as a type of l if its score yc

l ≥ θ,
where θ is a threshold hyper parameter in [0, 1].

The hierarchical strategy considers the class hierarchy and the disjointness
between sibling classes. We first calculate a hierarchical score for each class with
the predicted scores of itself and its descendants:

sc
l = max

{
yc′

l |c′ 
 c, c′ ∈ CPM

}
, (5)

where 
 denotes the subclass relationship between two classes, CPM is the set
of candidate classes for l, and max denotes the maximum value of a set. For a
candidate class c′ in CPM , we denote all disjoint candidate classes as D(CPM , c′).
They can be defined as sibling classes of both c′ and its ancestors, or via logical
constraints in the KB. A class c is selected as a type of l if (i) its hierarchical
score sc

l ≥ θ, and (ii) it satisfies the following soft exclusion condition:

sc
l − max

{
sc′

l |c′ ∈ D(CPM , c)
}

≥ κ, (6)

where κ is a relaxation hyper parameter. The exclusion of disjoint classes is hard
if κ is set to 0, and relaxed if κ is set to a negative float with a small absolute
value e.g., −0.1.

Finally, for a given literal l, we return the set of all selected classes as its
types Cl.

2.6 Canonicalization

Given a literal l, we use Cl to try to identify an associated entity. A set of
candidate entities are first retrieved using the lexical index that is built on the
entity’s name, label, anchor text, etc. Unlike candidate class extraction, here we
use the whole text phrase of the literal, and rank the candidate entities according
to their lexical similarities. Those entities that are not instances of any classes
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in Cl are then filtered out, and the most similar entity among the remainder
is selected as the associated entity for l. If no entities are retrieved, or all the
retrieved entities are filtered out, then the literal could be associated with a new
entity whose types are those most specific classes in Cl. In either case we can
improve the quality of our results by checking that the resulting entities would
be consistent if added to the KB, and discarding any entity associations that
would lead to inconsistency.

3 Evaluation

3.1 Experiment Setting

Data Sets. In the experiments, we adopt a real literal set (R-Lite) and a syn-
thetic literal set (S-Lite)3 , both of which are extracted from DBpedia. R-Lite
is based on the property and literal pairs published by Gunaratna et al. in 2016
[14]. We refine the data by (i) removing literals that no longer exist in the cur-
rent version of DBpedia; (ii) extracting new literals from DBpedia for properties
whose existing literals were all removed in step (i); (iii) extending each property
and literal pair with an associated subject; and (iv) manually adding ground
truth types selected from classes defined in the DBpedia Ontology (DBO).4 To
fully evaluate the study with more data, we additionally constructed S-Lite from
DBpedia by repeatedly: (i) selecting a DBpedia triple of the form 〈s, p, e〉, where
e is an entity; (ii) replacing e with it’s label l to give a triple 〈s, p, l〉; (iii) elim-
inating the entity e from DBpedia; and (iv) adding as ground truth types the
DBpedia classes of which e is (implicitly) an instance. More data details are
shown in Table 1.

Table 1. Statistics of S-Lite and R-Lite.

Properties # Literals # Ground truth types
# (per literal)

Characters (Tokens)
# per literal

S-Lite 41 1746 256 (2.94) 16.66 (2.40)

R-Lite 142 820 123 (3.11) 19.44 (3.25)

Metrics. In evaluating the typing performance, Precision, Recall and F1 Score
are used. For a literal l, the computed types Cl are compared with the ground
truths Cgt

l , and the following micro metrics are calculated: Pl = #(Cl ∩ Cgt
l )/#(Cl),

Rl = #(Cl ∩ Cgt
l )/#(Cgt

l ), and F1l = (2 × Pl × Rl)/(Pl + Rl). They are then averaged
over all the literals as the final Precision, Recall and F1 Score of a literal set.
Although F1 Score measures the overall performance with both Precision and

3 Data and codes: https://github.com/ChenJiaoyan/KG Curation.
4 Classes with the prefix http://dbpedia.org/ontology/.

https://github.com/ChenJiaoyan/KG_Curation
http://dbpedia.org/ontology/
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Recall considered, it depends on the threshold hyper parameter θ as with Preci-
sion and Recall. Thus we let θ range from 0 to 1 with a step of 0.01, and calcu-
late the average of all the F1 Scores (AvgF1@all) and top 5 highest F1 Scores
(AvgF1@top5). AvgF1@all measures the overall pattern recognition capability,
while AvgF1@top5 is relevant in real applications where we often use a valida-
tion data set to find a θ setting that is close to the optimum. We also use the
highest (top) Precision in evaluating the sample refinement.

In evaluating entity matching performance, Precision is measured by manu-
ally checking whether the identified entity is correct or not. S-Lite is not used
for entity matching evaluation as the corresponding entities for all its literals
are assumed to be excluded from the KB. We are not able to measure recall for
entity matching as we do not have the ground truths; instead, we have evaluated
entity matching with different confidence thresholds and compared the number
of correct results.

Baselines and Settings. The evaluation includes three aspects. We first com-
pare different settings of the typing framework, analyzing the impacts of sam-
ple refinement, fine tuning by particular samples, BiRNN and the attention
mechanism. We also compare the independent and hierarchical typing strate-
gies. We then compare the overall typing performance of our framework with (i)
Gunaratna et al. [14], which matches the literal to both classes and entities; (ii)
an entity lookup based method; and (iii) a probabilistic property range estima-
tion method. Finally, we analyze the performance of entity matching with and
without the predicted types.

The DBpedia lookup service, which is based on the Spotlight index [19], is
used for entity lookup (retrieval). The DBpedia SPARQL endpoint is used for
query answering and reasoning. The reported results are based on the following
settings: the Adam optimizer together with cross-entropy loss are used for net-
work training; dr and da are set to 200 and 50 respectively; N0 is set to 1, 200;
word2vec trained with the latest Wikipedia article dump is adopted for word
embedding; and (Ts, Tp, Tl) are set to (12, 4, 12) for S-Lite and (12, 4, 15) for
R-Lite. The experiments are run on a workstation with Intel(R) Xeon(R) CPU
E5-2670 @2.60GHz, with programs implemented by Tensorflow.

3.2 Results on Framework Settings

We first evaluate the impact of the neural network architecture, fine tuning
and different typing strategies, with their typing results on S-Lite shown in
Table 2 and Fig. 3. Our findings are supported by comparable results on R-Lite.
We further evaluate sample refinement, with some statistics of the refinement
operations as well as performance improvements shown in Fig. 4.

Network Architecture and Fine Tuning. According to Table 2, we find
BiRNN significantly outperforms Multiple Layer Perceptron (MLP), a basic but
widely used neural network model, while stacking an attention layer (AttBiRNN)
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further improves AvgF1@all and AvgF1@top5, for example by 3.7% and 3.1%
respectively with hierarchical typing (κ = −0.1). The result is consistent for both
pre-trained models and fine tuned models, using both independent and hierarchi-
cal typing strategies. This indicates the effectiveness of our neural network archi-
tecture. Meanwhile, the performance of all the models is significantly improved
after they are fine tuned by the particular samples, as expected. For example,
when the independent typing strategy is used, AvgF1@all and AvgF1@top5 of
AttBiRNN are improved by 54.1% and 35.2% respectively.

Table 2. Typing performance of our framework on S-Lite under different settings.

Framework settings Independent Hierarchical (κ = −0.1) Hierarchical (κ = 0)

AvgF1@all AvgF1@top5 AvgF1@all AvgF1@top5 AvgF1@all AvgF1@top5

Pre-training MLP 0.4102 0.4832 0.5060 0.5458 0.5916 0.5923

BiRNN 0.4686 0.5566 0.5295 0.5649 0.5977 0.5985

AttBiRNN 0.4728 0.5590 0.5420 0.5912 0.6049 0.6052

Fine tuning MLP 0.6506 0.6948 0.6859 0.6989 0.6429 0.6626

BiRNN 0.7008 0.7434 0.7167 0.7372 0.6697 0.6850

AttBiRNN 0.7286 0.7557 0.7429 0.7601 0.6918 0.7070

Independent and Hierarchical Typing. The impact of independent and
hierarchical typing strategies is more complex. As shown in Table 2, when the
classifier is weak (e.g., pre-trained BiRNN), hierarchical typing with both hard
exclusion (κ = 0) and relaxed exclusion (κ = −0.1) has higher AvgF1@all and
AvgF1@top5 than independent typing. However, when a strong classifier (e.g.,
fine tuned AttBiRNN) is used, AvgF1@all and AvgF1@top5 of hierarchical typ-
ing with relaxed exclusion are close to independent typing, while hierarchical
typing with hard exclusion has worse performance. We further analyze Preci-
sion, Recall and F1 Score of both typing strategies under varying threshold (θ)
values, as shown in Fig. 3. In comparison with independent typing, hierarchical
typing achieves (i) more stable Precision, Recall and F1 Score curves; and (ii)
significantly higher Precision, especially when θ is small. Meanwhile, as with the
results in Table 2, relaxed exclusion outperforms hard exclusion in hierarchical
typing except for Precision when θ is between 0 and 0.05.

Sample Refinement. Figure 4 [Right] shows the ratio of positive and negative
particular samples that are deleted and added during sample refinement. The
AttBiRNN classifiers fine-tuned by the refined particular samples are compared
with those fine-tuned by the original particular samples. The improvements on
AvgF1@all, AvgF1@top5 and top Precision, which are based on the average of
the three above typing settings, are shown in Fig. 4 [Left]. On the one hand, we
find sample refinement benefits both S-Lite and R-Lite, as expected. On the other
hand, we find the improvement on S-Lite is limited, while the improvement on R-
Lite is quite significant: F1@all and top Precision, e.g., are improved by around
0.8% and 1.8% respectively on S-Lite, but 4.3% and 7.4% respectively on R-Lite.
This may be due to two factors: (i) the ground truths of S-Lite are the entities’
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Fig. 3. (P)recision, (R)ecall and (F1) Score of independent (I) and hierarchical (H)
typing for S-Lite, with the scores predicted by the fine-tuned AttBiRNN.

class and super classes inferred from the KB itself, while the ground truths of
R-Lite are manually labeled; (ii) sample refinement deletes many more noisy
positive and negative samples (which are caused by wrong entity classifications
of the KB) on R-Lite than on S-Lite, as shown in Fig. 4 [Right].

Fig. 4. [Left] Performance improvement (%) by sample refinement; [Right] Ratio (%)
of added (deleted) positive (negative) particular sample per classifier during sample
refinement.

3.3 Results on Semantic Typing

Table 3 displays the overall semantic typing performance of our method and the
baselines. Results for two optimum settings are reported for each method. The
baseline Entity-Lookup retrieves one or several entities using the whole phrase
of the literal, and uses their classes and super classes as the types. Gunaratna
[14] matches the literal’s focus term (head word) to an exact class, then an
exact entity, and then a class with the highest similarity score. It stops as soon
as some classes or entities are matched. We extend its original “exact entity
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match” setting with “relaxed entity match” which means multiple entities are
retrieved. Property Range Estimation gets the classes and super classes from the
entity objects of the property, and calculates the score of each class as the ratio
of entity objects that belong to that class. (H/I, κ, ·)@top-P (F1) denotes the
setting where the highest Precision (F1 Score) is achieved.

Table 3. Overall typing performance of our method and the baselines on S-Lite and
R-Lite.

Methods with their settings S-Lite R-Lite

Precision Recall F1 score Precision Recall F1 score

Gunaratna Exact entity match 0.3825 0.4038 0.3773 0.4761 0.5528 0.4971

Relaxed entity match 0.4176 0.5816 0.4600 0.3865 0.6526 0.4469

Entity-lookup Top-1 entity 0.2765 0.2620 0.2623 0.3994 0.4407 0.4035

Top-3 entities 0.2728 0.3615 0.2962 0.3168 0.5201 0.3655

Property range (H/I, κ, θ)@top-P 0.7563 0.5583 0.6210 0.5266 0.4015 0.4364

Estimation (H/I, κ, θ)@top-F1 0.6874 0.7166 0.6773 0.4520 0.5069 0.4632

AttBiRNN (H/I, κ, θ)@top-P 0.8320 0.7325 0.7641 0.7466 0.5819 0.6340

(H/I, κ, θ)@top-F1 0.8179 0.7546 0.7708 0.6759 0.6451 0.6386

As we can see, AttBiRNN achieves much higher performance than all three
baselines on both S-Lite and R-Lite. For example, the F1 Score of AttBiRNN is
67.6%, 160.2% and 13.8% higher than those of Gunaratna, Entity-Lookup and
Property Range Estimation respectively on S-Lite, and 28.5%, 58.3% and 37.9%
higher respectively on R-Lite. AttBiRNN also has significantly higher Precision
and Recall, even when the setting is adjusted for the highest F1 Score. This
is as expected, because our neural network, which learns the semantics (statis-
tical correlation) from both word vector corpus and KB, models and utilizes
the contextual meaning of the literal and its associated triple, while Gunaratna
and Entity-Lookup are mostly based on lexical similarity. The performance of
Property Range Estimation is limited because the object annotation in DBpe-
dia usually does not follow the property range, especially for those properties
in R-Lite. For example, objects of the property dbp:office have 35 DBO classes,
ranging from dbo:City and dbo:Country to dbo:Company.

It is also notable that AttBiRNN and Property Range Estimation perform
better on S-Lite than on R-Lite. The top F1 Score is 20.7% and 46.2% higher
respectively, while the top Precision is 11.4% and 43.6% higher respectively.
This is because R-Lite is more noisy, with longer literals, and has more ground
truth types on average (cf. Table 1), while S-Lite has fewer properties, and each
property has a large number of entity objects, which significantly benefits Prop-
erty Range Estimation. In contrast, the two entity matching based methods,
Gunaratna and Entity-Lookup, perform worse on S-Lite than on R-Lite; this is
because the construction of S-Lite removes those KB entities from which liter-
als were derived. Gunaratna outperforms Entity-Lookup as it extracts the head
word and matches it to both entities and classes. Note that the head word is
also included in our candidate class extraction with lookup.
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3.4 Results on Entity Matching

Table 4 displays the number of correct matched entities and the Precision of
entity matching on R-Lite. The types are predicted by the fine-tuned AttBiRNN
with independent typing and two threshold settings. We can see that Precision is
improved when the retrieved entities that do not belong to any of the predicted
types are filtered out. The improvement is 6.1% and 5.8% when θ is set to 0.15
and 0.01 respectively. Meanwhile, although the total number of matches may
decrease because of the filtering, the number of correct matches still increases
from 396 to 404 (θ = 0.01). This means that Recall is also improved.

Table 4. Overall performance of entity matching on R-Lite with and without type
constraint.

Metrics Pure Lookup Lookup-Type
(θ = 0.15)

Lookup-Type
(θ = 0.01)

Correct Matches # 396 400 404

Precision 0.6781 0.7194 0.7176

4 Related Work

Work on KB quality issues can can be divided into KB quality assessment
[10,31], and KB quality improvement/refinement [22]. The former includes error
and anomaly detection methods, such as test-driven and query template based
approaches [11,16], with statistical methods [6] and consistency reasoning [24]
also being applied to assess KB quality with different kinds of metric. The lat-
ter includes (i) KB completion, such as entity classification [13,23,28], relation
prediction [17] and data typing [8]; and (ii) KB diagnosis and repair, such as
abnormal value detection [11], erroneous identity link detection [26] and data
mapping (e.g., links to Wikipedia pages) correction [7].

KB canonicalization refers to those refinement works that deal with redun-
dant and ambiguous KB components as well as poorly expressed knowledge
with limited reasoning potential. Some works in open information extraction
(IE) [12,29,30] aim to identify synonymous noun phrases and relation phrases
of open KBs which are composed of triple assertions extracted from text with-
out any ontologies. For example, the recently proposed CESI method [29] uti-
lizes both learned KB embeddings and side information like WordNet to find
synonyms via clustering. Other works analyze synonyms for ontological KBs.
Abedjan et al. [1] discovered synonymously used predicates for query expan-
sion on DBpedia. Pujara et al. [25] identified coreferent entities of NELL with
ontological constraints considered. These clustering, embedding, or entity link-
ing based methods in open IE, however, can not be directly applied or do not
work well for our KB literal canonicalization. The utilization of these techniques
will be in our future work.
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String literals in ontological KBs such as DBpedia often represent poorly
expressed knowledge, with semantic types and coreferent entities missed. As far
as we known, canonicalization of such literals has been little studied. Gunaratna
et al. [14] typed the literal by matching its head term to ontology classes and
KB entities, but the literal context (e.g., the associated subject and property)
and semantic meaning of the composition words were not utilized. Some ideas of
entity classification can be borrowed for literal typing but will become ineffective
as the context differs. For example, the baseline Property Range Estimation in
our experiments uses the idea of SDType [23]—utilizing the statistical distribu-
tion of types in the subject position and object position of properties to estimate
an entity’s type probabilities. As a literal is associated with only one property,
such probabilistic estimation becomes inaccurate (cf. results in Table 3).

Our literal classification model is in some degree inspired by those natural lan-
guage understanding and web table annotation works that match external noun
phrases to KB types and entities [4,15,18] using neural networks and semantic
embeddings for modeling the contextual semantics. For example, Luo et al. [18]
learned features from the surrounding cells of a target cell to predict its entity
association. However the context in those works is very different, i.e., a simple
regular structure of rows/columns with limited (table) metadata. In contrast,
KBs have a complex irregular structure and rich metadata (the knowledge cap-
tured in the KB). Differently from these works, we developed different methods,
e.g., candidate class extraction and high quality sampling, to learn the network
from the KB with its assertions, terminologies and reasoning capability.

5 Discussion and Outlook

In this paper we present our study on KB literal canonicalization—an important
problem on KB quality that has been little studied. A new technical framework
is proposed with neural network and knowledge-based learning. It (i) extracts
candidate classes as well as their positive and negative samples from the KB
by lookup and query answering, with their quality improved using an external
KB; (ii) trains classifiers that can effectively learn a literal’s contextual features
with BiRNNs and an attention mechanism; (iii) identifies types and matches
entity for canonicalization. We use a real data set and a synthetic data set, both
extracted from DBpedia, for evaluation. It achieves much higher performance
than the baselines that include the state-of-the-art. We discuss below some more
subjective observations and possible directions for future work.

Neural Network and Prediction Justification. The network architecture
aims to learn features from a literal’s context. In our AttBiRNN, a triple is mod-
eled as a word sequence with three size-fixed segments allocated for the subject,
object and literal respectively. The cooccurrence of words and the importance
of each word are learned by BiRNNs and the attention mechanism respectively,
where word position (including whether it is in the subject, property or literal)
is significant. The effectiveness of such a design has been validated in Sect. 3.2.
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However, the current design does not exploit further semantics of the subject,
such as its relation to other entities. We believe that this will provide limited
indication of the literal’s semantic type, but this could be explored using graph
embedding methods such as random walks and Graph Convolutional Networks.

We believe that it would be interesting to explore the possible use of the
learned attention weights (αt) in justifying the predictions. For example, consid-
ering the literal in triple 〈dbr:Byron White, dbp:battles, “World War II”〉 and the
classifier of type dbo:MilitaryConflict, “War” gets a dominant attention weight of
0.919, “battles” and “II” get attention weights 0.051 and 0.025 respectively, while
the attention weights of other words and the padded empty tokens are all less
than 0.0015. Similarly, in the triple 〈dbr:Larry Bird, dbp:statsLeague, “NBA” 〉,
the total attention weights of the subject, property and literal are 0.008, 0.801
and 0.191 respectively w.r.t. the classifier of dbo:Organisation, but become 0.077,
0.152 and 0.771 w.r.t. the classifier of dbo:BasketballLeague, where the signal of
basketball is focused.

Knowledge-Based Learning. We developed some strategies to fully train our
neural networks with the supervision of the KB itself. One strategy is the sepa-
rated extraction of general samples and particular samples. It (i) eliminates the
time consuming pre-training step from a specific task, reducing for example the
total typing time per literal of S-Lite from 10.5 s to 2.5 s (training and predic-
tion are run with at most 10 parallel threads), and (ii) adapts the domain of
the classifier toward the target literals through fine tuning, which significantly
improves the accuracy as shown in Table 2. Another strategy that has been eval-
uated in Sect. 3.2 is sample refinement by validating entity classifications with
external knowledge from Wikidata. However, we believe that this could be fur-
ther extended with more external KBs, as well as with logical constraints and
rules.

Entity Matching. We currently search for the corresponding entity of a lit-
eral by lexical lookup, and filter out those that are not instances of any of the
predicted types. The extension with prediction does improve the performance in
comparison with pure lookup (cf. Section 3.4), but not as significantly as seman-
tic typing, especially on the metric of the number of correct matches. One reason
is that entity matching itself has relatively few ground truths as many literals
in R-Lite have no corresponding entities in the KB. Another reason is that we
post-process the entities from lookup instead of directly predicting the corre-
spondence. This means that those missed by pure lookup are still missed. In the
future we plan to explore direct prediction of the matching entity using semantic
embedding and graph feature learning.
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1 Sapienza Università di Roma, Rome, Italy
cima@diag.uniroma1.it

2 Department of Computer Science, University of Oxford, Oxford, UK
{egor.kostylev,mark.kaminski,bernardo.cuenca.grau,ian.horrocks}@cs.ox.ac.uk

3 Infor, Farnborough, UK
charalampos.nikolaou@infor.com

Abstract. Ontology-based data access (OBDA) is a popular approach
for integrating and querying multiple data sources by means of an ontol-
ogy, which is usually expressed in a description logic (DL) of DL-Lite
family. The conventional semantics of OBDA and DLs is set-based—
that is, duplicates are disregarded. This disagrees with the standard
database bag (multiset) semantics, which is especially important for the
correct evaluation of aggregate queries. In this article, we study two
variants of bag semantics for query answering over DL-LiteF , extend-
ing basic DL-Litecore with functional roles. For our first semantics, which
follows the semantics of primary keys in SQL, conjunctive query (CQ)
answering is coNP-hard in data complexity in general, but it is in TC0

for the restricted class of rooted CQs; such CQs are also rewritable to
the bag relational algebra. For our second semantics, the results are the
same except that TC0 membership and rewritability hold only for the
restricted class of ontologies identified by a new notion of functional weak
acyclicity.

1 Introduction

Ontology-based data access (OBDA) is an increasingly popular approach for
integrating multiple relational data sources under a global schema [7,24,32]. In
OBDA, an ontology provides a unifying conceptual model for the data sources,
which is linked to each source by mappings assigning views over the data to
ontology predicates. Users access the data by means of queries formulated using
the vocabulary of the ontology; query answering amounts to computing the cer-
tain answers to the query over the union of ontology and the materialisation
of the views defined by the mappings. The formalism of choice for representing
ontologies in OBDA is usually the lightweight description logic DL-LiteR [8],
which underpins OWL 2 QL [28]. DL-LiteR was designed to ensure that con-
junctive queries (CQs) against the ontology are first-order rewritable—that is,
they can be reformulated as relational database queries over the sources [8].
c© Springer Nature Switzerland AG 2019
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There is, however, an important semantic mismatch between standard
database query languages, such as SQL, and OBDA: the former commit to a
bag (multiset) semantics, where tuples are allowed to occur multiple times in
query answers, whereas the latter is usually set-based, where multiplicities are
disregarded. This semantic difference becomes apparent when evaluating queries
with aggregation, where the multiplicities of tuples are important [1]. Motivated
by the need to support database-style aggregate queries in OBDA systems and
inspired by the work of Kostylev and Reutter [23] on the support of aggre-
gates queries in DL-LiteR, Nikolaou et al. [30,31] proposed a bag semantics for
DL-LiteR and OBDA, where duplicates in the views defined by the mappings are
retained. The most common reasoning tasks of ontology satisfiability and query
answering in this new language, called DL-LitebR, generalise the counterpart
problems defined under the traditional set semantics. This generalisation does
not come for free though as it raises the data complexity of query answering from
AC0 to coNP-hard, and this holds already for the core fragment DL-Litebcore of
DL-LitebR. To regain tractability, Nikolaou et al. [30,31] studied restrictions on
CQs and showed that query answering for the class of so-called rooted CQs [6]
becomes again tractable in data complexity. This result was obtained by showing
that rooted CQs are rewritable to BCALC, a logical counterpart of the relational
algebra BALG1 for bags [15,26] whose evaluation problem is known to be in TC0

in data complexity [25].
In this paper, building on the work of Nikolaou et al. [30,31], we consider the

logic DL-LitebF—that is, the extension of DL-Litebcore with functionality axioms.
Such axioms comprise a desirable feature in description logics and OBDA since
they are able to deliver various modelling scenarios encountered in information
systems [9,10,27,33], such as key and identification constraints. We propose
two alternative semantics for DL-LitebF , both of which generalise the standard
set-based semantics, and which differ from each other in the way they han-
dle functionality axioms. Our first semantics, called SQL semantics, interprets
functionality axioms following the semantics of primary keys in SQL—that is,
the interpretation of a functional role is required to be a set satisfying the key
constraint in the sense that for each first component in the interpretation of a
functional role there exists exactly one second component, and, moreover, the
multiplicity of this relation between the components is exactly one. By contrast,
our second semantics, called multiplicity-respectful (MR) semantics, retains the
key constraint requirement but allows for several copies of the same pair in the
interpretation.

Our results are summarised below. First, we study how the two semantics
relate to the set-based semantics of DL-LiteF and to each other in terms of
the standard reasoning tasks of satisfiability checking and query answering. On
the one hand, we show that under the MR semantics both problems generalise
the corresponding ones under set semantics. On the other hand, under the SQL
semantics the notion of satisfiability becomes stronger than under set semantics,
while query answering for satisfiable ontologies again generalises set semantics.
Second, we investigate whether the class of rooted CQs is rewritable to BCALC
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under each of the semantics. For the SQL semantics, we obtain a positive answer,
which implies that query answering is feasible in TC0 in data complexity. For
the MR semantics, however, we obtain LogSpace-hardness of query answering
even for the simple class of instance queries, which prevents rewritability to
BCALC (under the usual complexity-theoretic assumptions). To address this,
we identify a class of TBoxes, called functionally weakly acyclic, for which rooted
CQs become rewritable to BCALC, thus regaining feasibility of query answering.

The rest of the paper is organised as follows. Section 2 introduces the rele-
vant background. Section 3 defines the SQL and MR semantics as extensions of
the bag semantics proposed in [30,31] accounting for functionality axioms, and
relates the new semantics to the set semantics and to each other. Section 4 stud-
ies the query answering problem, establishing the rewritability and complexity
results. Last, Sect. 5 discusses related work and Sect. 6 concludes the paper.

2 Preliminaries

We start by defining DL-LiteF ontologies as well as the notions of query answer-
ing and rewriting over such ontologies, all over the usual set semantics [4,8],
after which we summarise the bag semantics of queries in databases [15,26,31].

Syntax of DL-LiteF . We fix a vocabulary consisting of countably infinite and
pairwise disjoint sets of individuals I (i.e., constants), atomic concepts C (i.e.,
unary predicates) and atomic roles R (i.e., binary predicates). A role is an
atomic role P ∈ R or its inverse P−. A concept is an atomic concept in C or
an expression ∃R with R a role. Expressions C1 � C2 and Disj(C1, C2) with C1,
C2 concepts are inclusion and disjointness axioms, respectively. An expression
(funct R) with R a role is a functionality axiom. A DL-LiteF TBox is a finite set
of inclusion, disjointness, and functionality axioms. A concept assertion is A(a)
with a ∈ I and A ∈ C, and a role assertion is P (a, b) with a, b ∈ I and P ∈ R. A
(set) ABox is a finite set of concept and role assertions. A DL-LiteF ontology is
a pair (T ,A) with T a DL-LiteF TBox and A an ABox. A DL-Litecore ontology
is the same except that functionality axioms are disallowed.

Semantics of DL-LiteF . A (set) interpretation I is a pair (ΔI , ·I), where the
domain ΔI is a non-empty set, and the interpretation function ·I maps each
a ∈ I to an element aI ∈ ΔI such that aI �= bI for all distinct a, b ∈ I (i.e., as
usual for DL-Lite we adopt the UNA—that is, the unique name assumption),
each A ∈ C to AI ⊆ ΔI , and each P ∈ R to P I ⊆ ΔI × ΔI . Interpretation
function ·I extends to non-atomic concepts and roles as follows, for each P ∈ R
and each role R:

(P−)I = {(u, u′) | (u′, u) ∈ P I}, (∃R)I = {u ∈ ΔI | ∃u′ ∈ ΔI : (u, u′) ∈ RI}.

An interpretation I satisfies a DL-LiteF TBox T if CI
1 ⊆ CI

2 for each inclusion
axiom C1 � C2 in T , CI

1 ∩ CI
2 = ∅ for each disjointness axiom Disj(C1, C2) in T ,

and v1 = v2 for each (u, v1), (u, v2) in RI with functionality axiom (funct R) in T .
Interpretation I satisfies an ABox A if aI ∈ AI for all A(a) ∈ A and (aI , bI) ∈ P I
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for allP (a, b) ∈ A. An interpretationI is amodel of an ontology (T ,A) if it satisfies
both T and A. An ontology is satisfiable if it has a model. Checking satisfiability of
a DL-LiteF ontology isNLogSpace-complete in general and inAC0 if the TBox is
fixed [4,8] (note however that the latter problem becomes P-complete if the UNA
is dropped).

Queries over DL-LiteF . A conjunctive query (CQ) q(x) with answer variables
x is a formula ∃y. φ(x,y), where x, y are (possibly empty) repetition-free disjoint
tuples of variables from a set X disjoint from I, C and R, and φ(x,y) is a
conjunction of atoms of the form A(t), P (t1, t2) or (z = t), where A ∈ C,
P ∈ R, z ∈ x ∪ y, and t, t1, t2 ∈ x ∪ y ∪ I. If x is inessential, then we write
q instead of q(x). The equality atoms (z = t) in φ(x,y) yield an equivalence
relation ∼ on terms x∪ y ∪ I, and we write t̃ for the equivalence class of a term
t. The Gaifman graph of q(x) has a node t̃ for each t ∈ x ∪ y ∪ I in φ, and
an edge {t̃1, t̃2} for each atom in φ over t1 and t2. We assume that all CQs are
safe—that is, for each z ∈ x ∪ y, z̃ contains a term mentioned in an atom of
φ(x,y) that is not equality. A CQ q(x) is rooted if each connected component of
its Gaifman graph has a node with a term in x ∪ I [6]. A union of CQs (UCQ)
is a disjunction of CQs with the same answer variables. The certain answers
qK to a (U)CQ q(x) over a DL-LiteF ontology K are the set of all tuples a of
individuals such that q(a) holds in every model of K. Checking whether a tuple
of individuals is in the certain answers to a (U)CQ over a DL-LiteF ontology
is an NP-complete problem with AC0 data complexity (i.e., when the query
and TBox are fixed) [4,8]. The latter follows from the rewritability of the class
of UCQs to itself over DL-LiteF—that is, from the fact that for each UCQ q

and DL-LiteF TBox T there is a UCQ q1 such that q(T ,A) = q
(∅,A)
1 for each

ABox A [8].

Bags. A bag over a set M is a function Ω : M → N
∞
0 , where N

∞
0 is the set N0

of non-negative integers extended with the (positive) infinity ∞. The value Ω(c)
is the multiplicity of element c in Ω. A bag Ω is finite if there are finitely many
c ∈ M with Ω(c) > 0 and there is no c with Ω(c) = ∞. The empty bag ∅ over M
is the bag such that ∅(c) = 0 for each c ∈ M . A bag Ω1 over M is a subbag of a
bag Ω2 over M , in symbols Ω1 ⊆ Ω2, if Ω1(c) ≤ Ω2(c) for each c ∈ M . Often we
will use an alternative syntax for bags: for instance, we will write {| c : 5, d : 3 |}
for the bag that assigns 5 to c, 3 to d, and 0 to all other elements. We use the
following common operators on bags [15,26]: the intersection ∩, maximal union
∪, arithmetic union �, and difference – are the binary operators defined, for
bags Ω1 and Ω2 over a set M , and for every c ∈ M , as follows:

(Ω1 ∩ Ω2)(c) = min{Ω1(c), Ω2(c)}, (Ω1 ∪ Ω2)(c) = max{Ω1(c), Ω2(c)},

(Ω1 � Ω2)(c) = Ω1(c) + Ω2(c), (Ω1 − Ω2)(c) = max{0, Ω1(c) − Ω2(c)}.

Note that bag difference is well-defined only if Ω2(c) is a finite number for each
c ∈ M . The unary duplicate elimination operator ε is defined for a bag Ω over
M and for each c ∈ M as (ε(Ω))(c) = 1 if Ω(c) > 0 and (ε(Ω))(c) = 0 otherwise.
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Queries over Bags. Following [31], a BCALC query Φ(x) with (a tuple of)
answer variables x is any of the following, for Ψ , Ψ1, and Ψ2 BCALC queries:

– S(t), where S ∈ C ∪ R and t is a tuple over x ∪ I mentioning all x;
– Ψ1(x1) ∧ Ψ2(x2), where x = x1 ∪ x2;
– Ψ(x0) ∧ (x = t), where x ∈ x0, t ∈ X ∪ I, and x = x0 ∪ ({t} \ I);
– ∃y. Ψ(x,y), where y is a tuple of distinct variables from X that are not in x;
– Ψ1(x) opΨ2(x), where op ∈ {∨,∨. , \}; or
– δ Ψ(x).

In particular, all UCQs are syntactically BCALC queries. BCALC queries are
evaluated over bag database instances, which are, in the context of this paper,
bag ABoxes—that is, finite bags over the set of concept and role assertions. The
bag answers ΦA to a BCALC query Φ(x) over a bag ABox A is the finite bag
over I|x| defined inductively as follows, for every tuple a over I with |a| = |x|,
where ν : x∪ I → I is the function such that ν(x) = a and ν(a) = a for all a ∈ I:

– ΦA(a) = A(S(ν(t))), if Φ(x) = S(t);
– ΦA(a) = ΨA

1 (ν(x1)) × ΨA
2 (ν(x2)), if Φ(x) = Ψ1(x1) ∧ Ψ2(x2);

– ΦA(a) = ΨA(ν(x0)), if Φ(x) = Ψ(x0) ∧ (x = t) and ν(x) = ν(t);
– ΦA(a) = 0, if Φ(x) = Ψ(x0) ∧ (x = t) and ν(x) �= ν(t);
– ΦA(a) =

∑
ν′:y→I ΨA(a, ν′(y)), if Φ(x) = ∃y. Ψ(x,y);

– ΦA(a) = (ΨA
1 opΨA

2 )(a), if Φ(x) = Ψ1(x) op′ Ψ2(x), where op is ∪, �, or –,
and op′ is ∨, ∨. , or \, respectively;

– ΦA(a) =
(
ε(ΨA)

)
(a), if Φ(x) = δ Ψ(x).

As shown in [31], BCALC is a logical counterpart of the bag relational algebra
BALG1 [15], with the same expressive power. Evaluation of a fixed BALG1 (and
hence BCALC) query is in TC0 [25] (i.e., between AC0 and LogSpace).

3 DL-LiteF Under Bag Semantics

In this section we introduce the bag version DL-LitebF of the ontology language
DL-LiteF by proposing two semantics and then study their properties and rela-
tionships. Both semantics extend the bag semantics of DL-Litecore proposed by
Nikolaou et al. [30,31] but differ in their interpretation of functionality axioms.

3.1 Syntax and Semantics of DL-LitebF

Syntactically, DL-LitebF is the same as DL-LiteF except that assertions in
ABoxes may have arbitrary finite multiplicities—that is, bag ABoxes are consid-
ered instead of set ABoxes. Thus, at the syntax level DL-LitebF is a conservative
extension of DL-LiteF since each set ABox can be seen as a bag ABox with
assertion multiplicities 0 and 1.

Definition 1. A DL-LitebF ontology is a pair (T ,A) of a DL-LiteF TBox T and
a bag ABox A. A DL-Litebcore ontology is the same except that T is DL-Litecore.
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The semantics of DL-LitebF ontologies is based on bag interpretations, which
are the same as set interpretations except that concepts and roles are interpreted
as bags rather than sets. The extension of the interpretation function to non-
atomic concepts and roles is defined in a way that respects the multiplicities: for
example, the concept ∃P for an atomic role P is interpreted by a bag interpreta-
tion I as the bag projection of P I to its first component, where each occurrence
of a pair (u, v) in P I contributes separately to the multiplicity of u in (∃P )I .

Definition 2. A bag interpretation I is a pair (ΔI , ·I) where the domain ΔI is
a non-empty set, and the interpretation function ·I maps each individual a ∈ I
to an element aI ∈ ΔI such that aI �= bI for all distinct a, b ∈ I, each atomic
concept A ∈ C to a bag AI over ΔI , and each atomic role P ∈ R to a bag P I

over ΔI × ΔI . Interpretation function ·I extends to non-atomic concepts and
roles as follows, for all P ∈ R, R a role, and u, u′ ∈ ΔI :

(P−)I(u, u′) = P I(u′, u) and (∃R)I(u) =
∑

u′∈ΔI RI(u, u′).

Note that, same as in the set case, we adopt the UNA by requiring different
individuals be interpreted by different domain elements.

We are now ready to present our two semantics of DL-LitebF . Both semantics
extend the semantics of DL-Litebcore considered in [31], but handle the functional
axioms differently. Our first semantics, called SQL, follows the semantics of pri-
mary keys in SQL: if R is a functional role then for every domain element u of
a model there exists at most one element u′ related to u by R; moreover, the
multiplicity of the tuple (u, u′) in R cannot be more than one. Our second seman-
tics, called MR (i.e., multiplicity-respectful), allows more freedom for functional
roles: same as before, only one u′ may be related to u by a functional role R,
but the multiplicity of (u, u′) may be arbitrary.

Definition 3. A bag interpretation I satisfies an inclusion axiom C1 � C2 if
CI

1 ⊆ CI
2 . It satisfies a disjointness axiom Disj(C1, C2) if CI

1 ∩ CI
2 = ∅. It

satisfies a functionality axiom (funct R) under SQL semantics (or SQL-satisfies,
for short) if u′ = u′′ and RI(u, u′) = RI(u, u′′) = 1 for every u, u′, and u′′

in ΔI such that RI(u, u′) > 0 and RI(u, u′′) > 0; it satisfies (funct R) under
MR semantics (or MR-satisfies) if the same holds except that the requirement
RI(u, u′) = RI(u, u′′) = 1 is not imposed.

For X being SQL or MR, a bag interpretation I X-satisfies a DL-LiteF
TBox T , written I |=X T , if it satisfies every inclusion and disjointness
axiom in T and X-satisfies every functionality axiom in T . A bag interpre-
tation I satisfies a bag ABox A, written I |= A, if A(A(a)) ≤ AI(aI) and
A(P (a, b)) ≤ P I(aI , bI) for each concept assertion A(a) and role assertion
P (a, b), respectively. A bag interpretation I is an X-model of a DL-LitebF ontol-
ogy (T ,A), written I |=X (T ,A), if I |=X T and I |= A. A DL-LitebF ontology
is X-satisfiable if it has an X-model.

Since MR-satisfaction is a relaxation of SQL-satisfaction, every SQL-model
of a DL-LitebF ontology is also an MR-model of this ontology. However, as illus-
trated by the following example, the opposite does not hold.
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Example 1. Consider an online store that employs atomic concept Customer
and atomic roles hasItem, placedBy for recording the items ordered by cus-
tomers in a purchase. A sample DL-LitebF ontology recording customers’ orders
is Kex = (Tex,Aex) with

Tex = {∃hasItem � ∃placedBy, ∃placedBy− � Customer, (funct placedBy)} and
Aex = {| hasItem(o, i1) : 1, hasItem(o, i2) : 1, placedBy(o, c) : 1, Customer(c) : 1 |}.

Let Iex be the bag interpretation that interprets all individuals by them-
selves, and the atomic roles and concepts as follows: CustomerIex = {| c : 2 |},
hasItemIex = {| (o, i1) : 1, (o, i2) : 1 |}, and placedByIex = {| (o, c) : 2 |}. It is imme-
diate that Iex is an MR-model of Kex but not a SQL-model. 


To conclude this section, we note that each semantics has its advantages and
drawbacks. Indeed, on the one hand, SQL semantics is compatible with primary
keys in SQL, so a large fragment of DL-LitebF under this semantics can be easily
simulated by a SQL engine. On the other hand, one can show that entailment of
axioms under set and bag semantics coincides only for the case of MR models;
this means that the adoption of MR semantics does not affect the standard TBox
reasoning services implemented in ontology development tools. So neither of the
two semantics is clearly preferable to the other.

3.2 Queries over DL-LitebF
We next define the answers qI to a CQ q(x) over a bag interpretation I as
the bag of tuples of individuals such that each valid embedding λ of the atoms
in q into I contributes separately to the multiplicity of the tuple λ(x) in qI ,
and where the contribution of each specific λ is the product of the multiplicities
of the images of the query atoms under λ in I. This may be seen as usual CQ
answering under bag semantics over relational databases when the interpretation
is seen as a bag database instance [12]. In fact, when q is evaluated over this bag
database instance as a BCALC query (see Sect. 2), it produces exactly qI .

Definition 4. Let q(x) = ∃y. φ(x,y) be a CQ and I = (ΔI , ·I) be a bag inter-
pretation. The bag answers qI to q over I are the bag over tuples of individuals
from I of size |x| such that, for every such tuple a,

qI(a) =
∑

λ∈Λ

∏

S(t) in φ(x,y)
SI(λ(t)),

where Λ is the set of all valuations λ : x ∪ y ∪ I → ΔI such that λ(x) = aI ,
λ(a) = aI for each a ∈ I, and λ(z) = λ(t) for each z = t in φ(x,y).

Note that conjunction φ(x,y) in a CQ may contain repeated atoms, and
hence can be seen as a bag of atoms; while repeated atoms are redundant in the
set case, they are essential in the bag setting [12,18], and thus in the definition of
qI(a) each occurrence of a query atom S(t) is treated separately in the product.

The following definition of certain answers, which captures open-world query
answering, is a natural extension of certain answers for DL-LiteF to bags. For
DL-Litebcore, this definition coincides with the one in [31] for both semantics.
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Definition 5. For X being SQL or MR, the X-bag certain answers qK
X to a

CQ q over a DL-LitebF ontology K are the bag
⋂

I |=X K qI .

Note that in this definition the intersection is the bag intersection, and we
assume that the intersection of zero bags (which is relevant when K is not X-
satisfiable) assigns ∞ to all tuples over I.

The (data complexity version of the) decision problem corresponding to com-
puting the X-bag certain answers to a CQ q over an ontology with a DL-LiteF
TBox T , for X begin SQL or MR, is defined as follows, assuming that all num-
bers in the input are represented in unary.

BagCertX [q, T ]

Input: ABox A, tuple a of individuals from I, and k ∈ N
∞
0 .

Question: Is q
(T ,A)
X (a) ≥ k?

The idea of bag certain answers is illustrated by the following example.

Example 2. Recall ontology (Tex,Aex) and interpretation Iex specified in Exam-
ple 1, and let q(x) = ∃y. placedBy(x, y)∧Customer(y) be the rooted CQ request-
ing orders placed by customers. The bag answers qIex to q over interpretation
Iex is the bag {| o : 4 |}. Moreover, it is not hard to see that the MR-bag certain
answers to q over (Tex,Aex) coincide with bag qIex , and that q

(Tex,Aex)
SQL (a) = ∞

for every a ∈ I since (Tex,Aex) does not have any SQL-model. 


Besides the complexity of query answering, an important related property of
any description logic is query rewritability: since TBoxes are much more stable
than ABoxes in practice, it is desirable to be able to rewrite a query and a
TBox into another query so that the answers to the original query over each
satisfiable ontology with this TBox are the same as the answers to the rewriting
over the ABox alone. The rewriting may be in a richer query language than the
language of the original query, provided we have an efficient query engine for the
target language; it is important, however, that the rewriting does not depend
on the ABox. As mentioned above, rewritings of (U)CQs to UCQs are usually
considered in the set setting. In our bag setting, the source language is CQs and
the target language is BCALC, which can be easily translated to SQL.

Definition 6. For X being SQL or MR, a BCALC query Φ is an X-rewriting
of a CQ q with respect to a DL-LiteF TBox T if q

(T ,A)
X = ΦA for every bag ABox

A with (T ,A) X-satisfiable. A class Q of CQs is X-rewritable to a class Q′ of
BCALC queries over a sublanguage L of DL-LiteF if, for every CQ in Q and
TBox in L, there is an X-rewriting of the CQ with respect to the TBox in Q′.

Since evaluation of fixed BCALC queries is in TC0 [25], rewritability to
BCALC implies TC0 data complexity of query answering provided rewritings
are effectively constructible. BagCertX [q, T ] is coNP-hard even for DL-Litebcore
ontologies (for both X) [31], which precludes efficient query answering and (con-
structive) BCALC rewritability (under the usual complexity-theoretic assump-
tions). However, rewritability and TC0 complexity of query answering are
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regained for rooted CQs, which are common in practice. The main goal of this
paper is to understand to what extent these results transfer to DL-LitebF .

We next establish some basic properties of the proposed bag semantics and
relate them to the standard set semantics. The following theorem states that
satisfiability and query answering under the set semantics and MR semantics
are essentially equivalent when multiplicities are ignored, while SQL semantics
is in a sense stronger as only one direction of the statements holds.

Theorem 1. The following statements hold for every DL-LiteF TBox T and
every bag ABox A (recall that ε is the duplicate elimination operator):

1. if (T ,A) is SQL-satisfiable then (T , ε(A)) is satisfiable; and
2. for every tuple a over I, if a ∈ q(T ,ε(A)) then q

(T ,A)
SQL (a) ≥ 1, and the converse

holds whenever (T ,A) is SQL-satisfiable.

The same holds when MR semantics is considered instead of SQL; moreover, in
this case the converses of both statements hold unconditionally.

In fact, the converse direction of statement 1 does not hold for SQL semantics;
indeed, the DL-LitebF ontology Kex of Example 1 is not SQL-satisfiable but
ontology (Tex, ε(Aex)) is satisfiable.

Statement 1 for MR semantics implies that we can check MR-satisfiability
of DL-LitebF ontologies using standard techniques for DL-LiteF under the set
semantics; in particular, we can do it in AC0 for fixed TBoxes. The following
proposition says that for SQL semantics the problem is not much more difficult.

Proposition 1. The problem of checking whether a DL-LitebF ontology is SQL-
satisfiable is in TC0 when the TBox is fixed.

Finally, note that, since every SQL-model of a DL-LitebF ontology is also an
MR-model, qK

MR ⊆ qK
SQL for every CQ q and DL-LitebF ontology K; it is not

difficult to see that the inclusion may be strict even if K is SQL-satisfiable.

4 Rewriting and Query Answering in DL-LitebF

We next study rewritability of rooted CQs to BCALC over DL-LitebF under
our two semantics (recall that the class of all CQs are not rewritable even over
DL-Litebcore [31]). We first show that for SQL semantics and satisfiable ontologies
we can apply the same rewriting as for DL-Litebcore [31], which implies TC0

data complexity of query answering. However, MR semantics is more complex,
because, as we show, even simple rooted CQs (in particular, instance queries)
have LogSpace-hard query answering, which precludes rewritability (assuming
TC0

� LogSpace). To address this limitation, we introduce a new acyclicity
condition on TBoxes, for which we show that the rewritability is regained.
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4.1 SQL Semantics

The key ingredient for rewritability and tractability of CQ answering in many
description logics is the existence of a universal model.

Definition 7. For X being SQL or MR, an X-model I of a DL-LitebF ontology
K is X-universal for a class of CQs Q if qK

X = qI for every q ∈ Q.

In the set case, it is well-known that if the ontology is satisfiable, then the
so-called canonical interpretation, which can be constructed by the chase proce-
dure, is always a universal model for all CQs [4,8]. Nikolaou et al. generalised
this idea to DL-Litebcore [31] and rooted CQs, and it turns out that their canon-
ical interpretation is a universal model for rooted CQs also for DL-LitebF under
SQL semantics. Before we give the main construction, we introduce the relevant
notions from [31].

The concept closure cclT [u, I] of an element u ∈ ΔI in a bag interpretation
I = (ΔI , ·I) over a TBox T is the bag of concepts such that, for any concept C,

cclT [u, I](C) = max{CI
0 (u) | T |= C0 � C}.

In other words, cclT [u, I](C) is the minimal multiplicity of CJ (u) required for
an extension J of I to satisfy TBox T locally in u.

The union I ∪ J of bag interpretations I = (ΔI , ·I) and J = (ΔJ , ·J )
interpreting all the individuals in the same way—that is, such that aI = aJ for
each a ∈ I—is the bag interpretation (ΔI ∪ ΔJ , ·I∪J ) with aI∪J = aI for all
a ∈ I and SI∪J = SI ∪ SJ for all atomic concepts and roles S ∈ C ∪ R.

Finally, given a bag ABox A we denote with IA = (ΔIA , ·IA) the standard
interpretation of A that is defined as follows: ΔIA = I, aIA = a for each a ∈ I,
and SIA(a) = A(S(a)) for each S ∈ C ∪ R and tuple of individuals a.

Definition 8 (Nikolaou et al. [31]). The SQL-canonical bag interpretation
CSQL(K) of a DL-LitebF ontology K = (T ,A) is the bag interpretation that is the
union

⋃
i≥0 Ci

SQL(K) of the bag interpretations Ci
SQL(K) = (ΔCi

SQL(K), ·Ci
SQL(K))

such that C0
SQL(K) = IA and, for each i > 0, Ci

SQL(K) is constructed from
Ci−1
SQL(K) as follows:

– ΔCi
SQL(K) extends ΔCi−1

SQL(K) by fresh anonymous elements w1
u,R, . . . , wδ

u,R for

each u ∈ ΔCi−1
SQL(K) and role R with

δ = cclT [u, Ci−1
SQL(K)](∃R) − (∃R)Ci−1

SQL(K)(u);

– aCi
SQL(K) = a for all a ∈ I, and, for all A ∈ C, P ∈ R and u, v in ΔCi

SQL(K),

ACi
SQL(K)(u) =

{
cclT [u, Ci−1

SQL(K)](A), if u ∈ ΔCi−1
SQL(K),

0, otherwise,

P Ci
SQL(K)(u, v) =

⎧
⎪⎨

⎪⎩

P Ci−1
SQL(K)(u, v), if u, v ∈ ΔCi−1

SQL(K),

1, if u = wj
v,P or v = wj

u,P − ,

0, otherwise.
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The following example illustrates the construction of SQL-canonical models.

Example 3. Consider the DL-LitebF ontology K′
ex = (T ′

ex,A′
ex) with

T ′
ex = {Order � ∃placedBy, Customer � ∃placedBy−, (funct placedBy)} and

A′
ex = {|Order(o) : 1, placedBy(o, c) : 1, Customer(c) : 4 |}.

To compute the SQL-canonical interpretation CSQL(K′
ex) of K′

ex, we first set
C0
SQL(K′

ex) = IA′
ex

. For the second step we take OrderC
1
SQL(K′

ex) = OrderC
0
SQL(K′

ex)

and CustomerC
1
SQL(K′

ex) = CustomerC
0
SQL(K′

ex) as neither of the concepts sub-
sumes another concept in T ′

ex. The interpretation of placedBy by C1
SQL(K′

ex)
is then determined by the concept closures of o and c for the concepts
∃placedBy and ∃placedBy− over T ′

ex, respectively. Since the former is equal
to the multiplicity that o has in (∃placedBy)C0

SQL(K′
ex), no new ∃placedBy-

successor is added for o. However, the latter is larger than the multiplicity
of c in (∃placedBy−)C0

SQL(K′
ex) by three, and hence c must be associated with

new anonymous ∃placedBy−-successors w1
c,∃placedBy− , . . . , w3

c,∃placedBy− . Therefore,
C1
SQL(K′

ex) has domain I ∪ {w1
c,∃placedBy− , . . . , w3

c,∃placedBy−}, and interprets con-
cepts and roles as follows:

OrderC
1
SQL(K′

ex) = {| o : 1 |}, CustomerC
1
SQL(K′

ex) = {| c : 4 |}, and

placedByC1
SQL(K′

ex) = {| (o, c) : 1, (w1
c,∃placedBy− , c) : 1, . . . , (w3

c,∃placedBy− , c) : 1 |}.

Since there is no violation of axioms in C1
SQL(K′

ex), the process terminates at the
following step, and we take CSQL(K′

ex) = C2
SQL(K′

ex) = C1
SQL(K′

ex). 


We are ready to show that the SQL-canonical bag interpretation is indeed
SQL-universal for rooted CQs.

Theorem 2. The SQL-canonical bag interpretation of an SQL-satisfiable
DL-LitebF ontology K is an SQL-universal model for the class of rooted CQs.

Having this result at hand, we can reuse the rewriting of rooted CQs over
DL-Litebcore introduced in [31] for the SQL semantics of DL-LitebF .

Corollary 1. Rooted CQs are SQL-rewritable to BCALC over DL-LitebF .

Since the proof of rewritability in [31] is constructive, SQL-satisfiability is in
TC0, and BCALC evaluation is in TC0, rooted CQ answering is also in TC0.

Corollary 2. Problem BagCertSQL[q, T ] is in TC0 for every rooted CQ q and
DL-LiteF TBox T .
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4.2 MR Semantics

We begin the study of MR semantics by proving LogSpace-hardness for answer-
ing even very simple rooted CQs (in particular, instance queries), which empha-
sises the difference with SQL semantics. Since answering BCALC queries is in
TC0, this result says that such queries are unlikely to be MR-rewritable to
BCALC.

∃P− ∃P A∗

(a)

Order

∗
∃placedBy

∃placedBy− Customer

(b)

Fig. 1. The functional dependency graphs of TBoxes T and T ′
ex from Example 4

Theorem 3. There exist a rooted CQ of the form A(a) with A ∈ C and a ∈ I,
and a DL-LiteF TBox T such that BagCertMR[A(a), T ] is LogSpace-hard.

Proof (Sketch). The proof is by an AC0 reduction from the 1GAP decision
problem which is a prototypical complete problem for LogSpace (under AC0

reductions) [17,20]. The input of 1GAP consists of a directed acyclic graph
H = (V,E) with nodes V and edges E such that each node has at most one
outgoing edge, and two nodes s, t in V , and the question is whether t is reachable
from s in H. For the reduction, we define a DL-LitebF ontology (T ,AH) over
atomic concept A and role P , where the DL-LiteF TBox T comprises axioms
∃P− � ∃P, (funct P ), and ∃P− � A, and AH is the bag ABox defined as
follows, for individuals av, for each v ∈ V , and a	:

AH(P (a1, a2)) =

⎧
⎪⎨

⎪⎩

1, if a1 = av and a2 = au for (v, u) ∈ E,

|V |, if a1 = a	 and a2 = as,

0, otherwise.

Now t is reachable from s in H if and only if q
(T ,AH)
MR () ≥ |V | for q = A(at). ��

Recalling that evaluation of BCALC queries is in TC0, the previous theorem
implies that even very simple rooted CQs are unlikely to be MR-rewritable to
BCALC. Next we introduce a restriction on TBoxes which, as we will see, guar-
antees MR-rewritability. The restriction is based on the notions of functional
dependency graphs and functional weakly acyclic TBoxes that respectively spe-
cialise the notions of dependency graphs and weak acyclicity defined for sets of
tuple-generating dependencies in the context of data exchange [14].

Definition 9. The functional dependency graph GT of a DL-LiteF T is the
directed graph that has all the concepts appearing in T as nodes, a usual edge



140 G. Cima et al.

(C1, C2) for each C1 � C2 in T , and a special edge (C1,∃R−)∗ for each C1 � ∃R
with (funct R) in T , where, for P ∈ R, R− is P if R is P−. TBox T is func-
tionally weakly acyclic if GT has no cycle through a special edge. The f-depth
of such a TBox T is the maximum number of special edges along a path in GT .

Example 4. The functional dependency graphs of TBoxes T and T ′
ex specified

respectively in the proof of Theorem 3 and in Example 3 are depicted in Fig. 1.
From the graph of Fig. 1a, we have that the functional depth of T is ∞; thus, T
is not functionally weakly acyclic. From the graph of Fig. 1b, we have that the
functional depth of T ′

ex is 1; thus, T ′
ex is functionally weakly acyclic. 


Note that the SQL-canonical interpretation of an MR-satisfiable DL-LitebF
ontology K specified in Definition 8 is not always an MR-model of K (e.g.,
consider ontology ({A � ∃P, (funct P )}, {|A(e) : 2 |})). Below we introduce the
construction of MR-canonical interpretations that always results in MR-models
for MR-satisfiable ontologies, and start with the auxiliary notion of closure.

The closure L(K) of a DL-LitebF ontology K = (T ,A) is the union
⋃

i≥0 Li(K) of bag interpretations Li(K) = (ΔLi(K), ·Li(K)) with ΔLi(K) = I such

that L0(K) = IA and, for each i ≥ 1, Li(K) extends Li−1(K) so that aLi(K) = a
for all a ∈ I, and, for all A ∈ C, P ∈ R, and a, b, c, c′ ∈ I,

ALi(K)(a) = cclT [a,Li−1(K)](A),

PLi(K)(a, b) =

{
0, if PLi−1(K)(a, b) = 0,
max{P (a, b), P −(b, a)}, otherwise, where

R(c, c′) =

{
cclT [c,Li−1(K)](∃R), if (funct R) is in T ,

RLi−1(K)(c, c′), otherwise.

In fact, if the TBox of K is functionally weakly acyclic then the closure can
be computed in a finite number of steps that does not depend on the ABox.

Proposition 2. For every DL-LitebF ontology K = (T ,A) with a functionally
weakly acyclic TBox T we have L(K) =

⋃dT +1
i=0 Li(K).

The example below demonstrates the notion of closure.

Example 5. Consider the DL-LitebF ontology K′
ex = (T ′

ex,A′
ex) with T ′

ex as in
Example 3 and A′

ex = {|Order(o) : 3, placedBy(o, c) : 1, Customer(c) : 4 |}. Fol-
lowing the definition of closure on K′

ex, we initialise L0(K′
ex) to IA′

ex
and then,

for the next step we trivially have that OrderL
1(K′

ex) = OrderIA′
ex = {| o : 3 |} and

CustomerL
1(K′

ex) = CustomerIA′
ex = {| c : 4 |} since both Order and Customer do

not subsume any concept in T ′
ex. Then, it can be easily seen that placedByL1(K′

ex)

includes only tuple (o, c) with a non-zero multiplicity expressed as the maxi-
mum of cclT ′

ex
[o,L0(K′

ex)](∃placedBy) = 3 and placedByL0(K′
ex)(o, c) = 1; thus

placedByL1(K′
ex) = {| (o, c) : 3 |}. Since all axioms in K′

ex are now satisfied, we

obtain that L2(K′
ex) = L1(K′

ex); thus L(K′
ex) =

⋃dT ′
ex

+1

i=0 Li(K′
ex) = L2(K′

ex). 
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We use the closure in the following definition of MR-canonical interpreta-
tions. Note the difference in handling functional and non-functional roles when
creating anonymous elements, which always produces a most general possible
interpretation in each case.

Definition 10. The MR-canonical bag interpretation CMR(K) of a DL-LitebF
ontology K = (T ,A) is the union

⋃
i≥0 Ci

MR(K) such that C0
MR(K) = L(K) and,

for each i ≥ 1, Ci
MR(K) is obtained from Ci−1

MR(K) as follows:

– ΔCi
MR(K) extends ΔCi−1

MR (K) by
– a fresh anonymous element wu,R for each u ∈ ΔCi−1

MR (K) and each role R

with (funct R) ∈ T , cclT [u, Ci−1
MR (K)](∃R) > 0, and (∃R)Ci−1

MR (K)(u) = 0,
– fresh anonymous elements w1

u,R, . . . , wδ
u,R for each u ∈ ΔCi−1

MR (K) and each

role R with (funct R) �∈ T and δ = cclT [u, Ci−1
MR(K)](∃R)−(∃R)Ci−1

MR (K)(u);
– aCi

MR(K) = a for all a ∈ I, and, for all A ∈ C, P ∈ R, and u, v in ΔCi
MR(K),

ACi
MR(K)(u) =

{
cclT [u, Ci−1

MR(K)](A), if u ∈ ΔCi−1
MR (K),

0, otherwise,

P Ci
MR(K)(u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P Ci−1
MR (K)(u, v), if u, v ∈ ΔCi−1

MR (K),

cclT [u, Ci−1
MR(K)](∃P ), if u ∈ ΔCi−1

MR (K) and v = wu,P ,

cclT [v, Ci−1
MR(K)](∃P−), if v ∈ ΔCi−1

MR (K) and u = wv,P − ,

1, if v = wj
u,P or u = wj

v,P − ,

0, otherwise.

MR-canonical bag interpretations are illustrated in the following example.

Example 6. Consider the functionally weakly acyclic ontology K′
ex = (T ′

ex,A′
ex)

and its closure L(K′
ex) specified in Example 5. Following Definition 10, the MR-

canonical interpretation CMR(K′
ex) is constructed on the basis of L(K′

ex) by first
setting C0

MR(K′
ex) = L(K′

ex). Then, for the next step we set

OrderC
1
MR(K′

ex) = OrderC
0
MR(K′

ex) and CustomerC
1
MR(K′

ex) = CustomerC
0
MR(K′

ex)

as neither Order nor Customer subsumes any concept in T ′
ex, and set

placedByC1
MR(K′

ex) = {| (o, c) : 3, (w1
c,∃placedBy− , c) : 1 |}. The latter follows by the

fact that o has already a placedBy-successor in C0
MR(K) while at the same time the

multiplicity of c in the extension of ∃placedBy− under C1
MR(K) must be increased

by 1 so that inclusion Customer � ∃placedBy− is satisfied; since (funct placedBy−)
is not in T ′

ex, this must be done by introducing a fresh anonymous element
w1

c,∃placedBy− to the domain of C1
MR(K) and making it a ∃placedBy−-successor of

c. All axioms are satisfied in C1
MR(K′

ex), and hence CMR(K′
ex) = C1

MR(K′
ex). 


As the following theorem says, the MR-canonical bag interpretation is an
MR-universal model, as desired.
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Theorem 4. The MR-canonical bag interpretation CMR(K) of an MR-satis-
fiable DL-LitebF ontology K = (T ,A) with T functionally weakly acyclic is an
MR-universal model for the class of rooted CQs.

Example 7. Consider ontology K′
ex and its MR-canonical interpretation

CMR(K′
ex) as in Example 6. Consider also rooted CQs q1(x) = ∃y. placedBy(x, y)

and q2(x) = ∃y. placedBy(y, x). It is straightforward to verify that the MR-
bag certain answers to q1 and q2 over K′

ex are respectively given by bags
q1

K′
ex

MR = {| o : 3 |} and q2
K′

ex

MR = {| c : 4 |}, and that these bags coincide with
the bag answers to q1 and q2 over CMR(K′

ex), respectively. This supports our
expectation that CMR(K′

ex) is an MR-universal model of K′
ex for the class of

rooted CQs. 


By adapting and extending the techniques in [31], we establish that rooted
CQs are MR-rewritable to BCALC over the restricted ontology language.

Theorem 5. Rooted CQs are MR-rewritable to BCALC over DL-LitebF with
functionally weakly acyclic TBoxes.

Hence, under the restrictions, query answering is indeed feasible in TC0.

Corollary 3. Problem BagCertMR[q, T ] is in TC0 for every rooted CQ q and
functionally weakly acyclic DL-LiteF TBox T .

5 Related Work

Jiang [19] was the first to propose a bag semantics for the DL ALC, which is
however incompatible with SQL and incomparable to the semantics developed in
this work. Motivated by the semantic differences arising between the set-based
theory and bag-based practice of OBDA and data exchange settings, Nikolaou
et al. [30,31] as well as Hernich and Kolaitis [16] studied respectively the foun-
dations of OBDA and data exchange settings under a bag semantics compatible
with SQL. To the best of our knowledge, our work, which builds on [30,31], is
the first one to study the interaction of functionality and inclusion axioms under
a bag semantics. A bag semantics for functional dependencies, which generalises
our SQL semantics, has been studied before by Köhler and Link [22] who, how-
ever, studied only schema design issues. Owing to the aforementioned works
and the work by Console et al. [13], there is now a better understanding of CQ
answering under bag semantics for frameworks managing incomplete informa-
tion. This latter problem is closely related to answering queries using aggregate
functions the semantics of which has been studied before in the context of incon-
sistent databases [3], data exchange [2], and DL-Lite [11,23], where the resulting
frameworks do not treat bags as first-class citizens. Handling bags through sets
was also the approach followed in the 90’s by Mumick et al. [29] for supporting
bags in Datalog and recently by Bertossi et al. [5] for Datalog±.
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6 Conclusions and Future Work

In this paper, we studied two bag semantics for functionality axioms: our first
SQL semantics follows the bag semantics of SQL for primary keys, while the
second MR semantics is more general and gives more modelling freedom. Com-
bining the semantics with the bag semantics of DL-Litecore of [30,31], we studied
the problems of satisfiability, query answering, and rewritability for the resulting
logical language DL-LitebF . It is interesting to see how our work generalises to the
case of n-ary predicates. This case has been studied only recently in the context
of data exchange settings [16] and Datalog± [5], which, however, do not consider
functional dependencies. We also anticipate our work will be useful for laying
the foundations of aggregate queries in SPARQL under entailment regimes [21].
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Data Access and the EPSRC projects DBOnto, MaSI3, and ED3.
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Abstract. shacl (Shapes Constraint Language) is a specification for
describing and validating RDF graphs that has recently become a W3C
recommendation. While the language is gaining traction in the industry,
algorithms for shacl constraint validation are still at an early stage. A
first challenge comes from the fact that RDF graphs are often exposed
as sparql endpoints, and therefore only accessible via queries. Another
difficulty is the absence of guidelines about the way recursive constraints
should be handled. In this paper, we provide algorithms for validating a
graph against a shacl schema, which can be executed over a sparql end-
point. We first investigate the possibility of validating a graph through
a single query for non-recursive constraints. Then for the recursive case,
since the problem has been shown to be NP-hard, we propose a strategy
that consists in evaluating a small number of sparql queries over the
endpoint, and using the answers to build a set of propositional formu-
las that are passed to a SAT solver. Finally, we show that the process
can be optimized when dealing with recursive but tractable fragments
of shacl, without the need for an external solver. We also present a
proof-of-concept evaluation of this last approach.

1 Introduction

shacl (for SHApes Constraint Language),1 is an expressive constraint lan-
guage for RDF graph, which has become a W3C recommendation in 2017. A
shacl schema is a set of so-called shapes, to which some nodes in the graph
must conform. Figure 1 presents two simple shacl shapes. The left one, called
:MovieShape, is meant to define movies in DBPedia. The triple :MovieShape
sh:targetClass dbo:Film is the target definition of this shape, and specifies that
all instances of the class dbo:Film must conform to this shape. These are called
the target nodes of a shape. The next triples specify the constraints that must be
satisfied by such nodes, namely that they must have an Imdb identifier, and that
their directors (i.e. their dbo:director-successors in the graph), if any, must con-
form to the shape :DirectorShape. The rightmost shape, called :DirectorShape,
1 https://www.w3.org/TR/shacl/.
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C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 145–163, 2019.
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Fig. 1. Two shacl shapes, about movies and directors

Fig. 2. Three rdf graphs, respectively valid, invalid and valid against the shapes of
Fig. 1

is meant to define movie directors in DBPedia. It does not have a target def-
inition (therefore no target node either), and states that a director must have
exactly one birth date, and can only direct movies that conform to the shape
:MovieShape.

The possibility for a shape to refer to another (like MovieShape refers to
:DirectorShape for instance), or to itself, is a key feature of shacl. This allows
designing schemas in a modular fashion, but also reusing existing shapes in a
new schema, thus favoring semantic interoperability.

The shacl specification provides a semantics for graph validation, i.e. what
it means for a graph to conform to a set of shapes: a graph is valid against a set
of shapes if each target node of each shape satisfies the constraints associated to
it. If these constraints contain shape references, then the propagated constraints
(to neighbors, neighbors of neighbors, etc.) must be satisfied as well.

Unfortunately, the shacl specification leaves explicitly undefined the seman-
tics of validation for schemas with circular references (called recursive below),
such as the one of Fig. 1, where :MovieShape and :DirectorShape refer to each
other. Such schemas can be expected to appear in practice though, either by
design (e.g. to characterize relations between events, or a structure of unbounded
size, such as a tree), or as a simple side-effect of the growth of the number of
shapes (like an object-oriented program may have cyclic references as its num-
ber of classes grows). A semantics for graph validation against possibly recursive
shapes was later proposed in [10] (for the so-called “core constraint components”
of the shacl specification). It complies with the specification in the non-recursive
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case. Based on to this semantics, the first graph in Fig. 2 is valid against the
shapes of Fig. 1. The second graph is not, because the director misses a birth
date. The third graph is trivially valid, since there is no target node to initiate
validation.

Negation is another important feature of the shacl specification (allowing
for instance to state that a node cannot conform to two given shapes at the
same time, or to express functionality, like “exactly one birth date” in Fig. 1).
But as shown in [10], the interplay between recursion and negation makes the
graph validation problem significantly more complex (NP-hard in the size of the
graph, for stratified constraints already).

As shacl is gaining traction, more validation engines become available.2
However, guidance about the way graph validation may be implemented is still
lacking. In particular, to our knowledge, existing implementations deal with
recursive schemas in their own terms, without a principled approach to han-
dle the interplay between recursion and negation.

Another key aspect of graph validation is the way the data can be accessed.
rdf graphs are generally exposed as sparql endpoints, i.e. primarily (and some-
times exclusively) accessible via sparql queries. This is often the case for large
graphs that may not fit into memory, exposed via triple stores. Therefore an
important feature of a shacl validation engine is the possibility to check con-
formance of a graph by issuing sparql queries over it. This may also be needed
when integrating several data sources not meant to be materialized together, or
simply to test conformance of data that one does not own.

Several engines can already perform validation via sparql queries for frag-
ments of shacl but, to our knowledge, not in the presence of recursive con-
straints.3 This should not come as a surprise: as will be shown in this article,
recursive shapes go beyond the expressive power of sparql, making validation
via sparql queries significantly more involved: if the schema is recursive, it is
not possible in general to retrieve target nodes violating a given shape by issuing
a single sparql query. This means that some extra computation (in addition to
sparql query evaluation) needs to be performed, in memory.

This article provides a theoretical and empirical investigation of graph vali-
dation against (possibly recursive) shacl schemas, when the graph is only acces-
sible via sparql queries, and based on the semantics defined in [10]. First, we
show that validation can be performed via sparql queries only (without extra
computation) if the schema is non-recursive, and that some recursive fragments
can (in theory) be handled this way if one extends sparql with fixed-point iter-
ation. We also show that this strategy cannot be applied for arbitrary shacl

schemas.
Therefore we investigate a second strategy, allowing some in-memory compu-

tation, while still accessing the endpoint via queries only. Because the validation
problem is NP-hard (in the size of the graph) for the full language, we first define

2 https://w3c.github.io/data-shapes/data-shapes-test-suite/.
3 with the exception of Shaclex [4], which can handle recursion, but not recursion and

negation together in a principled way.

https://w3c.github.io/data-shapes/data-shapes-test-suite/
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a robust validation approach, that evaluates a limited number of queries over
the endpoint, and reduces validation to satisfiability of a propositional formula,
potentially leveraging the mature optimization techniques of SAT solvers. We
then focus on recursive but tractable fragments of shacl. For these, we devise
an efficient algorithm that relies on the same queries as previously, but performs
all the necessary inference on the fly. Finally, we describe a proof-of-concept eval-
uation of this last approach, performed by validating DBPedia against different
schemas, and, for the non-recursive ones, comparing its performance with full
delegation to the endpoint.

Organization. Section 2 introduces preliminary notions and Sect. 3 presents the
graph validation problem. Section 4 studies the usage of a single query, whereas
Sects. 5 and 6 focus on the strategy with in-memory computation, first for the
full language, and then for recursive but tractable fragments. Section 7 provides
empirical results for this algorithm and full delegation, while Sects. 8 and 9 dis-
cuss related work and perspectives. Due to space limitations, proofs of proposi-
tions are provided in the extended version of this paper, available at [2].

2 Preliminaries

We assume familiarity with rdf and sparql. We abstract away from the concrete
rdf syntax though, representing an rdf graph G as a labeled oriented graph
G = 〈VG , EG〉, where VG is the set of nodes of G, and EG is a set of triples of the
from (v1, p, v2), meaning that there is an edge in G from v1 to v2 labeled with
property p. We make this simplification for readability, since distinctions such
as rdf term types are irrelevant for the content of this paper.

We use [[Q]]G to denote the evaluation of a sparql query Q over an rdf

graph G. As usual, this evaluation is given as a set of solution mappings, each
of which maps variables of Q to nodes of G. All solution mappings considered
in this article are total functions over the variables projected by Q. We use
{?x1 �→ v1, . . . , ?xn �→ vn} to denote the solution mapping that maps ?xi to vi

for i ∈ [1..n]. However, if Q is a unary query (i.e. if it projects only one variable),
we may also represent [[Q]]G = {{?x �→ v1}, .., {?x �→ vm}} as the set of nodes
{v1, .., vm}.

shacl. This article follows the abstract syntax for shacl core constraint com-
ponents introduced in [10]. In the following, we review this syntax and the asso-
ciated semantics for graph validation.

A shape schema S is represented as a triple 〈S, targ,def〉, where S is a set of
shape names, targ is a function that assigns a target query to each s ∈ S, and
def is a function that assigns a constraint to each s ∈ S.

For each s ∈ S, targ(s) is a unary query, which can be evaluated over the
graph under validation in order to retrieve the target nodes of s. The shacl

specification only allows target queries with a limited expressivity, but for the
purpose of this article, targ(s) can be assumed to be an arbitrary unary sparql

query. If a shape has no target definition (like the shape :DirectorShape in
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Table 1. Evaluation of constraint φ at node v in graph G given total assignment σ.
We use (v, v′) ∈ [[r]]G to say that v and v′ are connected via shacl path r.

Fig. 1), we use an arbitrary empty sparql query (i.e. with no answer, in any
graph), denoted with ⊥.

The constraint def(s) for shape s is represented as a formula φ verifying the
following grammar:

φ :: = � | s | I | φ ∧ φ | ¬φ | ≥n r.φ | EQ(r1, r2)

where s is a shape name, I is an IRI,4 r is a shacl path5, and n ∈ N
+. As

syntactic sugar, we use φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2), ≤n r.φ for ¬(≥n+1 r.φ),
and =n r.φ for (≥n r.φ) ∧ (≤n r.φ). A translation from shacl core constraint
components to this grammar and conversely can be found in [11].

Example 1. The shapes of Fig. 1 are abstractly represented as follows:

targ(:MovieShape) = SELECT ?x WHERE {?x a dbo:Film}
targ(:DirectorShape) = ⊥
def(:MovieShape) = (≥1 dbo:imdbId.�) ∧ (≤0 dbo:director.¬:DirectorShape)
def(:DirectorShape) = (=1 dbo:birthDate.�) ∧ (≤0 dbo:director.¬:MovieShape)

The dependency graph of a schema S = 〈S, targ,def〉 is a graph whose nodes are
S, and such that there is an edge from s1 to s2 iff s2 appears in def(s1). This
edge is called negative if such reference is in the scope of at least one negation,
and positive otherwise. A schema is recursive if its dependency graph contains
a cycle, and stratified if the dependency graph does not contain a cycle with at
least one negative edge. In Example 1, we see that shapes are recursive, since
:MovieShape references :DirectorShape and vice-versa. Since this reference is in
the scope of a negation, the schema is not stratified.

Semantics. Since the semantics for recursive schemas is left undefined in the
shacl specification, we use the framework proposed in [10]. The evaluation of a

4 More exactly, I is an abstraction, standing for any syntactic constraint over an rdf
term: exact value, datatype, regex, etc.

5 shacl paths are built like sparql property paths, but without the NegatedProper-
tySet operator.
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formula is defined with respect to a given assignment, i.e. intuitively a labeling
of the nodes of the graph with sets of shape names.

Formally, an assignment σ for a graph G and a schema S = 〈S, targ,def〉
can be represented as a set of atoms of the form s(v) or ¬s(v), with s ∈ S and
v ∈ VG , that does not contain both s(v) and ¬s(v) for any s ∈ S or v ∈ VG . An
assignment σ is total if for every s ∈ S and v ∈ VG , one of s(v) or ¬s(v) belongs
to σ. Otherwise (if there are s, v such that neither s(v) not ¬s(v) belong to σ),
the assignment is partial.

The semantics of a constraint φ is given in terms of a function [φ]G,v,σ, for a
graph G, node v and assignment σ. This function evaluates whether v satisfies
φ given σ. This semantics depends on which type of assignments is considered.
If we only consider total assignments, then [φ]G,v,σ is always true or false, and
its semantics is defined in Table 1.

We remark that [10] provides a semantics in terms of partial assignments. In
this case, the inductive evaluation of [φ]G,v,σ is based on Kleene’s 3-valued logic.
We omit this definition for simplicity, since it is not required in this article, and
refer to [10] instead.

3 Validation and Tractable Fragments of shacl

In this section, we define what it means for a graph to be valid against a schema.
Then we identify tractable fragments of shacl (including some recursive ones)
for which we will introduce either a full sparql rewriting (in Sect. 4) or a vali-
dation algorithm (in Sect. 6).

Validation Problem. A graph G satisfies a schema S if there is a way to assign
shapes names to nodes of G such that all targets and constraints in S are satis-
fied. For instance, in Fig. 2 (first graph), one may assign shape :MovieShape to
node :PulpFiction, and shape :DirectorShape to node :QuentinTarantino while
satisfying all targets and constraints. Since we consider two kinds of assignments
(total and partial), we also define two types of validation.

Definition 1. A graph G is valid against a shape schema S = 〈S, targ,def〉
with respect to total (resp. partial) assignments iff there is a total (resp. partial)
assignment σ for G and S that verifies the following, for each shape name s ∈ S:

– s(v) ∈ σ for each node v in [[targ(s)]]G, and
– if s(v) ∈ σ, then [def(s)]G,v,σ = 1, and if ¬s(v) ∈ σ, then [def(s)]G,v,σ = 0.

The first condition ensures that all targets of a shape are assigned this shape, and
the second condition that the assignment is consistent w.r.t. shape constraints.

We note that a total assignment is a specific case of partial assignment. So
if G is valid against S with respect to total assignments, it is also valid with
respect to partial assignments. The converse does not necessarily hold though.
But as we see below, it holds for all the tractable fragments considered in this
paper. We use this property several times in the following sections.
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Table 2. Data complexity of the validation problem.

Lnon-rec L+
∨ Ls full shacl

Complexity of Validation NL-c PTIME-c PTIME-c NP-c

Tractable Fragments of shacl. As is usual in the database literature, we
measure complexity in the size of the graph only (data complexity), and not of
the schema, given that the size of the graph is likely to grow much faster. The
Validation problem then asks, given a graph G and a fixed schema S, whether G
is valid against S with respect to total assignments. We also define the Partial-
Validation problem, by focusing instead on partial assignments. Unfortunately,
both problems have been shown to be NP-complete in [10] for full shacl.

Two tractable recursive fragments of shacl were identified in [10] and [12]
though. The first fragment simply disallows negated constraints, and allows dis-
junction (∨) as a native operator. We call this fragment L+

∨ below. The second
fragment allows all operators, but restricts interplay between recursion and nega-
tion. Due to the lack of space, we refer to [12] for a formal definition. We call
this fragment Ls below. Finally, we also consider non-recursive shapes, the only
fragment whose semantics is fully described by the shacl specification. We call
this fragment Lnon-rec below. All these fragments share a property that is key
for the correctness of our validation algorithms:

Proposition 1. The Validation and Partial-Validation problems coincide for
L+

∨ , Ls and Lnon-rec schemas.

Complexity. Table 2 summarizes data complexity for full shacl and all three
fragments. All results are new (to our knowledge), aside from the one for full
shacl, borrowed from [10]. Proofs are provided in the online appendix.

Such complexity results do not guarantee that efficient algorithms for the
tractable fragments can be found though. Moreover, none of the results considers
validation over an endpoint. One can nonetheless use these bounds as a guideline,
to devise validation procedures for each fragment. In particular, the NP upper
bound for the general case suggests that one can take advantage of existing tools
optimized for NP-complete problems. And it can indeed be shown that each of
the algorithms below is worst-case optimal for the fragments that it addresses.

4 Validation via a Single Query for Non-recursive shacl

In this section, we address the question of whether validation can be performed
by evaluating a single sparql query. To state our results, we say that a schema
S can be expressed in sparql if there is a sparql query qS such that, for every
graph G, it holds that [[qS ]]G = ∅ iff G is valid against S.

We start with negative results. As shown above, validation for full shacl

is NP-hard in data complexity, whereas sparql query evaluation is tractable,
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which immediately suggests that the former cannot be reduced to the latter. We
provide a stronger claim, namely that inexpressibility still holds for much milder
classes of schemas, and without complexity assumptions.

Proposition 2. There is a schema that is in both L+
∨ and Ls, and cannot be

expressed in sparql

On the positive side, one can express non-recursive shacl schemas in sparql:

Proposition 3. Every schema in Lnon-rec can be expressed in sparql

We provide the main intuition behind this observation (the full construction can
be found in appendix). Given a non-recursive shape schema S = 〈S, targ,def〉,
it is possible to associate to each shape s ∈ S a sparql query that retrieves the
target nodes of s violating the constraints for s. The query is of the form:

SELECT ?x WHERE { T (targ(s), ?x) FILTER NOT EXISTS { C(def(s), ?x) } }

where T (targ(s), ?x) is a BGP identical to targ(s) (with target nodes bound
to variable ?x), and C(def(s), ?x) is a BGP retrieving all nodes verifying def(s)
(again bound to variable ?x), defined by induction on the structure of def(s).
Then the query qS above is defined as the union of all such queries (one for each
s ∈ S) so that [[qS ]]G = ∅ iff G is valid.

Example 2. As a simple example, consider the schema from Fig. 1, To
make it non-recursive, the triples sh:property [ sh:inversePath dbo:director
; sh:Node :MovieShape ] can be dropped from shape :DirectorShape. Then we
get:

T (targ(:MovieShape), ?x) = {?x a dbo:Film}

C(def(:MovieShape), ?x) = {?x dbo:imdbId ?y0 .?x dbo:director ?y1 .

?y1 dbo:birthDate ?y2 .FILTER NOT EXISTS{

?y1 dbo:birthDate ?y3 .FILTER(?y2 != ?y3)}}

Interestingly, if one uses the recursive sparql extension introduced in [15],
then both L+

∨ and Ls can be expressed:

Proposition 4. Every schema in L+
∨ or Ls can be expressed in recursive

sparql.

5 Validation via Multiple Queries for Full shacl

This section provides an algorithm for validating arbitrary shacl shapes over a
sparql endpoint. The approach reduces validation to satisfiability of a proposi-
tional formula, possibly leveraging the optimization techniques of a SAT solver.

Given a graph G to validate against a shape schema S, the roadmap of this
solution is as follows. First, we define a normal form for shape schemas. This will
allow us to simplify the exposition. Next, we associate one sparql query to each
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Fig. 3. Inductive definition of the sparql query qdef(s), for each shape s in a normal-
ized schema, where V is a sparql subquery that retrieves all nodes in the graph and
f [w/w′] designates filter expression f , where each occurrence of variable w is replaced
by variable w′. sparql connectors (“.” for triples and AND for filters) are omitted for
readability. All wi are fresh variables for each occurrence.

shape in a normalized schema. From the evaluation of these queries we construct
a set of rules of the form l0∧..∧ln → s(v), where each li is either si(vi) or ¬si(vi),
for some si ∈ S and vi ∈ VG . Intuitively, a rule such as s1(v1) ∧ ¬s2(v2) → s(v)
means that, if node v1 conforms to shape s1 and node v2 does not conform to
shape s2, then node v conforms to shape s. These rules alone are not sufficient
for a sound validation algorithm, so we complement them with additional rules
(encoding in particular the targets, and the fact that a node cannot be inferred
to conform to a given shape). Finally, we show that G satisfies S if and only if
the set of constructed formulas is satisfiable.

The approach can handle validations with respect to either total or partial
assignments. For validation with respect to partial assignments the set of rules
must be satisfiable under 3-valued (Kleene’s) logic. For validation with respect to
total assignments the set of rules must be satisfiable under standard (2-valued)
propositional logic. And as shown in [10], if the schema is stratified, then both
notions of validation coincide.

Interestingly, the machinery presented in this section can also be use to design
a more efficient algorithm, for the three tractable fragments of shacl identified
in Sect. 3. This algorithm will be presented in Sect. 6.

Normal Form. A shape schema 〈S, targ,def〉 is in normal form if the set S
of shape names can be partitioned into two sets S+ and SNEQ, such that for
each s ∈ S+ (resp. s ∈ SNEQ), def(s) verifies φs+ (resp. φsNEQ) in the following
grammar:
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Fig. 4. Inductive definition of the rule pattern pdef(s). l[w1/w2] designates literal l,
where each occurrence of variable w1 is replaced by variable w2. vars(φ) is defined in
Fig. 3

φs+ :: = α | ≥n r.α | φs+ ∧ φs+

φsNEQ :: = ¬EQ(r1, r2)
α :: = β | ¬β

β :: = � | I | s

It is easy to verify that a shape schema can be transformed in linear time
into an equivalent normalized one, by introducing fresh shape names (without
target). “Equivalent” here means that both schemas validate exactly the same
graphs, with exactly the same target violations.

sparql Queries. Such normalization allows us to associate a sparql query
qdef(s) to each shape name in the normalized schema. Intuitively, the query qdef(s)
retrieves nodes that may validate def(s), and also the neighboring nodes to
which constraints may be propagated in order to satisfy def(s). For instance, let
def(s0) = (≥1 p1.s1) ∧ (≥1 p2.s2). Then:6

qdef(s0) = SELECT ?x ?y1 ?y2 WHERE {?x p1 ?y1 . ?x p2 ?y2 }

Figure 3 provides the definition of qdef(s), by induction on the structure of
def(s) (over each occurrence of a formula), based on the normal form.

Rule Patterns. Let S = 〈S, targ,def〉 be a normalized schema. The next step
consists in generating a set of propositional rules, based on the evaluation of
the queries that have just been defined. To generate such formulas, we associate
a rule pattern pdef(s) to each shape s ∈ S. This rule pattern is of the form
l1 ∧ .. ∧ ln → s(?x), where each li is either �, si(wi) or ¬si(wi), for some shape
si ∈ S and variable w. Figure 4 provides the definition of pdef(s), by induction
on the structure of def(s).

Continuing the example above, if def(s0) = (≥1 p1.s1) ∧ (≥1 p2.s2), then:

qdef(s0) = SELECT ?x ?y1 ?y2 WHERE {?x p1 ?y1 . ?x p2 ?y2 }
pdef(s0) = s1(?y1) ∧ s2(?y2) → s0(?x)

6 We omit the trivial FILTER (?y1 = ?y1 AND ?y2 = ?y2) for readability.
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Each rule pattern pdef(s) is then instantiated with the answers to qdef(s) over
the sparql endpoint, which yields a set [[pdef(s)]]G of propositional rules. For
instance, assume that the endpoint returns the following mappings for qdef(s0):

[[qdef(s0)]]
G = {{?x �→ v0, ?y1 �→ v1, ?y2 �→ v2},

{?x �→ v0, ?y1 �→ v3, ?y2 �→ v4}}

Then the set [[pdef(s0)]]
G of propositional rules is:

[[pdef(s0)]]
G = {s1(v1) ∧ s2(v2) → s0(v0), s1(v3) ∧ s2(v4) → s0(v0)}

Formally, [[pdef(s)]]G is the set of propositional formulas obtained by replacing,
for each solution mapping γ ∈ [[qdef(s)]]G , every occurrence of a variable w in
pdef(s) by γ(w).7 Then we use [[pS ]]G to designate the set of all generated rules,
i.e.:

[[pS ]]G =
⋃

s∈S

[[pdef(s)]]G

We need more terminology. For each rule r = l1, .., ln → s(v), we call s(v)
the head of r, and {l1, .., ln} the body of r. Finally, if l is a literal, we use ¬l to
designate its negation, i.e. ¬l = ¬s(v) if l = s(v), and ¬l = s(v) if l = ¬s(v).

Additional Formulas. So far, with a rule s1(v1) ∧ s2(v2) → s0(v0), we are
capturing the idea that v0 must be assigned shape s0 whenever v1 is assigned
s1 and v2 is assigned s2. But we also need to encode that the only way for v0
to be assigned shape s0 is to satisfy one of these rules. If there is just one rule
with s0(v0) as its head, we only need to extend our set of rules with s0(v0) →
s1(v1) ∧ s2(v2). But for more generality, we construct a second set [[p←

S ]]G of
propositional formulas, as follows. For every literal s(v) that appears as the head
of a rule ψ → s(v) in [[pS ]]G , let ψ1 → s(v), .., ψ� → s(v) be all the rules that
have s(v) as head. Then we extend [[p←

S ]]G with the formula s(v) → (ψ1 ∨ ..∨ψ�).
Next, we add the information about all target nodes, with the set [[tS ]]G of

(atomic) formulas, defined by [[tS ]]G = {s(v) | s ∈ S, s(v) ∈ targ(s)}.
Finally, we use a last set of formulas to ensure that the algorithm is sound

and complete. Intuitively, the query qdef(s) retrieves all nodes that may verify
shape s (bound to variable ?x). But evaluating qdef(s) also provides information
about the nodes that are not retrieved: namely that they cannot verify shape s.
A first naive idea is to extend our set of propositional formulas with every literal
¬s(v) for which [[qdef(s)]]G does not contain any mapping where v is bound to ?x.
But this may require retrieving all nodes in G beforehand, which is inefficient.
One can do better, by considering only combinations of shapes and nodes that

7 For some normalized schemas, it could happen that [[qdef(s)]]
G always retrieves all

nodes from G. This would be the case for example if def(s) = s1 ∧ s2. A simple
optimization technique here consists in not executing such queries, and instantiate
instead the rule pattern pdef(s) with all nodes retrieved by all other queries (and
bound to variable ?x).
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are already in our rules. We thus construct another set [[aS ]]G of facts. It contains
all literals of the form ¬s(v) such that: ¬s(v) or s(v) appears in some formula
in [[pS ]]G ∪ [[tS ]]G , and s(v) is not the head of any formula in [[pS ]]G (i.e. there is
no rule of the form ψ → s(v) in [[pS ]]G).

Analysis. Let ΓG,S = [[pS ]]G ∪ [[p←
S ]]G ∪ [[tS ]]G ∪ [[aS ]]G be the union of all the sets

of formulas constructed so far. We treat ΓG,S as a set of propositional formulas
over the set {s(v) | s ∈ S, v ∈ VG} of propositions. A first observation is that
this set of formulas is polynomial in the size of G. Perhaps more interestingly,
one can show that the set ΓG,S is also polynomial in the size of the evaluation
of all queries def(s) and targ(s). For a finer-grained analysis, let us measure the
size of a rule as the number of propositions it contains. From the construction,
we get the following upper bounds.

Proposition 5.

– The sizes of [[pS ]]G, [[p←
S ]]G and [[aS ]]G are in O(

⋃
s∈S [[qdef(s)]]

G).
– The size of [[tS ]]G is in O(|

⋃
s∈S [[targ(s)]]

G |).

Hence, the size of the rules we need for inference is not directly dependent
on the size of the graph, but rather on the amount of targets and tuples that
the shacl schema selects to be validated.

The next result shows that validation can be reduced to checking whether
ΓG,S is satisfiable. “3-valued semantics” here refers to the semantics of Kleene’s
3-valued logic (for ∧,∨ and ¬) and where ψ1 → ψ2 is interpreted as ¬ψ1 ∨ ψ2.
Then a boolean formula ψ is satisfiable under boolean (resp. 3-valued) semantics
iff there is a boolean (resp. 3-valued) valuation of the atoms in ψ such that the
resulting formula evaluates to true under boolean (resp. 3-valued) semantics.

Proposition 6. For every graph G and schema S we have that:

– G is valid against S with respect to total assignments iff ΓG,S is satisfiable
under boolean semantics.

– G is valid against S with respect to partial assignments iff ΓG,S is satisfiable
under 3-valued semantics.

Hence, we can check for validity of schemas over graphs by constructing ΓG,S
and checking satisfiability with a SAT solver. This algorithm matches the NP
upper bound in data complexity mentioned earlier, since each of [[qdef(s)]]G and
[[targ(s)]]G can be computed in polynomial time, when S is considered to be
fixed, and thus the set ΓG,S of rules can be computed in polynomial time in data
complexity.

6 Optimized Algorithm for Tractable Fragments

The propositional framework described in the previous section applies to arbi-
trary shape schemas. But it also allows us to devise a more efficient validation
algorithm for the tractable fragments Lnon-rec, L+

∨ and Ls. One could, in theory,
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Algorithm 1. Tractable algorithm for validation

Input: Graph G, normalized schema S = 〈S,def, targ〉, set [[tS ]]G of targets.
1: σ, R, S′ ← ∅
2: repeat
3: s ← selectShape(S, S′)
4: S′ ← S′ ∪ {s}
5: R ← R ∪ [[pdef(s)]]

G

6: saturate(σ, R, S′)
7: until S′ = S
8: saturate(σ, R, S)

feed the same formulas as above to a SAT solver for these fragments. Instead,
the algorithm below performs this inference on-the-fly, without the need for a
solver. In addition, the validity of the graph may in some cases be decided before
evaluating all sparql queries (one per shape) against the endpoint.

The key property that enables this algorithm pertains to the notion of mini-
mal fixed-point assignment for shacl, defined in [10]. Due to space limitations,
we only rephrase the results relevant for this algorithm in our own terms.

Lemma 1. For every graph G and schema S in Lnon-rec, L+
∨ or Ls, there is a

partial assignment σG,S
minFix such that:

1. σG,S
minFix can be computed in polynomial time from ΓG,S , and

2. G is valid against S iff ¬s(v) /∈ σG,S
minFix holds for every s(v) ∈ [[tS ]]G

Algorithm. The algorithm shares similarities with the one of Sect. 5. It proceeds
shape by shape, materializing the rules [[pdef(s)]]G defined in Sect. 5. We will see
that these rules are sufficient to compute the assignment σG,S

minFix.
The whole procedure is given by Algorithm 1. Variable S′ keeps track of the

shapes already processed, variable R stores all rules that are known to hold, and
σ is the assignment under construction. All arguments are passed by reference.
We use procedure selectShape (Line 3) to select from S the next shape s to
be processed. This selection can be non-deterministic, but as we will see, this
choice also opens room for optimization. All the necessary inference is performed
by procedure saturate, explained below. In the worst case, the loop terminates
when all shapes have been processed (i.e. when S′ = S, Line 7).

We now describe the inference carried out by procedure saturate, whose
detailed execution is given by Fig. 5. heads(R) (Line 3 in procedure negate)
designates the sets of all heads appearing in R, whereas

⋃
bodies(R) (Line 2 in

procedure negate) designates the union of all rule bodies in R. The inference is
performed exhaustively by procedures negate and infer. Procedure negate

derives negative information. For any (possibly negated) atom s(v) that is either
a target or appears in some rule, we may be able to infer that s(v) cannot hold.
This is the case if s(v) has not been inferred already (i.e. s(v) �∈ σ), if the query
qdef(s) has already been evaluated, and if there is no rule in R with s(v) as its
head. In such case, ¬s(v) is added to σ.
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Procedure infer performs two types of inference. First, the obvious one: if R
contains a rule l1 ∧ · · · ∧ ln → s(v) and each of l1, .., ln has already been inferred,
then s(v) is inferred, and the rule is dropped. The second inference is negative: if
the negation of any li has already been inferred, then this rule cannot be applied
(to infer s(v)), so the entire rule is dropped.

Fig. 5. Components of in-memory saturation in Algorithm 1

Let σG,S
final be the state of variable σ after termination. We show:

Proposition 7. σG,S
final = σG,S

minFix

Interestingly, one can use this result to validate each target s(v) individually: if
¬s(v) ∈ σG,S

final, then v does not conform to shape s. Otherwise it conforms to it.

Optimization. An earlier termination condition may apply for Algorithm1.
Indeed, we observe that during the execution, the assignment σ under construc-
tion can only be extended. Therefore the algorithm may already terminate if all
targets have been inferred to be valid or invalid, i.e. if s(v) ∈ σ or ¬s(v) ∈ σ
for every target s(v) ∈ [[tS ]]G . This means that one should also try to process
the shapes in the best order possible. For instance, in the experiments reported
below, function selectShape (Line 3) first prioritizes the shapes that have a
target definition, then the shapes referenced by these, and so on, in a depth-first
fashion. Such an ordering offers another advantage, which pertains to traceabil-
ity: when signaling to the user the reason why a given target is violated, it is
arguably more informative to return an explanation at depth n than at depth
n + q. Therefore this breadth-first strategy guarantees that one of the “most
immediate” explanations for a constraint violation is always found.
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Table 3. Validation using Validrule for all 6 schemas, and Validsingle for non-
recursive schemas, on DBPfull. Here # Queries is the number of executed queries,
Query exec. max (resp. total) is the maximum execution time for a query (resp.
total time for all queries) in milliseconds, #Query answ. max (resp. total) is the
max. number of solution mappings for a query (resp. total for all queries) #Rules
max is the max. number of rules in memory during the execution, and Total exec. is
the overall execution time in milliseconds

#Queries Query exec. (ms) #Query answ. #Rules Total exec. (ms)
max total max total max

Validsingle S2
non-rec 1 3596 3596 111113 111113 0 3596

S3
non-rec 1 3976 3976 111629 111629 0 3976

S4
non-rec 1 5269 5269 111906 111906 0 5269

Validrule S2
non-rec 3 858 956 37040 38439 49278 5305

S3
non-rec 4 827 1149 37040 52122 50774 5553

S4
non-rec 7 1308 1944 39719 65175 64060 6857

S2
rec 5 912 1278 37040 59382 59852 5651

S3
rec 6 1489 3436 61355 146382 146104 8318

S4
rec 8 1530 4955 61355 186593 159597 11503

7 Evaluation

We implemented a slightly optimized version of Algorithm 1, A prototype is
available online [6], together with source code and execution and build instruc-
tions.

Shape Schemas. We designed two sets of simple shapes, called M non-rec and
M rec below. These shapes pertain to the domain of cinema (movies, actors, etc.),
based on patterns observed in DBPedia [1], similarly to the shapes of Fig. 1. They
were designed to cover several cases discussed in this article (shape reference,
recursion, etc.). All shapes are available online [6]. The first set M non-rec contains
shape references, but is non-recursive, whereas the second set M rec is recursive.
Out of M non-rec, we created 3 shape schemas S2

non-rec, S3
non-rec and S4

non-rec, con-
taining 2, 3 and 4 shapes respectively. Similarly for M 2, we created 3 shape
schemas S2

rec, S3
rec and S4

rec.

Data. We used the latest version of DBPedia (2016-10), specifically the datasets
“Person Data”, “Instance Types”, “Labels”, “Mappingbased Literals” and “Map-
pingbased Objects” (in English), downloadable from [1], with around 61 million
triples (7.7 GB in .ttl format). We denote this dataset as DBPfull. The number
of targets to be validated in DBPfull is 111938. To test the scalability of the
approach, we also produced four samples by randomly selecting 10%, 20% and
50% of triples in DBPfull. We denote these datasets as DBP10, DBP20 and
DBP50.
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Setting. We use Validrule to designate our implementation of the rule-based
procedure described by Algorithm 1. The implementation is essentially identi-
cal, but with a relaxed normal form for the input schema, and improvements
geared towards increasing the selectivity of some queries. The ordering of query
evaluation (Function selectShape in Algorithm1, Line 3) was based on the
dependency graph, in a breadth-first fashion, starting with the only shape with
non-empty target definition, then followed by the shapes it references (if not
evaluated yet), etc. Validsingle designates validation performed by executing a
single query, as described in Sect. 4. This approach is only applicable to the
non-recursive shape schemas S2

non-rec, S3
non-rec and S4

non-rec.
We used Virtuoso v7.2.4 as triplestore. Queries were run on a 24 cores Intel

Xeon CPU at 3.47GHz, with a 5.4TB 15k RPM RAID-5 hard-drive cluster and
108 GB of RAM. Only 1GB of RAM was dedicated to the triplestore for caching
and intermediate operations. In addition, the OS page cache was flushed every
5 s, to ensure that the endpoint could only exploit these 1GB for caching. These
precautions ensure that most of the dataset cannot be cached, which would
artificially speed up query execution times.

Results. Table 3 provides statistics for the validation of DBPfull against all
schemas. A first observation is that execution times remained very reasonable
(less that 12 s) for a complete validation, given the high number of targets
(111938) and the size of the dataset. Another immediate observation is that
for the non-recursive schemas, Validsingle consistently outperformed Validrule.
However, execution times for both approaches remain in the same order of
magnitude. Based on these results, the rule-based approach appears as a rel-
atively small price to pay for an algorithm that is not only more robust (i.e.
can handle recursion), but also guarantees traceability of each shape violation
(whereas the single-query approach essentially uses the endpoint as a black-
box). Figure 6(a) illustrates scalability of Validsingle and Validrule. The focus
is on scalability w.r.t to the size of the graph (data complexity) rather than in
the size of the schema. The execution times are given for the different samples
of DBPedia (DBP10, DBP20, DBP50 and DBPfull) against the largest shapes
schemas (S4

non-rec and S4
rec). The main observation is that for Validrule, execu-

tion time increased significantly faster for the recursive schema than for the non-
recursive one. Finally, Fig. 6b describes how execution time was split between
query answering, saturation and other tasks (mostly grounding rules with solu-
tion mappings), for Validrule, for each Si

rec and for each sample of DBPedia. An
important observation here is that the proportion of execution time dedicated
to query answering increased with the data and number of shapes, even when
the number of rules in memory was arguably large (≥100000 for S3

rec and S4
rec

with). This suggests that the extra cost induced by in-memory inference during
the execution of Algorithm 1 may not be a bottleneck.
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Fig. 6. Scalability over DBP10, DBP20, DBP50 and DBPfull

8 Related Work

TopBraid Composer [8] allows validating an rdf graph against a non-recursive
shacl schema via sparql queries, similarly to the approach described in Sect. 4).
The tool was initially developed for the language SPIN, which largely influenced
the design of the shacl specification. A list of other implementations of shacl

validation can be found at [3] (together with unit tests for non-recursive shapes).
To our knowledge, none of these can validate recursive constraints via sparql

queries, with the exception of Shaclex [4], already mentioned (See footnote 3).
ShEx [9,16] is another popular constraint language for rdf, which shares

many similarities with shacl, but is inspired by XML schema languages. A
semantics for (stratified) recursive ShEx schemas was proposed in [9], which dif-
fers from the one followed in this article for shacl. ShEx validation is supported
by several open-source implementations (like shex.js [5] or Shaclex [4]), either
in memory or over a triple-store. To our knowledge, no procedure for validating
recursive ShEx via sparql queries has been defined or implemented yet.

Prior to ShEx or shacl, a common approach to define expressive constraints
over rdf graphs was to use OWL axioms with (some form of) closed-world
assumption (CWA) [14,17] However, OWL is originally designed to model incom-
plete knowledge (with the open-world assumption), therefore not well-suited to
express constraints. In terms of implementation, [14] proposed an encoding of
such constraints into complex logical programs, but the usage made of OWL
does not allow for recursive constraints. Similarly, Stardog [7] offers the possibil-
ity to write constraints as OWL axioms under CWA, which are then converted
to sparql queries. In contrast to shacl though, these constraints are “local”, i.e
cannot refer to other constraints. Stardog also has a limited support for shacl

validation, currently in beta phase.
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Finally, writing non-recursive constraints natively as sparql queries is a rel-
atively widespread approach, for instance to assess data quality, like in [13], and
the shacl specification also allows defining constraints in this way (in addition
to the “core constraint components” considered in this article).

9 Conclusion and Perspectives

We hope that this article may provide guidelines for future implementations
of (possibly recursive) shacl constraint validation via sparql queries. As for
delegating validation to query evaluation, we showed the limitation of the app-
roach, opened up an alternative in terms of recursive sparql, and provided (in
the extended version of this article) a full translation from non-recursive shacl

to sparql. Regarding validation via queries, but with additional (in-memory)
computation, we devised and evaluated and algorithm for three tractable frag-
ments of shacl, with encouraging performances. This strategy can also still be
largely optimized, generating more selective queries and/or reducing the cost of
in-memory inference. A natural extension of this work is the application to ShEx
schemas, even though the semantics for recursive ShEx proposed in [9] differs
from the one followed in this paper. Finally, a key feature of a constraint vali-
dation engine is the ability to provide explanations for target violations. Their
number is potentially exponential though, so a natural continuation of this work
is to define some preference over explanations, and devise algorithms that return
an optimal one, without sacrificing performance.
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Abstract. The rapid progress of question answering (QA) systems over
knowledge bases (KBs) enables end users to acquire knowledge with nat-
ural language questions. While mapping proper nouns and relational
phrases to semantic constructs in KBs has been extensively studied, lit-
tle attention has been devoted to adjectives, most of which play the role
of factoid constraints on the modified nouns. In this paper, we study the
problem of finding appropriate representations for adjectives over KBs.
We propose a novel approach, called Adj2ER, to automatically map an
adjective to several existential restrictions or their negation forms. Specif-
ically, we leverage statistic measures for generating candidate existential
restrictions and supervised learning for filtering the candidates, which
largely reduce the search space and overcome the lexical gap. We create
two question sets with adjectives from QALD and Yahoo! Answers, and
conduct experiments over DBpedia. Our experimental results show that
Adj2ER can generate high-quality mappings for most adjectives and sig-
nificantly outperform several alternative approaches. Furthermore, cur-
rent QA systems can gain a promising improvement when integrating
our adjective mapping approach.

Keywords: Factoid adjective constraint · Question answering · KBQA

1 Introduction

With the rapid development of question answering (QA) systems over structured
data [1,4,8,11], end users are able to query knowledge bases (KBs) with natural
language questions, a.k.a. KBQA. Semantic parsing [5,24] is a key technique
widely-used in these systems, which transforms natural language questions to
structural queries like SPARQL queries. Entity linking [7,9] and relation map-
ping [16] are two major steps in most of the semantic parsing approaches, which
map proper nouns and relational phrases to entities and relations (or relation
chains) in given KBs, respectively. However, current approaches pay little atten-
tion to understanding adjectives over KBs. An example question with adjectives
and its corresponding SPARQL query are shown in Table 1.
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Table 1. An example for understanding adjectives by using a KB

In linguistics, an adjective is a descriptive word, the main syntactic role
of which is to qualify a noun or noun phrase, giving more information about
the object signified. Except for the adjectives which appear in proper nouns or
“how + adjective” questions, the majority of adjectives in questions takes the
meanings of factoid constraints. In KBs, such adjectives can be captured by
the existence of certain properties or facts. Inspired by this, we consider under-
standing adjectives by mapping them to existential restrictions or their negation
forms in description logics [2], where concepts, roles and individuals used in
the existential restrictions come from classes, properties and entities of a given
KB, respectively. An example for understanding adjectives in question by using
DBpedia is shown in the second row of Table 1. We map “American” to an
existential restriction ∃dbo:nationality.{dbr:United States}, giving the meaning
that an “American actor” may have a fact about his nationality with value
dbr:United States. Similarly, “alive” is mapped to an existential restriction in
negation form ¬∃ dbo:deathDate.�, meaning that “actors who are alive” should
not have the facts about their death dates in DBpedia. Compared with current
QA systems [1,26] which map adjectives to specific classes or entities, map-
ping adjectives to existential restrictions can cover a higher portion of adjec-
tives and capture the meanings of natural language questions more precisely.
We believe that, in addition to entity linking and relation mapping, adjective
mapping should be another important step in semantic parsing.

According to our observations, there are two main challenges in generat-
ing appropriate mappings for adjectives. Firstly, the lexical gap between the
input adjectives and vocabulary elements used in the target existential restric-
tions may be huge. For example, for adjective “alive”, the appropriate mapping
¬∃ dbo:deathDate.� cannot be found by a similarity-based searching approach
(which is commonly used in mapping proper nouns or relational phrases), since
the similarity between “alive” and “death date” is not obvious. Although some
neural network based approaches [4,12] enhance the ability of semantic similarity
calculation, they suffer from the lack of training data on this task. Secondly, the
search space of this task is quite large, since many facts in the KB may express
the meaning of an input adjective. Some adjectives require the representations
in negation forms, making the search space even larger.
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In order to cope with the above challenges, we propose a new adjective map-
ping approach, called Adj2ER, based on the following observation: entities that
embody the meaning of an input adjective should have a different fact distri-
bution compared to entities that do not. For example, most dead actors have
a fact about their death date, while actors who are alive do not. Thus, the
facts about dbo:deathDate are considered as discriminative for “alive”, and ¬∃
dbo:deathDate.� can be generated as a candidate existential restriction. Gener-
ating existential restrictions from such discriminative facts can reduce the search
space and overcome the lexical gap at the same time. In our approach, the set of
entities that embodies the meaning of an input adjective is collected by retrieving
Wikipedia, and candidate existential restrictions are generated from related facts
by using statistic measures, followed by a supervised filtering step to improve the
accuracy. We created two question sets with adjectives from QALD and Yahoo!
Answers, and conducted experiments over DBpedia. Our experimental results
turn out to be promising.

The rest of this paper is structured as follows. In Sect. 2, we define the adjec-
tive mapping problem. Our approach to solving the adjective mapping problem
is proposed in Sect. 3. In Sect. 4, we report the experimental results on adjective
mapping and QA tasks. In Sect. 5, we discuss several findings in our experiments.
Related work is presented in Sect. 6. Finally, Sect. 7 concludes this paper with
future work.

2 Problem Definition

To see the usage of adjectives in natural language questions, we investigated
the adjective occurrences in the 5th challenge on question answering over linked
data (QALD-5) [21] dataset. Among all the 349 non-hybrid questions, 117 adjec-
tive occurrences are contained in 107 questions. We classified the 117 adjective
occurrences into four categories (see Table 2).

In this paper, we mainly focus on the adjectives which take the meanings
of factoid constraints (33.3%). For example, “American actor” means a sub-
class of “Actor” whose nationality is United States. In KBs, these constraints
can be described as the existence of certain facts, so the primary target of our
work is to map adjectives to existential restrictions in description logics. As
for the adjectives used as the names of entities/relations, they should not be

Table 2. Classification of adjectives appeared in QALD-5

Categories Percentage Examples

Factoid constraint 33.3% Give me all Swedish holidays

Name of entity/relation 32.5% Himalayan mountain system

How+ adjective 27.4% How many companies [...]

Structural constraint 6.8% Which other weapons [...]
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Table 3. Forms of existential restrictions and examples

Logic form Examples

∃r.� (Married people): dbo:Person � ∃dbo:spouse.�
∃r.{a} (Chinese cities): dbo:City � ∃dbo:country.{dbr:China}
¬∃r.� (People who are alive): dbo:Person � ¬∃dbo:deathDate.�
¬∃r.{a} (Hot food): dbo:Food � ¬∃dbo:servingTemperature.{“Cold”}

interpreted alone and have already been considered in the entity linking and
relation mapping tasks. Also, “how + adjectives” questions can be interpreted
using template-based or rule-based parsing approaches [8,20]. For the remaining
6.8% of adjectives such as “same” and “other”, they do not express the meanings
of certain facts, but may influence the structures of target query graphs. We will
consider these structural adjective constraints in the future.

The work in [10] showed that the meanings of adjectives vary when modifying
nouns from different classes, e.g., “American actors” means actors who have
nationality United States, while “American cities” means cities that are located
in the United States. In this sense, we consider the class for the noun that an
adjective modifies as an important factor for the adjective mapping problem.
Since many studies [1,12] have been done to map natural language phrases to
classes in KBs, we skip the class mapping part and mainly focus on the problem
of mapping adjectives to existential restrictions. We define the adjective mapping
problem as follow:

Definition 1 (Adjective Mapping Problem). Given an adjective adj and a
class C (which stands for the class of the modified noun) in a KB, the adjective
mapping problem is to map (adj, C) to existential restrictions or negation forms
in description logics, such as ∃r.�, ∃r.{a}, ¬∃r.� or ¬∃r.{a}, where r, a are a
specific role and an individual in the KB, respectively. The resulted restrictions
should reflect the meaning of the given adjective on the class.

Due to the diversity of knowledge representations, there may exist more
than one candidate mapping, e.g., both ∃dbo:nationality.{dbr:United States} and
∃dbp:nationality.{“American”} are appropriate for “American” on dbo:Actor.
Our study aims to find all suitable mappings for an input adjective.

To simplify the adjective mapping problem, we only consider the existential
restrictions (or their negation forms) that can be determined by the existence
of one certain fact. The considered forms of existential restrictions are shown
in Table 3, which cover 92.3% of the factoid adjective constraints in QALD-5.
For the adjectives that can be mapped to more complex structures, such as
∃r1.∃r2.�, we discuss them in Sect. 5.
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Input : Actors who are alive
(adjective: alive, class: actor)

Synonyms: {alive, living,  survived, … }

Antonyms: {dead, died, death, … }

Candidate Mappings Scores

Output Mappings

Entities that embody the meanings of adjective's synonyms

Entities that embody the meanings of adjective's antonyms

Collect synonyms
and antonyms Collect entities using Wikipedia abstracts

Generate possible existential restrictions

Step1: Related Entity Collection

Step2: Candidate Existential Restriction Generation

Step3: Existential Restriction Filtering

Ranking

Supervised
Classifier

Features:
Lexical similarity

Adjective popularity
… …

Feature Extraction

Fig. 1. Framework of the proposed approach

3 The Proposed Approach

In this section, we propose an approach, Adj2ER, to automatically map adjec-
tives to several existential restrictions or their negation forms. The framework
of the approach is shown in Fig. 1, which contains the following three steps:

1. Related entity collection. Two sets of entities (denoted by E+ and E−)
are automatically collected by retrieving an adjective (or its synonyms and
antonyms) in Web corpora such as Wikipedia abstracts, where E+ denotes
entities that embody the meanings of the input adjective’s synonyms, and
E− denotes entities that embody the meanings of the adjective’s antonyms.

2. Candidate existential restriction generation. Several candidate existen-
tial restrictions are generated from the facts about these entities in a given
KB. Each candidate should cover most entities in E+, and its negation should
cover most entities in E−.

3. Existential restriction filtering. A supervised learning method is designed
to refine the candidate existential restrictions. The remaining restrictions are
returned as the output of our approach.

Details for each step are described in the following three subsections.
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3.1 Related Entity Collection

In this step, entity sets E+ and E− can be automatically collected by retriev-
ing the co-occurrence of each entity and the adjective in Web corpora. In our
approach, we choose Wikipedia abstracts, due to their high quality and good
coverage, and they can be directly linked to entities in KBs through relations
like dbo:wikiPageID.

For each entity ei of class C in KB, we consider ei as an element of E+ if the
input adjective appears in a sentence of its Wikipedia abstract. The following
constraints are employed to ensure the accuracy:

– If the input adjective co-occurs with a negative word such as “never” or “not”
in a sentence of ei’s Wikipedia abstract, this sentence is ignored.

– Sentences which begin with other entities may not describe ei directly, thus
they should not be considered during retrieving. These sentences can be
detected and filtered out using page link information.

– Due to the incompleteness of KB, some unpopular entities may not have
proper facts to embody the meaning of the adjective. Considering this, entities
with less than 10 facts are not collected.

For some adjectives, e.g., “alive” and “dead”, they rarely appear in Wikipedia
abstracts, we automatically generate some alternative words for retrieving by
using the following lexicons:

PPDB [17] is an automatically-extracted paraphrase database, which pro-
vides some equivalence and entailment relations between natural language words
and phrases. For example, it provides both “died” and “death” for adjective
“dead”. We consider all the words that have a high-confidence equivalence or
entailment relation1 with the input adjective as alternative words.

WordNet [14] is a lexical database of English, where nouns, verbs, adjectives
and adverbs are grouped into synsets, each expressing a different meaning. Each
adjective participates in several synsets in WordNet, and it can be considered
as an alternative word if it shares the same synset with the input adjective.
However, some synsets contain rarely-used word senses of the input adjective,
e.g., “dead” and “stagnant” share the same synset “not circulating or flowing”,
which is a rarely-used word sense for “dead”. It may lower the precision if we
consider “stagnant” as an alternative word for “dead”. In this sense, we only
consider top-2 synsets of each adjective when generating alternatives.

The method for collecting entities in E− is very similar to E+ after we fetch
the antonyms of the input adjective in WordNet. For adjectives without any
antonyms, we randomly sample some entities in class C which are not covered
by E+ to build E−. The entities appearing in both E+ and E− should be
removed from both sets, since it is hard to determine whether they embody the
meaning of the adjective or not. Finally, a uniform random sampling method is
used to make E+ and E− approximately the same in size.

1 We used the S size PPDB downloaded from http://paraphrase.org/#/download.

http://paraphrase.org/#/download
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3.2 Candidate Existential Restriction Generation

In this step, our approach generates some candidate existential restrictions using
a statistical learning method. As shown in the middle of Fig. 1, our approach
firstly generates all possible existential restrictions (or existential restrictions in
negation forms) from the facts that are related to entities in E+ and E−, and
then ranks them by a combined measurement based on the supporting degrees
of E+ and E−.

For each fact about entity ei ∈ E+ in KB, this fact may describe the embod-
iment of the input adjective. Considering this, our approach generates two pos-
sible existential restrictions, ∃r.� and ∃r.{a}, for each fact about ei in form of
(ei, a) : r. As for the facts in form of (a, ei) : r, the approach also generates two
possible existential restrictions, ∃r̄.� and ∃r̄.{a}, where r̄ denotes the inverse of
relation r. This step repeats for all ei ∈ E+. Particularly, we regard type as a
role to make our approach unified, e.g., the fact “Al Pacino : Actor” is regarded
as “(Al Pacino,Actor) : type”.

If the input adjective has an antonym, each fact about entity ej ∈ E− in
KB may describe the embodiment of the antonym. Two possible existential
restrictions in negation forms, ¬∃r.� and ¬∃r.{a}, are generated for each fact
about ej in form of (ej , a) : r, which indicates that the entities embodying the
meaning of the input adjective should not have such a fact in KB. Similarly,
¬∃r̄.� and ¬∃r̄.{a} are generated for each fact about ej in form of (a, ej) : r.

After generating all the possible existential restrictions, our approach ranks
them by a combined measurement. Let Ri be an existential restriction or a
negation of existential restriction, we define the supporting degree on entity set
E (E can be E+ or E−) as:

Sup(Ri, E) =

⎧
⎪⎪⎨

⎪⎪⎩

|{ei|ei ∈ E ∧ ei : Ri}|
|E| , if Ri contains no negation

1 − |{ei|ei ∈ E ∧ ei : ¬Ri}|
|E| , otherwise

. (1)

To calculate the supporting degrees, we also consider the facts inferred from
sub-class and sub-property axioms, which are conducted in advance. Thus, the
procedure of calculating the supporting degrees for Ri only needs to judge
whether there is a certain fact for each ei ∈ E. Since each fact is only related to
two restrictions, it only needs to go through all the facts about entities in E+

and E− once the supporting degrees for all existential restrictions are calculated.
Let F denote all the facts about entities in E+ and E−, the time complexity of
calculating the supporting degrees is O(2 × |F |) = O(|F |), due to there are at
most 2 × |F | restrictions.

We adopt some measurements frequently used in information retrieval to
rank all possible existential restrictions. First, a candidate existential restriction
Ri should be supported by most of entities in E+, while its negation ¬Ri should
be supported by most of entities in E−. This assumption meets the goal of
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Table 4. Features used in filtering for restriction Ri

Categories # Descriptions

Statistic 1, 2 Supporting degrees of Ri on E+ and E−, calculated by Eq. (1)

3 Accuracy of Ri on E+ and E−, calculated by Eq. (2)

4 Precision of Ri on E+ and E−, calculated by Eq. (3)

5 Combined score of Ri on E+ and E−, calculated by Eq. (4)

Adjective popularity 6 Popularity of adjective in class C

7 Popularity of adjective’s antonym in class C (= 0 if no antonym)

Similarity 8 Lexical similarity between adjective (or its antonym) and Ri

9 Semantic similarity between adjective (or its antonym) and Ri

Restriction form 10 Indicator: whether Ri contains negation

11 Indicator: whether Ri contains an individual

12 Indicator: whether Ri uses a reverse relation as role

13 Indicator: whether Ri uses relation type as role

accuracy, which can be calculated as follow:

Acc(Ri, E
+, E−) =

Sup(Ri, E
+) + Sup(¬Ri, E

−)
2

. (2)

Second, for any entity ei in E+ or E−, if ei : Ri holds, the probability for
ei ∈ E+ should be high. This assumption meets the goal of precision, which can
be calculated as follow:

Prec(Ri, E
+, E−) =

Sup(Ri, E
+)

Sup(Ri, E+) + Sup(Ri, E−)
. (3)

The overall score for Ri is a combination of the above two measurements:

Score(Ri, E
+, E−) = Acc(Ri, E

+, E−) × Prec(Ri, E
+, E−). (4)

We consider the top-M existential restrictions with Score larger than β as
candidates. The whole time complexity is O(|F |) + O(k × 2 × |F |) = O(|F |).

3.3 Existential Restriction Filtering

Although the existential restriction generation step generates several meaning-
ful mappings, it only considers measurements on the supporting degrees of E+

and E−, which means that the precision of the candidates may highly associate
with the quality of these two entity sets. Also, the meaning of the adjective
itself is not considered. For example, we observed that our candidates contain
∃foaf:homepage.� for adjective “alive” on class dbo:Person, which means “people
who are alive should have a homepage”. This mapping is not precise but reason-
able, since it captures a distribution characteristic for the facts on E+ and E−,
which implies that most living people have a homepage (because people in the
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KB are usually famous, and famous people usually have homepages), while most
dead people do not (because there is even no computer when they were alive).

In this step, we design a supervised learning method to filter out inaccurate
candidate mappings. We use a linear kernel SVM classifier, and consider four
types of features for each existential restriction Ri, as shown in Table 4. Statistic
features contain measurements considered in the candidate generation, such as
the supporting degrees, accuracy and precision for Ri on E+ and E−. Adjective
popularity features capture the frequency of the input adjective (or its antonym)
in Wikipedia abstracts for entity with type C. Adjectives with low popularity
may not have a proper mapping in a given KB. Similarity features consider the
similarity between the adjective and the vocabulary elements used in Ri:

Similarity(adj,Ri) = max
w∈W (adj),l∈L(Ri)

Similarity(w, l), (5)

where W (adj) denotes all synonyms and antonyms of adj collected in the first
step, and L(Ri) denotes all labels for the role and individual appeared in Ri.
We use the Levenshtein distance to calculate lexical similarity, and a pre-trained
word embedding [18] to calculate semantic similarity (cosine similarity of word
vectors). Restriction form features indicate which form of existential restriction
Ri belongs to, which is defined in Table 3. Additionally, we add a feature to
indicate whether Ri uses relation type as role, since some KBs usually use a
subclass to capture the meaning of an adjective-modified class.

We manually label some existential restrictions for each input as training
data. In the training procedure, we firstly execute Steps 1 and 2 to generate
some candidates, and then calculate features mentioned above. To balance the
number of positive and negative examples, we treat all candidates that appear
in the answer set as positive examples, and select a part of remaining candidates
according to the descending order of Score as negative examples. During testing,
all the existential restrictions that are labeled positive are treated as the output.

4 Experiments

We evaluated Adj2ER over DBpedia, with adjectives used in questions over
structural data and community QA questions. Our experiments want to verify
two hypotheses: (i) our approach can generate accurate mappings for most of
adjectives in natural language questions, and (ii) current QA systems can benefit
from integrating our adjective mapping approach. The question sets, source code,
and experimental results are available at http://ws.nju.edu.cn/Adj2ER/.

4.1 Experiments on Adjective Mapping

Question Sets. Before building the question sets for evaluation, we imple-
mented a simple method to identify questions with factoid adjective constraints.
We first found all the questions that contain adjectives using the Stanford
CoreNLP POS tagging module [13], and filtered out the questions in which

http://ws.nju.edu.cn/Adj2ER/
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adjectives only appear after “how”. Also, we removed the questions in which
adjectives only appear in proper nouns or relational phrases using EARL [9],
a joint entity and relation linking system. Finally, we removed the questions
with adjectives which represent structural constraints, such as “same”, “other”
and “different”, using a manually-collected word list. This approach achieved
an overall accuracy of 87% when we built the question sets for the following
experiments, and the errors are mainly caused by relational phrase recognition
failure.

QALDadj65 contains 65 (adj, C) pairs appearing in the questions from
QALD-1 to QALD-9 [22]. We first extracted all the questions that contain factoid
adjective constraints, and leveraged a type linking method [12] based on word
embedding similarity to find a class in DBpedia for the noun that each adjec-
tive modifies. In some cases, the adjective modifies an entity, we took a minimal
type of the entity as its class. Finally, 65 distinct (adj, C) pairs were generated.
Furthermore, five Semantic Web majored graduate students were asked to build
existential restrictions for each input. An existential restriction was considered
as a reference answer only if more than three assessors had mentioned it in their
answer sets. The agreement score between the assessors is good (Fleiss’ κ = 0.76),
and the average size of reference answers for each input is 3.72.

YAadj396 contains 396 frequently-used (adj, C) pairs in Yahoo! Answers
Comprehensive Questions2. We firstly extracted the top-1, 000 frequently-used
(adj, C) pairs in questions. However, 412 of them contain adjectives like “good”
and “favourite”, whose meanings are related to personal preferences. Also, the
assessors failed to achieve consistency answers for another 192 (adj, C) pairs, such
as “new book” and “small city”, and the meanings of most of these adjectives are
not captured by DBpedia. For the remaining 396 input pairs, the average size of
reference answers is 2.93. Considering the difficulty of this task, the agreement
score between different assessors is acceptable (Fleiss’ κ = 0.62) .

Metrics and Settings. For each input, we adopted precision (P), recall (R) and
F1-score (F1) as the metrics. Especially, when the approach provided no answer
for the input, we set P = R = F1 = 0. For each question set, we reported the
average P, R and F1 values for all inputs. We performed 5-fold cross-validation
on each question set. The following settings of Ajd2ER were evaluated:

Adj2ER-w/o filtering. We selected the top-K candidates according to the
descending order of Score in Eq. (4), where K is a hyperparameter.

Adj2ER-full. We set parameter M to 20, and threshold β to 0.1 in the
candidate generation step.

Comparative Approaches. We compared Adj2ER with the following two
alternative approaches, which are commonly used in current QA systems:

Linking-based. Some existing QA systems [1,8,26] directly link adjectives
or “adjective + noun” phrases to entities, classes or literals in the given KB. For
2 https://webscope.sandbox.yahoo.com/.

https://webscope.sandbox.yahoo.com/
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Table 5. Evaluation results for adjective mapping

QALDadj65 YAadj396 Time

P R F1 P R F1

Linking-based 31.90% 43.88% 32.66% 40.40% 34.18% 33.49% 2.53s

Network-based 40.26% 43.92% 36.48% 40.50% 40.54% 37.27% 89.15s

Adj2ER-w/o filtering 52.30% 36.89% 38.36% 39.98% 39.73% 36.54% 7.12s

Adj2ER-full 71.30% 58.44% 59.65% 56.79% 46.29% 47.97% 8.41s

Fig. 2. F1-scores for top-K results of different approaches

Fig. 3. Precision-recall curves for different approaches

each input (adj, C) pair, the linking-based approach links adj to some entities
and classes using EARL [9], as well as some literals using Lucene search. Let a
be the linking result from the above process. An existential restriction ∃r.{a}
is considered as a candidate if there is at least one entity e : C which holds
(e, a) : r in KB. Then, a similarity score is calculated using cosine similarity
between the averaged word embedding of each existential restriction and the
“adjective + class” phrase. Finally, this approach considers the top-K existential
restrictions satisfying similarity score larger than θ as the final output.

Network-based. Some recent QA systems [4,12] utilize neural networks to
learn the semantic similarity between a natural language constraint expression
and a target query component. For each input (adj, C) pair, the network-based
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approach randomly samples at most 1, 000 entities of class C, and generates
a large amount of candidate existential restrictions from all the facts about
these entities. Then, all the candidates are ranked according to the semantic
similarity with the input “adjective + noun” phrase, calculated by an encode-
and-compare model [4]. The model consists of two convolutional neural networks
which map the phrase and the existential restriction to 200-dimensional vectors,
and the semantic similarity is calculated by the cosine similarity of the vectors.
Finally, the top-K existential restrictions with similarity score larger than θ were
considered as output.

Results. Table 5 shows the results for each adjective mapping approach, and
Fig. 2 shows the F1-scores for top-K answers. The results on both question sets
are quite similar, and our Adj2ER-full approach achieved the best performance.
Compared with Adj2ER-w/o filtering, Adj2ER-full gained an improvement of
more than 15% in precision, which indicated that the supervised filtering step
successfully filtered out some inaccurate mappings. The average time cost by
Adj2ER-full was 8.41 seconds, and approximately 80% of time was spent on
getting data from the local DBpedia endpoint. We considered the time cost
acceptable since we can prepare a lexicon for all adjectives before we integrate
this approach into QA systems.

The results of the linking-based approach are not good (F1-scores are lower
than 35% on both question sets), which indicated that the lexical gap between
the adjectives and the target existential restrictions is huge. The network-based
approach achieved similar results compared with Adj2ER-w/o filtering. However,
it required labeled training data to train the semantic similarity model, while
the latter only took weak supervisions from text. Also, the average time cost by
the network-based approach was 10 times longer, since it took every fact about
entities in class C as a possible representation for the adjective. By contrast, our
approach leveraged statistic measures for generating candidates, which largely
reduced the search space.

Also, we tested the performance change of each approach by setting varied
thresholds for parameters. Figure 3 shows the precision-recall curves for the four
approaches. The precision for Adj2ER-full kept larger than 60% when recall var-
ied from 5% to 40%, which indicated that our approach can generate mappings
of high quality for a considerable part of adjectives in natural language questions.

4.2 Experiments on Question Answering

Question Set. We built AdjQuestions, a question set containing 120 ques-
tions over structured data to verify if existing QA systems can benefit from our
adjective mapping approach. We extracted all 70 questions that contain factoid
adjective constraints from QALD-1 to QALD-9, and manually sampled 50 ques-
tions from Yahoo! Answers. For each question, a standard SPARQL query and
its execution result over DBpedia-201510 were also provided.
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Algorithm 1. Integrating Adj2ER into existing QA systems
Input: A natural language question Q
Output: A SPARQL query for the input question Q

1: procedure GenerateSPARQL(Q)
2: S := ExistingQASystem.GenerateSPARQL(Q);
3: for all (adj, C) pair in Q do
4: Restrictions := Adj2ER(adj, C);
5: if S contains a restriction ∈ Restrictions then continue;

6: S′ := S;
7: Remove all restrictions in S′ which have semantic similarity ≥ 0.6 with adj;
8: for all restriction ∈ Restrictions do
9: S∗ := Resulting SPARQL for adding restriction to S′;

10: if S∗ is a non-empty query then S := S∗; break;

11: return S;

Input Question:  
Give me all female given names.

SPARQL query generated by gAnswer :
select ?given_names where

{ ?given_names rdf:type dbo:GivenName . }

SPARQL query after integrating Adj2ER :  
select ?given_names where

{ ?given_names dbp:gender "Female"@en .

?given_names rdf:type dbo:GivenName . }

Restrictions generated by Adj2ER:
( female, dbo:GivenName )

( given, dbo:Name )

gAnswer

Adj2ER

Added

Matched

Fig. 4. Example for integrating Adj2ER into existing QA system

Table 6. QA results on AdjQuestions

70 QALD questions 50 YA questions Overall

P R F1 P R F1 F1

gAnswer 30.49% 55.30% 29.75% 16.56% 36.26% 13.97% 23.18%

gAnswer+Adj2ER 44.03% 62.25% 43.02% 37.32% 56.59% 38.59% 41.18%

WDAqua 21.10% 26.64% 17.79% 23.53% 28.10% 22.04% 19.56%

WDAqua+Adj2ER 33.28% 43.86% 32.05% 42.70% 44.88% 40.99% 35.77%

Integrating Strategy. We integrated our adjective mapping approach into two
state-of-the-art QA systems, namely gAnswer [11,26] and WDAqua [8], which
ranked first and second in the QALD-9 challenge, respectively. The procedure for
integrating Adj2ER into them is shown in Algorithm 1. An example to illustrate
the procedure is shown in Fig. 4.
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QA Results. Table 6 shows that, by integrating Adj2ER, gAnswer and
WDAqua gained an improvement of 18.00% and 16.21% in macro F1-scores,
respectively. Moreover, our integrating strategy modified 48.33% (58.33%) of
SPARQL queries originally generated by gAnswer (WDAqua), and 33.33%
(29.17%) questions gained an improvement in final F1-scores. Only 4.17% (5%)
of questions had their F1-score decreased after integrating Adj2ER. It should be
noticed that, sometimes even if the system understood the question correctly, it
still cannot obtain the same result as the gold standard due to the difference in
knowledge representations. For example, the final SPARQL query shown in Fig. 4
precisely expresses the meaning of the input question, and can be successfully
executed over DBpedia with 728 answers returned. However, the SPRQAL query
in gold standard expresses “female” in another way (∃dbo:gender.{dbr:Female}),
and its answer set is greatly different from ours. In order to test the real impact of
our adjective understanding approach, we manually assessed whether each adjec-
tive is correctly interpreted. As a result, after integrating Adj2ER, the accuracy
for interpreting adjectives improved from 32.50% (35.83%) to 61.66% (58.33%),
which indicated that Adj2ER can greatly improve the performance of adjective
understanding module in current QA systems.

5 Discussions

Limitations of Adj2ER. For the majority of adjectives used in the questions,
our approach can generate the existential restrictions of high quality. However,
there are still some adjectives that cannot be resolved by our approach, due
to the following reasons: (i) a portion (3.04%) of compound adjectives rarely
appear in Web corpora, such as “Chinese-speaking” and “non-extinct”. They
are also not covered by lexicons like WordNet and PPDB. Thus, Adj2ER did
not collect enough related entities; (ii) a few adjectives should be mapped to
more complex logic forms. For example, “widowed people” may be mapped
to dbo:Person�∃dbo:spouse.∃dbo:deathDate.�. Currently, our approach cannot
generate such complex structures, due to the much larger search space and the
difficulty in collecting related entities. We would like to consider dealing with
these adjectives in the future.

It should also be noticed that, in this paper, we mainly focus on understand-
ing adjectives for the KBQA task. From the perspective of adjective semantics
[19], Adj2ER can handle most of intersective and subsective adjectives, but cur-
rently cannot handle scalar adjectives (e.g., “big cities”) and intentional adjec-
tives (e.g., “alleged criminal”), since these adjectives’ meanings are not expressed
in KBs, or the meanings are related to personal preferences. For example, when
we say “big cities”, we know that it represents a numerical constraint on cities’
area or population, but there is no standard interpretation for “big”. Such a
question is considered inappropriate as a KBQA question, since even experts
cannot provide consistent reference answers.
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Error Analysis. There are several reasons causing the unsatisfactory result
in QA. Firstly, 65% of error cases occurred in entity linking, relation mapping
or query type detection, which are beyond the scope of this work. Particularly,
several relational phrases, such as “official language”, which should be mapped
to simple relations, were detected as (adj, C) pairs by mistake. Secondly, in 23%
of error cases Adj2ER generated inappropriate mappings for adjectives. Most of
these adjectives are about time (e.g., past, current), and perhaps their meanings
cannot be captured by existential restrictions. Finally, 12% of error cases were
caused by our integrating strategy. The restrictions generated by Adj2ER were
correct but added to wrong variables when there are multiple variables in the
queries generated by the existing QA systems.

Other Findings. An interesting finding is that our approach can provide exis-
tential restrictions for different word senses of an adjective. For example, it
provided both ∃dbo:servingTemperature.{“Hot”} and ∃dbo:ingredient.{dbr:Chili
pepper} for “hot” on class dbo:Food. The former existential restriction captures
the meaning of “high temperature”, while the latter one means “spicy”. A word
sense disambiguation method may be useful for better integration of Adj2ER
in QA systems. Another interesting finding is that some existential restric-
tions, which were generated as candidates (before filtering), were not exact
interpretation but entailed facts for most of the embodied entities, such as
∃dbo:utcOffset.{“+8”} for (Chinese, dbo:City). We would like to study how to
exploit these candidates for information extraction in the future.

6 Related Work

This work is closely related to KBQA. Some existing systems [1,8,26] directly
link adjectives or “adjective + noun” phrases to entities, classes or literals in
the given KB, by using a similarity-based searching method or a pre-built lexi-
con. Although this solution can interpret “American actors” as “actors who are
related to dbr:United States”, it cannot determine whether the phrase means
“actors who have nationality dbr:United States” or “actors who have death place
dbr:United States”. Some recent systems [4,12] leverage the encode-and-compare
networks to learn the semantic similarity between the natural language con-
straint expression and the target query component (in this work, the existential
restriction). Our experiments showed that such solution may suffer from a huge
search space and limited performance due to the lack of training data. Current
QA systems cannot process adjectives in natural language questions precisely.

Semantic parsing is an important step in most QA systems, which trans-
lates natural language questions to structural queries, such as SPARQL, λ-DCS
[5], CCG [6] and description logics [2]. Hu et al. [11] exploited semantic query
graphs for question analysis based on the dependency structures of questions.
Abujabal et al. [1] mapped questions to SPARQL templates automatically gen-
erated from question-answer pairs. However, all these approaches mainly focus
on understanding proper nouns and relation phrases in questions, and do not
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have a specific step to recognize and interpret adjective constraints. Zhang et al.
[25] studied the semantic interpretation of superlative expressions, by mapping
each superlative adjective to a single relation in the KB with a neural network.
However, this work cannot be applied to factoid adjective constraints, due to the
diversity of knowledge representations and the lack of training data.

Entity linking and relation mapping are two essential steps in most of the
semantic parsing approaches. Common entity linking approaches, e.g., [7,9],
firstly generate candidates for possible entity mentions by running an exact
string matching or lexical similarity based method over pre-built lexicons, and
then focus on the problem of entity disambiguation. These approaches cannot
be easily applied to adjective mapping, since the lexical gap between adjectives
and structural knowledge is huge. The distant supervision method [15], which
is frequently used to find mappings between relational phrases and KB rela-
tions, cannot handle the adjective mapping problem directly, as it is difficult to
determine which facts in the KB express the meaning of the adjective.

In natural language processing area, there have been much work on cluster-
ing or identifying the meanings of adjectives [10,14]. Bakhshandeh and Allen [3]
studied the problem of finding the aspect that an adjective describes through
the WordNet glosses, such as “price” for “expensive”. However, to the best of
our knowledge, there is little work in studying the representations of adjectives
over KBs. Walter et al. [23] proposed an approach for extracting adjective lex-
icalizations by analyzing the labels of objects occurring in DBpedia. However,
this work only considers representations in form of ∃r.{a} , and requires a to
be a meaningful string containing words related to the adjective. Our approach
considers four forms of existential restrictions and is universal for all facts.

7 Conclusion

In this paper, we studied the problem of mapping factoid adjective constraints
to existential restrictions over KBs. Our main contributions are listed below:

– We proposed a novel approach Adj2ER, which maps adjectives to existential
restrictions or their negation forms in description logics.

– We leveraged statistic measures for generating candidate existential restric-
tions and supervised learning for filtering the candidates, which can largely
reduce the search space and overcome the lexical gap.

– We created two question sets with adjectives used in QALD and Yahoo!
Answers, and conducted experiments over DBpedia. Our experiments showed
that Adj2ER generated mappings of high quality for most adjectives and sig-
nificantly outperformed several alternative approaches. Furthermore, current
QA systems gained an improvement of over 16% in F1-score by integrating
our approach.

Understanding adjectives with KBs is still a difficult problem and deserves
more attention. In future work, we plan to study other complex logic forms for
adjective mapping. Also, we want to apply our approach to other tasks such as
information extraction and question generation.
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Abstract. Semantic Web connects huge knowledge bases whose con-
tent has been generated from collaborative platforms and by integra-
tion of heterogeneous databases. Naturally, these knowledge bases are
incomplete and contain erroneous data. Knowing their data quality is
an essential long-term goal to guarantee that querying them returns reli-
able results. Having cardinality constraints for roles would be an impor-
tant advance to distinguish correctly and completely described individ-
uals from those having data either incorrect or insufficiently informed.
In this paper, we propose a method for automatically discovering from
the knowledge base’s content the maximum cardinality of roles for each
concept, when it exists. This method is robust thanks to the use of
Hoeffding’s inequality. We also design an algorithm, named C3M, for
an exhaustive search of such constraints in a knowledge base benefiting
from pruning properties that drastically reduce the search space. Exper-
iments conducted on DBpedia demonstrate the scaling up of C3M, and
also highlight the robustness of our method, with a precision higher than
95%.

Keywords: Cardinality mining · Contextual constraint ·
Knowledge base

1 Introduction

With the rise of the Semantic Web, knowledge bases (that we will denote KB)
are growing and multiplying. At the worldwide level knowledge hubs are built
from collaborative platforms, either by extraction from Wikipedia as DBpedia [1]
or collaboratively collecting knowledge as for Wikidata [6], or integrating vari-
ous sources using information retrieval algorithms as for YAGO [21]. These very
large KBs represent a wealth of information for applications, as this is the case
with Wikipedia for human beings. On a smaller scale, more and more knowl-
edge bases are published on the Web, built from diverse data sources following
Extract-Transform-Load integration processes that are based on a shared ontol-
ogy (ontology-based data integration).

Due to the way they are generated, all of these KBs need to be enriched with
more information to evaluate their quality with respect to the represented reality,
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and reverse engineering techniques have already been considered to automati-
cally obtain useful declarations such as keys [16,19]. In this paper we propose to
automatically discover another kind of useful declaration about the represented
data in a given KB: role maximum cardinalities. In knowledge representation,
numerical restrictions which specify the number of occurrences of a role are par-
ticularly useful [2]. For example, a numerical restriction can be used to describe
a concept1 C as the set of individuals who have at most 3 children. Moreover,
a numerical restriction can be used to declare a maximum cardinality constraint
on the role R in the context C, for instance on the role parent in the context
Person, for declaring that individuals of concept Person have at most twice the
role parent. Such a declaration allows reasoners to infer whether all the asser-
tions on role R exist in the KB for any individual belonging to C. This can
be used to supplement the answers to queries with precise information on their
quality in terms of recall with respect to reality [20].

Table 1. Cardinality distributions for some contexts/roles in DBpedia (with the role
cardinality i, the number of individuals ni having i times this role, the likelihood τi

and the pessimistic likelihood τ̃i that are defined in Sect. 4.1)

To the best of our knowledge there is only one work dedicated to the extrac-
tion of cardinality constraint from a KB [15], maybe because compared to the tra-
ditional database framework, extracting significant cardinality constraints from
a KB is a far more challenging task. Indeed, we are facing three important chal-
lenges. A first challenge is that a KB generally contains inconsistent data, either
because of errors or because of duplicate descriptions. Due to these inconsisten-
cies, the observed maximum cardinality for a role in a KB cannot be considered
1 We use the Description Logics (DL) [2] terminology, as DL are the theoretical founda-

tions of OWL, so we use the terms concept (i.e. class), role (i.e. property), individual
and fact (i.e. instances).
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to be its true maximum cardinality. For example, it is expected that a person
will have at most one birth year and two parents. However, considering the roles
birthYear and parent in DBpedia (see Table 1), some persons have 5 birth years
or 6 parents. These few inconsistent assertions should not influence the maximum
cardinality discovery. Then, a second challenge is that a KB is often incomplete
for a given role. For this reason, the most frequently observed cardinality for a
role in a KB cannot be considered to be its true maximum cardinality. Typically,
most people described in DBpedia have only one informed parent. Nonetheless,
we have to take into account that many people have two informed parents for
not underestimating the maximum cardinality of the role parent. Finally, a third
challenge is that the expected constraints depend on a context. For instance
in DBpedia the role team is used to inform the teams to which a person has
belonged and the teams of a football match. Thus, it is not possible to deter-
mine the maximum cardinality of the role team in DBpedia (context �), but its
maximum cardinality is expected to be 2 in the context of FootballMatch. Con-
sequently, instead of exploring each role of a knowledge base, we have to explore
each role for each concept. This leads to a huge search space and therefore it is
necessary to prune it without missing relevant constraints. But, conversely, we
have to avoid extracting redundant constraints. If we identify that a person has
at most one birth year, it would be a shame to overwhelm the end user with the
cardinality of birthYear for artists, scientists and so on.

Taking into account these challenges, we present in this paper two main
contributions. Our first contribution is to propose a method for computing a
significant maximum cardinality. The significance is guaranteed by the use of
Hoeffding’s inequality for computing corrected likelihood estimates of maximum
cardinality. We show with experiments using DBpedia that we extract only reli-
able maximum cardinalities. More precisely, contrary to [15] it is important to
note that we output a maximum cardinality if and only if it is actually signifi-
cant. Our second contribution is C3M2, an algorithm for enumerating the set of
all contextual maximum cardinalities that are minimal (Definition 2) and signif-
icant (Definition 4). We use two sound pruning criteria that drastically reduce
the exploration space, and ensure the scalability of C3M for large KBs. It is also
interesting to notice that we implemented C3M in such a way that it explores
Web KBs via their public SPARQL endpoints without centralizing data.

This paper is structured as follows. Section 2 reviews some related works. In
Sect. 3, we first introduce some basic notions and formalize the problem. Then,
in Sect. 4, we show how to detect a significant maximum cardinality of a role.
Next, in Sect. 5, we present our algorithm C3M. Section 6 provides experimental
results on DBpedia that shows its efficiency and its scalability, together with the
meaningfulness of discovered constraints. We conclude in Sect. 7.

2 The prototype and the results are available at https://github.com/asoulet/c3m, both
in CSV and in RDF (Turtle); we provide also the schema of our constraints expressed
in RDF.

https://github.com/asoulet/c3m
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2 Related Work

To increase knowledge about the quality of data contained in KB, some propos-
als calculate quality indicators like completeness [17] or representativeness [18],
while others are interested in the enrichment of individuals or concepts with
fine-grained assertions or constraints. Our proposal is in the line of these works,
which we detail in what follows.

Works on Mining Role Cardinality for Individuals. Several works consist in
enriching the set of assertions on individuals (ABox), and we can distinguish
the endogenous approaches [9] relying on the assertions already present in the
ABox, from the exogenous approaches [13] relying on external sources. [9] shows
that it is important to determine when a particular role (such as parent) is
missing for a particular individual (such as Obama). Their proposal of Partial
Completeness Assumption states that when at least one assertion about a role
R is informed for an individual s, then all assertions for this role R are informed
for this individual s. In [13], the authors benefit from text mining applied on
Wikipedia for improving the completeness of individuals described in Wikidata.
This exogenous approach relies on syntactical patterns to identify cardinalities on
individuals. More generally, in [8], the authors propose various kinds of endoge-
nous and exogenous heuristics for characterizing the completeness of individuals,
called Completeness Oracles, as for instance taking into account the popularity
of individuals (i.e., a famous individual is more likely to have complete informa-
tion). Our proposal is endogenous as it processes the facts already contained in
the KB that we want to enrich. Nevertheless, it does not characterize the role
cardinality for a specific individual but for a concept. It is therefore more general
as the constraints for concept C apply for all the individuals of C.

Works on Mining Role Cardinality for Concepts. Other proposals have focused
on the enrichment of the schema part (TBox) with new assertions or axioms
allowing to partially or completely specify the cardinality of a role. In particular,
several works [16,19] address the automated discovery of contextual keys in RDF
datasets as it was done in relational databases. They find axioms stating that
individuals of a concept C must have only one tuple of values for a given tuple
of roles. The same kind of cardinality information is induced by [12]. Indeed, the
authors propose to discover roles that are mandatory for individuals of a concept
C. For this purpose, they compare the density of the role R for individuals of the
concept C with the densities of R for other concepts in the concept hierarchy. Our
proposal focuses on mining the maximum cardinality for a role R in a context
C (if it exists). But, contrary to the previous work, we can get information
about cardinalities greater than 1 (e.g., 2 parents for a child). To the best of
our knowledge, [15] is the only work explicitly dedicated to the detection of
minimum/maximum cardinalities. This approach proceeds in two stages: removal
of outliers and calculation of bounds. Unfortunately, KBs are so incomplete that
the filtering of outliers is ineffective (e.g., there are more children with only one
parent than children with 2 parents). Moreover, their filtering method implicitly
assumes that the cardinalities follow a normal distribution, or a distribution
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that is moderately asymmetric, which is not always the case (see the examples
of Table 1). Consequently, for DBpedia their approach finds that a person has at
most 2 years of birth (instead of 1) and 3 parents (instead of 2); and a football
match has 3 teams (instead of 2). It is also important to note that the method
extracts a cardinality constraint for every concept and role of the KB, whatever
the number of observations and the distribution (e.g., a constraint for team is
found in the context �). Thus, many of these constraints are not significant.
On the contrary, our approach benefits from Hoeffding’s inequality for ensuring
statisical significance. Finally, contrary to our approach, the authors do not
envisage an algorithm to systematically explore the roles and concepts of the
KB. An exploration strategy is yet crucial and not trivial in practice due to the
huge search space.

Interest of Role Cardinality. Whatever the approach, all information extracted
about role cardinalities is useful for improving many methods, as they reduce
the uncertainty imposed by the open-world assumption. [9,20] show the neces-
sity of reducing this uncertainty for data mining applied to KB. In particular,
[8,9] propose to benefit from the previously mentioned Partial Completeness
Assumption for improving the confidence estimation of association rules. More
recently, [20] has further improved the confidence estimation of a rule by exploit-
ing the bounds on the cardinality for an individual. Data mining is not the only
field where insights about cardinalities are useful. [3,4,17] and more recently [10]
propose to characterize query answers benefiting from the completeness degree
of the queried data. Most of these methods can therefore directly benefit from
the constraints that we investigate in this paper.

3 Preliminaries and Problem Formulation

3.1 Basic Notations

For talking about KB components, we use Description Logics (DL) [2] terminol-
ogy. For instance DBpedia is a KB K = (T ,A), where T denotes its TBox and
A denotes its ABox. One example of assertion in T is Artist � Person, meaning
that the concept Artist is subsumed by the concept Person, i.e. all artists are
persons. T also includes assertions like ∃birthYear � Person, meaning that the
role birthYear is defined for persons. Note that the only part of the TBox used
by our approach is the named hierarchies of concepts. Besides, Person(Obama)
and birthYear(Obama, 1961) are assertions of DBpedia’s ABox A. The former
indicates that Obama is a person, while the latter states that Obama was born
in 1961. In this paper, we assume that a KB K contains only one hierarchy of
concepts and we use the general top concept � which subsumes every concept
in K. In DL, a maximum cardinality M on the role R may be represented using
the numerical restriction constructor ≤M R. K = (T ,A) implies3 the constraint
� � (≤M R), if for all subjects s, the number of objects o such that R(s, o)

3 DL formal semantics are given in terms of interpretations, see [2].
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belongs to K (i.e., R(s, o) ∈ A or R(s, o) can be inferred from T and A) is equal
to or fewer than M .

We focus on cardinality constraints that are contextual, as stated in Defini-
tion 1. Intuitively, these constraints are not necessarily satisfied for all subjects
of a role R, but for all the subjects of R that belong to a concept C.

Definition 1 (Contextual Constraint). Given an integer M ≥ 1, a role R
and a concept C of a KB K, a contextual maximum cardinality constraint defined
on R for C is an expression of the form: C � (≤M R).

The concept C is called the context of the constraint C � (≤M R). For
example, the contextual constraint Person � (≤1 birthYear) means that each
person has at most 1 birth year, while FootballMatch � (≤2 team) means that
a football match has at most 2 teams. Note that asserting that an artist
has at most one year of birth (i.e., Artist � (≤1 birthYear)) is true, but
less general than Person � (≤1 birthYear) because Artist � Person. Simi-
larly, asserting that 1,000 is a maximum cardinality for the parent role (i.e.,
Person � (≤1, 000 parent)) is true, but less specific than Person � (≤2 parent).
We want to discover contextual maximum cardinality constraints that have a
context as general as possible and a cardinality as small as possible. For this
purpose, we introduce the notion of minimal contextual constraint:

Definition 2 (Minimal Contextual Constraint). The contextual constraint
γ1 : C1 � (≤M1 R) is more general than the contextual constraint γ2 : C2 �
(≤M2 R), denoted by γ2 � γ1, iff C2 � C1

4 and M1 ≤ M2, or C2 ≡ C1 and
M1 < M2. For a given set of contextual constraints Γ , constraint γ1 ∈ Γ is
minimal in Γ if there is no constraint γ2 ∈ Γ more general than γ1: (	 ∃γ2 ∈
Γ )(γ1 � γ2).

The notion of minimality restricts the mining to a set of constraints that is
not redundant, meaning that we do not want to extract a maximum cardinality
constraint γ2 if it is logically implied by another maximum cardinality constraint
γ1. More precisely, it is easy to see that if a maximum cardinality constraint
γ1 : C1 � (≤M1 R) is more general than a maximum cardinality constraint
γ2 : C2 � (≤M2 R), then for all interpretation I of a KB K, if I is a model
of γ1, then I is also a model of γ2. Indeed, if I is a model of γ1, we have
CI

1 ⊆ {o : #{o′ : (o, o′) ∈ RI} ≤ M1}. Moreover, since γ1 is more general than
γ2, we have CI

2 ⊆ CI
1 and M1 ≤ M2. Thus, we have CI

2 ⊆ CI
1 ⊆ {o : #{o′ :

(o, o′) ∈ RI} ≤ M1} ⊆ {o : #{o′ : (o, o′) ∈ RI} ≤ M2}, which shows that I is a
model of γ2.

Note that our method relies on a named concept hierarchy for exploring
possible contexts and using their subsumption relations. However, it is possible
to generate such a hierarchy to explore more complex contexts in a pre-processing
step. Such an approach is useful to analyze data by expressing the background
knowledge of an expert through an analytical hierarchy.

4 We denote C � C′ when C � C′ and C′ �� C.
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3.2 Problem Statement

Considering the statistics in DBpedia provided by Table 1, we do not
want to discover the contextual constraints Person � (≤6 birthYear) or
Person � (≤5 parent) even if these constraints are satisfied and minimal in K. We
would intend to extract the contextual constraints Person � (≤1 birthYear) or
Person � (≤2 parent). Therefore, as defined in [14], we assume an ideal descrip-
tion of the world or ideal KB, denoted K∗, in the sense that K∗ is correct (it
does not contain any inconsistancies) and complete. Note that in general, we
have neither K ⊆ K∗, nor K∗ ⊆ K, because K is inconsistent or incomplete. In
this context, our problem can be formalized as follows:

Problem 1. Given a knowledge base K, we aim at discovering the set of all con-
textual maximum cardinality constraints C � (≤M R) where C and R are
concept and role of K, that are satisfied in K∗ and minimal with respect to the
concept hierarchy of K.

In order to solve Problem 1 we have to deal with the two following challenges:
(i) discover constraints that would be satisfied in K∗ whereas this knowledge base
is hypothetical and unknown (see Sect. 4), and (ii) efficiently explore the search
space knowing that the number of possible contextual maximum cardinality
constraints is huge (see Sect. 5).

4 Detecting Significant Maximum Cardinalities

This section use a probability framework relying on the hypothesis that the
degree of completeness of a role is in general higher than its level of inconsis-
tencies. For instance, this assumption is reasonable for DBpedia. Indeed, even
if it is difficult to evaluate the completeness and the semantic accuracy of a
knowledge base because it requires a gold standard [5], several results of the
literature tend to show that the semantic accuracy of DBpedia is better than its
completeness [7].

More formally, let us assume that M is the true maximum cardinality of
the role R in the context C, meaning that the maximum cardinality constraint
γ : C � (≤M R) is satisfied in K∗. In practice, the ideal KB K∗ is unknown
and we only have a sample K of the reality. Let X be the random variable
that denotes for a subject s the number of assertions R(s, o) observed in K. We
assume that:

– The level of inconsistencies in K is not significant, i.e. the probability P(X >
M) to observe a cardinality greater than M for role R is low. For example,
in Table 1, we can see that 85 individuals of context Person have more than
2 parents, but they represent less than 0.43% of the observed individuals.

– The degree of completeness (present roles) is significantly higher, i.e. the
probability P(X = M) to observe the maximum cardinality M is significantly
higher than P(X > M). For example, in Table 1, we can see that 9, 342
individuals of context Person have 2 parents, which represents more than
46.7% of the observed individuals.
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Under these hypotheses, the following property states that if M is the true
maximum cardinality of the role R in the context C, then M is the integer i
that maximizes the conditional probability P(X = i|X ≥ i):

Property 1. Let M be the true maximum cardinality of the role R in the context
C. If P(X = M) ≥ λ and P(X > M) ≤ ε, then we have P(X = M |X ≥
M) ≥ λ

λ+ε and P(X = i|X ≥ i) ≤ (1 − λ) for i ∈ [1..M [. Moreover, if λ >

1/2(
√

ε2 + 4ε−ε), we have: M = arg maxi∈N+{P(X = i|X ≥ i) : P(X = i) > ε}.

Due to lack of space, we omit the proofs. Assuming an inconsistency level
ε equal to 0.1% (resp. 1%), Property 1 states that it is possible to detect
a true maximum cardinality if the degree of completeness λ is greater than
1/2(

√
0.0012 + 4 · 0.001−0.001) = 3.2% (resp. 9.5%). Moreover, a true maximum

cardinality constraint M will be detected if P(X = M |X ≥ M) ≥ λ
λ+ε ≥ 97%

(resp. 90%). Finally, note that when there is no inconsistency (i.e., P(X > M) =
0 and ε = 0), if M is a true maximum cardinality, then P(X = M |X ≥ M) = 1.

Now, based on this assumption, we define in Sect. 4.1 the measure of likelihood
to detect maximum cardinality constraints, and show how to use Hoeffding’s
inequality to obtain more accurate decisions. Besides, we introduce in Sect. 4.2
the notion of significant constraint.

4.1 Likelihood Measure

We now introduce the notion of likelihood to measure a frequency estimation of
the conditional probability P(X = i|X ≥ i) involved in Property 1 (for deciding
whether a cardinality i for the role R in the context C is likely to be maximum):

Definition 3 (Likelihood). Given a knowledge base K, the likelihood of the
maximum cardinality i of the role R for the context C is the ratio defined as
follows: τC,R

i (K) = nC,R
i

nC,R
≥i

if nC,R
≥i > 0 (0 otherwise) where nC,R

i (resp. nC,R
≥i ) is

the number of individuals s of the context C such that i facts R(s, o) (resp. i
facts or more) are stated in K.

When the context and the role are clear, we omit them in notations. In that
case, ni, n≥i and τi(K) respectively denote nC,R

i , nC,R
≥i and τC,R

i (K).
For example, let us consider the context Person and the role parent. Using

Table 1, it is easy to see that n
Person,parent
≥2 = 9, 477 (9, 477 = 9, 392+75+9+1).

Thereby, the likelihood τ Person,parent
2 (K) is 0.991 (i.e., 9, 392/9, 477). Note that

this measure ignores the 10, 643 persons that have only one informed parent (to
evaluate if 2 is the true maximum cardinality for parents). Then, it is also easy
to see that we have τ Person,parent

6 (K) = 1, whereas 6 is not the true maximum
cardinality for the role parent. Intuitively, if the likelihood τ

Person,parent
6 (K) =

1 does not make sense, it is due to an insufficient number of individuals for
reinforcing this hypothesis (here, only 1 individual has 6 parents). In general,
the estimation of P(X = i|X ≥ i) by τi(K) must be corrected to be statistically
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valid. For this purpose, we benefit from the Hoeffding’s inequality [11] which has
the advantage of being true for any distribution. It provides an upper bound on
the probability that an empirical mean (in our case, a likelihood τi(K)) deviates
from its expected value (the conditional probability P(X = i|X ≥ i)) by more
than a given amount. More formally, we have the following property:

Property 2 (Lower bound). Given a knowledge base K and a confidence level
1 − δ, assuming that all the observations are independently and identically dis-
tributed, the conditional probability θi = P(X = i|X ≥ i) is greater than the
pessimistic likelihood τ̃i(K) defined by (if n≥i > 0):

τ̃i(K) = max

{

ni

n≥i
−

√

log(1/δ)
2n≥i

, 0

}

with a probability greater than (1 − δ), i.e. P(θi ≥ τ̃i(K)) ≥ (1 − δ).

This property provides us an efficient tool to make confident decisions. For
instance, for the role parent in Table 1, we observe that the correction strongly
reduces the likelihood τi(K) for cardinalities 3, 4 and 6 (e.g., τ̃ Person,parent

6 (K) =
0). Conversely, we have τ̃ Person,parent

2 (K) = 0.975, a strong indicator to consider
that 2 is the true maximum cardinality for the role parent in the context Person.

4.2 Significant Maximum Cardinality

Using Properties 1 and 2, we finally propose to detect a maximum cardinality M
for a confidence level 1 − δ if (i) the pessimistic likelihood τ̃M (K) is maximum,
i.e. τ̃M (K) = maxi>0 τ̃M (K), and (ii) the pessimistic likelihood τ̃M (K) is greater
than a minimum likelihood threshold minτ . Based on this heuristic, we introduce
the notion of significant maximum cardinality constraint:

Definition 4 (Significant Constraint). Given a minimum likelihood thresh-
old minτ , a confidence level 1−δ and a knowledge base K, a contextual maximum
cardinality constraint C � (≤M R) is significant w.r.t. K iff τ̃M (K) ≥ minτ and
τ̃M (K) = maxi≥1τ̃i(K).

Compared to Property 1, note that in our heuristic, we do not test whether τ̃M

is greater than ε, or not. However, it is easy to see that if τ̃M = τM −
√

log(1/δ)
2n≥M

≥
minτ , then we necessarily have n≥M ≥ log(1/δ)

2(1−minτ )2
, which guarantees that we

will not make a decision if the number of observations n≥M is too low. For
example, with 1 − δ = 99% and minτ = 0.97, we will consider that M is a true
maximum cardinality only if n≥M ≥ 2, 558.

In DBpedia for a confidence level 1 − δ = 99% and a threshold minτ = 0.97,
we observe that the detected maximum cardinalities of the roles birthYear and
parent in the context Person are 1 and 2 respectively (bold values in Table 1).
Interestingly, with these same thresholds, no maximum cardinality is detected
for the role team when no context is considered. This is because this role is used
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both to inform the teams to which a player has belonged and the teams present
in a sport event. Thence, our method manages to detect the cardinality of 2 in
the context of football matches.

By Definition 4, if a constraint is significant w.r.t. K, it means that its pes-
simistic likelihood is greater than minτ and that it is probably satisfied in K∗

(using Properties 1 and 2). Now, our problem is expressed as follows:

Problem 2. Given a knowledge base K satisfying the assumptions expressed in
Sect. 4 about its consistency and its completeness, a confidence level 1− δ and a
minimum likelihood threshold minτ , we aim at discovering the set of all contex-
tual maximum cardinality constraints C � (≤M R) where C and R are concept
and role of K, that are significant w.r.t. K and minimal w.r.t. the concept hier-
archy defined in the TBox of K.

5 Extracting Maximum Cardinality Constraints

5.1 Pruning Criteria

For discovering all the contextual constraints of a knowledge base K, a naive
approach would consist in testing each role for each concept with our detection
method. If NC is the number of concepts and NR the number of roles, this naive
approach would require NC × NR tests. This is unfeasible for large knowledge
bases such as DBpedia, containing more than 483k concepts and 60k roles. We
design two pruning criteria (Properties 3 and 4) taking advantage of the two
conditions that a constraint γ must satisfy to be mined: (i) the constraint γ
has to be significant i.e., its pessimistic likelihood has to be greater than the
minimum likelihood threshold minτ , and (ii) the constraint γ has to be minimal
with respect to the hierarchy of concepts defined in the TBox of K.

First, we show that a constraint C � (≤M R) cannot be significant if the
number of individuals of the context C in K is too small. Indeed, if |C| is too
small, the confidence interval computed with Hoeffding’s inequality is very large
and consequently, the pessimistic likelihood is lower than the minimum threshold
minτ . This intuition is formally presented in this property:

Property 3 (Significance pruning). Given a confidence level 1−δ and a minimum
likelihood threshold minτ , if one has |C � (∃R.�)| < log(1/δ)

2(1−minτ )2
for the context

C and the role R, then no contextual constraint C ′ � (≤M R) with C ′ � C can
be significant w.r.t. the knowledge base K.

This property is very important to reduce the search space because if the
number of individuals in A that belong to C � (∃R.�), for a context C and a
role R, is not large enough (if it is lower than log(1/δ)/2(1 − minτ )2), then it is
impossible to find a significant constraint C ′ � (≤M R) where C ′ is a concept
more specific than C in the hierarchy of K. For example, we use a minimum
likelihood threshold minτ of 97% and a confidence 1 − δ of 99% to extract
constraints in DBpedia (see experimental sections), which means that at least
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2,558 observations are needed for a role R in a context C. For this reason, since
there are only 896 facts for the role beatifiedDate describing the context Person,
we are sure that it is not necessary to explore this role for the sub-concepts like
Artist or Scientist.

Assume now that we have extracted the constraint C � (≤1 R) from
the knowledge base K. It is not possible to find another minimal constraint
C ′ � (≤M ′ R) with a context C ′ more specific than C because the cardinality
M ′ cannot be smaller than 1. This property, which is a direct consequence of
minimality (see Definition 2), is formalized as follows:

Property 4 (Minimality pruning). Let Γ be a set of contextual maximum car-
dinality constraints. If Γ contains a contextual constraint C � (≤1 R), then no
contextual constraint C ′ � (≤M ′ R) with C ′ � C can be minimal in Γ .

Property 4 is also useful to reduce the search space because if a constraint
C � (≤1 R) has been detected as significant, then it is useless to explore
all the constraints C ′ � (≤M ′ R) where C ′ � C. As soon as the con-
straint Person � (≤1 birthYear) has been detected (meaning than a person
has at most one birth year), it is no longer necessary to explore the constraint
Artist � (≤M birthYear) which is more specific.

5.2 C3M: Contextual Cardinality Constraint Mining

Properties 3 and 4 are implemented in our algorithm called C3M (C3M for Con-
textual Cardinality Constraint Mining). Its main function, called C3M-Main,
takes as input a knowledge base K, a confidence level 1 − δ and a minimum
likelihood threshold minτ . The exploration of the search space is performed
independently for each role R of the knowledge base K (see the main loop of
Algorithm 1 at line 2). In a first phase, given a role R of K, Algorithm 1 car-
ries out a depth-first exploration of cardinality constraints for R (line 4). This
exploration starts from the top concept of K, denoted by �, by calling the recur-
sive function C3M-Explore. Because the concepts of K may have multiple more
general concepts, the set ΓR of maximum cardinality constraints returned by
function C3M-Explore may contain constraints that are not minimal. Therefore,
in a second phase (line 6), the function C3M-Main checks for each constraint
γ ∈ ΓR if ΓR contains a constraint γ′ that is more general than γ. When it is
not the case constraint γ is added to the set of maximum cardinality constraints
Γm that are minimal. Γm is finally returned by function C3M-Main (line 8).

The recursive function C3M-Explore benefits from the pruning criteria pre-
sented in Properties 3 and 4 during a depth-first exploration of the search space.
First, it evaluates if the number of observations in C � (∃R.�) is sufficiently
important. If it is not the case, we know that there is no maximum cardinality
constraint C ′ � (≤M R) with C ′ � C that can be significant w.r.t. K (see
Property 3) and the depth-first exploration is stopped (line 2 of Algorithm2).
Otherwise, the pessimistic likelihood τ̃i is computed for each cardinality value i
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Algorithm 1. C3M-Main
Input: A knowledge base K, a confidence level 1−δ and a minimum likelihood thresh-

old minτ

Output: The set Γm of all maximum cardinality constraints that are significant and
minimal w.r.t. K

1: Γm := ∅
2: for all role in K do
3: {Depth-first exploration of maximum cardinality constraints}
4: ΓR := C3M-Explore(K, R, �, ∞, δ, minτ )
5: {Computation of maximum cardinality constraints that are minimal}
6: Γm := {γ ∈ ΓR : (� ∃γ′ ∈ ΓR)(γ � γ′)} ∪ Γm

7: end for
8: return Γm

(lines 4–6) and the most likely cardinality iM is selected (line 7). If the corre-
sponding pessimistic likelihood τ̃iM

is lower than minτ , it means that no maxi-
mum cardinality constraint is detected (for this level of the hierarchy of K) and
iM is set to ∞ (line 8). Otherwise, if iM is strictly lower than M (the maximum
cardinality detected at a previous level of the hierarchy), it means that we detect
a maximum constraint cardinality γ : C � (≤iM R) that is potentially minimal.
As already mentioned, as a concept of the knowledge base K may have multiple
super-concepts, we will have to check whether γ is really minimal in the second
phase of function C3M-Main. Finally, using Property 4, we know that if iM = 1,
it is not necessary to explore the descendants C ′ � C to detect other con-
straints C ′ � (≤M ′ R). Otherwise, C3M-Explore is recursively called (line 12)
to explore all the direct sub-concepts of C (identified using the hierarchy in the
TBox of K).

Theorem 1. Given a knowledge base K, a confidence level 1 − δ and a mini-
mum likelihood minτ , our algorithm C3M-Main returns the set of all contextual
cardinality constraints C � (≤M R) that are significant w.r.t. K and minimal
w.r.t. the hierarchy of concepts defined in the TBox of K.

Theorem 1 straightforwardly stems from Properties 3 and 4. Although these
pruning criteria are not heuristic, we will see in the experimental section that
algorithm C3M-Main is efficient enough to handle knowledge bases as large as
DBpedia. Note that we have implemented the functions C3M-Main and C3M-
Explore (client side) such that they consume a SPARQL endpoint (server side)
to query the knowledge base K. More precisely, given a context C and a role R,
a SPARQL query is built and executed to compute the cardinality distribution
nC,R

i (i ∈ N), which is useful for calculating pessimistic likelihoods (see line 5 of
Algorithm 2). Therefore, for each role R in K, the server side executes NC queries
where NC represents the number of concepts in the hierarchy of concepts of K.
It means that the complexity of our approach in number of queries is in O(NC).
On the other hand, on the client side (where the functions C3M-Main and C3M-
Explore are executed), given a role R of K, the complexity of our approach (in
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Algorithm 2. C3M-Explore
Input: A knowledge base K, a role R, a context C, a cardinality M , a confidence level

1 − δ and a minimum likelihood threshold minτ

Output: A set Γ of constraints
1: α := log(1/δ)

2(1−minτ )2
and nC,R

≥0 := |C 
 (∃R.�)|
2: if (nC,R

≥0 < α) then return ∅
3: Γ := ∅ and imax := arg maxi∈N{nC,R

i > 0}
4: for all i ∈ [1..min{M, imax}] do

5: τ̃i := max

{

n
C,R
i

n
C,R
≥i

−
√

log(1/δ)

2n
C,R
≥i

; 0

}

6: end for
7: iM := arg maxi∈[1..min{M,imax}]{τ̃i}
8: if (τ̃iM < minτ ) then iM := ∞
9: if (iM < M) then Γ := {C � (≤ iM R)}

10: if (iM > 1) then
11: for all direct sub-concept C′ � C not yet explored do
12: Γ := Γ ∪ C3M-Explore(K, R, C′, iM , δ, minτ )
13: end for
14: end if
15: return Γ

number of operations) is in O(NC × imax) where imax = arg maxi∈N{n�,R
i > 0}.

Intuitively, imax represents the maximum integer for which there is at least one
subject s such that imax facts R(s, o) belong to K.

6 Experiments

The goal of this experimental study is mainly to evaluate the scaling of the
C3M algorithm with a large knowledge base, the interest of minimality and the
precision of the mined constraints. In this paper, we present and analyze experi-
mental results using DBpedia, which contains more than 500 million triples with
more than 480k distinct concepts and 60k distinct roles. The Github repository
of C3M (see footnotes) also provides results obtained from 3 other SPARQL
endpoints: YAGO, BNF and EUROPEANA.

Our algorithm is implemented in Java with the Apache Jena Library, and
directly queries the KB via its SPARQL endpoint5. Note that we virtually add
an element � that subsumes all concepts without parents including owl:Thing,
and the confidence level is 1 − δ = 99% for all experiments6. Figure 1 varies the
minimum likelihood threshold minτ from 0.90 to 0.99 to observe the evolution
of the collection of contextual maximum cardinality constraints.

5 http://jena.apache.org and https://dbpedia.org.
6 The results for minτ = 0.97 and the ground truth used to evaluate the precision are

available at https://github.com/asoulet/c3m.

http://jena.apache.org
https://dbpedia.org
https://github.com/asoulet/c3m
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Fig. 1. Impact of the minimum likelihood threshold

Scalability. Figure 1 (left top) reports the execution time, which increases very
rapidly when the likelihood threshold decreases. This is due to a very rapid
increase of the size of the search space because the pruning properties are
less selective. As a result, the number of extracted contextual constraints also
increases with the decrease of the threshold minτ as shown in Fig. 1 (right top).
More precisely, it reports the total number of mined constraints, the number
of constraints with a non-� context (i.e., with context different from �), and
the number of non-1 constraints (i.e., with maximum cardinality greater than
1). First, it is clear that a majority of constraints have 1 as cardinality. For a
minimum likelihood threshold equal to 0.97, there are 1,979 constraints with 1
as maximum cardinality (see Fig. 2 (left) that details the distribution of con-
straints with cardinality). Second, we also observe that most of constraints have
a non-� context that shows the usefulness of our approach based on contexts.
For minτ = 0.97, Fig. 2 (right) plots the distribution of the constraints with the
level of their context in the DBpedia hierarchy.

Minimality. Figure 1 (left bottom) plots the compression ratio due to minimal-
ity (i.e., number of minimal and non-minimal constraints divided by the number
of minimal constraints) by varying the likelihood threshold. Interestingly, the
reduction of the number of constraints thanks to minimality is important regard-
less of the threshold (between 2 and 3 times smaller). It is slightly less effective
when the likelihood threshold is high, but much fewer constraints are identified.
As a reminder, the non-minimal pruned constraints are not informative because
redundant with more general ones. In other words, they are not useful for an
inference system and in addition, they reduce the readability of the extraction
for end users.
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Fig. 2. Distribution of constraints for minτ = 0.97

Precision. In order to evaluate the quality of the mined constraints, we built a
ground truth from a set C∗ of 5,041 constraints selected from the 13,313 con-
straints extracted with minτ = 0.90. We first used common sense knowledge and
information from the DBpedia pages to determine the maximum cardinalities
of certain relations. For instance, since we have a single birth, the maximum
cardinality for all birth dates and places has been set to 1. For some relations
like rdfs:label or rdfs:abstract, the maximum cardinality has been set to 12
according to the documentation7. In a second step, we automatically extended
the maximum cardinality constraints to the different contexts. The set C∗ covers
667 distinct roles and 2,150 distinct concepts. Thereby, the precision of a set
of constraints C corresponds to the proportion of correct constraints out of the
number of constraints that are annotated (i.e., C ∩ C∗). Figure 1 (right bottom)
plots the precision of the set of constraints returned by C3M according to the
minimum likelihood threshold minτ

8. We observe that precision increases with
this threshold, but drops off for thresholds greater than 0.96. This is due to
correct cardinality constraints which are not recognized as the needed number
of individuals is too high. However, it is important to note that this decrease
is not very significant because the number of mined constraints becomes very
small for thresholds greater than 0.96. Interestingly, for a threshold greater than
or equal to 0.94, the precision of our approach is excellent since about 95% of
the constraints are correct.

We also qualitatively analyzed the maximum cardinality constraints for a
minimum likelihood threshold equal to 0.97. We observe that the erroneous con-
straints often result from construction or representation biases. For instance, the
method found the constraint http://schema.org/School � (≤2 country) that is
wrong because a school is located in a single country. But we observe in DBpedia
that many English schools are attached to both England and the United King-
dom. It is clear that a single affiliation to England (part of the United Kingdom)
would have been sufficient. Besides, at physical level, while each individual has

7 https://wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets.
8 We do not compare our method with [15] because in the case of DBpedia, this

method systematically returns a wrong maximum cardinality for all constraints.

https://wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets
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a unique date of birth, we identify a cardinality of 2 because many dates are
represented with two distinct encoding formats.

To summarize, our approach scales well on DBpedia with about 500 million
triples thanks to the advanced pruning techniques used by C3M. The majority of
the extracted constraints have a context demonstrating the interest of benefiting
from the concept hierarchy of the knowledge base. Importantly, the precision of
the mined constraints is about 95% for minτ ≥ 0.94.

7 Conclusion

This paper provides the first proposal for a complete exploration of significant
constraints of maximum cardinality in a knowledge base. We show how to find,
from a knowledge base K that satisfies assumptions about its completeness and
consistence degrees, a minimal set of contextual constraints C � (≤M R) that
are significant, i.e. that can be expected to occur in reality. Our experiments
demonstrate the feasibility of a systematic exploration of large knowledge bases
such as DBpedia (about 500 million triples) for the discovery of minimal con-
textual constraints of maximum cardinality thanks to the C3M algorithm. With
a high minimum likelihood threshold, the precision of the mined constraints is
about 95%, which is excellent. Additionally, the minimality exploited by our
algorithm drastically reduce the number of obtained constraints, so that they
can be manually analyzed by end users. In future work, we would intend to
extend our approach to minimum cardinality constraints. This task is not com-
pletely symmetrical because under the open-world assumption, it is difficult to
know if facts are missing or if the minimum cardinality is reached. For instance,
a majority of people have only one informed parent in DBpedia but, of course,
the true minimum cardinality is 2. Another future work is to improve C3M
by benefiting more from reasoning capabilities. For the moment, we take into
account the hierarchy of concepts to reduce the set of constraints, but we could
improve our approach by fully exploiting OWL (e.g., with equivalent classes or
properties).
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Abstract. Event series, such as the Wimbledon Championships and the
US presidential elections, represent important happenings in key societal
areas including sports, culture and politics. However, semantic reference
sources, such as Wikidata, DBpedia and EventKG knowledge graphs,
provide only an incomplete event series representation. In this paper we
target the problem of event series completion in a knowledge graph. We
address two tasks: (1) prediction of sub-event relations, and (2) infer-
ence of real-world events that happened as a part of event series and
are missing in the knowledge graph. To address these problems, our pro-
posed supervised HapPenIng approach leverages structural features of
event series. HapPenIng does not require any external knowledge - the
characteristics making it unique in the context of event inference. Our
experimental evaluation demonstrates that HapPenIng outperforms the
baselines by 44 and 52% points in terms of precision for the sub-event
prediction and the inference tasks, correspondingly.

1 Introduction

Event series, such as sports tournaments, music festivals and political elections
are sequences of recurring events. Prominent examples include the Wimbledon
Championships, the Summer Olympic Games, the United States presidential
elections and the International Semantic Web Conference. The provision of reli-
able reference sources for event series is of crucial importance for many real-world
applications, for example in the context of Digital Humanities and Web Science
research [7,9,25], as well as media analytics and digital journalism [15,23].

Popular knowledge graphs (KGs) such as Wikidata [29], DBpedia [14] and
EventKG [8,10] cover event series only to a limited extent. This is due to multiple
reasons: First, entity-centric knowledge graphs such as Wikidata and DBpedia
do not sufficiently cover events and their spatio-temporal relations [6]. Second,
reference sources for knowledge graphs such as Wikipedia often focus on recent
and current events to the detriment of past events [11]. This leads to the defi-
ciency in supporting event-centric applications that rely on knowledge graphs.

In this work we tackle a novel problem of event series completion in a know-
ledge graph. In particular, we address two tasks: (1) We predict missing sub-event
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 200–218, 2019.
https://doi.org/10.1007/978-3-030-30793-6_12
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relations between events existing in a knowledge graph; and (2) We infer real-
world events that happened within a particular event series but are missing in
the knowledge graph. We also infer specific properties of such inferred events
such as a label, a time interval and locations, where possible. Both addressed
tasks are interdependent. The prediction of sub-event relations leads to a more
complete event series structure, facilitating inference of further missing events.
In turn, event inference can also lead to the discovery of new sub-event relations.

The proposed HapPenIng approach exclusively utilizes information obtained
from the knowledge graph, without referring to any external sources. This cha-
racteristic makes HapPenIng approach unique with respect to the event inference
task. In contrast, related approaches that focus on the knowledge graphs popu-
lation depend on external sources (e.g. on news [12,31]).
The contributions of this paper include:

– A novel supervised method for sub-event relation prediction in event series.
– An event inference approach to infer real-world events missing in an event

series in the knowledge graph and properties of these events.
– A dataset containing new events and relations inferred by HapPenIng:

• over 5, 000 events and nearly 90, 000 sub-event relations for Wikidata,
and

• over 1, 000 events and more than 6, 000 sub-event relations for DBpedia.

Our evaluation demonstrates that the proposed HapPenIng approach achieves
a precision of 61% for the sub-event prediction task (outperforming the state-of-
the-art embedding-based baseline by 52% points) and 70% for the event inference
task (outperforming a naive baseline by 44% points). Our dataset with new sub-
event relations and inferred events is available online1.

1.1 Example: Wimbledon Championships

The Wimbledon Championships (WC), a famous tennis tournament, are an
event series that takes place in London annually since 1877. Wikidata currently
includes 132 WC editions and 915 related sub-events, for example Women’s and
Men’s Singles and Wheelchair competitions. However, according to our analysis,
this event series is incomplete. In particular, the HapPenIng approach proposed
in this paper was able to generate 125 sub-event relations and 15 event instances
related to this event series that are currently missing in Wikidata.

Figure 1 illustrates a small fraction of the Event Graph that contains event
nodes and their relations as available in Wikidata as of Sep. 18th, 2018. For
each year, Wikidata includes an event edition, such as the 2008 WC. The indi-
vidual competitions such as the Men’s Singles are provided as sub-events of the
corresponding edition.

In this example we can illustrate two tasks of the event series completion
tackled in this paper: (i) Sub-event prediction: The missing sub-event relation
between the Men’s Singles final of 2008 and the Men’s Singles competition in
1 http://eventkg.l3s.uni-hannover.de/happening.

http://eventkg.l3s.uni-hannover.de/happening
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Fig. 1. A fraction of the Event Graph containing the Wimbledon Championships (WC)
events. Nodes represent events. Solid arrows represent sub-event relations. Dashed
arrows represent follow-up event relations. The three upper events are the WC editions.

2008 can be established; and (ii) Event inference: The missing event instance
labeled 2010 WC—Men’s Singles final can be inferred as a sub-event of the
Men’s Singles 2010.

2 Problem Statement

We consider a typical Knowledge Graph that contains nodes representing real-
world entities and events. The edges of a Knowledge Graph represent relations
between entities and events. More formally:

Definition 1. Knowledge Graph: A Knowledge Graph KG : 〈V,U〉 is a
directed multi-graph. The nodes in V represent real-world entities and events.
The directed edges in U represent relations of the entities and events in V .

The Event Graph G is a sub-graph of the Knowledge Graph. The nodes of G
represent real-world events. The edges represent their relations relevant in the
context of event series (sub-event and follow-up relations). More formally:

Definition 2. Event Graph: Given a Knowledge Graph KG : 〈V,U〉, an Event
Graph G : 〈E,R ∪ F 〉 is a directed graph. The nodes of the Event Graph E ⊆ V
represent real-world events. The edges R represent sub-event relations: R ⊆ E ×
E,R ⊆ U . The edges F represent follow-up event relations: F ⊆ E × E,F ⊆ U .

Events in G represent real-world happenings; the key properties of an event in
the context of event series include an event identifier, an event label, a happening
time interval and relevant locations.

Definition 3. Event: Given an Event Graph G : 〈E,R ∪ F 〉, an event e ∈ E
is something that happened in the real world. e is represented as a tuple e =
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〈uri, l, t, L〉, where uri is an event identifier, l is an event label, t = 〈ts, te〉 is
the happening time interval with ts, te being its start and end time. L is the set
of event locations.

An event can have multiple sub-events. For example, the WC Men’s single
final 2009 is a sub-event of 2009 WC.

Definition 4. Sub-event: An event es ∈ E is a sub-event of the event ep ∈ E,
i.e. (es, ep) ∈ R, if es and ep are topically related and es is narrower in scope.

We refer to ep as a parent event of es. Typically, es happens in a temporal
and a geographical proximity of ep.

An event can be a part of an event series. An example of an event series is
the WC that has the 2008 WC as one of its editions.

Definition 5. Event series and editions: An event series s = 〈e1, e2, . . . ,
en〉, ∀ei ∈ s : ei ∈ E, is a sequence of topically related events that occur repeatedly
in a similar form. The sequence elements are ordered by the event start time and
are called editions. We refer to the set of event series as S.

The follow-up relations F connect event editions within an event series. For
example, the 2009 WC is the follow-up event of the 2008 WC.

Definition 6. Follow-up relation: Given an event series s = 〈e1, e2, . . . , en〉,
ej is a follow-up event of ei, i.e. (ei, ej) ∈ F , if ei ∈ s and ej ∈ s are the neighbor
editions in s and ei precedes ej.

The sub-event relations in an Event Graph are often incomplete. In particu-
lar, we denote the set of real-world sub-event relations not included in the Event
Graph as R+. Then the task of sub-event prediction can be defined as follows:

Definition 7. Sub-event prediction: Given an Event Graph G : 〈E,R ∪ F 〉
and events es ∈ E, ep ∈ E, the task of sub-event prediction is to decide if es is
a sub-event of ep, i.e. to determine if (es, ep) ∈ R ∪ R+, where R+ is a set of
real-world sub-event relations not included in the Event Graph.

The set of real-world event representations included in an Event Graph is
often incomplete (open world assumption). The context of event series can help
to infer real-world events missing in particular editions.

Definition 8. Event inference: Given and Event Graph G : 〈E,R∪F 〉 and an
event series s = 〈e1, e2, . . . , en〉, with e1, e2, ..., en ∈ E, the task of event inference
is to identify a real-world event ef ∈ E ∪ E+that belongs to the series s. Here,
E+ is a set of real-world events that are not included in the Event Graph. In
particular, ef is a sub-event of the edition ei ∈ s, i.e. (ef , ei) ∈ R ∪ R+.

3 Event Series Completion

We address event series completion in two steps: First, we adopt a classification
method to predict sub-event relations among event pairs. Second, we develop
a graph-based approach to infer events missing in particular editions through
event series analysis. A pipeline of the overall approach is shown in Fig. 2.
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Fig. 2. The HapPenIng pipeline. Solid arrows represent the processing order. Dashed
arrows represent the data flow.

3.1 Sub-event Prediction

We model the problem of sub-event prediction as a classification problem. Given
an event pair (es, ep), we aim to predict whether es is a sub-event of ep:

sub − event(es, ep) =

{
true, if(es, ep) ∈ R ∪ R+;
false, otherwise.

(1)

Features. We adopt textual, spatio-temporal and embeddings features.

Textual Features (TEX): Events connected through a sub-event relation can
have similar or overlapping labels whose similarity is measured using textual
features. Such features are also applied on the template labels. Template labels
are series labels obtained from the original event labels after removal of any
digits. The textual features we consider include:

– Label Containment: 1, if ep.l is a sub-string of es.l, 0 otherwise.
– LCS Fraction: The length of the Longest Common Sub-string (LCS) of es.l

and ep.l, compared to the shorter label: fLCS Fraction(es, ep) = LCS(es.l,ep.l)
min(|es.l|,|ep.l|) .

– Unigram Similarity: The labels of both events are split into word unigrams.
The feature value is the Jaccard similarity between the unigram sets:
fUnigram Similarity(es, ep) = unigrams(es.l) ∩ unigrams(ep.l)

unigrams(es.l) ∪ unigrams(ep.l) .
– Template Containment, Template LCS Fraction, Template Unigram Simila-

rity: These features are computed equivalent to the label features, but are
based on the template labels.

– Label Cosine Similarity: The cosine similarity between event labels based on
tf-idf vectors to take frequency and selectivity of terms into account.

– Parent Event Label Length: fParent Event Label Length(es, ep) = |ep.l|.
– Sub-Event Label Length: fSub-Event Label Length(es, ep) = |es.l|.

Spatio-Temporal Features (STP): We assume that sub-events happen in the
temporal proximity of their parent events. We consider the temporal proximity
through temporal overlap, containment and equality.
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– Time Overlap: 1 if es.t ∩ ep.t 	= ∅, 0 otherwise.
– Time Containment: 1 if es.t ⊆ ep.t, 0 otherwise.
– Time Equality: 1 if es.t = ep.t, 0 otherwise.

Sub-events typically happen in the geographical proximity of their parent
events. Therefore, we introduce Location Overlap - a spatial feature that assigns
a higher score to the event pairs that share locations:

– Location Overlap: 1 if es.L ∩ ep.L 	= ∅, 0 otherwise.

Embedding Features (EMB): The link structure of the Knowledge Graph can
be expected to provide important insights into possible event relations. First, we
can expect that this structure provides useful hints towards predicting sub-event
relations, e.g. follow-up events can be expected to have a common parent event.
Second, events related to different topical domains (e.g. politics vs. sports) are
unlikely to be related through a sub-event relation. To make use of this intuition,
we train an embedding on the Knowledge Graph using any relations connecting
two events in E. For this feature, we pre-train the embeddings following the
STransE embedding model [18] which provides two relation-specific matrices W1

and W2, a relation vector r and entity vectors (here, es and ep). Intuitively,
given that model, we can compare the embedding of an event with the embedding
of the assumed parent event plus the embedding of the sub-event relation (sE):

– Embedding Score: fEmbedding(es, ep) = ‖W rsE,1ep + rsE − W rsE,2es‖�1

Training the Sub-event Classifier. To train a classifier given the features
presented above, a set of labeled event pairs is required. The set of positive exam-
ples contains all event pairs with known sub-event relations in the Event Graph
G. Formally, given the set E of events, this is the set C+ = {(es, ep)|(es, ep) ∈ R}.

In addition, a set of negative examples, i.e. event pairs without sub-event
relation is required. When composing event pairs randomly, most of the paired
events would be highly different (e.g. having highly dissimilar labels and no
spatio-temporal overlap). Consequently, the model would only learn to distin-
guish the most simple cases. To address this problem, we collect a set of negative
examples C− that has as many event pairs as C+, and consists of four equally-
sized subsets with the following condition for each contained event pair (es, ep):

– Both events are from the same event series, but (es, ep) /∈ R. Example: (1997
WC—Women’s Doubles, 2009 WC—Men’s Singles final).

– Both events have the same parent event. Example: (2009 WC—Men’s Singles,
2009 WC—Women’s Singles).

– The parent of es’s parent is the same as ep’s parent. Example: (2009 WC—
Men’s Singles final, 2009 WC—Women’s Singles).

– es is a transitive, but not a direct sub-event of ep. Example: (2009 WC—Men’s
Singles final, 2009 WC ).
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Algorithm 1. Event Inference
1: procedure InferSubEvents(e)
2: M ← getSubSeries(e.series)
3: for each es ∈ {es|(es, e) ∈ R} do M = M \ es.series

4: for each m ∈ M do
5: if constraintsNotSatisfied(m, e) then continue

6: newEvent ← inferEvent(e, m)
7: if oldEvent ← findEvent(E, newEvent.l) �= ∅ then
8: R = R ∪ (e, oldEvent)
9: else

10: E = E ∪ newEvent; R = R ∪ (e, newEvent)

11: for each es ∈ {es|(es, ep) ∈ R} do inferSubEvents(es)

Note that we only consider direct sub-event relations to be valid positive
examples. In particular, we aim to learn to distinguish the directly connected
sub-events from transitive relations, as well as to distinguish similar events that
belong to different editions. Due to the inherent incompleteness of the Event
Graph, a missing sub-event relation does not necessarily imply that this relation
does not hold in the real world. However, we expect that false negative examples
would occur only rarely in the training set, such that the resulting model will
not be substantially affected by such cases.

Overall, the set of training and test instances C contains all positive sub-event
examples C+ found in the Event Graph, and an equally sized set of negative
examples C− that consists of the four event pair sets described above.

Predicting Sub-event Relations Using the Classifier. The trained clas-
sifier is adopted to predict missing sub-event relations within event series. We
apply an iterative algorithm, given a classifier cl and the Event Graph G. As it
is not feasible to conduct a pairwise comparison of all events in G, we limit the
number of events compared with their potential parent event: For each potential
parent event ep that is part of an event series, a set of candidate sub-events is
selected as the set of events with the largest term overlap with the potential
parent event label. For each candidate event, the classifier cl predicts whether
this event is a sub-event of ep. To facilitate prediction of sub-event relations in
cases where the parent event is not a part of the series initially, the procedure
is run iteratively until no new sub-event relations are found.

3.2 Event Inference

The task of event inference is to infer real-world events not initially contained
in the Event Graph (i.e. events in the set E+). We infer such missing events
and automatically generate their key properties such as label, time frame and
location, where possible. The intuition behind event inference is that the Event
Graph indicates certain patterns repeated across editions. Thus, we approach this
task via comparison of different editions of the same event series to recognize
such patterns. Consider the WC example in Fig. 1. Although there is no event
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Fig. 3. Event inference example for the Wimbledon Championships.

instance for the 2010 Men’s Singles final, we can infer such instance from the
previous edition 2009 Men’s Singles final.

Event Series Pre-processing. We pre-process the set S of event series to
avoid cycles or undesired dependencies within the single series. Each event series
is transformed into a sequence of acyclic rooted trees where each root represents
one particular edition of the series. Events or relations violating that structure
are removed from the series. If removal is not possible, we exclude such series
from S.

An important concept of the event inference is the concept of a sub-series:
A series sp has a sub-series ss if the sub-series contains sub-events of sp. For
example, the WC—Men’s Singles final series is a sub-series of the WC—Men’s
Singles, because the event 2009 WC—Men’s Singles final is a sub-event of 2009
WC—Men’s Singles. We determine sub-series relation as:

Definition 9. Sub-series: An event series ss ∈ S is a sub-series of sp ∈ S, if
for an event ep ∈ sp there is a sub-event in ss: ∃(es, ep) ∈ R : ep ∈ sp ∧ es ∈ ss.

Inferring New Events. The intuition behind event inference is to identify
similar patterns in the different editions of an event series. According to Defi-
nition 5, the editions of an event series occur repeatedly in a similar form. This
way, events repeated in most of the editions of the series, but missing in a par-
ticular edition can be inferred. To do so, we process all editions in the Event
Graph and inspect whether its neighbored editions have a sub-event not covered
in the particular edition.

Algorithm 1 illustrates our event inference approach. As shown in our pipeline
(Fig. 2), this algorithm is invoked for each edition e of the event series in S. First,
a set M is constructed that contains all sub-series of the current edition’s series,
i.e. e.series (line 2). Then, the algorithm removes all series from M for which
the current edition contains events already (line 3). That way, M is reduced to
a set of event series not covered by the sub-events of the current edition e.

For each remaining sub-series m ∈ M , a new event is inferred that is a sub-
event of the current edition e and a part of m. Within the respective method
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Algorithm 2. Label Generation
1: procedure GenerateLabel(e, m)
2: mostSimilarEvents ← getSimilarEvents(e, e.series)
3: sortEventsByEditionCloseness(e, mostSimilarEvents)
4: c ← mostSimilarEvents[0]
5: c′ ← c′, s.t. (c′, c) ∈ R ∧ c′ ∈ m
6: l ← ””; r ← c′.l; δprev ← ∅
7: for each δ ∈ getEdits(c.l, e.l) do
8: if δ.op = DELETE then δprev ← δ
9: else if δ.op = INSERT ∧ δprev.op = DELETE then

10: l ← l + r[: r.indexOf(δprev.text)] + δ.text
11: r ← l + r[r.indexOf(δprev.text) + len(δprev.text) :]
12: else if not (δ.op = EQUAL ∧ δprev = ∅) then return ∅

return l + r

Table 1. Generating the label 2010 WC - Men’s Singles. The edit operations δ are
the result of Myers’ algorithm to detect the edit operations between 2009 WC - Men’s
Singles and 2010 WC - Men’s Singles. The final label is the concatenation of l and r.

Step δ.op δprev .op δ.text l r

init 2009 WC - Men’s Singles final

1 DELETE 2009 2009 WC - Men’s Singles final

2 INSERT DELETE 2010 2010 WC - Men’s Singles final

3 EQUAL WC - Men’s Singles 2010 WC - Men’s Singles final

inferEvent(e,M), a new label, time span and set of locations is generated as
described later. The algorithm is invoked recursively with all known (also newly
identified) sub-events. To increase precision, a sub-series m is only retained in M
if a set of constraints is satisfied (line 5). These constraints are described later
in this section.

The event inference algorithm can infer an event for which an equivalent event
already exists in the Event Graph. To avoid the generation of such duplicate
events, we check if an event with the same label as the newly inferred event
exists in the Event Graph. In this case, the algorithm adds a new sub-event
relation across the existing events to the Event Graph and discards the inferred
event (line 8).

Wimbledon Championships Example: Consider the example in Fig. 1, with
the goal to infer new events within the edition ewc3 : 2010 WC. Figure 3a depicts
the first step when invoking the algorithm InferSubEvents(ewc3) (without con-
straints). The edition becomes the input event e and its series e.series is WC.
The event series WC—Men’s Singles (m) is identified as one of its immediate
sub-series in M . However, as there is already an event 2010 WC—Men’s Singles
that is a sub-event of e and part of that sub-series m, it is removed from M .
Therefore, M is empty and no new events are inferred at this point.
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Subsequently, Algorithm1 is executed with the sub-event 2010 WC—Men’s
Singles as input edition e, as shown in Fig. 3b. Here, the sub-series is WC—Men’s
Singles final which is inserted in M . Consequently, a new event is created that
is a sub-event of e and part of the event series WC—Men’s Singles final.

Label Generation. Each newly generated event requires a label. This label
is generated by exploiting the labels within its event series, as shown in Algo-
rithm2. The input is its future parent event e and its event series m. First, the
events in the parent series e.series whose labels are most similar to the label
of e are collected (line 2). Then, within this set of events, the one from the
closest event edition and its sub-event in m is selected (lines 3–5). Finally, the
label of that event is transformed into the new label by applying the same edit
operations δ (i.e. equality, delete or insert) as if we transformed the parent event
labels (lines 6–12). To identify the edits, we adopt the difference algorithm by
Myers [16].

Example: Consider the newly added event in Fig. 3b. As an input to the
algorithm, there is e which is the event 2010 WC—Men’s Singles and the series
m consisting of the Men’s Singles finals of 2008 and 2009. First, the event 2009
WC—Men’s Singles within e.series is identified as the most similar event c. c′

is the sub-event of c that is also in m: 2009 WC—Men’s Singles final. Given c′.l
and the edit operations δ between the labels of e and c, Table 1 shows how they
are used to generate the correct label 2010 WC—Men’s Singles final.

Location and Time Generation. Each event can be assigned a happening
time and a set of locations. In both cases, we use a rule-based approach.

Locations: Some events such as the Olympic Games change their location with
every edition. Currently we reconstruct event locations only if they remain
unchanged across editions: If there is a location assigned to every event s ∈ m,
this location is also assigned to e. In future work we intend to utilize sub-location
relations, that facilitate the generation of correct locations at a lower level of geo-
graphical granularity.

Happening Times: Three rules are applied in the following order until a happen-
ing time is identified: (a) If the happening time of each event s ∈ m equals its
parent event’s happening time, also e adopts its happening time directly from
its parent event; (b) If the happening time of each event s ∈ m is modelled as a
whole year, the happening time of e is also modelled as the same year as any of
its (transitive) parent events; (c) If the event label contains a year expression,
that part is transformed into its happening time.

Constraints. We propose several configurations of constraints to decide
whether an event should be created:

– Baseline (BSL): No constraints.
– Time Evolution (EVO): The constraints are only satisfied if there was at least

one event in the series that happened before e. For example, the Wimbledon
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Women’s Doubles were held for the first time in 1913, so it would be wrong
to generate an event for the Women’s Doubles series in 1912 and before.

– Interval (INT): The constraints are only satisfied if there was at least one
event in the series that happened before and at least one event in the series
that happened after e. Under this constraint, events that re-occurred only
until a specific edition are not generated for each edition. An example is the
tug of war which was part of only six Olympic Summer Games.

– Window (WIN): Given a start and an end thresholds a and b, this constraint
is satisfied if there is at least one event within the last a editions of the series
that happened before e and at least one event in the following b editions that
happened after e. For example, Tennis competitions in the Olympic Summer
Games were held between 1896 and 1924, and then only since 1984. The
Window constraint helps to identify such gaps.

– Coverage (COV): Event series are only valid if they are part of a sufficient
fraction of the editions: |m|/|S| ≥ α, given a threshold α.

– Coverage Window (CWI): A combination of WIN and COV: The coverage is only
computed after restricting both event series to the dynamic time window.

– Evolution Coverage Window (ECW): A combination of EVO, WIN and COV: The
coverage is only computed after restricting both event series to the dynamic
time window, and if at least one event in the series happened before e.

4 Evaluation

The goal of the evaluation is to assess the performance of the HapPenIng app-
roach with respect to the sub-event prediction and event inference tasks.

4.1 Data Collection and Event Graph Construction

We run our experiments on Event Graphs extracted from two sources: (i) Wiki-
data [29] as of October 25, 2018 (Wikidata Event Graph), and (ii) DBpedia [14]
from the October 2016 dump (DBpedia Event Graph). Both datasets are enriched
with additional information regarding events obtained from the EventKG know-
ledge graph [8]. Compared to other knowledge graphs, EventKG contains more
detailed information regarding spatio-temporal characteristics of events. More
concretely, events in the Event Graph are enriched with location and time
information using the properties sem:hasPlace, sem:hasBeginTimeStamp and
sem:hasEndTimeStamp of EventKG.

One Event Graph containing events, sub-event relations and follow-up rela-
tions, as well as a set S of event series is constructed for each dataset. For the
Wikidata Event Graph, we collect as events all data items that are (transitive)
instances of the “event” class2. Event series are extracted using the “instance
of”3 and the “series”4 properties in Wikidata. For the DBpedia Event Graph,
2 https://www.wikidata.org/wiki/Q1656682.
3 https://www.wikidata.org/wiki/Property:P31.
4 https://www.wikidata.org/wiki/Property:P179.

https://www.wikidata.org/wiki/Q1656682
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P179
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we extract events using the “dbo:Event” class and series assignments using the
provided Wikipedia categories. In both cases, we apply two heuristics to ensure
that only event series compatible with Definition 5 are extracted: (i) We only
consider series with mostly homogeneous editions. To this end, we make use of
the Gini index [21], a standard measure for measuring impurity. In our context it
is used to assess the diversity of the template labels of editions in an event series.
We reject the (rare) cases of event series with high Gini impurity, where the edi-
tion labels do not follow any common pattern.5 An event is kept in S, if the set
of template labels of its editions shows a Gini impurity less than 0.9. Besides,
we ignore editions whose removal decreases that impurity. (ii) We ignore events
typed as military conflicts and natural disasters, because such events typically
do not follow any regularity. If we can find connected sub-graphs of events in
the Event Graph through sub-event and follow-up relations, but the data item
representing that series is missing in the dataset, we add a new unlabeled event
series to S. To train the embeddings, we collect all relations connected to events.

The extraction process results in a Wikidata Event Graph G containing |E| =
352, 235 events (DBpedia Event Graph: 92, 523) and |S| = 9, 007 event series
(DBpedia Event Graph: 1, 871). As input to train the embeddings, there are
279, 004, 908 relations in Wikidata and 18, 328, 678 relations in DBpedia. Both
Event Graphs, as well as embeddings, annotated samples and other evaluation
datasets described in the remainder of this section are available online.6

4.2 Sub-event Prediction

Training and Test Set Generation. Before running the experiments, a set
of positive and negative sub-event relations is created from the Event Graphs
as described in Sect. 3.1. In total, this collection of relations consists of 55, 217
event pairs within S that were extracted as correct sub-event pairs from Wikidata
(DBpedia: 16, 763) and the same number of negative event pairs.7 This collection
is split into ten folds to allow 10-fold cross-validation. We learn the STransE
embeddings as described in Sect. 3.1 for each fold, with its parameters set as
follows: SGD learning rate λ = 0.0001, the margin hyper-parameter γ = 1,
vector size k = 100 and 1, 000 epochs. While learning the embeddings on the
folds, we exclude the sub-event relations from the respective test set.

Baseline. As a baseline for sub-event prediction, we utilize an embedding-based
link prediction model based on the STransE embeddings [18]. Given an input

5 For example, the event series “TED talk”, whose set of edition template labels (e.g.
“Avi Reichental: What’s next in 3D printing” and “Amanda Palmer: The art of
asking”) has a high Gini impurity, is not included in the set of event series.

6 http://eventkg.l3s.uni-hannover.de/happening.
7 Existing benchmark datasets do not contain a sufficient amount of sub-event rela-

tions. For example, FB15K [3] only contains 224 triples containing one of the
Freebase predicates /time/event/includes event, /time/event/included in event or
/time/event/instance of recurring event.

http://eventkg.l3s.uni-hannover.de/happening
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Table 2. 10-fold cross-validation of the sub-event prediction using different classifiers
and all the introduced features. STransE is the baseline we compare to.

Method Wikidata DBpedia

TP TN FP FN Accuracy Accuracy

Baseline STransE 46,479 43,143 6,949 13,859 0.81 0.50

HapPenIng configurations LOG 54,345 46,605 3,487 5,993 0.91 0.87

SVM 55,958 48,825 1,267 4,380 0.95 0.92

RF 58,649 49,497 595 1,689 0.98 0.97

event, this model retrieves a ranked list of candidate sub-events with the cor-
responding scores. We use these scores to build a logistic regression classifier.
STransE is a state-of-the-art approach that had been shown to outperform pre-
vious embedding models for the link prediction task on the FB15K benchmark
[3].

Classifier Evaluation. Table 2 shows the results of the 10-fold cross-validation
for the sub-event prediction task, with three different classifiers: LOG (Logistic
Regression), RF (Random Forest) and SVM (Support Vector Machine with linear
kernel and normalization) in terms of classification accuracy ( TP+TN

TP+TN+FP+FN ,
where TP are true positives, TN true negatives, FP false positives and FN
false negatives). Among our classifiers, the RF classifier performs best, with an
accuracy of nearly 0.98 in the case of the Wikidata Event Graph and 0.97 for the
DBpedia Event Graph. The results show a clear improvement over the STransE
baseline, outperforming the baseline by more than 16% points in case of the
RF classifier for Wikidata. For DBpedia, the STransE baseline is outperformed
by a larger margin using our proposed features. This can be explained by the
insufficient number of relations for training the embeddings in DBpedia.

Table 3 shows the performance of the RF classifier under cross-validation with
different feature groups. The combination of all features leads to the best perfor-
mance in terms of accuracy. Although the use of textual features already leads
to a high accuracy (0.97), embedding features and spatio-temporal features help
to further increase accuracy in the case of Wikidata (0.98). Again, while DBpe-
dia does profit from the spatio-temporal features, there is no improvement when
using embeddings, due to the insufficient data size.

Wikidata Statistics and Examples. While the classifiers demonstrate very
accurate results on the test sets, the performance on predicting sub-event rela-
tions not yet contained in G requires a separate evaluation. As explained in
Sect. 3.1, a large number of predictions is needed that could potentially also lead
to a large number of false positives, even given a highly accurate classifier. The
actual label distribution is skewed towards unrelated events and we are now only
classifying event pairs not yet contained in R. In fact, running the sub-event pre-
diction algorithm using the best-performing RF classifier with all features leads to
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Table 3. 10-fold cross-validation of the sub-event prediction using the RF classifier for
Wikidata and DBpedia with different feature sets.

Feature group Wikidata accuracy DBpedia accuracy

All features: TEX, STP, EMB 0.98 0.97

No spatio-temp. features: TEX, EMB 0.97 0.96

No textual features: STP, EMB 0.82 0.73

No embedding: TEX, STP 0.98 0.97

Table 4. Complementing corrupted event series. For each corruption factor (i.e. % of
removed events), we report the percentage of events that could be reconstructed.

Constraints Wikidata DBpedia

Corruption factor

5% 10% 15% 5% 10% 15%

Baseline BSL 61.81 63.13 61.83 39.58 38.40 38.17

HapPenIng configurations EVO 53,63 54.70 53.12 31.04 31.32 30.12

INT 46.68 47.89 46.39 24.58 24.04 23.46

WIN 46.06 47.45 45.94 22.71 22.27 21.93

COV 45.49 45.65 43.64 11.46 11.03 9.30

CWI 53.36 53.93 51.32 23.96 21.96 19.43

ECW 48.89 49.17 47.03 21.67 20.71 18.18

the prediction of 85, 805 new sub-event relations not yet contained in Wikidata
and 5, 651 new sub-event relations in DBpedia.

To assess the quality of the predicted sub-event relations that are not ini-
tially contained in R, we extracted a random sample of 100 sub-event relations
consisting of an event and its predicted sub-event and manually annotated each
pair as correct or incorrect sub-event relation. According to this manual anno-
tation, 61% of the sub-event relations predicted with our HapPenIng approach
that are not yet contained in the Event Graph correctly represent real-world
sub-event relations in Wikidata (DBpedia: 42%). In comparison, the STransE
baseline predicted only 46, 807 new sub-event relations, and only 9% of them are
correct based on a manual annotation of a random 100 relations sample (DBpe-
dia: 2%). The difference in performance on the test set and on the predicted
sub-event relations not contained in R can be explained by the large class dis-
balance in the set of relations collected in the sub-event prediction procedure,
such that the majority of the candidate relations are negative examples.

4.3 Event Inference Performance

We evaluate the event inference performance in two steps: First, we conduct
an automated evaluation of recall by reconstruction of corrupted event series.
Second, we assess precision by annotating random samples of new events.
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Table 5. Manual evaluation of the correctness of inferred events. For the baseline, each
HapPenIng constraint and Event Graph, 100 inferred events were randomly sampled
and judged as correct or not. The number of additional sub-event relations found during
the event inference process is reported as well (P: Precision).

Constraints Wikidata DBpedia

Inferred events Relations Inferred events Relations

Number P Number P

Baseline BSL 114,077 0.26 16,877 31,410 0.24 3,420

HapPenIng configurations EVO 28,846 0.47 10,045 11,295 0.35 1,170

INT 5,256 0.57 5,376 2,115 0.67 3,419

WIN 3,363 0.56 4,547 936 0.71 783

COV 7,297 0.54 2,712 1,313 0.45 417

CWI 7,965 0.59 4,442 1,965 0.61 718

ECW 5,010 0.70 3,687 1,364 0.70 655

Complementing Corrupted Event Series (Recall). To evaluate the recall
of the event series completion, we remove events from the event series and inves-
tigate to which extent our Event Graph completion constraints are able to recon-
struct them (we consider the naive unconstrained approach BSL as our baseline).
To this end, we randomly remove leaf nodes (events without sub-events) from
the whole set of event series S until a specific percentage (determined by the
corruption factor) of leaf nodes is removed. For the Wikidata Event Graph, there
are 45, 203 such leaf events in total before corruption, for DBpedia 9, 600. Table 4
shows the results for three corruption factors (5%, 10% and 15%) and the con-
straints introduced in Sect. 3.2 (we set the parameters to a = b = 5 and α = 0.5).
As expected, the unconstrained naive approach BSL results in the highest per-
centage of correctly reconstructed events: More than 60% of the Wikidata and
nearly 40% of the DBpedia events can be recovered including their correct labels.
If applying constraints, less events are reconstructed. In particular, the WIN con-
straint results in the lowest recall, as it demands to cover the event before and
after the series edition within 5 editions.

Overall, we observe that HapPenIng is able to reconstruct more than 60% of
missing events from a knowledge graph and correctly infer event labels.

Manual Assessment (Precision). To access precision, we created random
samples of 100 newly inferred events for each of the constraints proposed in
Sect. 3.2 and both Event Graphs, and manually annotated their correctness.
Table 5 provides an overview of the results. While the naive unconstrained app-
roach results in a precision of less than 0.30 for both Event Graphs, the inclusion
of constraints leads to clear improvement, with a precision of up to 0.70 for the
ECW constraint for Wikidata and 0.71 for the WIN constraint for DBpedia. Table 5
also reports the number of additional sub-event relations created during the event
inference procedure when checking for duplicate events.
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Discussion and Additional Statistics. The manual assessment shows that
HapPenIng with the ECW constraints is able to infer 5, 010 new events with a pre-
cision of 70% in Wikidata and 1, 364 new DBpedia events with similar precision.
Events are inferred wrongly in cases where sub-events are happening in an irregu-
lar manner. This includes e.g. the wrongly inferred event “1985 Australian Open
– Mixed Doubles” that was extracted although there were no Mixed Doubles in
that event series between 1970 and 1985 or competitions like the men’s single
scull in the World Rowing Championships that used to follow a highly unsteady
schedule. In future, external knowledge can be used to verify the inferred events.
Differences between the Wikidata and the DBpedia results can be explained by
the less complete event type assignments and the lack of a proper sub-event
relation in DBpedia, where we use category assignments instead.

As the ECW constraint is most precise for the Wikidata Event Graph, we
provide more insights for this constraint and Event Graph in the following:

– Impact of the sub-event prediction on the event inference: If the sub-event
prediction step is skipped, only 3, 558 new events are inferred, compared to
5, 010 events otherwise.

– Additional relations: 3, 687 new sub-event relations were created during the
event inference step in addition to the 85, 805 sub-event relations from the
sub-event prediction step (in total: 89, 492 new sub-event relations).

– Happening times: 99.36% of the inferred events are assigned a happening
time. 0.38% of them were inferred by the first, 81.52% by the second and
18.10% by the third rule from Sect. 3.2.

– Locations: Only 79 of the 5, 010 inferred events were assigned a location under
the strict conditions proposed in Sect. 3.2.

Overall, the two steps sub-event prediction and event inference enable Hap-
PenIng to generate ten thousands of new sub-event relations and events. These
relations and new instances can be given as a suggestion to be inserted in the
respective dataset using human confirmation with external tools, such as the
Primary Sources Tool for Wikidata [26].

5 Related Work

Knowledge Graph Completeness. Completeness is an important dataset
quality dimension [5]. Due to the open-world assumption knowledge graphs
are notoriously incomplete. The facts not present in the knowledge graph are
unknown, and may or may not be true [22,27]. There has been research on
several exemplary aspects of knowledge graph completeness, for example on the
incompleteness of Wikidata [1,2] and the relation between obligatory attributes
and missing attribute values [13]. In our previous work, we considered the prob-
lem of integration and fusion of event-centric information spread across different
knowledge graphs and created the EventKG knowledge graph that integrates
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such information [8,10]. [28] addressed the inference of missing categorical infor-
mation in event descriptions in Web markup. These works emphasize the need for
knowledge graph completion, in particular regarding event-centric information.

Knowledge Graph Completion. None of the knowledge graph completion
and refinement tasks has yet considered the inference of new nodes given only
the knowledge graph itself [19,30]. Paulheim [19] identifies three different know-
ledge graph completion approaches: (i) Type Assertions Completion. Type asser-
tions completion is the task of predicting a type or a class of an entity [19]. A
common approach to this task is to probabilistically exploit type information
that is inherent in the statement properties [20]. (ii) Link Prediction. With link
prediction, a ranked lists of candidates for the missing item of an incomplete
triple is generated, typically based on embeddings as performed in the TransE
[3], STransE [18] and other graph embedding models [24,30]. In HapPenIng we
generate new events not originally present in the knowledge graph and profit
from the inclusion of textual and tempo-spatial features on top of embeddings.
(iii) External Methods. Information extraction approaches and graph algorithms
can be used to detect new relations [22] or entity/event nodes [12] from external
textual data. Instead, HapPenIng solely relies on the information inherent to the
knowledge graph and does not depend on the availability of the text corpora.

Knowledge Graph Completion Tools: A recent survey of link discovery
frameworks is provided in [17]. As human-curated knowledge graphs such as
Wikidata demand a high quality of inserted data, there have been several tools
developed that help integrating automatically generated information with the
respective knowledge graph. This includes the Primary Sources Tool [26], where
suggestions for new relations are confirmed by humans and [4] that provides
an overview of potentially missing information. Such tools can help to integrate
inferred event series data into existing knowledge graphs.

6 Conclusion

In this paper we addressed a novel problem of event series completion in a
knowledge graph. The proposed HapPenIng approach predicts sub-event rela-
tions and real-world events missing in the knowledge graph and does not require
any external sources. Our evaluation on Wikidata and DBpedia datasets shows
that HapPenIng predicts nearly 90, 000 sub-event relations missing in Wikidata
(in DBpedia: over 6, 000), clearly outperforming the embedding-based baseline
by more than 50% points, and infers over 5, 000 new events (in DBpedia: over
1, 300) with a precision of 70%. These events and relations can be used as valu-
able suggestions for insertion in Wikidata and DBpedia after manual verification.
We make our dataset publicly available to encourage further research.
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Abstract. The Wikipedia category graph serves as the taxonomic back-
bone for large-scale knowledge graphs like YAGO or Probase, and has
been used extensively for tasks like entity disambiguation or semantic
similarity estimation. Wikipedia’s categories are a rich source of tax-
onomic as well as non-taxonomic information. The category German
science fiction writers, for example, encodes the type of its resources
(Writer), as well as their nationality (German) and genre (Science Fic-
tion). Several approaches in the literature make use of fractions of this
encoded information without exploiting its full potential. In this paper,
we introduce an approach for the discovery of category axioms that uses
information from the category network, category instances, and their lex-
icalisations. With DBpedia as background knowledge, we discover 703k
axioms covering 502k of Wikipedia’s categories and populate the DBpe-
dia knowledge graph with additional 4.4M relation assertions and 3.3M
type assertions at more than 87% and 90% precision, respectively.

Keywords: Knowledge graph completion ·
Wikipedia category graph · Ontology learning · DBpedia

1 Introduction

Two of the most prominent public knowledge graphs, DBpedia [16] and YAGO
[18], build rich taxonomies using Wikipedia’s infoboxes and category graph,
respectively. They describe more than five million entities and contain multi-
ple hundred millions of triples [27]. When it comes to relation assertions (RAs),
however, we observe – even for basic properties – a rather low coverage: More
than 50% of the 1.35 million persons in DBpedia have no birthplace assigned;
even more than 80% of birthplaces are missing in YAGO. At the same time, type
assertions (TAs) are not present as well for many instances – for example, there
are about half a million persons in DBpedia not explicitly typed as such [23].

Missing knowledge in Wikipedia-based knowledge graphs can be attributed
to absent information in Wikipedia, but also to the extraction procedures of
knowledge graphs. DBpedia uses infobox mappings to extract RAs for indi-
vidual instances, but it does not explicate any information implicitly encoded
in categories. YAGO uses manually defined patterns to assign RAs to entities
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of matching categories. For example, they extract a person’s year of birth by
exploiting categories ending with births. Consequently, all persons contained in
the category 1879 births are attributed with 1879 as year of birth [29]. Like-
wise, most existing works, such as [17] and [32] leverage textual patterns in the
category names.

There are some limitations to such approaches, since, in many cases, very
specific patterns are necessary (e.g. county, Chester County for the category
Townships in Chester County, Pennsylvania), or the information is only
indirectly encoded in the category (e.g. timeZone, Eastern Time Zone for the
same category). In order to capture as much knowledge as possible from cat-
egories, we propose an approach that does not learn patterns only from the
category names, but exploits the underlying knowledge graph as well.

While category names are plain strings, we aim at uncovering the semantics
in those category names. To that end, we want to extract both type as well as
relation information from categories. In the example in Fig. 1, we would, e.g.,
learn type (1) as well as relation (2–3) axioms, such as:

∃category. {Reggae albums} � Album (1)
∃category. {Nine Inch Nails albums} � ∃artist. {Nine Inch Nails} (2)

∃category. {Reggae albums} � ∃genre. {Reggae} (3)

Once those axioms are defined, they can be used to fill in missing type and
relation assertions for all instances for which those categories have been assigned.

In this paper, we propose the Cat2Ax approach to enrich Wikipedia-based
knowledge graphs by explicating the semantics in category names. We combine
the category graph structure, lexical patterns in category names, and instance
information from the knowledge graph to learn patterns in category names
(e.g., categories ending in albums), and map these patterns to type and rela-
tion axioms. The contributions of this paper are the following:

– We introduce an approach that extracts axioms for Wikipedia categories using
features derived from the instances in a category and their lexicalisations.

– We extract more than 700k axioms for explicating the semantics of category
names at a precision of more than 95%.

– Using those axioms, we generate more than 7.7M new assertions in DBpedia
at a precision of more than 87%.

The rest of this paper is structured as follows. Section 2 frames the approach
described in this paper in related works. Section 3 lays out the preliminaries of
our work, followed by an introduction of our approach in Sect. 4. In Sect. 5, we
discuss an empirical evaluation of our approach. We close with a summary and
an outlook on future developments.

2 Related Work

With the wider adoption of general purpose knowledge graphs such as DBpedia
[16], YAGO [18], or Wikidata [31], their quality has come into the focus of
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Fig. 1. Excerpt of the Wikipedia category graph showing the category Albums together
with some of its subcategories.

recent research [3,33]. The systematic analysis of knowledge graph quality has
inspired a lot of research around an automatic or semi-automatic improvement
or refinement [22].

Generally, knowledge graph refinements can be distinguished along various
dimensions: the goal (filling missing knowledge or identifying erroneous axioms),
the target (e.g., schema or instance level, type or relation assertions, etc.), and
the knowledge used (using only the knowledge graph as such or also external
sources of knowledge). The approach discussed in this paper extracts axioms
on schema level and assertions on instance level using Wikipedia categories as
external source of knowledge.

There are quite a few refinement strategies using additional sources in
Wikipedia especially for the extraction of new RAs. Most of them use the text
of Wikipedia pages [1,7,9,19], but also Wikipedia-specific structures, such as
tables [20,28] or list pages [13,24].

For extracting information from categories, there are two signals that can be
exploited: (1) lexical information from the category’s name, and (2) statistical
information of the instances belonging to the category. YAGO, as discussed
above, uses the first signal. A similar approach is Catriple [17], which exploits
manually defined textual patterns (such as X by Y ) to identify parent categories
which organize instances by objects of a given relation: for example, the category
Albums by genre has child categories whose instances share the same object for
the relation genre, and can thus be used to generate axioms such as the one in
Eq. 3 above. The Catriple approach does not explicitly extract category axioms,
but finds 1.27M RAs. A similar approach is taken in [21], utilizing POS tagging
to extract patterns from category names, but not deriving any knowledge graph
axioms from them.

In the area of taxonomy induction, many approaches make use of lexical
information when extracting hierarchies of terms. Using Hearst patterns [8] is
one of the most well known method to extract hypernymy relations from text.
It has been extended multiple times, e.g., by [12] who enhance their precision by
starting with a set of pre-defined terms and post-filtering the final results. [30]
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use an optimal branching algorithm to induce a taxonomy from definitions and
hypernym relations that have been extracted from text.

The C-DF approach [32] is an approach of the second category, i.e., it relies
on statistical signals. In a first step, it uses probabilistic methods on the category
entities to identify an initial set of axioms, and from that, it mines the extraction
patterns for category names automatically. The authors find axioms for more
than 60k categories and extract around 700k RAs and 200k TAs.

The exploitation of statistical information from category instances is a setting
similar to ontology learning [26]. For example, approaches such as DL-Learner
[15] find description logic patterns from a set of instances. These approaches
are very productive when there is enough training data and they provide exact
results especially when both positive and negative examples are given. Both
conditions are not trivially fulfilled for the problem setting in this paper: many
categories are rather small (75% of categories have fewer than 10 members) and,
due to the open world assumption, negative examples for category membership
are not given. Therefore, we postulate that both, statistical and lexical informa-
tion, have to be combined for deriving high-quality axioms from categories.

With Catriple and C-DF, we compare against the two closest approaches
in the literature. While Catriple relies solely on lexical information in the cate-
gory names, and C-DF relies solely on statistical information from the instances
assigned to categories, we propose a hybrid approach which combines the lexi-
cal and statistical signals. Moreover, despite exploiting category names, we do
not use any language-specific techniques, so that our approach is in principle
language-agnostic.

There are other studies using Wikipedia categories for various tasks. Most
prominently, taxonomic knowledge graphs such as WiBi [4] and DBTax [6] are
created by cleaning the Wikipedia category graph (which is not an acyclic graph
and therefore cannot directly be used as a taxonomy). Implicitly, they also learn
type axioms and assertions, but no relation axioms and assertions.

3 Preliminaries

The Cat2Ax approach uses three kinds of sources: The Wikipedia category
graph, background knowledge from a knowledge graph, and lexicalisations of
resources and types in the knowledge graph. In this section, we provide relevant
definitions and give background information about the respective sources.

Wikipedia Categories. In the version of October 2016,1 the Wikipedia cat-
egory graph contains 1,475,015 categories that are arranged in a directed, but
not acyclic graph, although often referred to as a category hierarchy. This graph
does not only contain categories used for the categorisation of content pages, but

1 We use this version in order to be compatible with the most recent release of DBpedia
from October 2016: https://wiki.dbpedia.org/develop/datasets.

https://wiki.dbpedia.org/develop/datasets
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also ones that are used for administrative purposes. We follow an approach sim-
ilar to [25] and use only categories below Main topic classifications while
also getting rid of categories having one of the following words in their name:
wikipedia, lists, template, stub. This leaves us with 1,299,665 categories.

Background Knowledge. As background knowledge, our approach requires
a knowledge graph KG that is based on Wikipedia. The knowledge graph is
comprised of a set of resources which are connected by relations, and an ontology
which defines their classes, interrelations, and restrictions of usage. A resource
in the knowledge graph describes exactly one article in Wikipedia. When we are
referring to DBpedia in our examples and experiments, we use the prefix dbr:
for resources and dbo: for properties and types.

With resources(c) we refer to the set of resources with a corresponding article
assigned to the category c. To get an estimate of how likely a combination of a
property p and a value v occurs within the resources of a category c, we calculate
their frequencies using background knowledge from the knowledge graph KG:

freq(c, p, v) =
| {r|r ∈ resources(c) ∧ (r, p, v) ∈ KG} |

|resources(c)| (4)

For p = rdf:type, we compute type frequencies of c.

Example 1. The category The Beatles albums has 24 resources, 22 of which
have the type dbo:Album. This results in a type frequency freq(The Beatles
albums, rdf:type, dbo:Album) of 0.92.

For p being any other property of KG, we compute relation frequencies of c.

Example 2. Out of the 24 resources of The Beatles albums, 11 resources have
dbr:Rock and roll as dbo:genre, resulting in a relation frequency freq(The
Beatles albums, dbo:genre, dbr:Rock and roll) of 0.46.

Resource/Type Lexicalisations. A lexicalisation is a word or phrase used in
natural language text that refers to a resource or type in the knowledge graph.
For an entity e, lex(e) contains all its lexicalisations, and lexCount(e, l) is the
count of how often a lexicalisation l has been found for e. When the count of a
lexicalisation l is divided by the sum of all counts of lexicalisations for an entity
e, we have an estimate of how likely e will be expressed by l.

We are, however, interested in the inverse problem: Given a lexicalisation l,
we want the probability of it expressing an entity e. We define lex−1(l) as the
set of entities having l as lexicalisation. The lexicalisation score – the probability
of an entity e being expressed by the lexicalisation l – is then computed by the
fraction of how often l expresses e compared to all other entities:

lexScore(e, l) =
lexCount(e, l)

∑
e′∈lex−1(l) lexCount(e′, l)

(5)
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Example 3. We encounter the word lennon in Wikipedia and want to find
out how likely it is that the word refers to the resource dbr:John Lennon, i.e.
we compute lexScore(dbr:John Lennon, lennon). In total, we have 357 occur-
rences of the word for which we know the resource it refers to. 137 of them
actually refer to dbr:John Lennon, while others refer, e.g., to the soccer player
dbr:Aaron Lennon (54 times) or dbr:Lennon, Michigan (14 times). We use the
occurrence counts to compute a lexScore(dbr:John Lennon, lennon) of 0.42.

We compute lexicalisation scores for both resources and types in our experi-
ments with DBpedia. The lexicalisations of resources are already provided by
DBpedia [2]. They are gathered by using the anchor texts of links between
Wikipedia articles. For types, however, there is no such data set provided.

To gather type lexicalisations from Wikipedia, we apply the following
methodology: For every type t in the DBpedia ontology, we crawl the articles
of all resources having type t and extract hypernymy relationships using Hearst
patterns [8]. To ensure that we are only extracting relationships for the correct
type, we use exclusively the ones having a lexicalisation of the page’s resource as
their subject. To increase the coverage of type lexicalisations, we intentionally do
not count complete phrases, but individual words of the extracted lexicalisation.
For the calculation of the lexicalisation scores of a phrase, we simply sum up the
counts of the phrase’s words.

Example 4. We extract lexicalisations for the type dbo:Band. The resource
dbr:Nine Inch Nails has the appropriate type, hence we extract hypernymy
relationships in its article text. In the sentence “Nine Inch Nails is an American
industrial rock band [..]” we find the subject Nine Inch Nails and the object
American industrial rock band. As the subject is in lex(dbr:Nine Inch Nails),
we accept the object as lexicalisation of dbo:Band. Consequently, the lexicali-
sation count of the words American, industrial, rock, band is increased by one,
and, for each of those words encountered, the lexicalisation score for the class
dbo:Band increases.

4 Approach

The overall approach of Cat2Ax is shown in Fig. 2. The external inputs have
already been introduced in Sect. 3. The outputs of the approach (marked in bold
font) are twofold: A set of axioms which define restrictions for resources in a
category and thus can be used to enhance an ontology of a knowledge graph,
and a set of assertions which are novel facts about resources in the graph.

The approach has four major steps: The Candidate Selection uses hierarchical
relationships in the Wikipedia category graph to form sets of categories that are
likely to share a property that can be described by a textual pattern.

In the Pattern Mining step, we identify such patterns in the names of cat-
egories that are characteristic for a property or type. To achieve that, we use
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Fig. 2. Overview of the Cat2Ax approach.

background knowledge about resources in the respective categories as well as lex-
icalisations. Furthermore, we promote a pattern only if it applies to a majority
of the categories in a candidate set.

In the Pattern Application step, we apply the extracted patterns to all cat-
egories in order to find category axioms. Here, we again rely on background
knowledge and lexicalisations for the decision of whether a pattern is applicable
to the category.

Finally, we generate assertions by applying the axioms of a category to its
resources and subsequently use post-filtering to remove assertions that would
create contradictions in the knowledge graph.

4.1 Candidate Selection

In this first step, we want to extract sets of categories with names that indicate
a shared relation or type. We base the extraction of such candidate category sets
on two observations:

The first one is inspired by the Catriple approach [17]. They observed that in
a parent-child relationship of categories, the parent often organizes its children
according to a certain property. Contrary to Catriple, we do not use the parent
category to identify this property, but we rather use the complete set of children
to find their similarities and differences.

As we now know from the first observation, the children of a category can
have certain similarities (which are the reason that they have the same parent
category) and differences (which are the reason that the parent was split up into
child categories). As a second observation, we discovered that, when the children
of a category are organized by a certain property, their names have a shared part
(i.e. a common prefix and/or postfix) and a part that differs for each category.
We found that the shared part is often an indicator for the type of resources
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that are contained in the category, while the differing part describes the value
of the property by which the categories are organized.

Using these observations, we produce the candidate category sets by looking
at the children of each Wikipedia category and forming groups out of children
that share a prefix and/or postfix.

Example 5. In Fig. 1, we see parts of two candidate category sets that both
have the postfix albums. The first one contains 143 children of the category
Albums by artist. The second one contains 45 children of the category Albums
by genre.

Note that we sometimes form multiple candidate category sets from cate-
gory’s children as there might be more than one shared pre- or postfix.

Example 6. The children of the category Reality TV participants yield
three candidate sets ending on participants, contestants, and members.

4.2 Pattern Mining

For each of the candidate category sets, we want to discover a characteristic prop-
erty and type. Therefore, we identify patterns that will be used in the subsequent
steps to extract category axioms. Each of the patterns consists of a textual pat-
tern (i.e. the shared part in the names of categories) and the implication (i.e.
the shared property or type).

To determine the characteristic property, we inspect every individual cate-
gory in the candidate set and compute a score for every possible relation in the
category. As mentioned in Sect. 4.1, the value of a relation differs for the cate-
gories in a set. We thus focus on finding the property with the highest score and
disregard relation values. To that end, we aggregate the scores from all categories
and choose the property that performs best over the complete category set. For
this property, we learn a pattern that covers the complete candidate category
set.

The score of a relation (p, v) for a category c consists of two parts with one
being based on background knowledge and the other on lexical information. The
latter uses the part cvar of a category’s name that differs between categories
in the set to compute an estimate of how likely cvar expresses the value of the
relation. The score is computed as follows:

scorerel(c, p, v) = freq(c, p, v) ∗ lexScore(v, cvar) (6)

Note that freq(c,p,v) is only greater than zero for relations of the resources in
resources(c) which drastically reduces the amount of scores that have to be
computed.

Example 7. For the category The Beatles albums, we compute an indi-
vidual relation score for each property-value pair in KG having a resource
in resources(The Beatles albums) as their subject. To compute, e.g.,
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scorerel(The Beatles albums, dbo:artist, dbr:The Beatles), we multiply
the frequency freq(The Beatles albums, dbo:artist, dbr:The Beatles)
with the lexicalisation score lexScore(dbr:The Beatles, The Beatles).

As an aggregation function for the scores we use the median. Heuristically,
we found that the property with the highest median of scores is suited to be the
characteristic property for a category set. To avoid learning incorrect patterns,
we discard the property if it cannot be found in at least half of the categories in
the set, i.e., if the median of scores is zero.

Example 8. After computing all the relation scores for all categories in the
category set formed by the 143 children of Albums by artist, we aggregate
the computed scores by their property and find dbo:artist to have the highest
median score.

The support of a pattern is the count of how often a pattern has been learned
for a category. If we discover a valid property for a category set, the support of
the respective property pattern is increased by the number of categories in the
set. We assume hereby that, if this property is characteristic for the majority of
categories, then it is characteristic for all categories in the set.

For the extraction of characteristic types we apply the exact same method-
ology, except for the calculation of the score of a type. We compute the score
of a type t in the category c using its frequency in c and a lexicalisation score
derived from the shared part cfix in a category’s name:

scoretype(c, t) = freq(c, rdf:type, t) ∗ lexScore(t, cfix) (7)

Example 9. For the category sets formed by the children of Albums by artist
and Album by genre in Fig. 1, we find the following property patterns to have
the highest median scores:

– PP1 = “<lex(dbr:res)> albums” � ∃dbo:artist.{dbr:res}
– PP2 = “<lex(dbr:res)> albums” � ∃dbo:genre.{dbr:res}
We increase the support of PP1 by 143 and PP2 by 45. For both sets, we extract
the type pattern TP1 = “<lex(dbr:res)> albums” � dbo:Album and increase its
support by 188 (respectively using the counts from Example 5).

4.3 Pattern Application

Before we can apply the patterns to the categories in Wikipedia to identify
axioms, we need to define a measure for the confidence of a pattern. This is
especially necessary because, as shown in Example 9, we can find multiple impli-
cations for the same textual pattern. We define the confidence conf(P ) of a
pattern P as the quotient of the support of P and the sum of supports of all the
patterns matching the same textual pattern as P.
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Example 10. Assuming PP1 and PP2 of Example 9 are the only property pat-
terns that we found, we have a pattern confidence of 0.76 for PP1 and 0.24 for
PP2.

Next, we apply all our patterns to the categories of Wikipedia and compute
an axiom confidence by calculating the fit between the category and the pattern.
Therefore, we can reuse the scores from Eqs. 6–7 and combine them with the
confidence of the pattern. As a relation pattern only specifies the property of
the axiom, we compute the axiom confidence for every possible value of the
axiom’s property in order to have a ranking criterion. For a category c, a property
pattern PP with property pPP and a possible value v, we compute the confidence
as follows:

conf(c, PP, v) = conf(PP ) ∗ scorerel(c, pPP , v) (8)

And similarly, for a type pattern TP with type tTP :

conf(c, TP ) = conf(TP ) ∗ scoretype(c, tTP ) (9)

Using the confidence scores, we can control the quality of extracted axioms
by only accepting those with a confidence greater than a threshold τ . To find a
reasonable threshold, we will inspect and evaluate the generated axioms during
our experiments.

Example 11. Both patterns, PP1 and PP2, from Example 9 match the cate-
gory Reggae albums. Using PP1, we can not find an axiom for the category as
there is no evidence in DBpedia for the property dbo:artist together with any
resources that have the lexicalisation Reggae (i.e. scorerel is equal to 0). For
PP2, however, we find the axiom (Reggae albums, dbo:genre, dbr:Reggae)
with a confidence of 0.18.

For a single category, multiple property or type patterns can have a confidence
greater than τ . The safest variant for property and type patterns is to accept
only the pattern with the highest confidence and discard all the others. But we
found that multiple patterns can imply valid axioms for a category and thus
follow a more differentiated selection strategy.

For relation axioms, we accept multiple axioms as long as they have different
properties. When the properties are equal, we accept only the axiom with higher
confidence.

Example 12. For the category Manufacturing companies established in
1912 (short: c1), we find the axioms (c1, dbo:foundingYear, 1912) and (c1,
dbo:industry, dbr:Manufacturing). As they have different properties, we
accept both.

Example 13. For the category People from Nynäshamn Municipality (short:
c2), we find the axioms (c2, dbo:birthPlace, dbr:Nynäshamn Municipality)
and (c2, dbo:birthPlace, dbr:Nynäshamn). As they have the same property, we
only accept the former as its confidence is higher.
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For type axioms, we accept the axioms with the highest confidence and any
axioms with a lower confidence that imply sub-types of the already accepted
types.

Example 14. For the category Missouri State Bears baseball coaches
(short: c3), we find the axioms (c3, rdf:type, dbo:Person) and (c3, rdf:type,
dbo:CollegeCoach). Despite the latter having a lower confidence than the for-
mer, we accept both because dbo:CollegeCoach is a sub-type of dbo:Person.

4.4 Axiom Application and Post-filtering

With the category axioms from the previous step, we generate new assertions
by applying the axiom to every resource of the category.

Example 15. We apply the axiom (Reggae albums, dbo:genre, dbr:Reggae)
to all resources of Reggae albums and generate 50 relation assertions, 13 of which
are not yet present in DBpedia.

Categories can contain special resources that do not actually belong to the
category itself but, for example, describe the topic of the category. The cate-
gory Landforms of India, for example, contains several actual landforms but
also the resource Landforms of India. To avoid generating wrong assertions
for such special resources, we filter all generated assertions using the existing
knowledge in the knowledge base.

For relation assertions, we use the functionality of its property to filter invalid
assertions. Accordingly, we remove a relation assertion (s, p, o) if the property
p is functional2 and there is an assertion (s, p, o’) with o �= o′ already in the
knowledge base.

Example 16. Out of the 13 new dbo:genre axioms generated for the category
Reggae albums in the previous example, nine refer to resources which do not
have a dbo:genre at all, and four add a genre to a resource which already has
one or more values for dbo:genre. The latter is possible since dbo:genre is not
functional.

Example 17. The relation assertion (dbr:Bryan Fisher, dbo:birthYear,
1982) is removed because DBpedia contains the triple (dbr:Bryan Fisher,
dbo:birthYear, 1980) already, and dbo:birthYear is functional.

To identify invalid type assertions, we use the disjointness axioms of the ontology
of the knowledge base, and remove any type assertion that, if added to the
knowledge base, would lead to a conflict of disjointness.

Example 18. The assertion (dbr:Air de Paris, rdf:type, dbo:Person) is
removed because the subject has already the type dbo:Place, which is disjoint
with dbo:Person.
2 Since the DBpedia ontology does not define any functional object properties, we use

a heuristic approach and treat all properties which are used with multiple objects on
the same subject in less than 5% of the subjects as functional. This heuristic marks
710 out of 1,355 object properties as functional.
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5 Experiments

In this section, we first provide details about the application of the Cat2Ax
approach with DBpedia as background knowledge. Subsequently, we discuss the
evaluation of Cat2Ax and compare it to the related approaches. For the imple-
mentation of the approaches we used the Python libraries spaCy3 and nltk4. The
code of Cat2Ax5 and all data6 of the experiments are freely available.

5.1 Axiom Extraction Using DBpedia

The following results are extracted using the most recent release of DBpedia.7

Candidate Selection. We find 176,785 candidate category sets with an average
size of eight categories per set. From those sets, 60,092 have a shared prefix,
76,791 a shared postfix, and 39,902 both a shared prefix and postfix.

Pattern Mining. We generate patterns matching 54,465 different textual pat-
terns. For 24,079 of them we imply properties, for 54,096 we imply types. On
average, a property pattern implies 1.22 different properties while a type pattern
implies 1.08 different types. Table 1 lists exemplary patterns that match a prefix
(rows 1–2), a postfix (rows 3–4), and both a prefix and a postfix (rows 5–6).

Pattern Application. We have to determine a threshold τ for the minimum
confidence of an accepted axiom. Therefore, we have sampled 50 generated
axioms for 10 confidence intervals each ([0.01, 0.02), [0.02, 0, 03), ..., [0.09, 0.10)
and [0.10, 1.00]), and manually evaluated their precision. The results are shown
in Fig. 3. We can observe that the precision considerably drops for a threshold
lower than τ = 0.05, i.e., for those axioms which have a confidence score less
than 5%. Hence, we choose τ = 0.05 for a reasonable balance of axiom precision
and category coverage.

With a confidence threshold τ of 0.05, we extract 272,707 relation axioms and
430,405 type axioms. In total, they cover 501,951 distinct Wikipedia categories.

Axiom Application and Post-filtering. Applying the extracted axioms to
all Wikipedia categories results in 4,424,785 relation assertions and 1,444,210
type assertions which are not yet contained in DBpedia. For the type assertions,
we also compute the transitive closure using the rdfs:subclassOf statements
in the ontology (e.g., also asserting dbo:MusicalWork and dbo:Work for a type
axiom learned for type dbo:Album), and thereby end up with 3,342,057 new type
assertions (excluding the trivial type owl:Thing).

Finally, we remove 72,485 relation assertions and 15,564 type assertions with
our post-filtering strategy. An inspection of a small sample of the removed asser-
tions shows that approximately half of the removed assertions are actually incor-
rect.
3 https://spacy.io/.
4 https://www.nltk.org/.
5 https://github.com/nheist/Cat2Ax.
6 http://data.dws.informatik.uni-mannheim.de/Cat2Ax.
7 Release of October 2016: https://wiki.dbpedia.org/develop/datasets.

https://spacy.io/
https://www.nltk.org/
https://github.com/nheist/Cat2Ax
http://data.dws.informatik.uni-mannheim.de/Cat2Ax
https://wiki.dbpedia.org/develop/datasets
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Table 1. Examples of discovered textual patterns and possible implications.

Textual pattern Implication Sup. Conf.

1 Films directed by
<lex(dbr:res)>

� ∃dbo:director.{dbr:res} 7661 1.00

2 Films directed by
<lex(dbr:res)>

� dbo:Film 7683 1.00

3 <lex(dbr:res)> albums � ∃dbo:artist.{dbr:res}
� ∃dbo:genre.{dbr:res}
� ∃dbo:recordLabel.{dbr:res}

31426
552
411

0.97
0.02
0.01

4 <lex(dbr:res)> albums � dbo:Album 33542 1.00

5 Populated places in
<lex(dbr:res)> district

� ∃dbo:isPartOf.{dbr:res}
� ∃dbo:district.{dbr:res}

269
51

0.84
0.16

6 Populated places in
<lex(dbr:res)> district

� dbo:Settlement 362 1.0

Fig. 3. Performance of the pattern application for varying confidence intervals. The
precision values have been determined by the authors by manual evaluation of 50
examples per interval.

5.2 Comparison with Related Approaches

We compare Cat2Ax with the two approaches that also use Wikipedia categories
to learn axioms and/or assertions for DBpedia: Catriple [17] and C-DF [32]. As
both of them use earlier versions of DBpedia and there is no code available, we
re-implemented both approaches and run them with the current version in order
to have a fair comparison. For the implementation, we followed the algorithm
descriptions in their papers and used the variant with the highest reported pre-
cision (i.e., for Catriple, we do not materialize the category hierarchy, and for
C-DF, we do not apply patterns iteratively). Running Cat2Ax, Catriple, and
C-DF with DBpedia takes 7, 8, and 12 h, respectively.
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Table 2. Total number of axioms/assertions and precision scores, based on the crowd-
sourced evaluation. Numbers in parentheses denote the total number of assertions gen-
erated (including those already existing in DBpedia), as well as the precision estimation
of those total numbers. The latter were derived as a weighted average from the human
annotations and the overall correctness of existing assertions in DBpedia according
to [3].

Approach Count Precision [%] Count Precision [%]

Relation axioms Type axioms

Cat2Ax 272,707 95.6 430,405 96.8

C-DF 143,850 83.6 28,247 92.0

Catriple 306,177 87.2 – –

Relation assertions Type assertions

Cat2Ax 4,424,785
(7,554,980)

87.2
(92.1)

3,342,057
(12,111,194)

90.8
(95.7)

C-DF 766,921
(2,856,592)

78.4
(93.4)

198,485
(2,352,474)

76.8
(97.1)

Catriple 6,260,972
(6,836,924)

74.4
(76.5)

– –

Table 2 shows the extraction and evaluation results of the three approaches.
For both kinds of axioms and assertions, we evaluate 250 examples per app-
roach. Since the Catriple approach does not produce type information, this adds
up to a total of 2,500 examples (1,250 axioms and 1,250 assertions). Each exam-
ple is labeled by three annotators from the crowdsourcing marketplace Amazon
Mechanical Turk.8 For the labeling, the axioms and assertions are presented in
natural language (using labels from DBpedia) and have to be annotated as being
either correct or incorrect. The annotators evaluate batches of 50 examples which
are selected from the complete example pool and displayed in a random order.
The inter-annotator agreement according to Fleiss’ kappa [5] is 0.54 for axioms
and 0.53 for assertions which indicates moderate agreement according to [14].

In comparison with existing approaches, Cat2Ax outperforms C-DF both in
quality and quantity of the created axioms. Catriple produces about 40% more
relation assertions, but at a considerably lower precision, and is not able to
generate type axioms and assertions.

Despite our efforts of post-filtering generated assertions, a large gap between
the precision of axioms and assertions can be observed. This is more evident
when looking at new assertions, while the overall precision considering both
kinds of assertions, which are in DBpedia and which are not, is typically higher.
Moreover, there is a small number of axioms which are incorrect and at the same
time very productive, i.e., they contribute a lot of new incorrect assertions. To

8 https://www.mturk.com/.

https://www.mturk.com/
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(a) Fraction of (1) categories with at
least one axiom, (2) resources with at
least one assertion, (3) properties with
at least 100 assertions.

(b) Number of resources without assertions
in DBpedia for which (1) a relation asser-
tion or (2) type assertion has been found.

Fig. 4. Comparison of the extracted results.

further look into these issues, we manually inspected some of those axioms and
identified three major causes of errors:

Incorrect Data in DBpedia. We extract the axiom (Roads on the National
Register of Historic Places in Arizona, rdf:type, dbo:Building) bec-
ause many roads in DBpedia are typed as buildings.

Correlation Instead of Causation. We extract the axiom (University of
Tabriz alumni, dbo:birthPlace, dbr:Tabriz) because people often study in
the vicinity of their birthplace.

Incorrect Generalisation. We extract the axiom (Education in Nashik
district, rdf:type, dbo:University), which holds for many instances in the
category, but not for all of them. This kind of error is most often observed for
mixed categories – as in the example, the category contains both universities
and schools.

In Fig. 4 we compare the results of the three approaches regarding their
coverage of DBpedia. Figure 4a shows the number of covered (1) categories,
(2) resources, and (3) properties. At (1) we see that Cat2Ax finds an axiom
for almost 40% of Wikipedia’s categories. The difference between Cat2Ax and
Catriple is, however, not visible in (2) anymore. This can be traced back to
Catriple not using any background knowledge during their creation of results and
thus producing axioms that are more productive in terms of generated assertions.
Furthermore, (3) shows that all approaches find assertions for a comparable
number of properties.

Figure 4b shows statistics for resources that are currently not described by
any relation or type in DBpedia. While Cat2Ax and Catriple both find relations
for almost one million resources, Cat2Ax additionally finds types for more than
one million untyped resources.
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6 Conclusion

In this paper, we have presented an approach that extracts high-quality axioms
for Wikipedia categories. Furthermore, we used the axioms to mine new asser-
tions for knowledge graphs. For DBpedia, we were able to add 4.4M relation
assertions at a precision of 87.2% and 3.3M type assertions at a precision of
90.8%. Our evaluation showed that we produce significantly better results than
state-of-the-art approaches.

So far, we have only considered direct assignments to categories. Exploit-
ing the containment relations between categories and materialising the category
assignments would help the approach in two respects – the extraction of axioms
is supported by more precise relation and type frequencies, and the extracted
axioms can be applied to a larger number of resources, leading to a higher num-
ber of generated assertions. However, this materialisation is not straightforward
as the Wikipedia category graph is not acyclic. Currently, we are working on
extracting a proper hierarchy from the Wikipedia category graph, which can
then be used as a basis for a refined approach.

Moreover, we currently consider all the generated patterns in isolation. But
we plan to combine patterns on two dimensions. Firstly, we want to investi-
gate methods to form more generalised patterns out of the currently extracted
ones. We expect this to improve the quality of pattern confidence values and
the patterns are applicable to more categories. Secondly, property and type pat-
terns and their generated axioms can be combined to provide a better post-
filtering of assertions. Given that we know that a relation axiom and a type
axiom belong together, and we encounter a single inconsistency in their set of
generated axioms, we can discard the complete set.

In previous works, the exploitation of list pages has been discussed for learn-
ing new type and relation assertions for instances [13,24]. We plan to extend the
approach in this paper to list pages as well. To that end, we need to robustly
extract entities from a list page (which is not straightforward since not all links
on a list page necessarily link to entities of the corresponding set), and we need
to allocate a list page to a position in the category graph.

It is important to note that, although we carried out experiments with DBpe-
dia, the approach is not limited to only this knowledge graph. Any knowledge
graph linked to Wikipedia (or DBpedia) can be extended with the approach
discussed in this paper. This holds, e.g., for YAGO and Wikidata. Moreover, the
approach could also be applied to knowledge graphs created from other Wikis,
such as DBkWik [11], or used with different hierarchies, such as the Wikipedia
Bitaxonomy [4] or WebIsALOD [10]. Hence, Cat2Ax has general potential which
goes beyond DBpedia and Wikipedia.
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Abstract. Quantities appear in search queries in numerous forms: com-
panies with annual revenue of at least 50 Mio USD, athletes who ran
200 m faster than 19.5 s, electric cars with range above 400 miles, and
so on. Processing such queries requires the understanding of numbers
present in the query to capture the contextual information about the
queried entities. Modern search engines and QA systems can handle
queries that involve entities and types, but they often fail on prop-
erly interpreting quantities in queries and candidate answers when the
specifics of the search condition (less than, above, etc.), the units of inter-
est (seconds, miles, meters, etc.) and the context of the quantity matter
(annual or quarterly revenue, etc.). In this paper, we present a search
and QA system, called Qsearch, that can effectively answer advanced
queries with quantity conditions. Our solution is based on a deep neu-
ral network for extracting quantity-centric tuples from text sources, and
a novel matching model to retrieve and rank answers from news arti-
cles and other web pages. Experiments demonstrate the effectiveness of
Qsearch on benchmark queries collected by crowdsourcing.

Keywords: Semantic search · Question answering ·
Information extraction · Quantities

1 Introduction

Motivation. Quantities, such as $2B, 40 mpg or 19.19 s, are more than mere
numbers; they express measures like revenue, fuel consumption or time in a race
with a numeric value and a corresponding unit. The occurrence of a quantity in
the text or a table of a web page is associated with an entity and interpretable
only with the surrounding context. For example, in the sentence “BMW i8 costs
about 138k Euros in Germany and has a battery range between 50 and 60 km.”,
the quantity e138.000 (after normalization) refers to the price of the car model
BMW i8, and the quantity interval [50,60] km denotes the range for that car
(note that this is in electric mode only as this is a hybrid car).

c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 237–257, 2019.
https://doi.org/10.1007/978-3-030-30793-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30793-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-30793-6_14


238 V. T. Ho et al.

Table 1. Statistics on exemplary quantitative properties from Wikidata and DBpedia.
#E : number of entities; #P : with property present; #Q : with explicit data type for
the property.

Entity type/property Wikidata DBpedia

#E #P #Q #E #P #Q

Car model/range 3195 4 4 6705 0 0

Car model/engine power 3195 0 0 6705 0 0

Mobile phone/display size 291 0 0 1358 1309 0

Marathon runner/best time 1629 18 18 3426 1346 601

Quantities are common in search queries, for example to find a product within
a specific price range, cars or mobile phones with desired technical or environ-
mental properties, or athletes who ran a race in a certain time. When a user issues
a quantity search query, such as “Hybrid cars with price under 35,000 Euros and
battery range above 100 km”, she expects the search engine to understand the
quantities and to return relevant answers as a list of entities. However, Internet
search engines treat quantities largely as strings ignoring their values and unit of
measurements. As a result, they cannot handle numeric comparisons, they miss
out on units or scale factors (such as “k” in “138k”), do not know about neces-
sary conversions between units, and ultimately fail. The exceptional cases where
search engines (incl. vertical product search) provide support for coping with
quantities are money and date, but this is achieved by specialized techniques
and fairly limited.

One would hope that semantic search over knowledge graphs (KG) like DBpe-
dia or Wikidata goes further, but their coverage of quantitative facts is very
limited and most literals, apart from dates, are merely represented as strings;
e.g., battery capacity of the BMW i3 is shown as the string “i3 94 Ah: 33 kWh
lithium-ion battery” in DBpedia. Important properties for cars, like fuel con-
sumption, CO2 emission, etc. are not covered at all. Table 1 gives exemplary
numbers for the quantity coverage in Wikidata and DBpedia.

This paper sets out to provide support for answering quantity queries from
text, over a wide variety of expressive measures, to overcome this severe lim-
itation of today’s search engines and knowledge graphs. Our method extracts
quantity-centric structure from Web contents, uncovering the hidden semantics
of linking quantities with entities.

Problem Statement. We define our problem as follows. Given a quantity
query and a corpus of text pages, find a ranked list of entities that match the
given query. A quantity query is a triple (t∗, q∗,X∗), where t∗ is the seman-
tic type of the expected answers, q∗ is a quantity-centric search condition, and
X∗ is the context that connects the entity type t∗ with quantity condition q∗.
For example, for the query “Cars with price less than e35,000 in Germany”,
the triple (t∗, q∗,X∗) is: (cars;<e35.000;{price, Germany}). Our problem has



Qsearch: Answering Quantity Queries from Text 239

two dimensions. The first is to understand the content of the text snippets and
extract the relevant quantity facts. The second is to match such extracted asser-
tions (inevitably with noise and errors) against a query and compute a ranked
list of relevant entity answers.

Approach. This paper presents Qsearch, an end-to-end system for answering
quantity queries. Qsearch employs a deep neural network to extract quantity
facts from text, this way lifting textual information into semantic structures.
Then, it utilizes a statistical matching model to retrieve and rank answers.

We model the first component, quantity fact extraction, as a Semantic Role
Labeling (SRL) task [13] and devise a deep learning method to label words
in the sentences with relevant roles. We label each word as entity, quantity or
context (or other). Then we use these tags to extract quantity fact triples in
form of (entity, quantity, context). For the second component, query matching,
we devise a novel matching method to retrieve a ranked list of relevant entities
that answer the user’s quantity query.

Contribution. The salient contributions of this work are as follows:

– We present Qsearch, a system for answering quantity queries from text.
– We propose a deep neural network for quantity fact extraction, and a match-

ing model for answering quantity queries.
– We present extensive experiments on benchmark queries collected by crowd-

sourcing.

2 Computational Model and System Overview

In this section, we introduce the computational model for our approach and give
an overview of the Qsearch system and its components.

2.1 Model for Facts, Queries and Answers

Extraction Model. The input of this model is a corpus of text documents
T with text snippets (e.g., sentences or paragraphs) that contain entity and
quantity mentions.

The output of this model is a set of quantity facts extracted from the text
corpus, F = {F1,F2, ...}, where a quantity fact is defined as follows.

Definition 1 (Quantity fact). A quantity fact (Qfact) is a triple F =
(e, q,X), where:

– e is an entity;
– q = (v, u, r) is a quantity consisting of a numerical value v, a canonicalized

unit u (e.g., km, $) and a value resolution r (exact, approximate, upper/lower
bound, interval);
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– X = {x1, x2, ...} is a context, which is a bag of words describing the relation
between e and q.

Example 1. Given the text snippet “BMW i8 costs about 138k Euros in Germany
and has a battery range between 50 and 60 km.”, we can extract the following
Qfacts:

– F1 : e = BMW i8; q = (138.000, e, approximate);X = {costs, Germany}

– F2 : e = BMW i8; q = (50–60, km, interval);X = {range, battery} ��
The Qfact representation is similar to the RDF model [20], which represents

each fact as a (subject, predicate, object) triple. In the Qfact model, the entity
e and the quantity q correspond to the subject and the object, respectively. The
context X in Qfacts is a proxy for the predicate in the RDF model. However,
it differs in two essential points: first, the context X can capture more than
one relation between e and q; second, the context X consists of a set of non-
canonicalized tokens, instead of a unique canonicalized predicate in a knowledge
graph.

This relaxed representation is a judicious design choice and essential for the
flexibility of our approach: first, we can represent complex n-ary facts using a
simple Qfact triple; second, our model can generalize to unseen relations; third,
our model can cope with the inevitable diversity and uncertainty in the lan-
guage expressions of the underlying text snippets. In theory, it is conceivable
that all arguments that appear in the context X are also individually extracted
and canonicalized to fill the slots of a frame-like structured record. However,
approaches along these lines do not work robustly and suffer from heavy propa-
gation of noise and errors.

The Qfact model allows different representations of the same fact, and the
underlying text corpus may express the same knowledge by different paraphrases.
Hence, Qfacts are more expressive towards answering queries via approximate
matches and related phrases.

Matching Model. The input of this model is a set of Qfacts F = {F1,F2, ...}
extracted from the text corpus, and a quantity query Y defined as:

Definition 2 (Quantity query). A quantity query (Qquery) is a triple Y =
(t∗, q∗,X∗) where:

– t∗ is the semantic type of the target answers;
– q∗ = (v, u, o) is a quantity condition consisting of a numerical value v, a

canonicalized unit u (e.g., km, $) , and a comparison operator o (exact,
approximate, upper/lower bound, interval);

– X∗ = {x1, x2, ...} is a context condition, expressed by a bag of words that
describes the relation between t∗ and q∗.

Example 2. Given the query “Cars with price less than 100k Euros in Germany”,
its corresponding Qquery is as follows:
- Y : t∗ = car; q∗ = (100.000, e, upper bound);X∗ = {price, Germany} ��



Qsearch: Answering Quantity Queries from Text 241

Each part of a Qquery imposes a constraint on its counterpart in a Qfact
considered as a candidate answer.

Definition 3 (Query answer). A Qfact F = (e, q,X) is an answer for a
Qquery Y = (t∗, q∗,X∗) iff (1) e is an entity of type t∗, (2) the quantity q
satisfies the quantity condition q∗ and (3) the context X (approximately) matches
the context condition X∗.

Example 3. Consider the Qquery in Example 2 and the two text segments “Ger-
man dealers sell the BMW X3 at a price as low as 55,000 Euros” and “Car deal-
ers in Munich sell the BMW X3 starting at 55,000 Euros”. The Qfact extracted
from the first snippet with e = BMW X3, q = (55.000, e, lower bound),
and X = {German, dealers, sell, price} is a strong match for the query;
whereas the Qfact extracted from the second snippet with e = BMW X3, q =
(55.000, e, lower bound), and X = {car, dealers, Munich, sell} is an approxi-
mate match (by embedding-based relatedness). ��

The output of this model is a ranked list of entities E∗ = {e1, e2, e3, ...} from
matching Qfacts with the Qquery, which will be discussed in Sect. 4.

2.2 Qsearch System

Figure 1 gives an overview of the architecture of Qsearch. The arrows in the
figure depict information flow between the different system components. Qsearch
consists of two main stages: Extract and Answer.

Extract. We preprocess the text corpus (Block 1) to recognize and disambiguate
named entities and link them to an external knowledge base (KB). We also
identify mentions of quantities in the text and normalize them into standard
units. Subsequently, we run a deep neural network to extract Qfacts from the
preprocessed text (Block 2). We learn and employ a specifically designed Long
Short Term Memory (LSTM) network, which will be described in Sect. 3.

Extracted Qfacts are organized and grouped by their named entities, such
that each individual entity ei is mapped to a list of quantities and related con-
texts Lei

= {(qi1,Xi1), (qi2,Xi2), ...} (Block 3). All extracted Qfacts are stored
in a data repository (Block 4, based on Elasticsearch in our implementation),
where entities are linked to their semantic types from the KB.

Answer. We answer incoming Qqueries by matching them against the Qfacts
from the Extract stage. For a Qquery (t∗, q∗,X∗) (Block 5), we first apply an
entity-type filter, eliminating entities with the wrong type. This results in a set
of candidate entities C = {c1, c2, ...} (Block 6) satisfying the type constraint
t∗, along with their quantity-context pairs {Lc1 , Lc2 , ...}. In Block 7, we discard
all candidate answers that do not satisfy the quantity condition q∗. Finally, we
compute a matching score for each candidate entity c ∈ C based on the contexts
X in the quantity-context pairs Lc, using a statistical language model or a text
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Fig. 1. Overview of Qsearch.

embedding method, which will be described in Sect. 4. The candidate entities
are ranked by their scores and returned to the user (Block 8).

In the following Sects. 3 and 4, we discuss in detail the Qfact extraction model
and the matching and answering model, respectively.

3 Quantity Fact Extraction from Text

In this section, we describe our method for extracting Qfacts from natural lan-
guage text. At the core of our solution is a deep-learning neural network for
sequence tagging, running on individual sentences.

Input Preprocessing. In the first step, we preprocess the input text corpus
by detecting entities and quantities appearing in each individual input sentence.
We perform Named Entity Disambiguation (NED) using the AIDA [16] system,
which links named entities to the YAGO knowledge base [34]. To achieve a better
detection quality, we run NED on a per-document instead of per-sentence basis.
For detecting quantities, we make use of the Illinois Quantifier [28], a state-of-
the-art tool for recognizing numeric quantities in text, along with some hand-
crafted rules (e.g., regular expressions). Subsequently, each identified quantity is
replaced by a placeholder “ QT ”.

Example 4. Input and output of this preprocessing step look as follows:

sentence | BMW i8 has price of 138k Euros in Germany and range from 50 to 60 km on battery.

preprocessed |
e1=<KB:BMW i8>

︷ ︸︸ ︷

BMW i8 has price of QT
︸ ︷︷ ︸

q1=(138.000,e,appr.)

in

e2=<KB:Germany>
︷ ︸︸ ︷

Germany and range QT
︸ ︷︷ ︸

q2=(50–60, km, interval)

on battery .

��

Sequence Tagging Model. In the second step, we aim to extract complete
Qfacts from the preprocessed sentences. For each quantity detected in the pre-
vious step, we want to identify the entity to which it refers and the relevant
context tokens that express the entity-quantity relation.
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Fig. 2. The Qfact extraction model used by Qsearch.

Example 5. Consider the preprocessed sentence in Example 4. If we use the first
quantity q1 = (138.000, e, approximate) as the input’s pivot, we want to obtain
the output e(q1) = e1 = <KB : BMW i8> and X(q1) = {price, Germany}.
Analogously, with q2 = (50–60, km, interval) as pivot, the desired output is
e(q2) = e1 = <KB : BMW i8> and X(q2) = {range, battery}. ��
We formalize this task as a sequence labeling problem as follows.

Task 1 (Quantity Fact Extraction). Given a preprocessed sentence S with
the set of detected entities E = {e1, e2, ...}, the set of detected quantities Q =
{q1, q2, ...} and a selected pivot quantity of interest qi ∈ Q, the task of quantity
fact extraction is to label each token of the sentence with one of the following
tags: (i) <E>, for denoting the entity that qi refers to; (ii) <X>, for denoting
the context tokens that relate qi and its entity; and (iii) <O>, for all other
tokens.

Our problem resembles the Semantic Role Labeling task [13], which is typically
addressed by Conditional Random Fields (CRFs) or Long Short Term Memory
(LSTM) models. Figure 2 depicts the bi-directional LSTM model that we devised
for this task, inspired by prior work [14]. Other models for sequence labeling (e.g.,
[12,44]) could be easily incorporated as well. Our labeling network consists of
three layers: Input Features, Bi-LSTM, and Softmax. While this general archi-
tecture is close to any other LSTM model, the most unique point here is the
input representation, as described next.

Input Features. Each token of the preprocessed input sequence is represented
as the concatenation of three input feature vectors:

(i) Word : We include word embeddings as an input feature, which enables the
neural model to generalize to different words having similar meanings. In
our implementation, we use Glove [24] precomputed embeddings.

(ii) Quantity : We provide the position of the pivot quantity to the model as
input. When sentences contain multiple quantities (which is a relatively
frequent case), our model operates one quantity at a time and we re-run
the model for different quantities.
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(iii) Entity : We also provide information about the recognized entities as input
to the neural model. As entities often span multiple tokens, we employ
the BIO tagging mechanism [26], where a tag B is used for tokens at the
beginning of an entity name, I for tokens inside the name, and O for other
tokens. With this representation, the output of the model only needs to
tag the first token of a multi-word entity name with <E>, and subsequent
tokens are tagged with <O>. Figure 2 shows an example: “BMW i8” is
chosen as the entity connected with the pivot quantity; only the first token
“BMW” is tagged as <E> in the output.

Output Constrained Decoding. The output of the model are the probabil-
ities of each token word in the input belonging to each of the three tags <E>,
<X> and <O>, produced by the Softmax layer. In neural models, usually the
tag with the highest score will be assigned to each token word. However, this
standard technique would not take into account the dependencies between out-
put tags, and hence might give us an invalid tag sequence. To solve this issue,
we impose the following two constraints on the output of the model at decoding
time, and find the most probable tag sequence satisfying them: (i) only one tag
<E> can appear in the output (namely, for the one entity to which the pivot
quantity refers); and (ii) that tag <E> has to be at the start token of an entity
name.

To find the most probable tag sequence, we use Dynamic Programming to
decode from left to right. Specifically, we compute subsequences of tags Seqi,j,k

for every i ∈ {1..n} (n is the sentence length); j ∈ {<E>,<X>,<O>}; and
k ∈ {0, 1}. Here, Seqi,j,k denotes tag subsequence with the highest probability
for tokens from position 1 to position i, where the tag of token at position i is
j, and the subsequence contains k <E> tags. Note that the probability of a tag
subsequence is computed as the product of the probabilities of its constituent
tags. The final tag sequence can be derived at i = n.

Distant Supervision Training. As training data is an important factor but
difficult to obtain, and manual labeling at scale is too expensive, we employ
distant supervision to generate training data for the Qfact extraction model.
We use unsupervised, pattern-based Open Information Extraction (Open IE) to
overlay an n-tuple structure (with triples or higher-arity tuples) on the input
text. We employ the OpenIE4 tool [22] to this end, and then use its output
tuples to generate training data. This process consists of two steps:

Step 1: Capture Information Areas: We define an information area as a subset
of tokens from a sentence, which presents complete information about a fact. We
run Open IE on the unprocessed sentence to detect all possible tuples expressed
by the text. Each of these tuples has a confidence score; to ensure the quality of
the generated training samples, we only keep tuples having a confidence score of
at least 0.9. Each of the selected tuples corresponds to an information area.
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Example 6. Consider the unprocessed sentence in Example 4, suppose the follow-
ing tuples are extracted by Open IE: (1): (BMW i8; has; price of 138k Euros;
in Germany)0.95, (2): (BMW i8; has; range from 50 to 60 km on battery)0.9, (3):
(BMW i8; has; price of 138k Euros)0.8, (4): (BMW i8; has; range from 50 to
60 km)0.5, and (5): (BMW i8; has; price)0.1. We only keep high-confidence tuples
(1) and (2), which contain complete information. Then the following information
areas are chosen for training:

(2)

(1)

BMW i8 has price of 138k Euros in Germany and range from 50 to 60 km on battery

(2)

.

��
- Step 2: Transform infomation areas into training samples: We map the infor-
mation areas obtained in Step 1 with entities and quantities detected from the
preprocessing phase:

(2)

(1)

<KB:BMW i8>has price of QT (1)in<KB:Germany>and range QT (2)on battery

(2)

.

��
With this mapping, information areas yield training samples for the neural net-
work. We apply conservative filters so that this self-training process minimizes
spurious samples. First, we keep only information areas that contain exactly
one quantity QT , the pivot quantity. Second, since English sentences tend
to express quantity information in active voice, the entity connected to the
pivot quantity should appear in the first argument (subject) of the Open IE
tuple. For instance, information area (1) has two entities <KB : BMW i8> and
<KB : Germany>; we choose the former as the one to which quantity QT (1)

refers. Finally, we discard all information areas where the subject of the Open
IE tuple contains more than one entity.

At this point, for each information area, we have a quantity and a unique
entity to which it refers. The context between them is determined from the
remaining tokens in the information area based on their Part-of-speech (POS)
tags. We allow only the following POS patterns to form the context: noun (NN*),
verb (VB*), adjective (JJ*), adverb (RB*), and foreign word (FW, to cap-
ture out-of-vocabulary names). We also use pre-defined stopwords to remove
uninformative tokens from the context. The resulting Qfact, along with the
<E>,<X>,<O> tags for its token sequence, becomes a positive training sam-
ple. As negative training samples, we collect all information areas where no entity
could be identified to relate with the pivot quantity, i.e., all tokens are tagged
as <O>.

4 Candidate Fact Matching Model

This section describes our method to answer Qqueries from the extracted Qfacts.
To this end, each Qfact is assigned a score denoting its relevance to the given
Qquery.
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Query Parsing. Input questions are mapped into Qqueries by a rule-based
parser for recognizing answer type and quantity condition; all other tokens
(except stopwords) are included in the query context. The parser uses a dic-
tionary of YAGO types and a dictionary of quantity units. An alternative to
this rule-based technique would be to apply the same neural extraction method
to questions that we have used to extract Qfacts from text. However, the ques-
tions are easier to handle, and the rule-based parser works well.

Task 2. (Quantity Fact Scoring). Given Qquery Y = (t∗, q∗,X∗) and Qfact
F = (e, q,X), compute a distance score d(F ,Y) reflecting the relevance of F
regarding Y.

Without loss of generality, we assume that a lower score denotes a better fact.
F should be a high-ranked answer for Y iff the following three conditions hold:
(1) e is an entity of type t∗, (2) q satisfies q∗, and (3) X is a good (approximate)
match for X∗.

Entity - Type Matching. We only consider the Qfact F if the entity e has
type t∗. Since the entities from text are linked to an external knowledge base,
we make use of the type information from the KB to filter out unsuitable facts
for Y.

Quantity Matching. We also discard F if q does not satisfy q∗. This is the case
when either (1) the units of q and q∗ relate to different concepts (e.g. km (length)
vs. e(money)) and are thus incomparable; or (2) their values (after conversion
to the same unit) do not match the comparison operator of q∗. Since quantity
matching is not the focus of our paper, we apply a simple matching method as
follows. First, we use hand-crafted rules for unit conversions, re-scaling if needed
(e.g., for kilo, mega, etc.), and value normalization. Second, we turn the quantity
value into an interval based on its resolution. For example, when the query is
about approximate matches, a quantity value v is smoothed into the interval
[v − δ, v + δ] with a configuration parameter δ. In experiments, we set δ to 5%
of v. A comparison is considered a match when the two intervals overlap, and
their units (after conversion and re-scaling) match.

Context Matching. If the Qfact F satisfies the above two constraints, we will
consider the similarity between the query context X∗ and the fact context X.
We propose to use the following two approaches for measuring the context rele-
vance: a probabilistic and an embedding-based approach.

Probabilistic Ranking Model. We adopt the Kullback-Leibler (KL) diver-
gence between the query context X∗ and the fact context X, which is typically
used in statistical language models [42]. The scoring function is defined as fol-
lows:
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d(F ,Y) = KL(X∗,X) = H(X∗,X) − H(X∗)

≡ H(X∗,X) = −
∑

w∈V
P (w|X∗) log P (w|X)

where V is the word vocabulary, H(X∗) is the entropy of X∗; H(X∗,X) is the
cross entropy between X∗ and X; and ≡ indicates rank equivalence (i.e., pre-
serving order). Since we are only interested in ranking fact contexts in response
to a query context, we can omit H(X∗). The word probability P (w|X∗) for the
query context is estimated using Maximum Likelihood Estimation (MLE) on an
expanded version X∗

E of X∗ as:

P (w|X∗) = count(w ∈ X∗
E)/|X∗

E |

To expand a query context, we resort to WordNet [23] and add all synonyms of
the context words to it. For the fact context, we estimate the word probability
P (w|X) using Jelinek-Mercer smoothing as:

P (w|X) = (1 − λ) × count(w ∈ X)/|X| + λ × P (w|B)

This linearly combines the MLE from the fact context X with the MLE obtained
from a background corpus B. The smoothing parameter λ (set to λ = 0.1 in our
system) controls the influence of the background corpus on the probability esti-
mate. We construct the background corpus B from all sentences of the entire
text corpus that contain at least one quantity (total 39 M sentences in our data).

Embedding-Based Ranking Model: We observed on our data that the query
context X∗ is often shorter than the fact context X, since sentences are often
more verbose than the typically short queries. Hence, to measure the distance
score of X with regard to X∗, we can match tokens between X∗ and X using
word embedding similarity as follows:

d(F ,Y) =
( ∑

u∈X∗
min
v∈X

(dist(u, v))
)

/|X∗|

where dist(u, v) ≥ 0 is the semantic distance between two words u and v esti-
mated from their pre-computed word embedding vectors [24]. We use cosine
distance in the Qsearch implementation, re-scaled for normalization to [0,1]. In
the above equation, we map each word of query context X∗ to its closest word
in the fact context X in the embedding space. This scoring formula gives the
same weight to every token in the query context X∗, which might be misleading,
since they could have a different degree of importance. This issue is overcome
by giving higher weight to important words and lower weight to uninformative
words, using the following distance function:

d(F ,Y) =

∑
u∈X∗

W (u) min
v∈X

(dist(u, v))
∑

u∈X∗
W (u)

+ 1
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where W (u) ≥ 0 is the importance weight of word u. There are several weighting
functions that can be used for W (e.g., inverse document frequency (idf), term
strength, etc.); we use Robertson’s idf [27]. We call the above formula the directed
embedding distance, ded(X∗ → X), between query and fact contexts.

ded(X∗ → X) describes how well each word in X∗ matches with some other
word in X, but in many cases it fails to reflect the match between their meaning.
The presence of a single word in the fact context X can totally change its mean-
ing. Consider, as a concrete example, the two contexts X∗ = {net, worth} vs.
X = {negative, net, worth}. Hence, our idea is to penalize the relevance score
with an amount proportional to the directed embedding distance between X and
X∗. Specifically, we define the context embedding distance ( ced) that implements
this idea:

d(F ,Y) = ced(X∗,X) = ded(X∗ → X) × ded(X → X∗)α

=

( ∑
u∈X∗

W (u) min
v∈X

(dist(u, v))
∑

u∈X∗
W (u)

+ 1

)
×

( ∑
u∈X

W (u) min
v∈X∗

(dist(u, v))
∑

u∈X

W (u)
+ 1

)α

Intuitively, our ced measure is the product of two components: (1) ded(X∗ → X)
captures how well query context tokens match with fact context, and (2)
ded(X → X∗) reflects how much additional terms in X shift its meaning,
and hence, should be penalized. Parameter α ∈ [0,+∞) controls how much
the penalty scaling affects the total score.

Example 7. Consider the Qquery context X∗ = {gross, domestic, product} and
two Qfact contexts X1 = {gross, national, product}, X2 = {gross, domestic,
product, capita}. While we are more inclined to X1 than X2, the directed embed-
ding distance ded(X∗ → X2) has a slightly better score than ded(X∗ → X1), as it
does not penalize the word “capita” (which indicates that the GDP is per capita,
not the total GDP). In contrast, ded(X1 → X∗) is lower than ded(X2 → X∗)
(since “national” is close to “domestic”), preferring X1 over X2 with regard
to X∗, which results in the desired ranking based on the context embedding
distance ced. ��

Entity Scoring. The output of Qsearch is a ranked list of entities from match-
ing Qfacts with the Qquery. We assign a score for each candidate entity based
on one of the above context distance models and aggregating over the entity’s
quantity-context pairs as follows:

score(c ∈ C,Y) = min
(q,X)∈Lc

d(F = (c, q,X),Y)

where d(F ,Y) is either the Kullback-Leibler divergence KL(X∗,X) or the con-
text embedding distance ced(X∗,X). So when the same candidate entity appears
in multiple Qfacts, we pick the best-scoring Qfact context distance.
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5 Evaluation

We run experiments on a Linux machine with 80 CPU cores, 500 GB RAM, and
2 GPUs. To evaluate Qsearch, we perform an intrinsic evaluation of our Qfact
extraction model and an extrinsic evaluation of the end-to-end Qsearch system.

Dataset. All experiments use a large collection of news articles, compiled from
two real world datasets: the STICS project [15] with news from 2014 to 2018,
and the New York Times archive [30] with news from 1986 to 2008. In total, our
corpus consists of 7.6M documents.

5.1 Intrinsic Evaluation of the Quantity Fact Extraction Model

Training Setup. We implemented the LSTM network using Theano library,
largely following [14] for the training configuration: using Adadelta with ε = 1e6

and ρ = 0.95; lstm hidden unit = 300 ; rnn dropout prob = 0.1 ; batch size =
100.

We extracted training samples from the corpus using the distant-supervision
technique as described in Sect. 3 and conducted the training process with differ-
ent settings. In the General setting, we use all available training data of 3.2M
training samples, where we maintain the ratio 3:1 between the number of positive
and negative samples. We also train our model for three other measure-specific
settings, where only a subset of the training samples is used. In particular, we
classify training samples into different categories based on the quantity unit. For
example, training samples containing quantities with unit Kilometer or Meter
are chosen to train the model in the Length setting, while the ones with unit US
dollar, Euro, etc. are picked for the Money setting. Among many such categories,
we selected the three most prevalent measures Money, Percentage and Length,
containing 307K, 235K and 41 K training samples, respectively (also with ratio
3:1 between positive and negative samples). The trained models are then applied
to the entire corpus to extract more Qfacts.

Performance of Extraction Model. As the test data does not have any
ground-truth labels, we randomly selected 100 samples that contain at least two
entities from the output tag sequences, for each training model, and manually
assessed their validity. We evaluate the quality of the three output labels <E>,
<X> and <O> by three measures: Precision, Recall, and F1 score. The results
are shown in Table 2. We observe that all training models perform very well on
entity tagging with more than 85% F1 score. We also see that the measure-
specific training variants for Length and Money have slight advantages.
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Table 2. Evaluation of Qfact extraction model of Qsearch on different settings.

Tag Length Money Percentage General

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

E 0.860 0.860 0.860 0.850 0.850 0.850 0.794 0.770 0.782 0.882 0.820 0.850

X 0.650 0.849 0.736 0.717 0.844 0.776 0.659 0.827 0.734 0.728 0.713 0.721

O 0.958 0.886 0.920 0.942 0.886 0.913 0.947 0.888 0.917 0.895 0.906 0.900

Macro-avg. 0.823 0.865 0.839 0.836 0.860 0.846 0.800 0.828 0.811 0.835 0.813 0.824

Table 3. Statistics of benchmark queries from each domain.

Domain Distribution of queries based on unit of quantity

Money Length Percentage Others Examples for others

Finance 76% - 12% 12% No. of sales, albums, etc.

Transport 4% 32% - 64% MPG, mph, horsepower, etc.

Sports 8% 32% - 60% Sec, years, kg, no. of medals, etc.

Technology 20% 20% 8% 52% Megapixels, Watt, mAh, etc

5.2 Extrinsic Evaluation of the End-to-End Qsearch System

We performed the extrinsic evaluation of Qsearch on a benchmark of 100 quan-
tity queries, collected by crowdsourcing and covering four domains: Finance,
Transport, Sports and Technology. These queries capture a wide diversity of
measures and units as well as variety in query formulations (e.g., phrases for the
comparison operators); see Table 3. Anecdotal examples of user queries and their
answers produced by Qsearch are shown in Table 4. We also considered queries
from the QALD-6-task-3 statistical QA benchmark [37], but out of total 150
training and test queries, we found only 6 with quantity conditions (as opposed
to simpler property lookups).

In this evaluation, we use the Qfact extraction model trained under the Gen-
eral setting, as it generalizes to different measures and units.

Setup. For each Qquery, we consider top-10 results returned by Qsearch and
evaluate their relevance and validity by judgements from crowd-workers (using
Figure-Eight platform, formerly known as CrowdFlower). The judges were shown
the query, the top-10 entity answers, and the corresponding 10 sentences from
which the answers were extracted. Each result was annotated as relevant or
irrelevant to the query based on the cue given in its corresponding sentence. For
each query, we collected three judgements and used the majority label as gold
standard. Overall, we obtained a high inter-annotator agreement with Fleiss’
Kappa value of 0.54.

Baselines. Although our Qsearch system produces entities as main result, we
still want to compare it with standard search systems, which produce snip-
pets. As there is no other system that can handle quantity queries with crisp
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Table 4. Anecdotal examples of quantity queries and results from Qsearch.

Domain Query
Finance Q1: Coal companies with more than 200 Million dollar annual profit
Transport Q2: Sport utility vehicles with engine power at least 150 horsepower
Sports Q3: Sprinters who ran 100 meter in less than 10 seconds
Technology Q4: Digital cameras with focal length of lens more than 18 mm

Query Result Corresponding Sentence
Q1 Duke Energy Duke Energy had revenue of $ 23.9 billion and profit of $ 1.9 billion last

year.
Q2 Ford Escape Its V-6 engine (the Escape is a four-cylinder) has 270 horsepower, 20 percent

more than the Lexus RX330.
Q3 Andre Grasse Andre De Grasse, a 20-year-old from Markham, Ont., has run the 100 metre

in under 10 seconds three times this year.
Q4 Nikon D7100 For example, the D7100 can be found in a kit with 18-140 mm and 55-300

mm lenses , so you’ll want to use the 55-300 mm and zoom in to 300 mm.

entity answers, we use search systems as baselines that produce text snippets
as answers. Specifically, we ran all benchmark queries on Elasticsearch, locally
indexing all sentences of our news corpus, and on Google web search retriev-
ing the top-10 result snippets. Elasticsearch uses a text-oriented state-of-the-art
ranking model based on BM25.

The baselines were given certain advantages, to avoid that Qsearch could
be viewed as an unfair competitor. For Elasticsearch, we consider only sentences
that contain an entity and a quantity. For the evaluation, we asked crowd-workers
to annotate top-10 results, retrieved from Elasticsearch, as relevant or irrelevant
based on whether they spotted a reasonable result for the quantity query. To
evaluate result snippets from Google search, we instructed annotators to be
generous, as the result snippets are not well-formed sentences (but could be syn-
thesized from non-contiguous text segments with ellipses). For example, a text
snippet that contains a correct entity and its quantity is considered relevant even
if it also contains other entities or quantities. Such instructions to annotators
give Google results an advantage because Qsearch results are considered relevant
only if both entity and quantity are correctly extracted.

We also explored several state-of-the-art QA systems over linked open data:
Frankenstein [32], QAnswer [9], Platypus [35], AskNow [10], Quint [1], SPARK-
LIS [11]. None of these systems is geared for handling quantity questions, except
SPARKLIS, however it can only process quantities without associated unit.
Moreover, their underlying KBs have poor coverage of quantities. They failed
on almost all of our benchmark queries; so we excluded these systems from our
comparative evaluation.

Performance of Qsearch. Table 5 shows the performance of Qsearch for the
four domains and for all 100 queries together, using the two variants of our
ranking models: KL divergence and context embedding distance (ced). For ced
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Table 5. End-to-end evaluation of Qsearch.

Metric Finance Transport Sports Technology All

KL-div. Emb. KL-div. Emb. KL-div. Emb. KL-div. Emb. KL-div. Emb.

Pr.@1 0.720 0.800 0.480 0.600 0.560 0.680 0.640 0.680 0.600 0.690

Pr.@3 0.667 0.747 0.480 0.480 0.507 0.587 0.627 0.653 0.570 0.617

Pr.@5 0.632 0.672 0.412 0.412 0.480 0.528 0.550 0.624 0.519 0.559

Pr.@10 0.604 0.608 0.333 0.379 0.412 0.432 0.500 0.547 0.462 0.492

Hit@3 0.880 0.920 0.760 0.760 0.760 0.800 0.840 0.880 0.810 0.840

Hit@5 0.880 0.960 0.760 0.760 0.920 0.840 0.840 0.920 0.850 0.870

MRR 0.792 0.870 0.621 0.678 0.685 0.746 0.747 0.783 0.711 0.769

Fig. 3. Comparison of Qsearch against baselines.

we empirically tune the parameter α = 3 based on results from 10 validation
queries disjoint from the 100 test queries. We report three metrics: Precision@k,
Hit@k and Mean-Reciprocal-Rank (MRR), macro-averaged over queries. We do
not discuss metrics like Recall or MAP, as these would require exhaustively
annotating a huge pool of candidate answers.

Overall, Qsearch performs amazingly well, typically with MRR around 0.7
or better. The best results are for the Finance domain, which has the highest
share in the corpus and is most represented in the Qfact extraction training.
Precision@1 is pretty good, but precision drops substantially when going deeper
in the rankings. The embedding-based ranking model clearly outperformed the
KL-divergence method by a significant margin.

Figure 3 presents the comparison of Qsearch with the ced ranking model
against Elasticsearch and Google, showing the metrics Prec.@3, Prec.@5, Hit@3
and MRR. The results clearly indicate that Qsearch outperforms both baselines
by a large margin.
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6 Related Work

Question Answering. QA over knowledge graphs and other linked data
sources has received great attention over the last years; see [8,36] for surveys.
State-of-the-art methods (e.g., [2,5,39,41,43]) translate questions into SPARQL
queries, bridging the gap between question vocabulary and the terminology of
the underlying data by means of templates and/or learning from training collec-
tions of question-answer pairs. Benchmarks like the long-standing QALD series
and other competitions have shown great advances along these lines [38]. How-
ever, these benchmark tasks hardly contain any quantity queries of the kind
addressed here (even in QALD-6-task-3, only 6 out of 150 questions are of this
kind, others are mostly about quantity lookup). Note that look-ups of quantity
attributes of qualifying entities (e.g., Jeff Bezos’s net worth, 10 richest people,
or fastest sprinter over 100m) are of a different nature, as they do not contain
quantity comparisons between query and data (e.g., worth more than 50 mil-
lion USD, running faster than 9.9 s). Moreover, the scope and diversity of the
benchmark queries is necessarily restricted to relatively few numeric properties,
as knowledge graphs hardly capture quantities in their full extent (with value
and unit properly separated and normalized). This is our motivation to tap into
text sources with more extensive coverage.

QA over text has considered a wide range of question types (e.g., [6,7,40]),
but there is again hardly any awareness of quantity queries. Keyword search,
including telegraphic queries, with quantity conditions have been considered by
[18], and have been applied to web tables [25,31].

[4] and its follow-up work [31] focused on a specific kind of quantity query,
namely, retrieving and aggregating numerical values associated with an attribute
of a given entity (e.g., Bezos’s net worth or GDP of India). To this end, learning-
to-rank techniques over value distributions were developed to counter the uncer-
tainty in the retrieved values, where web pages often contain crude estimates
and lack exact values. In contrast to our setting, that work did not consider
quantities in search conditions.

Information Extraction. Recognizing and extracting numeric expressions
from text has been addressed using techniques like CRFs and LSTMs (e.g.,
[3,21,29]). However, this alone does not turn numbers into interpretable quan-
tities, with units and proper reference to the entity with that quantity. Only
few works attempted to canonicalize quantities by mappings to hand-crafted
knowledge bases of measures [17], but these efforts are very limited in scope.
The special case of temporal expressions has received substantial attention (e.g.,
[33]), but this solely covers dates as measures.

Most related to our approach are the works of [31] and [28]. The former
used probabilistic context-free grammars to infer units of quantities, but focused
specifically on web tables as inputs. The latter extended semantic role labeling
(see below) to extract quantities and their units from natural language sen-
tences. Neither of these can be readily applied to extracting quantities and their
reference entities from arbitrary textual inputs.
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Semantic Role Labeling. Semantic role labeling (SRL) has been intensively
researched as a building block for many NLP tasks [13]. Given a verb phrase
of a sentence viewed as a central predicate, SRL identifies phrases that are
assigned to pre-defined roles to form a frame-like predicate-arguments structure.
Modern SRL methods make use of pre-computed word embeddings and employ
deep neural networks for role filling (e.g., [12,14,44]). Our approach differs from
this state-of-the-art SRL, as we are not primarily focused on the verb-phrase
predicate, but consider the numeric quantity in a sentence as the pivot and aim
to capture quantity-specific roles.

To support exploration of quantitative facts in financial reports, [19] proposed
a semantic representation for quantity-specific roles. [28] devised a quantity rep-
resentation as an additional component of an SRL method, which is part of the
Illinois Curator software suite. Our approach makes use of this technique, as a
preprocessing step. However, we go further by learning how to connect quantities
with their respective entities and to collect relevant context cues that enable our
matching and ranking stage for query answering.

7 Conclusion

Awareness of entities and types has greatly advanced semantic search both for
querying the web of linked data and for Internet search engines. In contrast, cop-
ing with quantities in text content and in query constraints has hardly received
any attention, yet is an important case. This paper has presented the Qsearch
system for full-fledged support of quantity queries, through new ways of infor-
mation extraction and answer matching and ranking. We capture quantities in
their full extent, including units of measures, reference entities and the rele-
vant contexts. The model for Qfacts and Qqueries is relatively simple but highly
versatile and effective. A key asset of Qsearch is its high quality in extracting
Qfacts, recognizing the right entity-quantity pairs even in complex sentences.

Future work includes devising additional ways of aggregating Qfacts with the
same candidate answer, so as to obtain strong signals from many noisy cues (i.e.,
when the same entity-quantity pair occurs in many pages, but mostly in the form
of crude estimates or vague hints). Also, we plan to extend the Qquery model to
incorporate queries that contain multiple quantity conditions (e.g., hybrid SUVs
with range above 500 miles and energy consumption above 40 MPGe).
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Abstract. Worst-case optimal multiway join algorithms have recently
gained a lot of attention in the database literature. These algorithms
not only offer strong theoretical guarantees of efficiency, but have also
been empirically demonstrated to significantly improve query runtimes
for relational and graph databases. Despite these promising theoreti-
cal and practical results, however, the Semantic Web community has
yet to adopt such techniques; to the best of our knowledge, no native
RDF database currently supports such join algorithms, where in this
paper we demonstrate that this should change. We propose a novel pro-
cedure for evaluating SPARQL queries based on an existing worst-case
join algorithm called Leapfrog Triejoin. We propose an adaptation of this
algorithm for evaluating SPARQL queries, and implement it in Apache
Jena. We then present experiments over the Berlin and WatDiv SPARQL
benchmarks, and a novel benchmark that we propose based on Wikidata
that is designed to provide insights into join performance for a more
diverse set of basic graph patterns. Our results show that with this new
join algorithm, Apache Jena often runs orders of magnitude faster than
the base version and two other SPARQL engines: Virtuoso and Blaze-
graph.

1 Introduction

Since its initial standardisation over a decade ago, the SPARQL query lan-
guage has enjoyed broad adoption, having been implemented in a wide variety
of engines (e.g., [1,16,23,30]) and supported by hundreds of public endpoints on
the Web [8], the most prominent of which receive thousands or even millions of
queries per day [14,22]. Despite these successes, however, there remains room
for improvement. Though current SPARQL implementations now work well for
processing large workloads of relatively simple queries [22], as we show in later
experiments, they still struggle when evaluating queries with more complex joins;
we argue that this is due, in part, to the fact that prominent SPARQL engines
rely on traditional join algorithms that have not changed for over a decade.

On the other hand, a new family of join algorithms has received much atten-
tion in the recent database literature: the state-of-the-art for join evaluation has
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moved away from pairwise join evaluation [29], towards multiway join evalua-
tion where an arbitrary number of joins can be evaluated at once. One of the
main benefits of the multiway approach is to minimise the number of interme-
diate results generated. In fact, a variety of modern multiway join algorithms
– including, for example, Leapfrog Triejoin [31], Minesweeper [25], Tetris [21],
CacheTrieJoin [19], etc. – have been proven to be worst-case optimal [26,27],
meaning that the runtime of the algorithm is bounded by the worst-case cardi-
nality of the query result (i.e. the AGM bound [11]); this theoretical guarantee
implies that no other join algorithm can exist that is asymptotically faster for
all database instances. Several systems (e.g. Logicblox [9] and Emptyheaded [4])
have further implemented these worst-case optimal strategies and demonstrated
their superior performance in practice for evaluating queries with complex joins.

A natural idea, then, is to leverage worst-case optimal join algorithms for
evaluating basic graph patterns, which form the core of SPARQL queries. How-
ever, though work has been done on adopting such algorithms for graph queries
and analytics [4,20,28], to the best of our knowledge, no such work has addressed
the evaluation of SPARQL basic graph patterns.

In this paper, we aim to fill this gap by investigating the benefits of worst-
case optimal join algorithms for evaluating basic graph patterns. Given our goal
that worst-case optimal join algorithms be widely adopted on the Semantic Web
in the near future, we select Leapfrog Triejoin (LFTJ) [31] as our base algorithm
since it is relatively straightforward to adapt to the case of SPARQL while still
providing worst-case optimal guarantees. We propose some adaptations of the
LTFJ algorithm for the SPARQL setting, proving that these adaptations do not
affect the theoretical guarantees of the algorithm. We discuss how the resulting
algorithm can be integrated and optimised within a native RDF store that sup-
ports multiple index orders and cardinality-based join ordering, reducing the cost
of adoption. Analogously, we create a fork of Apache Jena (TDB) [1] that sup-
ports worst-case join evaluation, and proceed to evaluate its performance against
the unmodified version of the engine, as well as two other prominent SPARQL
engines: Virtuoso [16] and Blazegraph [30]. We run experiments on the Berlin [13]
and WatDiv [6] SPARQL benchmarks, and thereafter on a novel benchmark
based on Wikidata [32] from which we generate a large set of SPARQL basic
graph patterns exhibiting a variety of increasingly complex join patterns. Our
results show that our fork of Apache Jena can reduce the runtimes of queries
with non-trivial joins by orders of magnitude versus the baseline systems.

2 Preliminaries

We introduce some brief preliminaries for RDF and SPARQL used throughout
and thereafter discuss the central notion of worst-case optimal joins.
RDF: RDF is the graph-based data model at the heart of the Semantic Web.
RDF terms can be IRIs (I), literals (L) or blank nodes (B). A triple (s, p, o) ∈
IB×I×IBL is called an RDF triple, where s is called the subject, p the predicate,
and o the object.1 An RDF graph is a set of RDF triples.
1 We use IB as a shortcut for I ∪ B, etc.
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SPARQL: SPARQL is the standard query language for RDF [3]. Let V be a
set of variables. A tuple t ∈ ILV × IV × ILV is called a triple pattern. Blank
nodes in triple patterns can be considered as query variables for our purposes.
A set of triple patterns is called a basic graph pattern. We denote by var(t) and
var(P ) the set of variables found in a triple pattern t and basic graph pattern
P , respectively. We call a variable ?x ∈ var(P ) a join variable if it appears in
two or more triple patterns of P , and a lonely variable otherwise.

The semantics of SPARQL queries is defined in terms of mappings. A map-
ping μ is a partial function μ : V → IBL. The domain of μ, denoted dom(μ),
is the set of variables on which μ is defined. Given a triple pattern t, we
denote by μ(t) the image of the triple pattern t under μ: the triple obtained
by replacing the variables in t according to μ. We say that two mappings
μ1 and μ2 are compatible, denoted μ1 ∼ μ2, iff μ1(?x) = μ2(?x) for every
?x ∈ dom(μ1) ∩ dom(μ2). Given sets of mappings Ω1 and Ω2, we then define
their join as Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2, and μ1 ∼ μ2}.

We can now define the evaluation of a triple pattern and a basic graph pattern
over an RDF graph G (the latter being defined as a join over its triple patterns):

�t�G = {μ | var(t) = dom(μ) and μ(t) ∈ G}
�{t1, . . . , tn}�G = �t1�G �� ... �� �tn�G

Letting μ(P ) denote the image of P under μ, with respect to the latter definition,
we can equivalently say that �P �G = {μ | dom(μ) = var(P ) and μ(P ) ⊆ G}.

SPARQL further offers a wide range of query operators that can be used to
combine or modify the results of basic graph patterns, such as union, optional,
filters, aggregates, property paths, etc. In this paper, we focus on optimising
the evaluation of basic graph patterns, which form the core of SPARQL queries;
other SPARQL operators can be supported by applying standard techniques
over the mappings generated from the query’s basic graph patterns.2 However,
there is the possibility for bespoke methods that merge the evaluation of some
of these operators – in particular optional, property paths, named graphs, etc.
– with the evaluation of basic graph patterns by the proposed worst-case join
algorithm. We leave the exploration of such embedded optimisations for future
work. Furthermore, SPARQL assumes a default bag semantics, which preserves
duplicates [7]; though we evaluate sets of solutions for basic graph patterns,
such patterns alone never generate duplicate mappings, and thus our proposal
is compatible with bag semantics being applied in higher-level query operators.

Worst Case Optimality: A join algorithm is called worst-case optimal if it
satisfies the AGM bound [11], namely, if the running time over an instance G is
bounded by the worst-case output size over all instances of the same size as G.
Specifically, let P be a BGP and G an RDF graph. Consider the following linear
program [11] adapted for the case of RDF and basic graph patterns:

2 Other features like BIND, VALUES, SERVICE, etc., that generate or extend mappings
can be evaluated in the standard way.
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minimize
∑

t∈P xt · log(|�t�G|)
subject to

∑
t:?x∈var(t) xt ≥ 1 for each ?x ∈ var(P )

xt ≥ 0 for each t ∈ P

where xt is a variable for each t ∈ P . If MIN(P,G) is the minimum for the above
optimization problem, then the AGM bound states that |�P �G| ≤ 2MIN(P,G) and
this bound is tight: there exists an RDF graph G′ of the same size as G where
|�P �G′ | is equal to 2MIN(P,G) up to a logarithmic factor. We call an evaluation
algorithm for a basic graph pattern worst case optimal if its running time is at
most 2MIN(P,G) up to a logarithmic factor. All of our algorithmic analysis is done
in data complexity where the size of the query is considered as fixed.

3 Related Work

Our goal is to optimise the evaluation of basic graph patterns in SPARQL.
Here we first discuss the standard evaluation methods used in popular SPARQL
engines, proposals of multiway joins for SPARQL, works on worst-case optimal
join algorithms, and a summary of the novelty of our present work.

Indexing: In order to efficiently evaluate triple patterns, SPARQL engines
employ indexes that offer optimised access to the underlying data; such engines
will often build a complete index that can efficiently evaluate a triple pattern with
any combination of constants and variables [18]. A complete index is comprised
of multiple index orders, where a single index order with prefix lookups can be
used to evaluate multiple forms of triple pattern;3 for example, the index order
pos allows for directly evaluating triples patterns of the form (?, ?, ?), (?, p, ?),
(?, p, o) and (s, p, o) without filtering, but not (s, ?, ?), which would require read-
ing all triples from the pos index and filtering those whose subject does not
match the triple pattern (a better choice would be an index order like spo
or sop). Some SPARQL engines build complete indexes for triples [10,23,33],
while others directly support named graphs by indexing quads [16,18]. In terms
of indexing implementations, one option is to apply standard data structures
known from relational databases, such as B+Tree indexes [16,18,23]; another
option is to develop RDF-specific techniques, such as nested data structures [33],
bit matrices [10], etc., that take advantage of the fixed arity of triples.

Pairwise Joins: While a complete index allows individual triple patterns to
be evaluated efficiently, the evaluation of basic graph patterns requires applying
join algorithms over the mappings generated from triple patterns. The most
popular strategy for evaluating basic graph patterns is to use pairwise evaluation
joining two sets of mappings at a time. In left-deep plans, the results of a triple
pattern are joined with the current results of all joins thus far; for example,
taking a basic graph pattern with four triple patterns, an example left-deep

3 Following [18], we use the notation (s|?, p|?, o|?) to denote eight forms of triple pat-
terns where, for example, (?, p, o) refers to the set of triple patterns with variable
subject, constant predicate and constant object: V × I × IL.
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evaluation would be (((t1 �� t2) �� t3) �� t4) [18]. In bushy plans, two sets of join
results can also be joined, leading to more balanced query plans; for example,
((t1 �� t2) �� (t3 �� tn)) is an instance of a bushy plan [23]. To implement
such joins, SPARQL engines often use variants of well-known algorithms for
join evaluation in relational databases, such as nested-loop joins [18,23], hash
joins [23], and sort-merge joins [23]. An important aspect of optimising SPARQL
query plans is then to exploit the commutativity and associativity of joins to
find a query plan that minimises the number of intermediate results generated;
a common strategy is to rely on cardinality estimates [16,18,23].

Multiway Joins: Multiway join algorithms perform joins over two or more sets
of mappings at once; a common strategy is to group, evaluate and join triple
patterns sharing a given variable as a single operation. Multiway join evaluation
can thus reduce the number of intermediate results that are generated. To the
best of our knowledge, few works have investigated multiway joins in the context
of SPARQL. One exception is the recent work of Galkin et al. [17], who propose
a join algorithm for SPARQL queries called SMJoin that groups blocks of star-
shaped joins (where a common join variable is present in the subject position)
and applies multiway joins over each block. Experimental results show that the
multiway join performs well for selective query patterns, but is outperformed
by a pairwise-join baseline for other types of queries (due to the latter applying
selectivity-based join reordering not available to SMJoin).

Worst-Case Optimal Joins: Various works in the database literature have
focused on worst-case optimal join algorithms [19,21,25,28,31], which have also
been implemented as part of commercial databases [4,9]. A subset of such works
have looked at the benefits of such algorithms for answering queries over graphs,
incorporating experiments for evaluating queries based on graph patterns includ-
ing cliques, trees, paths, etc. [4,19,28]; Aberger et al. [4] further provide exper-
iments for analytical queries on graphs, such as Pagerank and shortest paths.
While these works have provided evidence as to the value of worst-case optimal
join algorithms for graphs, they do not address the SPARQL setting.

Novelty: We propose a multiway join algorithm for evaluating basic graph pat-
terns in SPARQL based on Leapfrog Triejoin [31], modifying how it accesses
indexes to ensure better compatibility with current SPARQL implementations.
We prove that the adapted algorithm remains worst-case optimal, discuss its
implementation in Jena, and provide experimental results analysing its runtime
performance. Unlike the work of Galkin et al. [17], our multiway join algorithm
is agnostic to the position of a join variable in a triple pattern. More generally,
and to the best of our knowledge, this is the first work to explore the application
of a worst-case join algorithm for evaluating SPARQL basic graph patterns.
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4 Leapfrog Join for Basic Graph Patterns

Our goal is to investigate the potential benefits of using a worst-case optimal
join algorithm on SPARQL query performance. Surveying the state-of-the-art
algorithms in the database literature [19,21,24,25,28,31], we opted to base our
algorithm on Leapfrog Triejoin algorithm (LFTJ) [31], mainly because it is the
most concise among all such algorithms [24], and thus a good starting point
for implementation within a SPARQL engine. We first present here a logical
version of LFTJ that we call Leapfrog Join (LFJ), which includes only the core
evaluation strategy on which LFTJ is based. LFJ can be divided into two main
phases: Leapfrog and variable elimination. We begin by discussing both phases
and give a running example of the algorithm. Later we propose a physical version
of Leapfrog Join, designed to be easily integrated with existing SPARQL engines,
mostly requiring adaptations at the index layer (see the discussion in Sect. 5).

Leapfrog: Unlike traditional join algorithms that evaluate triple pattern by
triple pattern, Leapfrog Join rather proceeds by evaluating variable by variable.
An important procedure in Leapfrog Join is to compute all non-trivial outputs of
a single variable; more formally, given an RDF graph G, a basic graph pattern
P and a variable ?x in var(P ) we want to compute the following set:

LFG(P, ?x) = {μ | dom(μ) = {?x} and �μ(t)�G 
= ∅ for all t ∈ P} .

In other words, we want to identify all single variable mappings μ such that, for
every t ∈ P , the output of μ(t) over G is non-empty when ?x is replaced by μ(?x).
Intuitively, if μ ∈ LFG(P, ?x), then μ is a good candidate for a partial mapping
that can be extended to form an output mapping in �P �G. Note also that if ?x
is the only variable used in P (i.e., var(P ) = {?x}), then the set LFG(P, ?x) is
the same as computing the intersection of all sets �t�G. In Sect. 5, we will show
how to implement this function for one or more variables by exploiting standard
B+tree indexes while maintaining worst-case optimality.

Variable Elimination: While the Leapfrog phase evaluates a single variable,
the variable elimination phase evaluates multiple variables. Given a basic graph
pattern P with var(P ) = {x1, . . . , xn}, an RDF graph G, and a variable order
Ovar = ?x1, . . . , ?xm, Algorithm 1 shows the nested structure of the variable
elimination procedure, which constitutes the overall Leapfrog Join process. The
procedure iterates over each variable ?xi in order, extending the mapping μi with
a mapping μ ∈ LFG(μi(P ), ?xi+1). Variable ?xi is fixed by extending μ with μi

(i.e. μi+1 = μi ∪ μ; note that μi ∼ μ, so μi+1 is also a mapping); in this way,
variable ?xi is “eliminated” from P . The procedure moves on to eliminate the
next variable ?xi+1 analogously. After all variables ?x1, . . . , ?xm are eliminated,
the mapping μm−1∪μ is output, and the search for the next output is continued.

Figure 1 provides an example of variable elimination for a basic graph pat-
tern over an RDF graph. We assume the order ?x1 . . . ?x4; how such an order is
decided will be discussed later in Sect. 5.4 Pairwise evaluation with this triple-
4 Such an order would be produced by SPARQL engines in practice if we had a graph

with many :father and :mother relations, outnumbering :winner relations.
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Algorithm 1. Variable elimination for basic graph patterns
input : RDF graph G, BGP P , variable order Ovar = ?x1 . . . ?xn
output: All mappings �P �G.

1 Function LFTJ-Eval (G,P,Ovar)
2 μ0 ← ∅

3 foreach μ ∈ LFG(μ0(P ), ?x1) do
4 μ1 ← μ0 ∪ μ

5 foreach μ ∈ LFG(μ1(P ), ?x2) do
6 μ2 ← μ1 ∪ μ

7
. . .

8 foreach μ ∈ LFG(μn−1(P ), ?xn) do
9 Output μn−1 ∪ μ // write to output and continue

G: :Nobel :Irene:winner

:Marie

:winner :mother

:Pierre

:winner :father

:Aage :winner

:Margrete

:mother

:Niels

:winner:father

P :

(?x1,:winner,?x2)
(?x1,:winner,?x3)
(?x1,:winner,?x4)
(?x2,:father,?x3)
(?x2,:mother,?x4)

?x1

:Nobel

?x2

:Aage

:Irene

1

4

?x3

:Niels

:Pierre

2

5

?x4

NULL

:Marie

3

6

Fig. 1. Example of Leapfrog join for evaluating a SPARQL basic graph pattern

pattern order would naively produce 53 = 125 intermediary results containing
the Cartesian product of all five winners of the Nobel prize (as would the multi-
way star-shaped join algorithm of Galkin et al. [17]). On the other hand, under
Leapfrog Join, variable elimination ensures that when, e.g., ?x2 is evaluated,
only those winners that have some father and some mother are considered. The
lower graph then shows the recursion order producing the final result(s).



A Worst-Case Optimal Join Algorithm for SPARQL 265

5 A Physical Operator for Leapfrog Join

We implement Leapfrog Join (LFJ) in Apache Jena TDB version 3.9.0, which
implements nested-loop joins on top of B+tree indexes. We choose Jena as it is
one of the most widely-deployed (fully) open source SPARQL engines; however
the methods described can be generalised to other SPARQL engines. We now
explain the main modifications required to support LFJ in Jena.

Indexes for LFJ: The first modification needed to run LFJ was to extend the
index layer in Jena. Recall that a major phase in LFJ is to compute the set
LFG(P, ?x) given an RDF graph G, a basic graph pattern P and a variable ?x.
The next result shows that Leapfrog Join is a worst-case optimal join algorithm
whenever the computation of LFG(P, ?x) is done in a reasonable time.

Theorem 1. An implementation of Leapfrog Join is worst-case optimal if, for
every RDF graph G, basic graph pattern P , and variable ?x, the computation of
LFG(P, ?x) is done in time at most:

O
(
max( min

t∈P :?x∈var(t)
|π?x(�t�G)|, 1) · log(|G|) )

where π?x(�t�G) is the projection of �t�G over ?x.

The proof of Theorem1 is given in AppendixA.
Calculating LFG(P, ?x) is the same as computing the intersection of all sets

�t�G; hence, one can use any adaptive intersection algorithm over n sets [12,15],
which satisfies the time restriction of Theorem 1. In particular, our implementa-
tion of LFJ uses the intersection algorithm proposed by Veldhuizen [31].

The algorithm of adaptive intersection assumes that each set π?x(�t�G) can
be navigated in increasing order. For this, we need an index IG such that for
every triple pattern t and every variable ?x in t, it provides a seek method
IG[t, ?x]. seek(:a) that outputs the least :b such that :b ≥ :a and �μ(t)�G 
= ∅ for
μ = {?x → :b}, or NULL if no such :b exists; in other words, the seek method
jumps to the next non-trivial output for ?x in the order. To satisfy the bound
of Theorem 1, the seek method is required to take time logarithmic in the size
of G. Although the original LFTJ algorithm proposes to use tries for IG, such a
seek method can be supported using B+Trees adding all six orders over s, p and
o. Hence to Jena’s three default orders spo, pos, and osp, our implementation
adds three more orders: sop, pso, and ops. This roughly doubles the size of
the on-disk index and the number of update operations required to add/remove
triples, but (as shown later) offers gains in query performance with LFJ.5

Each index order is assigned a B+tree, where the seek method could then be
implemented by traversing the B+tree top-down from root to leaf in the standard
5 We currently consider querying over a single RDF graph; if we were to consider a

complete index on quads in order to support named graphs, the number of required
indexes would jump to 24. In such a case, however, practical steps can be taken to
reduce the number of indexes where, for example, some such orders will be rarely
accessed by real-world queries and can thus be removed.



266 A. Hogan et al.

way. However, given that the seek method requests values in sequential order,
we use a stack to store the current node in the iteration, its leaf, and its parents;
when the next value is requested, we can read the next value in the order from
the leaf or, starting from there, search the B+tree upwards and then back down
in case that the next value is in another leaf. This bottom-up seek method offers
constant amortized time when only one variable is unbound [31], logarithmic
time when two variables are unbound, and is more efficient in practice.

LFJ Operator: We add a new LFJ join operator to Jena that takes a basic
graph pattern and evaluates it using our implementation of LFJ (per Algo-
rithm1). Note that the original LFTJ algorithm applies some restrictions: (1)
each relation symbol must appear only once, (2) the order of attributes of the
relations (triple patterns in our case) must follow the global attribute order, (3)
constants cannot appear within the join query and (4) each attribute can appear
at most once in each relation (triple pattern in our case). The first restriction
does not apply for our implementation. Restrictions (2) and (3) are not required
to maintain worst-case optimality and are addressed by our indexes. The case of
variables occurring twice in a triple pattern requires some extra care, but can be
addressed with special indexes for triples repeating the same term in the given
positions (which are typically uncommon in RDF data), or using a fresh variable
and applying a low-level filter/intersection; we omit these details for brevity.

Variable Order: The performance of LFJ is dependent on the chosen variable
order [5]; referring back to Fig. 1, for example, a more efficient order would be to
swap ?x2 and ?x4, which would allow for more quickly rejecting the incomplete
mapping involving :Aage in G. In principle, the goal of finding a variable ordering
is similar to that for ordering triple patterns: in both cases, we wish to evaluate
highly-selective triple patterns/variables that help to filter mappings early on.
Along these lines, while specialised variable orderings have been proposed for
worst-case optimal join algorithms [5], we propose a solution based on Jena’s
existing triple ordering; this has the additional advantage of making experiments
between the baseline version of Jena and Jena with LFJ more comparable.

Given a triple-pattern order Otrip returned by Jena, we first choose join vari-
ables in order of appearance, and then select lonely variables in order of appear-
ance; for example, if Jena gives Otrip = (?z, :p3, ?u), (?x, :p2, ?z), (?x, :p1, ?y),
we will choose the variable order Ovar = ?z, ?x, ?u, ?y since ?z is the first join
variable that appears in Otrip, and ?x is the second join variable that appears in
Otrip; given that ?u and ?y are lonely variables (appearing in one triple pattern),
they come after the join variables, again based on order of appearance. In fact,
as we now discuss, the order of lonely variables will not affect performance.

Enumerating Mappings: Early experiments comparing Jena with and with-
out LFJ found that the performance of the former was sometimes orders of
magnitude worse than the latter. We identified the issue as relating to how
lonely variables are handled. To illustrate this issue, consider a graph pattern
P ′ containing only the first three triple patterns of P in Fig. 1 such that ?x2,
?x3 and ?x4 are lonely variables. Applying the procedure of Algorithm1, after
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assigning ?x1 → :Nobel, we still require 5 × 5 × 5 steps through the recursion,
repetitively evaluating the same partially-bound triple patterns. This final recur-
sion is unnecessary: since lonely variables are evaluated last, we know that the
final mappings must be extended by the Cartesian product of the non-trivial
outputs of the remaining lonely variables. To address this, assume a variable
order Ovar = ?x1, . . . , ?xm, ?xm+1, . . . ?xn where ?x1, . . . , ?xm are join variables
and ?xm+1, . . . , ?xn are lonely variables. Assume also that t1, . . . , tk are the triple
patterns where ?xm+1, . . . , ?xn are mentioned (each such triple pattern may men-
tion one or more lonely variables). We eliminate ?x1, . . . , ?xm per Algorithm 1,
and for each partial solution μm generated, we compute the Cartesian product
μm × �μm(t1)�G × . . . × �μm(tk)�G, requiring k (note that k < n − m) addi-
tional calls to �μm(·)�G for each μm (rather than having to call LF a total of
1 +

∑n−2
i=m

∏i
j=m |LFG(μm(P ), ?xj+1)| times for each μm).

6 Experiments and Results

We now compare the performance of query evaluation for Apache Jena (TDB)
v.3.9.0 with LFJ, Apache Jena v.3.9.0 without LFJ, Virtuoso v.OS-7.2.7 [16]
(one of the most deployed engines in practice [8]), and Blazegraph v.2.1.4 [30]
(used by the Wikidata Query Service [22]). We run three sets of experiments
using the Berlin SPARQL Benchmark [13], the WatDiv Benchmark [6], and a
novel Wikidata Benchmark with complex graph patterns that we propose. We
run all experiments on a single machine with Ubuntu 16.04.5, Intel Xeon CPU
E5-2609 v4@1.70 GHz, Seagate 1TB Enterprise Capacity 2.5-Inch HDD, and
32 GB RAM. Code and configurations can be found online for reproducibility
purposes [2].

6.1 Experiments on the Berlin SPARQL Benchmark

We first ran experiments over the Berlin SPARQL Benchmark (BSBM) [13], com-
paring query runtimes for Jena with (denoted Jena-LFJ) and without (denoted
Jena) the LFJ modifications. We run the Explore Use-Case of BSBM, consisting
of 12 queries using a mix of SPARQL 1.0 features, including optional, union,
filter, graph, etc. In Fig. 2 we show the average time of each query in logarithmic
scale. These experiments were done by running 10,500 queries; we found that on
average each query took 49.3 ms for Jena-LFJ and 41.6 ms for Jena. We conclude
that the BSBM results show no clear trend to suggest that one implementation
outperforms the other. BSBM queries do not contain large intermediary results
and, thus, Jena-LFJ offers no improvement. Furthermore, given that BSBM
queries contain other features of SPARQL, the baseline of Jena can use optimi-
sations for other operators not currently available for Jena-LFJ (in particular,
pushing range filters, which appear in many BSBM queries).
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Fig. 2. Plot of runtimes for queries of the Berlin Benchmark with log y-axis.

6.2 Experiments on the WatDiv Benchmark

After reviewing the BSBM results, we still foresaw the need to run experiments
on queries with more complex and diverse basic graph patterns. We chose the
WatDiv benchmark [6] which is designed for this purpose. We generate 50 queries
for each of the 20 abstract patterns proposed in the benchmark. Executing the
50×20 = 1000 query instances and taking the average over all of them, Virtuoso
takes 64 s, Jena-LFJ takes 77 s, Blazegraph takes 99 s, and Jena takes 198 s.
Box-plots of runtimes for each specific query pattern are shown in Figs. 3 and
4. Unlike in the BSBM experiments, here Jena-LFJ is at least twice as fast as
Jena in terms of the overall query runtime and it also outperforms Blazegraph.
Indeed, these plots suggest that the running time of Jena-LFJ is much more
stable than other implementations; the interquartile difference is at most 40 ms.
Since this benchmark is oriented towards testing basic graph patterns, we can see
here that our implementation is competitive with respect to the other engines,
being slightly outperformed by Virtuoso. Despite this analysis, the runtimes of
these queries are still in the order of less than 100 ms, making it difficult to claim
that Jena-LFJ or Virtuoso is the best approach.
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Fig. 3. Box plots of runtimes for queries L and F of the WatDiv Benchmark.
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Fig. 4. Box plots of runtimes for queries S of the WatDiv Benchmark

6.3 Experiments on the Wikidata Graph Pattern Benchmark

Though WatDiv contains more complex graph patterns than Berlin, it does not
contain (for example) graph patterns with cycles; furthermore, both benchmarks
are based on synthetic data with relatively simple schemata (e.g., BSBM and
WatDiv have 30 and 85 distinct predicates, respectively). In order to compare
the four engines for real data and a more diverse set of both acyclical and cyclical
graph patterns, we thus developed a new benchmark that we call the Wikidata
Graph Pattern Benchmark (WGPB).

Dataset: To generate the WGPB dataset, we take the Wikidata “truthy” dump
from 2018/11/15. This dump contains 3,303,288,386 triples. Given that our goal
is to develop queries on the graph structure of Wikidata, we remove labels,
aliases, and descriptions, leaving 969,496,651 triples with 5,419 unique predi-
cates. Given that we will later apply random sampling, we removed triples whose
predicate appeared fewer than 1,000 times to ensure that we avoid generating
trivial query instances. Finally, we also remove triples whose predicates appear
in more than 1,000,000 triples. The result, which we call the Wikidata Core
Graph (WCG), contains 82,923,234 triples with 2,101 distinct predicates.

Queries: To achieve a set of queries with diverse graph patterns, we create
instances of the 17 abstract basic graph patterns shown in Fig. 5; we focus on
joins between subjects and objects as common in real-world queries [14]. For
each abstract pattern we instantiate 50 queries using random walks in WCG
per the given pattern; each instance replaces the predicate variables by the IRIs
found on the walk; for example, the first pattern ?x ?p1 ?y . ?x ?p2 ?z may
be instantiated as SELECT * WHERE{ ?x wdt:P57 ?y . ?x wdt:P166 ?z }.

Results with Single Join Variable: We first present results for queries with
a single join variable (the top row of Fig. 5), analysing the performance of the
Leapfrog procedure of LFJ. Executing the 50 × 9 = 450 query instances, in
terms of overall query runtime across all patterns, Jena-LFJ takes 4.0 s, Jena
takes 14.0 s, Blazegraph takes 27.9 s, and Virtuoso takes 64.8 s. Figure 6 then
shows the detailed results per query pattern, where we focus the y-axis in on the
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Fig. 5. Basic graph patterns and their associated diagram

range of 0–300 ms for clarity. Here we see that Jena-LFJ is at least twice as fast
as Jena in terms of median or mean times, and can be 10–20 times faster than
the slowest engine for some queries. The most notable speedup occurs when join
variables appear in the object position, which may lead to many intermediate
results when a node with high in-degree (e.g., a country) is involved; in such
cases, LFJ performs better than other engines. One might consider that this
speedup may be attributable to the lack of the three additional orders of s, p
and o in the other engines. However, in the case of the best gains – i.e., joins in
the object position – Jena-LFJ is using the pos index, which is already included
in Jena; more generally, Jena uses index nested loop joins, which cannot benefit
from further index orders when evaluating BGPs/equijoins.

We further observe that the runtimes for Jena-LFJ are more stable, with the
maximum runtime never exceeding 55 ms; furthermore, within the 50 queries
of each abstract pattern, the standard deviation in runtimes for Jena-LFJ is
consistently around 9 ms, while Jena’s standard deviation is always over 20 ms,
and that of Virtuoso and Blazegraph is even higher, sometimes over 100 ms.
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Fig. 6. Box plots of runtimes for queries with a single join variable

Results with Multiple Join Variables: We now present results for queries
with multiple join variables (the bottom row of Fig. 5). Given that the previous
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Fig. 7. Box plots of runtimes for queries with multiple join variables

experiments test the performance of Leapfrog for intersecting results for join
variables in up to four patterns, our focus now is on the performance of variable
elimination. We thus select abstract graph patterns where each variable appears
in at most two triple patterns; such queries put as much emphasis as possi-
ble on the performance of the variable elimination phase versus the Leapfrog
phase tested previously. Executing the 50 × 8 = 400 query instances, in terms
of the overall query runtime across all patterns, Jena-LFJ takes 12 s, Virtuoso
takes 37 s, Jena takes 112 s, and Blazegraph takes 35 s. Figure 7 again shows
the detailed results focusing on the same y-axis range for clarity. We again see
that Jena-LFJ generally exhibits the most stable runtimes, clearly outperform-
ing Jena and Blazegraph for all patterns and Virtuoso for the first two pat-
terns. Comparing Jena-LFJ and Virtuoso for the latter six patterns (those with
cycles), Virtuoso is competitive with and sometimes even outperforms Jena-LFJ;
analysing further, we found that Virtuoso often chooses a better execution order
than Jena(-LFJ), where manually optimising the variable order in Jena-LFJ for
such cases results in much better performance than Virtuoso; this suggests that
the variable ordering of Jena-LFJ could be improved. Even with the current
variable ordering of Jena-LFJ, however, the clear gains in the first two patterns
vs. Virtuoso outweigh slight gains by Virtuoso in some of the latter six patterns,
as evidenced by the total runtimes mentioned previously (12 s vs. 37 s).

7 Conclusions

To the best of our knowledge, this is the first work to look at the benefits of
worst-case optimal join algorithms in a SPARQL setting. Based on our results, we
believe that worst-case optimal joins should become widely adopted by SPARQL
engines in the near future; we also firmly believe that our results are only a
starting point in this line of research, and that there is still much room left
for maximising the potential benefits of such algorithms in a SPARQL setting.
Along these lines, we have released an open source fork of Apache Jena imple-
menting LFJ that can serve as a baseline for future experiments, and a novel
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benchmark based on Wikidata that can be used for testing future developments
in a real-world setting. In terms of future work, we identify three main lines
of research, investigating: (i) the potential benefits of other worst-case optimal
join algorithms for SPARQL [19,21,24,25,28,31]; (ii) effective ways to optimise
the variable order [5,21]; (iii) optimisations that push the evaluation of other
SPARQL operators – particularly optional patterns, property paths, difference,
and named graphs – into the worst-case optimal process.

Acknowledgements. This work was supported by the Millennium Institute for Foun-
dational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

A Proof of Theorem1

Fix a basic graph pattern P , an RDF graph G, and ?x1, . . . , ?xn the chosen
variable order. Further assume that the computation of LFG(P ′, ?x) takes time
at most mint∈P ′:?x∈var(t) |π?x(�t�G)| · log(|G|) for every basic graph pattern P ′

(for simplicity, we will omit the trivial empty case where there exists t ∈ P ′

such that ?x ∈ var(t) and |π?x(�t�G)| = 0 since the time taken will be simply
log(|G|)). Finally, for every RDF graph G′ we will say that G′ is of size less than
G whenever |�t�Gi

| ≤ |�t�G| for all t ∈ P (recall that P is fixed).
The proof of Theorem1 goes in two steps. First, we will bound the time of

Leapfrog Join by bounding the time Ti of each for-loop ?xi of Algorithm 1. Then
for each level ?xi we define a new RDF graph Gi of size less than G such that
Ti = |�P �Gi

| ≤ 2MIN(P,G). The proof will follow by taking the sum over all Ti.
Fix a variable ?xi and denote by x̄i−1 = ?x1, . . . , ?xi−1 the order of variables

before ?xi (for the sake of simplification, in the sequel we consider x̄i also as a
set). We start by bounding the time of the for-loop in Algorithm1 corresponding
to ?xi. For this, consider the following extension of LFG over x̄i−1:

LFG(P, x̄i−1) = {μ | dom(μ) = x̄i−1 and �μ(t)�G 
= ∅ for all t ∈ P}
Clearly, the number of times that the for-loop of ?xi will be called is given
by |LFG(P, x̄i−1)|. Then for each μ ∈ LFG(P, x̄i−1) the Leapfrog procedure
LFG(μ(P ), ?xi) is called taking time at most mint∈µ(P ):?xi∈var(t) |π?xi(�t�G)|
(omitting the log(|G|) factor for the moment). If we call Ti the number of steps
that Algorithm 1 spends in the for-loop of ?xi, we have that:

Ti =
∑

µ∈LFG(P,x̄i−1)

min
t∈µ(P ):?xi∈var(t)

|π?xi(�t�G)|

One can easily check that the total time of Algorithm1 is given by (
∑n

i=1 Ti) ·
log(G). Therefore, if we bound Ti by the AGM bound of P and G, then the
worst case optimality of Leapfrog Join will be proven (recall that our analysis is
in data complexity, omitting factors that depend on the size of P ).

To bound the size of Ti, we build an RDF graph Gi such that Ti = |�P �Gi
|

and the size of Gi is less that the size of G. Let ⊥ be a dummy value. To build
Gi define the set of mappings Ui such that μ ∈ Ui if and only if there exists
μ′ ∈ LFG(P, x̄i−1) such that:
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1. μ(?x) = μ′(?x) for every ?x ∈ x̄i−1,

2. 1 ≤ μ(?xi) ≤ mint∈µ′(P ):?xi∈var(t) |π?xi(�t�G)|, and

3. μ(?x) = ⊥ for every ?x ∈ {?xi+1, . . . , ?xn}.

In other words, Ui contains all mappings built from mappings of LFG(P, x̄i−1)
and extended by assigning to ?xi any value less than the time for computing
LFG(μ′(P ), ?xi). From Ui we can build the RDF graph Gi as follows:

Gi =
⋃

µ∈Ui

μ(P ).

By construction, note that the size of Gi is less than the size of G. Furthermore,
we have that Ti = |�P �Gi

|. Indeed, for each μ′ ∈ LFG(P, x̄i−1) we will have(
mint∈µ′(P ):?xi∈var(t) |π?xi(�t�G)|) different mappings in �P �Gi

and vice versa.
To finish the proof, recall the linear program associated to P and G, and its

minimum value MIN(P,G). Consider also the same linear program but now for
P and Gi. Given that Gi is of size less than G, then the minimization function
associated to the linear program of P and Gi always satisfies:

∑

t∈P

xt · log(|�t�Gi
|) ≤

∑

t∈P

xt · log(|�t�G|).

Therefore, we can conclude that MIN(P,Gi) ≤ MIN(P,G) and thus:

Ti = |�P �Gi
| ≤ 2MIN(P,Gi) ≤ 2MIN(P,G)

where the second inequality follows by the AGM bound. Given that each Ti

is bounded by 2MIN(P,G) we conclude that the overall time is bounded by n ·
2MIN(P,G) · log(G) and that Leapfrog Join is worst-case optimal.
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Abstract. Entity-centric information resources in the form of huge RDF
knowledge graphs have become an important part of today’s informa-
tion systems. But while the integration of independent sources promises
rich information, their inherent heterogeneity also poses threats to the
overall usefulness. To some degree challenges of heterogeneity have been
addressed by creating underlying ontological structures. Yet, our anal-
ysis shows that synonymous relationships are still prevalent in current
knowledge graphs. In this paper we compare state-of-the-art relational
learning techniques to analyze the semantics of relationships for unify-
ing synonymous relationships. By embedding relationships into latent
feature models, we are able to identify relationships showing the same
semantics in a data-driven fashion. The resulting relationship synonyms
can be used for knowledge graph consolidation. We evaluate our tech-
nique on Wikidata, Freebase and DBpedia: we identify hundreds of exist-
ing relationship duplicates with very high precision, outperforming the
current state-of-the-art method.

Keywords: Data quality · Synonym detection · Knowledge embedding

1 Introduction

Knowledge graphs (KG) efficiently collect entity-centric data in triple format and
serve an increasing number of applications. Beginning with the Semantic Web
standard RDF for knowledge representation, projects like Wikidata [27], DBpe-
dia [4], Freebase [5], YAGO [25] and the Google Knowledge Vault [7] over the
last years have grown significantly to support for instance Web search, question
answering, and recommender systems.

But from the beginning, highly heterogeneous data items have caused severe
problems in RDF databases, because a huge number of independent data sources
needs to be integrated in a world-wide Semantic Web. During integration, het-
erogeneity issues are mostly manifested by having different RDF identifiers for
the same real-world objects or relationships. However, while ontology alignment
is extensively investigated for example at the Ontology Alignment Evaluation
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Initiative1 at ISWC, research has mainly focused on ontology and class align-
ments for two ontologies, often even requiring a complete OWL ontology. A
detailed analysis of the DBpedia KG reveals that we are indeed facing another
big problem: duplicates within the same KG. For instance, more than 26 different
identifiers represent the birthplace relationship. For the entity Albert Einstein
dbo:birthPlace is used, birthplaces of other persons use dbp:birthCity or
even an identifier inspired by the French language dbp:lieuDeNaissance. Thus,
queries asking for birthplaces using the dbo:birthPlace URI will be incomplete:
persons whose birthplace is stated in some synonymous relationship will not be
returned.

The problem of finding these synonymous relationships has hardly gotten
any attention. Existing work [2] on this topic has only been evaluated on a
small dataset, not reflecting the heterogeneities of today’s large KGs. Traditional
ontology alignment techniques often require two distinct ontologies as an input
and are also pushed to their limits due to the lack of OWL statements in common
KGs. Also natural language processing-based techniques like DOME from the
OAEI 2018 [9] are often pushed to their limits here, because several KGs like
Wikidata or Freebase use complex identifiers for naming relationships so that
natural language techniques cannot be used.

In this paper, we detect synonymous relationships in a data-driven fashion
only relying on the KG itself, thus not making any assumptions on the data:
We are independent of a formal ontology in OWL and work with arbitrary iden-
tifiers for relationships. Our technique transfers ideas from synonym detection
with word embeddings in natural language processing [17,22,30] into the field of
KGs. Recently, relational learning techniques, also known as knowledge embed-
dings, have already been proposed to predict new triples in KGs [18,21,28]. In
a nutshell, they are machine learning models trained on large sets of triples,
learning latent vector representations of entities and relationships, which may
be used to predict the correctness of known and unknown triples. We are the
first work that makes use of the relationship representation in knowledge embed-
dings by showing that it may be used to reliably measure semantic similarity of
knowledge graph’s relationships. The main contributions of our work are:

– We develop a new method for identifying synonymous relationships in knowl-
edge graphs by employing knowledge embeddings.

– Our method is purely data-driven not making any assumptions on the data
and therefore is generalizable to all kinds of KGs.

– In an extensive evaluation with state-of-the-art knowledge embeddings
(RESCAL [20], TransE [6], TransH [29], TransD [12], ComlEx [26], Dist-
Mult [31], HolE [19] and ANALOGY [16]) on Freebase, Wikidata and DBpe-
dia, we demonstrate that we are able to identify synonyms with very high
precision, outperforming a current state-of-the-art method.

– For reproducibility, we provide all our source code, datasets, and results in a
publicly available Github repository.2

1 http://oaei.ontologymatching.org/.
2 https://github.com/JanKalo/RelAlign.

http://oaei.ontologymatching.org/
https://github.com/JanKalo/RelAlign
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2 Related Work

Synonym Detection for relationships is about finding relationships with identi-
cal semantics within a single KG. To the best of our knowledge, only a single
work on synonymous relationships [2] exists. Abedjan et al. [2] have noticed that
particularly in DBpedia several synonymous predicates exist. To overcome prob-
lems in querying, they propose a query expansion process that builds on top of
synonymously used relationships. They argue that for example the relationships
artist and starring, even though they are not directly synonymous, in con-
text of movies are synonymously used, making them good candidates for query
expansion. Our manual analysis shows that the definition of synonymously used
predicates is rather vague and differ from one application to another. Synony-
mous relationships as used in this paper are a subclass of synonymously used
relationships, so the technique can serve as a baseline for this work.

The method of Abedjan et al. works with frequent item set mining. First,
relationships that often co-occur for the same object entities are gathered in
frequent item sets. Frequent item sets that exceed a certain minimum support
threshold are further analyzed. The minimum support is an input parameter
defined by the user, highly influencing precision and recall. All predicates within
the same frequent item set are evaluated pairwise with the Reversed Correlation
Coefficient together with their co-occurrence with the same subject entities.
This is based on the assumption in mind that synonymous relationships should
not co-occur for the same subject entities. In contrast, knowledge embedding
based methods as proposed by us do not make any assumptions on the data.
The authors evaluate their approach on a small manually built synonym dataset
from DBpedia 3.7, Magnatune and Govwild. They show that their approach
often achieves a precision value above 50%.

Ontology Alignment in contrast to synonym detection, is concerned with match-
ing schemas of more than a single knowledge graph or RDF dataset. It has been
a hot topic since the early days of the Semantic Web. Every year the Ontology
Alignment Evaluation Initiative (OAEI) organizes a workshop for benchmark-
ing different alignment systems. Its goal is to overcome problems like dupli-
cate entities, classes and also relationships to integrate two or more ontolo-
gies [3,11,13,24]. Typically three different matching problems are addressed in
the field of ontology alignment: Instance matching, class matching and sometimes
also relationship matching. Instance matching or entity matching which is about
finding synonymous entities between two or more knowledge bases [10,14]. These
techniques rely on matching entities with similar relationships and properties.
Class matching is about finding classes with equivalent semantics, relationship
alignment about finding equivalent relationships.

DOME by Hertling et al. [9] is the only system that creates a relationship
alignment in the knowledge graph track of OAEI 2018. However, its matching
component relies on string similarity techniques, being very restrictive. Knowl-
edge graphs often have complex identifiers as relationship URIs, making it impos-
sible for such natural language based techniques to work at all.
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Other ontology alignment tools (e.g. PARIS [24]) usually rely on two distinct
ontologies and are not able to identify synonyms within a single knowledge graph,
because their matching mechanism works on the relationships extensions, i.e.
the entities taking part in the relations. In case of synonyms within a single
knowledge graph this is usually not applicable, since synonymous relationships
might have no overlap in their extension.

Furthermore, several ontology alignment systems that have been presented at
OAEI over the last years are relying on a manually built ontology in OWL. They
are not working on knowledge graphs that do not provide OWL information, as
for example Wikidata and Freebase.

Knowledge Embeddings are usually used for predicting new triples in KGs, but
can also be used for instance matching or entity resolution [18,28], which has
some similarity to finding synonymous relationships. To the best of our knowl-
edge there is only very few works that have looked concretely at the problem of
finding instances of the same real-world entity with the help of knowledge embed-
dings. It has been proposed to formulate entity resolution as a link prediction
task by predicting triples of the form (x, owl:sameAs, y) [20]. For RESCAL,
Nickel et al. describe how to directly compare the entity representations to find
identical entities, but they evaluate this idea only on a small dataset with about
2500 entities and only 7 relationships [20]. The idea of using relationship repre-
sentations of knowledge embeddings has not been tested and evaluated before.

3 Preliminaries

In the Semantic Web, knowledge graphs are represented by the Resource
Description Framework (RDF), a standard for knowledge representation by the
W3C [1]. Knowledge in RDF has the form of subject, predicate, object triples:
(s, p, o) ∈ E ×R× (E ∪L). Subjects stem from a set of resources E, representing
entities or concepts (often from the real-world). Predicates stem from a set of
relationships R. And objects are either resources like subjects or literals from the
set L. They may be strings, numbers or dates. Resources and relationships are
represented by Uniform Resource Identifiers (URIs). Due to better readability,
in all our examples, we use textual labels instead of URIs for the identification
of resources and relationships. Note that we focus on RDF without blank nodes
and reification, since they cannot be processed by any of the knowledge embed-
ding techniques we employ in this paper. A knowledge graph is a finite set of
triples KG ⊆ E × R × (E ∪ L).

Since large KGs are usually created by crowd workers or automatic extrac-
tion, it may contain synonymous relationships or entities. With synonymous we
refer to two (or more) distinct URIs either in E or R that refer to the same
real-world entity, concept or relationship. As an example from DBpedia, the
relationships birthPlace ∈ R and placeOfBirth ∈ R both refer to the rela-
tionship connecting a living being to its place of birth, which usually is a city.
Similar to the work in [2], we are interested in finding synonymous relationships
within a single knowledge base.
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Given some knowledge graph Knowledge Graph Consolidation is the problem
of finding all possible synonymous relationships so that they may be integrated.
In the Semantic Web, these relationships are either collapsed into a single rela-
tionship or marked as identical by introducing a new triple with the owl:sameAs
predicate.

4 Detecting Synonymous Relationships with Knowledge
Embeddings

In this section, we present a new classification method for finding synonymous
relationships in large KGs based on knowledge embedding techniques. Our idea
is inspired by synonym search from natural language processing, which is often
based on latent vector representations of words [17,22]. High-dimensional vector
representations of RDF-based KGs (knowledge embeddings) are based on statisti-
cal relational learning techniques. For a detailed overview of existing knowledge
embedding models is provided in the survey by Nickel et al. [18]. The latent
vector representations of a knowledge embedding are learned from a KG by
computing an optimization function on the set of correct triples from a KG
and a set of automatically generated incorrect triples. During this optimization
process, knowledge from the KG is encoded into an entity and a relationship
representations which usually is combined to predict new triples. Empirical eval-
uations have shown that known triples from KG, but also unknown triples that
have not been present in the KG are predicted by these models with high preci-
sion, at least when evaluated on small datasets like FB15K from Freebase and
WN18 from Wordnet [6]. For entities it has been shown that their embeddings
may be used to measure semantic similarity by applying distance metrics on the
vectors [20,21].

Our approach uses a property of knowledge embeddings that has not been
exploited before. We show that not only the entity representation can be used
to measure semantic similarity, but also the latent representation of relation-
ships can be used to measure its semantic similarity. Our work investigates the
advantages and limits of this property for detecting synonymous relationships
with knowledge embeddings, so relationships that have a very high semantic
similarity. In this paper, we employ the knowledge embeddings RESCAL [20],
TransE [6], TransH [29], TransD [12], ComplEx [26] DistMult [31], HolE [19] and
ANALOGY [16]. From all models, we can obtain a relationship representation
either in form of a vector, as a matrix, or as a concatenation of several matri-
ces that can be used to measure the semantic similarity of the relationships in
a vector space using classical vector metrics. Since knowledge embeddings are
currently not able to embed literal values or relationships that are in triples with
literal values, our method is restricted to relationships between resources.

4.1 Representing Relationships in a Knowledge Embedding

As already mentioned, knowledge embeddings have been created to predict new
triples, usually by applying vector operations on subject, predicate, object vec-
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tor representations. To give an intuition of why the techniques are suitable
for finding synonymous relationships, we provide a small example: Given two
true triples, (Albert Einstein, birthplace, Ulm) and its synonymous counter-
part (Albert Einstein, bornIn, Ulm). Albert Einstein and Ulm having unique
vector representations in the knowledge embedding. The vector representation
Albert Einstein and the vector for birthplace can be combined in such a
way that the vector of Ulm is predicted, using the prediction capabilities of the
embedding. Since the same mechanism also works when combining the vector of
Albert Einstein and bornIn, usually the relationship vectors for birthplace
and bornIn are identical. But also for the triple (Max Planck, placeOfBirth,
Kiel), the vector representations of Max Planck would be similar Albert Ein-
stein’s, Kiel’s representation similar to Ulm. Thus placeOfBirth may also be
detected as a synonym of the other relationships.

Our synonymous relationship detection technique makes use of this prop-
erty by employing vector similarity as a measure for semantic similarity of rela-
tionships, whereas very similar vectors with a similarity larger than a certain
threshold are likely to be semantically synonymous relationships. For measur-
ing the semantic similarity between the relationship embeddings of vectors and
matrices, we use standard vector norms. We have evaluated our method on
the cosine similarity measure and on the L1-norm which is a distance measure.
Note that a vector similarity of 1 means that two vectors are highly similar.
Analogously, the vector distance of 0 implies high similarity. Cosine similarity
is defined as sim(ri, rj) = ri·rj

||ri||||rj || . It ranges from −1 to 1. The L1-norm is

defined as dist(r, r′) =
∑d

i=1 |ri − r′
i|, d being the number of dimensions of the

embedding. In contrast to cosine similarity, this norm is not restricted to a fixed
interval, but is at least 0. If relationships are represented as a matrix, the entry-
wise measures are computed. Computing the entry-wise measures of a matrix
boils down to concatenate the columns of a matrix resulting in one large col-
umn vector. We use these similarity metrics for classifying relationship pairs as
synonymous in the next step.

4.2 Classification of Synonymous Relationships

Finding synonymous relationships may be seen as a binary classification problem
for some pair of relationships, where we have to separate synonyms from non-
synonyms, based on their similarity. In the ideal case where knowledge embed-
dings can perfectly represent the semantics of a KG, very similar relationship
representations imply that the relationships are synonym. For KG consolidation
we need to classify all possible combinations of relationship pairs. Classification
in our scenario is about determining a similarity or distance/similarity threshold
for each relationships such that it separates synonymous from non-synonymous
relationships.

As the first step, we compute a similarity histogram for every single relation-
ship measuring its similarity/distance to all other relationships in the respective
KG. Subsequently, we describe our method only based on distance metrics. How-
ever, the method is analogously used for similarity metrics.
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(a) (b) (c)

Fig. 1. (a) A histogram with clear outlier for the relation award ceremony, (b) without
any outlier friend and (c) with very similar relationships, but without an explicit
outliers title.

In Fig. 1, we provide three exemplar histograms that we have built from a
TransE model on the FB15K dataset from Freebase. The more left a relationship
is located in the histogram, the smaller its distance to the respective relationship
and the higher its semantic similarity. In Fig. 1(a), the majority of the relation-
ships have an L1 distance of 6, whereas a single relationship has a distance of
only 2. This relationship is seen as a clear outlier on the left side of the mass of
the distribution. Hence, its vector distance is drastically smaller and its semantic
similarity should be much higher. Indeed, this outlier is a synonym.

In contrast, we cannot find such an outlier in Fig. 1(b). Here, the histogram’s
mass has an average distance of 8. Outliers in this histogram may only be found
on the right side of the distribution, being extremely dissimilar. The minimum
distance of any relationship is at least 7. And indeed the respective relationship
does not have any synonyms within our dataset.

For some relationships, outliers are not that easy to identify. In Fig. 1(c) for
example, the most similar relationship has a distance of 2. Due to this variety in
similarity histograms, a static and global threshold valid for all relationships of
a KG is not suitable for this classification task. Instead, we aim at computing a
dynamic threshold individually for each relationship based on outlier detection.
Actually the relationship from Fig. 1(c) has several synonyms, but they can
hardly be separated from the remaining relationships. It turns out that outliers
usually are synonymous relationships, but not all synonymous relationships can
be clearly identified as outliers.

In the second step, we perform the actual classification on these relationship-
specific histograms. Since the similarity distribution usually are hardly skewed,
we rely on an outlier detection based on the Z-score [23]. Given a similarity
histogram for relationship ri, we compute a Z-score for all (ri, rj), where rj is
another relationship from the KG. The Z-score is defined as: zij = dist(ri,rj)−μri

σri
,

μri
being the arithmetic mean and σri

the standard deviation. Since the Z-score
detects outliers based on their distance in terms of standard deviations from
the arithmetic mean of the distribution, a fixed Z-score is used for classification
of very diverse similarity histograms. With varying thresholds for the Z-score
we can either achieve very precise results with low thresholds, or recall-oriented
results with high thresholds.
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In practice, similarity histograms for relationships have several outliers which
sometimes can hardly be distinguished from the rest of the distribution, which
makes a classification only based on the histogram very difficult. In these cases
however, even a manual binary classification is extremely difficult and cannot be
performed without detailed background knowledge. Further details are discussed
in the evaluation section.

5 Evaluation

In the experiments, 8 different knowledge embeddings on several real-world KGs
are trained and compared to the method from Abedjan et al. from [2], which
is used as a baseline. We employ the knowledge embeddings RESCAL, TransE,
TransH, TransD, ComplEx, DistMult, HolE and ANALOGY on Wikidata, Free-
base and DBpedia. Additional results for other parameters, diagrams, datasets
and scripts for reproducing the results may all be found in our Github reposi-
tory3. Our implementation of the knowledge embeddings is based on the frame-
work OpenKE [8] which comprises 9 knowledge embedding models. TransR [15]
is excluded from the evaluation, since it was not able to return any synony-
mous relationships at all. The implementation of our classification, the evalua-
tion scripts and the baseline systems are in Python.

In this section, we wanted to evaluate synonym detection in a two-fold man-
ner: (1) Experiments where we could evaluate precision and recall with syn-
thetic synonyms, (2) but also a real-world scenario where we are not making any
assumptions when generating synthetic synonyms.

Overall this resulted in three experiments:

1. We first experimented on a subset of Freebase (FB15K [6]) that is known
to perform very well for training knowledge embedding models. To measure
recall and precision, synthetic synonymous relationships are introduced into
Freebase.

2. The second experiment is performed on synthetic synonyms in Wikidata. A
KG that has due to its size and sparseness rarely been tested for knowledge
embeddings. Since Wikidata’s size is not suited for knowledge embeddings
to be trained on, a special sampling techniques that still allows to find all
synonymous relationships is used.

3. The third experiment on DBpedia, a manual evaluation of the Precision@k
for a large sample of DBpedia, instead of introducing synthetic synonymous
is performed. In contrast to Wikidata, DBpedia is much more heterogeneous
because it comprises a larger number of relationships. A measurement of the
recall is not suitable here, because no gold standard of synonymous relation-
ships is available. Building a gold standard would require manually checking
millions of possible synonym pairs.

3 https://github.com/JanKalo/RelAlign.

https://github.com/JanKalo/RelAlign
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(a) (b)

Fig. 2. Precision-recall-curves for synthetic synonyms on freebase. (a) Results with
cosine similarity (b) Results with L1-Metric

In a final discussion, a comparison of the different experiments is made and
cases where our technique could not identify synonymous relationships are fur-
ther discussed. The discussion will also present the advantages and disadvantages
of the different models and provide guidelines for choosing the right model for
synonym detection.

Baseline Based on Frequent Itemsets. In all experiments, the 8 embedding
models are compared to the baseline technique from [2]. Since no implemen-
tation is available for the baseline system for synonym detection from [2], we
re-implemented the Range Content Filtering and Reversed Correlation Coeffi-
cient as described in the paper. Further details on our Python implementation
are available in our Github repository. However, the technique has a minimum
support as an input parameter for the range content filtering step, which highly
influences precision and recall. We performed a grid search on the minimum
support to tune this parameter to achieve highest F1 measure.

Synthetic Synonyms Generation. Synthetic synonyms are created by replacing
relationship URIs with new (synthetic) URIs in existing triples of the dataset.
As an example, we replace the triple (Albert Einstein, award, Nobel Prize)
with the triple (Albert Einstein, award synonym, Nobel Prize). award and
award synonym now have the identical meaning and are treated as synonymous
relationships. To perform a proper relationship alignment task, the method has
to re-identify these synthetic synonyms from the KG. For the synthetic synonym
generation, an assumption from [2] is used so that the baseline can perform syn-
onym detection. Abedjan et al. assume that synonymous relationships do not
co-occur for the same subject entity. In case of our Einstein example, all triples
about his awards would either use award or award synonym, but should not mix
the two for the same entity. This assumption stems from the idea that enti-
ties and their triples are often inserted at once by the same person or from the
same data source. In such cases, synonymous relationships for the same entity
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are usually rare. For the experiments with synthetic synonyms, we introduced
exactly one synthetic relationship for each relationship that occurs in at least
2000 triples and replaced it in 50% of the triples resulting in a 50-50 distribution
of synonyms to non-synonyms. The F1-measure for all methods, including the
baseline method, decreases the more skewed the distribution is, since it leads to
some relationships being extremely rare, which negatively influences the embed-
ding representation of a relationship. Results for the skewed distributions may
also be found in our Github repository.

Sampling Method for Large Knowledge Graphs. Knowledge embedding training
involves a lot of computational effort, which is why it should be performed on
a fast GPU. Typical GPUs are very restricted in their memory size, making it
impossible to train models for complete KGs. Training embeddings for example
on the complete Wikidata dataset on a CPU is technically possible, but is around
10–100 times slower (i.e., several weeks) and thus prohibitive. To overcome this
issue, we came up with a sampling technique that covers all relationships of a
KG, but only a fraction of all triples. We randomly selected entities with all their
triples in such a way that we have similarly many triples per relationship in our
random sample. This sampling method guarantees for the knowledge embeddings
still to work, while having enough information about each relationship so that
its semantics is correctly be mapped to the latent vector space.

5.1 Evaluation of Synthetic Synonyms in Freebase

In this experiment, we compared knowledge embedding-based synonym detection
with the baseline system on a subset from Freebase (FB15K) that is usually
used to evaluate knowledge embeddings on link prediction [6]. FB15K comprises
592,213 triples about 15k entities, using 1,345 different relationship types. The
dataset does not contain any literals, hence only triples where subject and object
are resources. Originally, FB15K is a small part of Freebase that was chosen
for link prediction, because it comprises a lot of triples per entity and lots of
entities per relationship. It has been shown that this dataset is particularly well
suited for training knowledge embeddings, also leading to good results in other
tasks like link prediction. Since no gold standard for the existing synonymous
relationships in FB15K is available, we have introduced synthetic synonyms.
Overall 74 synonymous relationships have been added to FB15K.

The results of 8 knowledge embeddings and the baseline are presented in
Fig. 2. The baseline achieves it highest precision of 1.0 at a recall of 0.11, but
then drops to a precision of 0.05. For the minimum support of 0.02 leading to
the best F1 measure, the recall never exceeds 0.5. This implies that 60% of the
synonyms are never found. A lower minimum support also negatively influences
the precision. Our knowledge embedding based approach on the other hand is
evaluated with cosine and L1 metric. For the cosine similarity in Fig. 2(a), the
baseline performs best for low recall values, but for a recall above 0.2 all models
but DistMult perform better than the baseline approach. The results quality is
even better for most models with L1 metric in (b). TransD is best in synonym
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(a) (b)

Fig. 3. Precision-recall-curves for synthetic synonyms on Wikidata. (a) Results with
cosine similarity (b) Results with L1-metric

detection, achieving 1.0 precision at a recall of 0.1 and still 0.4 precision at a
recall of 0.8.

Knowledge embeddings in this dataset achieve a high precision, for low recall
values, but also find a lot of false positive synonymous relationships. These false
positives are due to Freebase’ fine granular modelling of relationships, leading
to a high number of semantically very similar relationships that are not syn-
onymous. Relationships in Freebase are defined for each entity type separately,
implying that each relationship type is only used for a certain entity type. As an
example several genre relationships are defined, depending on the class of the
entities it is connected to. Differentiating music genre from film genre is quite
difficult, but still possible with most embedding models. However, it gets even
more difficult: FB15K contains 33 different currency relationships, all having a
slightly different semantics, but very similar extensions. Hence being a problem
for data-driven synonym detection techniques, when no background knowledge
is given.

5.2 Synthetic Synonyms in Wikidata

The KG Wikidata is one of the fastest growing KGs that is openly available
today. Our Wikidata version is from 9-19-2018. In contrast to other KGs, the
Wikidata community is investing a lot of work into controlling its vocabulary.
Therefore, it is supposed to be synonym free, which makes it a great candi-
date for evaluating our method with synthetic synonyms. Due to its size, we
did not train knowledge embeddings on the complete Wikidata KG, but on a
sample that comprises 15,663,641 million triples, with 341 synthetic synonymous
relationships out of 1,797 relationships.

The precision and recall curves for all 8 models and the baseline are presented
in Fig. 3. The knowledge embedding model-based approaches show a higher pre-
cision than the baseline for cosine similarity and L1-metric. Only RESCAL can-
not hold up with any other system. The baselines starts with a high precision,
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(a) (b)

Fig. 4. Manually evaluated Precision@k for synonyms in DBPedia. (a) Results with
cosine similarity (b) Results with L1-metric

but sharply decreases and ends at a precision of 0.2 at a recall of 0.3. For the
optimally chosen minimum support, the baseline only returns one third of all
synonymous relationships. ComplEx and HolE achieve best classification results,
outperforming the baseline by far. HolE has a precision of 0.75 at a recall of 0.3
and then is decreasing (cf. Fig. 3(a)). ComplEx in contrast is starting with a lower
precision, but still has a precision of over 0.5 at a recall of 0.5 (cf. Fig. 3(b)).

Training good knowledge embeddings on a knowledge graph that is as sparse
as Wikidata leads to lower quality models in contrast to FB15K, impairing the
knowledge embedding quality. This also impairs the quality of synonym classifi-
cation. However, Wikidata in contrast to FB15K does not contain highly similar
relationships that could be misjudged as false positives by the classification tech-
nique. These two factors even out each other leading to a comparable quality to
FB15K from the previous experiment.

5.3 Finding Synonyms in DBpedia with Manual Evaluation

As a last experiment, we also want to show that our method identifies existing
synonyms in a large scale and very heterogeneous KG. Therefore, we evaluate
our method with all embedding models and the baseline on a sample of DBpedia-
16-2010. Due to its size, again a random sample similar to the procedure before
is taken, resulting in a dataset with 12,664,192 triples and 15,654 distinct rela-
tionships.

For the manual evaluation on DBpedia, the annotator were supposed to eval-
uate relationship pairs into synonyms and non-synonyms. To measure the dif-
ficulty of the task, we first measured the inter-annotator agreement on a small
sample of our dataset. We achieved an annotator agreement of over 0.90 for two
independent raters, implying that the raters came to very similar results. Due to
this experiment and due to the size of the dataset, we decided for only a single
annotator for the manual evaluation. This manually build dataset stems from
the top 500 results for each embedding model and the baseline summing up to
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around 3600 relationship pairs of which 1100 have been classified as correct. The
dataset is also available in our GitHub repository. Now, we are able to obtain
Precision@k values up to k = 500.

The results as Precision@k of our manual classification are presented in Fig. 4.
For the baseline approach in this experiment, we chose a minimum support that
returns around 500 results, so that it is comparable to the other results. Choosing
a lower minimum support would increase the number of returned results, but
decreases the precision. In contrast to the other models, the baseline starts with a
low precision for k = 50, with a steadily increasing precision of up to 0.25 at k =
500. Note that the baseline is never exceeding a precision of 0.3 with the chosen
minimum support value. The unconventional behaviour of the curve is due to
Abedjan et al. making an assumption on the data that is not valid for DBpedia:
They penalize synonymous relationships that co-occur for the same subject. The
precision of our classification method on top of knowledge embeddings is showing
higher precision for almost all models. HolE, ComplEx and ANALOGY all show
comparably high precision values, also for high k values, whereas the translation
embedding models TransE, TransD and TransH are quite weak in contrast to
the earlier experiments. HolE with L1-metric in Fig. 4 show the best results with
a precision of 0.94 at k = 50 and still a precision of 0.7 at k = 500.

During the extensive manual evaluation of the models, we got a detailed
insight into the advantages and disadvantages of the models on DBpedia. Very
frequent synonymous relationships that can clearly be distinguished from oth-
ers manually are also clearly identified as synonyms by the embedding mod-
els. These are for example relationships for genre, almaMater, deathPlace,
birthPlace and award. Problematic, at least in DBpedia, are rarely used rela-
tionships (fuelSystem, drums), relationships with spelling errors in their label
(amaMater, birthPace) and relationships that are very similar to others other
existing relationships (club, youthteam). Several other false positives stem from
DBpedia containing relationships that are automatically extracted from exter-
nal data sources that should be integrated and reformulated. As an example,
DBpedia imports an external baseball database by creating two relationships
for every row of a table with two columns: e.g. stat1label, stat1value for
the first row and stat2label, stat2value. These false positives are not syn-
onymous relationships, but obviously problematic relationships that should be
reformulated.

5.4 Discussion of the Results

In all three experiments, we have shown the advantages of our embedding-based
classification method on a variety of knowledge graphs. The baseline has been
outperformed with almost all embedding techniques, because it heavily relies on
synonym relationships to share object entities. In contrast, knowledge embedding
based approaches are able to detect synonyms even though they do not share
any subject nor object entities. As an additional drawback, the baseline needed
parameter tuning for the minimum support value which was a difficult trade-off
between precision and recall.
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We have seen that a large part of synonymous relationships are detected
in knowledge graphs, if they are frequently used. The semantics of very rare
relationships can hardly be mapped to the knowledge embedding, hindering
data-driven synonym detection mechanism. All embedding models show varying
qualities across the different datasets, with HolE showing consistently good if not
the best results, when choosing L1-metric. For most other models also L1-metric
is also showing better results. Still no model was able to identify all synonymous
relationships with high quality only based on the KG itself.

The fine-grained modelling of relationships (as in Freebase and DBpedia) is
often problematic, since these relationships may hardly be distinguished from
real synonyms, even in our extensive manual evaluation. We observed that rela-
tionship pairs that have been counted as false positives often are pairs of rela-
tionships that are extremely similar.

For example /education/university/local tuition./.../currency and
/education/university/domestic tuition./.../currency both are highly
similar in their extension, however are, semantically speaking, slightly differ-
ent. One is used for the currency of the tuition at universities for local students
and one for domestic students. We believe that these relationships could be inte-
grated and the information about local and domestic students could be modelled
differently. Such a difference cannot be observed by a purely data-driven app-
roach.

6 Conclusion

In this paper, the suitability of the relationship representation in knowledge
embeddings to measure semantic similarity between relationships is analyzed
for the first time. We develop a new classification technique for identifying syn-
onymous relationships for knowledge graph consolidation. In several large-scale
experiments on Freebase, Wikidata and DBpedia we demonstrate how our clas-
sification method, employing a variety of existing knowledge embeddings, iden-
tifies synonyms with high precision and recall. Our approach does not make any
assumptions on the data or labels of relationships. Thus, as our experiments
have shown, our approach is generalizable to arbitrary knowledge graphs and is
not depending on any additional domain-specific knowledge.

We showed that a traditional technique based on frequent item set min-
ing [2] is not capable of competing with the presented classification method
using relation embeddings from state-of-the-art relational learning techniques.
The baseline approach was outperformed by almost all models on all datasets,
since it returns several false positives. This has shown that identifying synony-
mous relationships indeed is a very difficult problem. Our manual evaluation has
revealed that sometimes the semantics of relationships is even difficult to grasp
for humans, so that the difference between synonymous relationships and highly
similar relationships is hardly noticeable if detailed background or domain knowl-
edge is missing. To overcome such difficulties, in previous experiments, we have
also experimented with employing additional ontological information like range
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and domain predicates, to improve the results for synonym detection. However,
it was hardly possible to use this information for finding synonyms, because KGs
often lack domain and range information, and even in the few cases where this
information was present, it was not enough to improve synonym detection.

Moreover, in our experimental results almost all positively classified syn-
onymous relationships already have compatible ranges and domains, thus the
added value would be negligible. We believe that even though current relational
learning models are far from achieving perfect results for synonymous relation-
ship detection, it will be difficult to perform much better using a purely data-
driven approach without any external domain knowledge. Overall, our knowl-
edge embedding-based knowledge graph consolidation techniques have shown
good performance on a variety of different knowledge graphs. If the precision of
our approach is not sufficient it still may be used in a semi-automatic fashion
making the task much simpler.

For future work, we plan to combine our work with our previous work on
transitivity of synonyms in instance matching problems [10,14]. Furthermore,
our manual evaluation has shown that the results are very promising for correct-
ing badly chosen relationships, or for identifying misused relationships in triples.
We would like to investigate this application more thoroughly. It would also be
interesting to further follow the idea of using relationship embeddings for query
expansion.
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27. Vrandečić, D.: Wikidata: a new platform for collaborative data collection. In: Pro-
ceedings of the 21st International Conference on companion on World Wide Web,
WWW 2012 Companion, p. 1063 (2012)

28. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

29. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by trans-
lating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, AAAI 2014, pp. 1112–1119 (2014)

30. Weeds, J., Clarke, D., Reffin, J., Weir, D., Keller, B.: Learning to distinguish
hypernyms and co-hyponyms. In: Proceedings of the 25th International Conference
on Computational Linguistics: Technical Papers, COLING 2014, pp. 2249–2259
(2014)

31. Yang, Q., Wooldridge, M.J., Codocedo, V., Napoli, A.: Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, 25–31 July 2015 (2015)



Skyline Queries over Knowledge Graphs

Ilkcan Keles(B) and Katja Hose

Aalborg University, Aalborg, Denmark
{ilkcan,khose}@cs.aau.dk

Abstract. With the continuously growing amount of data offered in the
form of knowledge graphs, users are often overwhelmed by the amount of
potentially relevant information and entities. Hence, helping users find
relevant data is a problem that becomes more and more important. Sky-
line queries are typically used in multi-criteria decision making applica-
tions to find a set of objects that are of interest to a user. This type of
queries has been extensively studied over relational data in the database
community. But only little attention has yet been paid to investigating
if and how the skyline principle can help identifying sets of interest-
ing entities in knowledge graphs. In this paper, we therefore show how
the skyline principle can be applied to RDF knowledge graphs and help
the user find interesting entities. In particular, we present algorithms
using commonly used standard interfaces for accessing RDF data and
a lightweight extension of existing interfaces (SkyTPF) to process sky-
line queries. Our experiments show that the proposed algorithms enable
efficient and scalable skyline query processing over knowledge graphs.

1 Introduction

More and more knowledge graphs are becoming available in different fields.
Whereas some knowledge graphs, such as DBpedia [15] and YAGO [9], offer fac-
tual information about real-world entities, others are used by private companies.
For querying publicly accessible knowledge graphs, there are two widely accepted
interfaces: SPARQL endpoints and Triple Pattern Fragments (TPF) [24].
SPARQL endpoints typically use indexes and advanced query planning tech-
niques to enable efficient query processing. On the other hand, the drawback is
that the server running the SPARQL endpoint handles all the query processing
load whereas the client that sends the query simply waits for the result. Hence,
when many clients access an endpoint concurrently, it is likely to have problems
regarding performance and throughput. TPF [24] has been proposed to reduce
the server load by assigning more tasks to the client. To achieve this, a TPF
server is only capable of processing queries consisting of a single triple pattern
instead of complex SPARQL queries. In order to process SPARQL queries, the
client has to take care of the remaining query processing tasks, such as query
planning, filtering, and joins.

Even though these interfaces provide means of querying knowledge graphs,
it is often very difficult for users to find the entities that they are interested in.
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For instance, assume that a user is doing research on planets, consults DBpedia,
and wants to know about planets that have high densities (?d) and high average
speeds (?as). The user is unable to provide a precise scoring function, such as
0.5 ∗ ?d + 0.5 ∗ ?as, that could be used to rank the planets because he/she has
neither any information about the attributes’ domains and ranges nor a clear
understanding of whether one criterion is more important than the other.

In such use cases, skyline queries [3] can help users find interesting entities
without the need to provide a specific weight for each criterion. In other words, a
skyline query allows users to simply provide a set of preferences on the attributes
of interest and returns a set of “interesting” entities with respect to these prefer-
ences. More formally, a skyline set consists of all entities that are not dominated
by any other entity; entity ei dominates entity ej if ei is at least as good in all
attributes and better in at least one attribute.

Assuming the above mentioned skyline query for planets with preferences on
high density and high average speed is evaluated on the dataset illustrated in
Fig. 1 (subset of planets in DBpedia), the skyline set consists of Earth and Venus
(highlighted in red). Figure 1 also illustrates the dominance region of the planets
in the skyline. Intuitively, with the given preferences a skyline point is clearly
“preferable” over any planet contained in the dominance region – we therefore
refer to the latter as being dominated.

Avg. Speed
10km/s 20km/s 30km/s 40km/s

Density

2000kg/m^3

4000kg/m^3

6000kg/m^3

0

Saturn

Earth

Europa (Moon)

Neptune
JupiterUranus

Venus

Himaliya (Moon)

Fig. 1. Skyline of planets (Color figure online)

Efficient processing of skyline queries over relational databases [1–3,6,13,18,
19,22,27] has been extensively studied. However, there is only very little related
work [5,29] on processing skyline queries over knowledge graphs. These works
assume direct control over the data source and how the data is stored. We,
on the other hand, aim at supporting skyline computation over standard and
lightweight interfaces that we do not control and that are not restricted to skyline
queries only.
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In this paper, we propose methods for skyline query computation over stan-
dard interfaces, such as SPARQL endpoints and TPF. In addition, we propose
the SkyTPF interface, which extends TPF and aims at making skyline query
processing more efficient. Finally, we provide an extensive experimental evalua-
tion of the proposed methods. The experiments show that the proposed methods
enable efficient skyline query processing over knowledge graphs. In summary, our
main contributions are: (i) methods to enable skyline query processing over stan-
dard RDF interfaces (SPARQL endpoints and TPF), (ii) SkyTPF; a TPF-like
interface on the server-side and a client-side algorithm to optimize and process
skyline queries, (iii) an extensive experimental evaluation of these methods.

The remainder of this paper is organized as follows. Section 2 discusses related
work, and Sect. 3 introduces background and definitions. While Sect. 4 presents
how to process skylines over standard interfaces (SPARQL endpoints and TPF),
Sect. 5 presents the SkyTPF interface as well as a client-side algorithm for skyline
computation. Finally, Sect. 6 presents our evaluation, and Sect. 7 concludes the
paper.

2 Related Work

The general problem of computing skyline queries was first introduced by Kung
et al. [14] as the maximum vector problem in the field of computational geom-
etry. The term skyline was first introduced by Börzsönyi et al. for relational
databases [3]. Since then skyline queries have attracted significant interest in
the database community as they enable finding interesting data objects in con-
sideration of multiple preference criteria. To compute skyline queries over rela-
tional databases, Börzsönyi et al. [3] propose the Block Nested Loops (BNL)
and Divide and Conquer (D&C) algorithms. BNL scans the database in several
rounds and compares each data object with the current set of candidate skyline
objects. If a data object p is not dominated by any of the current skyline can-
didates, p is added to that set and, if necessary, all data objects dominated by
p are removed. The D&C algorithm is based on the divide and conquer princi-
ple. So, it first partitions a dataset into several subsets, computes the skyline
in each of the subsets, and then combines the partial results by checking them
for mutual dominance. The SFS algorithm [6] improves BNL by presorting the
data objects with respect to a monotone function. Bartolini et al. [2] propose
the SaLSa algorithm to eliminate the need to scan all the data objects in the
database. All these algorithms target skyline computation over relational data,
where all attributes of a data item are combined in a single relational tuple.
In knowledge graphs, however, joins are required to obtain the attribute values.
Whereas the BNL principle of comparing all data items against each other is
of course applicable in arbitrary setups, the proposed optimizations are tailored
towards relational data that is available locally and cannot be applied to our
problem scenario.

The literature proposes a variety of algorithms [1,13,18,19,22,27] that focus
on skyline computation over vertically partitioned data and for multi-relational
settings where joins are required. Balke et al. [1] propose algorithms (BDS and
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IDS) to compute skylines over vertically partitioned data where each server hosts
a single skyline attribute. The BDS algorithm uses sorted access until a pivot
data object is reached at all servers. Then, other attributes of the data objects
that are better than the pivot object in at least one attribute are obtained by
random access from the servers. The IDS algorithm improves BDS by using a
combination of sorted and random access to reach the pivot object. Jin et al.
[13] introduce the multi-relation skyline operator. Vlachou et al. [27] propose
the sort-first skyline join (SFSJ) algorithm that provides an early termination
condition and makes it possible to compute skyline objects progressively. Trim-
ponias et al. [22] address the skyline computation problem in a setting where
each server has a disjoint set of attributes together with a record ID. Their
algorithm is able to support any decomposition of the attributes among the
servers. Nagendra et al. [18,19] improve the state-of-the-art algorithms by apply-
ing region based pruning before skyline computation. In our case, we assume that
we access the knowledge graph via standard interfaces – potentially on remote
servers. Unfortunately, these interfaces do not provide sorted access and random
access at the same time, which renders the above mentioned techniques inap-
plicable. There are also numerous approaches on horizontally partitioned data
in P2P systems [10–12,26,28]. These systems differ substantially from our setup
as the data is typically located on remote peers in a distance of several hops
without knowing which peers exactly provide relevant data for a given query. In
this paper, however, we assume a direct connection to the relevant server.

There are a couple of studies [5,20,21,23,29] on incorporating preference-
based querying over knowledge graphs. Some studies [20,21,23] propose ways
of extending SPARQL for expressing preferences. Siberski et al. [21] provide
a proof-of-concept implementation based on BNL. We also use the BNL algo-
rithm as a straightforward solution for skyline computation over existing inter-
faces. Troumpoukis et al. [23] compare the performance of NL, BNL, and query
rewriting. Patel-Schneider et al. [20] claim the extension for preferences can be
efficiently integrated into SPARQL endpoints by using union-find algorithms.
We do not focus on extending SPARQL in this paper. Chen et al. [5] focus on
skyline computation on knowledge graphs that are stored as vertically parti-
tioned relations. They use a header point (pivot object) to prune non-skyline
entities. However, as our goal is to enable skyline query processing using exist-
ing interfaces, we cannot make assumptions on how the data is stored. For this
reason, the algorithms proposed in [5] are not applicable to our case. Zheng
et al. [29] propose subgraph skyline analysis over knowledge graphs. However,
their methods require precomputing additional bit-string encodings for each ver-
tex and edge. Again, as we do not assume that we have control over how the
knowledge graph is stored, this approach is not applicable to our problem sce-
nario. In addition, we do not want to increase the load on the server too much
by pushing more work to the server for skyline computation since that would
reduce throughput and therefore counteract the idea of TPF.

In addition to skyline querying over knowledge graphs, Lukasiewicz et al. [16]
extend Datalog+/- with preferences and propose algorithms to execute prefer-
ence queries over ontologies [16]. These queries are defined using first order logic
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formulas that allow including more general preferences than skyline queries.
However, preference queries on ontologies are out of scope of this paper.

3 Preliminaries

RDF [4] is a standard data format that is widely used to represent information
on the Web; its basic building block is a triple. A triple is defined as a 3-tuple t =
〈s, p, o〉, where s, p, and o correspond to subject, predicate and object, respectively.
The subject of a triple identifies an entity and is either an IRI or a blank node.
The predicate is an IRI representing the relation between subject and object.
And the object can be an IRI, a literal, or a blank node. A knowledge graph
is then defined as a set of triples. In this paper, we assume that the knowledge
graph does not contain blank nodes because blank nodes do not represent any
entities.

Definition 1 (Triple Pattern and Basic Graph Pattern). Let I, L, and
V be the pairwise disjoint sets of IRIs, literals, and variables. A triple pattern
then is an element of (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ). We say that a triple
t = 〈s, p, o〉 is a matching triple for a triple pattern tp = 〈stp, ptp, otp〉 or t
satisfies tp if (stp = s ∨ stp ∈ V ) ∧ (ptp = p ∨ ptp ∈ V ) ∧ (otp = o ∨ otp ∈ V ).
The solution to a triple pattern is a mapping μ from V to I ∪L, i.e., the possible
mappings for each variable in the triple pattern. A basic graph pattern (BGP)
is a set of triple patterns. The solution to a BGP is the mappings obtained by
joining the solution mappings of each triple pattern included in the BGP.

After defining the basics of knowledge graphs, let us now define skyline sets
and skyline queries.

Definition 2 (Skyline Set and Dominance). Given a dataset D of n-
dimensional data objects, oi ∈ D dominates oj ∈ D (oi 	 oj) if oi is better
than or equal to oj in all n dimensions and is strictly better than oj in at least
one dimension with respect to user-defined preference functions. The skyline set
S = {o | o ∈ D∧�e(e ∈ D∧e 	 o)} consists of the objects that are not dominated
by any other object. If two objects oi and oj do not have a dominance relation
between them, we say that oi and oj are not comparable.

In knowledge graphs, data objects correspond to real-life entities, such as
people, cities, and countries. A skyline query over a knowledge graph is then
defined as follows.

Definition 3 (Skyline Query over Knowledge Graphs). Given a knowl-
edge graph K, a skyline query is defined as a pair q = 〈BGP ,SV 〉, where BGP
is a basic graph pattern and SV is a set of pairs, each of which is a skyline vari-
able with its corresponding preference function (MIN, MAX). Skyline variables are
a subset of variables included in the basic graph pattern. The result of a skyline
query is the skyline set of the solutions to BGP computed with respect to the
skyline variables and the preference functions. The variables of the skyline query
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that the preferences are defined on are called dimension variables. A query with
two dimension variables is then called a 2-dimensional skyline query.

For instance, SV = {〈?v1, MIN〉, 〈?v2, MAX〉} means that the user is interested
in a skyline over ?v1 and ?v2, and MIN and MAX will be used to determine domi-
nance between the solution mappings.

In line with [5], we use an extended version of SPARQL to express a skyline
query. The extension contains a SKYLINE keyword together with MIN and
MAX keywords to be able to express preference functions. The query for the
motivational example is illustrated in Listing 1.1.

1 SELECT ?planet ?as ?d
2 WHERE
3 { ?planet rdf:type dbpedia:Planet . #11826 triples
4 ?planet dbpedia:averageSpeed ?as . #739 triples
5 ?planet dbpedia:density ?d . #146 triples
6 }
7 SKYLINE OF ?as MAX, ?d MAX

Listing 1.1. Example Skyline Query

4 Skylines over Standard Interfaces

In this section, we propose client-side algorithms for processing skyline queries
over knowledge graphs using standard interfaces (SPARQL endpoints and Triple
Pattern Fragments) that are commonly used to provide access to knowledge
graphs on the Web.

4.1 SPARQL Endpoint

SPARQL endpoints are widely used to query knowledge graphs on the Web using
the SPARQL query language [7]. As SPARQL does not cover skyline queries, such
servers do not directly support them. Hence, we propose a client-side algorithm
that computes skylines while only sending standard SPARQL queries to the
server (SPARQL endpoint).

The client-side algorithm first retrieves the solution mappings μ for the basic
graph pattern of the query (q .BGP) from the SPARQL endpoint. Then, we
compute the skyline over μ in a block-nested-loop fashion, i.e., we maintain a
skyline set S and scan μ sequentially. When a mapping m is read from μ, the
algorithm checks whether m is dominated by any mapping currently in S. If so,
the algorithm continues with the next mapping. Otherwise, the mappings that
are dominated by m are removed from S, and m is added to S. After iterating
over all mappings in μ, S corresponds to the skyline set and it represents the
output.

Example. Let us assume that Table 1 corresponds to the output mappings for
the BGP of the example query from Listing 1.1. Saturn is read first and added to
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Table 1. Output mappings for our example query

?planet ?as (km/s) ?d (kg/m3)

Saturn 9.69 687

Europa (Moon) 13.74 3010

Neptune 5.43 1638

Jupiter 13.07 1326

Uranus 6.81 1270

Earth 29.78 5515

Venus 35.02 5243

Himalia (Moon) 3.312 2600

the skyline set S. Europa (Moon) is considered next. Since it dominates Saturn,
it is added to S and Saturn is removed from S. Neptune, Jupiter, and Uranus
are considered next consecutively but they are not added to S since they are
dominated by Europa (Moon). Next, Earth is added to S since it dominates
Europa (Moon) and the latter is removed from S. Venus is also added to S since
it is incomparable with Earth: Venus has a higher average speed but Earth has
a higher density. When Himalia (Moon) is read, it is not added to S since it is
dominated by Earth. The final skyline set is then S = {Earth, Venus}.

4.2 Triple Pattern Fragments (TPF)

The TPF interface [25] was proposed to increase availability and throughput of
the servers by reducing their computational load. A server hosting a SPARQL
endpoint has to perform all the tasks that are related to query processing such as
query planning, executing joins, and filtering operations included in the query.
However, a TPF server is designed only to process triple pattern requests in
a paged manner. A TPF request contains a single triple pattern and a page
number. The response to a TPF request is a page containing a set of matching
triples together with metadata containing an estimation of the total number
of matching triples. Hence, a TPF server only returns the matching triples for
an input triple pattern without having to invest extensive resources on query
processing. For this reason, the workload of TPF servers is much lower than of
SPARQL endpoints. On the other hand, the workload at the client is considerably
higher.

Our client-side algorithm builds upon the query processing algorithm pro-
posed by Verborgh et al. [25] to retrieve the solution mappings for the basic
graph pattern of a skyline query (q .BGP). The algorithm first iterates over the
triple patterns of q .BGP . At each iteration, the algorithm chooses the most
selective triple pattern as the next triple pattern to process. In order to find
the most selective triple pattern, the algorithm retrieves the first pages of each
triple pattern in q .BGP to obtain the number of matching triples for each triple
pattern.
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The algorithm then retrieves all matching triples for the most selective triple
pattern. The remaining triple patterns are updated with respect to the obtained
bindings.

For instance, to process the basic graph pattern of the query given in List-
ing 1.1, the algorithm first processes the third triple pattern since it has the
least number of matching triples (146). If the number of triples per page is 1001,
we need to send two requests for this triple pattern with page numbers set to
1 and 2. After retrieving the triples and initializing the mappings for ?planet,
the algorithm instantiates 146 triple patterns for each remaining triple pattern
by replacing ?planet with these mappings. So, for processing the remaining
two triple patterns, we have 292 instantiated triple patterns (requests). Once
all requests have been successfully processed, the skyline is computed over the
output mappings as described in Sect. 4.1.

4.3 Bindings-Restricted Triple Pattern Fragments

As explained in the previous section, the TPF interface was designed to reduce
the workload of servers when querying knowledge graphs. However, it leads to
a higher client-side workload since clients are responsible for processing joins.
Moreover, it also creates a higher network load since a TPF client has to send
a high number of requests to process a query. In order to address these draw-
backs, Hartig et al. [8] proposed the Bindings-restricted Triple Pattern Fragments
(brTPF) interface. The key consideration is that the request sent to the server
does not only contain a triple pattern but also a set of mappings originating
from intermediate results computed at the client, which are used to prune the
matches of the triple pattern. The number of mappings sent together is deter-
mined by a parameter (maxMpR). In the original paper, this parameter is set
to values between 5 to 50 since more than 50 bindings result in “414 (URI too
long)” response due to being included in HTTP GET requests [8]. In this paper
we set maxMpR to 302.

Processing skyline queries over standard brTPF interfaces in principle works
the same as with TPF interfaces. The only difference is that instead of sending
separate requests for each mapping obtained from the first triple pattern, the
algorithm sends mappings in groups of 30 in a single request to the brTPF server.
This reduces the number of requests to 10 (5 for each remaining triple pattern)
instead of 292 for the example query given in Listing 1.1. Once all requests have
been successfully processed, the skyline is computed over the retrieved mappings
as described in Sect. 4.1.

5 Skylines over SkyTPF Interface

In this section, we propose an extension of the brTPF interface for skyline query
processing and a client-server hybrid algorithm to compute skylines efficiently.
1 Recommended page size according to [25].
2 Recommended value according to [8].
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5.1 SkyTPF Interface

The client-side algorithms presented in Sect. 4 do not take the skyline properties
into account while processing the skyline query and therefore return all matching
triples regardless of whether the corresponding entities can be part of the skyline
or not. However, by taking skyline properties into account, the server can prune
the search space and increase efficiency.

The main idea behind SkyTPF is to use a pivot entity to prune the set of
skyline candidates. It is a mapping for the variables in triple patterns processed
so far. We add (i) a pivot entity, (ii) a skyline flag, (iii) a skyline variable,
and (iv) a skyline preference function to the request sent to the server. If the
skyline flag is not set, it is identical to brTPF. Otherwise, the server returns
the triples whose corresponding entities are better than or equal to the pivot
entity with respect to the given skyline variable and preference function. Since
the same pivot entity is used for all the skyline triple patterns, i.e., the triple
patterns containing skyline variables, any entity that is not returned from the
server cannot be part of the skyline since it is guaranteed that any such entity
is dominated by the pivot entity. We therefore propose a minimal extension to
the brTPF interface to retain the characteristics of TPF (shifting load to the
clients) while still improving skyline query performance.

In line with the definitions of bindings-restricted triple pattern selector and
bindings restricted triple pattern fragment collection (Definitions 1 and 2, [8]), we
define skyline binding-restricted triple pattern selector and skyline triple pattern
fragment as follows:

Definition 4 (Skyline Binding-Restricted Triple Pattern Selector). A
selector is a function that selects triples from a knowledge graph according to
the provided input. Given a triple pattern tp, a finite sequence of mappings Ω,
a skyline flag sf that is either 0 or 1, a skyline preference function sp that is
either MIN or MAX, a pivot entity pe that satisfies tp, a skyline triple pattern
selector for tp, Ω, sf , sp and pe, denoted by sG(tp, Ω, sf , sp, pe) for a knowledge
graph G is defined by Eq. 1. In this equation, m(tp,G ,Ω) denotes the matching
triples for tp that are compatible with the mappings included in Ω. If Ω = ∅,
then m(tp,G,Ω) is simply the set of matching triples.

sG(tp,Ω,sf ,sp,pe)=

⎧
⎪⎨

⎪⎩

m(tp,G ,Ω) if sf =0
{t | t ∈ m(tp,G ,Ω) ∧ (t �sp pe)} if sf =1 ∧pe is set

(1)

In Eq. 1, t �sp pe denotes that corresponding entity of t either dominates
or is equal to pe according to the skyline preference function sp and the skyline
variable in tp. As shown in Eq. 1, when the skyline flag sf is 0, the selector
function is just a bindings-restricted triple pattern selector.

Definition 5 (Skyline Triple Pattern Fragment). A Linked Data Fragment
(LDF) is defined as a 5-tuple f = 〈u, s, Γ,M,C〉, where u is a URI that hosts the
fragment f , s is a selector function, Γ is the set of triples that are selected with
respect to s, M is a finite set of RDF triples that contains metadata regarding f ,
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and C is a finite set of hypermedia controls (Definition 2, [25]). A skyline triple
pattern fragment (SkyTPF) collection is defined for a given hypermedia control c,
and a maxMpR value. A specific LDF collection F is called a SkyTPF collection
if there exists one LDF 〈u, s, Γ,M,C〉 ∈ F for any possible triple pattern tp,
any finite sequence of solution mappings Ω with at most maxMpR mappings,
any possible skyline flag sf , any possible skyline preference function sp, and any
possible pivot entity pe with the following conditions: (i) The selector function s
is a skyline bindings-restricted triple pattern selector for tp, Ω, sf , sp, pe, (ii)
there is a triple 〈u, void :triples, cnt〉 ∈ M , where cnt represents a cardinality
estimate for Γ (if Γ = ∅, then cnt = 0), and (iii) c ∈ C.

Implementation. The SkyTPF server is implemented using Java and extends the
brTPF server implementation provided by Hartig et al. [8]. The implementation
is available online3 and uses RDF-HDT data sources [17].

A SkyTPF server is able to serve multiple data sources as TPF and brTPF.
For each data source, the server creates an HDT index file, together with a
dictionary-based index that holds the rank of each subject (i.e. entity) for each
skyline preference function and for each predicate with a numeric value. To put
differently, given a subject URI of an entity, it is possible to get the rank of the
entity for a specific predicate and for a specific skyline preference function using
the index. When a request is received, the server iterates over the mappings
provided in the request to construct the set of triple patterns that will be used
to query the data source. For each mapping, the server updates the variables of
the input triple pattern according to the mapping and adds the triple pattern
to this set. Then, the HDT backend is queried using these triple patterns. The
resulting triples are added to the output set if their corresponding entity has
a rank at least equal to the pivot entity according to the skyline preference
function.

Client-Side Query Processing Algorithm. The complete algorithm to process
skyline queries over SkyTPF interfaces is sketched in Algorithm 1.

The client first decomposes the skyline query into skyline and non-skyline
subqueries (lines 1 and 2); the skyline subquery consists of the triple patterns
containing skyline attributes and the remaining triple patterns constitute the
non-skyline subquery. Then, the non-skyline subquery is processed using the
SkyTPF endpoint (line 3); the skyline flag is set to 0 to process this subquery
in a brTPF fashion.

Next, the algorithm determines the pivot using the skyline subquery (line 4)
– we explain how to choose the pivot entity later. The set of candidate skyline
results is populated by sending SkyTPF requests for each triple pattern in the
skyline subquery (lines 6–15). Afterwards, the missing mappings for the skyline
variables are retrieved for the incomplete mappings included in the candidate
set. Finally, the algorithm computes the skyline in a block-nested-loop fashion
and returns the output (lines 16 and 17).

3 https://github.com/ilkcan/skyTPF-server.

https://github.com/ilkcan/skyTPF-server
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Algorithm 1. Skyline query processing over SkyTPF interface
Input: q = 〈BGP ,SV 〉 - a skyline query, url - a SkyTPF endpoint URL
Output: S - the set of skyline entities
1: sTPs ← triple patterns that contain a skyline attribute
2: nsTPs ← q.BGP \ sTPs
3: Process the non-skyline subquery and initialize the set of mappings µ by sending

brTPF requests to url
4: pe = DeterminePivot(url , µ, sTPs)
5: candSkylines = ∅
6: for all tp in sTPs do
7: Retrieve the matching triples by sending a skyTPF request for tp with pe and

the corresponding skyline preference function and initialize the mappings µtp wrt
the triples

8: for all m in µtp do
9: if A mapping ms contains the subject mapping of m exists in candSkylines

then
10: Extend ms with m
11: else
12: Add m to candSkylines
13: end if
14: end for
15: end for
16: Retrieve missing skyline variables of candSkylines by sending brTPF requests
17: Compute the set of skyline entities S by applying BNL algorithm
18: return S

We extend our SkyTPF server to return triples in a paged manner when
the skyline flag is set and no pivot mapping is provided. The output triples
match with the input triple pattern and their corresponding entities are bet-
ter than remaining entities that have a matching triple according to a skyline
attribute and a skyline preference function. The motivation behind this exten-
sion is twofold. First, we need to guarantee that the pivot entity has a matching
triple for each skyline triple pattern. Second, if a pivot entity is better than
most of the entities that have matching triples for all skyline triple patterns, it
provides a higher pruning power.

To determine the pivot, we first retrieve the first pages of all skyline triple
patterns using this extension. If there is an entity that is present in the outputs
of all skyline triple patterns and if this entity is included in the output of the
non-skyline subquery, this entity is chosen as the pivot entity. Otherwise, the
algorithm continues with the next page.

Example. The complete example for processing a 2-dimensional skyline query
using the SkyTPF interface is given in Fig. 2. The query is defined as q.BGP =
{〈?id, a1, ?A1〉, 〈?id, a2, ?A2〉} and q.SV = {〈?A1, MAX〉 〈?A2, MAX〉}. For ease of
presentation, we leave the non-skyline triple patterns out and assume that the
non-skyline output is O = {A,B,C,D,E, F,G}. In order to determine the pivot
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Id A1 A2

A 8 7

B 4 3

C 3 2

D 10 8

E 7 10

F 6 11

G 5 4

H 9 7

I 11 5

Retrieve first pages

D

H

I

First page 
wrt A1

D

E

F

First page 
wrt A2

D is selected as pivot

Id A1

D 10

Response to 
SkyTPF request for 
A1 with D as pivot

Id A2

D 8

E 10

F 11

Response to 
SkyTPF request for 
A2 with D as pivot

Id A1 A2

D 10 8

E 7 10

F 6 11

D

E

F

Skyline Candidates

R
etrieve M

issing A
ttributes

Compute Skyline

Fig. 2. Example skyline computation

entity, the algorithm requests first pages of the triple patterns that include the
skyline attributes A1 and A2. Since D is part of both pages and is also included
in the non-skyline output, it is selected as the pivot entity. Then, the algorithm
determines the set of candidates Sc = {D,E, F} by sending a SkyTPF request
for each attribute and combine the responses. The algorithm then obtains the A1

values for E and F by sending a brTPF request. Finally, we compute the skyline
in a block-nested-loop fashion as described in Sect. 4 and obtain {D,E, F} as
the output.

5.2 Extensions

The proposed algorithms can be extended to cases where data is horizontally
or vertically partitioned. Horizontal partitioning occurs when each server stores
all triples of a set of entities and vertical partitioning occurs when each server
stores a set of predicates. In the case of horizontal partitioning, the algorithm
can be applied on each server to compute the skylines for the server and then a
second iteration is needed to compute the global skylines. In the case of vertical
partitioning, the client needs to send the requests to the server that contains the
predicate included in the triple pattern.
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6 Experimental Evaluation

This section discusses the results of our evaluation. We first explain the experi-
mental setup in Sect. 6.1 and we discuss the evaluation results in Sect. 6.2.

6.1 Experimental Setup

For the experimental evaluation, we have implemented both single-threaded
and multi-threaded versions of the proposed algorithms for TPF, brTPF, and
SkyTPF. The multi-threaded versions send HTTP requests in parallel and the
number of threads is set to the number of CPUs in the machine. We did not
include the SPARQL endpoint based algorithm since it is shown to increase the
load on the server significantly compared to TPF and brTPF [8,25].

We considered comparing our work against a client-side skyline query pro-
cessing algorithm based on SPARQL query rewriting [23]. However, it has
already been shown that BNL outperforms such an algorithm because of expen-
sive not exists and filter clauses [23]; query re-writing performs better in only
1 out of 7 queries. Since we use the BNL algorithm in our client-side query
processing algorithms, we do not include a comparison in our evaluation.

Datasets and Queries. We evaluate the proposed methods on synthetic
datasets in line with the literature [2,3,5,6] due to a number of reasons. First,
when we evaluate the methods on synthetic data, we know the underlying dis-
tribution and we are able to see the effect of the underlying distribution on the
performance of the methods. Second, we might introduce a bias in favor of one
algorithm due to the query selection procedure and due to missing information
when we use real datasets. We generated synthetic datasets with independent,
correlated, and anti-correlated distributions using the data generator provided
by Börzsönyi et al. [3]. In the correlated distribution, if an entity is good in one
dimension, it is highly likely that it is good in other dimensions as well. In the
anti-correlated distribution, the opposite holds; good in one dimension, bad in
another. In the independent distribution, the dimensions follow uniform distri-
bution, so that the probability that an entity is better than another entity with
respect to a skyline dimension is independent from their relationship with respect
to another skyline dimension. The anti-correlated distribution is the worst sce-
nario for any skyline algorithm since it means that almost every entity is part
of the skyline and it is therefore quite difficult to prune the search space. The
number of entities in the generated datasets is between 10,000 and 50,000, and
the number of skyline dimensions is between 2 and 6. A skyline query in our
setup contains all the skyline dimensions included in the dataset. If not explic-
itly mentioned otherwise, the default number of entities is 10,000 and the default
number of skyline variables (dimensions) is 4.

Metrics. To evaluate and compare these approaches, we have measured the
number of HTTP requests sent to the server, the number of candidates that the
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client computes the skylines on, and the query processing time. The number of
HTTP requests provides a measure to assess the network load introduced by
an algorithm. We present a single value for each method for this metric since
multi-threading does not have an effect on it. We decided to include the number
of skyline candidates metric in our experimental evaluation to assess the effect
of pruning for the SkyTPF-based method.

Configuration. The server is hosted on a virtual machine with 4 2.29 GHZ
CPUs and 8 GB of main memory and the client is hosted on a virtual machine
with 2 2.29 GHZ CPUs and 2 GB of main memory.

6.2 Evaluation Results

Figure 3 shows the pruning power of SkyTPF’s client algorithm for different
dataset distributions. As expected, SkyTPF’s pivot based pruning is quite effec-
tive for the correlated dataset. The number of skyline candidates for the inde-
pendent dataset is below 50% of the number of entities even for 6 dimensions.
Moreover, the number of skyline candidates for the dataset including 50K enti-
ties is less than 10K which means that our algorithm manages to prune 80%
of the entities. As expected, the figure also shows that the algorithm based on
SkyTPF has very low pruning power when the dataset is anti-correlated.

Fig. 3. Pruning power of SkyTPF’s client algorithm

Fig. 4. Effect of the number of dimensions (correlated dataset)
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Fig. 5. Effect of the number of dimensions and the number of entities on brTPF-based
and SkyTPF-based methods

Figure 4 illustrates the effect of the number of dimensions on the proposed
algorithms for the correlated dataset. The TPF-based client-side algorithm per-
forms significantly worse than the brTPF-based and SkyTPF-based algorithms.
The TPF-based algorithm is between 6–8 times slower and needs at least an
order of magnitude more HTTP requests to process skyline queries. To present
the performance difference between algorithms more clearly and to demonstrate
the results in a finer granularity, we omit our results for TPF.

Figure 5 shows the effect of the number of entities and the number of skyline
dimensions on the proposed methods for different data distributions. The per-
formance of the proposed methods becomes worse as the number of entities and
the number of skyline variables increase for all distributions. This is expected
since the number of dominance checks and the number of variables that the
dominance will be checked on increases, respectively. The experimental results
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also show that the proposed methods benefit from multi-threading since the
algorithm can send HTTP requests and parse the responses in parallel.

As shown in Fig. 5, SkyTPF performs better than brTPF for the correlated
dataset. This is due to the fact that when data is correlated, a good pivot
entity provides an effective pruning power. On the other hand, the figure also
suggests that the brTPF-based methods are slightly better than SkyTPF-based
methods for anti-correlated datasets. This is due to the fact no matter what
pivot entity is used, basically nothing can be pruned from consideration for
such a data distribution and SkyTPF has some optimization overhead. Finally,
SkyTPF-methods achieve a comparable performance to brTPF-methods for the
independent data. Figure 5 also illustrates the number of HTTP requests to the
server. As expected, the number of HTTP requests also follows a similar trend
with the query processing time.

In summary, the experimental results on synthetic datasets show that
SkyTPF, especially its multi-threaded implementation, is well suited for cor-
related and independent datasets and that it has a slight performance overhead
when dealing with anti-correlated datasets. brTPF-based methods also perform
well without requiring any extensions to the standard interfaces, which enables
skyline query processing over knowledge graphs using standard interfaces. The
SkyTPF-based algorithm should be preferred for skyline query processing on real
datasets as long as the underlying dataset is not expected to be anti-correlated.
However, if one knows that the underlying dataset is anti-correlated with respect
to the skyline attributes, the brTPF-based method should be preferred.

7 Conclusion

In this paper we have studied the problem of computing skyline queries over
knowledge graphs and proposed solutions that exploit standard interfaces to
help the user find interesting entities. Furthermore, we propose, SkyTPF, a
lightweight extension of standard interfaces to process skyline queries more effi-
ciently by pruning the search space. The experimental evaluation shows that the
proposed methods are capable of computing skylines with reasonable response
times. The evaluation also suggests that one should use SkyTPF-based method
for skyline query processing unless the distribution of the data is expected to be
anti-correlated. In our future work, we plan to increase efficiency of skyline com-
putation by using index structures and support skyline query processing over
federations of endpoints/knowledge graphs.
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Abstract. Ontology Design Patterns (ODP) have been proposed to
facilitate ontology engineering. Despite numerous conceptual contribu-
tions for over more than a decade, there is little empirical work to sup-
port the often claimed benefits provided by ODPs. Determining ODP use
from ontologies alone (without interviews or other supporting documen-
tation) is challenging as there is no standard (or required) mechanism
for stipulating the intended use of an ODP. Instead, we must rely on
modelling features which are suggestive of a given ODP’s influence. For
the purpose of determining the prevalence of ODPs in ontologies, we
developed a variety of techniques to detect these features with varying
degrees of liberality. Using these techniques, we survey BioPortal with
respect to well-known and publicly available repositories for ODPs. Our
findings are predominantly negative. For the vast majority of ODPs we
cannot find empirical evidence for their use in biomedical ontologies.

1 Introduction

The idea of Ontology Design Patterns (ODP) has been introduced as a means
to facilitate ontology engineering [3,6]. Generally thought of as best practices
and well-proven modelling solutions, a variety of different kinds of ODPs exist
[1,3,7,26]. Despite conceptual contributions for more than a decade, there is very
little empirical work to provide support for these claims. Ways of determining the
prevalence of ODPs in practice is a first step into this direction. However, recog-
nising ODP use from ontologies alone (without interviews or other supporting
documentation) is challenging as there is no standard (or required) mechanism
for stipulating the intended use of an ODP. In this paper, we take on this chal-
lenge and develop algorithmic techniques to automate the identification of a
given ODP’s influence.

The contributions are as follows: (i) we develop a variety of techniques to
detect modelling features that are suggestive for a given ODP’s influence, (ii)
we characterise these techniques and discuss their informative value, (iii) and we
perform an empirical study using these techniques to investigate the prevalence
of ODPs in biomedical ontologies.

c© Springer Nature Switzerland AG 2019
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2 Background on Ontology Design Patterns

Different frameworks for working with patterns in Ontology Engineering have
been proposed [3,4,6,12,20,22,25,28,29]. Each framework is based on a different
approach for capturing the benefits of patterns and introduces its own terminol-
ogy as well as its own notation. While these different approaches bear similarities
to each other in some respects, there have been no efforts towards a standardisa-
tion process. Neither is there a generally accepted de facto standard for working
with patterns in practice.

A unifying concept for a majority of frameworks for ODPs is a practi-
cal notion pattern reuse. Such notions often involve prefabricated components
expressed in some representation formalism on the one hand, and operations to
manipulate these components on the other.

Consider the following examples in which a pattern has been proposed to be
reused as

• “[. . .] a first-order theory whose axioms are not part of the target knowledge
base, but can be incorporated via renaming of their non-logical symbols [4].”

• “[a] distinguished ontolog[y].” The basic mechanism for its application is
OWL ontology import in which pattern elements cannot be modified. Oth-
erwise, common operations for patterns are “clone, specialisation, generalisa-
tion, composition, expansion” [20].

• “[. . .] an ontology fragment, including directly reusable elements (classes,
properties, etc.) as well as demo-elements that would be replaced by the
user’s own. The directly reusable elements should typically be borrowed from
upper level ontologies [28].”

Clearly, these ideas of pattern reuse are based on a set of predefined axioms
that may or may not be modified. In the scope of this work, we will restrict
our attention to ODPs of this kind, i.e., ODPs that are captured by a set of
axioms or an OWL ontology. Such ODPs have been the focus of the academic
literature for over a decade and are commonly classified into two types. One type
addresses domain specific modelling problems, whereas the other is concerned
with language specific modelling techniques. The former are generally discussed
under the name of Content Ontology Design Patterns (CODP) and latter under
the name of Logical Ontology Design Patterns (LODP).

CODPs are motivated as conceptual modelling solutions featuring a domain
dependent signature, possibly extracted from Upper Level Ontologies to be appli-
cable across different domains [20]. LODPs on the other hand are motivated as
structural components that are domain-independent [6,21]. As a consequence,
the former are characterised by a fixed set of unmodifiable axioms whereas the
latter are characterised by a set of axioms containing variables.1

1 These characterisations are not as clear-cut as they might appear. The discussion
on the submission for the ODP ContextSlices http://ontologydesignpatterns.org/
wiki/Submissions:Context Slices exemplifies differences of opinion on the matter in
the research community.

http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices
http://ontologydesignpatterns.org/wiki/Submissions:Context_Slices
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3 Pattern Detection

The lack of a generally agreed upon notion for ODP reuse poses a challenge for
determining whether an ODP has in fact informed the design of a given ontol-
ogy. Different approaches for ODP reuse result in different modelling features
suggestive for a given ODP’s influence. Therefore, we must design a detection
mechanism that accounts for this uncertainty.

In the scope of this work, we limit our investigation to approaches that are
based on ODPs documented with reusable components (cf. Sect. 2). Further-
more, we assume these components to be given in the form of ontologies or more
generally sets of axioms. Given such a component P, the problem of detecting
modelling features which are suggestive of the ODP’s influence in a given ontol-
ogy O can be reduced to detecting features of P shared with O. In the following,
we formulate a list of non-exhaustive criteria that may be used to determine
shared features between P and O.

3.1 Detection Techniques

One of the earliest approaches for reusing an ODP’s P proposed ontology import
as the basic mechanism for reuse [20]. This approach has been adopted by the
NeOn project2 [21] and the large amount of work carried out in the context of
this project has promulgated into the academic literature.

Import Containment. Detecting whether a given P of some ODP has been
imported in an ontology O comes down to a straightforward analysis of O’s
import declaration. Given our primary concern of detecting an ODP’s influence
without any further qualification, we will generally equate an ontology with its
import closure unless stated otherwise.

The analysis of O’s import declarations is based on the two ways an ontology
may be imported. Namely, import by name and import by location. Import by
name is performed by interpreting the object of an import declaration as the
name of an ontology in a predefined list of ontology repositories. If the object
of an import declaration can be matched with the name of an ontology in said
repositories, then the ontology is imported. Contrary, import by location is per-
formed by interpreting the object of an import declaration as a physical location
of an ontology. This location may be a location in the local file system.

Import by name allows for an unambiguous way to determine whether a
given P has been imported, if its name in some ontology repository is known.
Import by location on the other hand, poses a challenge due to the possibility
of arbitrary renaming of local files. Nevertheless, it is reasonable to assume that
the name of a local file is suggestive of its contents and to consider lexically
similar import declarations as candidates for P reuse.

These consideration motivate a twofold detection procedure. First, check
whether P is imported by using its known URL from a pattern repository as a
2 http://neon-project.org/nw/Welcome to the NeOn Project.html.

http://neon-project.org/nw/Welcome_to_the_NeOn_Project.html
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name. If P is not found, test the import declarations in an ontology for lexically
similar names to the one of P. We refer to the former as the ImportByURLCheck
and the latter as the ImportByLocation check.

Signature Overlap. It has been proposed to reuse a given P by copying its
contents into a target O [24]. Copying any logical entities in P verbatim will
result in syntactic traces, i.e, ˜P ∩ ˜O �= ∅, where ˜O denotes the signature of an
ontology, i.e., its class, property, and individual names. Hence, we specify an
IRICheck that tests for all logical axioms α ∈ P whether the IRI of any entity
name e ∈ α̃ occurs in O. This occurrence test in O encompasses all of O’s logical
axioms as well as its non-logical components such as annotations and entity
declarations.

In addition, we specify a NamespaceCheck that tests whether the object of a
namespace declaration3 in P can be matched within some IRI of entities in O.

Lexical Variation. In addition to approaches preserving the IRIs of elements
in P under reuse in O, there are proposals allowing for the possibility of a
renaming for copied elements [10]. In this case, the reuse of axioms α ∈ P can
be identified by some substitution4 σ : ˜P → ˜O such that σ(α) ∈ O. However,
with no information expressly declaring that P has been reused via some σ in O,
determining whether P has in fact been reused under some elusive substitution
is a challenging task.

Based on the assumption that entities p ∈ α̃ (α ∈ P being a logical axiom)
exhibit lexical similarities to entities σ(p) ∈ ˜O, we can attempt to generate
candidate substitutions. Comparing an entity p ∈ ˜P with all entities o ∈ ˜O
in terms of their lexical similarity, we can associate p with a set of possible
renamings Rp = {r1, . . . , rn} ⊆ ˜O. Doing so for all entities p1, . . . , pn in P’s
signature results in a corresponding number of sets Rp1 , . . . , Rpn

. Candidate
substitutions σ are then generated by

{σ | σ(pi) �→ πi(e), e ∈ Rp1 × . . . × Rpn
},

where πi is a projection map such that πi(e) = ei for e = (e1, . . . , en).
If Rp1 × . . .×Rpn

is non-empty, then there exists a candidate substitution σ.
In that case, we specify a SubstitutionContainmentCheck that tests whether
σ(α) ∈ O holds for all α ∈ P under some σ.

Logical Variation. Besides changing the signature of an ODP’s P, there
have been proposals for ODP reuse based on reimplementing aspects of P by
analogy [5]. In this case, both the logical structure as well as the signature

3 https://www.w3.org/TR/2004/REC-owl-guide-20040210/#Namespaces.
4 Substitutions are assumed to respect types, i.e., classes, properties, and individuals

are only mapped to other classes, properties, and individuals respectively.

https://www.w3.org/TR/2004/REC-owl-guide-20040210/#Namespaces
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of axioms α ∈ P may be subject to change. Based on motivations for log-
ical rewritings of P [11], we specify a SubstitutionEntailmentCheck that
tests whether there exists some substitution σ (generated as previously for
the SubstitutionContainmentCheck) such that for all α ∈ P it holds that
O |= σ(α).

Structural Axiom Agreement. In addition to detection techniques search-
ing for positive evidence that is suggestive of a given ODP’s P, it is pos-
sible to test an ontology O for necessary structural conditions imposed by
some notion of P’s reuse. For example, positive evidence for P under the
SubstitutionContainmentCheck requires an ontology O to contain structurally
identical axioms to P since a simple renaming of entities in P does not affect
the logical structure of axioms in P. Therefore, if an ontology does not contain
at least as many axioms of a given type as P, then certain ways of P’s reuse can
be ruled out. Namely, any notion of ODP reuse that requires the explicit reuse
of all axioms in P.

Hence, we specify a structural AxiomTypeCheck, that tests whether O con-
tains at least as many axioms of a given type5 as P.

Structural Expression Agreement. Orthogonal to a structural agreement in
terms of axioms, we can specify structural expression checks that test whether
some logical constructs or combination of logical constructs proposed by a given
ODP’s P occur in an ontology. For example, suppose a logical constructor, e.g.
class union, occurs in some expression used in P. If there is no such expression
in a target ontology (as is often the case for biomedical ontologies conforming
to the EL profile), then certain ways of reusing P can be ruled out.

In the context of this work, we specify expression checks for two logical
structures that seem to be crucial for a fair number of ODPs. These structures
are described by two LODPs, namely “Partition”6 and “Nary-Relation”7. The
former is characterised by a disjoint union of classes, whereas the latter is char-
acterised by a class that is subsumed by at least two OWL restrictions. Accord-
ingly, we define a DisjointUnionCheck that searches for the presence of disjoint
unions as specified by the OWL Language Specification.8 And furthermore, we
define a NaryRelationCheck that searches for the presence of any class that is
subsumed by at least two OWL restrictions.9

5 The types of axioms we consider in this study are all subclasses of the OWLAxiom
interface http://owlcs.github.io/owlapi/apidocs 5/org/semanticweb/owlapi/model/
OWLAxiom.html of the well-known OWL API.

6 http://odps.sourceforge.net/odp/html/Value Partition.html.
7 http://odps.sourceforge.net/odp/html/Nary Relationship.html.
8 https://www.w3.org/TR/owl2-syntax/#Disjoint Union of Class Expressions.
9 http://owlcs.github.io/owlapi/apidocs 5/org/semanticweb/owlapi/model/OWLRes

triction.

http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/model/OWLAxiom.html
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/model/OWLAxiom.html
http://odps.sourceforge.net/odp/html/Value_Partition.html
http://odps.sourceforge.net/odp/html/Nary_Relationship.html
https://www.w3.org/TR/owl2-syntax/#Disjoint_Union_of_Class_Expressions
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/model/OWLRestriction
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/model/OWLRestriction
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3.2 Characterisation of Detection Techniques

The detection techniques presented above all target some features of a given
ODP’s P which are deemed to be suggestive for an ODP’s influence. The charac-
teristics of these features allow us to qualify what kind of ODP reuse the respec-
tive detection technique is capable of identifying. For example, the IRICheck
selects P’s signature as a target feature of P for its detection. By doing so,
the IRICheck is capable of detecting any notion of ODP reuse that preserves
some element of P’s signature. In the table below, we associate each detection
technique (that searches for positive evidence of a given ODP’s influence) with
a corresponding notion of ODP reuse.10 In the second column, we describe the
potential kind of influence I of an ODP’s P in a given ontology O and in the
third column, we describe the relationship between I (occurring in O) and P.
The influence I can manifest in several different forms, e.g. axioms, entities,
annotations, etc. (Table 1).

Table 1. Association between detection techniques and notions of ODP reuse

Detection technique Influence I in O Relation between I and P Notion of reuse

ImportByURL O imports I I = P Import

ImportByLocation O imports I I = P Import

IRICheck ˜I ⊆ ˜O ˜I ∩ ˜P �= ∅ Signature

NamespaceCheck I occurs in O I points to P Reference

SContainmentCheck I ⊆ O σ(I) = P Renaming

EContainmentCheck O |= I σ(I) = P Rewriting

Furthermore, we can qualify the detectable notions of ODP reuse according to
a number of characteristics. For example, the SubstitutionContainmentCheck
targets notions of ODP reuse that allow for some form of lexical variation. How-
ever, it cannot detect influences of notions of ODP reuse that allow for logical
variations, e.g, logically equivalent rewritings. Neither can it detect any notion
of partial reuse that possibly omits some semantically relevant aspect of a given
ODP. This is due to the requirement of all axioms α ∈ P to be explicitly con-
tained in O under some substitution (renaming) σ of entities e ∈ α̃ (cf. Sect. 3.1).
Contrary, the IRICheck is able to detect influences of notions of partial ODP
reuse that allow for logical variation. It only requires the preservation of some
element of a given ODP’s signature ˜P.

In Table 2, we summarise characteristics of notions for ODP reuse that our
detection techniques capture. We indicate for each notion of reuse whether vari-
ations of lexical or logical features are taken into account and whether a partial
or complete reuse of a given ODP is assumed.
10 The SubstitutionContainmentCheck has been abbreviated by SContainmentCheck

for presentation purposes.
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Table 2. Characterisation of detectable notions of ODP reuse

Detection technique Notion of reuse Feature variation Reuse format

ImportByURL Import - Complete

ImportByLocation Import - Complete

IRICheck Signature Logical Partial

NamespaceCheck Reference Lexical & Logical Partial

SContainmentCheck Renaming Lexical Complete

EContainmentCheck Rewriting Lexical & Logical Complete

In addition to the detection techniques that aim to identify concrete positive
evidence of a given ODP’s influence, we have motivated detection techniques
that can provide negative evidence for an ODP’s reuse. Such negative evidence
is established by the absence of distinguished features of a given ODP’s P.
Accordingly, we can associate such detection techniques with features of P that
are necessarily preserved under certain notions of reuse. On the one hand, there is
the AxiomTypeCheck that is generally applicable for any ODP under any notion
of reuse that preserves the logical structure of the pattern’s corresponding P.
On the other hand, there are more specialised detection techniques that are
tailored towards ODPs containing distinguished structural components, i.e. the
DisjointUnionCheck and the NAryRelationCheck.

3.3 Algorithm

Most techniques introduced in the previous section involve some form of string
comparison between entities of O and P. In order to maximise the recall of
lexical detection techniques, we employ a threefold string matching procedure –
each step increasing the degree of liberality in terms of lexical similarity between
two strings s1 and s2.

The first part is a strict equality that requires all symbols occurring in s1
to coincide with symbols in s2 at their respective positions. The second part is
an approximate string match between s1 and s2. Here, all symbols not in the
Latin alphabet are removed from both s1 and s2 and the remaining characters
are converted to lower case. Then, a test for string containment of s1 in s2 is
performed. The third part consists of calculating a string similarity greater that
0.8 based on the Levensthein distance.11

A lexical association between two elements e1 ∈ ˜P and e2 ∈ ˜O is established
by applying the above string comparison procedure to

(1) both IRI’s of e1 and e2,
(2) both ShortFormIRI’s of e1 and e2,
11 The distance is implemented via https://rosettacode.org/wiki/Levenshtein

distance#Java. The similarity score between [0, 1] of two strings s1, s2 is calculated

by M−LevenstheinDistance(s1,s2)
M

where M is max(s1.length, s2.length).

https://rosettacode.org/wiki/Levenshtein_distance#Java
https://rosettacode.org/wiki/Levenshtein_distance#Java
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(3) the IRI of e1 and the annotations of e2,
(4) the ShortFormIRI of e1 and the annotations of e2.12

Using this string comparison procedure in lexical techniques as characterised in
the previous section, we specify Algorithm 1 (see below) to detect influences of
a given ODP exhibiting lexical modelling features.

For ODPs that only a structural reusable component P without a domain
specific signature we cannot sensibly apply Algorithm1. Instead, we only run
the structural detection techniques, i.e. AxiomTypeCheck, DisjointUnionCheck,
and NAryRelationCheck.

4 Methods

In Sect. 2, we have characterised the status quo of academic research around
ODPs by a diversity of ideas regarding both the notion of ODPs itself and
ODP reuse. This motivates an investigation of the research question as to how
prevalent ODPs influences in biomedical ontologies are. In the following, we
describe our procedure for answering this question.

Algorithm 1. Pattern Detection
Input : Ontology O, Pattern P
Output: Suggestive evidence for influence of P in O

1 if ImportByURL(O,P) then
2 return Import declarations in O containing P
3 if ImportByLocation(O,P) then
4 return Import declarations in O containing P
5 if IRICheck(O,P) then
6 return all e ∈ O that account for evidence of the check
7 if NamespaceCheck(O,P) then
8 return all e ∈ O that account for evidence of the check
9 if AxiomTypeCheck(O,P) then

10 if SubstitutionContainmentCheck(O,P) then
11 return All σ such that σ(P) ∈ O
12 end
13 if SubstitutionEntailmentCheck(O,P) then
14 return All σ such that O |= σ(P)
15 end

4.1 Pattern Corpus

The most well-known catalogues for ODPs are (1) the ODP Semantic Web Por-
tal,13 and (2) the ODPs Public Catalog.14 Both of these catalogues reflect the
12 We also considered using the label of entities e1 from P. However, these either

coincide with the ShortFormIRI of e1 or are slight variations thereof. Such variations
are captured by our string comparison procedure.

13 http://ontologydesignpatterns.org.
14 http://odps.sourceforge.net/odp/html/index.html.

http://ontologydesignpatterns.org
http://odps.sourceforge.net/odp/html/index.html
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focus of the academic literature on CODPs and LODPs and contain mostly sub-
missions for these two types. We build our corpus of ODPs according to the
following criteria.

(i) The pattern was categorised as either an LODP or CODP in catalogue (1).
(ii) The pattern was published together with an ontology as its reusable compo-

nent or the pattern was published with an example ontology to demonstrate
its reuse.

(iii) The reusable component or example ontology can be loaded and initialised
with a reasoner by the OWL API.

(iv) A CODP is documented to belong to some biomedical related domain.

This selection procedure resulted in the selection of 47 out of 155 CODPs from
(1), 4 out of 18 LODPs from (1), and all 16 ODPs from (2). Selected patterns
according to criteria (iv) belong to at least one of the following domains: Agri-
culture, Biology, Cartography, Chemistry, Decision-making, Document Manage-
ment, Earth Science or Geoscience, Ecology, Event Processing, Explanation,
Fishery, General, Geology, Health-care, Management, Manufacturing, Materials
Science, Organisation, Participation, Parts and Collections, Physics, Planning,
Product Development, Scheduling, Software, Software Engineering, Social Sci-
ence, Time, Work-flow.

4.2 Ontology Corpus

We used a publicly available snapshot of BioPortal from 2017.15 Choosing the
data set that contained all ontologies in their original state, we extracted all
ontologies from the archive into one folder. Any ontology that could not be
loaded or handled with a reasoner in the OWL API was excluded form the study.
This procedure resulted in the exclusion of 78 out of 438 ontologies resulting in
a study corpus of 360 ontologies.

4.3 Experimental Design

Our empirical investigation consists of four distinct experiments.
The first experiment is designed to provide positive indications for the preva-

lence of ODPs exhibiting lexical features in terms of class, property, and indi-
vidual names. Algorithm 1 is run over all input combinations of ontologies from
the ontology corpus and the 47 CODPs from catalogue (1).

The second experiment is designed to provide negative indications for ODPs
exhibiting lexical features. Here, we run the AxiomTypeCheck over all input com-
binations of ontologies from the ontology corpus and the 47 CODPs from cat-
alogue (1). The AxiomTypeCheck is performed under two conditions: (a) not
including the imports closure of a given ODP’s P and (b) including the imports
closure of a given ODP’s P.

15 https://zenodo.org/record/439510#.XKK-Nt-YVhE.

https://zenodo.org/record/439510#.XKK-Nt-YVhE
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The third experiment is designed to provide positive indications for ODPs
that do not exhibit lexical features by definition but focus on structural modelling
aspects. The DisjointUnionCheck and the NAryRelationCheck are run over
all ontologies from the ontology corpus to determine the prevalence of design
structures often used in LODPs.

The fourth experiment is designed to provide negative indications for ODPs
that do not exhibit lexical features by definition. Analogously to experiment two,
the AxiomTypeCheck, is run over all input combinations of ontologies from the
ontology corpus and LODPs from catalogue (1) as well as ODPs from catalogue
(2).

We use OWL API version 516 to perform our experiments.

5 Results

5.1 Experiment 1: Positive Indications for CODPs

The results of experiment 1 for positive indications of ODPs exhibiting lexi-
cal design features are summarised in Table 3.17 Each row reports on the data
generated by each subcomponent of Algorithm 1. The reported numbers in each
column encode the following information: “Overall P” is a count for the total
number of ODPs for which a detection technique has produced some evidence.
“Overall O” is a count for the total number of ontologies based on which a
detection technique produced some evidence. “Max P’s in O” is a count for the
maximum number of distinct ODPs for which some evidence could be produced
in a given ontology. “Max O’s for P” is a count for the maximum count of
distinct ontologies in which evidence for a given ODP could be produced.

Note, that evidence generated by ImportByURL is not counted again in sub-
sequent detection techniques. In the following, we will provide further details on
these results.

Table 3. Summary of generated evidence for CODPs

Detection technique Overall P Overall O Max P’s in O Max O’s for P
(1) ImportByURL 3 1 3 1

(2) ImportByLocation 5 6 1 2

(3) IRICheck 0 0 0 0

(4) NamespaceCheck 4 5 2 2

(5) SContainmentCheck 9 46 3 20

(6) SEntailmentCheck 0 0 0 0

16 http://owlcs.github.io/owlapi/apidocs 5/.
17 SubstitutionContainmentCheck has been abbreviated by SContainmentCheck for

presentation purposes. Likewise for SubstitutionEntailmentCheck.

http://owlcs.github.io/owlapi/apidocs_5/
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(1) The ImportByURL check detected three ODPs that were undisputedly reused
by import, namely the AgentRole, ObjectRole, and Classification. Interest-
ingly, this reuse by import was only detected due to AgentRole’s occurrence
in the corpus of ontologies. Since each ontology is contained in its own import
closure, the detection of AgentRole is as expected. Likewise, the detection
of ObjectRole and Classification is unsurprising since AgentRole imports both
ObjecRole and Classification. Otherwise, the ImportByURL check did not pro-
duce any evidence for these or other ODPs in the corpus of ontologies.

(2) The ImportByLocation detected five import declarations as candidates for
ODP reuse via import by location. For example, the pattern Region was gen-
erated as candidate in the “Ontology of Geographical Region” since it con-
tained the ontology “http://www.owl-ontologies.com/GeographicalRegion.
owl” in its import closure. However, in all cases, an inspection of the
imported ontologies and the candidate ODPs did not reveal an obvious rela-
tionship.

(3) Except IRIs pertaining to AgentRole (which are not counted again), no other
IRIs pertaining to some ODP could be detected in the corpus of ontologies.

(4) The NamespaceCheck performed with “http://ontologydesignpatterns.org”
resulted in the detection of 5 entities in 3 different ontologies. In all cases, a
“seeAlso” annotation referenced web pages related to ODPs. For example,
the object property “part of” in the “human interaction network ontology”
has been annotated with “rdfs:SeeAlso <http://ontologydesignpatterns.org/
wiki/Submissions:PartOf>”.

(5) The SubstitutionContainmentCheck generated candidate substitutions for
9 ODPs in 46 distinct ontologies. Two out of the ODPs account for 26 of the
46 ontologies in which substitutions could be generated. These two ODPS are
TypesOfEntities and GOTop. The latter is also the pattern that has generated
candidate substitutions in 20 distinct ontologies. Excluding both these ODPs
would have resulted in an “Overall O” count of 18 and a “Max O’s for P”
of 10.

(6) The SubstitutionEntailmentCheck did not result in the generation of
additional candidate substitutions.

5.2 Experiment 2: Negative Indications for CODPs

The results of experiment 2 for negative indications of ODPs exhibiting lexical
design features are summarised in Table 4. The table is split in the middle by
a double line. Each side contains the same information content only formulated
differently.

For the left hand side, the percentage in the column “Ontologies” describes a
lower bound for ontologies in the ontology corpus that exhibit at least as many
axioms of a given type as the number of ODPs shown in columns “Patterns (a)”
and “Patterns (b)”, where (a) and (b) indicates the experimental condition as
described in Sect. 4.3. For example, the first row expresses that at least 5% of
all ontologies in the corpus have at least as many axioms of a given type as 42
out of the 47 tested ODPs.

http://www.owl-ontologies.com/GeographicalRegion.owl
http://www.owl-ontologies.com/GeographicalRegion.owl
http://ontologydesignpatterns.org
http://ontologydesignpatterns.org/wiki/Submissions:PartOf
http://ontologydesignpatterns.org/wiki/Submissions:PartOf
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The right hand side of the table, formulates the complementary implication
of the left hand side. Continuing the example with the first row, we can infer
that for 47 − 45 = 5 ODPs, there exists only fewer than 5% of all ontologies
containing at least as many axioms of a given type as the ODP. Consequently,
it can be inferred that these patterns have not influenced 95% of ontologies by
ODP reuse under import, complete copying, or copying with renaming.

Table 4. Result of AxiomTypeCheck

Ontologies Patterns (a) Patterns (b) Patterns (a)’ Patterns (b)’ Ontologies’

at least 5% 42 32 5 15 less than 5%

at least 10% 38 26 9 21 less than 10%

at least 20% 16 11 31 36 less than 20%

at least 30% 4 2 43 45 less than 30%

at least 40% 3 1 44 46 less than 40%

at least 50% 2 1 45 46 less than 50%

at least 80% 2 1 45 46 less than 80%

5.3 Experiment 3: Positive Indications for LODPs

The DisjointUnionCheck found evidence in 24 ontologies. None of these
instances made use of the syntactic shortcut “DisjointUnion” in OWL. The
NAryRelationCheck revealed that nearly half of all ontologies (168 out of 360)
contain at least one n-ary relation.

5.4 Experiment 4: Negative Indications for LODPs

The results of experiment 4 are reported in the same fashion as the results for
experiment 2 (cf. Sect. 5.2) (Table 5).18

6 Discussion

The results of our investigation provide only scant evidence for influences of
ODPs in biomedical ontologies. The negative results of the ImportByURL check
show that a given ODP’s component P is not reused in practice as originally envi-
sioned by the NeOn project. Furthermore, the negative results of our IRICheck
indicate that even parts of reusable components P do not directly influence the
ontology engineering tasks in practice.
18 Experiment 4 is not designed with two conditions for including or not including a

given P’s import closure as in Experiment 2. This is owed to the fact that ODPs
focusing on logical modelling structures do not import other ontologies.
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Table 5. Result of AxiomTypeCheck

Ontologies Patterns Patterns’ Ontologies’

at least 5% 13 7 less than 5%

at least 10% 11 9 less than 10%

at least 20% 6 14 less than 20%

at least 30% 1 19 less than 30%

at least 40% 1 19 less than 40%

at least 50% 1 19 less than 50%

at least 80% 1 19 less than 80%

Even though we could not find explicit evidence for any ODP being reused by
import, we did find evidence by the mere presence of the AgentRole pattern in the
corpus of ontologies. Through manual inspection of the original 438 ontologies
in the BioPortal snapshot, we noticed that the AgentRole pattern was located
in an archive file for the ontology ICPS. This archive also contained another
pattern, namely Person. However, the ontology ICPS has been excluded during
the process of the ontology corpus construction for the study. This observation
raises the question whether our results are skewed by our ontology exclusion
criteria for constructing the experimental ontology corpus. We can invalidate this
concern due to the following. First, we downloaded a version of the BioPortal
snapshot in which each ontology has been merged with its import closure. Then,
we treated all ontologies as simple text files and reran the NamespaceCheck. Still,
there is no positive hit to be reported.

Inspecting the positive evidence found by the IRICheck, it is quite clear that
practitioners create their own entities instead of reusing IRIs from ODPs directly.
Nevertheless, it remains unclear whether this is owed to a conscious modelling
decision, mere personal preference, lack of know-how, or lack of tool support for
ODPs.

Yet, there is a caveat with respect to reusing IRIs from ODPs that needs
to be pointed out. Some ODPs published on http://ontologydesignpatterns.org
are said to be “extracted from upper level ontologies”. However, interestingly,
their respective reusable components P are often self-contained ontologies not
bearing any relation to upper level ontologies. This suggests that P is a somehow
reimplemented fragment of the upper level ontology. This gets practitioners into
the predicament of choosing between aligning their ontologies to an upper level
ontology or an ODP (if they are so inclined in the first place). Hence, it is possible
that practitioners prefer to work with the original upper level ontology rather
than the extracted ODPs thereof.

Irrespective of any matter of renaming, the findings of our AxiomTypeCheck
suggest that modelling features exhibited by most reusable components of ODPs
are not highly prevalent in ontologies of the biomedical domain (the vast major-
ity of ODPs contain axiom types that are not present in more than 70% of

http://ontologydesignpatterns.org
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ontologies). It has been noted before that an ODP’s required language expres-
sivity is outside of the popular EL profile many biomedical ontologies conform
to [11]. Moreover, it seems that a fair amount of published ODPs seem to pro-
pose property centric modelling approaches whereas ontologies in the biomedical
domain tend to follow a class centric design.

Since a high percentage of ontologies do not contain at least the same num-
ber of axioms or axioms types as a given ODP, it is unsurprising to find a lim-
ited number of candidates under the SubstitutinoContainmentCheck. Like-
wise, it is equally unsurprising to find a limited number of candidates under
the SubstitutionEntailmentCheck, given the observation that a fair number
of ODPs make use of modelling techniques that are not expressible in the EL
profile to which a lot of ontologies conform.

Given the above observation with respect to axiom types and differences in
language requirements, we considered to relax the conditions of our substitution
checks. Instead of requiring a substitution for all axioms α ∈ P, we only require
a substitution for some subset S ⊆ P such that σ(α) ∈ O holds for all α ∈ S.
Essentially, this corresponds to some notion of a partial reuse of P. Allowing for
arbitrary subsets S ⊆ P resulted in the generation of a large amount of spurious
data due to our liberal lexical association procedure. Imposing some lower bound
on the size of S is not straightforward as an ODP’s P is often quite small to begin
with. Limiting the search space for lexical associations in the target ontology O
by some heuristics seems to be the most promising approach. For example, given
a match between some e ∈ ˜P and e′ ∈ ˜O, limit the search for further lexical
associations of elements in ˜P to the set {α ∈ O | e′ ∈ α̃} and proceed recursively.
However, slight variations in heuristic search strategies result in drastic effects
for the number of generated lexical associations. Overall, generating meaningful
data for partial reuse of a given ODP’s P turns out to be a challenging research
endeavour in and of itself.

6.1 Limitations

Despite our intention to maximise the recall of our detection mechanism, there
are a few limitations. Some patterns in our corpus are not intended to be directly
reused via some reusable component P. The ODP UpperLevelOntology19 is such
an example. This pattern motivates to align a given ontology to a chosen upper
level ontology. Since all our detection techniques are agnostic to influences of
upper level ontologies and only target lexical as well as structural modelling
features, the prevalence of ontologies aligned to upper level ontologies is not
determined and our negative results are inconclusive.

Another limitation is the manner in which we try to establish lexical asso-
ciations between entities of ODPs and entities of domain ontologies. Entities of
ODPs are arguably of general nature and might not easily be associated via with
domain specific entities on a purely lexical basis. Instead, one might need to con-
sider lexical relationships based on hyponyms and hypernyms. However, doing

19 http://odps.sourceforge.net/odp/html/Upper Level Ontology.html.

http://odps.sourceforge.net/odp/html/Upper_Level_Ontology.html
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so would require an more overall more sophisticated lexical matching procedure
to prevent spurious associations.

The choice of both the ontology corpus as well as the ODP corpus limit
the generalisability of our findings. Despite BioPortal’s popularity for empirical
research, based on a large variety of ontologies differing in size and complexity
that are authored by a number of independent groups for diverse intents and
purposes [16], there is still a possibility that the used BioPortal snapshot in our
study is not representative for biomedical ontologies in general. Likewise, it is
possible that the constructed corpus of ODPs is not representative of patterns
that are relevant for the biomedical domain. However, if we (hypothetically)
assume that the design of many biomedical ontologies is indeed informed by
a pattern-based approach, then this would raise several questions such as why
these patterns would not be readily available in well-known public repositories,
or why would an ontology not document and advertise its pattern-based design
explicitly.

6.2 Related Work

Empirical work on ODP reuse often falls into one of two categories. On the one
hand, there are user studies that investigate how a given set of ODPs affects
the completion of an ontology engineering tasks in an experimental setting. On
the other hand, there are field studies that investigate qualities of ODP reuse
outside an artificially created experimental setting.

Existing user studies reveal mixed user perceptions. ODPs are sometimes
deemed useful [2] but are also often met with scepticism [8,10] and experiences
from ontology engineers reveal tangible limitations of ODP reuse in practice
[14,23].

Existing field studies on ODP reuse either aim to detect the reuse of known
ODPs, or aim for the discovery of regularities in ontologies that may be inter-
preted as the reuse of (potentially unknown) ODPs.

Ontology enrichment has motivated one of the first attempts to automatically
identify the reuse of ODPs in ontologies [19]. It is argued that the identification of
partial ODP reuse may allow for ontology refinement by completing the missing
parts of a pattern. The proposed mechanism to identify the partial reuse of
known ODPs heavily depends on a lexical association procedure that is based
on a number of heuristics. However, a large scale evaluation of the proposed
mechanism is not performed.

The idea of using lexical associations between entities occurring in ontolo-
gies and entities occurring in ODPs has motivated the proposal of a detection
mechanism that uses WordNet20 to provide background knowledge for establish-
ing such lexical associations [13]. However, a first empirical evaluation suggests
that the results are “probably not reliable” because the background knowledge
provided by WordNet is used in a way that skews the data towards patterns
including a certain signature and produces spurious results.

20 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/
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Acknowledging the limitations of lexical associations for the purpose of
detecting ODP reuse, it has been proposed to combine lexical and structural
aspects of an ODP’s design into detection procedures [27]. The idea is to use
query languages, e.g. SPARQL, to probe an ontology for axioms that satisfy
structural constraints imposed by an ODP’s design. Only if such axioms are
found, a lexical association procedure is applied to identify a potential ODP’s
reuse. A preliminary evaluation suggests that the precision of the proposed app-
roach needs to be improved by using query engines that are tailored towards
OWL ontologies, e.g. SPARQL-DL.

Another study combining both lexical and structural aspects of an ODP for
its detection aims disregards ODP reuse under lexical variation of its entities as
this is considered an ill-defined task [18]. Here, a lexical search is performed to
determine whether all entities of a given ODP occur in a target ontology. Only
if instances for all entities of an ODP are found, then a structural comparison
between both the ontology’s and the ODP’s axioms is performed under some
notion of normalisation. A large scale study using this approach reveals the
reuse of a small number of structurally simple ODP in biomedical ontologies.

Contrary to the negative results of studies searching for evidence of the reuse
of published ODP, studies on regularities in ontologies report recurring pattern
of axioms both within as well as across a large number of biomedical ontologies
in BioPortal [15,17].

7 Conclusion

The results of our empirical evaluation corroborate the findings of previous stud-
ies to some degree [18]. Our pattern detection mechanism could not provide
much concrete evidence for ODPs influence in biomedical ontologies. Even lib-
eral notions for ODP reuse which can only be considered suggestive of a given
ODP’s influence do not allow for a different conclusion. While this negative find-
ing appears unconstructive, we will qualify its implications in light of the nature
of our chosen detection techniques.

The structural detection techniques, AxiomTypeCheck and DisjointUnion-
Check, indicate that modelling solutions proposed by ODPs differ significantly
compared with ontologies authored by practitioners. The data collected by the
AxiomTypeCheck shows that the design of most biomedical ontologies are class
centric while the design of ODPs published in catalogue (1) (cf. Sect. 4.1) places
an emphasise on roles. As for disjoint unions, six out of 16 ODPs published in
catalogue (2) (cf. Sect. 4.1) feature a disjoint union. Yet, only 7% of ontologies
in our study make use of such an expression. Overall, it seems that currently,
ODPs do not provide solutions to common ontology design tasks for ontology
engineers in the biomedical domain. In particular, the scarce positive evidence
for ODPs suggest that practitioners in the biomedical domain seem to limit the
reuse of ODPs to the realm of annotations (cf. results of the NamespaceCheck).

Overall, there seems to be a discrepancy between the lack of reuse of publicly
available ODPs on the one hand and ontology engineering techniques that give
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rise to regular logical structures in biomedical ontologies on the other hand, as
shown in [15,17]. However, this discrepancy may be reconciled by motivating a
data driven approach that automatically generates or at least informs the devel-
opment of practically relevant ODPs. In such a scenario, detection techniques,
such as the ones presented in this paper, can serve as some kind of quality mea-
sure for newly discovered pattern. After a pattern is discovered, one can either
gauge its practical relevance by determining its prevalence in other ontologies or
by monitoring the uptake of the discovered pattern by practitioners over time.
The desire for such work has already been expressed [9].
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Abstract. Efficient ontology reuse is a key factor in the Semantic Web
to enable and enhance the interoperability of computing systems. One
important aspect of ontology reuse is concerned with ranking most rel-
evant ontologies based on a keyword query. Apart from the semantic
match of query and ontology, the state-of-the-art often relies on ontolo-
gies’ occurrences in the Linked Open Data (LOD) cloud to determine
relevance. We observe that ontologies of some application domains, in
particular those related to Web of Things (WoT), often do not appear in
the underlying LOD datasets used to define ontologies’ popularity, result-
ing in ineffective ranking scores. This motivated us to investigate – based
on the problematic WoT case – whether the scope of ranking models can
be extended by relying on qualitative attributes instead of an explicit
popularity feature. We propose a novel approach to ontology ranking
by (i) selecting a range of relevant qualitative features, (ii) proposing
a popularity measure for ontologies based on scholarly data, (iii) train-
ing a ranking model that uses ontologies’ popularity as prediction target
for the relevance degree, and (iv) confirming its validity by testing it
on independent datasets derived from the state-of-the-art. We find that
qualitative features help to improve the prediction of the relevance degree
in terms of popularity. We further discuss the influence of these features
on the ranking model.

Keywords: Learning to rank · Ontology reuse · Web of Things ·
Linked vocabularies · Semantic interoperability

1 Introduction

In the Semantic Web, efficient ontology reuse is a key factor to enable and
enhance the interoperability of computing systems [29]. Approaches to ontology
ranking are a key component in finding and selecting the most relevant ontolo-
gies based on a query [25]. The importance of ontology reuse is also increasing
in Internet of Things (IoT) environments, in which the adoption of Semantic
Web technologies has received great interest [2,4]. Emerging open innovation
IoT ecosystems [15] aim for the seamless discovery, access and integration of
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 329–346, 2019.
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heterogeneous, sensor-originated data through the Web, also referred to as the
Web of Things (WoT). Efficient ontology reuse for the semantic annotation of
data streams based on existing ontologies is thus a prerequisite to overcome
this semantic interoperability challenge in the WoT [15]. Moreover, it enables
reasoning over data and establishing linkage to existing knowledge on the Web.

Motivation. This work is motivated by the need of researchers and practitioners
to discover and select the most relevant ontologies for their needs. The large
number of available ontologies and the fast-paced developments in domains often
make it difficult to find and select the most appropriate ontologies. For the WoT
case, this is evidenced through extensive surveys in the literature [1,10,13,16].
This does not only concern ontologies with regard to sensors and sensor network
setups, but further to sensor observations [13] (e.g., in the context of smart
city use cases with regard to the environment, transportation, health, homes,
and factories). At the core of many state-of-the-art tools that facilitate ontology
reuse – such as repositories, search engines and recommender systems – lies the
ranking of ontologies for a user query in the form of keywords.

Importance of Popularity. Fundamental ontology reuse strategies rely on
ontologies’ popularity, which is typically understood as the measure of how often
an ontology is used to model data in the Linked Open Data (LOD) cloud [27].
While rankings foremost take into account the semantic match of query and
ontologies in the collection, current state-of-the-art tools such as Linked Open
Vocabularies (LOV) [32], TermPicker [28], and vocab.cc [30] further incorpo-
rate such a popularity measure in their ranking model. This is crucial because
it reflects the community’s consensus on ontologies’ relevance, instead of solely
relying on how well ontologies semantically match the query. Thus, the app-
roach of computing the popularity measure has an important influence on the
performance of the ranking model.

Problem Statement. We find that the approach to derive popularity from
LOD datasets, as computed in many state-of-the-art tools, can be problematic
for ontologies of some domains. We illustrate this problem in Fig. 1, which shows
the number of ontologies contained in the well-known LOV platform that have
never been reused in LOD datasets1. In total, only ∼35% of the ontologies in
the repository have been reused. We identify particular critical domains with no
reuse in any LOD dataset for any ontology in the collection, namely: Services,
Industry, IoT, Transport, and Health. We consider all these domains highly
relevant to WoT application domains (e.g., smart mobility, smart health care,
industry 4.0), which thus forms our motivating case to investigate qualitative
ontology ranking from this perspective. From a more general viewpoint, this
case highlights the problem that the likeliness of missing relevant information to
1 Extracted from the LOV SPARQL endpoint: https://lov.linkeddata.es/dataset/lov/

sparql – accessed 03/2019.

https://lov.linkeddata.es/dataset/lov/sparql
https://lov.linkeddata.es/dataset/lov/sparql
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explicitly determine popularity for all ontologies in a collection is high, leading
to the computation of ineffective popularity scores in the ranking model.

Contributions. This research contributes to the extension of scope and effec-
tiveness of popularity-driven ontology ranking models, aiming to make these
models less dependent on the underlying popularity measure, such as the selec-
tion of LOD datasets (and the way these datasets are assembled). In this respect,
we investigate whether the relevance degree in terms of popularity can be pre-
dicted with qualitative properties of the ontology instead of relying on an explicit
popularity feature as it is common in the state-of-the-art. We perform this study
(based on the problematic WoT case) by learning a ranking model that uses
the popularity as relevance degree for the prediction target. This approach to
ontology ranking results in fairer scores for ontologies that were developed for
use cases other than LOD publication, such as semantic sensor data annotation
and the development of context-aware applications. In general, obtaining rele-
vance labels for learning to rank is perceived as a major challenge and a costly
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Fig. 1. Count of ontologies per category in the LOV repository that were never reused
in LOD datasets, which is often used as underlying popularity measure in state-of-the-
art rankings. It shows that this score is inefficient for many domains related to WoT
applications, for which none of the ontologies appear in any LOD dataset.
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Table 1. Notation.

Var. Meaning Function Meaning

q Keyword query Φ(q, o, R) Relevance feature extractor

qi ith term of query q Φ(o, R) Importance feature extractor

o Ontology TF(qi, o, R) Term frequency

R Ontology repository IDF(qi, R) Inverse document frequency

Mw2v Word2Vec vector space coord(q, o) Scoring for number of qi matches

DWN WordNet dictionary queryNorm(q) Normalization factor

wi ith word in collection w propertyBoost(qi, R) Boost based on matched property

Φi ith feature cosineDistance(q, wi, Mw2v) Similarity of query and word

l Relevance judgment sense(q, DWN ) Senses of query (WordNet)

πl Total order synonym(q, DWN ) Synonyms of query (WordNet)

process [17]. We propose a popularity measure for ontologies of WoT domains
that relies on scholarly data (i.e., the citation history of ontologies’ associated
scientific publication) to determine relevance degrees in terms of popularity. This
approach overcomes limitations of existing approaches, and we ensure that this
measure approximates popularity in terms of reuses by evaluating the model on
state-of-the-art rankings.

The remainder of this paper is structured as follows. The background and
related work for ontology ranking are presented in Sect. 2. Section 3 defines the
key ranking features and introduces the approach to relevance mining from schol-
arly data. The experiments, data collection and results are presented in Sect. 4.
The findings are further discussed in Sect. 5; the conclusion follows.

2 Background and Related Work

This section introduces the background regarding ontology ranking, learning to
rank and related work. The notation in this paper is summarized in Table 1.

2.1 Ontology Ranking and Learning to Rank

Approaches to ontology ranking adopt conventional ranking techniques and mod-
els from information retrieval, which can be categorized as follows [17]: relevance
ranking models aim to rank an ontology o from a repository R based on their
relevance to a query q, i.e., in the form of Φ(q, o) or Φ(q, o,R). These include well-
known approaches (e.g., TF-IDF [26], BM25 [24]) and further ontology-specific
approaches such as centrality of matched concepts in the ontology graph [8].
On the other hand, one can find importance ranking models that rank ontolo-
gies independently from the query, i.e., in the form of Φ(o) or Φ(o,R). Models
that compute scores based on the quality of ontologies in a collection belong to
this category. Well known approaches include PageRank [22]; ontology-specific
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approaches consider qualitative metrics such as ontologies’ popularity, availabil-
ity, interlinkage to other ontologies, etc. [15]. Some ontology ranking models have
been studied in [7].

In most practical settings various of the previous introduced scoring functions
Φ are combined to form a better performing ranking model h(q, o,R). Learning-
to-rank approaches allow to automatically tune the parameters when combining
different ranking models by employing supervised machine learning algorithms
[17]. The parameters are derived based on the correlations of features (i.e., rel-
evance and importance scores) and a corresponding label that determines how
relevant an ontology for a query is. Therefore, in order to obtain a training set
for learning to rank of ontologies, one requires a ground truth that provides
information about which ontologies o in a collection R are more relevant than
others for a certain query q. Such a ground truth is obtained by (i) selecting a
set of queries with a set of relevant ontologies per query, and by (ii) assigning
relevance judgments l to each query-ontology pair. Obtaining a ground truth is a
difficult task and annotating data with human assessors is costly [17]. Thus, sev-
eral approaches are employed to automatically mine a ground truth by deriving
labels from sources such as user click logs of existing search engines and exploit-
ing usage patterns in LOD datasets. However, such approaches also have their
limitations, e.g., using user click logs requires access to back-ends of existing
search engines with a large user base, which are usually closed systems.

2.2 Related Work

Learning-to-rank techniques have been previously applied to build ontology rank-
ing models. The CBRBench ground truth [6] was gathered through human label-
ing based on how well ontology terms meet their definition in a dictionary, com-
prising ten queries with a total of 819 relevance judgments. CBRBench was used
to learn a ranking model in DWRank [8]. Termpicker [28] proposes a ground
truth derived from LOD datasets and a ranking model that relies on popularity
features, offering ontology term recommendations upon a query in form of triple
patterns. In CARRank [33], a ground truth was obtained through human label-
ing for evaluation purposes, resulting in ∼400 query-term relevance judgments.
Our work differs from these efforts, as we aim to rank ontologies instead of terms.
Further, we aim to propose a ranking that uses popularity as a target instead of
a feature, which is not captured in existing ground truths.

Ontology ranking models have been integrated in tools that help users to find
and select relevant ontologies according to their need, such as the previously
mentioned LOV platform [32], TermPicker [28], and vocab.cc [30]. Such tools
have been previously surveyed in the literature, as in [15]. Ontology reuse has
been studied from more holistic viewpoints, such as methodological guidelines
[11] and choosing ontologies from a set of candidates [14]. This study contributes
to ontology ranking with the overall aim to support the ontology reuse task and
to improve related tools.

Ontology catalogs exist that aim at the collection and curation of ontolo-
gies related to WoT applications. The respective tools provide extensive lists of
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Table 2. Overview of selected ranking features.

Category Feature Description

Relevance Φ1 Lucene A Lucene match with property boost

Φ2 Word2Vec Score based on closely related words of the query

Φ3 WordNet Score based on senses and synonyms of the query

Importance Φ4 Availability Whether the ontology is accessible at its URI

Φ5 Believability Whether provenance information is provided

Φ6 Understandability To which degree terms are labelled and commented

Φ7 Interlinking To which degree the ontology refers to external terms

Φ8 PageRank The importance derived through owl:imports statements

Φ9 Consistency Whether a reasoner does not detect inconsistencies

Φ10 Richness (Width) The size of the ontology in terms of width

Φ11 Richness (Depth) The size of the ontology in terms of depth

ontologies and respective metadata, such as classifications, characteristics (e.g.,
ontology language), and background information. We are aware of three related
projects: LOV4IoT2 [12], the Smart City Ontology Catalogue3 [23], and the
Smart City Artifacts Web Portal4 [3], which maintain an expert selection of
respectively 499, 70, and 124 ontologies5. Whereas these projects provide valu-
able ontology collections for WoT application domains, to the best of our knowl-
edge, no ranking mechanism that effectively considers these ontologies’ popular-
ity exists. We base our experiments on the collection of the LOV4IoT catalog as
it contains the largest number of ontologies and more extensive metadata about
the collection.

3 Ranking Features and Relevance Mining

This section presents the selected ranking features that are considered to con-
stitute our proposed model as well as our approach to derive relevance labels
for ontologies of WoT application domains. The selection of ranking features
is based on comprehensive studies in the literature on ontology ranking and
quality [15,34]. We include all attributes identified in survey [15] except for sub-
jective features and those that only concern term ranking, not ontology ranking.
Table 2 provides an overview of the selected features. Our interpretation of these
features, as presented in the following, is guided by the review presented in [34].

3.1 Relevance Features

Relevance features aim to determine most suitable matches for a query and an
ontology corpus, for which the following features are selected:
2 http://lov4iot.appspot.com/.
3 http://smartcity.linkeddata.es/.
4 http://opensensingcity.emse.fr/scans/ontologies.
5 Accessed 03/2019.

http://lov4iot.appspot.com/
http://smartcity.linkeddata.es/
http://opensensingcity.emse.fr/scans/ontologies
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Lucene Match (Φ1). Our fundamental feature to find relevant ontologies based
on keywords is a Lucene match [19]. As argued in [32], ontologies are structured
documents and more meaningful matches should be given a higher score. We
adopt the approach of [32] and apply a property boost to the lucene match that
aims at rewarding more important matches, such as local names, primary labels
(e.g., rdfs:label), and secondary labels (e.g., rdfs:comment). The definition of the
Lucene score is given in Eq. 1.

Lucene(q, o,R) = coord(q, o) · queryNorm(q)·
n∑

i=1

(
TF(qi, o, R) · IDF(qi, R)2 · propertyBoost(qi, R)

) (1)

Word2Vec (Φ2). Word2Vec [20] trains a neural network to predict the sur-
roundings of a word. We employ this approach to find closely related words of
the input search terms and compute a score based on the cosine distance and
the lucene match. The respective matching score is given in Eq. 2.

Word2VecMatch(q, o, R) =
∑

wi∈cosineDistance(q,Mw2v)

cosineDistance(q, wi, Mw2v) · Lucene(wi, o, R)

(2)

WordNet (Φ3). WordNet [21] is a lexical database in English. We use this
source to find senses and synonyms of the keyword input and compute a score
for these words based on the Lucene search, as given in Eq. 3.

WordNetMatch(q, o,R) =
∑

wi∈sense(q,DWordNet) ∪
wi∈synonym(q,DWordNet)

Lucene(wi, o, R) (3)

3.2 Importance Features

Importance features aim to assign a score to an ontology within a collection inde-
pendently from the query. The selected features that represent the ontologies’
quality are defined as follows:

Availability (Φ4). The availability indicates whether ontology o can be accessed
at its indicated URI. We derive this feature as given in Eq. 4.

Availability(o) =

{
1, if httpResponseCode(URI(o)) = 200
0, otherwise

(4)

Believability (Φ5). The believability of a published ontology increases with the
presence of provenance data (e.g., specification of authors and descriptions), and
is computed based on DCMI metadata terms6, as given in Eq. 5.

Believability(o) =

⎧
⎪⎨

⎪⎩

1, if {URI(o) dc : creator ?c} ∪
{URI(o) dc : description ?d} �= ∅

0, otherwise
(5)

6 http://purl.org/dc/terms/.

http://purl.org/dc/terms/
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Understandability (Φ6). The better a ontology is documented, the easier it is
to reuse it. We measure the understandability of an ontology by computing how
many of all defined terms in ontology o are labelled and commented.

Understandability(o) =
| labelledTerms(o)|
|definedTerms(o)| +

| commentedTerms(o)|
|definedTerms(o)| (6)

Interlinking (Φ7). Ontologies foster interoperability by establishing links to
previously defined terms. Thus, we count the outlinks found in an ontology as
formalized in Eq. 7.

Interlinking(o) = | outlinks(o)| (7)

PageRank (Φ8). PageRank [22] is an algorithm that helps to compute the
importance of ontologies based on how often they have been referred to by others
(i.e., inlinks). We compute the PageRank score based on owl:imports statements,
as given in Eq. 8.

PageRank(oi, R) =
1 − d

|R| +
∑

ojε importedBy(oi)

PageRank(oj , R)
| imports(oj)| (8)

Consistency (Φ9). Ontologies are expected to be logically consistent, which
can be derived through OWL reasoners. We compute the consistency feature as
given in Eq. 9.

Consistency(o) =

{
1, if {inconsistencies(o)} = ∅

0, otherwise
(9)

Richness (Φ10 & Φ11). We further consider the size of the ontology in the form
of its width (see Eq. 10) and depth (see Eq. 11).

Width(o) = | typeStatements(o)| (10)
Depth(o) = | subClassOfStatements(o)| + | subPropertyOfStatements(o)| (11)

3.3 Relevance Mining Approach

Learning to rank is a supervised machine learning approach that requires rele-
vance labels for query-ontology pairs. We propose to derive a popularity measure
based on corresponding scientific publications associated with an ontology. We
are inspired to follow this approach as a large number of ontologies for WoT
application domains emerge from research projects, as evidenced in [1,10,13,16].
Furthermore, it overcomes several limitations of other approaches: (i) as previ-
ously discussed, LOD does not provide a reliable source for ontology reuse in
WoT application domains; (ii) deriving relevance through user click logs requires
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access to closed back-ends of existing ontology search engines with a large user
base; (iii) human labeling is costly and, unlike mining relevance from scholarly
data, does not come with the benefit of being reproducible.

Our popularity score is based on two measures; (i) citationsPerYear(o): cita-
tions per year are counted and divided by the number of ontologies described in
the same publication to represent the overall impact of the ontology; and (ii) the
linearTrend(o): a linear regression of the citation history to reward positively
trending ontologies combining the intercept and the slope of the linear model.
The final relevance score, as given in Eq. 12, is the mean of both min-max nor-
malized measures and used to derive the total order πl for the set of ontologies
associated with a query, for which an ontology with a higher popularity score is
more relevant than another, i.e., la � lb if popularity(oa) > popularity(ob).

popularity(o) =
citationsPerYear(o) + linearTrend(o)

2
(12)

A ground truth mining process is always assumed to contain bias and noise:
for relevance mining from scholarly data, all self-citations are subtracted from
the citation history, and incomplete years are not considered (i.e., citations of the
current year and of the year of publication). Although the citation history is often
used to measure a study’s impact, the associated reason for the citation remains
unknown, which is a potential threat to the validity of our popularity scores.
We assume that the proposed measure reflects the overall ontologies’ relevance
for the scientific community (e.g., we assume that for outdated ontologies the
citation count will decline and the score is penalized accordingly through the
linear trend). In the following experiments, the proposed ranking model is tested
on completely independent datasets to evaluate whether our training data is
accurate and the assumptions hold.
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4 Experiments

This section presents the experiments following the learning-to-rank approach
to build a ranking model with qualitative properties of the ontologies to predict
the relevance degree. An overview of the following experiments is illustrated in
Fig. 2, whose aims are twofold; (i) to investigate whether qualitative features in
the ranking model help to improve the ranking performance with regard to the
relevance degree, and (ii) to confirm the validity of the results by testing the
model on data sets derived from state-of-the-art ontology rankings.

4.1 Experiment Design

The design choices to learn and evaluate the ranking model are as follows:

Learning Algorithm: various learning-to-rank algorithms were proposed by the
machine learning community. The ranking model is trained using the list-wise
LambdaMART algorithm which has successfully been applied for real-world
ranking problems [5] and has also been previously selected in related work
for ontology ranking [8]. We rely on the LambdaMART implementation of the
RankLib7 library.

Evaluation Metrics: the performance of the ranking model is validated and
tested based on the Mean Average Precision (MAP) [17], Normalized Discounted
Cumulative Gain (NDCG@k) [17] and the Expected Reciprocal Rank (ERR@k)
[9], considering the first ten elements (k = 10). A unified point-wise scale for
relevance labels is required for some evaluation metrics, so popularity scores of
query-ontology pairs are mapped to a scale of 0–4 for the experiments. While
MAP is only a binary measure (i.e., 0: considered not relevant, 1–4: considered
equally relevant), the NDCG@k and ERR@k scores do consider the multi-valued
relevance labels (i.e., these metrics consider how well the ranking model matches
the relevance degree 0–4). Whereas NDCG@k only depends on the position in the
ranking, ERR@k discounts the results appearing after relevant ones, which sup-
posedly better reflects user behavior of search engines [9]. The ranking model is
trained by optimizing the ERR@10 score using 10-fold cross validation, meaning
that the training data is randomly partitioned into ten equal sized subsamples.
Iteratively, nine of these folds are used for training and the remaining one for
validation.

Feature Sets: the training dataset is prepared by extracting the feature vectors
for each query-ontology pair as introduced in Sect. 3. We rely on the Lucene
search engine of the Stardog8 triple store, the openllet9 OWL reasoner to infer
consistency and the GloVe word vector model10 to compute the Word2Vec fea-
ture.
7 https://sourceforge.net/p/lemur/wiki/RankLib/.
8 https://www.stardog.com/.
9 https://github.com/Galigator/openllet.

10 https://github.com/stanfordnlp/GloVe.

https://sourceforge.net/p/lemur/wiki/RankLib/
https://www.stardog.com/
https://github.com/Galigator/openllet
https://github.com/stanfordnlp/GloVe
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4.2 Ranking Model Training and Validation

In the first experiment we train and validate the ranking model, as presented in
the following.

Data Collection: the data for training and validation is collected from the
LOV4IoT catalog11. 455 ontology files related to WoT applications could be
downloaded through the catalog (each file being treated as a separate ontol-
ogy). Only 433 files were syntactically correct and stored as named graphs in a
local triple store. We derive training examples by using the available classifica-
tion labels from the LOV4IoT catalog as queries (i.e., ontologies’ domain12 and
described sensor devices13), and consider the correspondingly tagged ontologies
as relevant. As previously motivated, we rely on scholarly data to derive degrees
of relevance. From the initial collection, 395 ontologies could be assigned to 125
different scientific publications based on the LOV4IoT metadata. This collec-
tion resulted in 1.1M triples with 133K distinct terms and forms the ontology
repository for the experiments. The citation history from Google Scholar of the
assigned publications is used to derive a relevance score for the ontologies based
on the approach presented in Sect. 3. The resulting scores are mapped to rel-
evance labels 1–4 by dividing the range of the highest and lowest popularity
score for each query into four equal-sized intervals, and a random set of irrele-
vant ontologies is added with the relevance label 0. The resulting ground truth
contains 1028 query-ontology relevance judgments with 25 different queries, for
which the previously introduced ranking features are extracted to finalize the
training set.
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Fig. 3. Comparison of trained models with regard to MAP, NDCG@10 and ERR@10
on the validation set, for model (a) using only relevance features (Φ1–Φ3) and model (b)
using further the importance features (Φ1–Φ11). The red lines indicate the difference
of the respective metric’s mean between the two models.

11 http://lov4iot.appspot.com/.
12 Denoted by <http://sensormeasurement.appspot.com/m3#hasContext>.
13 Denoted by <http://sensormeasurement.appspot.com/m3#hasM2MDevice>.

http://lov4iot.appspot.com/
http://sensormeasurement.appspot.com/m3#hasContext
http://sensormeasurement.appspot.com/m3#hasM2MDevice
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Experiment and Results: the first experiment aims at investigating whether the
selected qualitative importance features improve the ranking performance with
regard to the relevance degree. Thus, we first train and validate a model only
based on relevance features, and use this as a baseline to evaluate the perfor-
mance of a model that further considers the importance features. The results
are summarized in Fig. 3, showing the performance of two ranking models: the
relevance model (a) is only trained with the relevance features (Φ1–Φ3), whereas
the full model (b) also includes the importance features (Φ1–Φ11).

The results show that the trained ranking models appear to appropriately
rank ontologies with regard to their relevance. We observe that the addition of
qualitative features only has a small impact on the MAP score, but significantly
improves the NDCG@10 and ERR@10 scores. This behavior is expected, as MAP
effectively only measures the semantic match of query and relevant ontologies,
whereas the qualitative features aim at ranking relevant ontologies according
to their relevance degree. NDCG@10 and ERR@10 both reflect this degree, as
they take into account multi-valued relevance labels. We thus conclude that
qualitative features helped to improve the ranking with regard to the popularity-
based relevance degree captured in the ground truth. Subsequently, this implies
that the proposed approach can extend the scope of state-of-the-art rankings, by
improving the performance for domains in which ontologies were never reused
in LOD datasets. In such cases, the explicit popularity feature always results in
the same score for all ontologies (i.e., zero) and effective ranking is only based on
relevance (i.e., corresponding to model (a)). The presented approach in contrast
predicts the popularity based on the qualitative features (i.e., corresponding to
model (b)), even when no explicit information of popularity or reuse is present.

4.3 Ranking Model Evaluation and Comparison

The second experiment aims at evaluating and comparing the model with inde-
pendent datasets derived from state-of-the-art rankings. We do this in order to
ensure that our assumptions for the ground truth, as introduced in Sect. 3, hold
and to confirm whether the findings from the first experiments are valid. Due to
the lack of existing benchmarks and implementations of ranking models proposed
in the literature, we derive test sets from state-of-the-art tools which must: (i)
provide an open API that returns the computed ranking score of the top-ranked
ontologies for a query; (ii) make the underlying ontology collection available for
download; and (iii) incorporate a popularity measure in their ranking model. We
choose to compare the proposed ranking model to approaches from two different
domains that fulfill these requirements: the LOV repository [32], which measures
popularity based on LOD occurrences (by excluding the problematic domains
without any reuse in LOD for the test sets); and the NCBO recommender 2.0
of the BioPortal [18], which ranks biomedical ontologies and covers ontology’s
popularity in its notion of acceptance, derived by the number of other curated
repositories that also keep an ontology in its collection.
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Data Collection: we create the test sets based on the LOV REST API14 and the
BioPortal REST API15. For each platform, we (i) derive a set of test queries by
extracting nouns and verbs from names and descriptions of all ontologies in the
respective repository, (ii) use each test query to retrieve the ranking from the
respective API that forms the ground truth, (iii) use the same strategy as for the
training data to map the ranking scores to a scale of 1–4 and add a random set of
irrelevant ontologies with a relevance of 0, and, lastly, (iv) complete the test set
by extracting the features for all query-ontology pairs from a local triple store
that contains the respective ontology collection. For the LOV test set we only
consider domains with at least five ontologies that have been reused in LOD
datasets, in order to ensure that the derived ground truth sufficiently reflects
the ontologies’ popularity (see Fig. 1). This process resulted in test datasets
with 2998 (LOV) and 4313 (BioPortal) query-ontology relevance scores.

Experiment and Results: in the second experiment we test both, the validated
relevance model (a) and the full model (b), from the first experiment on the newly
derived datasets. The results are illustrated in Fig. 4, showing the comparison
of the performance for the LOV and BioPortal test set, as well as the mean
performance of the full ranking model from the first experiment (indicated by
the dashed lines).
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Fig. 4. Comparison of the validated ranking models from the first experiment with the
LOV and BioPortal rankings. The dashed lines indicate the mean performance of the
full model on the 10 fold validation sets, showing that the model performs similarly
well on the test datasets. The red lines indicate the difference of the respective metric’s
mean between the two models. (Color figure online)

14 https://lov.linkeddata.es/dataset/lov/api.
15 http://data.bioontology.org/documentation.

https://lov.linkeddata.es/dataset/lov/api
http://data.bioontology.org/documentation
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The experiment results lead to two important conclusions. First, it shows
that the learned models behave reasonably well on these completely independent
datasets, evidenced by the similar performance compared to the first experiment.
This confirms that the underlying ground truth to train our model is valid and,
subsequently, implies that the citation history of ontologies in WoT domains is
a fair approximation of their popularity. Secondly, we observe a similar behavior
of the relevance and the full ranking model as in the first experiment, for which
the full model improves the ranking in terms of relevance degree. Albeit the
improvement on test sets is lower as in the previous experiment, it shows the same
trend and thus validates our previous conclusion that the selected qualitative
features help to predict the popularity-driven relevance degree of ontologies.
The experimental results are further analyzed and discussed in the following.

5 Discussion

Experiment Summary. This study reveals that the prediction of ontologies’
relevance for a query in terms of popularity can be improved with qualitative
features. This confirms the hypothesis of a correlation between ontologies’ pop-
ularity and its quality, based on the intuition that ontologies with better quality
are more likely to be reused than others of the same domain. The presented
approach extends the scope and applicability of the ranking model, as it is not
dependent on measures of LOD occurrences. As motivated previously, this app-
roach gives a fairer score to ontologies that are not engineered for LOD pub-
lication purposes, such as WoT application domains, and furthermore also for
newly proposed ontologies without any reuses that are well-defined.

Influence of Qualitative Attributes. The LambdaMART algorithm applied
in the experiments creates an ensemble of regression trees which can be further

Table 3. Full model feature frequencies averaged over all folds.

Category Feature Avg. freq.

Relevance Φ1 Lucene 1056.9

Φ2 Word2Vec 680.0

Φ3 WordNet 1375.5

Importance Φ4 Availability 697.7

Φ5 Believability 55.8

Φ6 Understandability 1237.9

Φ7 Interlinking 634.8

Φ8 PageRank 1302.1

Φ9 Consistency 777.7

Φ10 Richness (Width) 535.1

Φ11 Richness (Depth) 646.5
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analyzed to better understand the model and its consequences. One way to
infer the importance of each feature on the ranking model is the frequency it
was used for classification of the training examples. We use these counts to dis-
cuss the model’s implications and directions for future research. Table 3 reports
the results for feature frequency. We derive the following insights based on the
feature statistics, albeit detailed experimentation would be required to confirm
them. One interesting observation is that the feature believability (Φ5) barely
contributes to the model and would be the first candidate to be replaced with
another feature. This is surprising, as other approaches fundamentally rely on
provenance information such as ontologies’ authorship to compute the ranking
[31]. Other observations include that an ontology’s incoming links (Φ8) appear
to have much more significance than outgoing links (Φ7). This is intuitive, as
being imported by another ontology often requires the ontology to be consid-
ered relevant by ontology engineers other than the original authors. In addition,
it can be observed that features that solely reflect the internal graph structure
(Φ10 and Φ11) are less often used by the model than more expressive qualitative
scores such as understandability (Φ6), consistency (Φ9) and availability (Φ4).

Implications of Proposed Ranking Approach. The experimental results of
this study show that the proposed approach is promising to extend the scope of
ontology ranking models. As evidenced through the experiments, this approach
can also be adopted for other domains and we expect a model trained on domain-
specific ontologies to perform better. This encourages further experimentation
with more quality attributes, new interpretations of them, and with training sets
from other domains in order to confirm the findings and achieve the development
of better performing ranking models. The quality of learning-to-rank approaches
also highly depends on the size of the training data. We expect future research to
provide larger benchmarks that allow for the study of more complex models and
better comparisons of ranking approaches, such as ground truths derived from
user click logs of existing search engines. In a broader context, this approach to
ranking could also encourage ontology engineers to put even more emphasis on
qualitative traits of proposed ontologies in order to increase exposure and reuse
in applications. Albeit the extraction of qualitative features can be computation-
ally very expensive, these scores are independent from the user query and can
be pre-computed. Thus, the lookup of these scores and re-ranking of relevant
ontologies only has a minor impact on the run-time performance compared to
the complexity of the semantic similarity search in the entire ontology corpus.

Novel Ontology Ranking Model for the WoT. To the best of our knowl-
edge, the proposed full ranking model is the first that effectively considers pop-
ularity for ontologies in WoT application domains. We thus conclude that the
proposed full ranking model contributes to ontology selection for these domains
in the scope of open IoT ecosystems, e.g., for ontology collections such as the
LOV4IoT catalog. The ranking model can be integrated in more complex user
interfaces and combined with various other selection criteria in IoT domains,
that, e.g., further consider important standardization efforts.



344 N. Kolbe et al.

Limitations. A potential threat to validity of this study’s experimental findings
is the ground truth derived through popularity measures from scholarly data.
While it is a common approach to use implicit user feedback as relevance score
(such as user clicks), using citations arguably is a more ambiguous measure.
Yet, as previously mentioned, this approach overcomes limitations of alternatives
and our evaluation showed a reasonable performance. We conclude that further
experimentation is required in order to confirm whether similar observations
can be made for other domains than WoT, by using training examples with a
relevance score derived from other popularity measures. From an ontology reuse
perspective, this study is limited as it only considers ranking of single ontologies.
However, practitioners often search for terms (e.g., as offered by LOV [32]) or
combinations of ontologies (e.g., as offered by NCBO 2.0 [18]).

Resource Availability. The derived datasets, source files to replicate the
experiments, as well as more detailed results of the ranking models are avail-
able online16, and may be used for future experiments and comparison studies.

6 Conclusion

In this paper, we show that the prediction of ontologies’ relevance in terms
of popularity can be improved with qualitative features in the ranking model,
making the model independent from explicit computed popularity metrics such
as LOD occurrences. Moreover, we present a ranking model that effectively ranks
ontologies of WoT domains with respect to their popularity. We show that the
proposed model performs similarly well on test set derived from rankings of
state-of-the-art tools, which is encouraging to adopt the presented approach also
in other domains. Lastly, we discuss the importance of the qualitative features
on the overall performance of the ranking model. The proposed model can be
integrated in ontology selection mechanisms for practitioners and researchers in
WoT use cases and thus contributes to establish semantic interoperability in
emerging large-scale IoT ecosystems.
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Abstract. Knowledge graphs are composed of different elements: entity
nodes, relation edges, and literal nodes. Each literal node contains an
entity’s attribute value (e.g. the height of an entity of type person)
and thereby encodes information which in general cannot be repre-
sented by relations between entities alone. However, most of the existing
embedding- or latent-feature-based methods for knowledge graph analy-
sis only consider entity nodes and relation edges, and thus do not take the
information provided by literals into account. In this paper, we extend
existing latent feature methods for link prediction by a simple portable
module for incorporating literals, which we name LiteralE. Unlike in
concurrent methods where literals are incorporated by adding a literal-
dependent term to the output of the scoring function and thus only
indirectly affect the entity embeddings, LiteralE directly enriches these
embeddings with information from literals via a learnable parametrized
function. This function can be easily integrated into the scoring func-
tion of existing methods and learned along with the entity embeddings
in an end-to-end manner. In an extensive empirical study over three
datasets, we evaluate LiteralE-extended versions of various state-of-the-
art latent feature methods for link prediction and demonstrate that Lit-
eralE presents an effective way to improve their performance. For these
experiments, we augmented standard datasets with their literals, which
we publicly provide as testbeds for further research. Moreover, we show
that LiteralE leads to an qualitative improvement of the embeddings and
that it can be easily extended to handle literals from different modalities.
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1 Introduction

Knowledge graphs (KGs) form the backbone of a range of applications, for
instance in the areas of search, question answering and data integration. Some
well known KGs are DBpedia [9], Freebase [1], YAGO3 [10], and the Google
Knowledge Graph [5]. There are different knowledge representation paradigms
for modeling KGs such as the Resource Description Framework (RDF) and
(labeled) property graphs. Within this paper, we consider a KG to be a set
of triples, where each triple connects an entity (shown as circle in Fig. 1) to
another entity or a literal (the latter shown as rectangle in Fig. 1) via relation-
ships. Such KGs can be represented by the RDF and property graph paradigms,
i.e. the methods presented in this paper are applicable to both. To give a con-
crete example, the KG depicted in Fig. 1 includes the triples (John, Doe High
School, studiesAt) and (Jane, 2000, birthYear). The first triple expresses the
relationship between an entity and another entity. The second triple expresses a
relationship between an entity and a literal1.

John
Jane

Doe High
School

2001 2000

knows?

b
irth

Y
ear b

ir
th

Y
ea

r

st
ud

ie
sA

t

studiesAt

Fig. 1. Literals (box) encode information that cannot be represented by relations alone,
and are useful for link prediction task. For instance, by considering both birthYear

literals and the fact that John and Jane both study at Doe High School, we can be
more confident that the relation knows between John and Jane exists.

Knowledge graphs aim to capture factual knowledge within a particular
domain. However, they are often incomplete since, e.g., more information is
provided for popular than for unknown entities or because the KG is partially
or fully generated via an automatic extraction process. As a result, KGs rely
heavily on methods predicting unknown triples given all known triples. This
problem is usually referred to as link prediction. The closely related problem of
detecting incorrect triples in KGs is referred to as link correction and is relevant
for improving the quality of a KG.

1 For more information about the RDF concepts see https://www.w3.org/TR/rdf11-
concepts.

https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/rdf11-concepts
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Due to the importance of the problem, many methods for link prediction and
correction in KGs have been developed. The two main classes of these methods
are graph feature and latent feature methods [11]. Graph feature methods predict
the existence of triples based on features directly observed in the KG, such as the
neighborhood of an entity and paths to other entities. They are well suited for
modeling local graph patterns. In latent feature models, low-dimensional, latent
representations (also called embeddings) of entities and relations are learned.
These embeddings incorporate the KG structure, can capture global patterns,
and allow to compute the likeliness of a given triple in terms of a probability
or score function. However, most of the recent work on latent feature models
only takes entities and their relations to other entities into account. Therefore,
they are missing the additional information encoded in literals. For example,
Fig. 1 shows two entities with both structural (visiting the same school) as well
as literal (birth years) information. To maximize the accuracy of predicting a
knows relation between these entities, structural and literal information should
be combined as people visiting the same school and having similar age tend to
have a higher probability of knowing each other.

In this paper, we investigate the advantage obtained by incorporating the
additional information provided by literals into latent feature methods. We intro-
duce LiteralE, a method to enrich entity embeddings with their literal informa-
tion. Given an entity embedding, we incorporate its corresponding literals using a
learnable parametric function, which gets the vanilla embedding and the entity’s
literals as input, and outputs a literal-enriched embedding. This embedding can
then replace the vanilla embedding in any latent feature model, without chang-
ing its original scoring function and the resulting system can be jointly trained
with stochastic gradient descent, or any other gradient based algorithm of choice,
in an end-to-end manner. Therefore, LiteralE can be seen as an extension mod-
ule that can be universally combined with any existing latent feature method.
Within this paper, we mainly focus on numerical literals. However, we demon-
strate that the principle can be directly generalized to other literal types, such
as textual and image information, e.g. by providing low-dimensional vector rep-
resentation of image or text [22,23] as an additional input to LiteralE.

Our contributions in this paper are threefold:

– We introduce LiteralE, a universal approach to enrich latent feature methods
with literal information via a learnable parametric function. In contrast to
other latent feature models including literals, our approach does not require
specific prior knowledge, does not rely on a fixed function to combine entity
embeddings and literals, can model interactions between an embedding of an
entity and all its literal values and can be trained end-to-end.

– We evaluate LiteralE on standard link prediction datasets: FB15k, FB15k-237
and YAGO3-10. We extended FB15k and FB15k-237 with literals, in order to
allow for direct comparison against other methods on these standard datasets.
We provide these literal-extended versions (augmented with numerical and
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textual literals) and hope they can serve as a testbed for future research on
the inclusion of literals in KG modeling.2

– Based on experimental results on the extended datasets, we show that exploit-
ing the information provided by literals significantly increases the link pre-
diction performance of existing latent feature methods as well as the quality
of their embeddings.

This paper is organized as follows. In Sect. 2 we review several latent feature
methods for link prediction in KGs. In Sect. 3 we present LiteralE, our approach
for incorporating literals into existing latent feature methods. We give a brief
review of the related literatures and contrast LiteralE with other methods incor-
porating literals in Sect. 4. Our experiment methodology is described in Sect. 5,
and in Sect. 6 we present our experiment results. Finally, we conclude our paper
in Sect. 7.

Our implementation of the proposed methods and all datasets are publicly
available at: https://github.com/SmartDataAnalytics/LiteralE.

2 Preliminaries

In the following we will describe the link prediction problem more formally and
give a brief overview over well-known latent feature methods.

2.1 Problem Description

Link prediction is defined as the task of deciding whether a fact (represented by
a triple) is true or false given a KG. More formally, let E = {e1, · · · , eNe

} be the
set of entities, R = {r1, · · · , rNr

} be the set of relations connecting two entities,
D = {d1, · · · , dNd

} be the set of relations connecting an entity and a literal, i.e.,
the data relations, and L be the set of all literal values. A knowledge graph G is a
subset of (E×E×R)∪(E×L×D) representing the facts that are assumed to hold.
Link prediction can be formulated by a function ψ : E × E × R → R mapping
each possible fact represented by the corresponding triple (ei, ej , rk) ∈ E ×E ×R
to a score value, where a higher value implies the triple is more likely to be true.

2.2 Latent Feature Methods

In general, latent feature methods are a class of methods in which low dimen-
sional vector representations of entities and relations, called embeddings or latent
features, are learned. Let H be the embedding dimension. We define a score func-
tion f : RH × R

H × R
H → R that maps a triple of embeddings (ei, ej , rk) to

a score f(ei, ej , rk) that correlates with the truth value of the triple. In latent
feature methods, the score of any triple (ei, ej , rk) ∈ E × E × R is then defined

as ψ(ei, ej , rk)
def= f(ei, ej , rk).

2 A literal-extended version of YAGO3-10 is provided by Pezeshkpou et al. [12].

https://github.com/SmartDataAnalytics/LiteralE
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Latent feature methods for link predictions are well studied. These methods
follow a score-based approach as described above but make use of different kind of
scoring functions f . In this paper we study the potential benefit of incorporating
numerical literals in three state of the art methods: DistMult [5], ComplEx [19],
and ConvE [4], which are described in the following. Note however, that these
are just an exemplary choice of methods and our approach for incorporating
literals can easily be adopted to other latent feature methods.

The DistMult scoring function is defined as diagonal bilinear interaction
between the two entity embeddings and the relation embedding corresponding
to a given triple, as follows

fDistMult(ei, ej , rk) = 〈ei, ej , rk〉 = eᵀ
i diag(rk) ej . (1)

Observe that DistMult is cheap to implement, both in terms of computational
and space complexity.

ComplEx can be seen as DistMult analogue in the complex space. The
embedding vectors have two parts: the real part Re(e) and Re(r), and the imag-
inary part Im(e) and Im(r), respectively. The scoring function is defined as

fComplEx(ei, ej , rk) = Re(〈ei, ēj , rk〉)
= 〈Re(ei),Re(ej),Re(rk)〉
+ 〈Im(ei), Im(ej),Re(rk)〉
+ 〈Re(ei), Im(ej), Im(rk)〉
− 〈Im(ei),Re(ej), Im(rk)〉.

(2)

ComplEx thus has twice the number of parameters compared to DistMult but
provides the benefit of modeling asymmetric relationships better, as discussed
by Trouillon et al. [19].

ConvE employs a convolutional neural network to extract features from
entity and relation embeddings. Let h be a nonlinear function, ω ∈ Rk×m×n be
convolution filters, and W ∈ Rkmn×H be a weight matrix. The ConvE score
function is then defined by

fConvE(ei, ej , rk) = h(vec(h([ei, rk] ∗ ω))W) ej , (3)

where vec(·) is the vectorization of output of convolutional filters. By employing
deep feature extractors in the form of nonlinear convolutional layers, ConvE
is able to encode more expressive features while remaining highly parameter
efficient.

3 LiteralE

Our method of incorporating literals into existing latent feature methods, which
we call LiteralE, is a simple, modular, and universal extension which can poten-
tially enhance the performance of arbitrary latent feature methods.
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Let L ∈ R
Ne×Nd be a matrix, where each entry Lik contains the k-th literal

value of the i-th entity if a triple with the i-th entity and the k-th data relation
exists in the KGs, and zero otherwise. We will refer to the i-th row li of L as the
literal vector of the i-th entity. As an illustration, consider the KG part depicted
in Fig. 1 and imagine that there only exist three data relations in this specific
KG: heightCm, birthYear, and countryArea. For the entity John we will then
have the literal vector (0, 2001, 0) in the particular row corresponding to John
in matrix L, as John only has literal information for birthYear.3

rk

ei

ej

li

lj

g

g

f y

Triple Embeddings LiteralE Score Func. Score

Fig. 2. Overview on how LiteralE is applied to the base scoring function f . LiteralE
takes the embedding and the corresponding literals as input, and combines them via
a learnable function g. The output is a joint embedding which is further used in the
score function f .

At the core of LiteralE is a function g : R
H × R

Nd → R
H that takes an

entity’s embedding and a literal vector as inputs and maps them to a vector
of the same dimension as the entity embedding. This vector forms an literal-
enriched embedding vector that can replace the original embedding vector in the
scoring function of any latent feature model. For example, in our experiments,
we replace every entity embedding ei with eliti = g(ei, li) in the scoring functions
of DistMult and ConvE. For ComplEx, where the embeddings have a real and
an imaginary part, we use two separate functions to map Re(ei) and Im(ei) to
their literal-extended counterparts. Aside of these changes regarding the entity
embeddings, the score functions are the same as described before in Eqs. (1), (2),
and (3). For instance, the LiteralE-extended version of DistMult is given by
fDistMult(eliti , elitj , rk).

We will now describe the function g in detail. First, since we would like g
to be flexible, we need it to be learnable. Second, we would like g to be able
to decide whether the additional literal information is useful or not, and adapt
accordingly, e.g. by incorporating or ignoring that information. We therefore take
cue from the gating mechanism present in RNNs, such as the gated recurrent

3 Note that in practice, we normalize the literal values.
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unit (GRU) [3], and let g be defined by

g : RH × R
Nd → R

H

e, l �→ z 	 h + (1 − z) 	 e , (4)

where 	 is the pointwise multiplication and

z = σ(WT
zee + WT

zll + b)

h = h(WT
h [e, l]) . (5)

Note that Wh ∈ R
H+Nd×H , Wze ∈ R

H×H , Wzl ∈ R
Nd×H , and b ∈ R

H are the
parameters of g, σ is the sigmoid function, and h is a component-wise nonlin-
earity (e.g. the hyperbolic tangent).

LiteralE introduces some overhead in the number of parameters compared
to the base method. This overhead is equal to the number of parameters of the
function g and is compared to that of other approaches for the incorporation of
literals in Table 1. Specifically, there are 2H2+2NdH +H additional parameters
corresponding to the dimensionality of Wh, Wze, Wzl, and b in Eq. (5). Thus,
with this choice of g and given H, the number of additional parameters of Lit-
eralE grows in O(Nd), that is, linear to the number of data relations in the KG.
Furthermore, the additional space complexity of LiteralE is in O(NeNd) as one
needs to store the matrix L. Lastly, the additional computational complexity of
LiteralE is only attributed to the cost of three matrix multiplication and one
vector addition.

In summary, with our method LiteralE, we propose to replace the score
function fX(ei, ej , rk) from the host method X with the function composition

fX(g(ei, li), g(ej , lj), rk)

as illustrated in Fig. 2. This new scoring function can be trained by gradient
descent based optimization using the same training procedure as before.

4 Related Work

In the last years, several efforts to incorporate literals into KG embedding meth-
ods have been made. Toutantova et al. [18] and Tu et al. [20] make use of textual
literals of entities in addition to relational embeddings. More specifically they
learn additional entity embeddings from their textual description and use them
in an additive term in the score function of latent distant methods. Xie et al. [22]
and Xu et al. [23] also proposed methods to incorporate textual literals into latent
distance methods such as TransE by encoding textual literals with recurrent or
convolutional neural networks. Xie et al. [13] use image literals in their model by
projecting entities’ image features into an entity embeddings space. However, all
of those approaches do not consider numerical literals. MultiModal [12] extends
DistMult to also predict the likeliness of (subject, relation, literal)-triples, by
replacing the object embedding in standard DistMult by its literal embedding
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(where literals of different modalities are taken into account). By doing so literals
are incorporated into entity embeddings in an implicit manner. Sun et al. [14],
proposes to employ literals to refine the joint embeddings in entity alignment
tasks: They use literals to cluster together entities which have high literal corre-
lations, thus only indirectly use the literal information in the entity embeddings.
In contrast to all the aforementioned works, LiteralE combines the literals into
the entity embedding directly and explicitly by the function g defined above.

KBLRN [6] handles literals in a separate function added to the vanilla scor-
ing function and thus does not incorporate literals in to the entity embeddings
themselves. The construction of features from the numerical literals is based on
a prior knowledge: the difference between the numerical literals of the subject
and object entity is a good predictor for a given relation. These features then
serve as input to a fixed radial basis function (RBF), which is added to the
score function of the base method (DistMult). In contrast, LiteralE incorporates
literal information directly into the entity embeddings4, and does not use any
prior knowledge about the meaning of numerical literals.

Table 1. Model complexity in terms of number of parameters of methods for incor-
porating literals. We denote the number of parameters of base models (e.g. DistMult)
with Γ . Furthermore, Z is the number of hidden units in a neural network (e.g. in
LiteralE-MLP and MTKGNN’s Attribute Networks). We leave out bias parameters for
clarity.

Model Number of parameters

KBLN Γ + NrNd

MTKGNN Γ + NdH + 2(2HZ + Z)

LiteralE Γ + 2H2 + 2NdH + H

MTKGNN [15] extends ERMLP [5] and incorporates numerical literals by
introducing an additional learning task, more precisely, the task of predicting the
literal value for a given entity. This multi-task learning approach of MTKGNN
requires an additional attribute-specific training procedure. Therefore, adding
another type or modality of literals is not straightforward and costly as another
learning task needs to be devised. Similar to MTKGNN, TransEA [21] extends
TransE by adding a numerical attribute prediction loss to the relational loss.

Lastly, the model recently proposed by Thoma et al. [16] can be seen as
a special case of LiteralE where the function used instead of the function g
defined above to combine literals of entities with their entity embeddings is a
concatenation followed by singular value decomposition. Thus, they use a fixed
function to combine the representations, whereas LiteralE employs an adaptable
function and is therefore more flexible. Furthermore, they only consider image
and text literals but no numerical literals.
4 Note, that incorporating the literal information into the embeddings also seems

advantageous for entity disambiguation or clustering.
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5 Experiments

In the following we will describe the training approach, the datasets, the exper-
imental setup, and the evaluation metrics applied in our experiments.

5.1 Training

We use the same training approach as Dettmers et al. [4] for all the tested
methods. That is, for every given triple (ei, ej , rk) in the KG, we compute the
score for (ei, e′

j , rk),∀e′
j ∈ E using the (original or LiteralE-extended) scoring

function f , and apply the sigmoid function to the resulting score (i.e. p = σ ◦f),
such that it can be interpreted as probability of existence of a given triple.

Table 2. Number of entities, relations, literals, and triples, for all datasets used in this
paper.

Dataset FB15k FB15k-237 YAGO3-10

# Entities (Ne) 14,951 14,541 123,182

# Relations (Nr) 1,345 237 37

# Data rel. (Nd) 121 121 5

# Literals (|L|) 18,741 18,741 111,406

# Relational triples 592,213 310,116 1,089,040

# Literal triples 70,257 70,257 111,406

Let p ∈ [0, 1]Ne be the probability vector, collecting the resulting prob-
abilities with respect to all e′

j ∈ E . The model is then trained by minimiz-
ing the binary cross-entropy loss between the probability vector p and the
vector of ground truth labels y ∈ {0, 1}Ne indicating the existence of triples
(ei, e′

j , rk),∀e′
j ∈ E in the KG. That is, we minimize

L(p,y) = − 1
Ne

Ne∑

x=1

(yx log(px) + (1 − yx) log(1 − px)), (6)

where px and yx are the predicted probability and the given truth value for
the x-th element of our candidate set {(ei, e′

j , rk), e
′
j ∈ E}. We use Adam [7] to

optimize this loss function.
Note, the above procedure of considering all triples (ei, e′

j , rk), ∀e′
j ∈ E if

there is any triple (ei, ej , rk) with head ei and relation rk in the training set is
referred to as 1-N scoring [4] as for each triple, we compute scores of N := Ne =
|E| triples. This is in contrast with 1-1 scoring, where one primarily considers
the training example (ei, ej , rk) and applies some other strategy for negative
sampling (i.e. for the generation of non-existing triples). We refer the reader
to [4] for a further discussion regarding this.
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5.2 Datasets

We use three widely used datasets for evaluating link prediction performance:
FB15k, FB15k-237, and YAGO3-10. FB15k [2] is a subset of Freebase where most
triples are related to movies and sports. As discussed by Dettmers et al. [4],
FB15k has a large number of test triples which can simply be obtained by invert-
ing training triples. This results in a biased test set, for which a simple model
which is symmetric with respect to object and subject entity is capable of achiev-
ing excellent results. To address this problem, FB15k-237 [17] was created by
removing inverse relations from FB15k. YAGO3-10 [10] is a subset of the YAGO3
knowledge graph which mostly consists of triples related to people.

In this work, we only consider numerical literals, e.g. longitude, latitude,
population, age, date of birth (in UNIX time format), etc. To enrich FB15k
and FB15k-237 with these literals, we created a SPARQL endpoint for Freebase
and extracted literals of all entities contained in FB15k. We further filtered the
extracted literals based on their frequency, i.e we only consider data relations
d ∈ D that occur at least in 5 triples in FB15k. We also remove all key and
ID relations since their values are not meaningful as quantities. For YAGO3-10,
we use numerical literals provided by YAGO3-10-plus [12], which is publicly
available.5 In case an entity has multiple literal values for a particular data
relation, we arbitrarily select one of them. Some statistics of the datasets are
provided in Table 2.

5.3 Experimental Setup

We implemented LieralE on top of ConvE’s codebase, which is publicly avail-
able6. The hyperparameters used in all of our experiments across all datasets
are: learning rate 0.001, batch size 128, embedding size 200, embedding dropout
probability 0.2, and label smoothing 0.1. Additionally for ConvE, we used feature
map dropout with probability 0.2 and projection layer dropout with probability
0.3. Note, that these hyperparameter values are the same as in the experiments
of Dettmers et al. [4].

Except for experiments with ConvE, we run all of our experiments for a
maximum of 100 epochs as we observed that this is sufficient for convergence. For
ConvE, we used at most 1000 epochs, as described in the original paper [4]. We
apply early stopping in all of the experiments by monitoring the Mean Reciprocal
Rank (MRR) metric on the validation set every three epochs.

To validate our approach and to eliminate the effect of different environment
setups, we re-implemented the related models, KBLN [6], and MTKGNN [15] as
baselines. Note that we did not re-implement KBLRN [6] since the sub-model
KBLN (i.e. the KBLRN model without making use of the relational informa-
tion provided by graph feature methods) is directly comparable to LiteralE.7 As
5 https://github.com/pouyapez/multim-kb-embeddings.
6 https://github.com/TimDettmers/ConvE.
7 Note, that LiteralE could also be extended to incorporate graph features as an

additional input to g.

https://github.com/pouyapez/multim-kb-embeddings
https://github.com/TimDettmers/ConvE
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Table 3. Link prediction results on FB15k, FB15k-237, and YAGO3-10. The best values
comparing our implementation of base models, KBLN, MTKGNN and LiteralE are
highlighted in bold text. Only numerical literals are used in the experiments.

Models MR MRR Hits@1 Hits@3 Hits@10

FB15k

DistMult 108 0.671 0.589 0.723 0.818

ComplEx 127 0.695 0.618 0.744 0.833

ConvE 49 0.692 0.596 0.760 0.853

KBLN [6] 129 0.739 0.668 0.788 0.859

MTKGNN [15] 87 0.669 0.586 0.722 0.82

DistMult-LiteralE 68 0.676 0.589 0.733 0.825

ComplEx-LiteralE 80 0.746 0.686 0.782 0.853

ConvE-LiteralE 43 0.733 0.656 0.785 0.863

FB15k-237

DistMult 633 0.282 0.203 0.309 0.438

ComplEx 652 0.290 0.212 0.317 0.445

ConvE 297 0.313 0.228 0.344 0.479

KBLN [6] 358 0.301 0.215 0.333 0.468

MTKGNN [15] 532 0.285 0.204 0.312 0.445

DistMult-LiteralE 280 0.317 0.232 0.348 0.483

ComplEx-LiteralE 357 0.305 0.222 0.336 0.466

ConvE-LiteralE 255 0.303 0.219 0.33 0.471

YAGO3-10

DistMult 2943 0.466 0.377 0.514 0.653

ComplEx 3768 0.493 0.411 0.536 0.649

ConvE 2141 0.505 0.422 0.554 0.660

KBLN 2666 0.487 0.405 0.531 0.642

MTKGNN [15] 2970 0.481 0.398 0.527 0.634

DistMult-LiteralE 1642 0.479 0.4 0.525 0.627

ComplEx-LiteralE 2508 0.485 0.412 0.527 0.618

ConvE-LiteralE 1037 0.525 0.448 0.572 0.659

in [4], we use a 1-N training approach, while KBLN and MTKGNN uses a 1-1
approach. Therefore, the RelNet in MTKGNN which is a neural network is infea-
sible to be implemented in our environment. Thus, as opposed to neural network,
we use DistMult as base model in our re-implementation of an MTKGNN-like
method. While this change does not allow to evaluate the performance of the
original MTKGNN model, it makes our MTKGNN-like method directly compa-
rable to the other methods that we consider in our experiments, since it uses the
same base score function. All in all, due to these differences in the loss function
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and the overall framework which are necessary to make KBLN and MTKGNN
comparable to LiteralE, the results we report for them might differ from those
reported in the respective original papers. In addition, we obtain slightly dif-
ferent results compared to [4] for DistMult, ComplEx and ConvE for all three
datasets (our results are mostly comparable or slightly better and in some case
worse). This could be attributed to the hyperparameter tuning performed in [4].

5.4 Evaluation

For the evaluation of the performance of the different methods on the link pre-
diction task, we follow the standard setup used in other studies. For each triple
(ei, ej , rk) in the test set, we generate a set of corrupted triples by either replac-
ing the subject entity ei or the object entity ej with any other entity e′ ∈ E .
We further compute the scores of these corrupted triples along with the score of
the true triple. To evaluate the model, we rank all triples with respect to their
scores and use the following standard evaluation metrics: Mean Rank (MR),
Mean Reciprocal Rank (MRR), Hits@1, Hits@3, and Hits@10.

6 Results

6.1 Link Prediction

The results of our experiments for link prediction are summarized in Table 3. In
general, LiteralE improves the base models (DistMult, ComplEx, and ConvE)
significantly. For instance, we found that implementing LiteralE on top of Dist-
Mult improves the MRR score by 0.74%, 12.41%, and 2.7% for the FB15k, FB15k-
237, and YAGO3-10 dataset, respectively. We also observed that the improve-
ments brought by LiteralE when combined with ComplEx and ConvE are not
as impressive as for DistMult, which might be attributed to the fact that these
base models already achieve higher performance than DistMult. Compared to
other methods that incorporate literals, namely KBLN and MTKGNN, LiteralE
achieves a competitive or even better performance in our experiments. More-
over, note that, LiteralE directly and explicitly modifies the embedding vectors,
whereas KBLN and MTKGNN do not. Thus, LiteralE embeddings could be
more useful for tasks other than link prediction. This will be discussed further
in Sect. 6.4.

6.2 Comparison to a Simple LiteralE Baseline

To validate our choice of the function g, we compare the performance of LiteralE
with the g proposed in Sect. 3 to its variant based on a simple (but still learnable)
linear transformation, dubbed glin. That is, glin : RH ×R

Nd → R
H is defined by

e, l �→ WT[e, l], where W ∈ R
H+Nd×H is a learnable weight matrix. The results

are presented in Table 4 (cf. Table 3).
The proposed g leads to better results than glin in 5 out of 9 experiments.

While LiteralE with g provides a consistent performance improvement for all
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Table 4. The link prediction performance of LiteralE employing a simple linear trans-
formation glin.

Datasets Functions MRR Hits@1 Hits@10

FB15k DistMult-glin 0.583 0.476 0.771

ComplEx-glin 0.765 0.705 0.871

ConvE-glin 0.66 0.556 0.836

FB15k-237 DistMult-glin 0.314 0.228 0.483

ComplEx-glin 0.299 0.214 0.467

ConvE-glin 0.314 0.228 0.483

YAGO3-10 DistMult-glin 0.504 0.422 0.653

ComplEx-glin 0.509 0.433 0.653

ConvE-glin 0.506 0.422 0.664

Table 5. Link prediction results for DistMult-LiteralE on FB15k-237, with both numer-
ical and text literals. “N” and “T” denotes the usage of numerical and text literals,
respectively.

Models MRR Hits@1 Hits@10 MRR Improv.

DistMult 0.241 0.155 0.419 -

DistMult-LiteralE (N) 0.317 0.232 0.483 +31.54%

DistMult-LiteralE (N+T) 0.32 0.234 0.488 +32.78%

base models, DistMult-glin shows a decreased performance compared to Dist-
Mult on FB15k. This might be explained by the fact that – as [17] already
reported – FB15k contains triples in the test set that have an inverse analog
(i.e. the triple resulting from changing the position of subject and object entity)
in the training set. The prediction for such triples can get difficult if the inverse
has a different label. Since the vanilla DistMult already has difficulties in model-
ing asymmetric relations on FB15k, adding literals using a naive glin might only
introduce noise, resulting in even lower performance. On the other hand, glin
leads to better results than g in combination with ComplEx on FB15k.

In general, the results show that for performance-maximization purpose, it
makes sense to investigate the performance of LiteralE in combination with dif-
ferent transformation functions. Given the right choice of transformation func-
tion for incorporating literals, LiteralE always improves the performance of the
base model.

6.3 Experiment with Text Literals

LiteralE, as described in Sect. 3 can easily be extended to other types of literals,
e.g. text and images. In this section this is briefly demonstrated for text literals.
First, let us assume that text literals are represented by vectors in R

Nt , i.e. as
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resulting from document embedding techniques [8].8 Subsequently, let us redefine
g to be a function mapping R

H × R
Nd × R

Nt to R
H . Specifically, we redefine

Wh (Eq. (5)) to be in R
H+Nd+Nt×H and employ an additional gating weight

matrix Wzt ∈ R
Nt×H to handle the additional text literal. Note, that this simple

extension scheme can be used to extend LiteralE to incorporate literals of any
other type (e.g. image literals) as long as those literals are encoded as vectors in
R

N , for some N .
The results for extending DistMult-LiteralE with the entities’ text literals

(i.e. the entity description) are presented in Table 5. We found that incorporating
text literals results in a further increase of the link prediction performance of
DistMult on FB15k-237.

6.4 Nearest Neighbor Analysis

For a further qualitative investigation, we present the nearest neighbors of some
entities in the space of literals, the latent space learned by (i) DistMult, (ii)
KBLN, (iii) MTKGNN, and (iv) DisMult-LiteralE in Table 6.9

In the embedding space of DistMult, geographical entities such as North
America and Philippines are close to other entities of the same type. How-
ever, these neighboring entities are not intuitive, e.g. North America is close
to Pyrenees, whereas Philippines is close to Peru and Kuwait. When we
inspected the embedding space of DistMult-LiteralE that also takes literals infor-
mation into account, these nearest neighbors (shown in bold font in Table 6)
become more intuitive, i.e they consist of entities geographically close to each
others. Furthermore, we found that DistMult-LiteralE’s embeddings show clear
qualitative advantage compared to that of vanilla DistMult also for entities
from other types, e.g. comparing the nearest neighbors of Roman Republic
which is of type ‘empire’. In contrast, KBLN’s embeddings tend to be close
to the embeddings of unrelated entities: both North America and Philippines
are close to the entities House of Romanov, House of Hanover, and House of
Stuart, while Roman Republic is close to Retinol. Similarly, the embeddings
of MTKGNN are also close to the embedding of unrelated entities, e.g., North
America is close to Pyrenees and Roman Repulic is close to North Island. This
findings demonstrates the advantage of incorporating literals on the embedding
level (as done by LiterelE) over incorporating them at the score or loss function
(as done by KBLN and MTKGNN, respectively).

When inspecting the nearest neighborhood of the same entities when repre-
sented only by their literal vectors, it becomes clear that these vectors themselves
are already containing useful information indicating the closeness of similar enti-
ties. For example, geographical entities have longitude and latitude literals,
while city, nation, and empire entities have date founded and date dissolved
literals, which can explain the closeness of two entities given only their literal
vectors. Note however, that the nearest neighbours in the literal space do not

8 We use spaCy’s pretrained GloVe embedding model. Available at https://spacy.io.
9 The base model for all of these methods is DistMult.

https://spacy.io
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Table 6. Comparison of nearest neighbors of selected entities from FB15k-237 embed-
ded in (i) DistMult’s latent space, (ii) KBLN’s latent space, (iii) MTKGNN’s latent
space, (iv) the literal space, where each entity is represented only by its literals, and
(v) the DisMult-LiteralE’s latent space.

Entity Methods Nearest neighbors

North America DistMult Latin America, Pyrenees, Americas

KBLN House of Hanover, House of Stuart, House of
Romanov

MTKGNN Latin America, Panama City, Pyrenees

Num. lits. only Soviet Union, Latin America, Africa

LiteralE Americas, Latin America, Asia

Philippines DistMult Peru, Thailand, Kuwait

KBLN House of Romanov, House of Hanover, House
of Stuart

MTKGNN Thailand, Kuwait, Peru

Num. lits. only Peru, Poland, Pakistan

LiteralE Thailand, Taiwan, Greece

Roman Republic DistMult Republic of Venice, Israel Defense Force,
Byzantine Empire

KBLN Republic of Venice, Carthage, Retinol

MTKGNN Republic of Venice, Carthage, North Island

Num. lits. only Alexandria, Yerevan, Cologne

LiteralE Roman Empire, Kingdom of Greece,
Byzantine Empire

coincide with and are less informative than the nearest neighbours in the LiteralE
embedding space.

All in all, our observations suggest that integrating the literal information
into entity embeddings indeed improves their quality, which makes LiteralE
embeddings promising for entity resolution and clustering tasks.

7 Conclusion and Future Work

In this paper, we introduced LiteralE: a simple method to incorporate literals
into latent feature methods for knowledge graph analysis. It corresponds to a
learnable function that merges entity embeddings with their literal information
available in the knowledge graph. The resulting literal-enriched latent features
can replace the vanilla entity embedding in any latent feature method, with-
out any further modification. Therefore, LiteralE can be seen as an universal
extension module. We showed that augmenting various state-of-the-art models
(DistMult, ComplEx, and ConvE) with LiteralE significantly improves their link
prediction performance. Moreover, as exemplarily demonstrated for text literals,
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LiteralE can be easily extended other types of literals. In future work, LiteralE
shall be further be extended to accommodate literals from the image domain.
This can be achieved by extracting latent representations from images (for exam-
ple with convolutional neural networks), and providing them as additional inputs
to LiteralE for merging them with the vanilla entit y embeddings. Furthermore,
our finding that LiteralE improves the quality of the entity embeddings makes it
a promising candidate for improving other tasks in the field of knowledge graph
analysis, such as entity resolution and knowledge graph clustering.
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Abstract. We propose a new end-to-end method for extending a Knowl-
edge Graph (KG) from tables. Existing techniques tend to interpret
tables by focusing on information that is already in the KG, and there-
fore tend to extract many redundant facts. Our method aims to find
more novel facts. We introduce a new technique for table interpretation
based on a scalable graphical model using entity similarities. Our method
further disambiguates cell values using KG embeddings as additional
ranking method. Other distinctive features are the lack of assumptions
about the underlying KG and the enabling of a fine-grained tuning of
the precision/recall trade-off of extracted facts. Our experiments show
that our approach has a higher recall during the interpretation process
than the state-of-the-art, and is more resistant against the bias observed
in extracting mostly redundant facts since it produces more novel
extractions.

1 Introduction

Motivation. Much of the world’s information exists as tabular data. These
are available as HTML tables on web pages, as spreadsheets, or as publicly
available datasets in many different formats. There has been more than a decade
of research in recognizing, cleaning and capturing these so-called web tables [4].
Because of their relational nature, such large collections of web tables are suitable
for supporting table search [31] or for answering specific factual queries [28]. In
certain web tables, the rows describe attributes or relationships of entities. This
makes them suitable sources for extending the coverage of Knowledge Graphs
(KGs), which is a task known as KG completion.
Problem. In order to perform KG completion from web tables, we must first
align their structure and content with the KG, a problem broadly referred to as
table interpretation. Table interpretation has been the subject of several prior
works [9,12,16–18,26,27,32]. Similar to our research, these works primarily focus
on the interpretation of entity tables, i.e., tables where each row describes one
entity and columns represent attributes. In this case, the interpretation process
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consists of two operations. First, each row is linked with an entity in the KG, and
optionally the entire table is linked to a class. Then, each column is associated
to a KG relation.

After the table is correctly interpreted, we can extract novel triples from the
table and add them to the KG. This last operation is also known as slot-filling,
as the empty ‘slots’ in the KG are filled with new facts [26]. Table interpretation
strongly affects the quality of slot-filling, since errors in the former can no longer
be corrected. Because of this, state-of-the-art table interpretation techniques
(an overview is given in Sect. 6) aim for high precision by pruning out many
potential assignments already at early stages. While high precision is desirable
in some contexts (e.g., table search), it has been observed [14] that this strategy
leads to a high number of redundant extractions during slot-filling, since only
the assignments to entities that are well-covered in the KG are retained.
Contribution. With the goal of maximizing the number of novel extractions
without sacrificing precision, we present a new method for KG completion from
web tables. In contrast to existing approaches, our method does not prune out
row-entity assignments, but performs the interpretation by performing inference
over all possible assignments using a Probabilistic Graphical Model (PGM). The
PGM uses label similarities as priors, and then updates its likelihood scoring to
maximise the coherence of entity assignments across the rows using Loopy Belief
Propagation (LBP). Coherence is not computed using a predefined metric (such
as class membership) but is automatically selected as a combination of properties
that are shared by the entities in the table. This is a novel feature of our method
which makes it capable of working with KGs with different topologies and/or
relations. Since we use both label similarities and coherence based on salient
common attributes, our method is able to maintain a high accuracy for the row-
entity assignments. At the same time, it is also able to return many more novel
extractions since we did not prune out any assignments.

We also propose an approach to perform slot-filling by disambiguating
attribute cells in a novel link-prediction framework. Our approach makes use
of embeddings of KG entities and relations to improve the quality of the dis-
ambiguation whenever label matching is not sufficient. This furthers our aim to
find novel facts for KG completion.

We compared our method to several state-of-the-art systems. Additionally,
we evaluated the performance of these systems with regard to the redundancy
of the facts that they extract from the tables. Our experiments on popular
benchmark datasets show that our approach yields slightly lower precision, but
significantly higher recall on entity predictions. This leads to many more novel
extractions than what is possible with existing methods. Finally, to test the
scalability of our method we perform a large-scale evaluation on 786K tables
from Wikipedia. An extended version of this paper is available at [15].
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2 Background

KGs. A KG K is a repository of factual knowledge that can be seen as a directed
labeled graph where the nodes are entities and the edges represent semantic
relations. We define K as a tuple (E ,R,F) where E is the set of entities (nodes), R
is the set of relations, and F is the set of facts (edges) in the graph. Each entity is
associated to a finite set of labels Labels(e). We use the notation 〈s, r, o〉 to denote
a fact in F where s, o ∈ E and r ∈ R. Realistic KGs contain facts of various
types: For instance, they either indicate type memberships (e.g., 〈Netherlands,
type, Country〉), or encode more generic binary relations (e.g., 〈Amsterdam,
capitalOf, Netherlands〉), and are normally encoded in RDF [11].
Table Interpretation. Tables represent an important source of knowledge that
is not yet in the KG. A class of tables that is particularly useful for enriching KGs
is the one that contains entity tables, i.e., tables where one column contains the
name of entities (the key-column) and all others contain the entity attributes.
While these tables ostensibly contain structured data, the textual content of
cells and identifiers is created more with the aim of human interpretation than
automatic processing. To capture the semantics of these tables in a coherent
and structured way, it is useful to link their content to concepts in the KG.
We refer to this task as table interpretation, mapping each row and attribute
column to entities and relations respectively. These mappings can be computed
by determining (1) which entities in the KG are mentioned in the table, (2) which
are the types of those entities, and (3) which relations are expressed between
columns (if any) [16,17,25,29,32]. After the interpretation is finished, we can use
the mappings to construct facts for the KG. We call this operation slot-filling.
PGMs. In this paper, we employ Probabilistic Graphical Models (PGMs) to per-
form the interpretation. PGMs are a well-known formalism for computing joint
predictions [21]. For a given set of random variables, conditional dependences
between pairs of variables are expressed as edges in a graph. In these graphs,
variables are connected if the value of one influences the value of another. The
connection is directed if the influence is one-way, and undirected if both variables
influence each other. The behaviour of the influence on every edge is expressed
by a function known as the potential function. When performing inference in a
PGM, information from the nodes is propagated through the network using the
potential functions in order to determine the final distribution of the random
variables.
KG Embeddings. We also make use of latent representations of the KG [20]
to filter out incorrect extractions. In particular, we consider TransE [3], one
of the most popular methods in this category. The main idea of TransE is to
“embed” each entity and relation into a real-valued d-dimensional vector (where
d > 0 is a given hyperparameter). The set of all vectors constitutes a model Θ of
|E|d+ |R|d parameters which is trained so that the distance between the vectors
of entities which are connected in K is smaller than the distance between the
ones of entities which are not connected.
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Fig. 1. Schematic representation of our method.

3 Table Interpretation

We introduce our method for performing table interpretation. Figure 1 shows
the computation that takes place during the interpretation, using table (a) as
a motivating example. In this case, the key-column is the second one (“title”)
but its content is ambiguous since the values can refer to movies, TV series, or
books. For instance, the second row can refer to the TV serial M*A*S*H or to the
movie MASH, as is shown in Fig. 1b. The goal of this task is to map as many rows
ρ as possible to corresponding entities in E and each column c to one relation in
R. To this end, we perform a sequence of five operations, described below.

3.1 Step 1: Candidate Entity Selection

First, we identify the key-column (if any) using the heuristics proposed by [25],
which consists of selecting the column with most unique non-numeric values
breaking ties by choosing the leftmost one. This heuristics works well in practice
so we apply it without modifications. Only the tables with valid key columns are
considered since these are the only ones for which we can (potentially) extract
factual knowledge.

For every cell in the key column, we then select a set of entity candidates.
We represent this computation with the function Cand(ρ) which takes in input a
generic row ρ and returns all entities in E which are potential candidates with ρ.
This function is implemented by (1) indexing all the labels in K, (2) retrieving the
labels which contain the cell value of the key column, (3) returning the entities
associated to the labels. Let e ∈ Cand(ρ) be a potential entity candidate for row
ρ. We call the tuple (ρ, e) a row-entity assignment. If Cand(ρ) is empty, then
ρ is ignored. Otherwise, the table interpretation process will determine which
row-entity assignment should be selected.
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The label matches are ranked using length-normalised smoothed TF-IDF. In
our case, the query corresponds to the cell value of the key column, while the
documents are all labels in K. Identically to [25], we (1) take only the first result
if it is much better than the next and (2) take the top three labels otherwise.
The final set of candidates consists of all entities associated with these labels.

Typically entities are explicitly linked to labels with direct relations (e.g.,
rdfs:label [11]). However, more links can be retrieved if we also consider titles
and disambiguation pages. In our approach, we add also these labels to the index
because we observed that this leads to a substantial increase of the recall. At this
stage, it is important to have a high recall because the subsequent operations
cannot recover in case we fail to retrieve the correct mapping. In the definitions
below, we denote these sets of labels for each entity as Labels(e).

3.2 Step 2: Computation of the Priors

In this step, we compute a score of the row-entity assignments by comparing all
cell values in the row with all the labels of entities that are connected to the
candidate entities. To this end, we first define attribute links, and related labels
of an entity e as

Links(e) = {〈r, v〉 | 〈e, r, v〉 ∈ F} (1)
LinkLabels(e, r) = {l | 〈r, v〉 ∈ Links(e), l ∈ Labels(v)} (2)

Intuitively, Links(e) contains all links of e while LinkLabels(e, r) represents the
labels at the other end of the r-links from e. Then, we introduce the function

Match(c, ρ, e, r) = max
s∈Cell(c,ρ)

max
l∈LinkLabels(e,r)

TokenJaccard(s, l) (3)

to compute the highest attainable string similarity between the cell at col-
umn c and row ρ and the values of the r-links from e. Here, Cell(i, j) returns
the content of the cell at row i and column j in a table with n rows and
m columns, while TokenJaccard is the Jaccard index J(A,B) = |A ∩ B|

|A ∪ B| of
the tokens in each string. For instance, in the table in Fig. 1 each cell is
matched to each attribute of the corresponding row-entity candidates, e.g.,
Match(3, 4, The Producers (1968 film), director) is the score that quantifies
to what extent the content of the cell at coordinates (3, 4) matches the string
“Mel Brooks”, which is the label of the director of the film. Note that we treat
the content of every cell as a string. There are some approaches that use type-
specific cell and column matching methods [16,22,25,32], but a combination of
our method with these techniques should be seen as future work.

We can now compute likelihood scores for mapping cells to relations (Eq. 4),
and for mapping columns to relations (Eq. 5) to aggregate and normalise these
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scores on the row and column levels respectively:

CellScore(c, ρ, r) =
1

|Cand(ρ)|
∑

e∈Cand(ρ)

Match(c, ρ, e, r) (4)

ColScore(c, r) =
∑n

i=0 CellScore(c, ρi, r)∑n
i=0

∑
r′∈R CellScore(c, ρi, r′)

(5)

For instance, in Fig. 1a, CellScore(4, 3, director) returns the likelihood that
the cell (4, 3) matches the relation director, while ColScore(3, director)
returns the aggregated scores for column 3 considering all rows in the table.

Since ColScore(c, r) is the likelihood score that column c maps to relation r,
we can use this value to construct the prior distribution of all assignments to
c. Furthermore, we can use these scores to refine the likelihood of the possible
row-entity matchings. We compute such likelihood as

RowScore(ρ, e) =
1
m

m∑

i=0

max
r∈R

ColScore(ci, r) × Match(ci, ρ, e, r) (6)

In essence, Eq. 6 computes the likelihood of an entity-row matching as
the average best product that each cell matches to a certain attribute (r, e)
(Match(·)) with the general likelihood that the column matches to r (ColScore(·)).
We use the values of RowScore to build a prior distribution for all entity-row
matches.

3.3 Step 3: Entity Similarity Scores

Both prior distributions computed with Eqs. 4 and 5 rely on the Jaccard Index.
Thus, they are distributions which are ultimately built on the string similarities
between the strings in the cells and the entities’ labels. We use these scores to
compute similarity scores between pairs of candidate entities across the rows.
In the next step, we will use these similarities to compute better entity-row
likelihood scores than the ones of Eq. 6.

First, we weigh all links 〈r, v〉 depending on their popularities across the
entities in the table and the corresponding prior of the assignments that use
them. To this end, we define the function LinkTotal as

LinkTotal(r, v) =
n∑

i=0

max
e∈Cand(ρi)

RowScore(ρi, e)[〈r, v〉 ∈ Links(e)] (7)

where [x] returns 1 if x is true or 0 otherwise. Note that since RowScore returns
a value between 0 and 1, LinkTotal(·) returns n in the best case.

Then, we represent the coverage and saliency of 〈r, v〉 by normalising the
value LinkTotal(r, v) with respect to the table and the KG:

Cover(r, v) =
LinkTotal(r, v)∑n

i=1[〈r, v〉 ∈ ∪e∈Cand(ρi)Links(e)]
(8)

Salience(r, v) =
LinkTotal(r, v)

|{e ∈ E | 〈r, v〉 ∈ Links(e)}| (9)
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Intuitively, Cover(·) computes the popularity of 〈r, v〉 among the rows of the
table, while Salience(·) considers all entities in K. We combine them as

LinkScore(r, v) = Cover(r, v) × Salience(r, v) (10)

so that we can rank the attributes depending both on their coverage within the
table and popularity in the KG. This combination allows us to give low ranks
to attributes, like 〈isA,Resource〉, which should not be considered despite their
high coverage since they are not informative. In contrast, it can boost up the
score of attributes with a medium coverage in case they have a high saliency.

Finally, we use the scores from Eq. 10 to compute a similarity score between
pairs of entities. We compute the similarity between entities e1 and e2 as

EntitySimilarity(e1, e2) =
∑

〈r,v〉∈Links(e1)∩Links(e2)

LinkScore(r, v) (11)

3.4 Step 4: Disambiguation

Now, we compute which are the row-entity assignments which maximise the
coherence in the table, i.e., maximise the similarity between the entities. These
assignments are determined using Loopy Belief Propagation (LBP) [21].

We model each row-entity prediction as a categorical random variable, for
which the label score RowScore(ρ, e) is the prior distribution (Fig. 1d1). For con-
venience, we can view these scores as a sparse matrix L of size n × |E|. The
variables are connected to each other with the edge potentials being defined
by entity-entity similarities EntitySimilarity(e1, e2) (Fig. 1d2; equivalently repre-
sented by a matrix S), which forms a complete graph. Since this graph has loops
it is not possible to perform exact inference. Therefore we approximate it by exe-
cuting LBP. Additionally, all our edge potentials are identical. This causes all
nodes to receive identical information from each other. Instead of having sepa-
rate messages for each node, we thus have a single vector-valued message that
provides the belief updates for our nodes:

qe =
n∏

ρ=0

∑

e′∈Cand(ρ)

Lρ,e′ × Se,e′ =
n∏

ρ=0

(LS)ρ,e (12)

Cρ,e = Lρ,e × qe (13)

where qe indicates how similar entity e is to all weighted candidates of all rows,
and Cρ,e is the coherence score of entity e for row ρ (Figs. 1e and f respectively).
Because the main operation consists of a single matrix multiplication, computa-
tion is fast and can be parallelized by standard matrix processing libraries.

LBP can be run for multiple iterations (in our case, replacing Lρ,e′ by Cρ,e′),
but is not guaranteed to converge [21]. In fact, we observed that sometimes an
excessive number of iterations led to suboptimal assignments. This occurred
when the entity similarity scores (Eq. 11) were not accurate due to missing
attributes in the KG and ended up “overriding” the more accurate priors that
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were computed considering only label similarities (Eq. 6) when they are com-
bined in the following step. From our experimental analysis, we observed that
in the overwhelming majority of the cases a single iteration of LBP was enough
to converge. Therefore, we apply Eq. 13 only once without further iterations.

As we can see from Eq. 13, the selection of the entity for row ρ relies on two
components, L and q: The first takes into account to what extent the entity
label matches the label of candidate entities and to what extent the labels of
the attributes matches with the remaining cell values. The second considers the
coherence, i.e., the mappings that maximise the similarity between the entities.

Finally, we disambiguate rows by choosing the highest-rated candidate êρ =
argmaxe Cρ,e. Then, we re-calculate ColScore(c, r) with the updated set of can-
didates containing only the predicted entity Cand(ρ) = {êρ} and disambiguate
columns by choosing the highest scoring relation r̂c = argmaxr ColScore(c, r).
After this last step is computed, our procedure has selected one entity per row
and one relation per attribute column. In the next section, we discuss how we
can extract triples from the table.

4 Slot-Filling

After the table is interpreted, we can extract partial triples of the form 〈s, r, ?〉
where s are the entities mapped to rows and r are the relations associated to
columns. If the cell contains numbers or other datatypes (e.g., dates) that we
can add the cell value to the KG as-is, but this is inappropriate if the content of
the cell refers to an entity. In this case, we need to map the content of the cell
to an entity in the KG.

The disambiguation of the content of a cell could be done by querying our
label index precisely the same way as done in Sect. 3.1. However, this extraction
is suboptimal since now we have available some context, i.e., 〈s, r, ?〉 that we
can leverage to refine our search space. To this end, we can exploit techniques
for predicting the likelihood of triples given the KG’s structure, namely KG
embeddings provided by the TransE algorithm [3]. Given in input ei, i.e., the
entity associated to row i and rj , i.e., the relation associated to column j, our
goal is to extract a fact of the form 〈ei, rj , x〉 where entity x is unknown. We
proceed as follows:

1. We query the label index with the content of Cell(i, j) as done for the com-
putation of Cand(·) in Sect. 3.1. This computation returns a list of entity
candidates 〈e1, . . . , en〉 ranked based on label string similarities.

2. For each candidate ek ∈ 〈e1, . . . , en〉, we compute Rank(k) = d(ei + rj ,ek)
where d is the distance measure used to compute the TransE embeddings (we
use the L1 norm), and ei, rj , ek are the TransE vectors of ek, rj , ei respec-
tively.

3. We return 〈ei, rj , ek〉 where ek is the entity with the lowest Rank(k), i.e, has
the closest distance hence it is the triple with the highest likelihood score.
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5 Evaluation

We implemented our method into a system called TAKCO (TAble-driven KG
COmpleter). The code is available online1.
Baselines. Since our goal is to extract novel facts from tables, we considered
existing systems that perform slot-filling as baselines. In particular, we consid-
ered the systems T2K Match [25] and TableMiner+ [32] because of their
state-of-the-art results. There are other systems that implement only parts of
the pipeline, for instance entity disambiguation (see Sect. 6 for an overview). An
important system in this category is TabEL [2], which exploits co-occurrences of
anchor links to entity candidates on Wikipedia pages for predicting a coherent
set of entities. Although such system can potentially return better performance
on entity disambiguation, we did not include it in our analysis due its reliance on
additional inputs. A comparison between the performance of our method for the
subtask of entity disambiguation, and more specialized frameworks like TabEL
should be seen as future work.

The system T2K Match implements a series of matching steps that match
table rows to entities, using similarities between entity property values and
the table columns. The TableMiner+ system consists of two phases that are
alternated until a certain confidence level has been reached. Note that these
approaches primarily focus on table interpretation. In contrast, we provide an
end-to-end system which considers also the operation of slot-filling.

The first system is designed to work with a specific subselection of DBpe-
dia [1] while the second system was originally built to use the Freebase API. We
have performed some slight modifications to their source code so that we could
perform a fair comparison. For T2K Match, we modified the system to be able
to use an augmented set of candidates so that in some experiments we could
measure precisely the performance of table interpretation. For TableMiner+,
we modified the system so that we could use different KGs without API access.
Knowledge Graphs. Our method can work with any arbitrary KG. We con-
sider DBpedia (so that we could compare against T2K Match) which is a
popular KGs created from Wikipedia and other sources. We use two versions of
DBpedia: The first is the triple-based version of the tabular subset used by T2K

Match. This is a subset of DBpedia from 2014 and we consider it so that we
can perform an exact comparison. It contains 3.4M entities and 28M facts. Addi-
tionally, we also use the latest version of the full KG (version 2016-10). The full
DBpedia contains 15M entities (including entities without labels and redirected
entities) and 110M facts. Finally, we compare our performance using Wikidata
(“truthy” RDF export, acquired on Oct 2018), which has 106M entities and 1B
facts. For evaluation, we map the gold standard to Wikidata using owl:sameAs
links from DBpedia.
Testsets. To the best of our knowledge, there are two openly available datasets
of tables that have been annotated for the purpose of table interpretation. The

1 https://github.com/karmaresearch/takco.

https://github.com/karmaresearch/takco
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first one is the T2D dataset [25], which contains a subset of the WDC Web
Tables Corpus – a set of tables extracted from the CommonCrawl web scrape2.
We use the latest available version of this dataset (v2, released 2017/02). In
our experiments, we disregarded tables without any annotation. The resulting
dataset contains 238 entity tables with 659 column annotations and 26106 row-
entity annotations. Throughout, we refer to this dataset as T2D-v2.

The second dataset is Webaroo, proposed by [16]. Tables in this dataset were
annotated with entities and relations in YAGO. While these tables are a less
varied sample of the ones in the T2D, they allow us to study the behaviour of
the systems on a dataset with different annotations. This dataset contains 429
entity tables with 389 and 4447 column and row-entity annotations respectively.
In order to test the performance of T2K Match with this dataset, we “ported”
the YAGO annotations to DBpedia using the Wikipedia links they refer to.
Finally, we tested the scalability of our system by running it on a large set of
Wikipedia tables [2]. Instructions to obtain these datasets are available in the
code repository of our system.
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(b) Performance tradeoff, Webaroo

System Pr. Re. F1

T2KMatch .94 .73 .82
TableMiner+ .96 .68 .80
Ours (T2K candidates) .88 .72 .79
Ours (DBpedia subset) .90 .76 .83
Ours (Full DBpedia) .92 .86 .89
Ours (Wikidata) .87 .82 .84

(c) Row-entity evaluation, T2D-v2

System Pr. Re. F1

T2KMatch .88 .55 .67
TableMiner+ .85 .51 .63
Ours (T2K candidates) .74 .58 .65
Ours (DBpedia subset) .72 .59 .65
Ours (Full DBpedia) .88 .84 .86
Ours (Wikidata) .77 .71 .74

(d) Row-entity evaluation, Webaroo

Fig. 2. Row-entity evaluation scores and precision-recall tradeoff for the T2D-v2 and
Webaroo datasets (the isolines of constant F1 score are shown in grey). Precision, recall,
and F1 are calculated at the threshold of maximum F1.

2 http://webdatacommons.org/webtables/.

http://webdatacommons.org/webtables/
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System Pr. Re. F1

Only explicit labels .85 .69 .76
Explicit + disambiguations .84 .79 .81
Expl. + disamb. + redir. .92 .86 .89

Fig. 3. Row-entity evaluation scores and precision-recall tradeoff of our approach given
different label sources, on T2D-v2.

5.1 Table Interpretation

We evaluate the performance of determining the correct row-entity assignments,
which are the key output for table interpretation. Figure 2b, d and a, c report
a comparison of the performance of our method against the baselines. We mea-
sure the precision/recall tradeoff (obtained by altering the threshold value for
accepting mappings), and precision, recall, and F1 (shown at the threshold of
maximum F1) on all predictions. The precision decreases whenever a system
makes a wrong prediction while the recall is affected when no entity is selected.
Not predicting a match for a row can have several causes: the candidate set for
that row might have been empty, the annotated entity might not have been in
the KG (this occurs when we use a subset), or when all candidates have been
pruned away during the interpretation (this occurs with the baselines).

In these experiments, we configured our system with three different settings:
First, we use the same KG and the candidates (i.e., the output of Cand(·))
used by the other two systems. We refer to this setting as “T2K candidates”.
Then, we use the KG subset used by T2K Match in our own label index
and disambiguation (“DBpedia subset”). Finally, we use our own candidate set
generation and full KG (“Full DBpedia”). By evaluating the performance of our
method with these settings, we can compare the performance of our approach
given the limitations of the inputs that the other systems face.

From the results reported in the figures, we can make a few considerations.
First, our method returns a comparable recall but an inferior precision than
the baselines if we use the set of candidates from T2K Match, but is able to
match its performance in terms of F1 when using the same KG. However, the
baselines are limited with respect to KGs. In fact, T2K Match requires that
DBpedia is translated into a tabular format while our method does not have
this restriction. If our method is configured to use the full DBpedia KG, then
it returns the highest recall with only a small loss in terms of precision. This
translates in a significantly higher F1 score than the best of the baselines. These
are positive results since a high recall is important for extracting novel facts.

While the precision of our system is low in the limited-input setting, many
of the errors that it makes are due to problems with the candidate set and the
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KG. Therefore, we evaluated a scenario (not shown in the figures of this paper)
in which we artificially expanded the candidate set to always include the gold
standard. This means we are artificially making use of a “perfect” candidate
index. Even with this addition, T2K Match is unable to use these candidates
for prediction and returns the same results. In contrast, manually adding them
to our system leads to both a notably higher recall and precision.

This indicates that our method is sensitive to the candidate generation, i.e.,
to the very first selection of candidates using the index label. To evaluate how
our system behaves with richer label indices, we evaluated our method on T2D-
v2 with three different label indices. The first index only uses the explicit labels
of the entities. The second one includes also the labels that we obtain from
redirect pages in Wikipedia. The third one adds also the labels we obtain from
the disambiguation pages. The results of this experiment are reported in Fig. 3.
As we can see from these results, including more labels per entity significantly
improves both the precision and recall of our system.

System Redundant Novel
Pr. Re. F1 Pr. Re. F1

T2KMatch .84 .82 .83 .76 .66 .71
TableMiner+ .86 .73 .79 .73 .56 .63
Ours (T2K candidates) .81 .84 .83 .61 .71 .66
Ours (DBpedia subset) .83 .90 .86 .59 .76 .66
Ours (Full DBpedia) .83 .96 .89 .70 .83 .76

(a) The scores for extracting novel and redundant triples from
T2D-v2, measured at the acceptance threshold of maximum F1.
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(b) The precision-recall tradeoff curve on T2D-v2.

Fig. 4. The novel and redundant precision-recall tradeoff for the T2D-v2 dataset (in
gray, the isolines of constant F1 score). Unlike the experiments in the previous figures,
here the bias towards extracting known (redundant) facts is made explicit and we focus
on finding novel KG facts in web tables.
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5.2 Measuring Redundancy

Current systems (e.g., [25,32]) were evaluated against a set of manual annota-
tions, and scored on the individual subtasks of table interpretation. Such evalua-
tion did not consider the novelty of facts that the system has extracted. In other
words, no difference was made between predictions of already known facts or new
knowledge, but this difference is important in our context. In order to fill this
gap, we need to distinguish between these cases when measuring performance.

Given in input a KG K = (E ,R,F), an extraction technique like ours is
expected to yield a new set of predicted facts FP over E and R from an input
source like web tables. If we have gold standard table annotations, we can gen-
erate another set of facts FG and use them for evaluating how many facts in FP

are correct. Note that both FP and FG might contain facts that are either in
F or not. So far, current techniques have been evaluated w.r.t. the set of true
positives FG ∩ FP (correctly extracted facts) and false negatives as FG \ FP

(valid facts that were missed). These measures do not take the redundancy of
the extracted facts into account, while the redundant information exceeds the
novel information for benchmark datasets [14].

In Fig. 4, we show the evaluation of the correctness of novel and redundant
facts separately. Crucially, our system significantly outperforms the baselines
with respect to the recall of novel facts, which is paramount to KG completion.
In the tradeoff curve for novel triples (Fig. 4b), we also outperform the state-of-
the-art regarding precision for most threshold values.

5.3 Slot-Filling

To test the scalability of our system, we have run it on all 1.6M tables in the Wik-
itable dataset. The first step concerns detecting entity tables with key columns
that contain entity labels. This process returned 786K tables. Then, we pro-
ceeded with the retrieval of entity candidates. About 288K tables did not contain
any entity in DBpedia, thus were discarded. The table interpretation process was
launched on the remaining 498K tables. Our approach is trivially parallelizable,
and runs in 391 ms per table on average.

Table 1. Precision of slot-filling with/out KG embeddings, calculated on redundant
extractions.

Ranking Dataset Prec@1 Prec@3

Only Label Index (TF-IDF score) Wikitable 0.37 0.42

T2D-v2 0.24 0.31

Labels + Embeddings (TransE) Wikitable 0.61 0.72

T2D-v2 0.62 0.74

From these tables, we extracted 2.818.205 unique facts for 1.880.808 unique
slots of the form 〈s, r, ?〉. Of those slots, 823.806 already contain at least one
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entity o in the KG. However, we do not know whether our extractions are
redundant, or t represents a new extraction that should be added to the existing
ones in the KG. To determine the novelty, we queried the label index for every
extracted fact and discovered that in 307.729 cases the labels were matching.
We can assume these extracted facts to be redundant. From these numbers, we
conclude that our extraction process has produced about 1.6M extractions for
which we have no evidence of redundancy and thus can be considered as novel.
A manual analysis over a sample confirmed this conclusion.

Finally, we evaluated the effectiveness of our procedure for re-ranking the
extractions using the KG embeddings on the Wikitable and T2D-v2 datasets. To
this end, we compare the näıve index-based ranking obtained by simply picking
the top result returned from the label index against our strategy or re-ranking
considering the distance of the corresponding embeddings (Sect. 4). We chose
to measure the precision for the first or top-3 ranked candidates since this is a
standard metric used to evaluate the performance of link prediction [20].

Since we need to know the correct entity, we restricted this analysis to the
redundant extractions (i.e., the ones already in the KG) and disregarded the
novel ones. Table 1 reports the results both when we consider only the best
result and the top three. We see that our embedding-based ranking outperforms
the index-based ranking in both cases, and predicts the correct entity at the top
of the ranking in 61% of the time, compared to 37% for the Wikitable dataset.
Moreover, the relatively low results obtained with the index-based ranking strat-
egy indicate that labels are in general not reliable for disambiguating attributes.

6 Related Work

The first system for interpreting web tables was introduced by Limaye et al. [16].
The system uses a probabilistic graphical model that makes supervised predic-
tions based on a large number of features. Subsequent work approached the
problem with a task-specific knowledge graph [29,30] and sped up predictions
by limiting the feature set [17] or using distributed processing [10]. Others used
an entity label prior from hyperlinks on the web [2], and interpreted tables in
limited domains [23].

A separate family of table interpretation systems limit themselves to attribute
matching. The simplest approaches perform string similarities between the col-
umn headers and relation names or cell values and entity labels [8]. When no
overlap between the table and KG can be assumed at all, the work at [22] uses
supervised models based on features of the column header and cell values. Some
approaches focus on matching tables to relation from Open Information Extrac-
tion [29,30] or exploit occurrences of cell value pairs in a corpus of text [5,27],
and others perform supervised learning [9,22]. While several approaches have
been proposed that are limited to entity linking [2,7], the focus of our work is
to optimize table interpretation for novel fact extraction.

The systems evaluated in this paper are designed for open-domain table inter-
pretation. In closed-domain settings, assumptions can reduce the redundancy of
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extractions. For example, the work of [23] models the incompleteness in the
domain subset of the KG by estimating class probabilities based on relations
between entities, which the limited domain makes tractable. The systems of [30]
and [29] use a probabilistic KG created from a web corpus for supporting table
search. This type of KG offers many strategies for improving the recall of new
knowledge because it allows for an explicit model of low-confidence facts.

Several models use large web text corpora in addition to the information from
the KG. The work by Bhagavatula et al. [2] uses the anchor text of hyperlinks
on the web to create a prior for instance matching that takes the popularity of
entities into account. Additionally, it exploits co-occurrences of anchor links to
entity candidates on Wikipedia pages for predicting a coherent set of entities. The
work of [27] creates a set of syntactic patterns from the ClueWeb09 text corpus
featuring entities from relations in the KG. Given query pairs of entities from
tables, the syntactic patterns from text featuring the query pair are matched to
the patterns in the set. A probabilistic model then allows for the prediction of
relations from the KG. A similar approach is taken by [5], who use a language
model instead of extracted syntactic patterns. This approach queries a search
engine with the entity pair, and classify the text that occurs between the entity
mentions. A separate direction is the matching of numeric columns, either with
metrics for numeric distribution similarity [19] or sophisticated ontologies of
quantities and statistical models [12].

The survey at [13] discusses approaches and challenges to the slot filling
task in the context of textual information extraction. Most systems use distant
supervision for textual pattern learning, and some employ cross-slot reasoning
to ensure the coherence of multiple extracted values. Recently, work on Univer-
sal Schemas by Riedel et al. [24] has allowed the joint factorisation of textual
extractions and KB relations and this boosts slot-filling precision.

In the field of data fusion, systems explicitly aim for high recall and use a
post-processing filter to improve precision. In [18], the extracted facts are filtered
using machine learning models, and in [6] they are filtered using a sophisticated
statistical model of the KG. In [26], the system of [25] is used to interpret a
large collection of web tables, after which the extracted facts are filtered using
several strategies. However, only 2.85% of web tables can be matched, which is
attributed to a topical mismatch between the tables and the KG.

7 Conclusion

We investigate the problem of extending KGs using the data found in Web
tables. Existing approaches have focused on overall precision and recall of facts
extracted from web tables, but it is important for the purpose of KG completion
that the extraction process returns as many (correct) novel facts as possible.

We developed and evaluated a new table interpretation method to counter
this problem. Our method uses a flexible similarity criterion for the disambigua-
tion of entity-row matches, and employs a PGM to compute new likelihood scores
depending on how the various candidates are similar to each other to maximise
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the coherence of assignments. Because it combines the syntactic match between
the tables and the KG with the coherence of the entity predictions, it can confi-
dently predict more candidates for which the attributes in the table are not yet
in the KG. Consequently, it extracts more novel facts for KG completion. For the
task of slot-filling, we introduced a novel approach for attribute disambiguation
based on KG embeddings, which outperforms a naive label-based approach.

We compared our method to two state-of-the art systems, and performed an
extensive comparative evaluation on multiple knowledge bases. Our evaluation
shows that our system achieves a higher recall during the interpretation process,
which is necessary to extract novel information. Furthermore, it is able to extract
more (correct) facts that are not yet in the KG.

Interesting directions for future work include the development of extensions
for tables where the entity is identified by multiple columns or where rows do
not necessarily describe entities. In particular, the heuristics for determining the
key column of the table (and whether such a column is present) would need to
be replaced by a model that reliably detects the type of table. Moreover, the
inclusion of external sources can be useful to extract more novel information
from the table. Finally, despite the remarkable work by different research teams
to produce good benchmark datasets, there is still the need for larger and more
diverse benchmarks to further challenge the state-of-the-art.
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Abstract. Knowledge graphs have become ubiquitous data sources and
their utility has been amplified by the research on ability to answer
carefully crafted questions over knowledge graphs. We investigate the
problem of question generation (QG) over knowledge graphs wherein,
the level of difficulty of the question can be controlled. We present an
end-to-end neural network-based method for automatic generation of
complex multi-hop questions over knowledge graphs. Taking a subgraph
and an answer as input, our transformer-based model generates a natural
language question. Our model incorporates difficulty estimation based on
named entity popularity, and makes use of this estimation to generate
difficulty-controllable questions. We evaluate our model on two recent
multi-hop QA datasets. Our evaluation shows that our model is able to
generate high-quality, fluent and relevant questions. We have released our
curated QG dataset and code at https://github.com/liyuanfang/mhqg.

Keywords: Question generation · Knowledge graph ·
Natural language processing · Transformer · Neural network

1 Introduction

Knowledge graphs (KG) have quickly become an indispensable information
source for both research and practice in recent years. A great amount of effort
has been invested into curating large KGs such as Freebase [3], DBPedia [2] and
Wikidata [11]. Question answering (QA) [8,19], the task of answering natural-
language questions over a KG, has attracted substantial research interest as it is
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an accessible, natural way of retrieving information from KGs without the need
for learning complex structural query languages such as SPARQL.

State-of-the-art KG QA models are typically based on neural networks and
as a result, they are data-driven and need large amounts of training data, con-
taining a set of triples in the form of a graph, a question and the corresponding
answer. To cater to the need of training and evaluating KG QA models, a num-
ber of datasets have been created and curated over the years. These datasets
include those that contain simple, single-hop information [1,4,24] as well as
those that contain more complex information. These complex datasets either
comprise multi-hop instances [30,34,35] or instances that are answerable only
through discrete reasoning [23].

However, further improvements in KG QA have been hindered by the limited
availability of data. The abundance of large-scale “simple”, single-triple data
does not necessarily help advance state-of-the-art. This is because, questions on
such data are easy to answer, once correct entities and predicates are identified.
In contrast, complex questions whose answering entails inference across multiple
triples are naturally more difficult to answer and are therefore more valuable
resources for improving KG QA models. However, complex questions are also
more difficult to create, and most existing complex question datasets are created
either manually or in a semi-automated manner.

Question generation (QG) over knowledge graphs poses a number of chal-
lenges. To illustrate the challenges, in Example 1 we present two subgraphs
(both in visual and textual form) and the corresponding reference questions and
answers from the ComplexWebQuestions [28] and the PathQuestion [35]
datasets. The first example is from PathQuestion, which has the entities and
predicates separated by a special token #, the end of the subgraph denoted by
the token <end>, followed by the answer entity. It contains three entities con-
nected by two predicates. The second example is from ComplexWebQuestions,
which has the triples separated by the special token <t>. The example is a
three-hop subgraph. Different from the previous example, this subgraph is not
a sequence of triples but rather star-shaped, and has multiple answers.

Example 1. Two examples, each consisting of a subgraph, a question about it,
together with the answer.

G: henry i duke of guise#parents#anna deste#spouse#
jacques de savoie 2nd duc de nemours#<end>#
jacques de savoie 2nd duc de nemours

Q: what is the name of the spouse of henry i duke of guise ’s mom?
A: jacques de savoie 2nd duc de nemours
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G: Norway official language Bokmål <t>
Norway official language Norwegian <t>
Norway official language Nynorsk

Q: what languages are spoken in norway?
A: Bokmål, Norwegian, Nynorsk

We address the following challenges for QG over KGs. Firstly, the input is
a graph, and not necessarily a sequence of tokens. The second graph in Exam-
ple 1 contains one entity with three outgoing predicates connecting to three
other entities, and is obviously not structured as a sequence. Conventional text
generation methods are however based on sequence-to-sequence models such as
recurrent neural networks (RNN), that assume the input to be a sequence. Such
a mismatch may negatively affect the quality of QG. In the same vein, for com-
plex, multi-hop questions, a model would need to look at different parts of the
graph repeatedly to generate a syntactically fluent question. Again, this is diffi-
cult for RNN-based techniques that operate sequentially. Last but not least, it
is desirable to be able to generate questions of varying difficulty levels.

In this paper, we address the important problem of automatic generation of
complex, multi-hop questions over KGs. We propose an end-to-end, self-attentive
QG method based on the Transformer [31] architecture. Our approach does not
assume sequential representation of an input graph, and is naturally able to
attend to different parts of a graph in an efficient manner. Moreover, we model
and estimate the difficulty level of a given subgraph-question pair so that we can
generate questions of varying difficulty levels.

To the best of our knowledge, this is the first work on automatic generation
of complex, multi-hop questions from KGs. Our main contributions are fourfold.

1. We propose a novel model for generating complex, difficulty-controllable ques-
tions from subgraphs of multiple triples.

2. Our Transformer-based model naturally treats a subgraph (a set of triples)
as a graph and avoids arbitrary linearisation into a sequence of triples.

3. Our evaluation over a state-of-the-art natural-language generation model on
two multi-hop QA datasets shows our technique is able to generate questions
of much higher quality.

4. Models, dataset and code is available1 to facilitate reproduction and further
research on KG QA research.

1 https://github.com/liyuanfang/mhqg.

https://github.com/liyuanfang/mhqg
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2 Related Work

In this section we briefly discuss prior work from the areas of question answering
and question generation that are most related to our work.

2.1 Question Answering over Knowledge Graphs

Question Answering over Linked Data (QALD) [19] has been under intense inves-
tigation in recent years. A wide array of methods and techniques have been
developed. Bordes et al. [4] employed Memory Networks [33] to answer simple,
one-hop questions, and created the SimpleQuestions dataset that contains 100k
one-hop questions. Semantic parsing has also been investigated as an effective
method for answering both simple [1] and complex [34] questions. Talmor and
Berant proposed [28] to decompose a complex question into simpler ones as a
way of answering it. Unlike in semantic parsing where the knowledge graph is
used for QA, Talmor and Berant propose to answer simple questions by perform-
ing a Web search. The final answer is computed from the sequence of answers.
The results are evaluated on their own ComplexWebQuestions dataset that
includes SPARQL queries, answers and text snippets as evidence. As a byproduct
of these methods, the datasets WebQuestions [1] and WebQuestionsSP [34]
were created. An Interpretable Reasoning Network (IRN) was proposed by Zhou,
Huang and Zhu [35] to answer multi-hop (path or conjunctive) questions. Two
datasets, PathQuestion and WorldCup2014, of up to three hops were created for
evaluating IRN.

A different type of complex questions answering task that involve discrete
reasoning has recently been proposed in CSQA [23]. Unlike multi-hop questions,
questions in CSQA requires a variety of different reasoning tasks, such as logical,
quantitative, qualitative, and comparative reasoning.

Interested readers are referred to a recent survey [8] for further details.

2.2 Question Generation

Question generation (QG) has recently attracted significant interests in the nat-
ural language processing (NLP) and computer vision (CV) community. Given
an input (e.g. a passage of text in NLP or an image in CV), optionally also
an answer, the task of QG is to generate a natural-language question that is
answerable from the input. Neural network-based methods [9,12,17,18,26] are
the state-of-the-art in QG. These end-to-end models do not require the man-
ual creation of templates or rules, and are able to generate high-quality, fluent
questions.

For any data-driven tasks such as question answering, the availability of large,
varied and challenging datasets is crucial to their continued improvements. In
fact, the recent development and interests in QALD is in part driven by the
creation and release of the public datasets discussed in the previous subsec-
tion. Significant manual work has been invested in the creation (e.g. by Amazon
Mechanical Turk workers) and curation (e.g. by the researchers) of these datasets.
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Despite the continued efforts, constrained by available resources, these datasets
are limited in their size and variability.

As a response to this issue, the (semi-)automatic generation of questions over
KG has recently been investigated. Seyler et al. [25] proposed a semi-automatic
method of generating multi-hop quiz questions from KG. With an entity e as
the starting point, the KG is queried to find all triples with the entity as either
the subject or the object, using SPARQL with patterns 〈e ?p ?o〉 and 〈?s ?p o〉.
The SPARQL queries are then verbalised from a given pattern to generate quiz
questions. The notion of difficulty, which is measured from entity popularity,
triple pattern selectivity and coherence, is incorporated in this work.

Inspired by QALD [19], Large-Scale Complex Question Answering Dataset
(LC-QuAD) [30], a QA dataset of 5,000 multi-hop questions, was recently
released. Similar to the previous work, LC-QuAD’s generation is semi-automatic.
The starting point is a manually curated list of DBPedia entities and predicates,
a list of SPARQL templates, as well as a list of natural-language question tem-
plates, one for each SPARQL template. Given a seed entity and predicates, a
two-hop subgraphs are extracted from DBPedia. The subgraphs and templates
are merged to create valid SPARQL queries, and in turn natural-language ques-
tions. These questions are eventually corrected and reviewed by human users.

Different from the above works, our method is end-to-end and fully auto-
mated without the need of manually created templates or patterns. Our method
only requires a subgraph (similar to a text passage and an image in other settings)
and optionally an answer, from which a natural-language question is generated.

The 30M Factoid Question Answer Corpus [24] is possibly the earliest work
using neural networks to generate questions over KG, and the largest dataset of
single-hop questions. With SimpleQuestions [4] as the training set, they employ a
standard encoder-decoder architecture to embed facts (triples), from which ques-
tions are generated. Reddy et al. [22] also uses a standard sequence-to-sequence
model to generate single-hop questions from a set of keywords, extracted from
a KG using rules. Elsahar et al. recently proposed a method [10] of generating
single-hop questions from KG. Their method supports the generation involving
unseen predicates and types, which is achieved by incorporating side information,
in this case textual context from Wikipedia articles. Employing the encoder-
decoder architecture with GRUs (gated recurrent units), the decoder module
makes use of triple attention and textural attention to generate the next, possi-
bly unseen token.

Our method differs from the above in a number of important ways. (1) Our
model generates complex multi-hop questions, whilst all of the above neural
network-based methods generate single-hop questions. (2) Our end-to-end model
estimates and controls difficulty levels of generated questions. (3) We employ the
Transformer [31] as our base model. The Transformer architecture allows us to
naturally treat a graph as a graph, instead of a sequence of triples. Moreover,
compared to variants of recurrent neural networks (e.g. LSTM [15] and GRU [6]),
training on the Transformer is more efficient.
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More broadly speaking, question generation from KG is a special case of text
generation from KG, which has also been investigated recently [20,29,32]. These
techniques encode a set of triples using either customised LSTM or GCN (graph
convolutional network), and are typically evaluated on the WebNLG dataset [13].
A main difference is that these work do not take into account the answer or the
difficulty level, which are important in the task of QG. Moreover, compared to
RNN-based methods, our technique is more effective and efficient in handling
larger contexts and is able to attend to multiple places in the context.

3 Our Approach

We model the problem of question generation over knowledge graphs as a
sequence-to-sequence (Seq2Seq) learning problem. We assume a background
knowledge graph G, comprising a set of triples (facts). Given a subgraph
G = {f1, . . . , fn} ⊆ G of n facts, a set of entities EA that appears in some
triple(s) in G that represents the answer, our model will generate a natural-
language question Q = (w1, . . . , wm), i.e. a sequence of m words, such that

Q∗ = arg max
Q

P (Q | G,EA;Θ) (1)

= arg max
w1,...,wm

m∏

i=1

P (wi | w1, . . . , wi−1, G,EA;Θ) (2)

where Θ denotes model parameters.
The high-level architecture of our model can be seen in Fig. 1. It uses the

Transformer as the base architecture. The encoder (Sect. 3.1) consists of a stack
of Transformers, taking as input the subgraph, the answer entities and estimated
difficulty level of the subgraph. Difficulty modelling and estimation is described
in detail in Sect. 3.2. The decoder (Sect. 3.3) is another stack of Transformers
and decodes a multi-hop question given the encoder output, conditioned on the
user-specified difficulty setting.

3.1 Knowledge Graph Encoding

For a subgraph G, the encoder takes its embedding as input, which in turn is
constructed from the embeddings of the triples in G. Let de denote the dimen-
sion of entity/relation embeddings and dg denote the dimension of triple embed-
dings. At initialisation, the embedding of a triple is the concatenation of the
embeddings of the subject, the predicate and the object of the triple, with the
rest of the values randomly initialised to match triple embedding dimension dg.
Each answer entity in EA is additionally embedded into a de-dimensional vec-
tor, learned from whether it is an answer entity through an MLP (multi-layer
perceptron). Element-wise addition is then performed on the answer embedding
and the original entity embedding to obtain the final embedding for each answer
entity.
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Fig. 1. The high-level architecture of our multi-hop question generation framework.
The encoder stack of Transformers is on the left and the decoder stack is on the right.

Therefore, for graph G containing n triples, it is represented as a matrix
G ∈ R

n×dg . Taking G as input, the Transformer encoder maps it to a sequence
of continuous representations Z = (z1, · · · , zn) ∈ R

n×dv .
Let Q,K ∈ R

n×dk ,V ∈ R
n×dv denote the query, the key and the value

matrices of the encoder Transformer. Given input G, we use the query matrix
V to soft select the relevant triples with the scaled dot-product attention:

Att(Q,K,V ) = softmax(
QKT

√
dk

)V (3)

where KT is K’s transpose, Q = GWQ,K = GWK ,V = GW V , and
WQ,WK ∈ R

dg×dk ,W V ∈ R
dg×dv are trainable model parameters.

To be able to attend to information from different triples in different repre-
sentation subspaces, we use the multi-head attention with k heads and aggregate
them as follows:

MultiAtt(Q,G) = concat(a1, . . . ,ak)WO (4)

where WO ∈ R
kdv×dg , and ai = Att(QWQ

i ,GWK
i ,GW V

i ), i ∈ [1, k] as defined
in Formula 3.
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Aggregated multi-head attention output is passed to a feed-forward neural
net (FFNN) in each of the encoder stack of Transformers, where the output x
goes through two linear transformations:

FFNN(x) = max(0,xW1 + b1)W2 + b2 (5)

In all the encoder layers other than 1st layer we directly feed output of the
previous encoder layer as input. The output of the top of the encoder is finally
transformed into two attention matrices, the keys Kencdec and the values Vencdec.

The original Transformer is designed for handling sequences, and for that
purpose it provides positional encoding to encode the position of each input
token. As a subgraph does not necessarily form a sequence of triples (cf the
second graph in Example 1), we do not use positional encoding in our encoder.

The subgraph embedding is augmented with the answering (entity) encoding
as well as a difficulty estimation, which is described in the next subsection.

3.2 Difficulty Level Modelling and Estimation

Given a subgraph, it is desirable to generate questions of different difficulty levels
in different situations. As there is no ground truth for question difficulty level,
we estimate the difficulty using characteristics of the question and the subgraph,
namely (1) the confidence of entity linking in the question, and (2) the selectivity
of the surface forms of entities in the subgraph.

Confidence. We employ NER (named entity recognition) systems to perform
entity recognition and linking. Intuitively, high confidence of an NER system
about an entity-mention linking may be due to the low ambiguity of the men-
tion and the high differentiability of the context, both of which would make
the subgraph easy to understand and the generated question easy to answer. For
example, given the mention “Cold War”, if the NER system returns a higher con-
fidence score for the entity freebase:m.034y4w than freebase:m.011l309l, a ques-
tion that contains the former would be more likely to be correct, hence easier to
answer.

Selectivity. On the other hand, the less selective a mention is (e.g. “John Smith”
vs “Elon Musk”), the more confusing it would be for the question containing
that mention. We query Wikipedia with the each mention, and use the number
of returned hits as an estimation of its selectivity, where he higher the number
of hits, the lower the selectivity, thus the more difficult the question.

Given a training instance (G, q) of a subgraph G and a question q, we denote
the confidence of Con(q), by averaging over all identified mentions in q and min-
max normalisation over the training corpus. We denote the selectivity of the
subgraph Sel(G), by averaging over all entities in G and min-max normalisation.
We estimate the difficulty level of a given subgraph and a question, Dif(G, q),
as follows:

Dif(G, q) =
1 + Sel(G)
1 + Con(q)

(6)
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The difficulty estimation Dif(G, q) is then normalised into the closed interval
[0, 1], and finally converted into a binary vector x ∈ {0, 1}2 by thresholding,
where (0, 1) and (1, 0) represent easy and difficult respectively. We randomly
observe values of around 200 instances of easy difficulty level and we choose the
maximum of those values as threshold. We note that we use a one-hot vector to
represent difficulty levels so that it is easy to generalise it to multiple difficulty
levels (e.g. easy, medium, hard).

3.3 Complex Question Decoder

Our decoder is a stack of Transformer decoders, conditioned on the difficulty
level of the question to be generated. Similar to the encoder, the decoder also
has multiple scaled dot-product attention layers along with feed forward neural
network layers. Besides the self-attention, the decoder uses the final (top in Fig. 1)
encoder Transformer’s output attention matrices (Kencdec and Vencdec) in its
encoder-decoder attention layer, which helps decoder in attending to (focusing
on) important triples in the input subgraph.

The encoder-decoder attention layer works very similarly to the multi-head
self attention layer described in Sect. 3.1 above. The main difference is that the
encoder-decoder attention layer computes the query matrix (Q) using the layer
below it in the decoder and takes the key (K) and values (V ) matrices from
encoder output.

The output vector from the decoder stack is fed to a fully connected neural
network (linear layer) which projects it to logits vector. Finally the softmax layer
converts this logits vectors into a probability distribution over vocabulary, from
which the question is decoded.

We encode difficulty into the decoder using a multi-layer perceptron DE
consisting of an input linear layer followed by a rectified linear unit (ReLU)
layer and an output linear layer. The input to DE is a length-two vector x
representing a given difficulty level, as described in the previous subsection.

DE(x) = Linear(ReLU(Wx + b)) (7)

where x the difficulty level and W ∈ R
dg×2 and b ∈ R

dg are trainable model
parameters. We sum DE(x) with decoder input to condition decoder to generate
question of encoded difficulty.

At the decoder side, the order of question words is important. Therefore, we
inject/add sequence order information to the decoder input. To represent order
of the sequence we use fixed positional encoding with sine and cosine functions
of different frequencies:

PE(pos,2i) = sin
(
pos/100002i/dg

)
(8)

PE(pos,2i+1) = cos
(
pos/100002i/dg

)
(9)

where pos is the position and i is the index of dimension.
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Label Smoothing. Label smoothing [27] has shown great impact especially
in Transformers with multi-head attention. Adding label smoothing reduces
expected calibration error. Motivated by previous work [7], we use label smooth-
ing for regularisation with an uncertainty of 0.1. Our label smoothing technique
is based on the Kullback-Leibler divergence loss. Instead of using the vanilla
one-hot question word distribution, we build a distribution that has confidence
of the correct word and distributes the rest of the smoothing mass throughout
the output vocabulary.

4 Evaluation

Dataset and Preprocessing. We collected data from three recent multi-
hop question answering datasets: WebQuestionsSP [34], ComplexWebQues-

tions [28], and PathQuestion [35]2, all of which are based on Freebase.
Each instance in WebQuestionsSP and ComplexWebQuestions con-

tains a natural-language question, a corresponding SPARQ query and the answer
entity and some other auxiliary information. For each instance, we convert its
SPARQL query to return a subgraph instead of the answer entity, by changing it
from a SELECT query to a CONSTRUCT query. An example CONSTRUCT query and
its returned graph from the WebQuestionsSP dataset is shown in Example 2
below. We combine these two datasets and refer to them as WQ hereinafter.

Example 2. An example CONSTRUCT query and the corresponding returned
graph.

PREFIX ns: <http://rdf.freebase.com/ns/>

CONSTRUCT WHERE { FILTER (?x != ns:m.02189)

FILTER (!isLiteral(?x) OR lang(?x) = ’’ OR langMatches(lang(?x), ’en’))

ns:m.02189 ns:organization.organization.founders ?x .

?x ns:medicine.notable_person_with_medical_condition.condition ns:m.0g02vk .

}

The subgraph returned after executing the above query is given below. Note
the Freebase prefix is omitted for brevity reasons.

m.02189 organization.organization.founders m.04xzm .

m.04xzm medicine.notable_person_with_medical_condition.condition m.0g02vk .

PathQuestion (referred to as PQ hereinafter) is similar to WQ. However, PQ
only contains verbalised entities and predicates but not their Freebase IDs. As a
result, we process this dataset differently.

Conceptually, each of WQ and PQ is a set of tuples {(Qt, G,EA)}, where
Qt is a natural-language question, G is the subgraph from which the question is
derived, and EA is the set of answer entities to question Qt. Brief statistics of
the two datasets can be found in Table 1.
2 Retrieved from https://www.microsoft.com/en-us/download/details.aspx?id=52

763, https://www.tau-nlp.org/compwebq, and https://github.com/zmtkeke/IRN/
tree/master/PathQuestion respectively.

https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://www.tau-nlp.org/compwebq
https://github.com/zmtkeke/IRN/tree/master/PathQuestion
https://github.com/zmtkeke/IRN/tree/master/PathQuestion
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For each dataset (WQ and PQ), we split it into 80%, 10% 10% for training,
validation and testing.

Table 1. Brief statistics of the collected datasets.

Dataset # entities # predicates # hops # instances

WQ [28,34] 25,703 672 2 to 100 22, 989

PQ [35] 7,250 378 2, 3 9, 731

Total 32,953 1,050 – 32,720

Implementation Details. We have implemented our multi-hop question gen-
eration model, denoted MHQG3, in the PyTorch framework. For the state-of-the-
art question generation model Learning to Ask (L2A) [9] used for comparison,
we used its publicly available code.

We set triple embedding dimension for the Transformers to 512, i.e. dg = 512.
The triple embeddings are fine-tuned during training. We use 8 parallel attention
heads with dk and dv set to 64. The dimension of encoder and decoder’s fully
connected feed forward neural nets is set to 2048. We set the number of layers
of Transformers to six (n = 6 in Fig. 1) for both the encoder and the decoder.

For the WQ dasatet, we obtain the pre-trained 50-dimensional TransE [5]
embeddings for Freebase from OpenKE [14]. The embedding of a triple is the
150-dimensional concatenated embeddings of its components (subject, predicate
and object). For initialisation, we extend the 150-dimensional embedding vectors
to 512-dimensional with random values for the remaining 362 dimensions.

As PQ only contains lexicalised entities and predicates but not their IDs,
we resort to using the pre-trained 300-dimensional GloVe [21] word embeddings
for this dataset. For each entity/predicate, its embedding is the average of the
embeddings of its words. We extend the embedding vectors to 512-dimensional
with random values for the remaining 212 dimensions. As in WQ, the triple
embeddings are fine-tuned during training.

For example, for the following (2-triple) subgraph in PQ claudius#parents#
nero claudius drusus#nationality#roman empire, the embedding of the
entity roman empire is the average of the GloVe embeddings of words roman
and empire. We mask entities in questions to a generic entity form such as
“ENT1” to handle unseen entities, thus resolving the out of vocabulary issue.
Entity masking also helps model learn better generalisations for similar training
instances.

We use TAGME4 for entity recognition and entity linking, and obtain the
TAGME confidence score in difficulty estimation (Sect. 3.2).

3 Available at https://github.com/liyuanfang/mhqg.
4 https://tagme.d4science.org/tagme/.

https://github.com/liyuanfang/mhqg
https://tagme.d4science.org/tagme/
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We used the Adam optimiser [16] with β2 = 0.998, initialised with learning
rate 2 to optimise model parameters. The learning rate increases linearly for the
first 800 training steps (warmup steps) and decreases thereafter proportionally to
the inverse square root of the step number. For regularisation we apply dropout
to the output of each layer with the dropout probability set to 0.1. We use beam
search in the decoder with beam size of 10 for decoding question words. These
parameters are empirically chosen using grid search.

All our models are trained on a single P100 GPU. We train for 15 epochs, and
select the model with the minimum perplexity on the validation set to generate
question on the test set for evaluation.

4.1 Results and Discussion

To the best of our knowledge, this work is the first to address multi-hop question
generation from KG. Therefore, there is no other model that we can compare
with directly. Existing text generation models such as GTR-LSTM [29] and
GCN [20] are trained on a different KG (DBPedia instead of Freebase). Com-
paring them requires significant additional data preprocessing work, including
entity linking, triple embedding, etc., as well as mandatory additional data (e.g.
entity types) that are not available to us. As a result, we leave comparing with
them to future work.

Instead, we use a state-of-the-art natural language QG model, Learning to
Ask [9] (referred to as L2A hereinafter), as a baseline model for comparison.
L2A is a recent LSTM-based Seq2Seq model that takes a sentence as input
and generates a question. We train L2A using the linearised subgraph with 300-
dimensional embeddings, which are fine-tuned during training. We use a 2 layer
Bi-LSTM encoder and decoder with hidden unit size set to 600. The other hyper-
parameters are set exactly the same as described in L2A [9]

We perform two experiments to evaluate the effectiveness of our proposed
model: automatic evaluation using widely-used metrics including BLEU, GLEU
and METEOR and human evaluation. We compare two variants of our model
against L2A: with (MHQG+AE) or without (MHQG) answer encoding. The
automatic evaluation is performed on the full test sets, whereas a subset of 50
randomly selected questions, 25 from each of WQ and PQ, are used in human
evaluation.

The results of automatic evaluation are shown in Table 2. As can be seen, on
both datasets, both our models outperform L2A substantially across all three
evaluation metrics. On both datasets, our models outperform L2A on BLEU
for 5.56 and 8.99 absolute points, representing a 93% and 53% respectively. On
the PQ dataset, the differences in ROUGE-L and METEOR are more substan-
tial than on the WQ dataset. Moreover, MHQG+AE, the model with answer
encoding, also consistently exhibits better performance than without it.
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Table 2. Results of automatic evaluation. Best results for each metric is bolded.

Model WQ PQ

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

L2A 6.01 26.95 25.24 17.00 50.38 19.72

MHQG 11.49 34.61 27.65 24.98 58.08 31.32

MHQG+AE 11.57 35.53 29.69 25.99 58.94 33.16

Table 3. Results of human evaluation, showing percentages of questions with correct
syntax, semantics and difficulty level for the two datasets and each model. The numbers
in parentheses are the percentage of agreement between participants. Best results for
each metric is bolded.

Model WQ PQ

Syntax Semantics Difficulty Syntax Semantics Difficulty

L2A 78 (97) 80 (95) 48 (59) 67 (65) 65 (73) 58 (50)

MHQG 79 (75) 83 (81) 60 (49) 64 (75) 70 (69) 68 (44)

MHQG+AE 98 (73) 97 (76) 56 (53) 78 (70) 74 (62) 68 (49)

In human evaluation, four participants were asked to judge the correctness
of syntax, semantics and difficulty level of the questions generated by L2A and
our models. The results are averaged across the four participants and are sum-
marised in Table 3. For all evaluation criteria, both of our models outperform
L2A. Notably, on WQ, our model MHQG+AE achieves 98% and 97% of syn-
tactic and semantic correctness respectively. Overall MHQG+AE achieves best
result, except the slightly lower percentage of correct difficulty level for WQ.
This is consistent with the results in automatic evaluation in Table 2, where
MHQG+AE also shows best performance.

Below in Example 3 we show two questions, one easy, and one hard, gen-
erated by our model MHQG+AE on a same graph. Fro brevity reasons only
the localname of the freebase predicates are shown. As can be seen, the differ-
ence in hardness is obvious, showing the effectiveness of our model in controlling
question difficulty.

Example 3. An example graph with two questions of different difficulty levels
generated by our model MHQG+AE.
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Graph: m.0gtqy5p location m.0r0m6 <t> m.0gtqxxq location m.0fpzwf <t>

m.01vrncs places_lived m.03pnpl8 <t>

m.01vrncs film.film_subject.films m.0djlxb <t>

m.03pnpl8 location m.0h1k6 <t> m.0gtqxxk location m.02_286 <t>

m.01vrncs places_lived m.0gtqy5p <t>

m.01vrncs places_lived m.0gtqxxk <t>

m.0gtqy5h location m.0wjjx<t> m.01vrncs places_lived m.0gtqxxq <t>

m.01vrncs places_lived m.0gtqy5h <t>

Easy: where did bob dylan live?

Hard: where did the subject of the film "I’m Not There" live?

Example 4 below shows two complex, 7-hop and 4-hop, subgraphs from WQ
and the questions generated on them, by L2A and our two models. As can be
seen, our models generate questions of much higher quality than L2A.

Example 4. Two subgraphs and questions generated by different models.
Graph: m.0jjl89y office_position_or_title m.0j6tpbb <t>

m.0hqg6pb office_position_or_title m.0j6tpbb <t>

m.03gj2 official_language m.02ztjwg <t>

m.03gj2 governing_officials m.0hqg6m3 <t>

m.03gj2 governing_officials m.0jjl89y <t>

m.03gj2 governing_officials m.0hqg6pb <t>

m.0hqg6m3 office_position_or_title m.0j6tpbb <t>

L2A: what language is spoken in the governmental jurisdiction?

MHQG: what is the spoken language in the country with governmental

position prime minister of hungary?

MHQG+AE: what language is spoken in the governmental jurisdiction

where prime minister of hungary holds office?

Graph: m.0d04z6 currency_used m.049p2z <t>

m.0d04z6 national_anthem m.048z_y1 <t>

m.0d04z6 currency_used m.049p6c <t>

m.048z_y1 anthem m.01lg5j <t>

L2A: the country that contains uses what type of currency?

MHQG: what is the currency used in the country with la bayamesa as

its national anthem?

MHQG+AE: what currency is used in the country with national anthem la

bayamesa?

5 Conclusion

In this paper we present a novel technique for the automatic generation of com-
plex, multi-hop questions from knowledge graphs. Our technique takes a sub-
graph as input, encodes the answer, estimates the difficulty level, and generates
a natural-language question from the subgraph. We employ a Transformer-based
encoder-decoder model that is conditioned on the difficulty level. Experiments
were performed on three recent multi-hop question-answering datasets to assess
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the quality of generated questions, by both widely-used evaluation metrics and
human judgements. Compared to a state-of-the-art text question generation tech-
nique, our method generates questions that are more fluent and relevant with
tunable difficulty levels.

Our technique allows the generation of complex questions over a large knowl-
edge without any manual intervention. This ability can facilitate the continued
improvements of knowledge graph question answering methods by providing sub-
stantial amount of new training data with minimal cost.

We have planned a number of further research directions. Firstly, we will
investigate a more refined estimation of difficulty levels, taking into account
more comprehensive information such as predicates and the graph itself, but
not only entities. Secondly, taking into account additional information sources
such as background ontologies as entity and predicate definitions is also worth
investigating.
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Abstract. It is a strength of graph-based data formats, like RDF, that
they are very flexible with representing data. To avoid run-time errors,
program code that processes highly-flexible data representations exhibits
the difficulty that it must always include the most general case, in which
attributes might be set-valued or possibly not available. The Shapes Con-
straint Language (SHACL) has been devised to enforce constraints on
otherwise random data structures. We present our approach, Type check-
ing using SHACL (TyCuS), for type checking code that queries RDF
data graphs validated by a SHACL shape graph. To this end, we derive
SHACL shapes from queries and integrate data shapes and query shapes
as types into a λ-calculus. We provide the formal underpinnings and a
proof of type safety for TyCuS. A programmer can use our method in
order to process RDF data with simplified, type checked code that will
not encounter run-time errors (with usual exceptions as type checking
cannot prevent accessing empty lists).

Keywords: SHACL · Programming with RDF · Type checking

1 Introduction

Graph-based data formats, such as RDF, have become increasingly popular,
because they allow for much more flexibility for describing data items than
rigidly-structured relational databases. Even when an ontology defines classes
and properties, because of its open-world assumption, it is always possible to
leave away required information or to add new classes and properties on the fly.
Such flexibility incurs cost. Programmers cannot rely on structural restrictions
of data relationships. For instance, the following T-Box axiom states that every
Student has at least one studiesAt relation:

Student � ≥ 1 studiesAt.� (1)
c© Springer Nature Switzerland AG 2019
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Fig. 1. Sample RDF data graph G1.

Consider an RDF data graph such as shown in Fig. 1. The two nodes alice and
bob are both instances of Student and Person. For alice, only the name is
known. For bob, name, age and that he studies at b1, which is an instance of
University. Such a graph is a valid A-Box for the T-Box stated above. However,
for a program containing a variable x representing an instance of Student, there
is no guarantee that the place of study is explicitly mentioned in the data and
can be displayed. Depending on whether x contains alice or bob, the following
program may succeed or encounter a run-time error:

1 print(x.studiesAt)

The Shapes Constraint Language (SHACL) is a recent W3C recommenda-
tion [13] set out to allow for formulating integrity constraints. By now, a proposal
for its formal semantics has been formulated by the research community [7] and
SHACL shape graphs can be used to validate given data graphs. [13] itself states
that:

SHACL shape graphs [...] may be used for a variety of purposes besides
validation, including user interface building, code generation and data inte-
gration.

However, it does not state how SHACL shape graphs might be used for these pur-
poses. We consider the problem of writing code against an—possibly evolving—
RDF data graph that is and remains conformant to a SHACL shape graph.
We assume that the RDF database handles the rejection of transactions that
invalidate conformance between SHACL shape graph and data graph. Then, the
programming language should be able to type check programs that were written
referring to a defined SHACL shape graph. Type checking should reject pro-
grams that could cause run-time errors, e.g., because they try to access an RDF
property that is not guaranteed to exist without safety precautions. They should
also simplify programs for which queries are guaranteed to return single values
rather than lists, and they should accept programs that do not get stuck when
querying conformant data graphs (with usual exceptions).

To exemplify this, consider three SHACL shapes StudentShape,
PersonShape and UniversityShape (see Fig. 2). StudentShape validates all
instances of Student, enforcing that there is at least one studiesAt relation,
that all studiesAt relations point to a node conforming to the UniversityShape
and that all instances of Student are also instances of Person. PersonShape
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Fig. 2. SHACL constraints for RDF data graph G1.

Listing 1. Program that may produce a run-time error.

1 map (fun x -> x.?X.age) (query {

2 SELECT ?X WHERE { ?X rdf:type ex:Student.} })

validates all instances of Person and enforces the presence of exactly one name
relation. UniversityShape enforces at least one incoming studiesAt relation
and that all incoming studiesAt relations are from nodes conforming to the
StudentShape. In order for G1 to be valid with respect to the SHACL con-
straints above, either the statement that alice is an Student must be removed
or a place of study for alice added. With these changes, the program above can-
not fail anymore. A different program (see Listing 1) may query for all instances
of Student. The program may then try to access the age relation of each query
result. However, since it is possible to construct an RDF graph that is validated
by the shapes above, but lacks an age relation on some instances of Student,
the program is unsafe and may crash with a run-time error. Contrary to that, a
similar program that accesses the name relation instead is guaranteed to never
cause run-time errors.

Contributions. We propose a type checking procedure based on SHACL shapes
being used as types. We assume that a program queries an—possibly evolving—
RDF data graph that is validated by a SHACL shape graph. Our contributions
are then as follow:

1. We define how SHACL shapes can be inferred from queries. As queries are
the main interaction between programs and RDF data graphs, inferring types
from data access is a major step in deciding which operations are safe.

2. We then use a tiny core calculus that captures essential mechanisms to define
a type system. Due to its simplicity, we use a simply typed λ-calculus whose
basic model of computation is extended with queries. We define how SHACL
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shapes are used to verify the program through a type system and show that
the resulting language is type-safe. That is, a program that passed type check-
ing successfully does not yield run-time errors (with the usual exception of
e.g., accessing the head of an empty list).

Organization. The paper first recalls basic syntax and semantics for SPARQL
and SHACL in Sect. 2. Then, the paper describes how we infer SHACL shapes
from queries in Sects. 3 and 4 before defining syntax and evaluation rules of the
λ-calculus in Sect. 5. Then, the type system including subtyping is defined in
Sect. 6 before showing its soundness in Sect. 7. Finally, we discuss related work
in Sect. 8 and conclude in Sect. 9.

2 Preliminaries

2.1 SPARQL

RDF graphs are queried via the SPARQL standard [20]. We focus on a core
fragment of SPARQL that features conjunctive queries (CQ) and simple path
(P) expressions. We abbreviate this fragment by PCQ. That is, our queries are
conjunctions of property path expressions that use variables only in place of
graph nodes, not in place of path expressions1 [3]. This is also a very widely
used subset of SPARQL queries [18].

Fig. 3. Syntax of PCQs.

Syntax. We denote the set of graph nodes of an RDF graph G by NG with
v ∈ NG denoting a graph node. Furthermore, we assume the existence of a
set of variables NV with x representing members of this set. The metavariable
r denotes a SPARQL property path expression. A property path expression

1 As we use plain RDF, we do not differentiate between distinguished and existential
variables.
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allows for defining paths of arbitrary length through an RDF graph. In our case,
a property path is either a simple iri (i), the inverse of a path (r−) or a path
that connects subject to object via one or more occurrences of r (r+). Lastly, we
allow for path sequences (r1/r2). A PCQ q = (x) ← body consists of a head (x)
and a body . We use x to denote a sequence of variables x1, . . . , xn. In a head of
a PCQ (x), the sequence x represents the answer variables of the query which
are a subset of all variables occurring in the body of q. We use vars(q) to refer
to the set of all variables occurring in q. Figure 3 summarizes the syntax.

Semantics. For query evaluation, we follow standard semantics. Evaluation of a
query over a graph G is denoted by �·�G and yields a set of mappings μ, mapping
variables of the query onto graph nodes. The full evaluation rules can be found
in the extended technical report of the paper2.

2.2 Shapes Constraint Language (SHACL)

The Shapes Constraint Language (SHACL) is a W3C standard for validating
RDF graphs. In the following, we rely on the definitions presented by [7]. SHACL
groups constraints in so-called shapes. A shape is referred to by a name, it has
a set of constraints and defines its target nodes. Target nodes are those nodes of
the graph that are expected to fulfill the constraints of the shape. As exemplified
by StudentShape and UniversityShape (see Fig. 2), constraints may reference
other shapes.

Constraint Syntax. We start by defining constraints. We follow [7], who use a
logical abstraction of the concrete SHACL language. Fragments of first order
logic are used to simulate node shapes whereas so called property shapes are
completely abstracted away. Constraints that are used in shapes are defined by
the following grammar:

φ ::= � | s | v | φ1 ∧ φ2 | ¬φ |≥n r.φ (2)

where s is a shape name (indicating a reference to another shape), v is a con-
stant (or rather a graph node), r is a property path and n ∈ N

+. Additional
syntactic constructs may be derived from this basic grammar, including ≤n r.φ
for ¬(≥n+1 r.φ), =n r.φ for (≤n r.φ) ∧ (≥n r.φ) and φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2).
We sometimes use φs to denote the constraint belonging to a specific shape s.
To improve readability, we sometimes add parenthesis to constraints although
they are not explicitly mentioned in the grammar.

Constraint Evaluation. Evaluation of constraints is rather straightforward with
the exception of reference cycles. Evaluation is therefore grounded using assign-
ments σ which map graph nodes to shape names [7]. We rely on total assignments
instead of partial assignments for simplicity.

2 Available at https://arxiv.org/abs/1907.00855.

https://arxiv.org/abs/1907.00855
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Definition 1 (Total Assignment). Let G be an RDF data graph with its set
of nodes NG and let NS a set of shape names. Then σ is a total function σ :
NG → 2NS mapping graph nodes v to subsets of NS. If s ∈ σ(v), then v is
assigned to the shape s.

Evaluation of a constraint φ for a node v of a graph G using an assignment σ
is denoted �φ�v,G,σ and yields either true or false. The extended version contains
the complete definition.

Shapes and Validation. A shape is modelled as a triple (s, φ, q) consisting of a
shape name s, a constraint φ and a query for target nodes q which is either an
empty set or a monadic query that has exactly one answer variable to describe
all intended target nodes. Target nodes denote those nodes which are expected
to fulfill the constraint associated with the shape. In a slight abuse of notation,
we write v ∈ �q�G to indicate that a node v is a target node for s in the graph
G. If S is a set of shapes, we assume that for each (s, φ, q) ∈ S, if shape name s′

appears in φ, then there also exists a (s′, φ′, q′) ∈ S. To illustrate this, consider
our running example again (see Fig. 2)3. The set S1 containing all three shapes
looks as follows:

S1 = {(sStudent , ≥1 studiesAt.�∧ ≤0 studiesAt.¬sUniversity∧ ≥1 type.Person,

(x1) ← x1 type Student),

(sPerson , =1 name.�, (x1) ← x1 type Person),

(sUniversity , ≥1 studiesAt
−.�∧ ≤0 studiesAt

−.sStudent , ∅)}

Intuitively, only certain assignments are of interest. Such an assignment is called
a faithful assignment.

Definition 2 (Faithful assignment). An assignment σ for a graph G and a
set of shapes S is faithful, iff for each (s, φ, q) ∈ S and for each graph node
v ∈ NG, it holds that:

– if v ∈ �q�G, then s ∈ σ(v).
– if s ∈ σ(v), iff �φ�v,G,σ = true.

Validating an RDF graph means finding a faithful assignment. The graph is
said to conform to the set of shapes.

Definition 3 (Conformance). A graph G conforms to a set of shapes S iff
there is a faithful assignment σ for G and S. We write σG,S to denote that σ is
a faithful assignment for G and S.

3 We simplified target queries in the example—in reality, the target queries should
query for Student or any of its subclasses. We simplified this as we do not use any
RDFS subclass relations in our examples.
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Validating an RDF graph means finding a faithful assignment. In case of
graph G1 (see Fig. 1) and the set of shapes S1, it is impossible to validate the
graph. alice would need to be assigned to sStudent , but has no studiesAt
relation. However, if the statement (alice, type, Student) is removed, then the
graph is valid since a faithful assignment may assign sPerson to alice and bob,
sStudent solely to bob and sUniversity to b1.

3 Shape Inference for Queries

In this section, we describe how to infer shapes from PCQs for all variables in
a given query. Given a query q with x ∈ vars(q), let sq

x be the globally unique
shape name for variable x in query q. Then we assign the shape (sq

x, φ, qx). We
discard sub- or superscripts if they are evident in context.

Our typing relation “:” for a PCQ q constructs a set of shapes Sq in the
following manner: For every subject var pattern x r v in the body of q (object
var pattern v r x respectively), we assign the constraint ≥1 r.v (≥1 r−.v). As
target nodes, we use the original query but projected on the particular variable.
In case of variables on both subject and object (x1 r x2), we infer two shapes
sq

x1
and sq

x2
. We use shape references to express the dependencies and infer the

constraints ≥1 r.sq
x2

and ≥1 r−.sq
x1

. In case of a conjunction (body1 ∧ body2 ), we
infer the sets of constraints for each query body individually and then combine
the results using the operator ��. The relation �� takes two sets of shapes Sq1 and
Sq2 combines them into a unique set performing a full outer join on the shape
names:

Sq1 �� Sq2 = {(sqxi
, φi ∧ φj , (xi) ← bodyi ∧ bodyj)|(sqxi

, φi, (xi) ← bodyi) ∈ Sq1

∧ (sqxi
, φj , (xi) ← bodyj) ∈ Sq2} ∪

{(sqxi
, φi, qi)|(sqxi

, φi, qi) ∈ Sq1 ∧ ¬∃(sqxi
, φj , qj) ∈ Sq2} ∪

{(sqxj
, φj , qj)|¬∃(sqxj

, φi, qi) ∈ Sq1 ∧ (sqxj
, φj , qj) ∈ Sq2}

Figure 4 contains the complete set of rules for inferring sets of shapes from
PCQs.

As an example, consider the query q = (x1, x2) ← x1 type Student ∧ x1
studiesAt x2 as used before. Then shape inference on the body assigns the
following set of shapes:

(1) x1 type Student ∧ x1 studiesAt x2 : (2) �� (3)

= {(sqx1
, ≥1 type.Student ∧ studiesAt.sqx2

, (x1) ← x1 type Student ∧ x1 studiesAt x2),

(sqx2
, ≥1 studiesAt−.sqx1

, (x2) ← x1 type Student ∧ x1 studiesAt x2)}
(2) x1 type Student : {(sqx1

, ≥1 type.Student, (x1) ← x1 type Student)}
(3) x1 studiesAt x2 : {(sqx1

, ≥1 studiesAt.sqx2
, (x1) ← x1 studiesAt x2),

(sqx2
, ≥1 studiesAt−.sqx1

, (x2) ← x1 studiesAt x2)}
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Fig. 4. Inference rules for inferring a set of shapes from the body of query q.

4 Soundness of Shape Inference for Queries

Shape inference for queries is sound if the shape constraints inferred for each
variable evaluate to true for all possible mappings of the variable.

Definition 4 (Soundness of shape inference). Given an RDF graph G, a
PCQ q with its variables xi ∈ vars(q) and the set of inferred shapes Sq =
{(sq

xi
, φxi

, qsxi
)xi∈vars(q)}, a shape constraint is sound if there exists a faithful

assignment σG,Sq such that

∀xi ∈ vars(q) : ∀μ ∈ �q�G : �φxi
�μ(xi),G,σG,Sq

= true

We show that the faithful assignment σG,Sq can be constructed by assigning
all shape names solely based on target nodes.

Theorem 1. For any graph G, a PCQ q and the set of shapes Sq inferred from
q, assignment σG,Sq is constructed such that for each shape (s, φs, qs) ∈ Sq and
for each graph node v ∈ NG:

1. If v ∈ �qs�G, then s ∈ σG,Sq (v),
2. If v �∈ �qs�G, s �∈ σG,Sq (v).

Such an assignment σG,Sq is faithful.

Proof (Sketch). Intuitively, a node v is part of the query result due to the pres-
ence of some relations for the node. The assigned constraints require the presence
of the exact same relations to evaluate to true. A induction over the query eval-
uation rules can therefore show that (1) all nodes that are in the query result
fulfill the constraint whereas (2) a node not being in the query result would also
violate the constraint. �

The faithful assignment σG,Sq constructed in the manner as explained above
is unique. This is expected as shape inference does not use negation.

Proposition 1. The assignment σG,Sq constructed as described above is unique.
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Proof. Assume that a different faithful assignment σ′G,Sq exists. There must be
at least one node v for which σG,Sq (v) �= σ′G,Sq (v).

1. It is impossible that there is an s such that s ∈ σG,Sq (v) and s �∈ σ′G,Sq (v).
σ assigns shapes based on target nodes, v must be a target node for s and σ′

is not faithful.
2. It cannot be that s �∈ σG,Sq (v) and s ∈ σ′G,Sq (v). v must fulfill the constraint

φs of shape s, otherwise σ′ would not be faithful. If that is the case, then σ
is not faithful. This contradicts Theorem 1. �

Given a faithful assignment σG,S for a set of shapes S and assignment σG,Sq

for an inferred set of shapes, the two assignments can be combined by simply
taking the union σG,S(v)∪σG,Sq (v) for each graph node v ∈ NG. While not true
for two arbitrary assignments, it is true in this case because shape names of S
and Sq are disjoint.

5 Core Language

Syntax. Our core language (Fig. 5) is a simply typed call-by-value λ-calculus. A
program is a pair consisting of shapes written for the program S and a term.
Terms (t) include4 function application and if-then-else expressions. Constructs
for lists are included in the language: cons, nil, null, head and tail. Specific
to our language is a querying construct for querying an RDF graph with PCQs.
To avoid confusion between PCQ query variables and program variables, we
refer to the variables of a query always with the symbol l as they are treated as
labels in the program. We assume labels to be either simple user-defined labels
as commonly used in records, query variables or property paths. Labels are used
for projection. In case of a projection for a record, the value associated with
label is selected. When evaluating queries, evaluation rules turn query results
into lists of records whereas answer variables are used as record labels. Lastly, in
case of a projection for a graph node, the label is interpreted as a property path
and the graph is traversed accordingly. Even though not explicitly mentioned in
the syntax, we sometimes add parenthesis to terms for clarification. Values (val)
include graph nodes, record values, nil and cons to represent lists, λ-abstractions
and the two boolean values true and false. λ-abstractions indicate the type of
their variable explicitly.

Types (T ) include shape names (s) as well as type constructors for function
(T → T ), list (T list) and record types ({li : T i∈1...n

i }). We assume primitive
data types such as integers and strings, but omit routine details. To illustrate
them, we include booleans in our syntax. As common in simply typed λ-calculi,
we also require a context Γ for storing type bindings for λ-abstractions.

4 Since they show no interesting effects, let statements and a fixpoint operator allow-
ing for recursion, e.g., as necessary to define a map function are omitted. They are
contained in the extended version.
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Fig. 5. Abstract syntax of λSHACL.

As an example, remember the program in Listing 1 which queried for all
instances of Student. Assuming that map is defined using basic recursion, the
program can be expressed as

map (λ(y : {x : sStudent}).y.x.age) (query (x1) ← x type Student)

In this program, the function (λ-abstraction) has one variable y whose type is a
record. The record consists of a single label x, representing the answer variable
of the query. The type of x is the shape sStudent . The term y.x in the body
of the function constitutes an access to the record label. Accessing the age in
the next step constitutes a projection that traverses the graph. Type-checking
rightfully rejects this program as nodes conforming to sStudent may not have a
age relation.

Semantics. The operational semantics is defined using a reduction relation,
which extends the standard ones. As types do not influence run-time behavior,
shapes do not occur in the evaluation rules. However, we define the reduction
rules with respect to an RDF graph G. Reduction of lists, records and other rou-
tine terms bear no significant differences from reduction rules as, e.g., defined
in [19] (c.f. Fig. 6, reduction rules for lists are only contained in the technical
report). Reduction rules for queries and node projections are summarized by
rules E-QUERY and E-PROJNODE in Fig. 6. A term representing a query can
be directly evaluated to a list of records. Query evaluation �q�G returns a list of
mappings. As in other approaches (e.g., [2]), each query result becomes a record
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Fig. 6. Reduction rules of λSHACL.

of the list. For each record, labels are created for each variable whereas the value
of the record is the value provided by the mapping. A projection on a given
graph node is evaluated as a query by turning the property path expression l
into a query pattern. However, instead of a record a plain list of graph nodes is
returned.

Any term t which cannot be reduced any further (i.e. no rule applies to the
term anymore) is said to be in normal form. When evaluation is successful, then
the term has been reduced to a value val. Any term that is in normal form but
not a value is said to be stuck. As usual [19], we use “stuckness” as a simple
notion of a run-time error.
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6 Type System

The most distinguishing feature of the type system is the addition of shape names
as types in the language. As each shape name requires a proper definition, our
typing relation “:” is defined with respect to a set of shapes. Likewise, a typing
context Γ is required to store type bindings for λ-abstractions. Since certain
constructs such as queries create new shapes during the type checking process,
the typing relation does not only assign a type to a term but also a set of newly
created shapes which in turn may contain definitions of shape names that are
being used as types.

For the typing rules, we require the definition function lub that computes the
least upper bound of two types. The exact definition can be found in the technical
report. Intuitively, in case of two shapes s1 and s2, we rely on disjunction s1 ∨s2
as a least upper bound.

Typing Rules. The typing rules for constructs unrelated to querying are mainly
the standard ones as common in simply typed λ-calculi, except all rules are
defined with respect to a set of shapes and return a set of newly created shapes
(see Fig. 7). Basic rules, such as for boolean values (rules T-TRUE and T-FALSE)
simply return empty sets of shapes as they do not create new shapes. Several
rules take possible extensions of the set of shapes into account. E.g., rule T-
PROGRAM takes the set of shapes as defined by the program SP and the
pre-defined set of shapes S and uses the union of both to analyze the term t.

New shapes are mainly created when either the least upper bound judgement
is used or one of the two query expressions (either query or projections) are used
(see rules T-QUERY and T-NPROJ in Fig. 7). In case of a query statement (rule
T-QUERY), the shape inference rules as described in Sect. 3 are being used to
construct the set Sq which is being returned as newly created shapes. The actual
type of a query then comprises a list of records. Each record contains one label
per answer variable whereas the type of each label is the respective shape name
for the query variable. Likewise, projections on graph nodes (T-NODEPROJ)
create a new shape name s′ using a function genName based on the old shape
name s with the appropriate constraint ≥1 l−.s. The newly created definition is
returned as a set with the actual type of the expression being s list.

Subtyping. Subtyping rules are summarized in Fig. 8. We rely on a standard
subtyping relation. A term t of type T1 is also of type T2, if T1 <: T2 is true
(T-SUB). Any type is always a subtype of itself (S-RELF). If T1 is a subtype
of T2 and T2 is a subtype of T3, then T1 is also a subtype of T3 (S-TRANS).
Subtyping for lists and functions is reduced to subtyping checks for their associ-
ated types. A list T1 list is a subtype of T2 list if T1 is a subtype of T2 (S-LIST).
Function types are in a subtyping relation (S-FUNC) if their domains are in a
flipped subtyping relationship (“contra-variance”) and their co-domains are in
a subtyping relationship (“co-variance”). Record type is a subtype of another
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Fig. 7. Typing rules for λSHACL.

record if (1) it has the the same plus more fields (S-RCDWIDTH), (2) it is a
permutation of the supertype (S-RCDPERM) and (3) if the types of the fields
are in a subtype relation (S-RCDDEPTH).
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Subtyping relations between two shapes s1 and s2 are defined via faithful
assignments. An assignment σ : NG → 2NS is a function that assigns shape
names to graph nodes. We require the opposite direction—a function σinv assign-
ing nodes to shapes.

Definition 5 (Inverse assignments). Let G be an RDF data graph, S a set
of shapes and σG,S a faithful assignment for G and S. Then σG,S

inv is a total
function σG,S

inv : NS → 2NG mapping shape names to subsets of NG such that for
all graph nodes v ∈ NG and all shape names s ∈ NS: s ∈ σG,S(v) iff v ∈ σG,S

inv (s)

For a given set of shapes S, two shapes s1 and s2 are in a subtyping relation
if, for all possible RDF graphs G ∈ G and all faithful assignments ΣG,S for S
and G, it holds that σinv

G,S(s1) ⊆ σinv
G,S(s2) (S-SHAPE). That is, the sets of nodes

conforming to the two shapes are in a subset relation for all possible RDF graphs
conform to the set of shapes.

Fig. 8. Subtyping rules.

Algorithmic Subtyping. Algorithmic solutions to standard subtyping rules such
used in Fig. 8 are, e.g., described by [19]. In the case of subtyping for shapes,
algorithmic approaches similar to subsumption checking in description logics [1]
can be employed. That is, s1 must be a subtype of s2 if it can be shown that
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Fig. 9. Type system with type elaboration (excerpt).

no graph exists that contains a node v for which s1 ∈ σG,S(v) but s2 �∈ σG,S(v).
As of now, we compare constraint sets which is sound but incomplete. We don’t
know whether a complete algorithm exists, although we plan to investigate a
transformation into a description logic based reasoning problem.

Type Elaboration. Types do not play any role during the evaluation of terms.
They are only used during the type checking process. This is by design, as
run-time type checks incur overhead and should be avoided, in particular if
the type check is computationally expensive. However, the evaluation relation
only evaluates terms of the form v.l (node projections) into lists of graph nodes
(c.f. rule E-PROJNODE of Fig. 6 and T-NPROJ of Fig. 7), even though a shape
may hint that there is only one successor (e.g., studiesAt of shape sStudent).
As the evaluation rules have no information about types, the type system must
annotate or transform terms such that they can be treated differently during
run-time. This process is called type elaboration [19]. The typing relation “:”
then takes a set of shapes S and a typing context Γ and returns a term t, a
type T and a set of newly introduced shapes S′. This is exemplified by the rules
in Fig. 9. Most rules simply return the term without modifications (e.g., rule
T-HEAD). However, in case of node projections where it can be shown that
there is only a single successor, a head is automatically added to the term (rule
T-NPROJ-1). Otherwise, the term is not modified (rule T-NPROJ-2).

7 Type Soundness

A term t is said to be well-typed if the type system assigns a type. We show the
soundness of the λSHACL type system by proving that a well-typed term does
not get stuck during evaluation. As with other languages, there are exceptions to
this rule, e.g., down-casting in object-oriented languages, c.f. [10]. For λSHACL,
this exception concerns lists. We show that if a program is well-typed, then the
only way it can get stuck is by reaching a point where it tries to compute head



414 M. Leinberger et al.

nil or tail nil. Furthermore, terms must be closed, meaning that all program
variables are bound by function abstractions [19]. We proceed in two steps, by
showing that a well-typed term is either a value or it can take a step (progress)
and by showing that if that term takes a step, the result is also well-typed
(preservation).

Lemma 1 (Canonical Forms Lemma). Let val be a well-typed value. Then
the following observations can be made:

1. If val is a value of type s, then val is of the form v.
2. If val is value of type T1 → T2, then val is of the form λ(x : T1).t2.
3. If val is a value of type T list, then val is either of the form cons val . . . or

nil.
4. If val is a value of type {li : T i∈1...n

i }, then val is of the form {li = val i∈1...n
i }.

5. If val is a value of type bool, then val is either of the form true or false.

Given Lemma 1, we can show that a well-typed term is either a value or it
can take a step.

Theorem 2 (Progress). Let t be a closed, well-typed term. If t is not a value,
then there exists a term t′ such that t → t′. If S, Γ � t : T, S′, then t is either
a value, a term containing the forms head nil or tail nil, or there is some t′

with t → t′.

Proof (Sketch). The theorem can be shown by induction on the derivation of
S, Γ � t : T, S. Queries (t = query q) are straightforward as no sub-term exists.
For node projections (t1.l with the type of t1 being a shape name), Lemma 1
tells us that it must ultimately reduce to a graph node. In that case rule E-
PROJNODE applies. The full proof can be found in the tech report. �

Given that a well-typed term can take a step, we now need to show that
taking a step according to the evaluation rules preserves the type.

Theorem 3 (Preservation). Let t be a term and T a type. If S, Γ � t : T, S′

and t → t′, then S, Γ � t′ : T, S′.

Proof (Sketch). As with progress, the proof is an induction over the typing rela-
tion S, Γ � t : T, S′. For each term, possible ways of reducing it are distinguished
and it is shown that in each case the type does not change. For queries, this is
immediate. In case of node projections, t1 either took a step, in which case the
typing rule applies again, or it is a graph node v with type s. Each v′ which is
reached via the node projection conforms to the newly created shape s′ with its
constraint ≥1 l−.s. Therefore, the type is also preserved. �

As a direct consequence of Theorems 2 and 3, a well-typed, closed term does
not get stuck during evaluation.
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8 Related Work

The presented approach is generally related to the validation of RDF as well
as the integration of RDF into programming languages. RDF validation has
seen an increase in interest. Among them are inference-based approaches such
as [16,23], in which OWL expressions are used as integrity constraints by relying
on a closed-world assumption. The fact that constraints are OWL expressions
puts these approaches closer to [15] than the approach described here. A vali-
dation approach that is relatively similar to SHACL is ShEx [4]. ShEx also uses
shapes to group constraints, but removes property path expressions and features
well-defined recursion. We chose SHACL over ShEx due to SHACL being a W3C
recommendation. Due to the similarity between SHACL and ShEx, the integra-
tion process for the latter is very similar. In fact, the definition for recursion
used in ShEx even simplifies some aspects as there is no need for the notion of
faithful assignments.

In terms of integration of RDF into programming languages, we consider
different approaches. Generic representations, e.g., the OWL API [9] or Jena [5],
use types on a meta-level (e.g., Statement) that do not allow a static type-
checker to verify a program. This leaves correctness entirely on the hands of the
programmer. Mapping approaches use schematic information of the data model
to create types in the target language. Type checking can offer some degree
of verification. An early example of this is OWL2Java [12], a more recent one
is LITEQ [14]. However, mapping approaches based on ontologies come with
their own limitations. OWL relies on a open-world assumption, in which miss-
ing information is treated as incomplete data rather than constraint violations.
As shown in the introduction, structural information does therefore not neces-
sarily imply the presence of data relationships. This is problematic for type-
checkers as they rely on a closed world. The most powerful approaches create
new languages or extend existing ones to accomodate the specific requirements
of the data model. Examples include rule-based programming [11] as well as a
transformation and validation language [21]. However, both are untyped. Typed
approaches to linked data is provided by [6,8]. Zhi# [17], an extension of the
C# language provides an integration for OWL ontologies, albeit it only considers
explicitly given statements. Contrary to that, [15,22] provides an integration of
OWL ontologies also considering implicit statements. However, as shown in the
introduction, programmers cannot rely on structural restrictions given by OWL
ontologies whereas SHACL enforces its structural restriction with a closed-world
assumption.

9 Summary and Future Work

In this paper, we have presented an approach for type checking programs using
SHACL. We have shown that by using SHACL shapes as types, type safety can
be achieved. This helps in writing less error-prone programs, in particular when
facing evolving RDF graphs. The work can be extended in several directions.
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First, an implementation of the presented approach is highly desirable. Com-
parably to [22], we plan on implementing the approach in Scala using compiler
plugins that add new compilation phases. Shape names constitute a new form
of types. As shape names are known before compilation, they can be syntacti-
cally integrated using automatically generated type aliases to a base type. This
allows for type checking shape types in a separate compilation phase that runs
after the standard Scala type inference and type checker phases. As there is
little interaction between normal Scala types and shape types, issues only arise
when code converts e.g., literals into standard Scala types. However, this can
be solved through minor code transformations before the type checking phase.
Lastly, transformations based on type elaboration can also run as a separate
phase. As shape types do not influence run-time behavior, compilation produces
standard JVM byte code. However, one noteworthy limitation of using type
aliases to represent shape names is that method overloading based on shape
names is not possible. Resolving this issue requires better integration techniques
which remain as future work.

Second, finding sound and complete methods for deciding shape subsumption
is an interesting problem that requires future research. This is an important step
as it defines practical boundaries in terms of the parts of SHACL that can be used
for type checking. Lastly, the supported subset of SPARQL queries is relatively
small and should be extended by missing features such as union of queries or
filter expressions. This raises questions about the parts of SPARQL that can be
described with SHACL shapes.
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Abstract. Link keys are recently introduced to formalize data inter-
linking between data sources. They are considered as a new kind of cor-
respondences included in ontology alignments. We propose a procedure
for reasoning in a decentralized manner on a network of ontologies with
alignments containing link keys. In this paper, the ontologies involved in
such a network are expressed in the logic ALC while the alignments can
contain concept, individual and link key correspondences equipped with
a loose semantics. The decentralized aspect of our procedure is based on
a process of knowledge propagation through the network via correspon-
dences. This process allows to reduce polynomially global reasoning to
local reasoning.

1 Introduction

Reasoning on a network of aligned ontologies has been investigated in differ-
ent contexts where the semantics given to correspondences differs from one to
another. To be able to develop a procedure for reasoning on a network of aligned
ontologies, it is needed to equip the correspondences of the alignment with a
semantics compatible with those defined in the ontologies. A simple approach to
this issue consists in considering the correspondences as logical axioms expressed
in the ontology language and merging all involved ontologies and the alignments
into a unique ontology. In this case, the reasoning problem on such a network of
aligned ontologies can be expressed as the following usual entailment:

⋃

1≤i≤n

Oi ∪
⋃

1≤i<j≤n

Aij |= α (1)

where Oi is an ALC ontology, Aij is an alignment between Oi and Oj , and α1

is a link key or a concept assertion/axiom.
This approach is characterized by the following two main aspects: (i) the

correspondences of the alignments are semantically handled as ontology asser-
tion/axioms, and (ii) reasoning is performed on the unique ontology in a cen-
tralized manner, i.e. all reasoning tasks are carried out on a single location with
1 Consistency of the network can be reduced to the entailment (1) with α = ⊥(x).
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a reasoner. Such an approach is quite unexploitable in the context of the Web
where numerous ontologies and alignments are located in different sites. There
have been researches [1–6], which aimed to distribute reasoning over several loca-
tions. However, these approaches usually lead to an exponential blow-up of mes-
sage passing between local reasoners associated with different locations [5,10].
The main reason for this exponential blow-up is due to the strong semantics of
the correspondences involved in the alignments.

In this paper, we introduce a new semantics of correspondences which are
weaker than the usual one and propose a procedure for reasoning on a network
of aligned ontologies in a decentralized manner—that means—reasoning can
be independently performed on different sites following a process of knowledge
propagation through the network of the ontologies via the alignments with link
keys. Usefulness of link keys in Semantic Web applications and the problem of
reasoning with them in the centralized context have been investigated by Atencia
and Gmati [7,8].

To illustrate our settings, we consider the following example in which knowl-
edge is modelled in description logics. This formalism is used to encode the
semantics of web languages such as OWL2.

Example 1. Consider two ontologies, denoted O1 and O2, where O1 describes
a terminology used by conference organizers, and O2 stores information about
researchers and conferences they have attended. In O1, there are classes Par-
ticipant, Presenter, DemoPaperPresenter; and a property present. In O2, we can
find classes Researcher, PhDStudent, Developer; and a property registerTo (i.e.
someone registers to present a paper).

An alignment A12 tells us that DemoPaperPresenter is simultaneously aligned
with Researcher and Developer.

DemoPaperPresenter → Researcher (2)
DemoPaperPresenter → Developer (3)

In addition, A12 contains a link key which says that if a participant presents
in the conference the same paper as that to which a researcher registers the
conference then the participant and the researcher would be the same person.

{〈present, registerTo〉} linkkey 〈Participant,Researcher〉 (4)

If we now add to O1 and O2 the following axioms/assertion

O1 : DemoPaperPresenter(Anna) (5)
O1 : DemoPaperPresenter � Participant (6)

O2 : PhDStudent � Researcher (7)
O2 : Researcher � ¬Developer (8)

then a reasoner can find the entailment:

O1 ∪ O2 ∪ A12 |=
{〈present, registerTo〉} linkkey 〈DemoPaperPresenter,PhDStudent〉 (9)
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This entailment holds because of the axioms (6), (7) and the link key (4). If
we now interpret the correspondences (2) and (3) as subsumption in the stan-
dard semantics then the network O1 ∪ O2 ∪ A12 is inconsistent because of the
assertion/axiom (5) and (8). However, if we interpret these correspondences as
a means for propagating concept unsatisfiability, i.e. unsatisfiability of the “sub-
sumer” implies unsatisfiability of the “subsumee”, then the network is consistent.
In the following sections, we show that the weakened semantics corresponding
to the latter interpretation of concept correspondences leads to a substantial
change of the computational complexity of algorithms for reasoning.

In addition, the weakened semantics would not be really interesting for the
correspondences (2) and (3). However, it would be more relevant for corre-
spondences between ontologies of different nature. Given two ontologies about
equipment and staff and a correspondence Computer → Developer between
them. With this correspondence, the weakened semantics tells us that if there is
no developer then there is no computer. The standard semantics is irrelevant in
this case. �

Based on the weakened semantics of alignments, we introduce in this paper
the notion of consistency for a network of ontologies with alignments containing
link keys (or an ontology network for short). Then, we propose an algorithm for
checking consistency of an ontology network by reducing this task to checking
consistency of each ontology which is polynomially extended. This consists in (i)
propagating individual equalities of the form a ≈ b through all ontologies of the
network via individual correspondences of the same form a ≈ b, (ii) applying link
keys in the alignments, which may lead to add new individual correspondences,
(iii) propagating concept unsatisfiabilities through all ontologies of the network
via concept correspondences of the form C → D. We show that the complexity of
the process of knowledge propagation is polynomial in the size of the network.
In addition, we also prove that consistency of the ontologies and alignments
extended by this process of knowledge propagation is equivalent to consistency
of the network.

The remainder of the paper is organised as follows. Section 2 positions
our work with respect to works on distributed reasoning in description logics.
Section 3 describes the logic ALC with individuals, alignments, a new seman-
tics of alignments and inference services. Section 4 provides the algorithms for
propagating individual equalities, applying link keys and propagating concept
satisfiabilities. We also prove that reasoning on the ontology network is reducible
to reasoning on each ontology extended by the algorithms, and this reduction is
polynomial in the size of the ontology network. Section 5 presents examples of
the use of the algorithms. Section 6 describes the architecture of Draon in which
the algorithms are implemented in a decentralized manner. We also report some
experimental results. Section 7 concludes the paper and presents future work.
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2 Related Work

In the literature, there have been several reasoning approaches which either (i)
merge all ontologies and alignments into a unique ontology and perform reason-
ing over that unique ontology, or (ii) use a distributed semantics such as DDL
(Distributed Description Logics) [1], E-connection [2], IDDL (Integrated Dis-
tributed Description Logics) [4], Package-based Description Logics [3] and design
a distributed algorithm for reasoning. The second option consists in defining new
formalisms which allow reasoning with multiple domains in a distributed way.
The new semantics of these formalisms reconcile conflicts between ontologies, but
they do not adequately formalize the quite common case of ontologies related
with ontology alignments produced by third party ontology matchers. Indeed,
these formalisms assert cross-ontology correspondences (bridge rules, links or
imports) from one ontology’s point of view, while often, such correspondences
are expressed from a point of view that encompasses both aligned ontologies.
Another issue of these non-standard semantics is that reasoners such as Drago
[9], Pellet [10], an early version of Draon [11] using the distributed algorithms
resulting from the corresponding semantics require an exponential number of
message exchanges over network. This exponential blow-up results from exchang-
ing model portions (the so-called distributed tableau) between modules of the
reasoner located on different sites.

Recenty, Atencia and Gmati [7,8] have proposed a tableau algorithm for
reasoning in the centralized context on an ALC ontology with link keys. They
have showed that adding link keys to ALC does not augment the complexity of
the tableau algorithm.

3 Preliminaries

The syntax and semantics of the logic ALC are defined below.

Definition 1 (Syntax of ALC). Let C, R and I be non-empty sets of concept
names, role names and individuals, respectively. The set of ALC-concepts (or
simply concepts) is the smallest set such that

– every concept name in C, � and ⊥ are concepts, and
– if C,D are concepts and R is a role name in R then C 
D, C �D, ¬C, ∀R.C

and ∃R.C are concepts.

A general concept inclusion (GCI) is an expression of the form C � D where
C,D are concepts. A terminology or TBox is a finite set of GCIs.

An ABox assertion is an expression of the form C(a), R(a, b), a ≈ b or
a �≈ b where C is a concept, R is a role name in R and a, b are individuals in I.
An ABox is a finite set of ABox assertions. A pair O = (A, T ), where T is a
TBox and A is an ABox, is called an ALC ontology. We use VocI(O), VocC(O)
and VocR(O) to denote the sets of individuals, concept names and role names
occurring in O.
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Definition 2 (Semantics of ALC). An interpretation I = (ΔI , ·I) is com-
posed of a non-empty set ΔI , called the domain of I, and a valuation ·I which
maps every concept name to a subset of ΔI , every role name to a subset of
ΔI × ΔI and each individual to an element of ΔI . The valuation is extended
to constructed concepts such that, for all concepts C,D and role name R, the
following is satisfied:

�I = ΔI ,⊥I = ∅
(C 
 D)I = CI ∩ DI , (C � D)I = CI ∪ DI

(¬C)I = ΔI \ CI

(∀R.C)I = {x ∈ ΔI | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI}
(∃R.C)I = {x ∈ ΔI | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

An interpretation I satisfies a GCI C � D, denoted by I |= C � D, if
CI ⊆ DI . I is a model of a TBox T if I satisfies every GCI in T .

An interpretation I satisfies the ABox assertions

C(a) if aI ∈ CI

R(a, b) if 〈aI , bI〉 ∈ RI

a ≈ b if aI = bI

a �≈ b if aI �= bI

Given an ABox assertion α, I |= α denotes that I satisfies α. I is a model of
an ABox A if it satisfies every ABox assertion in A.

An interpretation I is a model of an ALC ontology O = (A, T ) if I is a
model of T and A. An ontology O is consistent if there exists a model of O. An
ontology O entails a GCI, an ABox assertion, written O |= α, if every model of
O satisfies α.

We need notations and definitions that will be used in the paper. We use
|S| to denote the cardinality of a set S. Given an ALC ontology O = 〈A, T 〉,
we denote by sub(O) = sub(A, T ) the set of all sub-concepts occurring in A, T .
The size of an ontology O is denoted by |O| = |A|+ |T | where |A| is the size
of all assertions, |T | the size of all GCIs. It holds that |sub(O)| is polynomially
bounded by |O| since if a concept is represented as a string then a sub-concept
is a substring.

To be able to define a network of aligned ontologies, we need alignments
which represent semantic links between ontology entities such as individuals,
concepts or roles.

Definition 3 (network of aligned ontologies). An ALC network of aligned
ontologies is a tuple 〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉 where Oi is an ALC ontology with
1 ≤ i ≤ n, and Aij with 1 ≤ i < j ≤ n is an alignment containing correspon-
dences of the following forms:

– C → D or C ← D where C ∈ sub(Oi) and D ∈ sub(Oj). Such a correspon-
dence is called concept correspondence.
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– a ≈ b (a �≈ b) where a ∈ VocI(Oi) and b ∈ VocI(Oj). Such a correspondence
is called individual correspondence.

– a link key {〈Pk, Qk〉}nk=1linkkey〈C,D〉 where Pk ∈ VocR(Oi), Qk ∈ VocR(Oj)
for 1 ≤ k ≤ n and C ∈ sub(Oi) and D ∈ sub(Oj). Such a correspondence is
called link key correspondence.

Note that when we write C → D ∈ Aij this means C ∈ VocC(Oi) and
D ∈ VocC(Oj). Analogously, C ← D ∈ Aij implies C ∈ VocC(Oi) and
D ∈ VocC(Oj). Semantically, C → D is different from C ← D. The follow-
ing definition formalizes the semantics of correspondences in an alignment so
that it is compatible with that of ontologies. We retain the standard seman-
tics for individual and link key correspondences while the semantics of concept
correspondences is weakened.

Definition 4 (semantics of alignments). An ALC network of aligned ontolo-
gies is a tuple 〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉 where Oi is an ALC ontologies with
1 ≤ i ≤ n, and Aij is an alignment with 1 ≤ i < j ≤ n. Let I and J be
models of Oi and Oj respectively.

– If C → D is in Aij then DJ = ∅ implies CI = ∅.
– If a ≈ b is in Aij then aI = aJ .
– If a �≈ b is in Aij then aI �= aJ .
– If {〈Pk, Qk〉}nk=1linkkey〈C,D〉 is in Aij then (ai

k)
I = (aj

k)
J , 〈aI , (ai

k)
I〉 ∈ P I

k ,
〈bJ , (aj

k)
J 〉 ∈ QJ

k for all 1 ≤ k ≤ n, aI ∈ CI , bJ ∈ DJ imply aI = bJ .

The notion of consistency for a network of aligned ontologies can be naturally
introduced thanks to the semantics of ontologies and alignments involved in the
network.

Definition 5 (network consistency). Let 〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉 be a net-
work of aligned ontologies in ALC. The network is consistent if there is a model
I = {Ii}ni=1 where Ii = 〈ΔIi , ·Ii〉 is a model of Oi for all 1 ≤ i ≤ n such that

1. For each correspondence a ≈ b in Aij with 1 ≤ i < j ≤ n, aIi = bIj . For each
correspondence a �≈ b in Aij with 1 ≤ i < j ≤ n, aIi �= bIj .

2. For each correspondence C → D in Aij with 1 ≤ i < j ≤ n, if DIj = ∅ then
CIi = ∅.

3. For each correspondence {〈Pk, Qk〉}nk=1linkkey〈C,D〉 in Aij with 1 ≤ i <

j ≤ n, if (ai
k)

Ii = (aj
k)

Ij , 〈aIi , (ai
k)

Ii〉 ∈ P Ii

k , 〈bIj , (aj
k)

Ij 〉 ∈ Q
Ij

k for all
1 ≤ k ≤ n, aIi ∈ CIi , bIj ∈ DIj then aIi = bIj .

A network N = 〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉 entails a link key α, written N |= α, if
every model of N satisfies α. In particular, an alignment Aij is called clash-free
if {a ≈ b, a �≈ b} �⊆ Aij.

We finish this section by proving the following lemma which allows to reduce
link key entailment to consistency of the network of aligned ontologies.
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Lemma 1 (Reduction of link key entailment to consistency). Let
〈{O1, O2}, A12〉 be a network of aligned ontologies in ALC. It holds that

〈{O1, O2}, A12〉 |= ({〈Pi, Qi〉}mi=1 linkkey 〈C,D〉) iff
〈{O′

1, O
′
2}, A′

12〉 is inconsistent

with O′
1 = O1 ∪ {C(x)} ∪ {Pi(x, zi)}ni=1, O′

2 = O2 ∪ {D(y)} ∪ {Qi(y, z′
i)}ni=1,

A′
12 = A12 ∪ {zi ≈ z′

i}ni=1 ∪ {x �≈ y}, x, z1, · · · , zn are new individuals in O1 and
y, z′

1, · · · , z′
n are new individuals in O2.

Proof. Let λ = {〈Pi, Qi〉}ni=1 linkkey 〈C,D〉. Assume that 〈{O1, O2}, A12〉 |= λ.
We show that 〈{O′

1, O
′
2}, A′

12〉 is inconsistent. By contradiction, assume that
〈{O′

1, O
′
2}, A′

12〉 has a model I = 〈I1, I2〉, i.e. O′
1 and O′

2 have models I1

and I2 satisfying Definition 5. This implies that I1 and I2 are models of O1

and O2. Hence, xI1 ∈ CI1 , yI2 ∈ DI2 , 〈xI1 , zI1
i 〉 ∈ P I1

i , 〈yI2 , z′I2
i 〉 ∈ QI2

i ,

Algorithm 1. Propagating individual equalities
1: function propagateEqual(Oi, Oj , Aij)
2: while Aij or Oi or Oj is unstationary do
3: if Oi or Oj is inconsistent or Aij is not clash-free then
4: return false
5: end if
6: for a1

i ≈ a1
j ∈ Aij , a2

i ≈ a2
j ∈ Aij do

7: for Ok |= am
k ≈ ah

k , k ∈ {i, j}, m, h ∈ {1, 2}, m �= h do
8: Aij ← Aij ∪ {ah

i ≈ am
j , am

i ≈ ah
j }

9: Ok ← Ok ∪ {a1
k ≈ a2

k}
10: end for
11: end for
12: for each {〈Pk, Qk〉}n

k=1linkkey〈C, D〉 ∈ Aij do
13: for ai

k ≈ aj
k ∈ Aij , a ∈ VocI(Oi), b ∈ VocI(Oj), Pk(a

′, a′i
k) ∈ Oi,

14: Qk(b
′, a′j

k) ∈ Oj , Oi |= a ≈ a′, Oi |= ai
k ≈ a′i

k, Oj |= b ≈ b′

15: Oj |= aj
k ≈ a′j

k for all 1 ≤ k ≤ n do
16: if Oi ∩ {C(a), ¬C(a)} = ∅ then
17: Oi ← Oi ∪ {(C  ¬C)(a)}
18: end if
19: if Oj ∩ {D(b), ¬D(b)} = ∅ then
20: Oj ← Oj ∪ {(D  ¬D)(b)}
21: end if
22: end for
23: for ai

k ≈ aj
k ∈ Aij , Oi |= C(a), Oj |= D(b), Pk(a

′, a′i
k) ∈ Oi,

24: Qk(b
′, a′j

k) ∈ Oj , Oi |= a ≈ a′, Oi |= ai
k ≈ a′i

k, Oj |= b ≈ b′

25: Oj |= aj
k ≈ a′j

k for all 1 ≤ k ≤ n do
26: Aij ← Aij ∪ {a ≈ b}
27: end for
28: end for
29: end while
30: return true
31: end function
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Algorithm 2. Propagating concept unsatisfiability
1: function propagateUnsat(Oi, Oj , Aij)
2: while Aij or Oi or Oj is unstationary do
3: if Oi or Oj is inconsistent or Aij is not clash-free then
4: return false
5: end if
6: for each D → C ∈ Aij do
7: if Oj |= C � ⊥ then
8: Oi ← Oi ∪ {D � ⊥}
9: end if

10: end for
11: for each D ← C ∈ Aij do
12: if Oi |= D � ⊥ then
13: Oj ← Oj ∪ {C � ⊥}
14: end if
15: end for
16: for C1

i → C1
j ∈ Aij , C

2
i ← C2

j ∈ Aij do
17: for Oj |= C1

j � C2
j do

18: Aij ← Aij ∪ {C1
i → C2

j , C2
i ← C1

j }
19: end for
20: end for
21: for C1

i ← C1
j ∈ Aij , C

2
i → C2

j ∈ Aij do
22: for Oi |= C1

i � C2
i do

23: Aij ← Aij ∪ {C1
i → C2

j , C2
i ← C1

j }
24: end for
25: end for
26: end while
27: return true
28: end function

zI1
i = z′I2

i and xI1 �= yI2 . This implies that I �|= λ. Thus, we have a model
I of 〈{O′

1, O
′
2}, A′

12〉 such that I �|= λ. Therefore, 〈{O1, O2}, A12〉 �|= λ, which
contradicts the assumption.

Assume now that 〈{O1, O2}, A12〉 �|= λ. Let us show that 〈{O′
1, O

′
2}, A′

12〉
is consistent. Since 〈{O′

1, O
′
2}, A′

12〉 �|= λ, then there exists an interpretation
I = 〈I1, I2〉 such that I |= 〈{O′

1, O
′
2}, A′

12〉 and I �|= λ.
Since I �|= λ, by the semantics of link keys, there exist δ, δ1, . . . , δn ∈ ΔI1

1

and δ′, δ′
1, . . . , δ

′
n ∈ ΔI2

2 such that δ ∈ CI1 , δ′ ∈ DI2 , (δ, δ1) ∈ P I1
1 , (δ′, δ′

1) ∈
QI2

1 , . . . , (δ, δn) ∈ P I1
n , (δ′, δn) ∈ QI2

n , δ1 = δ′
1, . . . , δn = δ′

n and δ �= δ′.
Let us extend I by defining xI1 = δ, yI2 = δ′, zI1

1 = δ1, . . . , z
I1
n = δn,

z′I2
1 = δ′

1, . . . , z
′I2
n = δ′

n. Then, I is a model of 〈{O′
1, O

′
2}, A′

12〉. Therefore,
〈{O′

1, O
′
2}, A′

12〉 is consistent. �

This lemma can be extended to a general network of aligned ontologies con-
taining more than two ontologies.
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4 An Algorithm for a Network of Aligned Ontologies

The algorithm for deciding consistency of a network of aligned ontologies deals
with pair by pair of ontologies in the network. For each pair of ontologies and
an alignment between them, the algorithm repeats the following three tasks:
propagating individual equalities from one ontology to the other via individual
correspondences; applying link key correspondences which may lead to adding
new individual correspondences; and propagating concept unsatisfiabilities from
one ontology to the other via concept correspondences. The execution of a task
may trigger the execution of another task. The execution of these tasks may
lead to a change of ontologies and alignments in the network. The algorithm
terminates on the pair of ontologies when the ontologies and the alignment reach
stationarity. The first and second tasks are described in Algorithm1 while the
third one is outlined in Algorithm2.

The following lemma establishes that the propagation performed by Algo-
rithms 1 and 2 and consistency of the pair of the extended ontologies suffice
to decide consistency of the network composed of the initial ontologies and the
alignment.

Lemma 2 (reduction for a pair). Let O1, O2 be two consistent ontologies and
A12 be an alignment. We use Ô1, Ô2 and Â12 to denote the resulting ontolo-
gies and alignment obtained by calling propagatePair(O1, O2, A12). It holds that
Ô1, Ô2 are consistent and Â12 is clash-free iff the network 〈{O1, O2}, {A12}〉 is
consistent.

Before providing a complete proof of the lemma, we summarize the main argu-
ments. The soundness of the if-direction of Lemma 2 is straightforward since
Algorithms 1 and 2 add only logical consequences of the network to the ontolo-
gies and alignments. The soundness of the only-if-direction of the lemma is based
on the following elements: (i) consistency of the extended ontologies and clash-
freeness of the extended alignments imply consistency of the initial ontologies
and clash-freeness of the initial alignments; (ii) Algorithms 1 and 2 make explicit
all individual equalities, and thus eventual clashes of the kind a ≈ b, a �≈ b must
be discovered. This ensures that two models of the extended ontologies satisfy
individual correspondences; (iii) Algorithms 1 and 2 apply link keys until they
are not applicable over the initial individuals in the ontologies. Since models of an
ALC ontology are tree-shaped and ALC does not allow for inverse roles, satisfac-
tion of the link keys over the initial individuals is sufficient; and (iv) Algorithms 1
and 2 propagate concept unsatisfiabilities. If the “subsumer” of a concept corre-
spondence is satisfiable then a model of the ontology can be extended such that
the interpretation of the subsumer in this model is not empty. This implies that
the concept correspondence is satisfied.

Proof. “If-direction”. Assume that the network 〈{O1, O2}, {A12}〉 is consistent.
By definition, Oi has a model Ii with 1 ≤ i ≤ 2 such that they satisfy all
correspondences α ∈ A12. We show that I1 is a model of Ô1. For this, we have
to prove that:
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– aI1
0 = aI1

n if a0 ≈ an is added to O1 by Line 9 in Algorithm 1. We have
a0 ≈ an is added to O1 if Algorithm 1 discovers a sequence of equalities
a0 ≈ a1, · · · , an−1 ≈ an such that ai ≈ ai+1 ∈ Ô1∪Ô2∪Â12 for 0 ≤ i ≤ n−1.
This sequence of equalities implies aI1

0 = aI1
n . Note that if there is some

a ≈ b ∈ Aij then ΔI1 ∩ΔI2 �= ∅ according to Definition 4. By using the same
argument, we can show aI2

0 = aI2
n if a0 ≈ an is added to O2 by Line 9 in

Algorithm 1.
– CI1

0 = ∅ if C0 � ⊥ is added to O1 by Line 8 in Algorithm 2. We have C0 � ⊥
is added to O1 if Algorithm 1 discovers a sequence C0 ⇒ C1, · · · , Cn−1 ⇒ Cn

such that Ô1 |= Ci ⇒ Ci+1 or Ô2 |= Ci ⇒ Ci+1 or Ci ⇒ Ci+1 ∈ Â12 for
0 ≤ i ≤ n − 1, and Ôi |= CIi

n � ⊥ (i ∈ {1, 2}) where “⇒” represents “→”
or “�” and C ← D = D ⇒ C, C � D = D ⇒ C. This implies CIi

i = ∅ for
1 ≤ i ≤ n. By using the same argument, we can show CI2

0 = ∅ if C0 � ⊥ is
added to O2 by Line 13 in Algorithm 2.

– The concepts (C � ∼C)(a) and (D � ∼D)(b) added by Lines 17 and 20 in
Algorithm 2 do not change consistency since they are tautologies.

“Only-If-direction”. Since Ôi is consistent, according to [12], Ôi has a tree-shaped
model Ii where each interpretation domain Δi of Ii is composed of a set of initial
individuals Iiold and a set of new individuals Iinew for 1 ≤ i ≤ 2. Since Oi ⊆ Ôi,
Ii is a model of Oi with 1 ≤ i ≤ 2. We will extend I1 and I2 so that they satisfy
the correspondences in A12.

– If a ≈ b ∈ Â12 then aI = aJ for all models I and J of O1 and O2 respectively
due to Definition 4. We define aI1 = aI2 . Thus, aI1 = aI2 for each a ≈ b ∈ A12

since A12 ⊆ Â12. By construction, I1 and I2 satisfy all of the individual
correspondences in A12 according to Definition 4.

– If a �≈ b ∈ Â12 then a ≈ b /∈ Â12 since Â12 is clash-free.
– Let Ch → Dh ∈ A12. If Ô2 |= Dh � ⊥ then Ch � ⊥ is added to Ô1 by

Algorithm 2. Hence, DI2
h = ∅ implies CI1

h = ∅. Note that if Ô2 |= Dh � ⊥
then Ô′

2 |= Dh � ⊥ for all Ô2 ⊆ Ô′
2.

Assume that Ô2 �|= Dh � ⊥. Thus, Ô2 ∪ {Dh(xh)} is consistent where xh is
a new individual. According to [12], Ô2 ∪ {Dh(xh)} has a tree-shaped model
I ′
2 of Ô2 ∪ {Dh(xh)}. We show that if Ô2 ∪ {D1(x1)} and Ô2 ∪ {D2(x2)} are

consistent with new individual x1, x2 then Ô2 ∪ {D1(x1),D2(x2)} is consis-
tent. Indeed, running the standard tableau algorithm in [12] on Ô2∪{D1(x1)}
can build a set T of completion trees rooted at the initial individuals in Ô2

and a completion tree Tx1 rooted at x1. Analogously, if the standard tableau
algorithm runs on Ô2 ∪ {D2(x2)}, it can build a set T’ of completion trees
rooted at the initial individuals in Ô2 and a completion tree Tx2 rooted at
x2. All trees are clash-free and complete. Hence, T∪{Tx1 , Tx2} can represent
a model of Ô2 ∪ {D1(x1),D2(x2)}.
Therefore, we can run the standard tableau algorithm in [12] on Ô2 ∪
{Di(xi)}mi=1 to obtain a tree-shaped model J2 of Ô2 ∪ {Di(xi)}mi=1 where
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xh is a new individual and Ô2 �|= Dh � ⊥ for 1 ≤ h ≤ m.
By using the same argument, we can obtain a tree-shaped model J1 of
Ô1 ∪ {D′

1(x
′
1), · · · ,D′

m′(x′
m′)}. By construction, J1 and J2 satisfy all of the

concept correspondences in A12 according to Definition 4. In addition, they
remain to satisfy all of the individual correspondences in A12. For the sake of
the simplicity, we rename J1 and J2 to I1 and I2.

– Assume that {〈Pk, Qk〉}nk=1linkkey〈C,D〉 is a link key in A12 and (a1
k)

I1 =
(a2

k)
I2 , 〈aI1 , (a1

k)
I1〉 ∈ P I1

k , 〈bI2 , (a2
k)

I2〉 ∈ QI2
k for all 1 ≤ k ≤ n, aI1 ∈ CI1 ,

bI2 ∈ DI2 .
1. If (a1

k)
I1 = (a2

k)
I2 then there is a sequence a0 ≈ a1, · · · , am−1 ≈ am

(discovered by Algorithm 1) such that ai ≈ ai+1 ∈ Ô1 ∪ Ô2 ∪ Â12 for
0 ≤ i ≤ m − 1 with a1

k = a0, a
2
k = am. This implies that a1

k ≈ a2
k ∈ Â12

for 1 ≤ k ≤ n.
2. Since I1 and I2 are tree-shaped whose roots are the old individuals,

the condition of the link key holds only if all individuals a1
k, a

2
k for

1 ≤ k ≤ n, and a, b are contained I1old ∪I2old. Hence, 〈aI1 , (a1
k)

I1〉 ∈ P I1
k iff

Pk(a′, a′1
k) ∈ Oi with Oi |= a ≈ a′, Oi |= a1

k ≈ a′1
k for 1 ≤ k ≤ n where

a, a′ and a1
k, a

′1
k are old individuals. Analogously, 〈bI2 , (a2

k)
I2〉 ∈ QI2

k iff
Qk(b′, a′2

k) ∈ Oj with Oj |= b ≈ b′, Oj |= a2
k ≈ a′2

k for 1 ≤ k ≤ n where
b, b′ and a2

k, a
′2
k are old individuals.

3. Since aI1 ∈ CI1 and (C � ¬C)(a) ∈ O1 (Line 17, Algorithm 1), we have
Ô1 |= C(a). Analogously, from bI2 ∈ DI2 and (D�¬D)(b) ∈ O2 (Line 20,
Algorithm 1), we obtain Ô2 |= D(b).

Therefore, the 3 items above trigger Line 26 in Algorithm 1 which adds to
Â12 the assertion a ≈ b. Thus, we obtain aI1 ≈ bI2 .

Algorithm 3. Complete propagation over the whole network
1: function propagateOverNetwork(〈{Oi}n

i=1, {Aij}n
i,j=1,i�=j〉)

2: while Oi, Oj , Aij are unstationary for all 1 ≤ i < j ≤ n do
3: for 1 ≤ i < j ≤ n do
4: while Oi, Oj , Aij are unstationary do
5: if propagateEqual(Oi, Oj , Aij) returns false then
6: return false
7: end if
8: if propagateUnsat(Oi, Oj , Aij) returns false then
9: return false

10: end if
11: end while
12: end for
13: end while
14: return true
15: end function
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We have proven that I1 and I2 are models of O1 and O2 which satisfy all of
the correspondences in A12. �

We can observe that Algorithms 1 and 2 can be implemented in a decentral-
ized manner since each call for checking ontology entailment or consistency can
be sent to a local reasoner associated with the ontology located on a different
site.

To check consistency of a network of aligned ontologies, it is needed to run
Algorithms 1 and 2 on each pair of ontologies with the alignment between them
until all ontologies and alignments are stationary. Note that saturating a pair of
ontologies with the alignment can make a saturated pair of ontologies unsatu-
rated. This is due to the fact that an ontology can be shared by several pairs of
ontologies.

The following theorem is a consequence of Lemma 2.

Theorem 1 (reduction for network). Let 〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉 be a
network of aligned ontologies. We use Ôi and Âij to denote the resulting
ontologies and alignments obtained by calling propagateOverNetwork(〈{Oi}ni=1,

{Aij}ni,j=1,i �=j〉). It holds that Ôi is consistent for all 1 ≤ i ≤ n and Âij is clash-
free for all 1 ≤ i < j ≤ n iff the network 〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉 is consistent.

We now investigate the complexity of the algorithms. Under the hypothesis
in which a call to reasoners associated with ontologies is considered as an oracle,
i.e. an elementary operation, our algorithms are tractable.

Theorem 2. Let 〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉 be a network of aligned ontologies.
The algorithm propagateOverNetwork(〈{Oi}ni=1, {Aij}ni,j=1,i �=j〉) runs in polyno-
mial time in the size of the network if each check of entailment or consistency
occurring in the algorithms is considered as an oracle.

Proof. The complexity of the algorithm propagateOverNetwork depends on the
complexity of propagateEqual, propagateUnsat. When running these algorithms,
each ontology is monotonically extended. It is straightforward to obtain that the
number of axioms of the form C � ⊥ added to ontologies Oi and Oj is bounded
by a polynomial function in the size of initial alignments since C must occur in
initial correspondences. Analogously, the number of individuals correspondences
a ≈ b added to alignments Aij is bounded by a polynomial function in the size of
initial alignments since a, b must occur in initial correspondences. This implies
that the number of iterations of the while loops in Algorithms 1, 2 and 3 is
bounded by a polynomial function in the size of initial alignments.

In addition, the number of iterations of the for loops in Algorithms 1, 2 and
3 is bounded by a polynomial function in the size of initial alignments, the size of
ontologies and the number of ontologies and alignments included in the network.
This observation completes the proof. �
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5 Examples

This section provides some examples for showing the difference of the standard
semantics from the new one in terms of reasoning and how to use the algorithms
presented in Sect. 4.
Example 2. The ontologies and alignment in Example 1 can be rewritten as
follows :

O1 = {DP � P,DP (a)}, O2 = {PS � R,R � ¬D},
A12 = {DP → R,DP → D, 〈pr, re〉linkkey〈P,R〉}

If the correspondences are considered as standard subsumptions then the
ontology O1 ∪ O2 ∪ A12 is inconsistent. Indeed, assume that there is a model
I = 〈ΔI , ·I〉 of the ontology. This implies that aI ∈ DP I , DP I ⊆ RI and
DP I ⊆ DI . Thus, aI ∈ RI ∩ DI . However, we have RI ⊆ ΔI \ DI , which is a
contradiction.

If we now interpret the correspondences under the semantics given in Defi-
nition 4 then there is no propagation needed according to Algorithms 1 and 2.
It is obvious that O1 and O2 are consistent, and the network 〈{O1, O2}, A12〉 is
consistent under the semantics given in Definition 4.

Example 3. In this example, we reduce the two correspondences in Example 2
to one as follows.

O1 = {DP � P,DP (a)}, O2 = {PS � R,R � ¬D},
A12 = {DP → R 
 D, 〈pr, re〉linkkey〈P,R〉}

We now interpret the correspondence under the semantics given in Defini-
tion 4. Since O2 |= R
D � ⊥, Algorithm 2 propagates unsatisfiability of R
D
to O1 via the correspondence DP → R 
 D. Hence, it adds DP � ⊥ to O1.
This leads to inconsistency of Ô1. Therefore, the network 〈{O1, O2}, A12〉 is not
consistent.

Example 4. The ontologies and alignment in Example 1 can be rewritten as
follows :

O1 = {DP � P,DP (a)}, O2 = {PS � R,R � ¬D},
A12 = {DP → R,DP → D, 〈pr, re〉linkkey〈P,R〉}

We consider whether 〈{O1, O2}, A12〉 |= λ where λ = 〈pr, re〉linkkey〈P,R〉.
Due to Lemma 1, we extend O1, O2 and A12 by adding to O1 assertions
DP (x), pr(x, x1), to O2 assertions PS(y), re(y, y1), and to A12 assertions x1 ≈
y1, x �≈ y. Let Ô1, Ô2 and Â12 be the extended ontologies and alignment.

If there are models I1 and I2 of Ô1, Ô2 then, we have x ∈ DP I1 and y ∈
PSI2 , and DP I1 ⊆ P I1 and PSI2 ⊆ RI2 .

Thus, the link key 〈pr, re〉linkkey〈P,R〉 is applicable, and Algorithm 1 adds
x ≈ y to Â12. This leads to a clash in Â12 and thus the network 〈{Ô1, Ô2}, Â12〉
is not consistent. Therefore, 〈{O1, O2}, A12〉 |= λ holds.
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6 Implementation and Experimental Results

An implementation of the proposed algorithms has been integrated within a
reasoner written in Java, called Draon [11], which already allowed to reason
in a decentralized manner on a network of aligned ontologies under the IDDL
semantics [5]. Algorithms 1, 2 and 3 can be naturally implemented such that rea-
soning tasks on ontologies can be independently performed by different reasoners
located on different sites.

Fig. 1. Architecture of Draon

The architecture of Draon is despicted in Fig. 1. A global reasoner implements
Algorithm 3. This global reasoner loads alignments and executes Algorithm 3. It
propagates assertion/axioms to local reasoners located on different sites. Then
it asks local reasoners to check entailment and consistency of the ontology asso-
ciated with each local reasoner. The global reasoner and each local reasoner
use HermiT [13] as OWL reasoner. The communication between the global rea-
soner and all local reasoners is based on OWLLink [14]. When connecting to a
local reasoner, the global reasoner creates a Java thread which deals with the
communication between them. Data shared by the threads are synchronized and
protected by using semaphores. Note that we can replace HermiT with any OWL
reasoner since OWLLink supports a generic OWL reasoner.

Table 1 provides information on the ontologies and alignments used for the
experiments. These datasets are taken from OAEI20122 and OAEI20183 Cam-
paigns. We have chosen small ontologies and alignments such as iasted.owl,
sigkdd.owl, iasted-sigkdd.rdf to test our algorithm on alignments with link
keys since they are well understood and manually checkable. This allows us to
create manually relevant link keys (to our best knowledge, there is no system
which can generate link keys expressed in the alignment syntax). In addition,
we have selected large ontologies and alignment such as SNOMED, FMA, FMA-
SNOMED in order that the difference between the reasoning complexities of the
two semantics IDDL (implemented in Draon) and APPROX (the new semantics
introduced in the paper) is more noticeable.
2 cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/.
3 oaei.ontologymatching.org/2018/conference.

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/
http://oaei.ontologymatching.org/2018/conference/
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Table 1. Ontologies and alignments without link keys and their characteristics

Concepts Roles Individuals Axioms/Correspondences

Iasted 141 38 6 551

Sigkdd 50 18 5 210

iast-sigkdd (without link keys) 15

Conference 60 46 2 414

Ekaw 74 33 4 351

conference-ekaw (without link keys) 27

Cmt 30 49 3 327

Edas 104 30 117 1025

cmt-edas (without link keys) 14

FMA 10157 0 0 47467

SNOMED 13412 18 0 47104

FMA-SNOMED (without link keys) 9139

NCI 25591 87 0 135556

FMA-NCI (without link keys) 3038

We use two remote DELL servers with Intel 3.4 GHz Processor 8 cores and
32 Gb RAM on which two HermiT-based local reasoners are running. The global
reasoner is also launched on a third computer with the same configuration.

We run Draon to check consistency of several networks of ontologies each
of which is composed of ontologies and alignment described in Table 1. The
results are put in Table 2 which shows execution times of Draon under the two
different semantics IDDL and APPROX. The difference of the performances
in time results from the fact that reasoning under IDDL may require in the
worst case an exponential number of message exchanges between the global
reasoner and the local reasoners while reasoning under APPROX needs at most
a polynomial number of message exchanges.

Table 3 provides first experimental results when running Draon to check con-
sistency of networks containing small ontologies and alignment with link keys.
The alignments in this table are obtained by adding to the corresponding align-
ments in Table 2 some link keys manually created.

Table 2. Execution time for checking consistency of ontology networks according to
different semantics

Ontology 1 Ontology 2 Alignment IDDL APPROX

Iasted Sigkdd iasted-sigkdd (without link keys) 3.5 s 9ms

Conference Ekaw conference-ekaw (without link keys) 7.5 s 11ms

Cmt Edas cmt-edas (without link keys) 7.5 s 16ms

FMA SNOMED FMA-SNOMED (without link keys) >15 min 81 s

FMA NCI FMA-NCI (without link keys) >15 min 10 s
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Table 3. Execution time (in milliseconds) for checking consistency of ontology networks
with link keys

Ontology 1 Ontology 2 Alignment Consistency in APPROX

Iasted Sigkdd iast-sigkdd (with link keys) 9ms

Conference Ekaw conference-ekaw (with link keys) 11ms

Cmt Edas cmt-edas (with link keys) 17ms

7 Conclusion and Future Work

We have presented a new semantics of alignments which is weaker than the
standard semantics. This weakened semantics of alignments allows us to express
correspondences between ontologies of different nature on the one hand and to
propose an efficient algorithm for reasoning on a network of ontologies with
alignments containing link keys on the other hand. This new kind of correspon-
dences is useful for establishing data links between heterogeneous datasets. The
complexity of the proposed algorithm is polynomial in the size of the network if
each call for checking ontology entailment or consistency is considered as an ora-
cle. We have integrated an implementation of our algorithm within a distributed
reasoner, called Draon, and reported some experimental results.

Our algorithm can be extended to deal with ontologies expressed in a more
expressive Description Logic than ALC in condition that the new logic does
not allow for inverse roles. This restriction on expressiveness prevents the cur-
rent algorithm from merging individuals which are initially not in the ontology.
Another extension of the current work aims to add role correspondences to align-
ments. This may require the algorithm to support ontologies allowing for hierar-
chy of roles and the negation of roles. We plan to carry out experiments of Draon
on ontologies and alignments located on a large number of nodes equipped with
a local reasoner. New evaluations of Draon on alignments with a large number
of link keys are also expected.
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Abstract. Many methods have been proposed to automatically extend
knowledge bases, but the vast majority of these methods focus on find-
ing plausible missing facts, and knowledge graph triples in particular.
In this paper, we instead focus on automatically extending ontologies
that are encoded as a set of existential rules. In particular, our aim is
to find rules that are plausible, but which cannot be deduced from the
given ontology. To this end, we propose a graph-based representation of
rule bases. Nodes of the considered graphs correspond to predicates, and
they are annotated with vectors encoding our prior knowledge about the
meaning of these predicates. The vectors may be obtained from external
resources such as word embeddings or they could be estimated from the
rule base itself. Edges connect predicates that co-occur in the same rule
and their annotations reflect the types of rules in which the predicates
co-occur. We then use a neural network model based on Graph Convo-
lutional Networks (GCNs) to refine the initial vector representation of
the predicates, to obtain a representation which is predictive of which
rules are plausible. We present experimental results that demonstrate
the strong performance of this method.

Keywords: Knowledge base completion · Rule induction ·
Graph Convolutional Networks · Commonsense reasoning

1 Introduction

Many approaches have been proposed in recent years for the problem of find-
ing plausible missing facts in knowledge graphs, typically by learning vector
space representations of the entities and relations that are predictive of plausi-
ble triples [7,26,32,42,47]. Beyond knowledge graphs, however, ontologies also
play an important role on the Web [18]. For the ease of presentation, in this
paper we will consider ontologies which are encoded as sets of existential rules
[4], although our model would be straightforward to adapt to other formalisms
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 435–452, 2019.
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such as description logics [2]. Similar to knowledge graphs, existing ontologies
are often incomplete, hence there is a need for methods that can automatically
predict plausible missing rules for a given ontology. For some ontologies, where
we have a large database of facts (often called an ABox), plausible rules can be
learned similarly to how rules are learned in inductive logic programming and
statistical relational learning [10,30,39,43]. However, for many commonly used
ontologies, such a database of facts is not available. In this paper, we therefore
address the challenge of predicting plausible missing rules based only on the
rules that are in a given ontology (along with word embeddings in some variants
of our proposed model).

This problem has thus far hardly received any attention, with the exception
of [9]. The main underlying idea behind the approach from [9], which we will
build on in this paper, is that ontologies often contain large sets of rules which
only differ in one predicate. As a simple example, consider the following rules

Beer(x) → R(x)
Gin(x) → R(x)

Without knowing what the predicate R represents, we can infer that the following
rule is also valid:

Wine(x) → R(x)

This is intuitively because almost all natural properties which beer and gin have
in common are also satisfied by wine. To formalize this intuition, [9] considered
the notion of rule templates.

A rule template ρ is a second-order predicate, which corresponds to a rule in
which one predicate occurrence has been replaced by a placeholder. For example,
in the above example, we can consider a template ρ such that ρ(P ) holds if the
rule P (x) → R(x) is valid, meaning that we would expect this rule to be entailed
by the ontology if the ontology were complete. Given such a template ρ, we can
consider the set of all instances P1, ..., Pn such that the corresponding rules
ρ(P1), ..., ρ(Pn) are entailed by the given ontology. The main strategy for finding
plausible rules proposed in [9] then essentially consists in finding predicates P
which are similar to P1, ..., Pn. More precisely, the predicates are represented as
vectors and it is assumed that each template ρ can be modelled as a Gaussian
distribution over the considered vector space, i.e. the probability that ρ(P ) is
a valid rule is considered to be proportional to Gρ(p), with p the vector repre-
sentation of P and Gρ the Gaussian distribution modelling ρ. In addition to the
templates described above, which are called unary templates, [9] also considered
binary templates, which correspond to rules in which two predicate occurrences
have been replaced by a placeholder. While unary templates enable a strategy
known as interpolation, using binary templates leads to a form of analogical
reasoning, both of which are well-established commonsense reasoning principles.

A critical aspect of this strategy for ontology completion is how the vector
representation of the predicates is obtained. The approach from [9] relies on
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the combination of two types of vectors: (i) the word vector of the predicate
name, obtained from a standard pre-trained word embedding [28]; (ii) a vector
representation which is learned from the ontology itself, using a variant of the
AnalogySpace method [40]. However, there are important limitations with this
strategy. For instance, it is not clear why the predicates that satisfy a given tem-
plate should follow a Gaussian distribution in the considered vector space. More-
over, the way in which the predicate representations are constructed does not
maximally take advantage of the available information. In particular, the app-
roach based on the AnalogySpace method only relies on the known instances of
the unary templates, i.e. binary templates are completely ignored for construct-
ing the vector representations of the predicates. This is clearly sub-optimal, as
knowing that ρ(P,R) is a valid rule, for a given binary template ρ, intuitively
tells us something about the semantic relationship between the predicates P and
R, which should in turn allow us to improve our representation of P and R.

In this paper, we introduce a new method for predicting plausible rules
which addresses both concerns. Our model is based on Graph Convolutional
Networks (GCNs), a popular neural network architecture for graph-structured
data [12,22,37]. We start from a graph-based representation of the rule base,
in which the nodes correspond to predicates. Each node is annotated with a
vector representation of the corresponding predicate. In this paper, we will use
the vector representations from [9] for this purpose. Crucially, however, rather
than using these vectors directly for making predictions as in [9], in our case
they are merely used for initializing the GCN. Edges are annotated with the
binary templates that are satisfied by the corresponding pair of predicates. We
then propose a GCN model, which iteratively refines the vector encoding of the
nodes, taking advantage of the edge annotations based on the binary templates.
The resulting node vectors are then used to predict which predicates satisfy
the different unary templates and which pairs of predicates satisfy the different
binary templates, and thus to predict which rules are plausible. Note in partic-
ular, that our aim is to learn a vector representation of the predicates which is
predictive of plausible rules, rather than relying on assumptions about a given
vector representation. Our experimental results confirm that this approach is
able to substantially outperform the method from [9].

2 Related Work

Within the area of knowledge base completion, we can broadly distinguish
between two classes of methods: methods focused on finding plausible facts and
methods focused on finding plausible rules.

Predicting Facts. In the last few years, there has been a large amount of work on
finding missing triples in knowledge graphs. A popular strategy for this task is to
rely on knowledge graph embedding, which aims to identify plausible triples by
representing entities as vectors in a low-dimensional vector space and learning
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a parametrized scoring function for each relation. For instance, in the influen-
tial TransE model, relations are modelled as translations between the embed-
dings of entities [7], that is, eh + er ≈ et, if (h, r, t) holds. Some other well-
known approaches make use of bilinear scoring functions. For example, in [47] the
authors propose to learn entity embeddings such that eThRret is higher for cor-
rect triples (h, r, t) than for incorrect triples. Here eh and et are the embeddings
of the entities h and t, and Rr is a diagonal matrix representing the relation
r. The ComplEx model [42] is an extension of [47] in the complex space. A dif-
ferent strategy consists in learning latent soft clusters of predicates to predict
missing facts in relational data, for example by using Markov logic network [23]
or by applying neural network models [35,39]. Several rule-based approaches
have also been proposed, where observed regularities in the given knowledge
graph are summarized as a weighted set of rules, which is then used to derive
plausible missing facts. For instance, a soft inference procedure was proposed
in [25] to infer different relations by tuning the weights associated with random
walks that follow different paths through the graph. [15] proposed a novel method
with iterative guidance from soft rules with various confidence levels extracted
automatically from the knowledge graph. The aforementioned strategies all rely
on exploiting statistical regularities in the given knowledge graph. There are also
several ways in which external knowledge can be used to predict missing facts.
One possibility is to rely on information extraction from text corpora [1,24]. In
this setting, one can distinguish between methods based on a generic question
answering system [44] and methods which use the given knowledge bases as a
distant supervision signal [29,33]. Apart from directly relying on text corpora,
some approaches have instead relied on pre-trained entity embeddings, which
can be learned from open-domain resources such as Wikipedia, WikiData or
BabelNet [11,19]. For instance [8] focused on finding missing instances of con-
cepts in the context of ontologies, by modelling these concepts as Gaussians in
a given vector space. This problem of ABox induction was also considered in
[6], which instead relied on kernels for structured data to capture similarities
between entities. A similar problem was also considered in [31], which relied on
features that were directly derived from Wikipedia. Finally, various approaches
have also been proposed to combine the two main aforementioned strategies, for
example by incorporating textual descriptions of entities when learning knowl-
edge graph embeddings [20,45,46,48], or by incorporating relation extraction
methods [34,41].

Predicting Rules. The problem of learning rules, in the context of ontologies,
has been approached from two different angles. First, we can identify methods
that induce rules based on the given (relational) facts, e.g. based on ideas from
the field of Statistical Relational Learning. For example, [10] proposed a sys-
tem inspired by inductive logic programming, while [43] introduced statistical
schema induction to mine association rule from RDF data and then generate
ontologies. More recently, [39] used so-called Lifted Relational Neural Networks
to learn rules in an implicit way. In [30], meta-rules were found automatically by
meta-interpretive learning. Some other methods, e.g. [3], used Formal Concept



Ontology Completion Using Graph Convolutional Networks 439

Analysis. What all these approaches have in common is that a sufficiently large
database is required to be able to learn rules from a given ontology, which is how-
ever, not the case for the majority of available ontologies on the Web. The second
class of methods is concerned with predicting rules directly from the ontology
itself, which did not receive much attention yet. From a purely theoretical side,
this problem has been studied in a propositional setting in [38], where methods
based on interpolation and extrapolation of rules were proposed. However, the
implementation of these methods requires some background knowledge (e.g. a
betweenness relation is required to apply interpolation), which is not often avail-
able. In [5], a method that implements a kind of similarity based reasoning using
Markov logic has been proposed in order to find plausible rules. The idea of sim-
ilarity based reasoning has been also pursued in logic programming to extend
the unification mechanism [27,36]. As already mentioned in Sect. 1, [9] recently
proposed a method that relies on the notion of rule templates and the estimation
of Gaussian distributions over predicate embeddings to make predictions.

Graph Convolutional Networks. In this paper, we use a variant of Graph Convo-
lutional Networks (GCNs) to learn a vector representation of the predicates that
occur in our rule base which is suitable for predicting plausible rules. GCNs are
a generalization of Convolutional Neural Networks (CNNs). Whereas the latter
require data with a regular structure, such as images or sequences, GCNs allow
for irregular graph-structured data. GCNs can learn to extract features from
the given node representations, and compose these features to construct highly
expressive node vectors. These node vectors can then be used in a wide variety
of graph-related tasks, such as graph classification [12] and graph generation
[14]. Recently, researchers have applied GCNs to find missing facts in knowledge
bases [16,37]. For example, [16] use GCNs for the standard triple classification
and out-of-knowledge-base entity problems. Schlichtkrull et al. [37] model multi-
relational data using GCNs for entity classification and link prediction. However,
to our knowledge, this paper is to first to use GCNs for rule base completion.

3 A GCN Model for Rule Induction

Let R be a rule base, i.e. a set of rules. Our aim is to find additional rules
that intuitively appear to be plausible, even if they cannot be deduced from R.
Throughout our description, we will assume that R contains existential rules [4],
i.e. rules of the following form:

r1(x1) ∧ ... ∧ rn(xn) → ∃y . s1(z1) ∧ ... ∧ sm(zm) (1)

where x1, ...,xn,y, z1, ..., zm are tuples of variables. We consider existential rules
because they are an expressive and well-studied framework for representing
ontologies. However, because our method treats these rules as purely syntactic
objects, it is in fact not tied to any particular logical framework or semantics.
We could readily apply the same method to description logics, for instance.
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3.1 Graph Representation of the Rule Base

Before we introduce our proposed method in Sect. 3.2, we now first describe how
the rule base R can be encoded as a graph.

Rule Templates. As mentioned in Sect. 1, our graph encoding of the rule base
will rely on the notion of rule templates from [9]. Rule templates are second-
order predicates, which correspond to a rule in which one (for unary templates)
or two (for binary templates) occurrences of a predicate have been replaced by a
placeholder. For a unary template ρ and a predicate P , we write ρ(P ) to denote
the rule that is obtained by instantiating the placeholder with P , and similar
for binary templates. We say that P satisfies ρ if ρ(P ) is a valid rule in the
considered domain. If R were complete, then P would satisfy ρ iff R entails
ρ(P ). In general, however, the rule base R is incomplete, which means that it
only partially specifies which predicates satisfy the template ρ. In particular,
suppose that P1, ..., Pn are all the predicates for which ρ(Pi) can be deduced
from the given rule base R. Then P1, ..., Pn are the only predicates which are
known to satisfy the template ρ. The problem we consider below is to identify
additional predicates P which are likely to satisfy ρ, or equivalently, identify
rules of the form ρ(P ) which are valid in the considered domain but missing
from the given rule base. However, rather than considering this problem for a
single template, we consider all the possible templates that occur in R.

Let θ be an existential rule of the form (1). Then θ is associated with the
following unary templates:

ρ1(�) = �(x1)∧...∧rn(xn)→∃y.s1(z1)∧...∧sm(zm)
...

ρn+m(�) = r1(x1)∧...∧rn(xn)→∃y.s1(z1)∧...∧ � (zm)

as well as the following binary templates:

ρ1,2(�, •) = �(x1)∧ • (x2)∧...∧rn(xn)→∃y.s1(z1)∧...∧sm(zm)
...

ρ1,n+m(�, •) = �(x1)∧r2(x2)∧...∧rn(xn)→∃y.s1(z1)∧...∧ • (zm)
...

ρn+m−1,n+m(�, •) = r1(x1)∧...∧rn(xn)→∃y.s1(z1)∧...∧ � (zm−1)∧ • (zm)

In addition to these templates, we also consider typed templates. In particular,
assume that the predicates are organized in a taxonomy and let ρ be a rule
template that was obtained by replacing the predicate P in the rule θ by a
placeholder. Let Q be a parent of P in the taxonomy (i.e. we have that R
contains the rule P (x) → Q(x)). Then the corresponding typed version of ρ,
denoted by ρQ, is satisfied by those predicates P ′ that satisfy ρ and that also
have Q as a direct parent.

We denote respectively by L1(θ) and L2(θ) the set of all unary and binary
templates that can be obtained from the rule θ (including both typed and
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untyped templates). We also let L1(R) =
⋃

θ∈R L1(θ) and L2(R) =
⋃

θ∈R L2(θ)
be respectively the set of all unary and binary templates that can be obtained
from the set of rules R.

Graph Representation. We encode the rule base R as a graph GR = (PR, E)
where PR is a set of all predicates that occur in R and E contains all pairs of
predicates (P,Q) that co-occur in at least one rule in R. To capture the knowl-
edge encoded in the rule base (as well as potentially some external knowledge),
we use two labelling functions. The node labelling function η maps each predi-
cate P from PR onto a real valued vector η(P ) ∈ R

d. This vector can be viewed
as the input encoding of the predicate P and can be defined in different ways
(see below). The edge labelling function ξ maps each pair of predicates (P,Q)
from E onto a binary vector ξ(P,Q) ∈ {0, 1}m, where m = |L2(R)|. In partic-
ular, let ρ1, ..., ρm be an enumeration of all binary templates from L2(R). The
ith coordinate of the vector ξ(P,Q) is 1 iff the rule ρi(P,Q) occurs in R.

Node Vectors. To construct the input encoding η(P ) of predicate P , we will
either use a vector ηw(P ) derived from the name of predicate P using a stan-
dard pre-trained word embedding, or a vector ηt(P ) that encodes which of the
unary templates from L1(R) are satisfied by P . Specifically, to obtain the vector
ηw(P ), we first tokenize the predicate name using a small set of simple heuristics,
based on standard ontology naming conventions1. For example, the predicate
name RedWine gives the following list of words: (red,wine). Let (w1, ..., wn) be
the list of words thus obtained, then the vector representation ηw(P ) of P is
simply obtained by averaging the vector representations of these words. Namely,
ηw(P ) = 1

n (w1 + ... + wn), where wi denotes for the vector representation
of word wi in the word embedding. Even though this averaging strategy may
seem naive, it is known to be surprisingly effective for capturing the meaning of
phrases and sentences [17].

The vector ηt(P ), encoding knowledge about P derived from the unary tem-
plates, is constructed as follows. First, we consider a binary vector ηB

t (P ) ∈
{0, 1}k with k = |L1(R)|, whose ith coordinate is 1 iff the ith unary template,
in some arbitrary but fixed enumeration of the unary templates, is satisfied by
P . In other words, ηB

t is thus the counterpart of ξ for unary templates. We then
define ηt(P ) ∈ R

l as the a low-dimensional approximation of ηB
t , obtained using

singular value decomposition (SVD) as in [9]. In particular, let X be a matrix
with one row for each predicate, where the row corresponding to P is given by the
vector ηB

t (Pi). Let X = UΣV T be the singular value decomposition of X. Then
ηt(P ) is given by the first l columns of the row corresponding to P in the matrix
UΣ. This use of the singular value decomposition is a well-known technique to
compress the information encoded in the vectors ηB

t (P ) into a lower-dimensional
representation. Note that the vectors ηt(P ) and ηt(Q) will be similar if the sets
of unary templates satisfied by P and Q are similar.

1 http://wiki.opensemanticframework.org/index.php/Ontology Best Practices.

http://wiki.opensemanticframework.org/index.php/Ontology_Best_Practices


442 N. Li et al.

3.2 GCN Model

Background. Graph Convolutional Networks (GCNs) produce node-level embed-
dings of graphs, by iteratively exchanging the current vector representations of
the nodes along the edges of the graph. GCNs are thus essentially message-
passing models. Let us write h(0)

i for the initial vector representation of node ni.
A GCN iteratively refines this representation based on the following propagation
rule [13]:

h(l+1)
i = σ

⎛

⎝
∑

j∈Ni

f
(
h(l)

i ,h(l)
j

)
⎞

⎠ (2)

where Ni is the neighborhood of ni, i.e. the set of nodes that are incident with ni.
Furthermore, f(·, ·) is a transformation function, which is used to combine the
current representation of ni with the current representation of a given neighbor
nj . Both linear and non-linear transformations can be used for this purpose, but
we will restrict ourselves to linear transformations in this paper. These trans-
formed representations are intuitively viewed as messages which are sent from
the neighbors of ni. These messages are then aggregated (using a summation)
after which a non-linear activation function σ is used. We will use the ReLU
function for this purpose, defined by σ(x) = max(0, x).

Model Description. The standard formulation in (2) does not take into account
edge labels, which play an important role in our setting as they encode the nature
of the relationship between the (predicates corresponding to the) two nodes. Let
us write N ρi

P for the set of all nodes Q that are connected with P in our graph
for which (P,Q) is an instance of the binary template ρi, i.e. (P,Q) ∈ ER and
the ith component of ξ(P,Q) is 1.

We specifically consider the following variant:

h(l+1)
P = σ

⎛

⎝W(l)
0 h(l)

P +
∑

ρ∈L2(R)

∑

Q∈N ρ
P

1
|N ρ

P |W
(l)
ρ h(l)

Q

⎞

⎠ (3)

where we write h(l)
P for the embeddings of the (node corresponding to) predicate

P . In the input layer, h(0)
P is the vector representation of the node P given by the

label η(P ). The matrix W(l)
ρ encodes a template-specific linear transformation,

which together with the node transformation W(l)
0 defines the l-th layer of our

model.
We now describe how the GCN model can be used to predict plausible

instances of the considered unary and binary templates. Note that each such
a prediction corresponds to the prediction of a plausible rule, as mentioned in
Sect. 3.1.
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Unary Template Prediction. We treat the problem of predicting plausible
instances of unary templates as a multi-label node classification problem. To
this end, we add an output layer to the GCN which has one neuron for each
unary template and each predicate, i.e. for each predicate-template combination
we make a prediction about whether the template applies to that predicate. We
use a sigmoid activation function for this output layer and we use the cross-
entropy loss function to train the model:

J = −
∑

ρ∈L1(R)

∑

Q∈PR

yρ
Q log(pρ

Q) + (1 − yρ
Q) log(1 − pρ

Q)

where pρ
Q ∈ [0, 1] is the model’s prediction that predicate Q satisfies template ρ

and yρ
Q ∈ {0, 1} is the corresponding ground truth, i.e. yρ

Q = 1 iff ρ(Q) can be
entailed from R. Note that when training this model, we thus implicitly assume
that the rule base R is complete. However, the capacity of the GCN model is
not sufficient to perfectly satisfy this training objective, which means that it will
make some mistakes and predict some rules which are, in fact, not entailed by
R. These “mistakes” then correspond to the rules which we view to be plausible.
Indeed, the reason why the GCN model predicts such a rule ρ(P ) is it is not able
to separate P from the predicates that are known to satisfy ρ, which suggests
that P is semantically similar to such predicates, and thus that ρ(P ) should be
considered as plausible.

For the ease of presentation, in the formulation of the loss function above,
we assumed that all templates are untyped. For typed templates, rather than
considering all predicates Q ∈ PR, we only consider those of the correct type.
Furthermore, in the experiments, we add the following regularization term to
the loss function, which we empirically found to be helpful:

Jreg =
∑

ρ∈L2(R)

∑

(Q,S)∈N ρ
P

‖hQ − hS‖22

where we write hP for the embedding of predicate P in the final layer. Note that
this regularization is thus only applied to the final embeddings, i.e. the layer
before the classification layer, instead of all layers.

The intuitive justification is that predicates which often co-occur in the same
rule are likely to be semantically related. This is particularly useful because the
majority of the rules in a typical ontology are basic subsumption rules of the
form P (x) → Q(x). In some cases, we do not have much information about the
parent concept Q (e.g. because Q is an abstract concept), in which case the
regularization term will encourage its representation to be close to the average
of the representations of its children. Conversely, it may also be the case that we
instead do not have much information about P (e.g. because it is too specialized),
in which case the regularization term would encourage the representation of P
to stay close to the representation of its parent.

Binary Template Prediction. We view the problem of predicting binary template
instances as a link prediction problem. For each pair of predicates (P,Q) from
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PR and each binary template ρ ∈ L2(R), the task is to predict whether (P,Q)
satisfies ρ. To this end, we need a scoring function for each template ρ such that
sρ(P,Q) is high for valid pairs (P,Q) and low for other pairs. In principle, any of
the scoring functions that have been proposed for knowledge graph embedding
could be used for this purpose. In our experiments, we will use the following
bilinear scoring function [47]:

s(P, ρ,Q) = hT
PRρhQ,

where hP and hQ are the final-layer vector representations of the predicates, as
before. Furthermore, Rρ is a diagonal matrix which corresponds to the repre-
sentation that is learned for the binary template ρ. Note that while this scoring
function is symmetric, this symmetry is broken in practice when using typed
binary templates. This is because the only situation in which both the rules
ρ(P,Q) and ρ(Q,P ) would be considered is when they are of the same type (i.e.
they have the same parent), which is almost never the case. In order to train the
model, we sample negative examples by randomly corrupting one of the predi-
cates in positive examples. We apply a sigmoid function to the scoring function
and then again train the model using a cross-entropy loss.

4 Model Evaluation

In this section, we experimentally evaluate our method2, comparing it against
the method from [9] as our baseline.

Methodology. The datasets we consider are constructed from the OWL version
of the following ontologies: SUMO3, which is a large open domain ontology, as
well as Wine4, Economy5, Transport6 and Olympics7, which are smaller domain-
specific ontologies. These OWL ontologies were then converted into existential
rules (where we simply omitted those OWL axioms that cannot be expressed in
this way). In the experiments, we use a standard pre-trained 300-dimensional
word embedding learned using Skip-gram on the 100B words Google News cor-
pus8.

To evaluate the performance of our model, we split the considered rule bases
into training and test sets. We use 10-fold cross validation for the small ontolo-
gies, while for the larger SUMO ontology, we use a fixed 2/3 split for training
and 1/3 for testing. After splitting each rule base, we applied Pellet Reasoner9

2 Implementation and data are available at https://github.com/bzdt/GCN-based-
Ontology-Completion.git.

3 http://www.adampease.org/OP/.
4 https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine.
5 http://reliant.teknowledge.com/DAML/Economy.owl.
6 http://reliant.teknowledge.com/DAML/Transportation.owl.
7 http://swat.cse.lehigh.edu/resources/onto/olympics.owl.
8 https://code.google.com/archive/p/word2vec/.
9 https://github.com/stardog-union/pellet.

https://github.com/bzdt/GCN-based-Ontology-Completion.git
https://github.com/bzdt/GCN-based-Ontology-Completion.git
http://www.adampease.org/OP/
https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine
http://reliant.teknowledge.com/DAML/Economy.owl
http://reliant.teknowledge.com/DAML/Transportation.owl
http://swat.cse.lehigh.edu/resources/onto/olympics.owl
https://code.google.com/archive/p/word2vec/
https://github.com/stardog-union/pellet
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Table 1. Parameter settings for GCN models.

Wine Economy Olympics Transport SUMO

UT BT UT BT UT BT UT BT UT BT

GCNmf lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

GCNmf hid 32 32 64 32 32 32 64 32 32 32

GCNmf ly 3 4 3 4 3 4 3 4 5 5

GCNmf l2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1

GCNwe lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

GCNwe hid 32 32 64 32 32 32 64 32 32 32

GCNwe ly 3 4 3 4 3 4 3 4 5 5

GCNwe l2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1

GCNcm lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

GCNcm hid 32 32 64 32 32 32 64 32 32 32

GCNcm ly 3 4 3 4 3 4 3 4 5 6

GCNcm l2 0.1 0.1 0 0.1 0 0.1 0 0.1 0 0.1

GCNcon lr 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

GCNcon hid 32 128 64 32 64 64 32 64 32 32

GCNcon ly 3 4 3 4 4 4 3 4 5 6

GCNcon l2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1

to determine all rules that can be derived from each training split. Subsequently,
we removed from the corresponding test split all rules that could be derived from
the training split. The derived rules are kept in the training split, i.e. we apply
our model to the deductive closure of the rules in the training data.

Clearly, because it is based on rule templates, our GCN model can only
predict rules that correspond to instances of rule templates which occur in the
training data. Our evaluation therefore focuses on predicting, for all of the unary
(resp. binary) templates found in the training data, which predicates (resp. pairs
of predicates) are likely to satisfy them, beyond those instances that are already
found in the training data. Furthermore, we can only make predictions about
predicates that occur in the training data, so any predicates that only appear in
the test split are also ignored.

For evaluation purposes, we assume that a prediction is correct iff the corre-
sponding rule can be derived from the given ontology (i.e. training and test split).
This is clearly a simplifying assumption, given that our starting point is that
some valid rules are actually missing. As a result, the reported evaluation scores
should be viewed as a lower approximation of the performance of the methods
(given that some predictions which are assessed to be false may actually be cor-
rect rules that were missing in the original ontology). Importantly, however, this
still allows us to compare the relative performance of different methods. This
evaluation strategy follows common practice in the context of knowledge base
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completion (e.g. the standard benchmarks for knowledge graph completion also
rely on this simplifying assumption).

We choose the number of layers according to the size of the ontology. For
small ontologies (e.g. Wine), a limited number of layers is preferable to avoid
overfitting, while for larger ontologies (e.g. SUMO), it makes sense to use more
layers as more training data is available for these cases. Specifically, for unary
template prediction, we use a model consisting of 3 GCN layers for the small
datasets (which includes the output layer), and 5 GCN layers for SUMO. For
the first two layers we use a ReLU activation function, while sigmoid is used
for the output layer. Regardless of the number of GCN layers, sigmoid is always
used for the last layer and ReLU for the other layers. For the binary template
prediction, we use 2 GCN layers with ReLU activation for the small datasets, and
3 GCN layers for SUMO. This is followed by a scoring layer and a fully connected
layer using sigmoid. Crucially, to avoid overfitting and encourage the model
to generalize beyond the given instances of the templates, we apply dropout
(dropout rate = 0.5) to the hidden layers. We also use L2-norm regularization,
which encourages the model to focus on the most informative binary templates
only when aggregating the messages (noting that the model would converge to
W(l)

ρ = 0 if template ρ were not informative). We have implemented the model
in the Deep Graph Library (DGL)10, using the Adam optimizer [21] for training.
We considered four variants of the GCN model:

– GCNmf uses the ηt(P ) vector based on SVD decomposition as initial repre-
sentation of P .

– GCNwe uses the predicate representations ηw(P ) obtained from the word
embedding as input vectors.

– GCNcm combines the two independent models, i.e. it trains models for both
ηt(P ) and ηw(P ) independently, and combines their predictions. We calculate
the performance measures of the union set of the rules predicted using both
models. For a given rule, as long as one of the two models predicts it correctly,
it is considered a correct prediction.

– GCNcon combines the two representations, i.e. it uses the concatenation of
ηt(P ) and ηw(P ) as the input encoding of P .

As our baseline, we consider the model from [9], which we will refer to as BRI.
We consider four variants of this model, being direct counterparts to the four
variants of our model:

– BRImf uses the ηt(P ) vector to represent predicates.
– BRIwe uses the representation ηw(P ) based on word vectors.
– BRIcm combines the predictions of the BRImf and BRIwe models.
– BRIcon uses the concatenation of ηt(P ) and ηw(P ).

To tune the parameters of the models, we randomly select 10% of the training
data as a validation set. The parameters to be tuned include the learning rate

10 https://docs.dgl.ai.

https://docs.dgl.ai
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Table 2. Results of the rule induction experiments.

Wine Economy Olympics Transport SUMO

UT BT UT BT UT BT UT BT UT BT

BRImf Pr 0.030 0.583 0.091 0.992 0.150 0.286 0.000 0.600 0.534 1.000

BRImf Rec 0.045 0.180 0.070 0.309 0.108 0.191 0.000 0.173 0.201 0.072

BRImf F1 0.032 0.259 0.075 0.445 0.114 0.214 0.000 0.251 0.292 0.134

BRIwe Pr 0.118 0.400 0.093 0.993 0.307 0.286 0.000 1.000 0.791 0.969

BRIwe Rec 0.311 0.073 0.294 0.599 0.225 0.238 0.000 0.464 0.287 0.328

BRIwe F1 0.159 0.124 0.138 0.742 0.234 0.257 0.000 0.609 0.421 0.490

BRIcm Pr 0.118 0.700 0.089 0.992 0.407 0.250 0.000 1.000 0.802 0.971

BRIcm Rec 0.331 0.234 0.297 0.627 0.325 0.250 0.000 0.538 0.316 0.348

BRIcm F1 0.162 0.330 0.135 0.765 0.334 0.250 0.000 0.667 0.453 0.513

BRIcon Pr 0.094 0.600 0.072 0.855 0.200 0.286 0.000 0.367 0.250 0.750

BRIcon Rec 0.102 0.288 0.101 0.267 0.050 0.191 0.000 0.132 0.002 0.015

BRIcon F1 0.085 0.364 0.083 0.387 0.079 0.214 0.000 0.187 0.005 0.030

GCNmf Pr 0.489 0.475 0.750 0.733 0.278 0.286 0.010 0.400 0.543 0.732

GCNmf Rec 0.349 0.244 0.153 0.180 0.292 0.286 0.018 0.077 0.421 0.409

GCNmf F1 0.334 0.313 0.243 0.269 0.273 0.286 0.013 0.125 0.474 0.524

GCNwe Pr 0.645 0.900 0.172 0.911 0.350 0.429 0.020 0.850 0.719 0.836

GCNwe Rec 0.259 0.356 0.218 0.526 0.392 0.429 0.033 0.267 0.396 0.493

GCNwe F1 0.355 0.488 0.183 0.651 0.328 0.429 0.021 0.387 0.510 0.620

GCNcm Pr 0.465 0.875 0.175 0.891 0.465 0.429 0.118 0.850 0.778 0.884

GCNcm Rec 0.382 0.444 0.232 0.591 0.533 0.429 0.033 0.313 0.437 0.516

GCNcm F1 0.353 0.563 0.189 0.688 0.463 0.429 0.036 0.434 0.559 0.651

GCNcon Pr 0.416 0.900 0.163 0.912 0.233 0.857 0.371 0.454 0.692 0.812

GCNcon Rec 0.356 0.476 0.245 0.585 0.267 0.762 0.044 0.139 0.374 0.485

GCNcon F1 0.356 0.607 0.191 0.698 0.242 0.786 0.077 0.201 0.485 0.607

(chosen from {0.1, 0.01, 0.001}) for Adam optimization, the number of units in
the hidden layers (chosen from {16, 32, 64, 128, 256}), the dimensionality of the
input encodings of the predicates in cases where we use the SVD based method
(chosen from {20, 30, 40, 50, 100}) and the threshold for classification and the
hyperparameter for L2 regularization. Table 1 reports the different settings that
were selected. The trade-off hyperparameters of the regularizer Jreg for unary
template prediction are 0.01 for the Economy and Transport ontologies and 0.1
for Wine and Olympics ontologies. We use the same parameters for each fold.
For instance, for the Wine ontology, the number of units is 32 and we use a 40-
dimensional input encoding of the predicates. The hyperparameter for L2 is set
to 0 for the unary template prediction and to 0.1 for binary template prediction
respectively.

Quantitative Evaluation. Table 2 reports the performance of the different mod-
els in terms of precision (Pr), recall (Rec) and F1 score. Note that both unary
template predictions and binary template predictions are the multi-label classi-
fication tasks. However, what matters in the prediction is not how many nodes
or links are classified correctly, but how successful the models are at predict-
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ing missing rules. Therefore, the precision, recall and F1 scores are computed
w.r.t. the number of correctly predicted rules instead. In all cases, we use micro-
averaging to calculate the overall precision, recall and F1 scores.

The results in Table 2 show that the GCN model is indeed able to outperform
the BRI model from [9]. The table separately shows the performance of models
which only rely on unary templates (UT) for predicting plausible rules and mod-
els which only rely on binary templates (BT). As can be seen, for UT, the GCN
models consistently, and often substantially, outperform the BRI counterparts,
which demonstrates that the GCN models are able to improve the representa-
tion of the predicates by propagating and incorporating the information received
from related predicates. In the case of the BT results, the GCN models perform
best on the Wine, Olympics and SUMO ontologies, but they perform less well
on the Economy and Transport ontologies. This can be explained by the fact
that the number of examples we have for each binary template in these cases is
much lower, which can result in overfitting on the training data. In contrast, for
SUMO, which is by far the largest ontology, the outperformance of our model is
consistent and very substantial. Finally, when comparing the GCNmf and GCNwe

variants, we clearly see that using word embeddings to initialize the node vectors
leads to the best results, although both models are outperformed by the con-
catenation based model GCNcon or the combined model GCNcm. Comparing the
performance of GCNcm and GCNcon, we can see that the concatenation model
GCNcon generally performs better. Interestingly, the difference in performance
between GCNcm and GCNcon is more mixed.

Qualitative Analysis. We illustrate the performance of the GCN model by dis-
cussing some examples of predicted rules. As an example from the UT setting,
our model was able to correctly predict the following rule from the Wine ontol-
ogy:

DryRedWine(x) → TableWine(x)

by using the template ρ(�) = �(x) → TableWine(x). The instances of this tem-
plate that were given in the training data are RedTableWine, DryWhiteWine
and Burgundy. Based on these instances, the BRI model was not able to predict
that DryRedWine is also a plausible instance. The GCN models, however, were
able to exploit edges (i.e. binary templates) corresponding to the following rules:

Merlot(x) → DryRedWine(x)
Merlot(x) → RedTableWine(x)

DryRedWine(x) → DryWine(x)
DryWhiteWine(x) → DryWine(x)

Burgundy(x) → DryWine(x)

As an example from the BT setting, the GCN model was able to correctly predict
the following rule from the Olympics ontology:

WomansTeam(x) → ∃y . hasMember(x, y) ∧ Woman(y)
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based on the following rules from the training data:

MensTeam(x) → ∃y . hasMember(x, y) ∧ Man(y)
MixedTeam(x) → ∃y . hasMember(x, y) ∧ Woman(y)

This illustrates the ability of models based on binary templates to perform ana-
logical reasoning. Note that this rule cannot be predicted in the setting where
only unary templates are used.

From a practical perspective, an important question is whether our model
is able to find rules which are missing from the existing ontologies, rather than
merely identifying held-out rules (as we did in the experiments above). Here we
present some examples of rules that were predicted by our model, but which
cannot be deduced from the full ontologies. These predictions are based on a
GCN model that was trained on the full ontologies. Some of the rules we obtained
are as follows:

Cycle(x) → LandVehicle(x)
AgriculturalProduct(x) → Product(x) ∧ Exporting(x)

CargoShip(x) → Ship(x) ∧ DryBulkCargo(x)

As can be seen, these rules intuitively make sense, which suggests that our app-
roach could indeed be useful to suggest missing rules in a given ontology. Since
there exists rule Bicycle(x) → Cycle(x) in the Transport ontology, which makes
Cycle(x) → LandVehicle(x) plausible. AgriculturalProduct(x) → Product(x) ∧
Exporting(x) is plausible, here “Exporting”, according to the Economy ontol-
ogy, is employed in international trade, because of the rules Exporting(x) →
ChangeOfPossession(x) and Exporting(x) → FinancialTransaction(x).

5 Conclusion

In this paper, we proposed a method for predicting plausible missing rules from a
given ontology (or rule base) based on Graph Convolutional Networks (GCNs).
To this end, we introduced an encoding of the ontology as a graph. We then
introduced a GCN model that can take advantage of this graph encoding to
predict rules in a more faithful way than existing methods. This is essentially
due to the fact that the GCN model is able to derive structural features from
the rule base, to learn much richer representations of predicates than those that
are used in existing approaches.

The problem considered in this paper is not yet as mature as related top-
ics such as knowledge graph completion, and accordingly there are still several
important and interesting avenues for future work. One natural extension of our
current approach would be to use a joint prediction framework, which would
ensure that the collection of rules predicted by the model is consistent with the
given rule base. Essentially, such an approach would be able to use the require-
ment that the set of rules needs to be logically consistent as a kind of additional
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supervision signal. More generally, there is a clear benefit in developing meth-
ods that can integrate induction (in the sense of predicting plausible rules) and
deduction in a tighter way. In terms of the technical details of our GCN model,
one area that could be improved is that the parameters which are learned for
each of the binary templates are currently independent from each other, which
can lead to overfitting, given the small number of instances of many templates.
As a possible alternative, the edge labels could be replaced by a low rank approx-
imation of the current binary vectors.
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labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010. LNCS, vol. 6323, pp. 148–163. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15939-8 10

34. Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix
factorization and universal schemas. In: Proceedings HLT-NAACL, pp. 74–84
(2013)
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dings for simple link prediction. In: Proceedings ICML, pp. 2071–2080 (2016)

43. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.)
ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21034-1 9

44. West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge
base completion via search-based question answering. In: Proceedings WWW, pp.
515–526 (2014)

45. Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: semantic space projection for knowl-
edge graph embedding with text descriptions. In: Proceedings AAAI, vol. 17, pp.
3104–3110 (2017)

46. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge
graphs with entity descriptions. In: Proceedings of AAAI, pp. 2659–2665 (2016)

47. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: Proceedings of ICLR-15 (2015)

48. Zhong, H., Zhang, J., Wang, Z., Wan, H., Chen, Z.: Aligning knowledge and text
embeddings by entity descriptions. In: EMNLP, pp. 267–272 (2015)

https://doi.org/10.1007/978-3-642-15939-8_10
https://doi.org/10.1007/978-3-642-15939-8_10
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-63342-8_9
https://doi.org/10.1007/978-3-319-63342-8_9
https://doi.org/10.1007/978-3-642-21034-1_9
https://doi.org/10.1007/978-3-642-21034-1_9


Non-parametric Class Completeness
Estimators for Collaborative Knowledge

Graphs—The Case of Wikidata

Michael Luggen1(B), Djellel Difallah2, Cristina Sarasua3, Gianluca Demartini4,
and Philippe Cudré-Mauroux1
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Abstract. Collaborative Knowledge Graph platforms allow humans
and automated scripts to collaborate in creating, updating and inter-
linking entities and facts. To ensure both the completeness of the
data as well as a uniform coverage of the different topics, it is cru-
cial to identify underrepresented classes in the Knowledge Graph. In
this paper, we tackle this problem by developing statistical techniques
for class cardinality estimation in collaborative Knowledge Graph plat-
forms. Our method is able to estimate the completeness of a class—as
defined by a schema or ontology—hence can be used to answer ques-
tions such as “Does the knowledge base have a complete list of all {Beer
Brands—Volcanos—Video Game Consoles}?” As a use-case, we focus on
Wikidata, which poses unique challenges in terms of the size of its ontol-
ogy, the number of users actively populating its graph, and its extremely
dynamic nature. Our techniques are derived from species estimation and
data-management methodologies, and are applied to the case of graphs
and collaborative editing. In our empirical evaluation, we observe that (i)
the number and frequency of unique class instances drastically influence
the performance of an estimator, (ii) bursts of inserts cause some esti-
mators to overestimate the true size of the class if they are not properly
handled, and (iii) one can effectively measure the convergence of a class
towards its true size by considering the stability of an estimator against
the number of available instances.
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1 Introduction

Knowledge Graphs (KGs) play a critical role in several tasks including speech
recognition, entity linking, relation extraction, semantic search, or fact-checking.
Wikidata [20] is a free KG that is collaboratively curated and maintained by a
large community of thousands of volunteers. With currently more than 55M data
items and over 5.4K distinct properties that help describe these data items, Wiki-
data is the bridge between many Wikimedia projects (e.g., Wikipedia, Wikime-
dia Commons, and Wiktionary), as well as the interlinking hub of many other
Linked Data sources. Its data is consumed by end-user applications such as
Google Search, Siri, and applications to browse scholarly information1.

Being a collaborative, crowdsourced effort, Wikidata’s data is highly
dynamic. Editors can create items individually (e. g. a new instance representing
a natural disaster that just happened), or in bulk (e. g. importing data about all
the pieces of art in a city) about any topic that satisfies the notability criteria
defined by the community2. The open curation process leads to a KG evolving
dynamically and at various speeds. While such a process is beneficial for data
diversity and freshness, it does not guarantee the total (or even partial) complete-
ness of the data. Given that previous research has shown that data consumers
identify completeness as one of the key data quality dimensions [22], together
with accuracy and freshness, it is of utmost importance to provide mechanisms
to measure and foster data completeness in collaborative KGs.

In that context, the Wikidata community has already endorsed a series of
initiatives and tools that encourage efforts towards population completeness [24].
For instance, there are WikiProjects3 that aim at populating Wikidata with
bibliographic references, genes, or notable women.

With such a decentralized approach of independently-run data entry and
import efforts, it has become very difficult to understand and measure what is still
missing in Wikidata. While there is related work that measures the completeness
of item descriptions in Wikidata (see Sect. 2), there is (to the best of our knowl-
edge) no systematic approach to measure class completeness other than by man-
ually checking for candidate entities and facts to be inserted in the KG.

In this paper, we focus on the specific problem of estimating class com-
pleteness in a collaborative KG and experimentally evaluate our methods over
Wikidata. We limit our work to the family of finite classes, where the number of
instances in such classes is fixed. We take a data-driven approach to that prob-
lem by leveraging models from statistics and ecology used to estimate the size of
species [4]. We propose methods to calculate the cardinality of classes and build
estimates for the class convergence to the true value. We note that while we
focus our empirical study on Wikidata, our proposed methodology is applicable
to any other collaborative graph dataset with analogous characteristics, where
the action log describing its evolution is available. By calculating the expected

1 Scholia https://tools.wmflabs.org/scholia/.
2 Wikidata’s Notability https://www.wikidata.org/wiki/Wikidata:Notability.
3 Wikidata WikiProjects https://www.wikidata.org/wiki/Wikidata:WikiProjects.

https://tools.wmflabs.org/scholia/
https://www.wikidata.org/wiki/Wikidata:Notability
https://www.wikidata.org/wiki/Wikidata:WikiProjects
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class cardinality, we are able to measure class completeness given the number
of instances currently present in the KG for that class. We evaluate different
class size estimation methods against classes whose sizes are known through
trustworthy third-party sources (e.g., the number of municipalities in the Czech
Republic) and for which a complete ground truth exists. We then apply these
methods to other classes in order to generate completeness estimates for other
parts of the KG.

The main contributions of this paper are as follows:

– We show how the edit history of a KG can be used to inform statistical
methods adapted from species estimators (Sect. 3);

– We evaluate the effectiveness of statistical methods to estimate the class size
and KG completeness based on repeated sampling (Sect. 4);

– We provide tools to make Wikidata end-users (both human and applications)
aware of the incompleteness of many subparts in Wikidata (Sect. 4.4).

2 Related Work

Data Completeness in Knowledge Graphs is one of the most important data
quality dimensions for Linked Data [24]; it has also been acknowledged as a
key data quality indicator by the Wikidata community4. Different data cleaning
methods proposed by the research community have focused on different types of
completeness. For example, ReCoin [1] measures the relative completeness that
item descriptions have, compared to other items of the same type. It keeps track
of used properties and encourages editors to add new statements and foster more
homogeneous item descriptions. Galárraga et al. [9] investigate different signals
to predict the completeness of relations in KGs. The work of Soulet et al. [17]
introduces a method to estimate the lower bound of completeness in a KG.
The completeness is estimated through the missing facts to reach a distribution
according to Benfords Law. Kaffee et al. [12] study label completeness across
languages. The work by Wulczyn et al. [23] encourages Wikipedia editors to write
different language versions of existing articles. Tanon et al. [18] uses association
rules to identify missing statements, while Darari et al. [6] provide means to
describe and reason over RDF statement completeness. To complement these
methods, in this paper we consider the problem of class completeness in the KG.

Cardinality Estimation in Databases. Estimating the cardinality of a table in
relational databases is key to query performance optimization. This requires a
combination of database technology and statistical methods and allows to com-
pute the cost of database operations that are then used for optimization strate-
gies (e.g., storage allocation and data distribution) [13]. Similarly, cardinality
estimation is key to optimize query execution in RDF triplestores. The key dif-
ference with relational databases is the presence of many self-joins in queries over

4 Wikidata Quality RFC https://www.wikidata.org/wiki/Wikidata:Requests for com
ment/Data quality framework for Wikidata.

https://www.wikidata.org/wiki/Wikidata:Requests_for_comment/Data_quality_framework_for_Wikidata
https://www.wikidata.org/wiki/Wikidata:Requests_for_comment/Data_quality_framework_for_Wikidata
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RDF data. This requires custom cardinality estimation techniques for SPARQL
queries over RDF data [14]. In distributed databases, cardinality estimation is
also a necessary step to optimize query execution. The key aspect is estimating
the size of non-materialized views in a way that is accurate and provides statis-
tical bounds [15]. Our work addresses the different problem of determining the
cardinality of a class in a KG leveraging its edit history.

Data Completeness in Crowdsourcing. The problem of counting items and indi-
viduals also arises in a crowdsourcing setting. Previous work [7] developed mod-
els to estimate the size of the crowd in Amazon MTurk by taking into account
the propensity of a worker to participate in an online survey or micro-tasks,
respectively. That work used capture-recapture, a technique based on repeated
observations of the same worker participating in tasks. In our class size estima-
tion method, we estimate the size of data (not crowds) based on observations
made through another form of crowdsourcing, i.e., volunteering.

In a similar setting, Trushkowsky et al. [19] tackled the problem of enumer-
ating the list of all instances in a specific class through paid crowdsourcing. The
crowd workers were explicitly asked to provide a list of distinct items, for exam-
ple, “input the list of all ice cream flavors”. Similar to our work, the authors
used capture-recapture techniques but also had to deal with aspects unique to
a crowdsourcing environment. For instance, they introduced a “pay-as-you-go”
method to estimate the cost-benefit ratio of crowdsourcing additional tasks to
complement the current list. They looked at both open-world and closed-world
assumptions where the cardinality of the set is either known (e.g., “list of US
states”) or unknown and possibly unbounded (e.g, “ice cream flavors”). Their
methods are based on techniques borrowed from ecology research to count the
number of animals of a certain species, which we describe next.

Species Richness Methods. In the field of ecology and bio-statistics, several
capture-recapture techniques have been proposed to estimate the number of
existing species [2,21]. The idea of capture-recapture is to draw a sample at
random from a population and to estimate the number of unobserved items
based on the frequency of the observed items. Such approaches work well for
closed populations, but different techniques are required when we allow for open
populations. Open vs. closed population problems have fundamentally different
questions to answer. The former focus on estimating the rates of arrival and
departure, the latter is about size and propensity of capture. We restrict our
work to the realm of closed classes since it was shown that if a closed popula-
tion method is utilized when in fact there is a process of arrival/departure, then
closed estimators tend to overestimate. For example, the open-world-safe esti-
mator “Chao92” [4] provides more accurate estimations when more evidence is
available from a class. We present our results based on this and other estimators
in Sect. 4.

In our work, we look at the problem of estimating the size of a given class
(e.g., Volcanos) or composite classes (e.g., Paintings drawn by Vincent van Gogh)
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in Wikidata. We tap into the edit patterns of Wikidata volunteers [16], and apply
capture-recapture techniques to estimate the completeness of a given class.

3 Class Completeness Estimators

In this section, we introduce the family of estimators we leverage to tackle the
class estimation problem in collaborative KGs. First, we introduce the problem
statement and the assumptions that we make in the context of Wikidata by
defining the notion of class in Wikidata. Next, we introduce several statistical
estimators ordered by complexity and show how they build upon each other.
In this paper, we refer to entities as all the instances of a particular class e.g.,
“Cathedrals in Mexico”.

3.1 Problem Definition

Given a finite class C of instances IC = {I1, ..., IN}, our goal is to estimate
the number of instances of C i.e., N = |IC |. We note D the current count of
instances of a given class in the knowledge graph. A class is complete once D is
equal to the true class size N .

The capture-recapture data collection protocol that we follow is based on
n observations recorded during k successive sample periods. Each observation
relates to a direct or indirect change made to an instance of a specific class
during the sample period (i.e., one month). In practice, we extract mentions
from the edits in the knowledge graph. An edit is a change that either adds,
modifies or deletes a statement involving one or more entities. Every reference
of an entity in the subject or object position of a statement defines a mention
for the class that the mentioned entity belongs to. In the end, each mention is
composed of an entity (also called instance because it belongs to a class), the
class the instance belongs to, and a timestamp.

3.2 Interpreting Edit Activity Related to Classes

Given the edit history of a KG, we extract mentions as described in Listing 1.1:
For every edit, we create a mention if one of the entities referenced belongs to a
class. This is done on a per class basis.

Listing 1.1. Query on the Wikidata Graph illustrating the relation between edits and
mentions on the example of the Single Domain class City (Q515). (The properties
referenced with the edit prefix are not available in the public Wikidata endpoint.)

SELECT ?instance ?timestamp

WHERE { ?instance wdt:P31/wdt:P279* wd:Q515.

{ ?mention edit:subject ?instance. }

UNION

{ ?mention edit:object ?instance. }

?mention edit:timestamp ?timestamp.

}
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Timeline
{Sample Period

E3: Brandenburg Gate country Germany

E1: Ei el Tower country France

E4: Paris owner Ei el Tower

E6: Germany capital Berlin

E5: C.G. Langhans notable work Brandenburg Gate

E2: Ei el Tower architect S. Sauvestre

Sample #3 Sample #4 Sample #5 Sample #6 Sample #7

m1

m2

Fig. 1. The edits (Ei) of the Knowledge Graph (representing new edges) are leveraged
to identify mentions. The source and target of each edge are collected to create a
mention from the entity involved. Sample period #4 contains 3 edits, in which we
identify 6 mentions, from which we extract 2 observations for class monument (despite
the 3 mentions of entities of that class because m1 and m2 are only counted once), 1
observation for class country, 1 observation for class city and 1 observation for class
person.

We show in Fig. 1 how the mentions get aggregated per sample period on the
overall timeline. In a given sample period, we count one observation per instance
having at least one mention. With Xi being the frequency of observations relating
to instance Ii, we compute the frequency of frequencies fi =

∑N
j=1 1[Xj = i],

for 1 ≤ i ≤ k. For example, f1 is the number of instances observed only once
(singletons), f2 is the number of instances observed twice (doubletons) etc. With
this notation, f0 represents the number of instances that we never observed
and we seek to estimate. Each instance Ii ∈ IC of a given class has a unique
probability pi of being mentioned, with

∑
pi = 1.

To be able to leverage the statistical techniques described below, the dis-
tribution of classes among the observations is supposed to follow a stationary
multinomial distribution with unknown parameter p1, ..., pN . This leads to the
following assumptions:

1. The classes of interest are closed and countable as of the beginning of the
experiment;

2. The observations are independent events;
3. In a class, the observations are at random and “with replacement”;
4. The probability of observing an instance within a class does not change over

time.

First, by assuming that classes are closed, we reduce the scope of the ques-
tions we can answer. Tracking the changes (growth and shrinkage) of an open
class such as “Events in Paris” or “Sitting Presidents” would require a different
approach, data, and assumptions. Second, using a large number of edits made
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by different volunteers and scripts introduces a number of corner cases that we
need to work with. It is for example possible to observe dependant actions, for
example: systematically adding “Name” followed by “Date of Birth” or editors
correcting each other. While our assumption is a simplifying one, we have not
observed any significant correlations in the edits. This stems from the fact that
the volunteers are not restricted on which edits they perform and what entities
or classes they need to focus on. The third assumption comes in contrast to
the work in [19] where crowd workers were asked to list items that belong to
a particular class. Hence, a given crowd worker is answering from a population
of possible items (i.e., sampling “without replacement”). In our case, Wikidata
editors can create edits which repeatedly mention the same entity in the context
of their work. Finally, the fourth assumption is based on the fact that the obser-
vations we make are created through indirect references and are not directly
related to the classes themselves.

3.3 Non-parametric Estimators

The intuition behind the estimators that we consider is based on the frequency
of edits involving entities of a given class. To estimate the true class size we
consider non-parametric methods that primarily use the frequencies of observa-
tions among instances. Non-parametric methods do not assume any probability
distribution of pi among the instances of a given class.

Jackknife Estimators [Jack1]. Jackknife (or “leave-one-out”) methods have
been used to develop species richness estimators [11]. Similarly to k-fold cross
validation, we use observations from k−1 periods by removing observations from
one sample period from the data at a time and average the resulting pseudo-
estimates made on each sub-fold. We write f i

1 to denote the instances observed
only once in period i. We note that the number of distinct elements obtained
when dropping period i becomes D−i = D − f i

1.
We compute a pseudo estimate for each sub-sample of observations obtained

by dropping the i−th period using N̂−i = kD−(k−1)D−i, and averaging across
k. A closed form of the first and second order Jackknife estimators is given by
Eqs. (1) and (2) respectively [3]. We observe that N̂jack1 implies that the number
of unseen instances is approximately the same as the number of singletons after
a large number of sampling periods.

N̂jack1 = D +
k − 1

k
f1 (1)

N̂jack2 = D +
2k − 3

k
f1 − (k − 2)2

k(k − 1)
f2 (2)
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Sample Coverage and the Good-Turing Estimator [N1-UNIF]. The fol-
lowing methods are based on the concept of sample coverage which is a measure
of sample completeness.

S =
N∑

pi1[Xi > 0] (3)

Since the probabilities of observing the instances as well as the population size
are unknown, a popular estimate of the sample coverage is given by the Good-
Turing Estimator [10] Eq. (4). Effectively, this estimator relies on the comple-
ment of the ratio of singletons among the sample data and as an indicator of
true sample coverage. For example, if in past sample periods we have seen each
instance only once, the probability of observing a new instance by collecting a
new sample is 1. Conversely, if all the instances were seen more than once, i.e.,
f1 = 0 the probability of seeing a new instance in a new sample is reduced to 0.

Ŝ = 1 − f1
n

(4)

If all instances have the same probability of being observed, the population
size using the Good-Turing sample coverage is given by:

N̂n1-unif =
D

Ŝ
=

D

1 − f1
n

(5)

We draw the attention of the reader to the trade-off that singletons and
popular instances create. Typically, frequency counts will be heavily unbalanced
and will tend to over or under-estimate the true population size.

Singleton Outliers Reduction [SOR]. To mitigate the effect of the singletons
on a class, a popular approach is to threshold the number of singleton elements.
Trushkowsky et al. [19] proposed to limit the number of singletons introduced
by a given contributor to two standard deviations above the mean of singletons
introduces by other workers. We adapt this method to our scenario by limiting
the f1 count to fall within two standard deviations above the mean. The rationale
behind our choice is to strike a balance between low and high dispersion of f1
frequencies with respect to the set F of all frequencies that we observe.

N̂SOR =
D

1 − f̃1
n

(6)

with,
f̃1 = min

{
f1, 2σ + μ

}

μ =
F∑

∀j>1

fj

|F | − 1

σ =

√
√
√
√

F∑

∀j>1

(fj − μ)2

|F | − 2

(7)
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Abundance-Based Coverage Estimator [Chao92]. The work by Chao and
Lee [4] (hereon chao92 ) uses the concept of sample coverage introduced above
and assumes that the probabilities of capture can be summarized by their mean
i.e., p̄ =

∑
pi/N = 1/N and their coefficient of variation (or γ) with γ2 =

[N−1
∑

i(pi − p̄i)2]/p̄2.
However, since we do not have access to the probabilities pi and N , the coef-

ficient of variation is in turn estimated by using N̂unif (via the Good-Turing
estimator of sample coverage), and pi’s with the observed data and correspond-
ing fi.

γ2 = max
{

N̂unif

k∑

i=1

i(i − 1)fi

[n(n − 1)] − 1
, 0

}
(8)

The chao92 estimator is given by Eq. (9). We note that if the coefficient
of variation is close the zero, the estimator reduces to Eq. (5) indicating an
equiprobable scenario. Conversely, as γ grows, signaling more variability in the
probabilities of capture, we add a factor proportional to the number of single-
tons to the equiprobable estimate. We note that a high estimated coefficient of
variation combined with a high number of singletons might result in significant
overestimation.

N̂chao92 =
D

Ŝ
+

n(1 − Ŝ)
Ŝ

γ2 =
D + f1γ

2

Ŝ
(9)

3.4 Evaluation Metrics

We evaluate the robustness and convergence of our estimators using the following
metrics.

Error Metric. To evaluate the performance of the estimators in a controlled
setting, we leverage the error metric introduced in [19]. For reference, the φ error
metric aims at capturing the bias of the estimates as the absolute distance from
the ground truth, if available. The sample order weighs the bias terms, that is,
more recent errors get penalized more heavily. Conducting such an evaluation
requires the ground truth value of the class size N , as well as the estimates
calculated on the time-ordered sample periods.

φ =

∑k
i=1

∣
∣
∣N̂i − N

∣
∣
∣ i

∑
i

=
2
∑k

i=1 |N̂i − N |
k(k + 1)

(10)

Convergence Metric. Conversely, we introduce a new metric ρ that aims at
evaluating the convergence of a given estimate. This metric acts as the main
measurement tool in a real scenario where we do not have access to the ground
truth, e.g. when performing large-scale analyses of completeness across classes.
The metric is derived from φ, as we look for stability and close distance between
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the estimate and the number D of distinct values. In contrast to the error metric,
only the last w observed samples out of the full set of samples are used in the
convergence metric. The closer the metric is to zero, the more confident we are
that the class has converged to its complete set.

ρ =

∑k
i=k−w

|N̂i−Di|
Di

w
(11)

In the following section, we evaluate the presented estimators on a set of eight
classes from Wikidata. We report our findings using the error and convergence
metrics for the following estimators: Jack1 (N̂jack1)5, N1-UNIF (N̂N1-UNIF), SOR
(N̂SOR) and Chao92 (N̂chao92).

4 Experimental Evaluation

We discuss the results of an extensive experimental evaluation of the estimators
introduced in Sect. 3 below, starting with the description of the dataset we used.
We obtain the full edit history of the Knowledge Graph and collect the obser-
vations for all the classes we found in Wikidata. We then selected a sub-sample
of classes for which we have meaningful characteristics regarding the number
of observations spread over time. From this set, we randomly selected classes
and searched for an independent authoritative source that reports their true
cardinality. We set the sample period to 30 days, which results in at least one
observation per sample period on most classes we selected. We use the last four
samples (w = 4 which equals roughly 4 Months) of our results to calculate the
convergence metric. Note that if an instance was not assigned the correct class
we are not able to count it and we consider it as missing. This is a desirable
effect since a declarative query on Wikidata requesting the full list of a class will
not return such instances either.

4.1 Data

To evaluate our class completeness estimation methods, we use two different
datasets from Wikidata: First, we use the entity graph, provided by the Wikidata
JSON dumps as of Aug 18, 20186. The JSON dump contains the actual node
descriptions and the edges between the nodes. Second, we use the edit history as
of Oct 1, 2018 provided in the Wikibase XML Dump7. The edit history provides
the list of all actions performed on the KG including the creation of new items,
the update of labels and other values, as well as reverted edits8. For each action,
the XML dump provides the item changed, the user who made the change, the
timestamp, a comment describing the action, and a pointer to the state of the
graph before this action.
5 We do not report on Jack2 as it has been shown to over-estimate the population size

when the sample size is large [5], which we have experienced as well.
6 JSON Dump: https://doi.org/10.5281/zenodo.3268725.
7 Edit History: https://dumps.wikimedia.org/wikidatawiki/latest/.
8 List of all Wikibase actions: https://www.mediawiki.org/wiki/Wikibase/API/en.

https://doi.org/10.5281/zenodo.3268725
https://dumps.wikimedia.org/wikidatawiki/latest/
https://www.mediawiki.org/wiki/Wikibase/API/en
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Dataset Description: Entity Degree Distribution. To explore the charac-
teristics of the dataset, we look at the graph as a whole (Fig. 2) and observe the
constant overall growth of entities with different in and out-degrees at different
points in time.

Fig. 2. The evolution of Wikidata: a temporal view on how the in- and out-degree
distributions have evolved since the inception of the project.

Classes and Instances in the Case of Wikidata. Wikidata can be inter-
preted as an RDF graph [8], with a data model that differentiates between
entities (including classes and instances) and properties. We define classes and
instances in the Wikidata graph G = (V,E) as follows:

Single Domain Classes. In Wikidata, edges with the explicit label EP31:
instanceOf and EP279: subclassOf explicitly define classes.9 The target vertex
Vt which can be reached by following the edge with label EP31: instanceOf from
the source vertex Vs are part of the classes C. Super classes collect all instances
of a class C which follow the edge EP279: subclassOf once or multiple times.

Listing 1.2. Retrieves all instances of a specified single domain.

SELECT ?instance

WHERE { ?instance wdt:P31/wdt:P279* wd:Q515. }

To extract all instances of class CQ515 : City we issue Query 1.2 against the
Wikidata endpoint.

9 https://www.wikidata.org/wiki/Wikidata:WikiProject Ontology/Classes.

https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Classes
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Composite Classes. We create composite classes by joining a class C on one
or multiple properties E and their target instances V . As an example, we can
join class CQ515: City with property EP17: country and target VQ142: France on
the instances of CQ515. The result is a composite class of all Cities in France
CQ515��P17,Q142.

Listing 1.3. Retrieves all instances of a composite class.

SELECT ?instance

WHERE { ?instance wdt:P31/wdt:P279* wd:Q515.

?instance wdt:P17 wd:Q142. }

As an example, Query 1.3 selects instances from the aforementioned composite
class CQ515��P17,Q142.

Data Preparation. The massive size of the edit history made it impossible
to extract all observations from a database efficiently. Thus, in a first step we
pre-process the edit history. We select all edits involving at least two entities V
which therefore could be used to extract observations. The resulting intermediate
data provides more than 161 million edits containing the source entity Vs, the
property label of the connecting E, the target entity Vt, as well as the timestamp
and the user. In a second step, we pre-processed the JSON Dump into an in-
memory graph to get fast access to all instances V and properties E (with
property labels) of the Wikidata Graph. This gives us information on which
entity V belongs to which class C. Finally, to extract the observations pointing
to an entity, we join the Wikidata edits with the in-memory Graph.

We filter out the observations belonging to a specific class C by joining the
observations pointing to an entity which in turn point to a class. The resulting
data, grouped by class, consists of 370 million distinct observations.

4.2 Results

Figure 3 shows the results of the various estimators we consider. The top part of
each plot represents the results of the estimators for a specific domain, as well as
the lower bound given by the absolute number of distinct instances observed. The
x-axis represents the number of sample periods that we obtain in chronological
order to perform the class size estimation. At each sample period, we run an
estimator using all the data samples collected so far. The dashed line indicates
the ground truth size. The bottom part of each plot shows a comparison of two
indicators: Distinct, the distinct number of instances up to the sample period
and f1, the proportion of instances observed exactly once, both normalized to
the distinct number of instances retrieved in the end. These indicators are key to
our methods and serve the purpose of explaining the behavior of each estimator
with respect to the properties of the samples. In the following, we discuss these
results and highlight key properties of each set of observations.
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Fig. 3. Estimators used on Single Domain (a)–(f) and Composite classes (g)–(h).

Size Estimates on Single Domain Classes. First, we inspect the results of
estimating the size of a class when the query involves a single class definition.
The first five figures show incomplete classes. In Fig. 3(a) we show the results for
the small-sized class Video Game Consoles (N = 184)10. We note how Chao92
is particularly intolerant to the small class size and overestimates. Figure 3(b)
shows the estimators for the class Volcanos (N = 1500)11. Figure 3(c), for
Skyscrapers (N = 4669)12, shows a class that is almost complete. The esti-
mators are overshooting, because the f1 on the available instances is high. In
Fig. 3(d) Hospitals (N = 12090)13, we observe how large classes also bring larger
numbers of observations. This in turn helps the estimators to get stable before
completeness is reached. A massive class is represented with Fig. 3(e) Mountains
(N = 1000809)14. We are aware that the ground truth, even if well researched
by the source, is still rather suggestive. Nevertheless, the estimators suggest that
there are missing instances. Finally, Fig. 3(f) Municipalities of the Czech Repub-
lic (N = 6258)15 shows a class which was complete early (around Sample 10).
All estimators slowly converge to the ground truth.

10 https://en.wikipedia.org/wiki/List of home video game consoles.
11 https://www.usgs.gov/faqs/how-many-active-volcanoes-are-there-earth.
12 http://www.skyscrapercenter.com/.
13 https://gateway.euro.who.int/en/indicators/hfa 471-5011-number-of-hospitals/.
14 https://peakvisor.com/en/news/how many mountains on earth.html.
15 https://www.oecd.org/regional/regional-policy/Subnational-governments-in-OECD

-Countries-Key-Data-2018.pdf.

https://en.wikipedia.org/wiki/List_of_home_video_game_consoles
https://www.usgs.gov/faqs/how-many-active-volcanoes-are-there-earth
http://www.skyscrapercenter.com/
https://gateway.euro.who.int/en/indicators/hfa_471-5011-number-of-hospitals/
https://peakvisor.com/en/news/how_many_mountains_on_earth.html
https://www.oecd.org/regional/regional-policy/Subnational-governments-in-OECD-Countries-Key-Data-2018.pdf
https://www.oecd.org/regional/regional-policy/Subnational-governments-in-OECD-Countries-Key-Data-2018.pdf
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Table 1. Performance evaluation of the estimators compared to the lower bound of
the count of distinct instances. For each estimator we report the error φ and the
convergence ρ. Results in bold indicates the lowest error for a given estimator. N is
the groundtruth and D is the number of distinct instances on the last sample.

N1-UNIF Chao92 Jack1 SOR Distinct

Video Game Consoles φ 57.7 79.3 27.4 36.0 64.7

(N = 184, D = 144) ρ 0.0403 1.0096 0.2929 0.5529

Volcanos φ 468.3 395.4 339.7 415.8 550.2

(N = 1500, D = 1273) ρ 0.0739 0.2300 0.2545 0.1700

Skyscrapers φ 678.6 826.0 758.4 650.4 1109.1

(N = 4669, D = 4222) ρ 0.1133 0.2560 0.3053 0.1482

Hospitals φ 2,462 2,080 1,538 2,663 3945

(N = 12090, D = 10215) ρ 0.0760 0.1126 0.1875 0.1126

Mountains φ 671,874 656,653 643,616 709,178 751,938

(N = 1000809, D = 444222) ρ 0.3255 0.4404 0.4503 0.1359

Municipalities of the CZ φ 22.2 31.3 86.3 31.3 26.6

(N = 6258, D = 6256) ρ 0.0002 0.0008 0.0029 0.0008

Cathedrals of Mexico φ 37.2 35.0 31.7 36.6 43.1

(N = 93, D = 63) ρ 0.0159 0.0162 0.0463 0.0162

Paintings by V. van Gogh φ 184.8 183.1 173.0 189.1 204.9

(N = 864, D = 848) ρ 0.0027 0.0028 0.0119 0.0028

Size Estimates on Composite Classes. As composite classes are by defi-
nition a subset of instances, compared to single domain classes, the associated
observations can also drop to low numbers. Figure 3(g) shows such a case where
the number of observations involving instances of a CQ2977��P17,Q96 Cathedrals
in Mexico (N = 93)16 is n = 387. Figure 3(h) CQ3305213��P170,Q5582 Paintings
by Vincent van Gogh (T = 864)17 is an example which displays the differ-
ent phases of an estimator can encounter until class completeness. Starting by
growing slowly at first with the addition of the first few elements. We observe
intermittent overshooting when a large number of instances are added in a batch
process. The final phase is a fast convergence towards the value of the ground
truth.

Performance Evaluation. For all our experiments, we computed the error and
convergence metrics introduced in Sect. 3.4 to obtain quantitative measurements
on how the estimators perform and how they can be used. Table 1 summarizes
the evaluation results across all classes considered in our work. We observe that
Jack1 and SOR consistently achieve the lowest error rate across all classes.

16 https://en.wikipedia.org/wiki/List of cathedrals in Mexico.
17 https://de.wikipedia.org/wiki/Vincent van Gogh#cite note-Thomson 84-1.

https://en.wikipedia.org/wiki/List_of_cathedrals_in_Mexico
https://de.wikipedia.org/wiki/Vincent_van_Gogh#cite_note-Thomson_84-1
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Table 2. Lists of 10 randomly picked examples. Left with a low ρ suggesting a complete
class, and right a high ρ suggesting an incomplete class.

4.3 Discussion

Our experimental results unveiled key properties in terms of the sensitivity and
conditions under which some estimators perform better than others. Generally
speaking, all estimators beat the lower bound of distinct numbers in the error
metric φ. The exception is the class (Municipalities of the CZ) which converged
early on, and for which N1-UNIF still beats the error of the distinct values.
However, the other estimators lose against the lower bound (distinct) in this
example on the number of instances because they over estimate the class size in
the early samples before the class reaches completeness. We observe that more
conservative estimators N1-UNIF, Chao92 perform worse then Jack1 and SOR
for incomplete classes, which is why we recommend the last two in the end
for the estimation of the class size. The convergence metric can be used as an
indicator to distinguish complete from incomplete classes without requiring the
knowledge of the real class size. In Table 1, we see how the convergence metrics ρ
are low (<0.001) for complete classes. On the other hand for incomplete classes
ρ is comparatively high (>0.1). Table 2 lists ten randomly-picked classes, along
with the convergence on SOR and the number of distinct instances, for a low
and high ρ values suggesting complete and incomplete classes respectively. These
lists illustrate how our convergence metric can be leveraged to identify gaps in
the KG.

4.4 Additional Material and Tools

The results on all classes in Wikidata are available at http://cardinal.exascale.
info. We also release our Python code implementing the data processing pipeline,
all estimators and metrics as an open source package18. This includes tools to
seek for incomplete classes based on the convergence metric. Finally, we provide
the pre-processed data at every step of the processing pipeline, as well as the
final results for each dataset.
18 https://github.com/eXascaleInfolab/cardinal/.

http://cardinal.exascale.info
http://cardinal.exascale.info
https://github.com/eXascaleInfolab/cardinal/
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5 Conclusions and Future Work

In this work, we introduced a methodology to estimate class sizes in a collabo-
rative KG and evaluated it over Wikidata. We showed how collaborative editing
dynamics create a trove of information that can be mined to extract informa-
tion about data access, edits, data linkage, and overall graph growth. We relied
on the edit history over six years of activity in Wikidata to collect capture-
recapture observations related to a particular entity within the class of interest.
We reviewed, applied, and evaluated a battery of non-parametric statistical tech-
niques that leverage frequency statistics collected from the data to estimate the
completeness of a given class.

Our experimental results show that many estimators yield accurate estimates
when provided with enough observations that reflect the actual underlying dis-
tribution of the instances of a class. However, some estimators like Chao92 tend
to be less robust to bursts of newly discovered instances. Finally, based on our
results, we provided a set of practical recommendations to use convergence metric
in conjunction with estimators to decide whether a particular class is complete
or to perform large-scale completeness analyses. Our work has direct implica-
tions for both Wikidata editors and data consumers. We can provide convergence
statistics on the estimated class completeness by domains to point to knowledge
gaps. Such statistics could aid newcomers, who often feel insecure about what
to edit, to decide what to contribute or what to focus on.

In future work, we plan to leverage statistics on page views showing the atten-
tion that specific groups of items receive within the KG to inform estimators.
We would also like to develop parametric models that assume a particular edit
probability distribution. This is especially applicable to domains with a consid-
erable bias towards popular entities such as Humans and Musicians. Another
area of potential development is the usage of completeness estimators to detect
systematic errors in Wikidata: While exploring the data, we have observed many
cases of misclassification, which we conjecture as being the result of the growing
complexity of the Wikidata ontology that includes more than forty thousand
classes at the time of writing.
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Abstract. Answering simple questions over knowledge graphs is a well-
studied problem in question answering. Previous approaches for this task
built on recurrent and convolutional neural network based architectures
that use pretrained word embeddings. It was recently shown that fine-
tuning pretrained transformer networks (e.g. BERT) can outperform pre-
vious approaches on various natural language processing tasks. In this
work, we investigate how well BERT performs on SimpleQuestions

and provide an evaluation of both BERT and BiLSTM-based models in
limited-data scenarios.

1 Introduction

Question Answering (QA) over structured data aims to directly provide users
with answers to their questions (stated in natural language), computed from
data contained in the underlying database or knowledge graph (KG). To this
end, a knowledge graph question answering (KGQA) system has to understand
the intent of the given question, formulate a query, and retrieve the answer
by querying the underlying knowledge base. The task of translating natural
language (NL) inputs to their logical forms (queries) is also known as semantic
parsing. In this work, we focus on answering simple questions (requiring the
retrieval of only a single fact) over KGs such as Freebase [2].

The availability of large quantities of high-quality data is essential for suc-
cessfully training neural networks on any task. However, in many cases, such
datasets can be difficult and costly to construct. Fortunately, the lack of data
can be mitigated by relying on transfer learning from other tasks with more
data. In transfer learning, (neural network) models are first trained on a dif-
ferent but related task, with the goal of capturing relevant knowledge in the
pretrained model. Then, the pretrained model is finetuned on the target task,
with the goal of reusing the knowledge captured in the pretraining phase to
improve performance on the target task.
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 470–486, 2019.
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Recently proposed transfer learning methods [5,8,10,15,17,18] show that sig-
nificant improvement on downstream natural language processing (NLP) tasks
can be obtained by finetuning a neural network that has been trained for lan-
guage modeling (LM) over a large corpus of text data without task-specific
annotations. Models leveraging these techniques have also shown faster conver-
gence and encouraging results in a few-shot or limited-data settings [8]. Owing
to their benefit, the use of this family of techniques is an emerging research topic
in the NLP community [10]. However, it has received little attention in KGQA
research so far.

The main focus of our work is to investigate transfer learning for question
answering over knowledge graphs (KGQA) using models pretrained for language
modeling. For our investigation, we choose BERT [5] as our pretrained model
used for finetuning, and investigate transfer from BERT using the SimpleQues-

tions [3] task. BERT is a deep transformer [20] network trained on a masked
language modeling (MLM) task as well as a subsequent sentence pair classifica-
tion task. We use SimpleQuestions because it is a very well-studied dataset
that characterizes core challenges of KGQA, and is, to the best of our knowledge,
the largest gold standard dataset for KGQA. The large size of the dataset is par-
ticularly appealing for our study, because it allows us to investigate performance
for a wider range of sizes of the data used for training. Promising results with
BERT for KGQA have been very recently reported on other KGQA datasets [12].
However, we found a thorough investigation of the impact of data availability
and an analysis of internal model behavior to be missing, which would help to
better understand model behavior in applications of KGQA.

The contributions of this work are as follows:

– We demonstrate for the first time the use of a pretrained transformer network
(BERT) for simple KGQA. We also propose a simple change in our models
that yields a significant improvement in entity span prediction compared to
previous work.

– We provide a thorough evaluation of pretrained transformers on Simple-

Questions for different amounts of data used in training and compare with
a strong baseline based on bidirectional Long-Short-Term-Memory [7] (BiL-
STM). To the best of our knowledge, our work is the first to provide an
analysis of performance degradation with reduced training data sizes for Sim-
pleQuestions and KGQA in general.

– We try to provide an understanding of the internal behavior of transformer-
based models by analyzing the changes in internal attention behavior induced
in the transformer during finetuning.

We perform our study using the general framework used in recent works [13,
16], where simple question interpretation is decomposed into (1) entity span
detection, (2) relation classification, and (3) a heuristic-based post-processing
step to produce final predictions. In this work, we particularly focus on the
first two subtasks, providing detailed evaluation results and comparison with a
baseline as well as [13].
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2 Approach

We follow the general approach outlined in BuboQA [13], which decomposes sim-
ple question interpretation into two separate learning problems: (1) entity span
detection and (2) relation classification. Recent works on SimpleQuestions

show that this general approach, followed by a heuristic-based entity linking
and evidence integration step can achieve state-of-the-art performance [13,16],
compared to earlier works [4,6,11,24] that investigated more complicated mod-
els.

In summary, our approach follows the following steps at test time:

1. Entity Span Detection and Relation Prediction: The fine-tuned BERT model
is used to perform sequence tagging to both (1) identify the span s of the
question q that mentions the entity (see Sect. 2.2) and (2) predict the relation
r used in q (see Sect. 2.3). In the example “Where was Michael Crichton
born?”, s would be the span “Michael Crichton”. The tagger is trained using
annotations automatically generated from the training data and entity labels
in Freebase.

2. Entity Candidate Generation: We retrieve entities whose labels are similar
to the predicted entity span s using an inverted index1 and rank them first
by string similarity (using fuzzywuzzy) and then by the number of outgoing
relations. For our example, the resulting set of entity candidates will contain
the true entity for Michael Crichton, the writer (corresponding to Freebase
URI http://www.freebase.com/m/056wb). Note that the true entity does not
necessarily rank highest after the retrieval phase.

3. Query Ranking: Given the relations predicted in Step 1, and the set of entities
from Step 2, the entity-relation pairs are re-ranked as detailed in Sect. 2.4.
After ranking entity-relation pairs, we take the top-scoring pair, from which
we can trivially generate a query to retrieve the answer from the KG.

Whereas previous works experimented with recurrent and convolutional neu-
ral network (RNN resp. CNN) architectures, we investigate an approach based
on transformers. Several existing works train separate models for the two learn-
ing tasks, i.e. entity span detection and relation prediction. Instead, we train a
single network for both tasks simultaneously.

2.1 Background: Transformers and BERT

Transformers: Transformer [20] networks have been recently proposed for
NLP tasks and are fundamentally different from the previously common RNN
and CNN architectures. Compared to RNNs, which maintain a recurrent state,
transformers use multi-head self-attention to introduce conditioning on other
timesteps. This enables the parallel computation of all feature vectors in a trans-
former layer, unlike RNNs, which process the input sequence one time step at a

1 The inverted index maps words to entities whose labels contain that word.

http://www.freebase.com/m/056wb
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time. And unlike RNNs, which have to store information useful for handling long-
range dependencies in its hidden state, the transformer can access any timestep
directly using the self-attention mechanism.

More specifically, transformers consists of several layers of multi-head self-
attention with feedforward layers and skip connections. Multi-head self-attention
is an extension of the standard attention mechanism [1], with two major differ-
ences: (1) attention is applied only within the input sequence and (2) multi-
ple attention heads enable one layer to attend to different places in the input
sequence.

Let the transformer consist of L layers, each (l ∈ {1, . . . , L}) producing N
output vectors xl+1

1 , . . . ,xl+1
N , which are then used as inputs in the l + 1-th

transformer layer. The inputs x1
1, . . . ,x

1
N to the first transformer layer are the

embeddings of the input tokens x1, . . . , xT .
The attention scores of the l-th layer are computed as follows:

al,h,i,j = (xl
iW

(l,h)
Q )�(xl

jW
(l,h)
K ) , (1)

αl,h,i,j =
eah,l,i,j

∑N
k=1 eah,l,i,k

, (2)

where αl,h,i,j is the self-attention score for head h ∈ {1, . . . , M} in layer l between
position i (corresponding to xl

i) and position j (corresponding to xl
j) and is

implemented as a softmax of dot products between the input vectors xl
i and

xl
j , after multiplication with the so called query and key projection matrices for

head h of layer l (W (l,h)
Q and W

(l,h)
K , respectively).

Intermediate representation vectors for each input position are computed
as the concatenation of the M heads’ summary vectors, each computed as a
αl,h,i,j-weighted sum of input vectors xl

1, . . . ,x
l
N , which are first projected using

the matrix W
(l,h)
V :

hl
i = [

N∑

j=1

αl,h,i,j · xl
jW

(l,h)
V ]h=1..M . (3)

The output of the l-th transformer layer (which is also the input to the l + 1-th
layer) is then given by applying a two-layer feedforward network with a ReLU
activation function on hl

i, that is:

xl+1
i = max(0,hl

iW
(l)
1 + b

(l)
1 )W (l)

2 + b
(l)
2 . (4)

For more details, that were omitted here, we refer the reader to the work
of Vaswani et al. [20] and other excellent resources, like the Illustrated Trans-
former2.

2 http://jalammar.github.io/illustrated-transformer/.

http://jalammar.github.io/illustrated-transformer/
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BERT: Following previous work on transfer learning form pretrained
transformer-based language models [17], Devlin et al. [5] pretrain transformers
on a large collection of unsupervised language data, leading to a model called
BERT. However, in contrast to a classical, left-to-right language model used
by OpenAI-GPT [17], BERT builds on pretraining a masked language model
(MLM). The MLM pretraining is done by randomly masking words, i.e. by ran-
domly replacing them with [MASK] tokens, feeding the resulting partially masked
sequence into the model and training the model to predict the words that have
been masked out, given the other words. This enables BERT’s feature vectors
to include information both from the preceding tokens as well as the following
tokens, whereas the left-to-right LM pretraining of OpenAI-GPT constrained the
model to look only at the past. In addition to the MLM task, BERT is also pre-
trained on a sentence pair classification task. Specifically, it is trained to predict
whether one sentence follows another in a text. This pre-training task is useful
for downstream tasks such as entailment, which is formulated as classification of
sentence pairs, but also for single sentence classification.

BERT for text works as follows. Given a sentence (e.g. “What songs have
Nobuo Uematsu produced”), it is first tokenized to (sub) word level using
a WordPiece [21] vocabulary (→ [“What”, “songs”, “have”, “no”, “#buo”,
“u”, “#ema”, “#tsu”, “produced”]). More common words are taken as words
(“What”, “songs”, “have”), while uncommon words are split into subword units
(“nobuo” → [“no”, “#buo”]). This method significantly reduces vocabulary size
and the amount of rare words without dramatically increasing sequence length.
The input sequence is also padded with a [CLS] token at the beginning and a
[SEP] token at the end.

The WordPiece token sequence is then embedded into a sequence of vec-
tors. Position3 (and sequence type4) embedding vectors are added to the token
embeddings. The resulting embedding vectors are fed through the transformer,
which uses several layers of multi-head self-attention and feedfoward layers, as
described above. The output vectors for each token can be used for sequence
tagging tasks, while the vector associated with the [CLS] token at the begin-
ning of the sequence is assumed to capture relevant information about the input
sequence as a whole, since it has been pre-trained for sentence pair classification.

2.2 Entity Span Prediction

In this step, we intend to identify the span of tokens in the input question refer-
ring to the subject entity mentioned in it. Previous works treated this problem
as a binary I/O sequence tagging problem, and explored the use of BiLSTM,
conditional random fields (CRFs), and combined BiLSTM-CRF taggers. The
sequence tagging model is trained to classify each token in the input sequence

3 The use of self-attention requires explicit position indication since this information
can not be implicitly inferred, like in RNNs.

4 BERT uses two sequence types: first-sentence and second-sentence, where the latter
is only used for sentence-pair inputs and is thus irrelevant for our task.
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as belonging to the entity span (I) or not (O). Instead, we treat span predic-
tion as a classification problem, where we predict the start and end positions of
the entity span using two classifier heads. This approach assumes that only one
entity is mentioned in the question and that its mention is a single contiguous
span. Formally, the start-position classifier has the following form:

p(i = START|x1, . . . , xN ) = ex
L+1
i

�
wSTART

∑N
j=1 e

x
L+1
j

�
wSTART

, (5)

where xL+1
i is the feature vector produced by BERT’s topmost (L-th) layer

for the i-th token of the sequence and wSTART is the parameter vector of the
start position classifier. End position prediction works analogously, applying a
different parameter vector, wEND.

2.3 Relation Prediction

Relation prediction can be considered a sequence classification task since the
SimpleQuestions task assumes there is only a single relation mentioned in
the question. Thus, for relation prediction, we use BERT in the sequence clas-
sification setting where we take the feature vector xL+1

CLS = xL+1
1 produced for

the [CLS]5 token at the beginning of the input sequence and feed it through a
softmax output layer to get a distribution over possible relations:

p(r = Ri|x1, . . . , xN ) =
ex

L+1
CLS

�
wRi

∑NR

k=1 ex
L+1
CLS

�
wRk

, (6)

where wRi
is the vector representation of relation Ri

6.
Previous works [16,23,24] propose using the question pattern instead of the

full original question in order to reduce noise and overfitting. They do this by
replacing the predicted entity span with a placeholder token. Doing this would
require training a separate model for relation prediction and introduce depen-
dency on entity span prediction. In our BERT-based approach, we chose to train
a single model to perform both entity span prediction and relation prediction
in a single pass. Thus, we do not replace the entity span for relation prediction.
We also experimented with training a separate transformer with (1) setting the
attention mask for all self-attention heads such that the entity tokens are ignored
and (2) replacing the entity mention with a [MASK] token. However, both meth-
ods failed to improve relation classification accuracy in our experiments.

Training a separate relation classifier network without entity masking yields
results equivalent to simply training a single network for both entity span pre-
diction and relation prediction.

5 Before using BERT, the input sequence is first tokenized into WordPieces, a [CLS]

token at the beginning and a [SEP] token is added at the end.
6 The vector wRi is a trainable parameter vector, unique for relation Ri (and is thus
not presented by subsymbolic encodings as it is for example the case in [11,24]).
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2.4 Logical Form Selection

To get the final logical forms, we take the top K (where K = 50 in our experi-
ments) entity candidates during entity retrieval and for each, we take the highest-
scored relation that is connected to the entity in the knowledge graph. We rank
the entity-predicate candidate pairs first based on the string similarity of any
of their entity labels/aliases with the identified span, breaking ties by favouring
entity-predicate pairs with predicates with higher prediction probability under
the BERT model, and the remaining ties are broken by entity in-degree (the
number of triples the entity participates in as an object).

3 Experimental Setup

We use the small uncased pretrained BERT model from a PyTorch implemen-
tation of BERT7. The whole transformer network and original embeddings were
finetuned during training. For training, the Adam optimizer [9] was employed
and we experimented with different learning rate schedules. Most of the final
results reported use a cosine annealing learning rate schedule with a short
warmup phase of approximately 5% of total training updates. We indicate if
reported results rely on a different schedule.

We used PyTorch 1.0.1 and trained on single Titan X GPU’s. The source
code is provided at https://github.com/SmartDataAnalytics/semparse-sq.

3.1 Metrics

To evaluate the entity span prediction model, we compute the average8 F1 and
span accuracy9 on word level. Since BERT operates on subword-level (Word-
Piece), we first need to obtain word-level metrics. To do this, we first transform
the predictive distributions over subword units to distributions over words by
summing the probabilities assigned to subword units of a word. Then, we take
the argmax over the resulting distribution over words.

We also compute F1 on word level over the entire dev/test datasets to com-
pare our numbers to BuboQA [13]. Even though the difference between the
dataset-wide F1 and the averaged F1 is small, we believe the latter is more
informative, since the contribution of every example is equal and independent
of the span lengths.10 (lower entropy of the predictive categorical distribution).

For relation classification, we report classification accuracy.

7 https://github.com/huggingface/pytorch-pretrained-BERT.
8 F1, precision and recall are computed separately for each example based on span
overlaps and then averaged across all examples in the dev/test set.

9 Span accuracy is one only for examples where all token memberships are predicted
correctly.

10 The implementation of F1 in BuboQA’s evaluation code seems to be computing F1
based on precision and recall computed over the dataset as a whole, thus letting
examples with longer spans contribute more towards the final score.

https://github.com/SmartDataAnalytics/semparse-sq
https://github.com/huggingface/pytorch-pretrained-BERT
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3.2 Baseline

As a baseline, we use a BiLSTM start/end classifier for entity span predic-
tion and a BiLSTM sequence classifier for relation prediction. The BiLSTM
start/end classifier works on word level and uses the same Glove [14] embed-
dings as BuboQA [13]. We use the same output layer form as our BERT-based
model, where instead of performing a binary I/O tagging of the input sequence,
we simply predict the beginning and end positions of the span using a soft-
max over sequence length (see also Eq. 5). Using this small change significantly
improves the performance of our baseline for entity span prediction, as shown in
Sect. 4.

For relation classification, we use a different BiLSTM, taking the final state
as the question representation vector and using it in a classifier output as in
BuboQA [13] – comprising of an additional forward layer, a ReLU, a batch
normalization layer and a softmax output layer. We did not replace the entity
mentions with an entity placeholder (like [16]), and instead fed the original
sequences into the relation classification encoder.

Even though these BiLSTM baselines are quite basic, previous work has
shown they can be trained to obtain state-of-the-art results [13,16].

Both BiLSTMs were trained using a cosine annealing learning rate schedule
as the one used to train our BERT-based model.

As shown in Sect. 4, our baselines perform better than or on par with equiv-
alent networks used in BuboQA [13].

3.3 Effect of Limited Training Data

In order to further illustrate the usefulness of fully pretrained models for Sim-

pleQuestions and KGQA, we perform a series of experiments to measure how
performance degrades when fewer examples are available for training. Simple-
Questions is a fairly large dataset containing 75k+ training examples. With
abundant training data available, a randomly initialized model is likely to learn
to generalize well, which might make the advantage of starting from a fully pre-
trained model less pronounced. The large size of SimpleQuestions makes it
possible to study a wider range of limited-data cases than other, smaller datasets.

We run experiments for both BERT and our baseline BiLSTM with different
fractions of the original 75k+ training examples retained for training. Examples
are retained such that the number of relations not observed during training is
minimized, favouring the removal of examples with most frequently occurring
relations. We assume that this strategy, compared to random example selection,
should not have a big effect on entity span prediction accuracy but should mini-
mize errors in relation prediction due to unseen relation labels, and create more
balanced datasets for more informative performance assessment. We report span
accuracy and relation accuracy on the validation set of SimpleQuestions as a
function of the fraction of data retained in Table 3. For relation prediction, we
only report experiments where the retained examples cover all relations observed
in the full training dataset at least once.
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4 Results and Analysis

For the two learning tasks, we observe significant improvements from using
BERT, as shown in Table 1a for entity span prediction and Table 1b for relation
prediction (see Sect. 4.1). Section 4.2 talks about experiments with fewer training
data, Sect. 4.3 shows component performance on the test set. Final results for
the whole simple QA task are discussed in Sect. 4.4. Finally, we conclude with
an analysis of the attentions in the transformer in Sect. 4.5.

4.1 Full Data Results

From Table 1a, we can see that BERT outperforms our BiLSTM baseline by
almost 2% accuracy (evaluated on validation set), although the difference in F1
is smaller. Compared to BuboQA [13], we obtain much higher dataset-wide F1
scores, which we attribute to our start/end prediction rather than I/O tagging
used by previous works, including BuboQA.

The improvement is less pronounced in relation classification accuracies
(see Table 1b), where our baseline BiLSTM achieves the same results as those
reported by BuboQA [13] for a CNN. Our BERT-based classifier beats our BiL-
STM by almost 1% accuracy.

Table 1. Component performance evaluation results, trained on all available training
data, measured on validation set. (a) Entity span prediction performance, measured
by span accuracy, average span F1 and dataset-wide F1 (F1*), all on word level. (b)
Relation prediction performance, measured by accuracy (R@1).

Accuracy Avg. F1 F1*

BiLSTM [13] – – 93.1
CRF [13] – – 90.2

BiLSTM (ours) 93.8 97.0 97.1
BERT (ours) 95.6 97.8 97.9

(a) Entity span prediction.

Accuracy

BiGRU [13] 82.3
CNN [13] 82.8

BiLSTM (ours) 82.8
BERT (ours) 83.6

(b) Relation prediction.

Table 2 shows entity retrieval performance for different numbers of candi-
dates, compared against the numbers reported in [13]. The recall at 50 is 2.71%
higher. Please note that we also use entity popularity during retrieval to break
ties that occur when multiple retrieved entities have the same name (and thus
the same string similarity—the main sorting criterion).

4.2 Effect of Limited Training Data

From the limited-data experiments for entity span prediction shown in Table 3
(top part), we can conclude that a pretrained transformer is able to generalize



Pretrained Transformers for Simple Question Answering 479

Table 2. Entity recall on validation set.

R@N BiLSTM [13] BiLSTM (ours) BERT (ours)

1 67.8 76.45 77.17

5 82.6 87.46 88.18

20 88.7 91.47 92.13

50 91.0 93.07 93.71

150 – 94.88 95.40

much better with fewer examples. In fact, with only 1% of the original train-
ing data used (757 examples), BERT reaches a best span prediction accuracy
of 85.4% on the validation set, corresponding to an average F1 of 93.2. In con-
trast, our BiLSTM baseline achieves only 74.0% span prediction accuracy on
the validation set, corresponding to 88.6 F1. In an extremely data-starved sce-
nario, with only 0.03% of the original dataset—corresponding to just 22 training
examples—the best validation accuracy we observed for BERT was 62.5%, cor-
responding to 80.9 F1. In the same setting, we were not able to obtain more than
33.1% accuracy with our BiLSTM baseline. Overall, we can clearly see that the
degradation in performance with less data is much stronger for our Glove-based
BiLSTM baseline.

Limited-data experiments for relation prediction (shown in Table 3) (bottom
part) reveals that relation classification is more challenging for both our BiL-
STM and BERT-based models. However here too, BERT seems to degrade more
gracefully than our Glove+BiLSTM baseline.

Table 3. Entity span detection accuracies (top half) and relation prediction accuracies
(bottom half) as a function of fraction of training data retained. Evaluated on the entire
validation set. (*) indicates a cosine learning rate schedule with restarts—in extremely
low data scenarios for relation classification, this seems to yield better results than the
cosine learning rate schedule without restarts that is used everywhere else.

0.03% 0.2% 1% 2.5% 5% 10% 25% 50% 75% 100%

(22) (151) (757) (1k9) (3k8) (7k6) (18k9) (37k9) (56k8) (75k7)

Entity span BiLSTM 33.1 64.5 74.0 78.1 82.5 85.5 90.1 92.0 93.4 93.8

BERT 62.5 79.1 85.4 88.9 90.8 92.4 94.2 94.9 95.5 95.6

Relation BiLSTM – – – 26.5 41.0 56.3 72.4 79.0 81.3 82.8

BERT – – – 29.6* 48.6 67.5 76.5 80.1 82.6 83.6

4.3 Performance on Test Set

After identifying good hyperparameters for both our BiLSTM baseline and our
BERT-based model using the validation set, we evaluated our models using the
same evaluation metrics on the test set. Results for both entity span prediction
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and relation prediction on the test set are reported in Table 4.11 As shown in
Table 4, the test set results are close to the validation set results for both models.

Table 4. Component results on test set.

Entity span Relation

Accuracy Avg. F1 Accuracy

BiLSTM 93.2 96.7 82.4

BERT 95.2 97.5 83.5

4.4 Final Results

In Table 5, we compare our final predictions against previous works on Simple-

Questions. With our simple entity linking and logical form selection procedure
(see Sect. 2.4), we achieve 77.3% accuracy on the test set of SimpleQuestions,
beating all but one of the existing approaches. We suspect that the final score can
be further improved by finding better rules for logical form selection, however
that is not the goal of this study.

Investigating the entity and relation prediction accuracies separately, we find
accuracies of 82.7% for entities and 86.6% for relations. Comparing the 86.6%
for relation accuracy after re-ranking (Sect. 2.4) to the 83.5% (Table 4) relation
accuracy before the re-ranking confirms that re-ranking has helped to reduce

Table 5. Final accuracy for the full prediction task on the test set of SimpleQues-

tions. ([19] is not included in the comparison because neither [13] or [16] could repro-
duce the reported results (86.8%)).

Approach Accuracy

MemNN [3] 61.6

Attn. LSTM [6] 70.9

GRU [11] 71.2

BuboQA [13] 74.9

BiGRU [4] 75.7

Attn. CNN [23] 76.4

HR-BiLSTM [24] 77.0

BiLSTM-CRF [16] 78.1

BERT (ours) 77.3

11 Note that the test set contains “unsolvable” entries, where the correct entity span
has not been identified in pre-processing. For these examples, we set the accuracy
and F1 to zero.
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errors. By analyzing the 22.7% of test examples that were predicted incorrectly,
it turned out that in 35% of those cases both a wrong relation and a wrong
entity had been predicted, in 41% only the entity was wrong and 24% had only
a wrong relation. Of all the cases where the entity was predicted wrong, in 28.6%
cases this resulted from the correct entity missing in the candidate set. Entity
retrieval errors are also correlated with relation errors: of the cases where the
correct entity was not among the retrieved candidates, 71.2% had a wrongly
predicted relation, against 55.7% for cases where the correct entity was among
the candidates.

4.5 Attention Analysis

One of the advantages of using transformers is the ability to inspect the self-
attention weights that the model uses to build its representations. Even though
this does not completely explain the rules the model learned, it is a step towards
explainable decision making in deep learning, and a qualitative improvement
upon RNNs. In an attempt to understand how the model works, before and
after fine-tuning, we manually inspected the attention distributions used by the
transformer network internally during the encoding process.

(a) Before fine-tuning (b) After fine-tuning

Fig. 1. Average attention distribution for the example “What songs have Nobuo
Uematsu produced?”, (a) before training on our tasks (vanilla pretrained BERT) , and
(b) after training on our tasks (finetuned BERT). The numbers are scaled to values
between 0 and 100, and are computed by averaging of the attention distributions over
all heads in all layers, and multiplying the average by 100. We set the scores for [CLS]
and [SEP] tokens to zero in the plots since they always receive a much higher average
attention weight than the actual words from the sentence and thus would dominate
the plot.
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Fig. 2. Average attention distributions for the [CLS] token for several examples.
<Vanilla> is pretrained BERT before finetuning. <Finetuned> is BERT finetuned
on our tasks. The numbers are scaled to values between 0 and 100, and are computed
by averaging of the attention distributions over all heads in all layers, and multiplying
the average by 100.

We compute the average of the 144 attention distributions produced by the
M = 12 different attention heads in each of the L = 12 layers of the employed
BERT network:

βi,j =
∑L

l=1

∑M
h=1 αl,h,i,j

L · M
, (7)

where αl,h,i,j are the attention probabilities as computed in Eq. 2, Here, βi,j ’s
are the average attention scores; these values are displayed in Figs. 1 and 2 (mul-
tiplied by 100 for scaling). More concretely, we compare this average attention
signature of a (vanilla) BERT network before fine-tuning it with the attention
signature of a BERT model fine-tuned for our tasks (recall that we trained a
single model to perform both border detection and relation classification simul-
taneously). By comparing the attentions before and after training on our tasks,
we can identify differences in internal behavior of the model that arose during
training.

In Fig. 1, the average of all attention distributions is shown for an example
question for two versions of the transformer model: pre-trained (vanilla) BERT
and BERT fine-tuned for our tasks. While in general, the average attention dis-
tribution roughly follows the same patterns after fine-tuning, we can see that the
behavior of the attention mechanism responsible for building the representation
of the [CLS] token is significantly different. We found that, before fine-tuning,
the representation building of the [CLS] token generally focuses on punctuation
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and less strongly, on other words. After finetuning, [CLS]’s representation is
strongly focused on words that characterise the relation conveyed by the sen-
tence. For example, for the question “Who wrote Gulliver’s travels?” (see Fig. 2,
first example), the attention is shifted towards the word “wrote”, which specifies
the authorship relationship of the intended answer with the subject entity (Gul-
liver’s Travels) mentioned in the question. We provide several other examples of
this kind of attention change in Fig. 2.

This change in internal attention behavior can be explained by the fact that
sequence classification for relation prediction is done based on the representation
built for the [CLS] token and attending to relation-specifying words more would
produce more useful features for the classifier.

5 Related Work

Bordes et al. [3] propose a memory network (MemNN)-based solution to Sim-

pleQuestions. They use bag-of-words representations for triples and question
and train a model that predicts the right triple by minimizing a margin-based
ranking loss as defined in the section above. They compute scores between ques-
tions and whole triples, including the triple objects. However, triple objects are
answers and thus might not be present in the question, which may affect the per-
formance adversely. The same work introduces the SimpleQuestions dataset,
consisting of approximately 100,000 question-answer pairs.

Follow-up works on SimpleQuestions typically predict the subject entity
and predicate separately, (unlike [3], which ranks whole triples). [6] explore
fully character-level encoding of questions, entities and predicates, and use an
attention-based decoder [1]. [11] explore building question representations on
both word- and character-level. [24] explore relation detection in-depth and pro-
pose a hierarchical word-level and symbol-level residual representation. Both [4]
and [11] improve upon them by incorporating structural information such as
entity type for entity linking. [4] and [23] propose an auxiliary BiRNN+CRF
sequence labeling model to determine the span of the entity. The detected entity
span is then used for filtering entity candidates. Further, [13] investigates dif-
ferent RNN and CNN-based relation detectors and a BiLSTM and CRF-based
entity mention detectors. [16] estimates the upper-bound on accuracy for Sim-

pleQuestions, which is less than 83.4% due to unresolvable ambiguities (which
is caused by the question lacking information to correctly disambiguate entities).
Both [16] and [13] first identify the entity span, similarly to previous works, but
disambiguate the entity without using neural networks. With extensive hyperpa-
rameter tuning, relatively basic models and simple heuristics, [16] outperformed
previous approaches.

[22] proposes a semi-supervised method for semantic parsing based on a struc-
tured variational autoencoder that treats logical forms as tree-structured latent
variables, and also performs experiments in limited data settings (on ATIS and
DJANGO).
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6 Conclusion

As demonstrated by our experiments, BERT significantly outperforms a strong
BiLSTM baseline on the learning problems of relation classification and entity
span prediction for simple questions. Moreover, the pre-trained transformer
shows less performance decrease when confronted with fewer training data, as
can be seen in our limited-data study, which to the best of our knowledge is the
first ever conducted for the SimpleQuestions data set. The final results on the
whole SimpleQuestions task are competitive with the current state-of-the-art.

Our comparison of a fully pre-trained transformer to a BiLSTM-based model
where only the word embeddings have been pretrained (Glove) might not yield a
fair comparison between the two architectures (transformer vs BiLSTM). Further
insights could be gained by analyzing the performance of a BiLSTM, which has
also been pretrained as a language model (maybe combined with other tasks)
in future. Here instead, our aim was to provide evidence that the use of neural
networks pre-trained as language model is beneficial for knowledge graph-based
question answering like answering SimpleQuestions, a usecase not included in
the original BERT evaluation and, to the best of our knowledge, not yet explored
in the literature.

Even though BERT improves upon our BiLSTM baseline on SimpleQues-

tions, the improvements in the full data scenario might not justify the signif-
icantly longer training and inference times and memory requirements. These
practical concerns, however, could be mitigated by practical tweaks and future
research. Furthermore, with fewer data the performance increases w.r.t. the base-
line become more spectacular, indicating that using pre-trained networks like
BERT might be essential for achieving reasonable performance in limited data
scenarios. Such scenarios are common for datasets with more complex questions.
Therefore, we believe pretrained networks like BERT can have a bigger impact
for complex KGQA (even when training with all data available).
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by the Fraunhofer Cluster of Excellence “Cognitive Internet Technologies” (CCIT).
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Abstract. In this paper, we conduct an empirical investigation of neural
query graph ranking approaches for the task of complex question answer-
ing over knowledge graphs. We propose a novel self-attention based slot
matching model which exploits the inherent structure of query graphs,
our logical form of choice. Our proposed model generally outperforms
other ranking models on two QA datasets over the DBpedia knowledge
graph, evaluated in different settings. We also show that domain adaption
and pre-trained language model based transfer learning yield improve-
ments, effectively offsetting the general lack of training data.

1 Introduction

Knowledge graph question answering (KGQA), where natural language questions
like “What is the population of the capital of Germany?” can be answered by
lookup and composition of one or many facts from a knowledge graph (KG),
has garnered significant interest in the Natural Language Processing (NLP) and
Semantic Web community.

Numerous approaches [2,7,22] use semantic parsing to create an ungrounded
expression of a given natural language question (NLQ), and then ground it w.r.t.
a target KG. Here, grounding refers to linking elements in the expression with
elements (i.e. entities and predicates) in the KG. While this approach suits the
non-trivial task of handling wide syntactic and semantic variations of a ques-
tion during parsing, it needs to handle lexical as well as structural mismatch
between the generated expression and the target KG during grounding. For
instance, the predicate mother(xa, xb), parsed from a question, might be repre-
sented as parent(xa, xb)∧gender(xa, female) in a KG. Failing to anticipate and
tackle these issues can lead to undesirable situations where the system generates
expressions which are illegal w.r.t. the given KG.

G. Maheshwari, P. Trivedi, D. Lukovnikov and N. Chakraborty—These four authors
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We focus on an alternate family of approaches [23,24] which, given an NLQ,
first generate a list of formal expressions describing possible candidate queries
which are in accordance with the KG structure, and then rank them w.r.t. the
NLQ. We use a custom grammar called query graph to represent these candidate
expressions, comprised of paths in the KG along with some auxiliary constraints.
In this work, we propose a novel slot matching model for ranking query graphs.
The proposed model exploits the structure of query graphs by using attention to
compute different representations of the question for each predicate in the query
graph. We compare our models against several baseline models by evaluating
them over two DBpedia [12] based KGQA datasets namely, LC-QuAD [20] and
QALD-7 [21].

Furthermore, we appropriate bidirectional transformers (BERT) [6] to be
used in the slot matching configuration, thereby enabling the use of large-scale
pre-trained language models for the task. To the best of our knowledge, this is
the first work that explores their use for KGQA.

Finally, we also investigate the potential of transfer learning in KGQA by
fine-tuning models trained on LC-QuAD on the much smaller QALD-7 dataset,
resulting in a significant improvement in performance on the latter. We thereby
demonstrate the efficacy of simple transfer learning techniques for improving
performance of KGQA on target domains that lack training data.

The major contributions of this work are summarized as follows:

– A novel ranking model which exploits the structure of query graphs, and
uses multiple attention scores to explicitly compare each predicate in a query
graph with the natural language question.

– An investigation of fine-tuning based transfer learning across datasets and
the use of pre-trained language models (BERT [6]) for the KGQA task.

Our experiments show that the proposed slot-matching model outperforms
the baseline models, and that it can be combined with transfer learning tech-
niques to offset the lack of training data in target domain. We have made the
source code of our system, and the experiments publicly available at https://
github.com/AskNowQA/KrantikariQA.

2 Related Work

In this section we briefly summarize existing approaches for KGQA and trans-
fer learning techniques relevant to the use of pretrained language models for
downstream tasks.

2.1 KG Question Answering

Traditional semantic parsing based KGQA approaches [2,5,7,8,19,22] aim to
learn semantic parsers that generate ungrounded logical form expressions from
NLQs, and subsequently ground the expressions semantically by querying the
KG.

https://github.com/AskNowQA/KrantikariQA
https://github.com/AskNowQA/KrantikariQA
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In recent years, several papers have taken an alternate approach to semantic
parsing by treating KGQA as a problem of semantic graph generation and rank-
ing of different candidate graphs. [1] compare a set of manually defined query
templates against the NLQ and generate a set of grounded query graph candi-
dates by enriching the templates with potential predicates. Notably, [23] create
grounded query graph candidates using a staged heuristic search algorithm, and
employ a neural ranking model for scoring and finding the optimal semantic
graph. The approach we propose in this work is closely related to this. [24] use a
hierarchical representation of KG predicates in their neural query graph ranking
model. They compare their results against a local sub-sequence alignment model
with cross-attention [16] (originally proposed for the natural language inferenc-
ing task [3]). We adapt the models proposed by both [16] and [24] to our task,
and compare them against the ranking model we propose (See Sect. 4.2).

2.2 Transfer Learning from Pre-trained Language Models

Recently, multiple approaches have been proposed exploiting transfer learning
from pre-trained language models for downstream NLP tasks. They typically
use a (downstream) task-agnostic architecture that undergoes time-consuming
pre-training over large-scale general-domain corpus, and then is fine-tuned for
different target tasks separately. [10] propose an innovative mechanism of fine-
tuning long-short-term-memory (LSTMs) [9] and a wide repertoire of regulariza-
tion techniques which prevent overfitting and catastrophic forgetting. The use
of transformers in a similar transfer learning setting was proposed by [18]. The
architecture was augmented by [6] enabling bidirectional training of transform-
ers by masking random tokens in the input sequence, and training the model to
predict those missing words. Generally, these approaches have achieved state-
of-the-art results over multiple NLP tasks, including text classification, reading
comprehension, named entity recognition. Motivated by their success, we inves-
tigate the effect of leveraging these transfer learning approaches for KGQA (as
described in Sect. 5.3). Parallel to our work, [14] also explored the use of pre-
trained transformer for the task of simple question answering over KG. They
showed that with a fraction of training data, using pre-trained language models
can achieve almost similar performance to those trained from scratch.

3 Background

In this section we will give a formal definition of the task of KGQA and a
description of the employed query graph language.

3.1 Problem Formulation

Let K ⊆ (E × P × (E ∪ L)) be a KG where E = {e1 . . . ene
} is the set of entities,

L is the set of all literal values, and P = {p1 . . . pnp
} is the set of predicates

connecting two entities, or an entity with a literal.
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Fig. 1. A question and its corresponding query graph (a), and core chain (b).

Given K, and a natural language question Q, the KGQA task can be defined
as generating an expression in a formal query language, which returns the
intended answer a ∈ A when executed over K. Here, A is the set of all answers a
KGQA system can be expected to retrieve, consisting of (i) a subset of entities
(ei) or literals (li) from K, (ii) the result of an arbitrary aggregation function
(f : {ei} ∪ {li} �→ N), or (iii) a boolean (T/F ) variable depending on whether
the subgraph implied by Q is a subset of K.

In contrast, answering simple questions is a subset of the above KGQA task
where (i) the answer set can only contain A, a subset of entities (ei) or literals
(li), and (ii) members of the answer set must be directly connected to the topic
entity with a predicate pi ∈ P. This work aims to solve the aforementioned
KGQA task, which implicitly includes answering simple questions as well.

3.2 Query Graphs

We use query graphs as the intermediary query language to express candidates
of formal KG queries given an NLQ. They represent a path in K as a directed
acyclic labeled graph. We borrow the augmentations made to the query graph
grammar in [23], which makes the conversion from query graph expressions to
executable queries trivial, and slightly modify it to suit our use case. In the
subsequent paragraphs we detail the modified query graph grammar we employ.

Elements of a Query Graph: A query graph consists of a combination of nodes
n ∈ {grounded entity, existential variable, lambda variable, auxiliary function},
connected with labeled, directed edges representing predicates from the set of
predicates P of K. We define each of the aforementioned elements in detail below
by the help of a running example, answering the question “Name some movies
starring Beirut born male actors?”:

– Grounded Entities: Grounded entities correspond to entities of K men-
tioned in the NLQ. Each query graph has at least one grounded entity. In
the case of our example, ex:Beirut is the grounded entity represented by the
rounded rectangle in Fig. 1a.

– Existential Variables: Existential variables are ungrounded nodes, i.e. they
do not correspond to an explicit entity mentioned in the NLQ but are instead
placeholders for intermediate entities in the KG path. They help disambiguate
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the structure of query graphs by the means of auxiliary functions (described
below). In our example, we have one existential variable which is represented
by a circle and stands for entities like ex:Keanu Reeves and ex:Nadine Labaki.

– Lambda Variables: Similar to existential variables, they are ungrounded
nodes acting as a placeholder for a set of entities which are the potential
answer to the query. The are represented by shaded circles in our example,
and can have entities like ex:John Wick (a movie) and ex:Rain (a TV series)
mapped to it.

– Auxiliary Functions: Auxiliary functions are applied over the set of entities
mapped to any ungrounded node (i.e. grounded and existential variables) in
the query graph. In our grammar, they can be of two types, namely, the
cardinality function or a class constraint fclass : {e ∈ E|(e, rdf:type, class) ∈
K} where (class, rdf:type, owl:Class) ∈ K. In our example, we can apply the
class constraint function over the entities mapped to the existential variable to
only include male actors, and to the entities mapped to the lambda variable,
represented by rectangle, to only include movies. The cardinality constraint
can be used for NLQs like “How many movies have casted Beirut born male
actors?” by imposing a count constraint over the lambda variable.

Finally, a new flag is defined which determines whether the query graph is
used to fetch the value of the lambda variable, or to verify whether the graph is
a valid subset of the target KG. The latter is used in the case of Boolean queries
like “Did Keanu Reeves act in John Wick?” We represent this decision with a
flag instead of another node or constraint in the graph as it doesn’t affect the
execution of the query graph, but in the case of a Boolean query only inquires,
post execution, whether the query had a valid solution.

Query Graph Representation: We represent the query graphs in a linear form so
as to easily encode them in our ranking models. We linearize the directed graph
by starting from one of the grounded entities and using +,− signs to denote the
outgoing and incoming edges, respectively. We represent auxiliary functions with
another flag along with the linearized chain. Externalizing the auxiliary functions
enables us to remove the ungrounded nodes from the core chain, which is now
composed of the grounded entity and relations prefixed by +,− signs. Finally, we
replace the URIs of the grounded entities and predicates with their corresponding
surface forms. Hereafter, we refer to this linearized representation as the core
chain of a query graph. This representation also ensures that the query graph
maintains textual similarity to the source NLQ, enabling us to use a wide variety
of text similarity based approaches for ranking them. Figure 1b illustrates the
core chain corresponding to the query graph in our running example. In our
preliminary analysis we found that removing mentions of grounded entities in
the core chain increased the performance of our approach. We thus exclude the
grounded entities from the final core chain representation. Since the grounded
entities are the same for a given NLQ, no information is lost from the core chain
candidate set upon doing this.
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4 Approach Overview

We treat KGQA as the task of generating and ranking query graph candidates
w.r.t. a given NLQ. For instance, given the question “What is the population
of the capital of Germany?”, we would like a ranking model to assign a higher
score to “+ capital + population” than “+ capital + mayor”, where “+”
indicates that the relation must be followed in the forward direction. More for-
mally, given a question Q and a set of candidate core chains C1 . . . CN , we select
the most plausible core chain as follows:

C∗ = argmax
Ci

sim(Q,C i) , (1)

where sim(·, ·) is a function assigning a score to a pair of a NLQ and a core
chain. We implement sim(·, ·) as the dot product of two vectors produced by the
encoder encq(Q) and the core chain encoder encc(C n) respectively, i.e.,

sim(Q,C n) = encq(Q) · encc(C n) . (2)

We train our ranking model with a pairwise loss function that maximizes the
difference between the score of correct (positive) and incorrect (negative) pairs
of NLQs and core chains, that is

L = max(0, γ − sim(Q,C+) + sim(Q,C−)) , (3)

where sim(Q,C+) and sim(Q,C−) are the scores for the correct and incorrect
question-core chain pair, respectively.

We assume the entities mentioned in the NLQ to be given (but do not require
exact entity spans i.e which tokens in the question correspond to which entity).
In the next section (Sect. 4.1), we outline a mechanism for generating core chain
candidates. Following that, we describe a novel core chain ranking model in
Sect. 4.2. Furthermore, for a fully functioning QA system, additional auxiliary
functions needs to be predicted. We define them, and outline our method of
predicting them in Sect. 4.3.

4.1 Core Chain Candidate Generation

Core chains, as described in the previous section, are linearized subsets of query
graphs which represent a path consisting of entities and predicates without
the additional constraints. Working under the assumption that the informa-
tion required to answer the question is present in the target KG, and that we
know the entities mentioned in the question, we collect all the plausible paths
of up to two hops from an arbitrary grounded entity node1 to generate the core
chain candidate set. Here, we use the term hop to collectively refer to a KG
relation along with the corresponding +/− sign indicating whether the relation
is incoming or outgoing w.r.t. the entity.
1 Entity that has been linked in the question.
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We retrieve candidate core chains by collecting all predicates (one-hop chains)
and paths of two predicates (two-hop chains) that can be followed from an arbi-
trary grounded node. In this process, predicates are followed in both outgoing
and incoming direction (and marked with a + and − in the chain, respectively).
We further restrict our candidate set of core chains as follows: if two entities
have been identified in the question, we discard the core chains which do not
contain both the entities as grounded nodes. When applied, this step substan-
tially decreases the candidate set while retaining all the relevant candidates.
Finally, we drop the mention of entities from the core chain since every core
chain thus generated will contain the same entities in the same position, and
doing so leads to no information loss. Doing so enables our ranking models to
retain the focus on comparing the predicates of the core chain to the question.

Although we limit the core chains to a length of two hops for the purposes of
this study, this approach can easily be generalized to longer core chains. However,
it may result in an additional challenge of handling a larger number of candidate
core chains.

4.2 Slot Matching Model

To exploit the specific structure of the task, we propose an encoding scheme
which partitions core chains into the aforementioned hops, and creates multiple,
hop-specific representations of the NLQ, which we call slots. We then compare
the hop (segments of a core-chain) representations with their corresponding slot
(an encoded representation of the NLQ) to get the final score.

First, the question Q = {q1 . . . qT } is encoded using a bidirectional LSTM
(LSTMq) resulting in the question encoding

[q̂1 . . . q̂T ] = LSTMq(Q) . (4)

Now, consider a core chain consisting of M hops. For each hop j = 1, . . . , M ,
we define a trainable slot attention vector kj which is used to compute attention
weights αt,j , individually for every hop j, over all the words qt, t = 1, . . . , T of
Q. Then, a set of fixed-length question representations qj are computed using
the corresponding attention weights αt,j , that is

αt,j = softmax({< q̂l,kj >}l=1...T )t , (5)

qj =
T∑

t=1

αt,j · q̂t . (6)

We represent the core chains by separately encoding each hop by another LSTM
(LSTMc)

cj = LSTMc(Cj) , (7)

where Cj = [cj,1 . . . cj,T ′
j
] is the sequence of words in the surface from of the

predicate along with the +/− signs, corresponding to the jth hop of the core
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Fig. 2. The slot matching model uses parameterized attention vectors to create j rep-
resentations of the question, and compares each of them correspondingly with the j
hops in a core chain. Here t and t

′
represent the number of words in each hop of the

core chain, and ct,1 is the tth word in the first hop.

chain. Finally, q1, . . . ,qM and c1, . . . , cM are concatenated to yield our final rep-
resentation of the NLQ and the query graph (encq(Q) and encc(C)), respectively,
which is used in score function given in Eq. 2, i.e.

[q1, . . .qM ] = encq(Q) (8)
[c1, . . . cM ] = encc(C) . (9)

Figure 2 summarizes the proposed approach.
Note that the model proposed here is not the same as cross attention between

the input sequences (as described by [16] which we also experiment with) as, in
our case the attention weights aren’t affected by the predicates in the core chain,
as the encoder attempts to focus on where a predicate is mentioned in Q, and not
which predicate is mentioned. In Sect. 5.1, we discuss advantages of slot based
attention over cross attention in further detail.

Using Transformers in the Slot Matching Configuration: [6] demon-
strate that the use of pre-trained bidirectional transformers (BERT) can pro-
vide improvements for numerous downstream NLP tasks. Motivated by their
findings, we investigate whether they can positively impact the performance on
our KGQA task as well.

In this subsection, we describe how we use BERT to encode the NLQ and
the core chains in the slot matching model. In the simplest approach, we would
simply replace the LSTM in Eqs. (4) and (7) with pre-trained transformers and
keep the rest of the model unchanged.
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Fig. 3. Illustration of the transformer model in the slot matching configuration.

However, [6,18] prescribe converting structured inputs into an single ordered
sequence. We thus concatenate our inputs: (i) a question Q = [q1 . . . qT ] of length
T , and (ii) the M hops of a core chain C =

[
[ c1,1 . . . c1,T ′

1
] · · · [ cM,1 . . . cM,T ′

M
]
]

into a sequence of length l = T +
∑M

j=1 T ′
j (excluding sequence delimiters), and

pass it through the transformer. Concretely, we use [6]’s input encoding scheme:
we (1) prepend the sequence with a [CLS] token, (2) append the [SEP] sepa-
rator token at the end of the question and (3) separate the different predicate
surface forms in the appended candidate core chain with the same [SEP] token.
The input to the transformer corresponding to our previous example then looks
like this: “[CLS] Name some movies starring Beirut born male actors [SEP] +
capital [SEP] + population [SEP]”. [6] use the output of the transformer at first
position (corresponding to the [CLS] token) for classification. Instead, for our
slot matching transformer, we replace [q̂1 . . . q̂T ] in Eq. (4) with the question
portion of the transformer’s outputs. Applying Eqs. (5) and (6) as before yields
a set of slot-specific question encodings q1, . . . ,qM . Slot-specific hop encodings
c1, . . . , cM are obtained from the same sequence of output vectors of the trans-
former by taking the representation at the [SEP] delimiter preceding the jth

hop. Given these encodings, the score for a question-chain pair is computed as
before. The model is depicted in Fig. 3.

4.3 Predicting Auxiliary Functions

In this section, we describe our approach towards learning to predict the auxiliary
functions used for constructing a complete query graph. We begin by predicting
the intent of the question. In both the datasets considered in our experiments,
a question can ask for the cardinality of the lambda variable, ask whether a
certain fact exists in the KG, or simply ask for the set of values in the lambda
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variable. Further, this division, hereafter referred to as count, ask and set based
questions, is mutually exclusive. We thus use a simple BiLSTM based classifier
to predict the intent belonging to one of the three classes.

Next, we focus on detecting class based constraints on the ungrounded nodes
of the core chain, as described in Sect. 3.2 as fclass. We use two different, sepa-
rately trained models to predict (i) whether such a constraint exists in the NLQ,
and if so, on which variable, and (ii) which class is used as a constraint. The for-
mer is accomplished with a simple binary BiLSTM classifier (i.e. constraint exist
or not), similar to the aforementioned intent classifier. For the latter, we use a
BiLSTM based pairwise ranking model trained in a similar setting as described
in Eq. 3.

We now have all the information required to construct the query graph, and
the corresponding executable query. For brevity’s sake, we omit the algorithm
to convert query graphs to SPARQL here, but for limited use cases such as ours,
simple template matching (based on the +/− signs of the selected core chain,
the class constraint, and the result of the intent classifier) shall suffice.

5 Experiments

In a first set of experiments we compare the KGQA performance of the proposed
slot matching model with some baseline models as described in the following
section. After that, we describe experiments investigating transfer learning across
KGQA datasets and from pre-trained transformers.

5.1 Approach Evaluation

Our first experiment focuses on investigating the performance of the Slot
Matching (LSTM) model. As a baseline we use a simple neural ranking
model where we replace encq and encc with a single layered bidirectional LSTM
(BiLSTM). We also compare our model to those proposed by [16] (decompos-
able attention model, or DAM), [24] (hierarchical residual model, or HRM),
and [11] which uses a multi-channel convolutional neural network (CNN).

Datasets. Our models are trained and evaluated over the following two KGQA
datasets:

LC-QuAD [20] is a gold standard question answering dataset over the DBpedia
04-2016 release, having 5000 NLQ and SPARQL pairs. The coverage of our
grammar covers all kinds of questions in this dataset.

QALD-7 [21] is a long running challenge for KGQA over DBpedia. While cur-
rently its 9th version is available, we use QALD-7 (Multilingual) for our purposes,
as it is based on the same DBpedia release as that of LC-QuAD. QALD-7 is a
gold-standard dataset having 220 and 43 training and test questions respectively
along with their corresponding SPARQL queries. Some of the questions in the
dataset are outside the scope of our system. We nonetheless consider all the
questions in our evaluation.
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Table 1. Performance on LC-Quad and QALD-7. The reported metrics are core chain
accuracy (CCA), mean reciprocal rank (MRR) of the core chain rankings, as well as
precision (P), recall (R), and the F1 of the execution results of the whole system.

LC-QuAD QALD-7

CCA MRR P R F1 CCA MRR P R F1

BiLSTM [9] 0.61 0.70 0.63 0.75 0.68 0.28 0.41 0.20 0.36 0.26

CNN [11] 0.44 0.55 0.49 0.61 0.54 0.31 0.45 0.20 0.33 0.25

DAM [16] 0.57 0.66 0.59 0.72 0.65 0.28 0.40 0.20 0.36 0.26

HRM [24] 0.62 0.71 0.64 0.77 0.70 0.28 0.40 0.15 0.31 0.20

Slot-Matching (LSTM) 0.63 0.72 0.65 0.78 0.71 0.31 0.44 0.28 0.44 0.34

Evaluation Metrics. We measure the performance of the proposed methods in
terms of their ability to find the correct core chain, as well as the execution results
of the whole system. For core chain ranking, we report Core Chain Accuracy
(CCA) and Mean Reciprocal Rank (MRR). Based on the execution results of
the whole system (including auxiliary functions), we also report Precision (P),
Recall (R), and F1.

Training. Our models are trained with negative sampling, where we sample
1000 negative core chains per question, along with the correct one, for every
iteration. We train our models for a maximum of 300 epochs, using a 70-10-20
split as train, validation and test data over LC-QuAD 2 QALD-7 has a predefined
train-test split, and we use one eighth of the train data for validation. We embed
the tokens using Glove embeddings [17], and keep the relevant subset of the
embeddings trainable in the model. We use Adam optimizer with an initial
learning rate of 0.001 and set the margin (γ) in the pairwise loss function as 1.

We share parameters between encq and encc in the BiLSTM, CNN and DAM
models, since in these models, input sequences are processed in the same manner,
while the same does not hold for the slot matching, or HRM. We illustrate the
impact of this choice on model performance towards the end of this section
(Table 1).

Results. In our experiments, the slot matching model performs the best among
the ones compared, suggesting that different attention scores successfully cre-
ate suitably weighted representations of the question, corresponding to each
hop. This is further reinforced upon visualizing attention scores, as presented in
Fig. 4, where we notice that the different attention slots focus on different pred-
icate spans in the question. While the decomposable attention model (DAM)
proposed by [16] also uses attention, its performance generally lags behind the

2 That is, we use the first 70% of dataset, as made available on https://figshare.com/
projects/LC-QuAD/21812 by [20], to train our models. Next 10% is used to decide
the best hyperparamters. The metrics we report in the rest of this section are based
on the model’s performance on the last 20% of it.

https://figshare.com/projects/LC-QuAD/21812
https://figshare.com/projects/LC-QuAD/21812
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slot matching model. DAM’s cross-attention between question and core chain
leads to a summarized question representation that is dependent on the candi-
date core chain and vice versa. On the other hand, the slot matching approach
merely attempts to learn to extract important, relation-specific parts of the NLQ,
prior to seeing a specific core chain, which judging by our experiments seems to
be a better model bias and might help generalizing. The hierarchical residual
model (HRM) [24] is second best in our comparison, suggesting that pooling
relation and word level encodings is a promising strategy to form core chain rep-
resentations. The competitive performance of the BiLSTM model is in coherence
with recent findings by [15], that a simple recurrent model can perform almost
as well as the best performing alternative.

All models generally exhibit poor performance over QALD-7, which is under-
standable given the fact that QALD-7 has only 220 examples in the training set,
which is 20 times smaller than LC-QuAD. We will show in the next section
that transfer learning across datasets is a viable strategy in this case to improve
model performance.

Fig. 4. Visualized attention weights (darker color corresponds to larger attention
weights) of the slot matching question encoder for the question “What is the birth
place of the astronaut whose mission was the vostok programme?” The two rows rep-
resent different slot attention scores. One can see that first puts a higher weight on
mission while the second (beside others) on birth place. (Color figure online)

Error Analysis: We now illustrate the effect of different characteristics of the
test data on the model performance.

Effect of Number of Core Chain Candidates: In our ranking based
approach, the difficulty of selecting the correct core chain depends on the number
of core chain candidates, which can be disproportionately large for questions
about well-connected entities in DBpedia (e.g. dbr:United States). In order to
investigate its effect, we plot the core chain accuracy (CCA) vs. the number of
core chain candidates, for all the models we experiment with, in Fig. 5a. Upon
inspection, we find the core chain accuracy to be inversely correlated to the
number of core chain candidates. Specifically, we find that the performance of
the BiLSTM, HRM and the slot pointer model (the three best performing ones in
Exp. 5.1) remain almost the same for as many as 2000 core chain candidates per
question. Thereafter, the BiLSTM and HRM models’ accuracy declines faster
than that of the proposed slot matching model, giving a competitive edge to the
latter.
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(a) (b) Confusion Matrix

(c) (d)

Fig. 5. Here, (a) shows the decrease in accuracy with increasing number of candidates
for all the rankings models in Sect. 5.1; (b) is a confusion matrix representing the
number of hops in true and predicted core chains for the test data of LC-QuAD for the
slot matching model. (c) The relation of model accuracy w.r.t. question length. And
(d) a histogram depicting the distribution of questions in LC-QuAD’s test split w.r.t.
their question lengths. Here, the proportion of questions with two entity mentions are
depicted with red color. (Color figure online)

Effect of Length of Questions: We noticed that it is relatively easier for
the models to answer longer questions. To better understand this phenomenon,
we plot the core chain accuracy w.r.t. the length of questions for all the models
in Fig. 5c, and the frequency of questions w.r.t. their lengths in Fig. 5d.

We find that longer questions are more likely to contain two entity mentions
than just one. This hints to the fact that the number of candidate core chains
reduces accordingly, as every valid core chain candidate must include all entity
mentions of the question, which simplifies the ranking process as detailed in
Sect. 4.1.

Effect of Length of Core Chains: Inherent biases in the data might make
our models more inclined to assign higher ranks to paths of a certain length, at
the expense of selecting the correct path. We thus compose a confusion matrix
representing the number of hops in the ground-truth and predicted core chains,
which we hypothesize can help detect these biases. We find that none of our
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models suffer from this issue. As an example, we visualize the confusion matrix
for the slot matching model’s predictions over LC-QuAD’s test split in Fig. 5b.

Further Analysis: In order to better assess the impact of different parts of the
system we perform a series of analysis over the simplest baseline (BiLSTM), and
the best performing model (Slot Matching (LSTM)). For brevity’s sake we only
report the core chain accuracy in these experiments. Unless specified otherwise,
the hyperparameters will be the same as mentioned in the experiment above.

Ablation Study: In order to better understand the effect of slot-specific
attention over the question in the slot matching model, we experiment with a
simpler model where we use the same attention scores for each slot. Effectively,
this transforms our encq to a simpler, single-slot attention based encoder.

In our experiments, we find that the model yields similar results to that
of BiLSTM model, i.e. 60.3%, which is considerably worse (−2.8%) than the
regular slot matching model with two slots. Our experiments illustrate several
mechanism of using attention for the task, including no attention (BiLSTM,
61.4%), with attention (single slot, 60.3%), with multiple slots of attention (slot
matching model, 63.1%), and with cross attention (DAM, 56.8%).

Parameter Sharing between Encoders: In the primary experiment, the
BiLSTM model shares parameters between

encq and encc, while the slot matching model doesn’t. To show the effect of
parameter sharing between encoders, we retrain both models in both settings
(with and without parameter sharing).

Sharing encoders leads to a decrease of 2.9% (60.4% from 63.1%) in CCA of
the slot matching model. Conversely, sharing encoders increases the performance
of the BiLSTM model by 3.1% (61.4% from 58.3%). In the BiLSTM’s case,
learning a mapping that captures the equivalence of questions and core chains
is not hindered by sharing parameters because the model structure is the same
on both sides (simple encoders). Sharing parameters in this case could help
because of the decrease in the total number of parameters. In the case of the slot
matching model, however, sharing the parameters of the encoders would require
the encoder to be usable for both the attention-based summary of the question
encoder as well as the simple encoder for each hop (where the latter processes
much shorter sequences) which leads to a performance bottle neck.

5.2 Transfer Learning Across KGQA Datasets

As mentioned above, all models generally show poor performance when trained
solely on QALD-7 due to a more varied and significantly smaller dataset. There-
fore, we hypothesize that pre-training the models on the much larger LC-QuAD
dataset might lead to a significant increase in performance. To that end, we per-
form the following fine-tuning experiment: we pre-train our ranking models over
LC-QuAD, and then fine-tune and evaluate them over QALD-7. We set the initial
learning rate to 0.0001 (which is an order of magnitude less than in the experi-
ments in Sect. 5.1), and experiment with custom learning rate schedules, namely
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slanted triangular learning rate (sltr) proposed in [10], and cosine annealing (cos)
proposed in [13]. We keep the hyperparameters of sltr unchanged, and set the num-
ber of cycles for cos to 3 based on the performance on the validation set.

Table 2. CCA for the fine-tuning experiment where we pre-train on LC-QuAD and
fine-tune over QALD-7. The initial learning rate is 10−3 for all configurations.

Learning rate BiLSTM Slot matching (LSTM)

constant 0.37 0.37

sltr 0.39 0.42

cos 0.25 0.28

We conduct the experiment on the BiLSTM and the Slot Matching (LSTM)
ranking model, and only report the core chain accuracies (CCA) as the rest of
the system remains unchanged for the purposes of this experiment.

We find that fine-tuning a ranking model trained over LC-QuAD leads to a
substantial (∼11%) increase in performance on QALD-7 compared to non-pre-
trained models. Interestingly, we find that the results of the fine-tuning exper-
iment are sensitive to the learning rate schedule used. While constant learning
rate provides a relatively comparable performance w.r.t. sltr, using the cosine
annealing schedule adversely affects model performance.

We report the results of this experiment in Table 2. In summary we conclude
that transferring models across KGQA datasets via simple fine-tuning is a viable
strategy to compensate for the lack of training samples in the target dataset.

5.3 Transfer Learning with Pre-trained Transformers

For our transformer based slot matching model, we use a transformer, initialized
with the weights of BERT-Small3, instead of an LSTM, as discussed in Sect. 4.2.
The transformer has 12 layers of hidden size 768 and 12 attention heads per
layer. Following [6], we set dropout to 0.1. We train using Adam with initial
learning rate 0.00001. Table 3 shows the performance of the pre-trained trans-
former (BERT), used as in [6] as well as the pre-trained transformer in the slot
matching configuration (Slot Matching (BERT)). For BERT, we follow the
sequence pair classification approach described by [6].

Table 3. CCA for slot matching model, as proposed in Sect. 4.2 initialized with the
weights of BERT-Small, compared with regular transformers initialized with the same
weights.

QALD-7 LC-QuAD

BERT 0.23 0.67

Slot matching (BERT) 0.18 0.68

3 as provided by the authors at https://github.com/google-research/bert.

https://github.com/google-research/bert
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Through this experiment we find that using pre-trained weights immensely
improves model performance, as both transformer based models outperform the
ones in Sect. 5.1. Additionally, we find that the augmentations we propose in
Sect. 4.2 are beneficial for the task, improving CCA on LC-QuAD by 1.4% rela-
tive to regular pre-trained transformers. However, both models exhibit poor per-
formance over QALD-7, suggesting that these models need substantial amounts
of data to be properly fine-tuned for the task. We thus conclude that using pre-
trained transformers in the slot matching setting is advantageous for the task,
if ample training data is available at hand.

6 Conclusion and Future Work

In this work, we studied the performance of various neural ranking models on
the KGQA task. First, we propose a novel task-specific ranking model which
outperforms several existing baselines in our experiments over two datasets. An
error analysis shows that the model performs especially well on smaller candi-
date sets and for longer questions which highlights its high potential for answer-
ing complicated questions. Second, we present an extensive study of the use of
transfer learning for KGQA. We show that pre-training models over a larger
task-specific dataset and fine-tuning them on a smaller target set leads to an
increase in model performance. We thereby demonstrate the high potential of
these techniques for offsetting the lack of training data in the domain. Finally,
we propose mechanisms to effectively employ large-scale pre-trained state of the
art language models (BERT [6]) for the KGQA task, leading to an impressive
performance gain on the larger dataset.

We aim to extend this work by incorporating a three phased domain adaption
strategy as proposed in [10] for the KGQA task. We will study the effect of
pretraining our ranking models with synthetically generated datasets, aiming
for consistent coverage of relations involved in the ranking process. Further, we
intend to explore differentiable formal query execution mechanisms [4] enabling
answer supervision based training of our model.
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Abstract. Knowledge Graphs are used in an increasing number of appli-
cations. Although considerable human effort has been invested into mak-
ing knowledge graphs available in multiple languages, most knowledge
graphs are in English. Additionally, regional facts are often only avail-
able in the language of the corresponding region. This lack of multilingual
knowledge availability clearly limits the porting of machine learning mod-
els to different languages. In this paper, we aim to alleviate this drawback
by proposing THOTH, an approach for translating and enriching knowl-
edge graphs. THOTH extracts bilingual alignments between a source
and target knowledge graph and learns how to translate from one to the
other by relying on two different recurrent neural network models along
with knowledge graph embeddings. We evaluated THOTH extrinsically
by comparing the German DBpedia with the German translation of the
English DBpedia on two tasks: fact checking and entity linking. In addi-
tion, we ran a manual intrinsic evaluation of the translation. Our results
show that THOTH is a promising approach which achieves a transla-
tion accuracy of 88.56%. Moreover, its enrichment improves the quality
of the German DBpedia significantly, as we report +18.4% accuracy for
fact validation and +19% F1 for entity linking.

1 Introduction

A recent survey estimates that more than 3.7 billion humans use the internet
every day and produce nearly 2.5 quintillion bytes of data on the Web each day.1

The availability of such large amounts of data is commonly regarded as one of the
motors for the current lapses in the development of Artificial Intelligence (AI)-
powered solutions. In this paper, we focus on the portion of data made available
in the form of Knowledge Graph (KG). Recent works have shown the benefits
of exploiting KGs to improve Natural Language Processing (NLP) tasks such
as Natural Language Inference (NLI) [20] and Question Answering (QA) [35]. A
given KG (especially Resource Description Framework (RDF) KG) commonly
stores knowledge in triples. Each triple consists of (i) a subject—often an entity,

1 https://tinyurl.com/statswebdata.
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(ii) a relation—often called property—and (iii) an object—an entity or a lit-
eral.2 For example, <Edmund Hillary, birthPlace, Auckland>,3 repre-
sents the information that “Edmund Hillary was born in Auckland”.

Considerable amounts of partly human effort has been invested in making
KGs available across languages. However, even popular KGs like DBpedia and
Wikidata are largest in their English version [25]. Additionally, region-specific
facts are often limited to the KG specific to the region from which they emanate
or to the KG in the language spoken in said region [1]. This lack of multilingual
knowledge availability limits the porting of Machine Learning (ML) models to
different languages. The Semantic Web (SW) community has been trying to
alleviate this bottleneck by creating different approaches for enriching the Linked
Open Data (LOD) cloud with multilingual content. However, it is a difficult
endeavor as the majority of ML algorithms for extracting knowledge from raw
data only support English.

Previous works have tried to address this problem by using Machine Trans-
lation (MT) systems [2,27]. However, these works focused only on translating
the labels of domain-specific KGs from English into a target language. This
kind of approach ignores an essential part of a KG, namely its graph structure.
For example, while translating a highly ambiguous label such as Kiwi, an MT
system has to predict in which domain this word has to be translated in the
target language. Otherwise, the translation of Kiwi can be the common term for
inhabitants of New Zealand,4 a fruit,5 a bird,6 or a computer program.7 These
domains can be derived in KGs through predicates such as type predicates (i.e.,
rdf:type in RDF). Clearly, taking the graph structure of KG into account
can support an MT system when spotting the correct translation for ambiguous
labels.

RDF KGs rely on Uniform Resource Identifier (URI)s for the unique identi-
fication of relations (predicates) and resources (entities).8 While some KGs use
encoded URIs with numeric IDs (e.g., Wikidata), most KGs use language-based
URIs, which allows humans to derive the semantics behind the URI by reading
it. For example, the Multilingual KG DBpedia is composed of independent KGs
in different languages interlinked by owl:sameAs relations. We argue that if a
KG uses human-legible URI, then an enrichment approach for language-based
KGs should not simply translate only the labels of its resources and maintain
or change its URI prefixes by adding a language code. It should also be able
to generate correct URIs during the translation process. For instance, chang-
ing an English DBpedia resource <http://dbpedia.org/resource/Uni-
ted Kingdom> to a German DBpedia resource <http://de.dbpedia.org-

2 a string or a value with a unit.
3 http://dbpedia.org/page/Edmund Hillary.
4 http://dbpedia.org/resource/Kiwi (people).
5 http://dbpedia.org/resource/Kiwifruit.
6 http://dbpedia.org/resource/Kiwi.
7 http://dbpedia.org/resource/KiwiIRC.
8 https://www.w3.org/TR/cooluris.

http://dbpedia.org/page/Edmund_Hillary
http://dbpedia.org/resource/Kiwi_(people)
http://dbpedia.org/resource/Kiwifruit
http://dbpedia.org/resource/Kiwi
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/resource/United Kingdom> is inherently incorrect since this entity already
exists with another URI in the German DBpedia (i.e., <http://de.dbpe-
dia.org/resource/Vereinigtes Königreich>.). Consequently, a sim-
ple translation of labels without a translation of URIs would assign a supple-
mentary URI to an existing resource, hence breaking the uniqueness of URIs
within single KGs. Thus, an approach for translating KGs must be capable of
translating labels and URIs. In this work, we focus on translating and enriching
KGs with language-based URIs to provide KGs in different languages. To this
end, we present THOTH, an approach which considers the graph structure of the
KG while translating its URIs along with their labels. First, THOTH extracts
bilingual alignments between a source and target KG using SPARQL queries.
Afterwards, THOTH uses the acquired bilingual knowledge to train two differ-
ent Neural Machine Translation (NMT) models based on an Recurrent Neural
Network (RNN), (1) triple- and (2) text-based. The triple-based RNN model is
trained only on triples represented by <resource,predicate,resource>
while the text-based RNN model, is trained on generic bilingual parallel corpora
and is able to translate triples which contain literals (texts), i.e., <resour-
ce,predicate,literal>. Both models are enriched with Knowledge Graph
Embeddings (KGE) created from the source and target KGs. We envision that
THOTH can benefit and support the multilinguality in the LOD cloud and the
SW.

With this aim, we apply THOTH on the English and German DBpedia [4].
We hence evaluate the enriched German DBpedia both extrinsically and intrin-
sically. The extrinsic evaluation is carried out on the tasks of fact checking and
Entity Linking (EL). The intrinsic evaluation is carried out by means of a man-
ual error analysis of a sample of the data. The main contributions of this paper
can be summarized as follows:

– We present a novel approach based on Neural Network (NN)s along with
KGEs for translating and enriching KGs across languages.

– THOTH is a promising approach which achieves a translation accuracy of
88.56% across all elements of a triple. Also, its enrichment improves the qual-
ity of the original German DBpedia significantly in both the fact checking
and the EL tasks: We achieve improvements of 18.4% for fact validation and
19% for EL.

The version of THOTH used in this paper and also all experimental data are
publicly available.9

2 Related Work

A wide range of works have investigated the enrichment of KGs through differ-
ent techniques, for example, MT [16], cross-lingual knowledge interlinking and
alignment [11], natural language generation [21] and KGE [12]. In this section,

9 https://github.com/dice-group/THOTH.

https://github.com/dice-group/THOTH
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we briefly describe recent approaches which exploited the enrichment of KGs
from the MT aspect and also worked on the development of KGE which is an
important part of our approach.

KG Translation. According to a recent survey [30], the translation of KGs has
been carried out through a localization task which relies on Statistical Machine
Translation (SMT) systems for translating the labels of KGs and domain-specific
ontologies into target languages. Recently, Arčan and Buitelaar [3] performed the
translation of domain-specific expressions from medical and financial domains
represented by English KGs into other languages by relying on an NMT archi-
tecture. They showed that the results of NMT surpassed the SMT. As a way
of overcoming the weakness of previous works, Feng et al. [16] presented an NN
approach, which learns continuous triple representation with a gated NN for
translating an English KG into Chinese. The authors built their approach upon
a subset of Freebase [7] and mapped the source and target triples in the same
semantic vector space. Consequently, their technique was capable of learning the
KG structure for translating the terms. Their adapted NN approach improved
the translation accuracy over a strong NMT baseline and showed that consider-
ing a KG structure is essential for performing a KG translation and leads to a
better disambiguation quality for ambiguous terms.

Knowledge Graph Embeddings. Manifold approaches interpret relationships
as displacements operating on low-dimensional embeddings of entities, e.g.
TransE [8]. More recently, Nickel et al. [31] proposed HolE, which relies on
holographic models of associative memory by employing a circular correlation
to create compositional representations. Ristoski and Paulheim [33] presented
RDF2Vec, which uses language modeling approaches for unsupervised feature
extraction from sequences of words and adapts them to RDF graphs. RDF2Vec
has been extended to reduce the computational time and bias of random walk-
ing [13]. In its subsequent extension, Cochez et al. [14] exploited the Global Vec-
tors algorithm in RDF2Vec for computing embeddings from the co-occurrence
matrix of entities and relations without generating the random walks. However,
Joulin et al. [19] showed recently that a simple Bag-of-Words (BoW) based app-
roach with the fastText algorithm [18] generates surprisingly good KGE while
achieving state-of-the-art results.

3 Preliminaries

In the following, we present preliminary concepts of NMT and KGE for a better
understanding of THOTH approach.

Neural Machine Translation. In this work, we use the RNN architecture.
It consists of an encoder and a decoder, i.e., a two-tier architecture where the
encoder reads an input sequence x = (x1, ..., xn) and the decoder predicts a
target sequence y = (y1, ..., yn). Encoder and decoder interact via a soft-attention
mechanism [5,26], which comprises one or multiple attention layers. We follow
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the notations from Tang et al. [36] in the subsequent sections: hl
i corresponds

to the hidden state at step i of layer l. hl
i−1 represents the hidden state at the

previous step of layer l while hl−1
i means the hidden state at i of l − 1 layer.

E ∈ R
m×Kx is a word embedding matrix, W ∈ R

n×m, U ∈ R
n×n are weight

matrices, with m being the word embedding size and n the number of hidden
units. Kx is the vocabulary size of the source language. Thus, Exi

refers to the
embedding of xi, and epos,i indicates the positional embedding at position i. In
RNN models, networks change as new inputs (previous hidden state and the
token in the line) come in, and each state is directly connected to the previous
state only. Therefore, the path length of any two tokens with a distance of
n in RNNs is exactly n. Its architecture enables adding more layers, whereby
two adjoining layers are usually connected with residual connections in deeper
configurations. Equation 1 displays hl

i, where frnn is usually a function based on
Gated recurrent unit (GRU) or Long Short-Term Memories (LSTM). The first
layer is then represented as h0

i = frnn(WExi
, Uh0

i−1). Additionally, the initial
state of the decoder is commonly initialized with the average of the hidden states
or the last hidden state of the encoder.

hl
i = hl−1

i + frnn(hl−1
i , hl

i−1) (1)

Knowledge Graph Embeddings. The underlying concept of KGE is that,
in a given KG, each subject entity h or object entity t can be associated with
a vector in a continuous vector space whereby its relation r can be modelled
as displacement vectors (h + r = t) while preserving the inherent structure
of the KG. In fastText [19], the model is based on BoW representation which
considers the subject entities h and object entities t along with their relation r
as a unique discrete token. Thus, fastText models the co-occurrences of entities
and its relations with a linear classifier and standard cost functions. Hence, it
allows theoretically creating either a structure-based or semantically-enriched
KGE. Therefore, we use fastText models in our experiments.10 The aim of the
algorithm is represented by the following equation:

− 1
N

N∑

n=1

yn log(f(WV zn)), (2)

The normalized BoW of the xn input set is represented as zn, yn as the label.
V is a matrix, which is used as a look-up table over the discrete tokens and a
matrix W is used for the classifier. The representations of the discrete tokens
are averaged into BoW representation, which is in turn fed to a linear classifier.
f is used to compute the probability distribution over the classes, and N input
sets for discrete tokens.

10 We could not use RDF2Vec in our work as its code was incomplete.
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Fig. 1. Overview of THOTH.

4 The THOTH Approach

NNs have shown an impressive capability of parsing and translating natu-
ral language sentences. For example, the application of NN within MT sys-
tems led to a remarkable performance over well-established Phrase-based SMT
approaches [22]. Consequently, the interest in NMT for devising new solutions
to translation problems increased. The underlying idea behind our approach,
THOTH, is based on the formal description of a translation problem as follows:
Given that KGs are composed of facts extracted from text, we can consider the
facts (i.e., triples) as sentences where URIs are tokens and train a NMT model
to translate the facts from one language into another. The enrichment process
implemented by THOTH consists of two phases. The data gathering and prepro-
cessing steps occur in the training phase, while the enrichment per se is carried
out during the translation phase and consists of two steps: (1) translation and
(2) enrichment. All steps carried out in THOTH are language-agnostic, which
allow the use of other language-based KGs. An overview can be found in Fig. 1.

4.1 Training Phase

While devising our approach, we perceived that one crucial requirement is that
all resources and predicates in the source and target KGs must have at least
one label via a common predicate such as rdfs:label.11 This avoids the gen-
eration of inadequate resources. After establishing this, we divide THOTH into
two models in order to take into account the challenge of translating datatype
property values (i.e., texts) and object property values (i.e., entities). Trying to
tackle both kinds of statements with a single model is likely to fail as labels can
easily reach a length of 50 characters. Therefore, we divide the data gathering
process into two blocks in order to be able to train 2 models.
11 https://www.w3.org/TR/webont-req/#section-requirements.

https://www.w3.org/TR/webont-req/#section-requirements
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1 SELECT *
2 WHERE {
3 ?s1 ?p1 ?o1 .
4 ?s2 ?p2 ?o2 .
5 ?s1 owl:sameAs ?s2 .
6 ?o1 owl:sameAs ?o2 .
7 FILTER(?p1 != owl:sameAs && ?p2 != owl:sameAs)
8 } ORDER BY ?s1 ?o1 LIMIT 1000000

Listing 1.1. A SPARQL query for retrieving aligned bilingual triples

1 EN: dbr:crocodile_dundee_ii dbo:country dbr:united_states
2 DE: dbr_de:crocodile_dundee_ii dbo:country dbr_de:vereinigte_staaten
3 EN: dbr:til_there_was_you dbo:writer dbr:winnie_holzman
4 DE: dbr_de:zwei_singles_in_l.a. dbo:writer dbr_de:winnie_holzman

Listing 1.2. Sample of the triple-based training data

Data Gathering Process. First, we upload the source and target KG into a
SPARQL endpoint and query both graphs by looking for resources which have
the same “identity”. Identical resources are usually connected via owl:sameAs
links. However, aligned triples must not contain owl:sameAs as predicates in
themselves (see line 7 in Listing 1.1). Second, we perform another SPARQL query
for gathering only the labels of the aligned resources. Thus, we generate two
bilingual training files, one with triples and another with labels (see Listing 1.2
for an example). Once both training files are created, we split them into training,
development, and test sets.

Preprocessing. Before we start training the triple- and text-based models,
we tokenize both training data files. Subsequently, we apply Byte Pair Encod-
ing (BPE) models on them for dealing with out-of-vocabulary (OOV) words [34].
BPE is a form of data compression that iteratively replaces the most frequent
pair of bytes in a sequence with a single, unused byte. The symbol vocabulary
is initialized with the character vocabulary, and each word is represented as a
sequence of characters-plus a special end-of-word symbol, which allows restoring
the original tokenization after the translation step. For example, suppose we have
the entity or label “Auckland”, after the BPE, i.e., the sub- word information,
it becomes Au� ck� la� nd.12 Applying BPE on the training data allows the
translation models to translate words and sub-words and consequently improve
their translation performance. It is a well-known technique from the MT com-
munity for handling the open vocabulary problem.

Knowledge Graph Embeddings. Based on recent findings [28], we generate
KGEs from the aligned triples along with their labels by using fastText. We rely
on multinomial logistic regression [6] as a classifier in a supervised training imple-

12 The black squares represents how the model splits the frequent tokens in a sequence
for a better translation process.
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mented in fastText. It assigns the entity’s URI to its surface forms. For exam-
ple, the triple with literal, <dbr:ISWC, rdfs:label, International
Semantic Web Conference> becomes < label dbr:ISWC Interna-
tional Semantic Web Conference> for training the KGE13. This tech-
nique enables the NN to retrieve from KGE the surface form of the entities
through their URIs.

Training. Both triple- and text-based models rely on a standard RNN model
described in Sect. 3. The difference between both models is the training data
format. The Triple-based model is trained only with the aligned triples, while the
text-based was trained with an external generic bilingual corpora. Additionally,
both models are augmented with a KGE model. The idea of using KGE is to
maximize the vector values of the triple-based and text-based NMT embeddings
layers while training their models. An overview of the training phase can be
found in Fig. 2 for a better understanding.

4.2 Translation Phase

Here, THOTH expects the entire source KG as an input to be translated and
enriched into the target language as an output. To this end, THOTH first
relies on a script which is responsible for splitting the KG triples which com-
prises only the resources in one file and the triples which contain literals as
objects in a different file. Once the division is done, and two set files are gen-
erated, THOTH starts translating the triples only with resources. After that,
THOTH has to deal with the triples which have labels, and they are handled
13 More than one surface forms can be assigned to the entities.
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differently. The subject and predicate of the triples are sent to the Triple-based
model along with a special character in the place of its object. For example,
suppose THOTH is parsing the following triple, <dbr:ISWC, rdfs:label,
International Semantic Web Conference>, it is sent to the Triple-
based model as <dbr:ISWC, rdfs:label, ▲. This special character sim-
ply tells the model to ignore the value and copy it to the target. In turn, the
Text-based NMT model translates only the object; in this case, the label Inter-
national Semantic Web Conference. We argue that the Text-based model can
translate the labels correctly since its model was augmented with a KGE model
representing the URIs of both KGs, source and target. We hence hypothesize
that since neural models learn translations in a continuous vector space, they
can assimilate and link the labels with the entities and correctly translate the
labels. Afterwards, subject and predicate are attached with their object literal in
a triple again. Finally, the two different files are combined into one again result-
ing in a translated KG. Once the translation step is complete, THOTH gets the
translated KG, and the original target (German) KG used in the training part
and combines both into a single KG. The idea here is to enrich the original KG
with translated triples. When conflicts of values, for example, the triples match
partially, and duplicated triples appear between the original KG and the trans-
lated KG, we opt to maintain the triples from the original KG as THOTH’s aim
is not to produce a newly translated KG but enrich the original one.

5 Evaluation

5.1 Goals

In our evaluation, we plan to address the following research questions:

Q1: Can NNs along with KGE support a full (triples and labels) translation of
KGs?

Q2: How accurate are the triples generated by THOTH?
Q3: Can an artificially enriched KG improve the performance of a system on

NLP tasks?

To this end, we designed our evaluation in three-fold set. First, we measure
the performance of THOTH using an automatic MT evaluation metric, BLEU,
along with its translation accuracy. Second, we evaluated THOTH extrinsically
by comparing the German DBpedia with the German translation of the English
DBpedia on two tasks: Fact Validation and Entity Linking. Third, we ran a
manual intrinsic evaluation of the translation. We choose German as a target
language because of the abundance of benchmarking systems and datasets for
this pair.

5.2 Experimental Setup

In our experiments, we based the parameters on previous literature [24]. Both the
triple-based and the text-based NMT models are built upon an RNN architec-
ture using a bi-directional 2-layer LSTM encoder-decoder model with attention
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mechanism [5]. The training uses a batch size of 32 and the stochastic gradient
descent with an initial learning rate of 0.0002. We set the dimension of the word
embeddings to 500 and the internal embeddings of hidden layers to size 500.
The dropout is set to 0.3 (naive). We use a maximum sentence length of 50, a
vocabulary of 50,000 words and a beam size of 5. All experiments are performed
with the OpenNMT framework [23]. In addition, we encode the triples and words
using BPE [34] with 32,000 merge operations.

For training the text-based model, our training set consists of a merge of all
parallel training data provided by the Workshop on Machine Translation (WMT)
tasks14, obtaining after preprocessing a corpus of five million sentences with 79M
running words. In the triple-based model, we use the bilingual alignments from
the English, and German versions of DBpedia15 for training. This alignment
contains 346,373 subjects, 292 relations and 208,079 objects in 1,012,681 triples.
We divide this data into 80% training, 10% development and 10% test. Overall,
the English KG contains 4.2 million entities, 661 relations, and 2.1 million surface
forms, while the German version has 1 million entities, 249 relations, and 0.5
million surface forms. Additionally, we train the KGE on both DBpedia versions
using the fastText algorithm (Eq. 2) with a vector dimension size of 500 and a
window size of 50 by using 12 threads with hierarchical softmax.

The overall enrichment quality of THOTH is measured by working through
different steps. Firstly, we evaluate the translations automatically by computing
a translation accuracy with BLEU [32] score which is a cost-effective and stan-
dard MT evaluation metric. BLEU uses a modified precision metric to compare
the MT output with the reference (i.e., human) translation. This automatic
evaluation is done with a bilingual aligned triples test set. In the subsequent
evaluation steps, we investigate THOTH’s performance on a full KG transla-
tion setting. In this case, we use THOTH models for translating and enriching
all Concise Bounded Description (CBD) resources of English DBpedia to an
enriched-German DBpedia version. The further extrinsic evaluation steps are
described below.

Fact Validation Task. In line with the data quality metrics proposed in Zaveri
et al. [39], our KG translation approach can address the dimension of the com-
pleteness of KGs. An area in which completeness has a significant impact is
fact validation. Hence, fact validation benchmarks can be used as a proxy for
measuring our translation quality as they provide both true and false facts. We
selected FactBench—a multilingual benchmark dataset for the evaluation of fact
validation algorithms [17]—for our experiments. FactBench contains positive and
negative facts. We only use the 750 positive facts distributed over 10 relations
as reference data in our experiment. Our aim is to check the number of true
facts which existed in the original KG (i.e., in the German version of DBpedia)

14 http://www.statmt.org/wmt18/translation-task.html.
15 We selected the subsets of mapping-based objects and labels to evaluate the quality

of our approach since they are the most used ones for training Linked-Data NLP
approaches.

http://www.statmt.org/wmt18/translation-task.html
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and how many true triples THOTH was able to add to the KG through enrich-
ment. We used 5 of the 10 predicates in our evaluation data set, i.e., award,
birthplace, deathplace, leader, starring because the other predicates
do not lead to sufficient training data. Overall, our evaluation dataset consists
of a total count of 375 facts.

NLP Task. One of the most important NLP techniques for extracting knowl-
edge automatically from unstructured data is Entity Linking, also known as
Named Entity Disambiguation (NED). The goal of an EL approach is as fol-
lows: Given a piece of text, a reference knowledge graph K and a set of entity
mentions in that text, map each entity mention to the corresponding resource in
K. Our idea here is to exploit the graphs connections from the enriched-German
DBpedia (THOTH) KG to improve a given EL system on a disambiguation
task. We chose MAG, a multilingual EL system introduced by [29], which is
language- and KG-agnostic. MAG does not require any training while showing
competitive results. Also, we selected GERBIL [37] as a benchmarking platform
because it has been widely used for evaluating different NLP tasks. In this task,
we had to make the URIs of the gold standard datasets lowercase before perform-
ing our experiment since the THOTH translation models produces lower-cased
URIs. The URI case sensitivity is dependent on the implementation of the web
server16. Thus, converting all URIs to lowercase is valid and does not produce
false results. As the evaluation is on the German language, we uploaded four
German datasets to GERBIL (see Table 1). The VoxEL dataset is a manu-
ally annotated gold standard. This dataset has two versions: (i) a strict version
VoxEL-strict where entities correspond to a restricted definition of entity, as a
mention of a person, place or organization, and (ii) a relaxed version VoxEL-
relaxed, where a broader selection of mentions referring to entities described
by Wikipedia is maintained. The N3 news.de dataset is a real-world dataset
collected from 2009 to 2011, which contains documents from the German news
portal news.de. Finally, DBpedia Abstracts is a large, multilingual corpus
generated from enriched Wikipedia data of annotated Wikipedia abstracts [9].
This corpus stems from Wikipedia annotations which were created manually.17

Table 1. Dataset statistics.

Corpus Language Topic Documents Entities

VoxEL-strict German News 15 204

VoxEL-relaxed German News 15 674

N3 news.de German News 53 627

German Abstract German Mixed 38,197 346,448

16 https://tools.ietf.org/html/rfc3986#section-3.1.
17 We reduced our testset to the first subset of provided abstracts due to evaluation

platform limits.

https://tools.ietf.org/html/rfc3986#section-3.1
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5.3 Results

In this section, we report the results of THOTH’s enrichment in the German
DBpedia on the settings mentioned above. Also, we aim to answer the three
research questions defined in Sect. 5.1 and carried out a thorough manual analysis
of our results.

Translation Results. We evaluated our translation on the test set of the bilin-
gual data we extracted via SPARQL queries (see Sect. 5.2). To this end, we used
the THOTH models for translating source English triples to German triples.
First, we computed the BLEU score by comparing THOTH’s output with the
corresponding target (German) side of the bilingual test set. THOTH achieved a
BLEU score of 65.47, which is superior to the state-of-the-art translation scores
achieved on natural language [15].

Given that it is not possible to infer the quality of a given translation only
relying on one automatic evaluation metric, we created an additional evaluation
script which computes the exact string match of subjects, predicates, and objects
between an output and a reference translation triple. Additionally, we also com-
puted the overall triple accuracy. For example, given the following triple from
THOTH’s output, <dbr de:iago falque dbo:club dbr de:fc turin>,
we measure if its subject, predicate and object are equal to the ones of the ref-
erence translation; in this case, we found it to be the same. However, in the case
where some of them are different, the accuracy of the triple is 0 because the
meaning of the triple is wrong in comparison to its reference. Figure 3 depicts
the accuracy results of THOTH’s output in comparison to the German test
set. THOTH achieved up to 80% accuracy for subjects, predicates, and objects.
As expected, THOTH’s accuracy decreased to 68.83% while measuring entire
triples. We analyzed the results manually to understand this drop in the perfor-
mance. Our manual analysis suggests that the poorer performance w.r.t. triples
is linked to the partially weak disambiguation power of the underlying KGE

Fig. 3. Overall translation accuracy
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model, which assigned the same vector value for similar predicates. We discuss
this particular challenge along with other findings in Sect. 5.4. Regarding Q1,
our results confirm that NNs along KGE can support a full KG translation by
considering the consistent quality of THOTH translations.

Fact Validation Results. Here, we used THOTH to translate the entire
English DBpedia to German. In this case, we do not have a gold standard
translation to compare automatically. Therefore, we evaluated the THOTH’s
enrichment capability in the perspective of a fact-validation task. The main goal
here was to check if THOTH could enrich the original German KG with new
correct facts which were not present in its original version. Figure 4 reports an
improvement of 18.4% across all predicates. Interestingly, the original German
DBpedia KG did not contain any fact with the predicate award from the Fact-
Bench dataset. However, after THOTH’s enrichment, its coverage of FactBench
increased to 28%. We also noticed an improvement of 48% w.r.t. the leader
predicate. Further (even if smaller) increases can be seen in the birthPlace,
deathPlace, and starring predicates, where we achieve an average enhance-
ment of 4%. Delving into the data shows that the predicates which got modest
improvements are the most mapped by the German DBpedia from Wikipedia18.
Consequently, these predicates are present in abundance in the original Ger-
man KG. Overall, it becomes clear that THOTH achieves the task of improving
the quality of KGs w.r.t. their completeness. Additionally, we can answer Q2
with the results of THOTH on the fact-validation task, where it achieved an
increase of +18.4% accuracy. THOTH obviously led to a significant increase in
the number of correct facts in the original KG.

Fig. 4. A comparison between the enriched-German DBpedia (THOTH) KG with the
original German DBpedia on the validation of facts.

18 http://mappings.dbpedia.org/server/statistics/de/.

http://mappings.dbpedia.org/server/statistics/de/
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Table 2. Micro results in a comparison between German DBpedia KG with Enriched-
German DBpedia (THOTH) KG in MAG.

Datasets MAG-DBpedia-KG MAG-THOTH-KG

F-measure Precision Recall F-measure Precision Recall

German abstracts 0.78 0.79 0.76 0.97 0.99 0.96

N3 news.de 0.77 0.78 0.76 0.98 0.99 0.97

VoxEL-strict 0.40 0.46 0.35 0.70 0.81 0.61

VoxEL-relaxed 0.57 0.57 0.57 0.64 0.64 0.64

Entity Linking Results. For this evaluation, we used the optimal parameter
configuration for MAG described by Moussallem et al. [29]. Table 2 reports the
results of MAG in two configuration sets, one with original German DBpedia
and another with the Enriched-German DBpedia (THOTH) as reference KGs.
The version of MAG running on the translated KG achieves significantly better
results than that running on the original KG. The average improvement across
all datasets is around 19% in F-measure. The results of the German abstracts
data set and N3 news.de are surprisingly high. We sampled the results manually,
and we could establish that the results were correct. We also investigated the cre-
ation of both benchmarking datasets, and we concluded that at the time of their
creation, the links used in both were based on the English DBpedia as an aux-
iliary KG. Therefore, when THOTH translated the English KG to German and
enriched the original German DBpedia with English knowledge, MAG was able
to get very high HITS scores for many resources. For example, the HITS score
of dbr de:Frankreich (dbr:France) increased around 50% from 0.08 to 0.12. The
superior results of MAG using the enriched knowledge on the VoXEL datasets
(which do not suffer from the aforementioned biases) additionally confirm the
pertinence of THOTH’s results. Finally, we answer Q3 with the EL results, as
they proved that MAG while using the Enriched-German DBpedia (THOTH)
KG achieved an improvement of +19% F1 in comparison to the original German
DBpedia.

5.4 Error Analysis and Discussion

In this section, we report findings and some problems found in THOTH.
One of the outcomes came about while analyzing the significant drop in
the translation triple accuracy shown in the overall results. We examined
the translations manually and perceived that the accuracy mainly decreased
because THOTH was capable of generating disambiguated URIs instead of
the correct ones. For example, the following triple in the reference transla-
tion <dbr de:don getty dbo:birthplace dbr de:westmount> did not
match with the following output, <dbr de:don getty dbo:birthplace
dbr de:westmount (québec)>, simply because THOTH generated a differ-
ent object URI. Although the output object has a different URI, it is correct



THOTH: Neural Translation and Enrichment of Knowledge Graphs 519

because the birthplace of Don Getty was Westmount in Québec. However, this
more explicit URI led to an error and consequently decreased the translation
accuracy. It is a fascinating example because we could see that the NN models
along with the KGE were able to understand the KGs graph structure and pre-
dict a disambiguated URI based on the knowledge from the English DBpedia.
Additionally, no similar example was present in the training set, indicating that
the BPE model learned correctly to translate the URIs.

Besides the aforementioned results, we noticed some mistranslations of simi-
lar predicates which were responsible for decreasing the accuracy of triple trans-
lation. For example, the following English source triple dbr:zenyattà mon-
datta dbo:artist dbr:the police was translated into dbr de:zeny-
attà mondatta dbo:producer dbr de:the police. This example shows
that THOTH translated the subject and object correctly. However, the predi-
cate was incorrect and was mistranslated from dbo:artist to dbo:producer. A
similar problem occurred while translating the triple, dbr:albert einstein
dbo:citizenship dbr:Switzerland to dbr:albert einstein dbo:
birthplace dbr:der Schweiz. After a manual analysis, we identified that
both cases happened because THOTH could not distinguish the predicates which
share the same domain and range. In a more in-depth analysis, we perceived that
the predicates mentioned above are very close to each other in the vector space
thus complicating the disambiguation process of NN models. The performance
of THOTH was not affected by these false triples since they were automatically
removed from the Enriched-German DBpedia (THOTH) dataset in the enrich-
ment step. After this manual analysis of the results, we believe that addressing
the problem of similar predicates (e.g., through novel embedding techniques) can
enhance the translation quality of THOTH.

6 Conclusion

In this paper, we introduced a neural approach named THOTH for translating
and enriching KGs from different languages. THOTH relies on two different
RNN-based NMT models along with KGEs for translating triples and texts
jointly. We carried out an extensive evaluation set for certifying the quality of
our approach. Our results show that THOTH is a promising approach which
achieves a translation accuracy of 88.56%. Moreover, its enrichment improves
the quality of the German DBpedia significantly, as we report +18.4% accuracy
for fact validation and +19% F1 for entity linking. As future work, we plan to
investigate the application of sub-graphs [10] for improving the disambiguation
of similar predicates. Additionally, we aim to exploit other NN architectures,
such as Transformer [38], for improving THOTH’s performance. Moreover, we
plan to apply THOTH in the context of low-resource KG scenarios with Asian
and African languages as well as apply THOTH on the Wikidata KG.
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Abstract. Relation linking is an important problem for knowledge
graph-based Question Answering. Given a natural language question and
a knowledge graph, the task is to identify relevant relations from the
given knowledge graph. Since existing techniques for entity extraction
and linking are more stable compared to relation linking, our idea is to
exploit entities extracted from the question to support relation linking.
In this paper, we propose a novel approach, based on DBpedia entities,
for computing relation candidates. We have empirically evaluated our
approach on different standard benchmarks. Our evaluation shows that
our approach significantly outperforms existing baseline systems in both
recall, precision and runtime.

Keywords: Question answering · Semantic Web · Semantic search ·
Predicate linking · Knowledge Graph

1 Introduction

Over the past years, the number and size of Knowledge Graphs (KG) [24] in the
Semantic Web has increased significantly. Among them, well known ones include
DBpedia [1], Yago [32], Freebase [5] and Wikidata [37]. To make such informa-
tion easily available, many question answering (QA) systems over KGs have been
created in the last years [4,12,16]. The research community has addressed the
problem of question answering over KGs via two different approaches. Firstly,
researchers have developed end-to-end QA systems such as [8,16] that use deep
learning and machine learning models to directly predict mapping/linking of
entities and relations in the input question to their KG occurrences to extract
correct answers. These end to end QA systems are frequently developed for
question answering over Freebase due to the availability of large training data
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 523–538, 2019.
https://doi.org/10.1007/978-3-030-30793-6_30
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in benchmarks (e.g. the SimpleQuestion benchmark [6] for Freebase, contain-
ing 100.000 questions). However, for DBpedia the availability of training data is
limited to at most 5000 questions [34]). Therefore, researchers have focused on
QA systems based on semantic parsing that heavily rely on semantics associated
with natural language understanding of the input question. Semantic parsing
based QA (SQA) systems implement a sequence of tasks (often referred to the
QA pipeline [26]) to translate natural language questions to their corresponding
SPARQL query. These systems over DBpedia implement independent compo-
nent(s) in the architecture for entity and relation linking [26,29], that is, to link
the extracted entities and relations from the input question to their knowledge
graph occurrences. While doing so, most QA systems face the following chal-
lenges: (i) how to deal with the extraction of entity and relation candidates in
the question, and (ii) how to link the relation and entity candidates to the knowl-
edge graph. The third approach is the collaborative QA systems which promotes
reusability of QA components.

In this paper, we address the challenge of relation linking. Recently, to build
SQA systems in a collaborative effort, many frameworks such as Qanary [7],
OKBQA1 [14] and Frankenstein [31] are developed that use modular approaches
for building QA systems by reusing existing independently released tools. Several
independent entity and relation linking tools such as DBpedia Spotlight [17],
AGDISTIS [36], SIBKB [30], ReMatch [18] and Tag Me [10] are reused in these
frameworks. Following this approach, in this paper, we will develop a new relation
linking component, embed it in an existing framework (in our case Frankenstein)
and compare its performance against the state of the art. We focus on relation
linking because independent entity linking tools already perform well when they
are applied to QA frameworks like Frankenstein, while on the other hand all
the existing independent relation linking tools fail miserably both in terms of
precision and runtime [31]. This failure of relation linking tools impact the overall
performance of the QA frameworks. Recently released studies by Singh et. al.
[28,31]2 have concluded that one of the main reasons behind relational linking
tool having limited performance is that the existing relation linking tools focus
more on identifying relations in the original question, while completely ignoring
the context of the entities that co-occur with these relations.

Therefore, in this paper, we propose to make use of entities appearing in
questions to support the task of relation linking over the DBpedia knowledge
graph. More precisely, properties that are logically connected to the target enti-
ties (as domains or ranges) are called the candidate property list (or simply
property list). This property list can then be used to expand the set of relation
candidates which can be used for the construction of SPARQL queries in the
QA pipeline. Our evaluations later in this paper will show that the use of logi-
cally connected property candidates leads to substantial gains in not only recall,
precision but also runtime.

1 http://www.okbqa.org/.
2 Authors evaluated five independent relation linking tools for DBpedia and other 18

entity linking tools.

http://www.okbqa.org/
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For example, given an input question “Which comic characters are painted by
Bill Finger?”, we can extract the relation phrase are painted by and the entity
phrase Bill Finger. Typically, existing relation linking approaches [18,30]
would directly extract the relation phrase in the question, while ignoring the enti-
ties (Bill Finger in this case) and expand the relation candidate using a synonym
list, such as “painter”. These tools then attempt to map the relation candidate to
DBpedia relations. However, this mapping leads them to provide dbo:painter3,
leading to an empty answer to the resulting SPARQL query. The SPARQL query
returns null because dbo:painter is not the correct property of the entity Bill
Finger. Instead, we assume that the entity Bill Finger is already linked to
its DBpedia mention and acts as one of the inputs besides the natural language
question. We construct a property list (see more details in the next sections)
by collecting all properties of the DBpedia entity dbr:Bill Finger4, including
properties that have some types of dbr:Bill Finger as domains or ranges. We
then further make use of the property list, including ranking of the list and
making sure that the range of the chosen property is compatible with comic
characters. At the end, we get dbo:creator as a candidate relation. When
we apply this result to the SPARQL query corresponding to the question, we
can conclude that dbo:creator is the best choice. In this way, we eliminate the
requirement for large training data by focusing on the structure of the DBpedia
knowledge graph (in terms of entities and their associated properties), and by
considering the context of the relation consisting of the entities in the question.

Based on the above idea, we propose and implement a new relation linking
framework (Entity Enabled Relation Linking, EERL) for factoid questions using
DBpedia. The contributions of this paper can be summarised as follows: Firstly,
a novel approach for generating and ranking candidate relations to be used
in QA systems. Secondly, an efficient implementation of this approach in the
EERL framework, that can be deployed as part of a larger QA pipeline; and
thirdly, an in-depth evaluation of our approach using a set of questions from two
benchmarking datasets having more than 5000 diverse questions. Our evaluation
shows a large improvement over the state of the art in both precision, recall and
the runtime.

As most existing works in the literature, we test our approach on DBpedia.
However, there is no specific assumption in our work on the structure or schema
of the underlying knowledge graph, and our method should be equally applicable
and can be extended to any other knowledge graph.

The rest of the paper is organised into the following sections: Section 2
presents our problem statement, Sect. 3 describes some of the major contribu-
tions in relation linking used in question answering, Sect. 4 presents our approach
for the identified problem. Section 5 describes our experimental setting and our
evaluation results. Finally Section 6 presents some of the key discussion points
considering our approach, and we conclude the paper in Sect. 7.

3 dbo is bound to http://dbpedia.org/ontology/.
4 dbr is bound to http://dbpedia.org/resource/.

http://dbpedia.org/ontology/
http://dbpedia.org/resource/
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2 Background

2.1 Knowledge Graph

More formally, we define a knowledge graph [23,24] G =T ∪ A consisting of a
data sub-graph A (or ABox) and a schema sub-graph T (or TBox). Facts in the
ABox are represented as triples of the following two forms:

– Relation assertion (h,r,t), where h (t) is the head (tail) entity, and r the rela-
tion; e.g., (dbr:Barack Obama, dbp:birthPlace, dbr:Hawaii) is a relation
assertion.

– Type assertion (e, rdf:type, C), where e is an entity, rdf:type is the instance-
of relation from the standard W3C RDF specification and C is a type; e.g.,
(dbr:Bill Finger, rdf:type, dbo:Person) is a type assertion.

A TBox includes type inclusion axioms, such as (dbo:Person rdfs:
subClassOf dbo:Agent), and relation axioms, such as ((dbp:birthPlace
rdfs:domain dbo: Person)) and (dbp:birthPlace rdfs: range dbo:Place).
There can be other kinds of type and relation axioms defined in the W3C stan-
dard knowledge graph schema language OWL, which is based on Description
Logics. We refer the readers to [2] for more details on Description Logic. In the
rest of the paper, we use E(A) (resp. R(T )) to refer to the set of entities (resp.
relations) in A (resp. T ). Note that the set of relations in A is a subset of the
set of relations in T , some of which might not have instances in A .

2.2 Problem Statement

Firstly, let us formalise the problem of relation linking for factoid questions,
before proposing our new research problem. Given the schema T of a knowledge
graph G =T ∪ A and an input natural language question q, the task of entity
linking is to identify a set of relations Rq ⊆ R(T ) for the set of relation phrases
in q.

In this paper, we propose a variant of the problem of relation linking for
factoid questions, based on entities identified within these questions. Formally,
given a knowledge graph G = T ∪ A , an input natural question q and a set of
entities Eq ⊆ E(A) identified in q, the task of entity enabled relation linking is
to identify a set of relations Rq ⊆ R(T ) for the set of relation phrases in q based
on the entities Eq.

Note that entities in the ABox A of G as well as their interconnections are
not taken into account in the task of (pure) relation linking, but in entity enabled
relation linking, which, in fact, also takes into account the implicit connections
between the entities in A . This makes entity enabled relation linking a (much)
harder problem than (pure) relation linking.

3 Related Work

Given a natural language question and a knowledge graph, the task of relation
linking is to identify relevant relations from the given knowledge graph for the
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relation phrases from the question. There are a variety of resources and systems
for relation linking over DBpedia.
PATTY [20]: PATTY is a large resource for textual patterns that denote binary
relations between entities. Its a two column large knowledge source, where one
column represents natural language relational patterns, and the another col-
umn contains associated DBpedia predicates. However, PATTY cannot be used
directly as a component for relation linking in a QA system and needs to be
modified based on individual developers’ requirements.
BOA [11]: BOA can be used to extract natural language representations of
predicates independent of the language, if provided with a Named Entity Recog-
nition service. Like PATTY, BOA also needs to be modified before using directly
in a QA system.
SIBKB [30]: SIBKB provides searching mechanisms for linking natural lan-
guage relations to knowledge graphs. The tool uses PATTY as the underlying
knowledge source and proposes a novel approach based on semantic similarities
of the words with DBpedia predicates for an independent relation linking tool
that accepts question as input and provides DBpedia properties as output.
Rematch [18]: The ReMatch system is an independently reusable tool, for
matching natural language relations to KB properties. This tool employs depen-
dency parse characteristics with adjustment rules and then carries out a match
against KG properties enhanced with the lexicon Wordnet. However, the run
time is relatively slow for each question.
EARL [3]: EARL is the most recent approach for the joint entity and relation
linking. This tool treats entity and relations linking as a single step. At first,
it aims to identify entities in the question and, following a graph traversal app-
roach, identifies the relation associated with the entities. EARL determines the
best semantic connection between all keywords of the question by exploiting the
connection density between entity and relation candidates.

The work by Usbeck et al. [36] proposes an entity linking tool AGDISTIS
that is most closely related to our approach. AGDISTIS combines the HITS algo-
rithm with label expansion strategies and string similarity measures. Similar to
our approach where we rely on linked URIs of entities in a question besides the
question as input, AGDISTIS accepts a natural language question (or sentence)
and recognised entities as inputs to provide disambiguated entity URIs. How-
ever, unlike our approach, it is restricted to entity linking and does not perform
relation linking. Furthermore, TBSL QA system [35] uses entities in the query Q
to generate templates that are later filled with properties from the graph which is
quite similar to our idea of the use of entities in finding correct predicate. TBSL
uses external resource BOA to find the correct matching besides string match-
ing to get the correct relations. Our approach goes a step ahead and heavily
relies on ontology reasoning to find the correct predicate(s) for the given entity
without using any external knowledge resource. This demonstrates the power of
exploiting knowledge encoded in the knowledge graph itself. Furthermore, using
entities to map the relations in a question is new in QA relation linking but this
has been well studied in ontology mapping (alignment). For example, in map-
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ping tables to ontologies, some approaches such as [19] create a candidate list
of the properties and rank them after linking the entities in the table cells. Fur-
thermore, there are also efforts developing rich schema for question answering
in e.g., legal domain [9].

4 Approach

In this section, we describe our approach to use entities in Eq for relation linking.

4.1 Preliminaries and Proposed Hypothesis

To evaluate our novel approach for addressing relation linking problem, we have
analysed 100 randomly chosen question answering pairs from the benchmarking
datasets of Sect. 5. While analysing the SPARQL query associated with the
input questions, We observe that most of predicates of these queries (i.e. the
KG relations for the natural language relations occurring in the input question)
are the properties of the entities in the questions. For example, given a question
“Which comic characters are painted by Bill Finger ?” (a question from
the LC-QuAD dataset [34]), the SPARQL query of this question is:
"SELECT�DISTINCT�?uri�WHERE{
?uri��http: // dbpedia.org/ontology/creator
http: // dbpedia.org/resource/Bill_Finger.
?uri�https: //www.w3.org /1999/02/22 -rdf -syntaxns#type
http: // dbpedia.org/ontology/ComicsCharacter .}�"

In this query, the predicate dbo:creator of the associated entity dbr:Bill
Finger is one of the property of dbr:Bill Finger in DBpedia. Furthermore, it
is often a case that there is no natural language label of a relation in the question.
For example, the question “How many shows does HBO have ?” (a question
from LC-QuAD dataset [34]) contains no natural language relation label. Such
questions are called questions with hidden relations [28]. The SPARQL Query
of this question is:
"SELECT�DISTINCT�COUNT (?uri)�WHERE{
?uri�http: // dbpedia.org/ontology/channel
http: // dbpedia.org/resource/HBO�.
?uri�https: //www.w3.org /1999/02/22 -rdf -syntaxns#type
http: // dbpedia.org/ontology/TelevisionShow�.}"

Here, the predicate dbo:channel is not the property of dbr:HBO explic-
itly, but rather a property from the type dbo:Broadcaster of dbr:HBO, where
dbo:Broad caster is a range of dbo:channel.

Hypothesis: Based on this analysis, we propose the following hypothesis: “The
relations in questions are properties of the entities occurring in the question or
properties of the types of these entities.” This hypothesis is surprisingly simple,
but to the best of our knowledge this simple hypothesis has not yet been exploited
in any of the current state of the art approaches for QA relation linking.
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Fig. 1. Conceptual Architecture of our EERL Framework. All of the baseline
relation linking frameworks found in the literature share the top part of the pipeline.
Our contribution in the EERL framework is the additional entity-based part of the
pipeline in the bottom half of the image.

Based on this hypothesis, we developed an approach that follows five main
steps (see Fig. 1): (1) relation keyword extraction: to extract natural lan-
guage relation keywords from the question, (2) Keyword-based Relation

Expansion: to expand extracted relation keywords using background knowl-
edge, (3)Entity linking: link the entities in natural language questions to
DBpedia IRIs, (4) Entity-based relation expansion: to use entities in Eq

to form candidate property list, and then (5) Relation ranking: to rank the
candidates in property list to get the best relations Rq. We implemented our
approach in proposed EERL framework which is described in next section.

4.2 EERL Framework

Our EERL framework consists of five different modules as illustrated in the
Fig. 1. The framework has two inputs: a natural language question q and the
DBpedia knowledge graph.

Relation Keyword Extractor. The first module is the Relation Keyword
Extractor that extracts relation phrases from the input question.

Example: In the question “Which comic characters are painted by Bill Fin-
ger?”, we extract the “painted by” phrase. We utilize TexRazor API5 which
provides us with relation phrasess and reused the implementation of this mod-
ule from the work of [30].

Keyword-Based Relation Expansion. In the second module “Keyword-
based Relation Expansion”, we expand the relation phrase “painted by” using
background knowledge from PATTY [20] to get a list of associated relation
phrases. We first convert “painted by” in a vector using Glove [25] and then
used the vector representation of PATTY created by [30] to get the most suit-
able relation phrase. For the given example, this step provides us with “painter”.
5 https://www.textrazor.com/docs/rest.

https://www.textrazor.com/docs/rest


530 J. Z. Pan et al.

Both of these steps are performed by all or most of the baseline systems,
and we do not claim them as novelty. We include them only for completeness of
our description and as part of overall offered solution. In a parallel step, input
DBpedia IRIs of the entities from the question (dbr:Bill Finger in this case) are
used to create a property list as described below.

Entity-Based Relation Expansion. This module is the core of our approach,
and relies on our proposed hypothesis in the previous section.

Given a KG G = T ∪ A , the entities in a knowledge graph are the nodes of
the G . These nodes are connected to other nodes (i.e. other entities) via directed
labeled edges. We divide these edges into two categories: explicit and implicit
relations.

Explicit Relations. Explicit relations are the properties of entities which
can be fetched from A . For example, in the sentence: The spouse of Barack
Obama is Michelle Obama, represented in RDF as the triple (dbr:Barack
Obama, dbo:spouse,dbr:Michelle Obama), dbo:spouse is the property of dbr:
Barack Obama.

Implicit Relations. Implicit relations are the relations between entities
that can be derived from T . For instance, from the sentence “Barack Obama is
born in Honolulu”, the explicit relation is dbo:birthPlace. There is also an
implicit relation dbo:HomeTown, which is introduced by the type dbo:Agent
of the entity dbr:Barack: (dbr:Barack Obama,rdfs:type,dbo:Agent) and
(dbo:HomeTown, rdfs:domain, dbo:Agent).

We utilise both explicit and implicit relations to extract right set of relations.
We first expand the potential relation candidates using explicit relations, and
then further expand it with implicit relations.

Expansion 1: In this step, we fetch the property set from the instance triples
in A . To avoid large scale retrieval, we just retrieve the ontologies associated
with the entity of the question rather retrieving all the ontologies of DBpedia.
For each entity e in the input question, we retrieve all explicit properties from
the associated ontology of this entity. We add these explicit properties to the
list P1, and we call this list the explicit property list (EPL).

Example: Given the question “Which comic characters are painted by Bill
Finger?” (a question from LC-QuAD dataset). If we do not use expansion 1,
we would just get dbo:painter as the relation. When we apply expansion 1
to it, we also get the relation result dbo:creator which is derived from the
explicit property list of dbr:Bill Finger. As we illustrated above, dbo:creator
is indeed the right answer.

Expansion 2: Based on Expansion 1, we add another iteration which is based
on reasoning to gather the implicit property list from T . To get the implicit
property list, we first get domains and ranges from the schema T . There are
two kinds of domains and ranges. The first is global domains and ranges, and
the second is the local domains and ranges. Global domains and ranges are usual
RDFS domains and ranges. In description logic form, they can be represented as
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� � ∀r−.GD (GD is a global domain of the property r), � � ∀r.GR (GR is a
global range of the property r), Local domains and ranges is similar but the left
hand side � can be replaced by a type (such as C): C � ∀r−.GD (GD is a local
domain of the property r w.r.t. C entities), C � ∀r.GR (GR is a local range of
the property r w.r.t. C entities). Both global and local domains and ranges can
be inferred from T . Given T is often fixed, so all the global and local domains
and ranges can be computed offline. Given an entity e from an input question
q, we add all the properties related (through global/local domains or range) to
some types of e to the list P2, called the implicit property list (IPL).

To consider all the possibilities of relation expansion, we combine expansions
of type 1 and type 2 above.

Example: Consider the question “How many shows does HBO have?”. If we just
use expansion 1, we will obtain the explicit property list of dbr:HBO. In this list,
the dbo:producer ranks the highest. However, if we apply expansion 2 to this
question, we do not only get the explicit property list of dbr:HBO, but also get
the implicit property list of dbr:HBO. Because the rdf:type of dbr:HBO includes
dbo:Broadcaster, and dbo:Broadcaster is a global range of dbo:channel.

It turns out that dbo:channel is the desired answer (and not dbo:producer)
(Fig. 2).

Relation Candidate Ranking: Once we expand the explicit and implicit
relations, we get all the possible relation candidates in the property list P. The
next step for our framework is to select the best relations from these candidates
which constitutes the final module of the EERL framework. In the EERL system,
we reuse the approach of SIBKB to ranking candidates.

In the following, we will focus on strategies for re-ranking the candidates
from the explicit property list EPL and the implicit property list IPL.

explicit property Instance triple

entity

DBpedia

schema implicit property

property
rdf:type

rdfs:domain

rdfs:range

Fig. 2. The process of getting explicit property list and implicit property list
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Existence Re-ranking and Extending: We perform re-ranking by extending
the candidate list according to the existence of relations in the explicit property
list EPL or the implicit property list IPL. From the candidate ranking step
of SIBKB, we can get a K-V list. This list is ranked by the sum of similarity
sum(Va). We use the principle that if relations k in relation list K matches
property p in EPL or in IPL, then we will add a high weight value w1 into K-V
list, which can be formalised as R[k] = V a+w1. If not, we will extend the K-V
list by adding the property p to it with w1, which is R[p] = w.

LD Re-ranking: We leverage the levenshtein distance LD6 for re-ranking and
extending the candidate list. We calculate LD between extracted words from
the lists EW and the words from the property candidate list PCL (both explicit
property list EPL and implicit property list IPL). We restrict LD to a range (0,
1). Then we identify the p in EPL and IPL with the shortest levenshtein distance
to the extracted relation word EW, and give a weight value w2 to p, which is
R(p) = V a + w2. For the weight value w2, the higher the weight value w2 the
smaller the Levenshtein distance LD. Please note, for w1, w2 and w3, we define
it empirically, and then through the results of the evaluation to adjust them.

Synonym Re-ranking and Extending: If the length of the extracted words
string len(ew) is 1, we’ll get Synonyms set S(ew) of ew first, then calculate the
distance between the property candidate list PCL and s(ew) in S(ew). Similar
to LD re-ranking, we restrict the distance LD in a range (0,1), identity the
property p with levenshtein distance, then add a weight value w3, for the whole
process w3 = K/ld which can be formalised as ld = l − distance(s(ew), p).
R[p] = V a + w3.

5 Experiments

In this section, we present the experimental results to validate our approach.
The open source code and evaluation results can be found at Github.7

5.1 Datasets

For evaluation studies, we leveraged three datasets to show the performance of
EERL framework, namely the QALD datasets and LC-QuAD dataset.

QALD: QALD-58 and QALD-79 are two latest benchmarking datasets from
Question answering over Linked Data challenge (QALD). It mostly has simple
questions (58% of QALD questions have a single entity and a single relation).
QALD-5 have 350 questions, and QALD-7 has 215 questions.
6 https://people.cs.pitt.edu/∼kirk/cs1501/Pruhs/Spring2006/assignments/editdista

nce/Levenshtein\%20Distance.htm.
7 https://github.com/zhangmeiontoweb/EERL.
8 https://github.com/ag-sc/QALD/blob/master/5/data/qald-5 train.json.
9 https://github.com/ag-sc/QALD/blob/master/7/data/qald-7-train-multilingual.

json.

https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein\%20Distance.htm
https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein\%20Distance.htm
https://github.com/zhangmeiontoweb/EERL
https://github.com/ag-sc/QALD/blob/master/5/data/qald-5_train.json
https://github.com/ag-sc/QALD/blob/master/7/data/qald-7-train-multilingual.json
https://github.com/ag-sc/QALD/blob/master/7/data/qald-7-train-multilingual.json
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LC-QuAD: LC-QuAD10 has 5000 questions for QA over DBpedia and 80 per-
cent of its questions are complex i.e. questions with more than one entity and
one relation. It is a manually fully-annotated, with all keywords classified as
entity or predicate, and mapped to the URIs of DBpedia. Please note, there are
three kinds of questions which are not considered for evaluation: (1) the ques-
tions that are not fit for our hypothesis, i.e. questions for which relations are not
the property of given entities (2) for QALD dataset, we exclude questions that
don’t give the SPARQL (3) in LC-QuAD dataset, the given relations for the
questions which are not correct for the current DBpedia version. As we use the
latest DBpedia version to retrieve the relation candidates, such questions from
LC-QuAD has been ignored.

Baseline Relation Linking Tools. Various relation linking approaches have
been evaluated on these datasets. SIBKB [30], ReMatch [18], and EARL [3] have
been evaluated over QALD-7 and QALD-5. We therefore compare our results for
the same experiment settings. We then report our results for complete LC-QuAD
dataset comparing it to the baselines.

Table 1. Performance of EERL framework compared to various relation linking tools

QA Component Dataset Precision Recall F-score

SIBKB QALD-5 0.27 0.34 0.29

ReMatch QALD-5 0.36 0.39 0.37

EARL QALD-5 0.17 0.21 0.19

EERL QALD-5 0.43 0.49 0.45

SIBKB QALD-7 0.33 0.35 0.34

ReMatch QALD-7 0.35 0.38 0.37

EARL QALD-7 0.30 0.31 0.30

EERL QALD-7 0.42 0.46 0.43

SIBKB LC-QuAD 0.15 0.18 0.16

ReMatch LC-QuAD 0.18 0.20 0.19

EARL LC-QuAD 0.20 0.25 0.21

EERL LC-QuAD 0.53 0.58 0.55

5.2 Experimental Settings

We executed our experiments on one virtual server, with eight cores and 32 GB
RAM running on the Ubuntu 16.04.3 operating system. We have reused the
open source implementation of the Frankenstein Resource Platform11 [27] and
integrated our EERL framework in it for executing the different experiments.
As DBpedia IRIs of the entities are also our inputs besides the natural language
question, we use gold annotated linked named entities as input.
10 https://figshare.com/articles/Full Annotated LC QuAD dataset/5-782197.
11 https://github.com/WDAqua/Frankenstein.

https://figshare.com/articles/Full_Annotated_LC_QuAD_dataset/5-782197
https://github.com/WDAqua/Frankenstein
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5.3 Result and Analysis

Metrics: The following evaluation metrics per relation linking approach have
been used: (i) Micro Precision (MP): For a given tool, the ratio of correct
answers vs. total number of answers retrieved for a particular question. (ii)
Precision: The average of the Micro Precision over all questions by a relation
linking tool. (iii) Micro Recall (MR): The number of correct answers retrieved
by a component vs. gold standard answers for given question. (iv) Recall (R):
The average of Micro Recall over all questions for a given relation linking tool.
(v) Micro F-score (MF): Harmonic mean of MP and MR for each question.
(vi) F-score: Harmonic mean of P and R for each component.

Evaluation: We evaluate our system with three metrics, they are Precision,
Recall, F-score. Table 1 summarises the results of our framework compared to
the baseline for the different datasets. Our framework significantly outperforms
the baselines for relation linking for QALD-5 340 questions. We then extended
our evaluation to QALD-7, where our framework EERL also achieves the highest
performance in terms of Precision, Recall and F-score.

We then extended our performance evaluation to complex questions, and
utilised the LC-QuAD dataset in two settings. In the first setting, we evaluated
our performance for all the 5000 questions. We achieved significantly high Pre-
cision, Recall and F-score values for complex questions, as illustrated in Table 1.
Singh et al. [31] have evaluated five relation linking approaches for 3253 questions
of LC-QuAD including SIBKB, Rematch and other three tools which Franken-
stein offers in its architecture. Table 1 also summarises our results compared to
the best performing tool from [31], where we achieve a significant increase in per-
formance with our EERL framework. Besides, Table 1 shows that the EERL sys-
tem enhanced largely with our approach compare to all baselines across datasets.

Execution Time: Execution time is also an important KPI to evaluate our
approach. Table 2 shows the execution time that each system uses for the
QALD-7 and LC-QuAD datasets. The results show that our approach also signif-
icantly improves the run time. Please note, for runtime calculation, time needed
for entity recognition has been cut and only the time taken by each tool to link
the relation is reported in the Table 2.

Error Analysis: Even though we achieve a relative higher performance com-
pared with state-of-the-art, we find room for improvement in our EERL frame-
work. From the experimental results, we deduce that the errors are caused by
two factors. The first factor is the effectiveness of our hypothesis. We assume
that a relation in the query is the property of the entity while some of the ques-
tions’ relations don’t appear in the property list. And this is the main reason
why our system doesn’t perform better on the QALD-5 and QALD-7 datasets
compared to its performance on LC-QuAD. The second reason for failure is the
ranking method. We observe from the results that for many questions containing
two relations, the performance of our ranking methods is limited.
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Table 2. Run time (avgerage seconds/question)

System QALD-7 LC-QuAD

SIBKB 1.1 2.2

ReMatch 110 130

EERL 1.3 1.8

6 Discussion

From Table 1, we can infer that the SIBKB, ReMatch, and EARL systems have
very limited performance. Our EERL system not only outperforms these sys-
tems, it also does not show a sharp decline in performance on complex ques-
tions. In fact, for complex questions our approach performs better than on the
simple questions of the QALD dataset. One primary reason for this behaviour
is the presence of more context about the entities in the complex questions,
because complex questions usually contain two entities. Our approach utilizes
this context to correctly predict the DBpedia relation.

Furthermore our proposed EERL framework also can give its result within a
reasonable time. Our results show that, by using the property candidate list as
the relation candidates, (i) we can narrow the relation range and this will speed
up the process of retrieving relation candidates; and (ii) this approach can be
used as a ranking method to rank the relation candidates to prevent filtering the
correct candidates. We believe that our approach can be reused in other relation
linking systems, and it could easily be extended to other knowledge graphs. This
is due to the fact that other knowledge graphs have similar structure as DBpedia
and they use common knowledge source (i.e. Wikipedia). Hence, our approach
should work equally well for the KGs having clear separation of A box and T-Box
concepts. We agree, few knowledge graphs (such as Wikidata) do not have clear
and correct definition of domain and ranges, neither a well defined Ontology.
Our approach will find limitation in such scenario. For knowledge graphs with
no ‘TBoxes or very incomplete TBoxes, ontology learning of domains and ranges
might help, but it has been out of scope for this paper.

However, to further improve the EERL framework, we plan to optimise our
approach in three possible ways. Firstly, we analysed our results, and found that
over half of the wrong results were due to the wrong extracted relation words.
Relation extraction from free text has been a long standing field of natural lan-
guage processing research. We plan to utilise some of its techniques to extract
the correct natural language label for the relation. Secondly, the similarity algo-
rithm is a method for calculating the similarity between possible candidates and
the recognised relation words. We plan to utilise external knowledge sources such
as Wordnet12 to provide a list of synonyms for relation labels. Finally, existing
datasets for question answering over DBpedia do not contain large number of
questions. With the availability of larger datasets, we plan to employ machine
learning techniques for proposing a ranking model for the candidate relations.
12 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/
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7 Conclusions

In this paper, we have proposed a novel approach which can directly link the
natural language relation of the question to its mention in the DBpedia. Unlike
previous work in this domain, we utilize the contextual information provided
by the entities in the question to find the relation in the knowledge graph. Our
approach can choose the best property to match the entities by ranking the
similarity between the entities’ property list and extracted relation words from
question. In our approach we jointly utilize the relation and property list to
ensure the integrity of the question information. This has also impacted the per-
formance, and we outperform the existing baseline approaches for relation link-
ing. We hope, our work sets a foundation for the research community to exploit
(approximate) ontology reasoning [13,15,21–23,33] in finding correct predicates
for the questions and then applying machine learning approaches on top of it for
better results. Our framework is reusable, and we have integrated it to Franken-
stein framework for its reusability in creating collaborative question answering
systems.
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Abstract. The Shapes Constraint Language (SHACL) has been rec-
ently introduced as a W3C recommendation to define constraints that
can be validated against RDF graphs. Interactions of SHACL with other
Semantic Web technologies, such as ontologies or reasoners, is a matter
of ongoing research. In this paper we study the interaction of a subset
of SHACL with inference rules expressed in datalog. On the one hand,
SHACL constraints can be used to define a “schema” for graph datasets.
On the other hand, inference rules can lead to the discovery of new
facts that do not match the original schema. Given a set of SHACL con-
straints and a set of datalog rules, we present a method to detect which
constraints could be violated by the application of the inference rules
on some graph instance of the schema, and update the original schema,
i.e, the set of SHACL constraints, in order to capture the new facts that
can be inferred. We provide theoretical and experimental results of the
various components of our approach.

1 Introduction

Information about the type of data contained in a dataset is a critical piece of
information both to understand data, and to interface with databases. While
the relational model explicitly defines a schema, graph data representations are
inherently schemaless, in the sense that any RDF triple could, in principle, be
stored in any RDF triplestore. The Shapes Constraint Language (SHACL) [10], is
a W3C recommendation recently introduced to define properties of RDF datasets.
SHACL allows the definition of constraints that can be validated against RDF
graphs. Such constraints can be seen as the schema of the graphs that do not
violate them. Schemas are not static objects, and they can evolve over time to
reflect changes in the datasets they model. One important source of change in
graph datasets comes from the application of inference rules. Inference rules can
be used to reason about ontological properties, such as class membership. They
can also be used for non-ontological types of inference, such as aggregating sensor
data to detect important facts such as the presence of a fire, or the temperature
of a room. This paper focuses on datalog rules [6] without negation (the exact
subset of datalog that we consider is defined in Sect. 2).

The application of inference rules might generate new facts, not captured by
the original schema definition. Given a set of SHACL constraints and a set of
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 539–557, 2019.
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inference rules, we would like to determine whether a graph, initially valid with
respect to the SHACL constraints, remains valid after computing its closure
with the inference rules. If constraint violations can occur, a domain expert
could decide whether to remove the inference rules that cause these violations,
or to update the violated SHACL constraints. Updating the violated constraints
to account for the new facts that can be produced via inference effectively creates
a new schema.

This research is motivated by use cases in the area of Occupational Health
and Safety (OHS), and in particular in the mining sector. In these areas, schemas
are used to model and understand the underlying data sources, and to ensure
interoperability between different applications. Inference rules, usually devel-
oped separately, are used to aggregate raw sensor data into more useful abstrac-
tions and encode OHS policies (e.g. to detect unsafe working environments).
At the moment, domain experts are needed to define such rules. However this
process is slow, expensive and error prone. Our research aims to better inform
experts about the effects of applying certain rules (which could affect the schema,
and thus interoperability) and automatically detect conflicts between rules and
schemas. For example, as schemas frequently change (e.g. sensors malfunction,
or new ones are deployed), it is essential to automatically detect schema changes
that render important rules (and policies) no longer applicable, on unforeseen
datasets.

In this paper we present an approach that models triplestore schemas as
triplets of sets: a set of triple patterns that can be appropriately instantiated by
RDF triples, a set of positions in those triples that cannot be instantiated by
literal values (e.g. object positions in triples), and a set of existential validity rules
(such as tuple-generating dependencies [8]) which must hold on the instatiated
triples in order for our graph to be valid. Our triplestore schema captures a
fragment of SHACL, but abstracts away from its particular syntax and can be
used as a logical tool to model properties of RDF graphs in general. However,
it is not meant to provide a complete formal semantic representation of the core
SHACL components, such as the one presented in [7].

Furthermore, we investigate how our triplestore schemas interact with infer-
ence rules and evolve into new schemas, that we call schema consequences; these
are schemas that model all possible RDF graphs extended with the inferred
facts. Given an input schema S, we want to reason about the applicability of
inference rules on all potential instances of S, and compute the schema conse-
quence. This problem proves challenging even without taking existential validity
rules into account in our schemas; i.e., for what we call our simple schema con-
sequence. To reason with inference rules in this version of the problem we have
to make use of the notion of a “canonical” instance of S, representative of all
other instances. For this, we first explore such an instance known as the criti-
cal instance and investigated in relational databases [13]; running the inference
rules on this graph enables us to produce our schema consequence. However, the
critical instance is inefficient, as it has a very large size, and so we turn our atten-
tion to finding a much smaller representative instance, that we call the sandbox
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graph. We then present a novel query rewriting algorithm that can compute the
simple schema consequence on the sandbox graph, much more efficiently than
in the critical instance case.

Building on top of our simple schema consequence we use a novel combination
of techniques, variations of datalog rewriting [1] and the Chase algorithm [4], to
produce our existential-preserving schema consequence, a triplestore schema the
identifies and removes from its description the existential validity rules that
could potentially be violated on some instance produced by the inference rules.
We provide both theoretical and experimental evaluations of our approach.

2 Background

We consider triplestores containing a single RDF graph. Such a graph is a set of
triples U×U× (U∪L) where U is the set of all IRIs and L the set of all literals.
Although we do not explicitly discuss blank nodes, it should be noted that, for
the purpose of this paper, when they occur in a graph they can be treated exactly
as IRIs. We use the term constants to refer to both literals and IRIs. A graph
pattern is a set of triple patterns defined in: (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V),
where V the set of all variables. Given a pattern P , vars(P ) and const(P ) are the
sets of variables and constants in the elements of P , respectively. We represent
IRIs as namespace-prefixed strings of characters, where a namespace prefix is
a sequence of zero or more characters followed by a colon e.g. :a; literals as
strings of characters enclosed in double-quotes, e.g. "l"; and variables as strings
of characters prefixed by a question-mark, e.g. ?v. The first, second and third
elements of a triple t are called, respectively, subject, predicate and object, and
are denoted by t[x], x ∈ τ with τ = {1, 2, 3} throughout the paper.

A variable substitution is a partial function . A mapping is a
variable substitution defined as . Given a mapping m, if m(?v) = n,
then we say m contains binding ?v → n. The domain of a mapping m is the set of
variables dom(m). Given a triple or a graph pattern p and a variable substitution
m we abuse notation and denote by m(p) the pattern generated by substituting
every occurrence of a variable ?v in p with m(?v) if ?v ∈ dom(m) (otherwise ?v
remains unchanged in m(p)). A grounding is a mapping that transforms a graph
pattern into a graph.

Given a graph pattern P and a graph I, we denote the SPARQL evaluation
of P over I as the set of mappings �P �I , as defined in [14]. A graph pattern
matches a graph if its evaluation on the graph returns a non-empty set of map-
pings. We consider inference rules A → C, where A and C are graph patterns,
and can be expressed as SPARQL construct queries. Note that essentially both
A and C in an inference rule are conjunctive queries [1]. The consequent C of
the rule is represented in the construct clause of the query, which is instan-
tiated using the bindings obtained by evaluating the antecedent A, expressed
in the where clause. For technical reasons, we restrict the subset of datalog
that we consider with the requirement that each triple pattern in the conse-
quent C of a rule: (1) has a constant in the predicate position; and (2) does
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not have the same variable in the subject and object position. A single appli-
cation of an inference rule r : A → C to a dataset I, denoted by r(I), is
I ∪ ⋃

m∈�A�I
{m(C), if m(C) is a valid RDF a graph}. These rules capture dat-

alog [1] and subsets of rule notations such as SPIN and SWRL can be represented
in this format [3]. The closure of a dataset I under a set of inference rules R,
denoted by clos(I,R), is the unique dataset obtained by repeatedly applying all
the rules in R until no new statement is inferred, that is, clos(I,R) =

⋃i=∞
i=0 Ii,

with I0 = I, and Ii+1 =
⋃

r∈R{r(Ii)}.
The Shapes Constraint Language (SHACL) defines constraints that can be

validated against RDF graphs. An example of a constraint is the requirement
for an RDF term to be an IRI. The nodes of an RDF graph against which such
constraints are validated are called focus nodes. At the core of the SHACL lan-
guage is the concept of shapes. A shape groups together a set of constraints, and
defines which focus nodes it should apply to. A shape could either directly target
specific nodes, such as all the elements of a class, or it could be referenced by
other shapes. For example, it is possible to define the shape of a “well-formed
email address”, and then specify that every entity of type “person” must have at
least one email address that satisfies this shape. In this paper we prefix SHACL
terms with the namespace sh:.

Given a schema S, we denote with I(S) the set of instances of S, which are
the graphs that S models. We say that two schemas S and S′ are semantically
equivalent if they model the same set of instances; i.e. if I(S) = I(S′). Naturally,
the interpretation of SHACL constraints as a schema is based on SHACL vali-
dation. We say that a graph is an instance of a SHACL schema, defined by its
set of constraints, if the graph does not violate the SHACL constraints.

3 Problem Definition

In this section we are going to present our definition of a triplestore schema,
a simple representation that captures a powerful fragment of SHACL. A set of
SHACL shapes S belongs to this fragment if and only if there exists a triple-
store schema S′ such that I(S) = I(S′) (the set of instances of a triplestore
schema will be defined later in this section). An important characteristic of this
fragment (discussed later) is that its existential validity rules must have atomic
antecedents and consequents. This is sufficient to model common constraints for
RDF validation, such as the Data Quality Test Patterns TYPEDEP, TYPRODEP, PVT,
RDFS-DOMAIN and RDFS-RANGE in the categorisation by Kontokostas et al. [11].

The two main components of triplestore schemas are: (1) a set of abstract
triple patterns, that intend to model all different triples/instantiations of those
patterns; and (2) a set of existential validity constraints that represent “if-then”
statements of SHACL shapes. Abstracting away from the particulars of the
SHACL syntax, on one hand, simplifies our approach and, on the other hand,
makes it applicable to the fragments of other languages (e.g. ShEx [15]) which
can be converted into our triplestore schema. Once we have a triplestore schema
in place, we define our problem of how do instances of such a schema interact
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with a set of datalog inference rules. In particular, we would like to reason at
the schema level and decide if there is a potential instance graph of our schema
on which our datalog rules would infer facts that violate the validity constraints.

3.1 From SHACL to Triplestore Schemas

Our work is inspired by Internet of Things (IoT) settings and as our running
example we consider a dataset of a mining company. The SHACL schema, S1, for
this mine dataset is presented in Fig. 1. This repository collects data from sensors
carried by workers and deployed in the mine. Data is modelled according to the
Semantic Sensor Network Ontology (SSN) [12], with namespace prefix s:. In SSN,
sensor measurements are called observations. The result of an observation (e.g.
“20”) relates to a particular observed property (e.g. temperature) of a particular
feature of interest (e.g. a room). In our example the mine contains two types
of sensors. The first is a carbon monoxide (CO) detector, which records value
“0” if the CO concentration is within the allowed limits, and “1” otherwise.
The second is an RFID reader used to locate personnel in the mine by sensing
the nearby RFID tags carried by the mine workers. SHACL shape :s0 specifies
that the collected sensor data will only refer to those two sensor types. The
dataset of the mine is expected to contain a list of known personnel RFID tags,
and information on who is currently carrying them. Shape :s1 specifies that for
every personnel tag, we know who it is carried by. Shapes :s2 and :s3 restrict
features of interest to being IRIs and measurement results to be IRIs or literals.
Shape :s4 declares that the sensor data contains instances of only two classes,
namely sensor observations, and personnel tags.

:s0 a sh:NodeShape ;
sh:targetObjectsOf sn:observedProperty ;
sh:in ( :COLevel :TagID ) .

:s1 a sh:NodeShape ;
sh:targetClass :PersonnelTag ;
sh:property [ sh:minCount 1 ;

sh:path :carriedBy ] .
:s2 a sh:NodeShape ;

sh:targetObjectsOf sn:hasFeatureOfInterest ;
sh:nodeKind sh:IRI .

:s3 a sh:NodeShape ;
sh:targetObjectsOf sn:hasResult ;
sh:nodeKind sh:IRIOrLiteral .

:s4 a sh:NodeShape ;
sh:targetObjectsOf rdf:type ;
sh:in ( sn:Observation :PersonnelTag ) .

Fig. 1. Schema S1.
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?v1 sn:observedProperty :COLevel.
?v2 sn:observedProperty :TagID.
?v3 rdf:type sn:Observation.
?v4 rdf:type :PersonnelTag.

?v5 :carriedBy ?v6.
?v7 sn:hasFeatureOfInterest ?v8.
?v9 sn:hasResult ?v10.

Fig. 2. Graph pattern SG
1 .

When using SHACL as a schema language, we would like the constraints to
describe the type of data contained in a dataset as accurately as possible. SHACL
constraints usually target only a limited number of predicates in an RDF graph,
and triples with predicates other than the targeted ones could be present in
the graph without causing violations. However, for our purposes we adopt a
closed-world view of the available vocabulary of predicates, and we would like
to restrict valid graphs to only contain a fixed set of predicates. This vocabulary
restriction can be specified by an appropriate SHACL constraint that uses the
sh:closed component. We assume, therefore, that all SHACL schemas that we
work with contain a component that specifies that valid instances of this schema
do not contain predicates other than the ones that appear in the SHACL shapes.
This is inline with relational databases where the discovery of completely new
types of facts (i.e. triples with unforseen predicates) would be reflected by a
corresponding change in the original schema.

In our running example, instances of schema S1 would contain triples match-
ing the triples patterns of graph pattern SG

1 displayed in Fig. 2, where each vari-
able can be appropriately instantiated by an IRI or a literal. In fact, exactly such
a set of triple patterns will be the first element of our representation of triple-
store schemas, called a schema graph, defined below. Note that valid instances
of our schema might contain multiple instantiations of some, but not necessarily
all of the predicates defined in the schema graph, and they cannot contain other
kinds of triples (e.g. undefined predicates). We use different variables in SG

1 to
denote the fact that variables in a schema graph act as wildcards, and are not
meant to join triple patterns together.

In addition to the schema graph, a second part of our schema representation
will be the subset of variables from the schema graph, called the no-literal set,
where literals can not occur in valid instances. For example, we cannot instantiate
variables ?v7 and ?v8 of triple pattern [?v7, sn:hasFeatureOfInterest, ?v8]
from Fig. 2 with a literal; in the case of ?v7, because we would not generate a
valid RDF triple, and in the case of ?v8, because it would violate shape :s2.

The last part of our schema representation will translate SHACL constraints
to “if-then” statements like the following, which corresponds to shape :s1 of
schema S1:

e1 = [?v1, rdf:type, :PersonnelTag] →∃ [?v1, :carriedBy, ?v2]

These constraints are essentially existential rules [2], also expressible as tuple-
generating dependencies (TGDs) [8]. For all practical purposes, the part of
SHACL that we consider, when translatable to existential rules, falls into a lan-
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guage known as linear weakly-acyclic TGDs [8] with a single atom in the conse-
quent. Linear means that these rules have only one atom (one triple pattern) in
the antecedent, and weakly-acyclic is a property that guarantees that forward-
chaining algorithms, such as the Chase [4], terminate. Formally, we define an
existential rule as a formula of the form: a →∃ c, where a and c, respectively the
antecedent and the consequent of the rule, are triple patterns. The consequent
specifies which triples must exist in a graph whenever the antecedent holds in
that graph. We say that an existential rule a →∃ c is violated on a graph I if
there exists a mapping m ∈ �{a}�I such that �m(c)�I = ∅ (i.e. m(c) is not in
I), and satisfied otherwise. Note that if m(c) is a ground triple, and m(c) ∈ I,
then �m(c)�I is not empty, as it contains the empty mapping [14]. Given a set
of existential rules E, we use violations(E, I) to refer to the set of pairs 〈m, e〉,
where e ∈ E and mapping m causes e to be violated on instance I.

We are now ready to define our triplestore schemas. A triplestore schema
(or from now on, just schema) S, is a tuple 〈SG, SΔ, S∃〉, where SG, called a
schema graph, is a set of triple patterns where every variable occurs at most
once, SΔ is a subset of the variables in SG which we call the no-literal set,
and S∃ is a set of existential rules. Intuitively, SG defines the type of triples
that can appear in a graph, where variables act as wildcards, which can be
instantiated with any constant element. To account for the restrictions imposed
by the RDF data model, the no-literal set SΔ defines which variables cannot be
instantiated with literals, thus SΔ must at least include all variables that occur
in the subject or predicate position in SG. For example, if 〈?v1, sn:hasResult,
?v2〉 ∈ SG

′ and ?v2 �∈ SΔ
′ , then the instances of schema S′ can contain any triple

that has sn:hasResult as a predicate. If 〈?v3, rdf:type, :Observation〉 ∈ SG
′

and ?v3 ∈ SΔ
′ , the instances of S′ can contain any entity of type :Observation.

While SG and SΔ together define the set of all the possible triples that can
be found in a graph, not all combinations of such triples are valid instances of
the schema. The set of existential rules S∃ defines further requirements that
instances of the schema must satisfy. Formally, a graph I is an instance of a
triplestore schema 〈SG, SΔ, S∃〉 if and only if violations(S∃, I) = ∅ and for
every triple tI in I there exists a triple pattern tS in SG, such that tI is an
instantiation of tS w.r.t SΔ; that is, there exists a mapping m such that (1)
m(tS) = tI and (2) m does not bind any variable in SΔ to a literal.

For our SHACL to triplestore schema translation we direct the reader to our
external appendix1 and our implementation in our code repository.2

3.2 Inference Rules and Schema Consequences

We are interested in the effect that inference rules (not to be confused with
existential rules) have on RDF graphs, and their interaction with existential
rules. Inference rules are used to compute the closure of instances of our origi-
nal schema as defined in Sect. 2. As an example consider the of inference rules

1 https://github.com/paolo7/ISWC2019-appendix/raw/master/Appendix.pdf.
2 https://github.com/paolo7/ISWC2019-code.

https://github.com/paolo7/ISWC2019-appendix/raw/master/Appendix.pdf
https://github.com/paolo7/ISWC2019-code
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o1 sn observedProperty TagID;
sn hasFeatureOfInterest room1;
sn hasResult :WID1.

o2 sn observedProperty TagID;
sn hasFeatureOfInterest room2;
sn hasResult WID2.

o3 sn observedProperty COLevel;
sn hasFeatureOfInterest room2;
sn hasResult "1".

WID1 a PersonnelTag;
:carriedBy Alex.

Fig. 3. Instance I1.

R1 = {r1, r2, r3} below. Rule r1 states that the RFIDs recorded by the sensors
should be interpreted as personnel tags, and it records the location of where they
are detected. Rule r2 states that locations with a high carbon monoxide (CO)
concentration should be off-limits. Rule r3 states that if someone is located in
an off-limits area, then they are trespassing in that area.

r1 = { [?v1, sn:observedProperty, :TagID],
[?v1, sn:hasResult, ?v2],
[?v1, sn:hasFeatureOfInterest, ?v3] }
→ { [?v2, rdf:type, :PersonnelTag], [?v2, :isLocatedIn, ?v3] }

r2 = { [?v1, sn:observedProperty, :COLevel],
[?v1, sn:hasResult, "1"],
[?v1, sn:hasFeatureOfInterest, ?v2] }
→ { [?v2, rdf:type, :OffLimitArea] }

r3 = { [?v1, :isLocatedIn, ?v2],
[?v2, rdf:type, :OffLimitArea] }
→ { [?v1, :isTrespassingIn, ?v2] }

In our example, an emergency response application might need to know who
is carrying each personnel RFID tag, in order to compute an emergency response
plan. In this case, it is important to know which existential rules the application
of a set of inference rules can violate. Once potential violations are detected, a
domain expert could, for example, decide whether to relax (i.e. remove) the vio-
lated existential rules, or to remove the inference rules that cause the violations.

Thus, an example of the central question we address in this paper is: is e1
guaranteed to remain valid in instances of schema S1 under closure with inference
rules R1? The answer to this question is no, as demonstrated by graph I1, which
is a valid instance of S1. This instance contains two records of miner tags being
detected, namely :WID1 and :WID2. While we know that :WID1 is being carried
by worker :Alex, we do not have any such information about tag :WID2.

Rule r1 will deduce that :WID2 is a personnel tag, by inferring triples [:WID2,
rdf:type, :PersonnelTag] and [:WID2, :isLocatedIn, :room2] from instance I1.
However, since there is no information on who is carrying tag :WID2, existential
rule e1 is violated. A domain expert analysing this conflict can then decide to
either relax e1, to state that there is not always information on who is carrying
a personnel tag, or to remove rule r1, to state that not all RFIDs recorded by
the sensors are personnel tags. Rule r2 is triggered by observation :o3, inferring
triple [:room2, rdf:type, :OffLimitArea]. The IRI :OffLimitArea is not one of
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the types allowed in the original schema. Therefore, we might want to either
revise rule r2, or extend schema S1 to allow for instances of this type. Facts
inferred by rules r1 and r2 together trigger rule r3, which will infer [:WID2,
:isTrespassingIn, :room2]; i.e., that the person carrying the RFID tag :WID2 is
trespassing in dangerous area :room2. These new facts contain the new predicate
:isTrespassingIn, and thus violate our closed-world interpretation of schema
S1 (as captured by our schema graph patterns). Hence, if one wants to retain all
inference rules R1 in our mine repository, an alteration of the original schema
(and its schema graph) is required.

In this paper we deal with predicting these kinds of constraint violation, and
computing an updated schema that accounts for them, without looking at spe-
cific instances such as I1. Given a schema S : <SG, SΔ, S∃> and a set of inference
rules R, we want to compute a new schema, called schema consequence, which
captures all the inferences of the set of rules R on any potential instance of S.
By computing an updated triplestore schema, once a violation is detected, our
approach gives preference to maintaining inference rules over maintaining the
original schema, essentially choosing to alter the schema graph and/or the exis-
tential rules. This is not an inherent limitation of our approach, which could be
easily transformed to a method that maintains the original schema and chooses
to reject conflicting inference rules.

To present our problem incrementally, we first compute a simple schema
consequence which does not take existential rules into account (i.e. it only deals
with SG and SΔ of our triplestore schema) and then we extend our solution to
take S∃ into account in our existentially-preserving schema consequence.

The simple interpretation of a schema consequence captures the type of
triples that the closure of an instance of the schema could potentially contain.
Given a schema S and a set of inference rules R, a schema S′ is a simple schema
consequence of S with respect to R, denoted con(S,R), if I(S′) =

⋃
I∈I(S){I ′|I ′ ⊆

clos(I,R)}. It is important to note that every subset of an instance’s closure is
still an instance of the simple schema consequence. Thus a simple schema con-
sequence can contain the consequence of an inference rule application without
containing a set of triples matching the antecedent, or vice versa. This situa-
tion is commonly encountered when some triples are deleted after an inference
is made. Effectively, this definition does not assume that all the triples in an
instance’s closure are retained. One use of this schema consequence is to dis-
cover whether certain important facts (e.g. personnel trespassing in a dangerous
area) can be inferred from the given schema (e.g. available sensor data streams)
and set of inference rules (e.g. sensor data aggregation rules). Another use is
to compute which inference rules are applicable on a schema, which means that
they will be triggered on at least one instance of that schema.

Given a schema S and a set of inference rules R, a schema S′ is an existential-
preserving schema consequence of S with respect to R, denoted conex(S,R),
if and only if I(S′) =

⋃
I∈I(S){I ′|I ′ ⊆ clos(I,R) ∧ violations(S∃, I ′) =

violations(S∃, clos(I,R))}. In other words, instances of an existential-preserving
schema consequence are generated by computing the closure of an instance of
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the original schema under the inference rules, and then discarding a set of triples
as long as doing so does not generate new violations of existential rules S∃. This
allows us to detect which existential rules can be violated by the application of
inference rules (and not just by arbitrary triple deletions). Our approaches to
compute simple and existential-preserving schema consequences are presented,
respectively, in Sects. 4 and 5.

4 Computing the Simple Schema Consequence

We compute con(S,R) iteratively, on a rule-by-rule basis. In correspondence to
a single application r(I), of an inference rule r on an instance I, we define a
basic consequence of a schema S by an inference rule r, denoted by r(S), as a
finite schema S′ for which I(S′) =

⋃
I∈I(S){I ′|I ′ ⊆ r(I)}. It is now easy to see

that the consequence schema for a set of inference rules con(S,R) is obtained by
repeatedly executing r(S) for all r ∈ R until no new pattern is inferred. Formally,
con(S,R) =

⋃i=n
i=0 Si, with S0 = S, and Si+1 =

⋃
r∈R{r(Si)}, and Sn = Sn−1

(modulo variable names). In this section we focus on computing a single basic
schema consequence r(S), and describe two approaches for this, namely Schema
Consequence by Critical Instance (critical(S, r)), and Schema Consequence
by Query Rewriting (score(S, r)).

Given a schema S and an inference rule r : A → C, our approach to com-
pute the basic schema consequence for r on S is based on evaluating A, or an
appropriate rewriting thereof, on a “canonical” instance of S, representative of
all instances modelled by the schema. The mappings generated by this evalua-
tion are then (1) filtered (in order to respect certain literal restrictions in RDF)
and (2) applied appropriately to the consequent C to compute the basic schema
consequence.

We present two approaches, that use two different canonical instances. The
first instance is based on the concept of a critical instance, which has been
investigated in the area of relational databases before [13] (and similar notions
in the area of Description Logics [9]). Adapted to our RDF setting, the critical
instance would be created by substituting the variables in our schema, in all
possible ways, with constants chosen from the constants in SG and A as well as
a new constant not in SG or A. In [13] this instance is used in order to decide
Chase termination; Chase is referred to rule inference with existential variables,
more expressive than the ones considered here and for which the inference might
be infinite (see [4] for an overview of the Chase algorithm). Although deciding
termination of rule inference is slightly different to computing the schema con-
sequence, we show how we can take advantage of the critical instance in order to
solve our problem. Nevertheless, this approach, that we call critical, creates
prohibitively large instances when compared to the input schema. Thus, later on
in this section we present a rewriting-based approach, called score, that runs a
rewriting of the inference rule on a much smaller canonical instance of the same
size as SG.
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The Critical Approach. For both versions of our algorithms we will use a
new IRI :λ such that :λ �∈ const(SG) ∪ const(A). Formally, the critical instance
C(S,A → C) is the set of triples:

{t| triple t with t[i] =

⎧
⎪⎪⎨

⎪⎪⎩

c if tS [i] is a variable and:
(1) c is a IRI or
(2) i = 3 and tS [i] �∈ SΔ

tS [i] if tS [i] is not a variable

⎫
⎪⎪⎬

⎪⎪⎭

,

tS ∈ SG, i ∈ τ, c ∈ const(SG) ∪ const(A) ∪ {:λ}}

The critical instance replaces variables with IRIs and literals from the set
const(SG) ∪ const(A) ∪ {:λ}, while making sure that the result is a valid RDF
graph (i.e. literals appear only in the object position) and that it is an instance of
the original schema (i.e. not substituting a variable in SΔ with a literal). In order
to compute the triples of our basic schema consequence for inference rule r we
evaluate A on the critical instance, and post-process the mappings �A�C(S,r) as
we will explain later. Before presenting this post-processing of the mappings we
stress the fact that this approach is inefficient and as our experiments show, non
scalable. For each triple t in the input schema S, up to |const(SG) ∪ const(A) ∪
{:λ}|vars(t) new triples might be added to the critical instance.

The Score Approach. To tackle the problem of efficiency we present an alter-
native solution based on query rewriting, called score. This solution uses a
small instance called the sandbox instance which is obtained by taking all triple
patterns of our schema graph SG and substituting all variables with the same
new IRI :λ. This results in an instance with the same number of triples as SG.
The main property that allows us to perform this simplification is the fact that
variables in SG are effectively independent from each other. Formally, a sandbox
graph S(S) is the set of triples:

{t| triple t with t[i] =
{

:λ if tS [i] is a variable,
tS [i] else

}

, tS ∈ SG, i ∈ τ}

Contrary to the construction of the critical instance, in our sandbox graph, vari-
ables are never substituted with literals (we will deal with RDF literal peculiarities
in a post-processing step). Also notice that S(S) ∈ I(S) and S(S) ⊆ C(S, r). As
an example, consider the sandbox graph S(S1) of schema S1 from Sect. 3.1:

:λ sn:observedProperty :COLevel .

:λ sn:observedProperty :TagID .

:λ rdf:type sn:Observation .

:λ rdf:type :PersonnelTag .

:λ :carriedBy :λ .

:λ sn:hasFeatureOfInterest :λ .

:λ sn:hasResult :λ .

The critical instances C(S1, r1), C(S1, r2) and C(S1, r3) from our example
would contain all the triples in S(S1), plus any other triple obtained by sub-
stituting some variables with constants other than :λ. For example, C(S1, r2)
would contain the triple [:λ, sn:hasResult, :OffLimitArea]}.
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In order to account for all mappings produced when evaluating A on C(S, r)
we will need to evaluate a different query on our sandbox instance, essentially by
appropriately rewriting A into a new query. To compute mappings, we consider
a rewriting Q(A) of A, which expands each triple pattern tA in A into the union
of the 8 triple patterns that can be generated by substituting any number of
elements in tA with :λ. Formally, Q(A) is the following conjunction of disjunc-
tions of triple patterns, where

∧
and

∨
denote a sequence of conjunctions and

disjunctions, respectively:

Q(A) =
∧

t∈A

(
∨

x1∈{:λ,t[1]}
x2∈{:λ,t[2]}
x3∈{:λ,t[3]}

〈x1, x2, x3〉
)

When translating this formula to SPARQL we want to select mappings that
contain a binding for all the variables in the query, so we explicitly request all
of them in the select clause. For example, consider graph pattern A1 = {〈?v3,
:a, ?v4〉, 〈?v3, :b, :c〉}, which is interpreted as query:

SELECT ?v3 ?v4 WHERE { ?v3 :a ?v4 . ?v3 :b :c }

Query rewriting Q(A1) then corresponds to:

SELECT ?v3 ?v4 WHERE {

{ {?v3 :a ?v4} UNION {:λ :a ?v4} UNION {?v3 :λ ?v4}

UNION {?v3 :a :λ} UNION {:λ :λ ?v4} UNION {:λ :a :λ}
UNION {?v3 :λ :λ} UNION {:λ :λ :λ} }

{ {?v3 :b :c} UNION {:λ :b :c} UNION {?v3 :λ :c}
UNION {?v3 :b :λ} UNION {:λ :λ :c} UNION {:λ :b :λ}
UNION {?v3 :λ :λ} UNION {:λ :λ :λ} } }

Below we treat Q(A) as a union of conjunctive queries, or UCQ [1], and denote
q ∈ Q(A) to be a conjunctive query within it.

We should point out that in this section we present a generic formulation
of both approaches that is applicable to schema graphs having variables in the
predicate position. If variables cannot occur in this position, such as in the
triplestore schemas representation of SHACL constraints, these approaches could
be optimised; for example by removing from Q(A) all the triples patterns that
have :λ in the predicate position.

Having defined how the critical and score approaches compute a set of
mappings, we now describe the details of the last two phases required to compute
a basic schema consequence.

Filtering the Mappings. This phase deals with processing the mappings com-
puted by either critical or score, namely �A�C(S,r) or �Q(A)�S(S). It should
be noted that it is not possible to simply apply the resulting mappings on the
consequent of the inference rule, as such mappings might map a variable in the
subject or predicate position to a literal, thus generating an invalid triple pat-
tern. Moreover, it is necessary to determine which variables should be included
in the no-literal set of the basic schema consequence. The schema S′ (output of
our approaches) is initialised with the same graph and no-literal set as S, and
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with an empty set of existential rules. Formally S′ is initialised to 〈SG, SΔ, ∅〉.
We then incrementally extend S′ on a mapping-by-mapping basis until all the
mappings have been considered, at which point, S′ is the final output of our
basic schema expansion.

For each mapping m in �A�C(S,r) or �Q(A)�S(S), we do the following. We
create a temporary no-literal set Δm. This set will be used to keep track of which
variables could not be bound to any literals if we evaluated our rule antecedent
A on the instances of S, or when instantiating the consequence of the rule. We
initialise Δm with the variables of our inference rule A → C that occur in the
subject or predicate position in some triple of A or C, as we know that they
cannot be matched to, or instantiated with literals.

We then consider the elements that occur in the object position in the triples
tA of A. We take all the rewritings tq of tA in Q(A) (if using critical, it would
be enough to consider a single rewriting tq with tq = tA). Since the mapping m
has been computed over the canonical instance (S(S) or C(S, r) depending on
the approach), we know that there exists at least one tq such that m(tq) belongs
to the canonical instance. We identify the set of schema triples tS ∈ S that model
m(tq), for any of the above tq. Intuitively, these are the schema triples that enable
tA, or one of its rewritings, to match the canonical instance with mapping m.
If tA[3] is a literal l, or a variable mapped to a literal l by m, we check if there
exists any tS from the above such that tS [3] = l or tS [3] is a variable that allows
literals (not in SΔ). If such a triple pattern does not exist, then m(A) cannot
be an instance of S since it has a literal in a non-allowed position, and therefore
we filter out m. If tA[3] is a variable mapped to :λ in m, we check whether in
any of the above tS , tS [3] is a variable that allows literals (not in SΔ). If such tS

cannot be found, we add variable tA[3] to Δm. Intuitively, this models the fact
that tA[3] could not have been bound to literal elements under this mapping.
Having considered all the triples tA ∈ A we filter out mapping m if it binds any
variable in Δm to a literal. If m is not filtered out, we say that inference rule r
is applicable, and we use m to expand S′.

Schema Expansion. For each mapping m that is not filtered out, we compute
the substitution sm, which contains all the bindings in m that map a variable to
a value other than :λ, and for every binding ?v → :λ in m, a variable substitution
?v →?v∗ where ?v∗ is a new variable. We then add triple patterns sm(m(C))
to S′G and then add the variables sm(Δm) ∩ vars(S′G) to S′Δ. Although the
schema consequences produced by score(S, r) and critical(S, r) might not
be identical, they are semantically equivalent (i.e. they model the same set of
instances). This notion of equivalence is captured by Theorem 1.

Theorem 1. For all rules r : A → C and triplestore schemas S, I(score(S, r))
= I(critical(S, r)).

The score approach (and by extension critical, via Theorem 1) is sound and
complete. The following theorem captures the this notion by stating the semantic
equivalence of score(S, r) and r(S). For our proofs, we refer the reader to our
Appendix (see footnote 1).
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Theorem 2. For all rules r : A → C and triplestore schemas S, I(score(S, r))
= I(r(S)).

Termination. It is easy to see that our approaches terminate since our data-
log rules do not contain existential variables, and do not generate new IRIs or
literals (but just new variable names). After a finite number of iterations, either
approach will only generate isomorphic (and thus equivalent) triple patterns.

5 Computing the Existential-Preserving Schema
Consequence

In order to compute the existential-preserving schema consequence we are going
to build on the result of our simple schema consequence. Recall the defini-
tion of schema consequences from Sect. 3.2 and note that given a schema S =
〈SG, SΔ, S∃〉 and a set of inference rules R such that con(S,R) = 〈S′G, S′Δ, ∅〉
then conex(S,R) = 〈S′G, S′Δ, S′∃〉 for some S′∃ ⊆ S∃; that is, the output schema
graph and no-literal set of the existential-preserving schema consequence are the
same as those of the simple one.

Our first step is to compute the schema graph and no-literal set of the exis-
tential preserving schema consequence, as in Sect. 4. Next, and in the rest of
this section, we want to compute the set of existential rules S′∃ that are still
valid on all possible “closure” instances (instances of the original schema closed
under R), or complementary, those existential rules that are violated on some
“closure” instance.

Starting from an instance I of S, which by definition satisfies S∃, an existen-
tial rule might become violated by the inference rules due to new facts added by
the closure. Thus, the aim of the algorithm is to find an instance I of S, that can
“trigger” an existential rule a →∃ c by mapping its antecedent a on clos(I,R).
For every existential rule, we want to construct I in a “minimal” way, so that if
clos(I,R) satisfies the rule e then there is no proper subset I ′ of I which is still
an instance of S and does not satisfy the rule. By considering all such minimal
instances I for every existential rule, we can determine if the rule is violated or
not on any potential closure of an instance.

We can achieve finding these violating instances if they exist, intituitively, by
starting from triples that are: (1) groundings of the inference rules’ antecedents;
(2) instances of the original schema S; and (3) which produce, via the closure,
a fact on which we can map a. To find the minimal number of inference rules’
antecedents that we have to ground, we can reason “backwards” starting from
an inference rule antecedent A whose consequent can trigger e, and compute
inference rules’ antecedents that can compute A. We have implemented this
backward-chaining reasoning in a way similar to query rewriting in OBDA [5],
and the Query-Sub-Query algorithm in datalog [1]. We don’t provide the specifics
of the algorithm but emphasize that it terminates by relying on a notion of
minimality of the rewritings produced. A rewriting produced by our algorithm is
essentially a “transitive” antecedent via our inference rules, which can produce A.
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Algorithm 1. Computation of the existential rules in conex(S,R)
1: procedure retainedExistentials(S : 〈SG, SΔ, S∃〉, R)
2: V ← ∅

3: for each e : a →∃ c ∈ S∃ do
4: for each r : A → C ∈ R do
5: if �Q(a)�S(C) �= ∅ then
6: W ← all rewritings of the antecedent of r : A → C with rules R
7: for each w : Aw → C ∈ W do
8: Mw ← �Q(Aw)�S(S)

9: for each mw ∈ Mw do
10: m̃w ← all mappings in mw that do not map a variable to :λ
11: g ← mapping from the vars(m̃(Aw)) to new IRIs
12: Ig ← g(m̃(Aw))

13: Ig′ ← ∅

14: while Ig �= Ig′
do

15: Ig′ ← Ig

16: for each e′ : a′ →∃ c′ ∈ S∃ do
17: Me′ ← �Q(a′)�S(Ig)

18: for each m′ ∈ Me′
do

19: if �Q(m′(c′))�S(Ig) �= ∅ then
20: ge ← mapping from vars(m′(c)) to new IRIs
21: Ig ← Ig ∪ ge(m′(c))

22: Ig ← clos(Ig, R)
23: MI ← �Q(a)�S(Ig)

24: for each mI ∈ MI do
25: if �Q(mI(c))�S(Ig) �= ∅ then
26: V ← V ∪ {e}

return S∃ \ V

By instantiating these rule antecedents in one rewriting, that is also an instance
of 〈SG, SΔ, ∅〉, and “closing” it existentially3 with S∃ we produce a “minimal”
instance of the original schema on the closure of which we know we can find A.
This A is the antecedent of an inference rule that can infer facts matching the
antecedent of e, and thus, after applying this rule, we can check the satisfaction
or violation of e. Our rewritings’ groundings are representative of all possible
instances whose closure can lead to a fact that the antecedent of e maps to. If
e is valid in all these instances then e can not be violated in any closure of an
instance of S, and thus we retain it from S∃.

The pseudocode for our algorithm can be seen in Algorithm1. For each exis-
tential rule e we consider each inference rule r : A → C such that inferring C
could trigger e (lines 3–5). We then compute all the rewritings W of A by means
of backward-chaining the rules in R. For each such rewriting Aw, we want to
see if we can match it on the instances of S. We do so by reusing the score
approach, computing the set of mappings Mw = �Q(Aw)�S(S). If Mw is empty,

3 For this step we implement a version of the Chase algorithm [4].
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then there is no instance of S on which Aw would match. Otherwise, we consider
whether this potential match could violate the existential rule e (lines 10–26).
For each mapping mw ∈ Mw we compute the instance Ig, grounding of Aw, by
first applying to Aw all mappings in mw that do not map a variable to :λ, and
then mapping any remaining variable to new IRIs (lines 10–12). To make sure
that Ig is an instance of S we perform the Chase on Ig using the existential
rules. Lines 13 to 21 exactly implement the well-known Chase algorithm [4] to
compute existential closure using our own score approach. Finally, we compute
the closure on Ig with the inference rules R and, if it violates e, we add e to the
set V of the existential rules that can be violated (lines 22–26). The output of
our algorithm (S′∃) is S∃\V .

6 Experimental Evaluation

We developed a Java implementation of our algorithms. This allowed us to test
their correctness with a number of test cases, and to assess their scalability
using synthetic schemas of different sizes. We present here two experiments.
In the first, we compare the time to compute the simple schema consequence,
on different sized schemas, using the score and critical approaches. In the
second, we show the overhead in computational time to compute the existential-
preserving schema consequence. Since this overhead is the same, regardless of
which approach we use to compute the simple schema consequence, we only
consider score in this experiment.

We developed a synthetic schema and an inference rule generator that is con-
figurable with 8 parameters: πC , |P |, |U |, |L|, |SG|, |R|, |S∃|, nA, which we now
describe. To reflect the fact that triple predicates are typically defined in vocab-
ularies, our generator does not consider variables in the predicate position. Ran-
dom triple patterns are created as follows. Predicate IRIs are randomly selected
from a set of IRIs P . Elements in the subject and object position are instan-
tiated as constants with probability πC , or else as new variables. Constants in
the subject positions are instantiated with a random IRI, and constants in the
object position with a random IRI with 50% probability, or otherwise with a
random literal. Random IRIs and literals are selected, respectively, from sets U
and L (U ∩ P = ∅). We consider chain rules where the triples in the antecedent
join each other to form a list where the object of a triple is the same as the
subject of the next. The consequent of each rule is a triple having the subject of
the first triple in the antecedent as a subject, and the object of the last triple as
object. An example of such inference rule generated by our experiment is: {〈?v0,
:m1, ?v1〉, 〈?v1, :m3, ?v2〉} → {〈?v0, :m2, ?v2〉} In each run of the experiment we
populate a schema S = 〈SG, SΔ, S∃〉 and a set of inference rules R having nA

triples in the antecedent. To ensure that some inference rules in each set are
applicable, half of the schema is initialized with the antecedents triples of ran-
domly selected inference rules. The other half is populated with random triple
patterns. Each existential rule of schema S is created as follows. Its antecedent
is selected randomly from all the consequents of the inference rules, while its
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Fig. 4. (a) Average time to compute con(S, R) using score and critical as the schema
size |SG| grows. The other parameters are: |P | = 1.5|SG|, πC = 0.1, |U | = |L| = |SG|,
|R| = 4, nA = 2, |S∃|= 0. (b) Average time to compute con(S, R) and conex(S, R)
using the score approach as the number of existential rules |S∃| increases. The other
parameters are |S| = 100, |P | = 110, πC = 0.1, |U | = |L| = |SG|, |R| = 20, nA = 2.

consequence is selected randomly from all the antecedents of all the inference
rules. This is done to ensure the relevance of the existential rules, and increase
the likelihood of interactions with the inference rules. We initialize SΔ with
all the variables in the subject and predicate position in the triples of S. The
code for these experiments is available on GitHub (see footnote 2). We run the
experiments on a standard Java virtual machine running on Ubuntu 16.04 with
15.5 GB RAM, an Intel Core i7-6700 Processor. Average completion times of
over 10 min have not been recorded.

The results of the first experiment are displayed in Fig. 4(a). This figure shows
the time to compute the schema consequence for different schema sizes |S| using
score and critical. The parameters have been chosen to be small enough to
accommodate for the high computational complexity of the critical approach.
This figure shows that score is orders of magnitude faster, especially on large
schema sizes. The critical approach, instead, does not scale (times out) beyond
schemas with over 33 triples. Figure 4(b) shows the increase of computation time
as schemas with more existential rules are considered. The results of the second
experiment show how our approach to compute the existential-preserving schema
consequence can scale to a large number of existential rules on a large input
schema in a matter of seconds.

7 Conclusion

SHACL constraints can can be used to define the schema of graph datasets.
However, the application of inference rules could cause the violation of such
constraints, and thus require a change in the schema. In this paper we address
the problem of computing the schema consequence of a schema S and a set
of rules R; that is, the evolved schema of the graphs, instances of S, closed
under inference rules R. To address this problem we introduced our notion of
a triplestore schema, which captures a fragment of SHACL, and can also be
used as a standalone logical tool to model properties of RDF graphs in general.
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We addressed the problem incrementally, first by computing a simple schema
consequence that does not consider existential constraints. We presented two
approaches to compute the simple schema consequence. The first is based on the
pre-existing concept of a critical instance, while the second is a novel approach
based on query rewriting and which our experiments showed to be significantly
more efficient. We have then provided an approach to deal with existential con-
straints based on backward-chaining reasoning, which computes what we call
an existential-preserving schema consequence. This can be considered the final
output of our approach, which a domain expert can use to update the schema
of an RDF dataset, if they choose to retain all the inference rules considered.
The machinery we developed in the form of the simple schema consequence, can
also have other applications, such as determining which rules are applicable on
a dataset and, if they are, what kind of triples they can infer.
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Abstract. Large-scale knowledge graphs are increasingly being used in
applications, and there is a growing need for tools that can effectively
support users in analysis and exploration tasks. One such important
task is entity comparison—to describe in an informative way the sim-
ilarities between two given entities as described in a knowledge graph.
In our previous work the result of entity comparison is modelled as a
similarity query—that is, a SPARQL query having the input entities as
part of the answer over the input graph; for instance, one can describe
the similarity between two companies such as Telenor and Vodafone in
the YAGO graph as a query asking for all telecom companies based in
Europe. In this paper, we extend the results of our prior work in different
ways. First, we expand the language of similarity queries to consider a
richer fragment of SPARQL allowing for numeric filter expressions; this
enables us to express that Telenor and Vodafone are also similar in that
they both have at least 30,000 employees. We then propose algorithms for
computing similarity queries satisfying certain additional desirable prop-
erties, such as being as specific as possible. Such algorithms are, however,
impractical; hence, we also propose and implement a scalable algorithm
that is guaranteed to compute a similarity query, but not necessarily a
most specific one.

1 Introduction

Large-scale knowledge graphs are increasingly being used in applications, and
there is a growing need for tools that can effectively support users in analysis and
exploration tasks. One such important task is entity comparison—to describe in
an informative way the similarities and differences between two given entities as
outlined in a knowledge graph. This is in stark contrast to the computation of
a similarity measure, where the output is a number indicating how similar the
given entities are likely to be rather than a human-readable explanation.

To make our discussion concrete, consider a small excerpt from the YAGO
knowledge graph [19] (in RDF format) about European companies that is
depicted in Fig. 1. We would like a tool to assist us in comparing Telenor with

c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 558–575, 2019.
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Fig. 1. An excerpt of the YAGO knowledge graph

Vodafone. In particular, the tool should be able to automatically report that
Telenor and Vodafone are similar in that they are both telecom companies
located in Europe which own other companies, have at least 25 years of oper-
ating experience and more than 30,000 employees on payroll; however, they are
different in that Telenor is located in Norway whereas Vodafone is based in the
UK.

Entity comparison is used routinely across multiple domains and applica-
tions, from online shopping to food and nutrition comparison widgets, to Face-
book’s ‘see what you have in common’ pages. Existing tools typically focus on
a constrained application domain (e.g., used cars) and provide a side-by-side
comparison of the given entities based on a fixed set of relevant attributes (e.g.,
price, engine size, or colour). We are, however, interested in the generic entity
comparison support in knowledge graphs, in which case it is no longer possible
to fix a relevant set of attributes or relationships upfront.

In our previous work, we proposed a logical framework for entity compar-
ison in knowledge graphs represented in RDF format [17]. The description of
similarities and differences is given in terms of SPARQL queries in the conjunc-
tive fragment. In particular, a similarity query is a query containing the two
given entities to compare as answers. A more specific such query is seen as more
informative: for example, knowing that both Vodafone and Telenor are telecom
companies is more informative than just knowing that they are both companies.

We previously showed that, for any given RDF graph and pair of entities to
compare, there exists a unique most specific similarity query (MSSQ), which can
be computed in polynomial time in the size of the input graph [17]. The algorithm
in that work, however, has two important practical limitations. First, it was
designed for a fragment of SPARQL without numeric filter expressions, which
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significantly limits its applicability to graphs containing numeric information;
for instance, the algorithm would not be able to report as a similarity that both
Vodafone and Telenor have at least 30,000 employees. Second, the running time
of the algorithm is quadratic in the size of the input graph (even in the best
case), which makes it impractical even for moderately-sized inputs.

In this paper, we first extend the previously proposed framework and algo-
rithms so as to produce more informative similarity queries. In particular, we
consider a richer fragment of SPARQL allowing for numeric filter expressions,
and also study a new type of similarity queries that we call exact. We then show
that both most-specific and exact similarity queries can be computed using an
extension of the algorithm proposed in [17]; this algorithm is, however, also
impractical. To address this issue, we then propose a practical and scalable algo-
rithm for computing similarity queries. Although our algorithm does not ensure
that the computed similarity query is the most specific one, our empirical eval-
uation suggests that it is a reasonable approximation in many cases.

2 Preliminaries

Let U, L, and B be pairwise disjoint, countably infinite sets of IRIs, literals, and
blank nodes, respectively. We assume that L includes all integers Z. We will refer
to IRIs and literals collectively as entities. An RDF triple (or simply a triple) is
a tuple (s, p, o) from (U ∪ B) × U × (U ∪ L ∪ B), where s is called the subject,
p the predicate, and o the object. An (RDF ) graph is a finite set of triples.

Let X be a countable infinite set of variables disjoint from U, B, and L. A
term is an element from U ∪ L ∪ X. A triple pattern is a triple of terms from
the set (U ∪ X) × (U ∪ X) × (U ∪ L ∪ X). A basic graph pattern is a non-
empty finite set of triple patterns. An arithmetic comparison is an expression
of the form (?Y � n), where ?Y is a variable in X, n is an integer (i.e., a
literal), and � is a comparison symbol in {<,≤, >,≥}. A (arithmetic) filter
condition is a finite (possibly empty) set of arithmetic comparisons. For E an
expression such as a pattern or a filter condition we denote with var(E) and
term(E) the sets of variables and terms, respectively, occurring in E. A basic
graph pattern P is connected if for every pair t, t′ ∈ term(P ) there is a sequence
of triple patterns T1, . . . , Tm in P such that t ∈ term(T1), t′ ∈ term(Tm) and
term(Ti) ∩ term(Ti+1) �= ∅ for all i = 1, . . . ,m − 1.

In this paper, we concentrate on (SPARQL) queries of a very specific form.
In particular, in the context of this paper, a query is an expression of the form

Select ?X Where P Filter C, (1)

where P is a connected basic graph pattern, ?X ∈ var(P ) is the answer variable
of the query and C is a filter condition satisfying var(C) ⊆ var(P ). Such queries
essentially correspond to connected monadic conjunctive queries with arithmetic
comparisons (CQACs) [15] restricted to signatures over a single ternary relation
and using no comparisons between variables.
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A valuation of a finite set of variables ?X̄ from X is a mapping from ?X̄
to U ∪ L ∪ B. An element from U ∪ L ∪ B is an answer to a query Q of the
form (1) over a graph G if there exists a valuation ν of var(P ) so that ν(P ) ⊆ G
and ν(?Y ) � n holds for each comparison (?Y � n) in C. We denote by [Q]G the
set of all answers to Q over G. A query Q1 is subsumed by a query Q2, written
Q1 ⊆ Q2, if [Q1]G ⊆ [Q2]G for every graph G. Query Q1 is strictly subsumed by
query Q2, denoted by Q1 ⊂ Q2, if Q1 ⊆ Q2 and Q2 �⊆ Q1. Finally, Q1 and Q2

are equivalent, denoted by Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1. Subsumption
and equivalence allow us to compare queries relative to their specificity, so we
sometimes say that Q1 is (strictly) more specific than Q2 if Q1 is (strictly)
subsumed by Q2.

We conclude this section with an observation that we restrict the filter con-
ditions to only arithmetic comparisons between variables and constants. This
is justified by the fact that all other comparisons, such as general inequalities
between variables and IRIs, have very little meaning in the context of entity com-
parisons, and moreover may flood similarity queries hiding the essential parts.

3 Entity Comparison Using Similarity Queries

There are two main proposals for capturing similarities between entities in the
literature: either by queries [17] that have given entities as answers or by explicit
paths in the graph originating in given entities and converging into the same
node [6,11,14]. As discussed in our previous work [17], queries contain variables,
which allows us to represent similarities at a higher level of abstraction, so we
adopt the first approach. We start by extending the notions of similarity and
most specific similarity queries of [17] to also consider filter conditions.

Definition 1. A query Q is a similarity query for entities a and b in a graph G
if {a, b} ⊆ [Q]G. A similarity query Q for a and b in G is most specific (MSSQ)
for a and b if there is no similarity query Q′ for a and b in G such that Q′ ⊂ Q.

For example, the following query Qex asking for all telecom companies located
in Europe is a similarity query for Vodafone and Telenor in the graph in Fig. 1:

Select ?X Where {(?X, isa, T elecom company),
(?X, loc in, ?Y ), (?Y, loc in, Europe))}.

Query Qex is, however, not an MSSQ since the following query Q′
ex is also a

similarity query, and it is strictly more specific as it adds the information that
both companies were created between 1855 and 1991:

Select ?X Where {(?X, isa, T elecom company),
(?X, loc in, ?Y ), (?Y, loc in, Europe), (?X, created on, ?Z)}

Filter {(?Z ≤ 1991), (?Z ≥ 1855)}.

It is not difficult to see that a similarity query exists, provided the input
entities appear at the same position (i.e., subject, predicate, or object) in the
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input graph. Moreover, as the above example suggests, there may be multiple
(even infinitely many) similarity queries for a pair of entities in a graph. We next
show, however, that MSSQs are unique modulo equivalence. Intuitively, this is
the case because the conjunction of similarity queries is also a similarity query.

Proposition 1. MSSQs are unique up to equivalence.

Proof. Let a and b be entities in a graph G. Consider two arbitrary MSSQs
Qi = Select ?X Where Pi Filter Ci, i ∈ {1, 2}, for a and b in G. Then
query

Q = Select ?X Where P1 ∪ P2 Filter C1 ∪ C2

is a similarity query, which is also more specific than both Q1 and Q2. Note that
P1 ∪ P2 is connected because P1 and P2 are both connected and both mention
?X. Therefore, Q1, Q2, and Q are all equivalent MSSQs. �

The notion of MSSQ relies on query subsumption, which is a data-
independent relationship between queries. It would clearly also make sense to
look for similarity queries that are as discriminating for input entities a and b
as possible over the specific input graph G at hand—that is, those similarity
queries that return only a and b as answers when evaluated over G.

Definition 2. A query Q is an exact similarity query (ESQ) for entities a and
b in a graph G if {a, b} = [Q]G.

For instance, our example query Qex is an ESQ for the example graph from
Fig. 1 because Vodafone and Telenor are the only telecom companies in Europe
represented in the graph. However, as already discussed, Qex is not an MSSQ
because it is not minimal with respect to subsumption. Furthermore, if we were
to consider the whole of YAGO instead of our example excerpt, Qex would cer-
tainly no longer be an ESQ since YAGO contains many other European telecom
companies. So, MSSQs and ESQs are incomparable in general. The following
proposition, however, establishes a useful link between ESQs and MSSQs, which
we exploit in the algorithms proposed in following sections.

Proposition 2. If Q is an MSSQ for entities a and b in a graph G such that
[Q]G �= {a, b}, then no ESQ for a and b in G exists.

Proof. Let Q′ be an ESQ for a and b in G—that is, Q′ is a similarity query with
[Q′]G = {a, b}. So, Q′ is a similarity query that is not subsumed by the MSSQ
Q, which contradicts Proposition 1. �

4 Computing Most Specific and Exact Similarity Queries

In this section, we present an algorithm that computes an MSSQ, if one exists,
and reports failure otherwise. We also show how a simple modification of this
algorithm can be used for computing an ESQ. Our algorithm for MSSQ extends
the one in [17], where changes are needed to deal with filter conditions.

Our algorithm relies on the following notion of the (tensor) product graph.
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Algorithm 1. Compute MSSQ

Input: graph G, entities a and b in G
Output: MSSQ for a and b in G, or fail

1 compute G × G;
2 if 〈a, b〉 does not occur in a triple in G × G then return fail ;
3 compute the connected component G× of 〈a, b〉 in G × G;
4 let P be the pattern obtained from G× by replacing each pair 〈c1, c2〉 with

either variable ?Xc1,c2 , if c1 �= c2 or c1 ∈ B, or with c1 otherwise;
5 if a = b then
6 add to P all triple patterns obtained from triple patterns already in P

by replacing at least one occurrence of a with ?Xa,a;

7 let C be

{(?Xn1,n2 ≤ max(n1, n2)), (?Xn1,n2 ≥ min(n1, n2)) | ?Xn1,n2 ∈ var(P ); n1, n2 ∈ Z};
8 return Select ?Xa,b Where P Filter C.

Definition 3. Given triples τ1 = (s1, p1, o1) and τ2 = (s2, p2, o2), let

τ1 × τ2 = (〈s1, s2〉, 〈p1, p2〉, 〈o1, o2〉).

The product G1×G2 of graphs G1 and G2 is the set {τ1×τ2 | τ1 ∈ G1, τ2 ∈ G2}.

Algorithm Compute MSSQ (given in Algorithm 1) accepts as input a graph
G, and entities a and b in G. In the first step, it computes the product graph
G×G and checks whether the node 〈a, b〉 occurs in G×G; if it does not, then the
algorithm determines that a similarity query (and hence an MSSQ) for a and b in
G does not exist, and reports failure. In contrast, if 〈a, b〉 occurs in the product
graph G×G, then the algorithm computes the connected component of 〈a, b〉 in
the product graph and constructs the output query based on it. Specifically, the
algorithm computes the pattern P in the query by replacing each element of a
product triple in G×G with either a constant or a variable (uniquely associated
with the element), and the filter condition C by adding suitable inequalities for
those variables representing pairs of numeric literals in the product graph.

Since the size of G × G is quadratic in the size of G, the algorithm works in
polynomial time. Correctness is established by the following theorem.

Theorem 1. Compute MSSQ is a polynomial time procedure that returns an
MSSQ for its input entities and graph, if it exists, or fail otherwise.

Proof. First, recall that a similarity query of entities a and b in a graph G exists
if and only if both a and b appear in the same position in triples in G, which
happens precisely when 〈a, b〉 appears in a triple in G × G by construction. So,
if Compute MSSQ returns fail in line 2 then there is no MSSQ for a and b.

Next, algorithm Compute MSSQ extends our previously proposed algo-
rithm from [17] that computes a most specific similarity query without filter
conditions for two entities in an RDF graph. So, if the MSSQ (in the extended
language) does not contain integers, then Compute MSSQ returns this MSSQ,
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with the filter condition C being empty. If the MSSQ contains integers, then the
algorithm first generates the most specific basic graph pattern P in lines 1–6 as
before and then computes the filter condition C in line 7; moreover, C contains
the arithmetic comparisons for all possible numeric variables in P , and these
comparisons are constrained in the tightest way possible by the integer values.

Finally, as already mentioned, all steps can be done in polynomial time. �

The correctness of the algorithm implies that an MSSQ is always guaranteed
to exist whenever a similarity query exists for the given input. Furthermore,
checking whether a similarity query exists can be done efficiently.

Despite running in polynomial time, Algorithm1 is impractical. Indeed, real-
life graphs G of interest tend to contain millions of triples, and the algorithm
explicitly constructs the product graph G × G, which is of quadratic size in the
size of G. Moreover, large MSSQs are often incomprehensible and practically use-
less for entity comparison. Hence, it makes sense to design approximation algo-
rithms, which, on the one hand, construct reasonably specific similarity queries
and, on the other hand, can scale to large input graphs. In Sect. 5 we devise one
such algorithm. We next show, however, that checking whether a query (e.g., a
query output by an approximation algorithm) is an MSSQ is computationally
hard.

Theorem 2. The problem of checking whether a query is an MSSQ for two
entities in a graph is ΠP

2 -complete.

Proof (Sketch). To check whether a query Q is an MSSQ for entities a and b
in a graph G, we proceed as follows. First, we apply Algorithm1 to obtain (in
polynomial time) an MSSQ Q′ for a and b in G. By Proposition 1, Q is an MSSQ
if and only if it is equivalent to Q′. So, second, we check equivalence of Q and
Q′; since all MSSQs are essentially CQACs, the check is feasible in ΠP

2 [15].
In turn, the lower bound is obtained by reduction of the equivalence problem

for connected CQACs with a restricted form of comparisons, which can be shown
to be ΠP

2 -complete by a similar technique as in [15]. The idea of the reduction is
to first construct a graph G with entities a and b using the first CQAC q1 such
that q1 corresponds to an MSSQ for a and b in G; then, to rewrite the second
CQAC q2 into a query Q syntactically compatible with G; and finally to show
that Q is the MSSQ for a and b in G if and only if q1 and q2 are equivalent. �

We next observe that Algorithm 1 can be easily modified to compute an
ESQ, if one exists. Indeed, let algorithm Compute ESQ be the same as Com-

pute MSSQ except that it additionally evaluates the constructed query at the
end, and returns the query only if the result is precisely a, b, and fail otherwise.

Theorem 3. Compute ESQ is a procedure that returns an ESQ for its input
entities and graph if it exists, or fail otherwise.

Proof. If the algorithm returns a query Q, then Q is an ESQ for the input
entities a and b in the input graph G since this is explicitly checked in the last
step. Assume now that the algorithm returns fail ; we argue that no ESQ exists.
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If it returns fail in line 2, then by the correctness of Algorithm1 we can conclude
that no similarity query (and hence no ESQ) exists for a and b in G. In turn, if
the algorithm returns fail in the last step, we know that the constructed query
Q is not an ESQ. Furthermore, by the correctness of Algorithm1, we know that
Q is an MSSQ for a and b in G, so, by Proposition 2, no ESQ exists. �

Note that the evaluation step in Compute ESQ does not work in (deter-
ministic) polynomial time. As the following proposition says, no ESQ can be
computed in polynomial time (assuming P �= NP).

Theorem 4. The problem of checking whether an ESQ for two entities in a
graph exists is coNP-complete.

Proof (Sketch). The upper bound follows from the algorithm: first it computes,
in polynomial time, a candidate query Q and then universally guesses an entity
different from a and b verifying that it is not an answer to Q. The last can be
done in coNP by usual query evaluation algorithms.

The lower bound is obtained by reduction of the coNP-complete problem of
checking whether there exists a difference comparison-free query Q for an entity
a relative to an entity b in an RDF graph G—that is, such that Q has the empty
filter condition and has a as an answer over G but not b [17]. In particular, given
G, a, and b as instance to the difference existence problem, consider the graph
G′ = G ∪ {(a, d, c), (b, d, c)} for fresh entities d and c not occurring in G. Then
it is not difficult to check that there exists a difference query for a relative to b
in G if and only if there exists an ESQ for a and a in G′. �

We conclude the section with the complexity of checking if a query is an ESQ.

Theorem 5. The problem of checking whether a query is an ESQ for two enti-
ties in a graph is DP-complete.

Proof (Sketch). To establish the upper bound, consider the algorithm that checks
in NP that both input entities are answers to the query on the input graph and
checks in coNP that there are no other answers. For the lower bound, we first
show that the verification problem for comparison-free difference queries is DP-
hard, and then reduce this problem to ESQ verification in a way very similar to
the one presented in the proof of Theorem4. �

5 Computing Approximated MSSQs

As discussed in Sect. 4, algorithm Compute MSSQ is impractical even for
moderately-sized input graphs G since the algorithm computes upfront the prod-
uct graph G × G of the input graph G with itself, which is of quadratic size. In
this section, we propose a practical algorithm that computes a similarity query
for two entities in a graph (if one exists). Although the query computed by the
algorithm is not guaranteed to be an MSSQ, we will verify empirically in Sect. 6
that it is a reasonable approximation in practice. Before going to the details,
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we make two important observations. First, in the rest of the paper we con-
centrate on MSSQs leaving similar treatment of ESQs for future work. Second,
the theoretical framework and the exact algorithm Compute MSSQ treat sub-
jects, predicates, and objects in the same way; however, in practice we would like
to compare subject and object entities, considering predicates as relations, and
hence our approximation algorithm assumes that the compared entities appear
in the graph either both as subjects or both as objects at least once (and hence
an MSSQ exists).

Our algorithm relies on the notion of a similarity tree for entities a and b in a
graph G, which we define next. Roughly speaking, a similarity tree is a labelled
directed tree, where each node is labelled with a pair of sets of entities (appearing
in subject and object positions in G), with the first set in a pair corresponding
to a and the second to b; the root node is labelled with the pair ({a}, {b}). Each
edge in the tree is labelled with two sets of entities (appearing in the predicate
position in triples from G) and a direction of triples. Furthermore, we require
that the tree is consistent with the structure of G in that each edge in the tree
is justified by corresponding triples in G.

Definition 4. A pair tree is a rooted labelled directed tree such that

– each node v is labelled with a pair (V1, V2), where each Vi is a non-empty set
of entities satisfying either V1 ∩ V2 = ∅ or V1 = V2 = {c} for an entity c;

– each edge e is labelled with a tuple (E1, E2, dir), where each Ei is a set of
entities satisfying either E1 ∩ E2 = ∅ or E1 = E2 = {c} for an entity c, and
where dir ∈ {→,←}.

An edge e = (v, v′) in a pair tree T is justified in a graph G if the following
properties hold for both i = 1, 2, where (V1, V2), (E1, E2, dir), and (V ′

1 , V
′
2) are

labels of v, e, and v′, respectively:

– for each entity c ∈ Vi there is a triple justifying e in G for c—that is, a triple
(s, p, o) such that p ∈ Ei and either s = c and o ∈ V ′

i when dir is →, or s ∈ V ′
i

and o = c otherwise.

Pair tree T is a similarity tree for entities a and b in graph G if the root is
labelled with ({a}, {b}) and all edges in T are justified in G.

Consider Fig. 2, where a graph Gex and two pair trees T1 and T2 are depicted
(for brevity, g, f , and r in the trees abbreviate ({g}, {g}), {f}, {f}, and {r}, {r},
respectively). Note that the roots in both trees are labelled by ({a}, {b}). In T1

the edge between the root and the node labelled ({c}, {d, d′}) is justified: for
both a and b there exists a triple in G that has this entity as the subject, f as
the predicate, and c and d (or d′), respectively, as the object. However, neither
of the other two edges in T1 is justified, because of the {d, d′} component in the
parent node label: there are no triples (g, r, d′) and (d, f, d) in G. In contrast,
every edge in T2 is justified, and hence T2 is a similarity tree.

Similarity trees are relevant since they have corresponding similarity queries.
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Fig. 2. An example graph Gex and two pair trees T1 and T2

Definition 5. Let T be a similarity tree for entities a, b in a graph G. For each
node or edge u in T labelled with (L1, L2) or (L1, L2, dir), respectively, let tu be

– a variable ?X if u is the root of the tree;
– the entity c if L1 ∩ L2 = {c}; and
– a fresh variable otherwise.

The query corresponding to T is Select ?X Where P Filter C with

– P containing, for each edge e = (v, v′) in T , the triple pattern (tv, te, tv′) or
(tv′ , te, tv) if e is labelled with → or ←, respectively; and

– C containing, for each node v in T labelled (V1, V2) with each Vi consisting
of only integers, the arithmetic comparisons (tv ≥ min) and (tv ≤ max),
where min and max are the minimal and the maximal, respectively, values in
V1 ∪ V2.

The query corresponding to the similarity tree T2 from Fig. 2 is

Qsim = Select ?X Where {(?X, f, ?Y1), (g, r, ?Y1), (?X, f, ?Y2), (?Y2, f, ?Y3)}.

The following proposition establishes that the query corresponding to a simi-
larity tree is indeed a similarity query.

Proposition 3. The query corresponding to a similarity tree for entities a and
b in a graph G is a similarity query for a and b in G.

Proof (Sketch). Given a similarity tree T for a and b in G, let us first traverse
T from the root to the leaves and recursively associate each node and edge in
T with a pair of entities such that the first is from the first component of the
label of the node or edge and the second is from the second component, as well
as the following holds:
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Algorithm 2. Compute Approx MSSQ

Input: graph G, entities a and b in G, depth dep
Output: similarity query for a and b in G

1 let T0 be pair tree with a single root node v0 labelled ({a}, {b});
2 let Tgen := Generate Tree(T0, v0, G, dep);
3 let Tsim := Uncouple Nodes(Tgen, G);
4 return the query corresponding to Tsim.

– the root is associated with (a, b), and,
– for each edge e = (v, v′) with v associated with (ca, cb), e and v′ are associated

with pairs of entities (da, db) and (c′
a, c

′
b), respectively, from the labels of e

and v′ such that the triples (ca, da, c′
a) and (cb, db, c′

b), if e is labelled by →,
or the triples (c′

a, da, ca) and (c′
b, db, cb) otherwise, justify e in G for ca and

cb, respectively (such justifying triples exist by Definition 4).

Let Q be the query corresponding to similarity tree T . Consider the valua-
tions νa and νb that send ?X to a and b, respectively, and every other variable
?Y of Q to the entities ca and cb, respectively, in the pair (ca, cb) associated
to the node or edge u such that tu is ?Y according to Definition 5. It is imme-
diate to check that valuations νa and νb justify a and b as answers to Q, as
required. �

We are ready to present algorithm Compute Approx MSSQ (given in
Algorithm 2), which computes a similarity query of a given depth dep (i.e., a
natural number) for given entities a and b in a given graph G according to the
three steps described next. In the first step (line 2), we create a preliminary pair
tree Tgen. For example, for the input graph Gex from Fig. 2, for the entities a
and b in that graph and for depth 2 the pair tree Tgen is T1. As in this example,
Tgen may not yet be a similarity tree. Hence, in the second step (line 3), we
uncouple some of the nodes in Tgen, making all edges in the tree justified, and
thus creating a similarity tree Tsim. For example, we uncouple the node from
T1 labelled ({c}, {d, d′}) into two new nodes, labelled ({c}, {d}) and ({c}, {d′}),
respectively. The former becomes the parent node for the node labelled g, while
the latter becomes the parent node for the node labelled ({a}, {d}). As the result,
in this example Tsim is T2. Finally (in step 4), we turn Tsim into a similarity query
corresponding to this tree; for example we turn T2 into Qsim.

Let us look at each of the steps in more detail. In the first step (line 2), the
algorithm constructs, by means of the recursive subroutine Generate Tree,
a pair tree Tgen of depth at most dep. In particular, in lines 1–2 of Com-

pute Approx MSSQ a root labelled ({a}, {b}) is created and passed to the
recursion. When a node v in T labelled (V1, V2) is received in a recursive call of
Generate Tree, the following extensions are performed, where (s, p, o)→ and
(s, p, o)← denote (s, p, o) and (o, p, s), respectively:
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– first, for each direction dir ∈ {→,←} and each pair of entities c, d such that,
for both i = 1, 2, there are triples (ci, d, c)dir ∈ G with ci ∈ Vi, a new edge
labelled ({d}, {d}, dir) from v to a new node labelled ({c}, {c}) is added to T ;

– second, for each dir ∈ {→,←} and each entity c such that, for both i = 1, 2,
there exists (ci, di, c)dir ∈ G with ci ∈ Vi the sets

Ei = {di | (ci, di, c)dir ∈ G for ci ∈ Vi}

are considered; if the sets E1\E2 and E2\E1 (i.e., the sets of edge entities
not covered in the previous case) are both non-empty, then an edge labelled
(E1\E2, E2\E1, dir) from v to a new node labelled ({c}, {c}) is added;

– third, for each dir ∈ {→,←} and each d such that, for both i = 1, 2, there are
triples (ci, d, c′

i)
dir ∈ G with ci ∈ Vi the sets

V ′
i = {c′

i | (ci, d, c′
i)

dir ∈ G for ci ∈ Vi}

are considered; if V ′
1\V ′

2 and V ′
2\V ′

1 (i.e., the sets of not covered node entities)
are non-empty, then an edge labelled ({d}, {d}, dir) from v to a new node v′

labelled (V ′
1 \V ′

2 , V ′
2 \V ′

1) is added; moreover, if the depth of v is non-zero,
then Generate Tree is recursively called for v′;

– finally, for both dir ∈ {→,←} the sets

Ei = {di | (ci, di, c′
i)

dir ∈ G for ci ∈ Vi} and

V ′
i = {c′

i | (ci, di, c′
i)

dir ∈ G for ci ∈ Vi and di ∈ Ei \ E3−i}

are considered for both i = 1, 2; if the sets E1\E2, E2\E1, V ′
1\V ′

2 , and V ′
2\V ′

1

are all non-empty, then an edge labelled (E1\E2, E2\E1, dir) from v to a
new node v′ labelled (V ′

1\V ′
2 , V ′

2\V ′
1) is added; moreover, if the depth of v is

non-zero, then Generate Tree is called for v′.

After all these extensions, T is returned to the previous level of recursion.
As mentioned above, the resulting Tgen is a pair tree; however, it may not be

a similarity tree for a and b, since some edges may not be justified in G. So, in
the second step (line 3) of Compute Approx MSSQ, pair tree Tgen is refined
from the leaves upwards using subroutine Uncouple Nodes, which ensures
that each edge in the tree is suitably justified, and hence yields a similarity tree
Tsim for a and b in G. In particular, this subroutine considers nodes of its input
pair tree T from leaves to the root, and for each node v under consideration
and each child v′ of v—that is, a node with an edge e = (v, v′)—the following
is performed, where (V1, V2), (E1, E2, dir), and (V ′

1 , V
′
2) are labels of v, e, and v′,

respectively:

– a node v∗ and an edge (v∗, v′) labelled (V ∗
1 , V ∗

2 ) and (E∗
1 , E∗

2 , dir), respectively,
are added to T , for maximal sets V ∗

i ⊆ Vi and E∗
i ⊆ Ei, i = 1, 2, with (v∗, v′)

justified by G;
– if v is not the root then an edge (vp, v∗) labelled as the incoming edge (vp, v)

to v is added to T ;
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– when all children of v are processed, each group of children with the same
label are merged to one, and v is removed.

Note that, by construction, the resulting Tsim is a pair tree as well; moreover, we
will see that, contrary to Tgen, it is a similarity tree.

Finally, in the last step (line 4), algorithm Compute Approx MSSQ con-
structs the query corresponding to the similarity tree according to Definition 5,
which is guaranteed to be a similarity query by Proposition 3.

Overall, we arrive to the following correctness theorem.

Theorem 6. For each positive integer dep, Compute Approx MSSQ com-
putes a similarity query for entities a and b in a graph G.

Proof (Sketch). The claim follows from the construction and Proposition 3.
Indeed, the pair tree Tsim is a similarity tree for input G, a, and b because the root
is labelled with ({a}, {b}), while all the edges are processed in Uncouple Nodes

in the bottom-up manner and explicitly verified to be justified by G. �

We next briefly discuss the running time of the algorithm. One execution
of the Generate Tree subroutine runs in O(ρ · |G|), where ρ is the number
of different entities appearing in the predicate position in triples from G. Gen-

erate Tree is recursively called at most (2ρ)dep−1 times, hence the full run-
time of these calls is O(ρdep · |G|). Then the subroutine Uncouple Nodes per-
forms a check on O(ρdep · |G|) pair tree nodes, each check being in O(|G|). Hence,
Compute Approx MSSQ runs in O(ρdep · |G|2) in the worst case. Note that ρ
for a graph G is typically much smaller in practice than the number of triples in
G (e.g., ρ = 128 for full YAGO), and the checks in Uncouple Nodes are made
for all triples in G containing the current entity, which usually constitute only
a small fraction of G. This makes the algorithm suitable for real-case scenarios,
which we will demonstrate in the next section.

Finally, we observe that it is possible to find an example where the approx-
imating SQ has arbitrary many answers while the MSSQ has just two (i.e., the
input entities). So, there is no constant approximation ratio for our algorithm.
However, the same can be said about any approximation algorithm that outputs
a SQ that is not an MSSQ, so we cannot hope for such theoretical guarantees.
Instead, we evaluate the quality of our approximation empirically in Sect. 6.

6 Evaluation

We implemented our two similarity algorithms Compute MSSQ and Com-

pute Approx MSSQ in Python. We then evaluated the performance of our
implementations and estimated to what extent the similarity queries computed
by algorithm Compute Approx MSSQ approximate MSSQs computed by
algorithm Compute MSSQ in practical cases. We used the following three RDF
graphs (datasets) in our experiments:
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Table 1. Runtime (in seconds) and output query size (in number of triples) of Com-

pute Approx MSSQ on the LUBM1, TFG, and YAGO graphs

Runtime Size

RDF graph Depth Avg Median Max Timeouts Avg

LUBM1 1 0.000851 0.000346 0.006910 − 1.88

2 0.002690 0.000971 0.036051 – 11.25

3 0.072132 0.001389 2.101702 – 463.00

4 0.348439 0.002058 8.558924 – 3235.02

TFG 1 0.000811 0.000356 0.045334 – 0.75

2 0.001115 0.000373 0.045334 – 3.54

3 0.058080 0.000415 3.540030 – 592.86

4 67.203592 11.308518 352.100547 – 35904.21

YAGO 1 0.000918 0.000327 0.056005 – 0.73

2 0.006476 0.000338 0.175918 – 7.81

3 8.318439 0.000347 461.952534 – 149.63

4 84.950921 0.640530 488.342738 3 1287.67

– the synthetic graph LUBM1 [12] consisting of 100, 543 triples over 26, 437
entities, out of which 17 appear in the predicate positions;

– a subset of the anonymised Twitter follower graph (TFG) [18] consisting of
713, 319 triples over 404, 719 entities, only one of which (i.e., entity follows)
appears in the predicate positions; and

– a subset of YAGO graph [19] consisting of 1, 069, 072 triples over 604, 905
entities, out of which 42 appear in the predicate positions.

The graphs are different in size and nature: YAGO has a rich set of property
entities, while TFG uses only one; LUBM1 has a regular structure and resembles
data typically encountered in databases, whereas YAGO is more heterogeneous.

All experiments were performed on a MacBook Air laptop with macOS 10.14,
1.6 GHz Intel Core i5 processor, and 16 GB 2133 MHz LPDDR3 memory.

6.1 Performance Analysis

We evaluated the runtime of our implementation of Compute Approx MSSQ

for increasing values of the depth parameter. For this, we randomly selected
100 pairs of entities in each graph and, for each such pair, we ran the imple-
mented algorithm for values of the depth parameter ranging from 1 to 4. For
each graph and each depth value, we recorded the average, median and maximum
runtime as well as the average number of triple patterns in a query amongst all
the selected pairs of entities. We limited the maximum depth to 4, since queries
beyond that depth are very difficult to comprehend due to their size and struc-
ture; indeed, psychologists established precise limitations in the human capacity
to store and process information, where experiments show that most people
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would have trouble keeping in memory chains of related pieces of information
longer than 4 [8].

Our results for LUBM1, TFG, and YAGO are summarised in Table 1. We can
observe that our similarity queries can be computed efficiently with sub-second
average running times in most cases; in contrast our implementation of exact
Compute MSSQ timed out in all cases. The average runtime becomes larger
for depth 4 for larger datasets, such as TFG and YAGO; in case of YAGO the
algorithm reached 3 timeouts for 500 s threshold. However, we can also observe
that output queries tend to become very large (and hence difficult to interpret,
verbalise, and comprehend) for depths greater than 3. Therefore, it is only prac-
tical to consider approximated MSSQs of depth up to 3, for which our algorithm
can always compute a similarity query.

6.2 Query Specificity Analysis

In this section we report the results of an experiment that aims to estimate how
different the similarity queries computed using Compute Approx MSSQ are
from the actual MSSQs computed by the exact algorithm Compute MSSQ.
Unfortunately, our implementation of Compute MSSQ timed out and hence
failed to produce a query for all inputs in our datasets; thus, a direct comparison
of the answers to the similarity queries produced by the algorithms is not feasible.
To circumvent this limitation, we have designed an experiment consisting of the
following steps for each of the LUBM1, TFG, and YAGO graphs:

1. we first created 40 random connected graphs, called pattern graphs, such that
each of them consists of 4 triples, and exactly 20 are acyclic;

2. for each pattern graph G, we created its copy G′ with all entities renamed to
fresh entities;

3. we then picked an entity a from each such G at random and the corresponding
a′ in the copy G′ and ran both algorithms on G ∪ G′ as a graph and a, a′ as
input entities; the approximation algorithm was run for depths 1 to 3;

4. finally, we evaluated the resulting queries on the considered graph (LUBM1,
TFG, or YAGO) and compared the answers.

Intuitively, each pattern graph G represents a ‘pattern’ that may occur in the
real data (and hence a pattern that will be reflected in the MSSQ). The approxi-
mation algorithm Compute Approx MSSQ constructs a tree-like query where
variables in the predicate positions of triple patterns occur at most once, and
hence the query returned by Compute Approx MSSQ on a graph G∪G′ may
not faithfully reflect the data pattern encoded by G. By evaluating the resulting
queries in step 4 we are also assessing how common each pattern is in the graph
(based on the number of answers to the MSSQ) as well as how faithfully the
approximated query reflects the pattern.

Our results are summarised in Table 2. As can be seen from the average per-
centage of entities contained in query answer sets, similarity queries computed
by Compute Approx MSSQ become more specific and closer to MSSQs as
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Table 2. Average number of answers (avg) and average percentage of all entities in
answers (%) to MSSQs and the approximating queries, computed over acyclic (A) and
cyclic (C) pattern graphs and evaluated on the LUBM1, TFG, and YAGO graphs

RDF graph MSSQs Approximations

Avg % dep = 1 dep = 2 dep = 3

Avg % Avg % Avg %

LUBM1 A 7983.15 30.20 12157.45 45.97 10360.35 39.19 10332.05 39.08

C 33.65 0.13 6697.00 25.33 2960.45 11.20 2522.35 9.54

TFG A 156566.47 38.69 161958.50 40.02 161345.60 39.87 156566.47 38.69

C 42838.20 10.58 83284.95 20.59 82541.10 20.39 78122.65 19.30

YAGO A 147284.37 24.51 207236.80 34.26 175541.00 29.02 169331.26 27.99

C 7175.25 1.19 83641.85 13.83 44372.90 7.34 41518.15 6.86

the depth grows. Unsurprisingly, the approximating queries evaluated on the
TFG graph are almost identical to MSSQs, since the graph contains a single
relation. The approximation error consistently goes below 10% for both cyclic
and acyclic pattern graphs for depth 3 on all datasets, as can be seen from the
percentage for MSSQs and approximated queries of dep = 3. This makes Com-

pute Approx MSSQ suitable for real-world applications of entity comparison.

7 Related Work

Exploring relationships between entities in RDF graphs is a recent and growing
research topic. Some approaches focus on general relatedness and connectedness
of entities. They explore paths connecting given entities together and analyse
patterns in these paths [1,6,11,14,16]. More generic approaches look at patterns
that are common for several entities in a graph. An approach by El Hassad et al.
[9,10] attempts to find commonalities between Web resources by computing the
least general generalisation (lgg) of the RDF data containing these resources.
The computation is based on the RDFS entailment rules, and an lgg is itself an
RDF graph that entails subgraphs of the input RDF dataset that contain the
target Web resources. To the best of our knowledge, our recent work [17] is the
only one focussing not only on patterns common for input entities (see Sect. 3),
but also on patterns that differentiate input entities from each other.

The problem of computing similarity and difference queries can be viewed
as an instance of the query reverse engineering (QRE) problem; in case of exact
similarities, the problem becomes an instance of the definability problem, a more
restricted version of QRE. In particular, the QRE problem for a query language
takes as input a dataset and two disjoint sets of positive and negative example
tuples of constants, and decides whether there exists a query in the language
whose answers over the dataset contain all the positive examples but none of
the negative examples. The definability problem is the same except there are no
negative examples, but the answers to the query should be exactly the positive
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examples. Both problems have been studied for various query languages [5,13,
20,22,23], including SPARQL [2] and CQs [4,21]. Hence, our work contributes
to the field by setting complexity bounds for monadic unary CQACs.

Finally, computing MSSQs is related to the problem of finding the least
common subsumer for description logic (DL) concepts [3,7], which, for two indi-
viduals and a set of concept and role names, requires to compute a DL concept
that contains both individuals and is most specific modulo concept subsumption.

8 Conclusion and Future Work

We investigated the problem of entity comparison in knoweldge graphs, taking
as the basis our recently proposed framework [17], in which entity comparison
is modelled via similarity queries. In particular, we extended the language of
similarity queries to consider a richer fragment of SPARQL allowing for numeric
filter expressions, and studied the complexity of computing various similarity
queries in this fragment. We also proposed and implemented a scalable algorithm
that is guaranteed to compute a similarity query and can be used on large
knowledge graphs. An immediate step of future research is to study difference
queries in the extended query language, and to create scalable algorithms for
computing difference queries that are as generic as possible for the given entities
in a graph. Another important problem is to present similarity and difference
queries to the user in a comprehensible way, which is not trivial given their size
and complicated structure. Possible solutions include splitting the queries into
subqueries and ranking, visualising or verbalising them, and allowing the users
to iteratively expand only the parts of queries they are interested in. Once these
problems are solved, a comprehensive entity comparison tool would be possible.
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Abstract. Analytical queries are queries with numerical aggregators:
computing the average number of objects per property, identifying the
most frequent subjects, etc. Such queries are essential to monitor the
quality and the content of the Linked Open Data (LOD) cloud. Many
analytical queries cannot be executed directly on the SPARQL endpoints,
because the fair use policy cuts off expensive queries. In this paper, we
show how to rewrite such queries into a set of queries that each satisfy
the fair use policy. We then show how to execute these queries in such a
way that the result provably converges to the exact query answer. Our
algorithm is an anytime algorithm, meaning that it can give intermediate
approximate results at any time point. Our experiments show that the
approach converges rapidly towards the exact solution, and that it can
compute even complex indicators at the scale of the LOD cloud.

1 Introduction

The Linked Open Data (LOD) cloud accumulates more and more triplestores,
which are themselves more and more voluminous. Several statistical indicators
have been proposed to monitor the content and the quality of the data: Mapping
methods [3,11,29] provide statistical indicators to summarize the property and
class usage and the links between them. Other indicators evaluate the complete-
ness of the data [16,24] or the representativeness of the properties [34]. However,
the increase in volume that makes these indicators more necessary also makes
them harder to compute. The most recent methods adopt distributed architec-
tures [14,33] that centralize the data, and then execute the indicator queries
on that centralized data repository. To compute the exact query result, these
approaches thus require the materialization of the entire LOD cloud. This is
expensive in both storage space and processing time.

It would thus be interesting to calculate these indicators not on a central-
ized data repository, but directly from the SPARQL endpoints. Unfortunately,
computing large-scale analytical indicators with SPARQL queries is very chal-
lenging. First, these queries concern hundreds of triplestores – while federated
query processing [30] already has difficulties coping with a dozen of them. Sec-
ond, existing engines assume that the SPARQL endpoints have no usage limits.
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However, public SPARQL endpoints have relatively strict fair use policies, which
cut off queries that are too expensive. As it turns out, statistical indicators are
usually exactly among the most expensive queries. For instance, computing the
proportion of each property of the LOD cloud involves every single triple of every
single triplestore – an impossibility to compute under current fair use policies.

This paper proposes to relax the notion of exact query answers, and to com-
pute approximate query answers instead. Given an analytical query and a set of
triplestores, we propose to split the query into a series of smaller queries that each
respect the fair use policies. We have developed an algorithm that aggregates
these query answers into an approximate answer. Our algorithm is an anytime
algorithm, meaning that the approximate answer can be read off at any time,
and provably converges to the exact answer over time. In this way, our approach
does not only avoid the large storage requirements of centralized solutions, but
it also delivers a first answer very quickly, while at the same time respecting the
fair use policies. More specifically, our contributions are as follows:

– We provide an algebraic formalization of analytical queries in the context of
fair use policies.

– We propose a parallelizable anytime algorithm whose results are proportional
to the exact query answer and provably converge to it.

– We show the efficiency of our approach by computing complex indicators on
a large part of the LOD cloud.

This paper is organized as follows. Section 2 reviews related work. Section 3 intro-
duces the notions of analytical queries and fair use policies. Section 4 presents
our algorithm. Section 5 provides experimental results, before Sect. 6 concludes.

2 Related Work

Centralized Query Answering. Several architectures have been proposed to
handle SPARQL queries on large volumes of data. Some approaches use the Pig
Latin language [22,23], others use Spark [32], and again others HBase [15]. For
analytical queries, groupings and aggregates are the most important aspects.
Several architectures have been specifically designed for this use case:

LODStats [3] is inspired by approaches for querying RDF streams [5,8]. It
parallelizes streaming and sorting techniques to efficiently process RDF data.
More recent methods either use HDFS (LODOP [14]) or store the data in mem-
ory (DistLODStats [33] via Spark). Exact rewriting rules have also been pro-
posed to optimize the execution of such queries with groupings and aggregates
in RDF data [11]. All of these approaches centralize the data. This does not
just come with high download cost and high disk storage requirements, but also
long execution times. Our method, in contrast, does not centralize the data and
computes a continuous approximation of the query answer.

Federated Query Answering. Federated query systems avoid the cen-
tralization of the data by executing SPARQL queries directly over several
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endpoints [30]. Some of these approaches are dedicated in particular to aggre-
gate queries [20]. These systems decompose a query into a set of queries that
are executed on each triplestore. Then the results are recombined to yield the
final query answer. A recent study analyzes the large-scale performance of these
approaches [31]. Some systems are specifically dedicated to privacy [21] or autho-
rization constraints [12]. However, none of these systems is able to respect the
fair use policies of SPARQL endpoints. Much like on the Deep Web [7], queries
that do not respect this policy will simply fail. This issue is even more impor-
tant in the case of analytical queries, which concern many public endpoints, and
potentially all entities in each of them. Our approach, in contrast, makes sure
that the federated queries satisfy the fair use policy, while at the same time
guaranteeing that the recombined result tends towards the exact answer.

Query Answering by Samples. Several works aim at computing aggregates
by sampling the data directly. With regard to RDF graphs, only [17,25] samples
the data to study its statistics. This approach requires a partial centralization
of the data and offers no theoretical guarantee on the exactness of the result.
Our approach, in contrast, provably converges to a result proportional to the
exact answer. Finally, there are several proposals about sampling operators in
the database field [27,28]. Unfortunately, these operators cannot be used in our
scenario, because they are not implemented by SPARQL endpoints. Similarly,
there are anytime approaches [19] to compute aggregates in databases, but these
work designed for centralized data directly modify the query execution plan and
the read-access to the data.

3 Preliminaries

3.1 Basic Definitions

This work relies on the SPARQL algebra framework [13], whose notations are
mainly inspired from traditional relational algebra [1]. In all of the following
our sets are multi-sets, i.e., they can contain the same element several times. In
the algebraic framework, a relation T [A1, .., An] consists of a name T , attribute
names A1, ..., An (the schema) and a set of n-tuples. For ease of notation, we
will often identify a relation with its set of tuples. A triplestore is a relation
with the 3 attributes subject, property, and object (which we omit because they
are always the same). The Linked Open Data (LOD) cloud is a set of triple-
stores {T1, . . . , TN}. For instance, Table 1 shows two small triplestores TCaesar

and TdaVinci, which contain 16 triples with 2 properties.
The following operators are defined on relations: The Cartesian product of

two relations R and S is defined as R × S = {(t, u)|t ∈ R ∧ u ∈ S}. The
union, the intersection and the difference of two relations R and S with the
same schema are defined as R ∪ S, R ∩ S and R − S, respectively. Given a
relation R and a boolean formula f , the selection σf (I) = {t|t ∈ I ∧ f(t)}
selects the tuples of R that satisfy the logical formula f . Given a relation R
with at least the attributes A1, ...An, the extended projection πA1,...,An

(R) =
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Table 1. A toy example with 2 triplestores with FOAF properties

TCaesar

subj prop obj
Gaius parentOf Julius
Gaius parentOf JuliaTheE.
Gaius parentOf JuliaTheY.
Marcus parentOf Atia
JuliaTheY. parentOf Atia
Gaius gender male
Julius gender male
JuliaTheE. gender female
JuliaTheY. gender female
Marcus gender male
Atia gender female

TdaVinci

subj prop obj
Piero parentOf Leonardo
Caterina parentOf Leonardo
Piero gender male
Caterina gender female
Leonardo gender male

{t[A1, . . . , An]|t ∈ R} preserves only the attributes A1, . . . , An of R. Besides,
the projection also allows extending the relation by arithmetic expressions
and the (re)naming of expressions. For instance, πA+B→B′,C→C′(R) creates
a new relation where the first attribute called B′ results from the arith-
metic expression A + B and the second attribute corresponds to C, but was
renamed to C ′. Given a relation R with at least the attributes A1, . . . , An, B,
and given an aggregation function AGG (which can be COUNT, SUM, MAX, MIN),
a grouping γA1,...,An,AGG(B)(R) = {(a1, . . . , an, AGG(πB(σA1=a1∧···∧An=an

(R)))
|(a1, . . . , an) ∈ πA1,...,An

(R)} groups tuples of I by A1, ...An and computes AGG
on the attribute B. Our approach currently does not support an aggregation
operator to compute the median. However, our approach will work for the aver-
age, which can be decomposed into SUM and COUNT aggregates. The expression
γA1,...,An

(R) has the same effect as a projection on A1, . . . , An, but it does not
retain duplicates. Finally, a query q is a function from one relation to another
one. The set of attributes of the result of q is denoted by sch(q).

3.2 Analytical Queries

Our definition of analytical queries is inspired by multi-dimensional queries in
online analytical processing (OLAP) [9,10]:

Definition 1 (Analytical query). An analytical query is a query of the form
γA1,...,An,AGG(B)(q(T )), where q is a query such that {A1, . . . , An, B} ⊆ sch(q).

For example, the following analytical query counts, for each property p and each
integer i how many subjects have exactly i objects for property p:

αcard ≡ γprop,card,COUNT(subj)→count(γsubj,prop,COUNT(obj)→card(T ))

In this query, A1 = prop and A2 = card are two aggregate attributes;
subj is the measure attribute B; COUNT is the aggregate function, and
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γsubj,prop,COUNT(obj)→card(T ) is the query q. In this case, the aggregation is com-
puted on the view γsubj,prop,COUNT(obj)→card(T ), which contains the number of
objects for each pair of a subject and a property. Table 2 shows how this query
is executed on TCaesar ∪ TdaVinci from Table 1: The result tells us that there are
4 subjects with 1 child, 1 subject with 3 children, and 9 subjects with 1 gen-
der. This information is particularly useful for discovering maximum cardinality
constraints [26] (e.g., that there is at most one gender for a subject).

Table 2. Execution of the analytical query αcard on TCaesar ∪ TdaVinci

αcard(TCaesar)
prop card count

gender 1 6
parentOf 1 2
parentOf 3 1

+

αcard(TdaVinci)
prop card count

gender 1 3
parentOf 1 2

→

αcard(TCaesar ∪ TdaVinci)
prop card count

gender 1 9
parentOf 1 4
parentOf 3 1

Table 3. Examples of analytical queries

Cardinality distribution per property and subject:
αcard ≡ γprop,card,COUNT(subj)→count(γsubj,prop,COUNT(obj)→card(T ))

First significant digit distribution per property:
αFSD ≡ γprop,fsd,COUNT(obj)→count(γobj,prop,FSD(COUNT(subj))→fsd(T ))

Co-class usage per property:
αatt ≡ γp,o′,o′′,COUNT(∗)→count(σs=s′=s′′∧p′=p′′=rdf:type(T × T ′ × T ′′))

Maximum value for each numerical property:
αmax ≡ γprop,MAX(obj)→max(σdatatype(prop)∈{int,float}(T ))

Property usage: αprop ≡ γprop,COUNT(∗)→count(T )
Class usage: αclass ≡ γobj,COUNT(∗)→count(σprop=rdf:type(T ))

Our definition of analytical queries is very general: It allows the computation
of arbitrary aggregations on arbitrary views on the data. With this, our defini-
tion is more expressive than most of the proposals in the literature, which have
often focused on statistics that concern individual triples [3,11]. Table 3 shows
more examples of analytical queries. The second query αFSD uses the function
FSD, which, given a number (e.g., 42) returns the first significant digit of that
number (here: 4). The query αFSD then calculates for each property the distri-
bution of the first significant digits of the fact number per object. This query
is particularly useful for estimating the representativeness of a knowledge base
by exploiting Benford’s law [34]. We will use this query in Sect. 5 to evaluate
the representativeness of the LOD cloud. The query αatt counts the number of
subjects at the intersection of two classes (here, obj′ and obj′′) for each prop-
erty. Such statistics are useful for identifying the obligatory attributes for a given
class [24]. Finally, the last three queries come from [3]. They return the usage of
properties and classes as well as the maximum value for numerical properties.
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As said above, these last three queries are less sophisticated because their inner
query q is a simple filter.

In the following, we will often have to combine the results of analytical queries
from several relations:

Definition 2 (Aggregator). The aggregator version of an analytical query
α(T ) ≡ γA1,...,An,AGG(B)(q(T )), denoted α̃(T ), is γA1,...,An, ˜AGG(B)(T ), where
˜COUNT = SUM and ˜AGG = AGG otherwise.

For example, with MAX as aggregate function, we have α̃max ≡
γprop,MAX(obj)→max(T ) (because ˜MAX = MAX). The aggregator version of a query
serves to combine the results of an analytical query on two triplestores. For
example, we can compute α̃card(αcard(TCaesar)∪αcard(TdaVinci)). In this expres-
sion, α̃card will just copy all rows of its argument, and merge any two rows that
concern the same property and the same cardinality by summing up the two
count values. Since TCaesar and TdaVinci have no subject in common, the result
is equivalent to αcard(TCaesar ∪ TdaVinci) (see again Table 2). Thus, instead of
computing αcard on the union of TCaesar and TdaVinci, we can compute αcard on
each of the triplestores and aggregate the results by α̃card.

3.3 Fair Use Policy

The fair use policy of a triplestore T , denoted by PT , is the set of limits imposed
by the data provider. Formally, Q |= PT means that the set of queries Q satisfies
the fair use policy of T . The execution time between two queries is often an
important criterion for such policies. Let Q be a set of queries. Given two queries
q1 ∈ Q and q2 ∈ Q, t(q1, q2) denotes the delay between the execution of two
queries. For instance, for DBpedia1, there is a limit on the number of connections
per second you can make, as well as restrictions on result set sizes and query time.
The restriction on the result set size is usually not a problem: We can simply
execute the same query several times, and use the OFFSET clause to retrieve
different parts of the result. It is the restriction on the query execution time
that usually spoils the query, because the query will use up the time budget and
then abort without a result.

To deal with this difficulty, our approach requires the policies to have two
properties. First, a policy P is monotone iff for all Q1 |= P and Q2 |= P,
there exists a delay d such that Q1 ∪ Q2 |= P if minq1∈Q1,q2∈Q2t(q1, q2) ≥ d.
A monotone behavior for a policy means that if some queries have been success-
fully executed, it will be possible to execute them again (observing a delay d).
Consequently, if a query is rejected because the query number per time limit is
reached, the monotone property guarantees that we can successfully fire a new
query after a short waiting time. Second, a policy P is consistent iff any query
q that satisfies the policy of a triplestore T also satisfies the policy on a smaller
portion: ∀T ′ ⊆ T : (q(T ) |= P) ⇒ (q(T ′) |= P). A consistent behavior for a
policy means that if a query has been successfully executed on a set of triples,
1 https://wiki.dbpedia.org/public-sparql-endpoint.

https://wiki.dbpedia.org/public-sparql-endpoint
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Table 4. αcard(TCaesar ∪ TdaVinci) and its approximation

αcard

prop card count
gender 1 9

parentOf 1 4
parentOf 3 1

→

αcard

. . . count

. . . 9/14 = 0.64

. . . 4/14 = 0.29

. . . 1/14 = 0.07

Aαcard

prop card count
gender 1 4

parentOf 1 2
→

Aαcard

. . . count

. . . 4/6 = 0.66

. . . 2/6 = 0.33

(a) αcard (b) Approximation of αcard

the same query can be executed on a subset of these triples. In the following,
we assume that all policies are both monotone and consistent. In practice, we
found that these two assumptions are satisfied by most triplestores, including
DBpedia. The following sections will show how to use these properties in order
to overcome the restriction on query time.

3.4 Problem Statement

In most cases, it is not possible to execute an analytical query directly on the
SPARQL endpoint of a large triplestore due to the fair use policy. For instance,
αcard executed on DBpedia with the public SPARQL endpoint leads to a timeout
error. Therefore, our goal is to split an analytical query into a set of queries
that each respect the policy. Then, we will combine the different answers in
order to approximate the original query answer. We formalize the notion of
approximation by introducing a distance between two analytical queries:

Definition 3 (Distance). Given two relations R1[A1, . . . , An, B] and R2[A1,
. . . , An, B] where B is a numerical attribute, the distance between R1 and R2,
denoted by ||R1 − R2||2, is the Euclidean distance between the normalized vectors
of values stemming from each group 〈a1, . . . , an, v〉:

||R1 − R2||2 =
√

∑

〈a1,...,an〉∈γA1,...,An (R1∪R2)

(vR1 − vR2)
2

where the value vR is computed as πB(σA1=a1∧···∧An=an
(R)) divided by

γSUM(B)(R). If R does not contain a tuple 〈a1, . . . , an, ·〉, vR is zero.

This distance computes the Euclidean distance between the normalized relations
R1 and R2 where R = γA1,...,An,B×s−1(R), with s = γSUM(B)(R). The rest of this
work could be naturally extended to any distance between R1 and R2. In the
sequel, we will compute the distance between the exact result of an analytical
query and an approximate answer. Then the normalization will make sure that
two proportional analytical queries will be judged equivalent. For instance, in
Table 4, Aαcard

(which contains only 4 subjects with 1 gender, and 2 subjects
with 1 child) is an approximation of the analytical query αcard executed on
TCaesar∪TdaVinci with ||Aαcard

− αcard||2 =
√

0.022 + 0.042 + −0.072 = 0.083. In
practice, the proportionality of results is often as important as absolute values
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– e.g., for ranking groups 〈a1, . . . , an〉. Besides, it is possible to reconstruct the
absolute values, if necessary, by querying the triplestore to obtain the absolute
value for one group 〈a1, . . . , an〉. For instance, the approximation Aαcard

ranks
〈gender, 1〉 and 〈parentOf, 1〉 in the same order as αcard. By computing the
absolute value of count for 〈gender, 1〉 (here: 9), it is possible to also estimate the
count value for 〈parentOf, 1〉: 9 × 0.33/0.66 = 4.5, which slightly overestimates
the correct value of 4.

With this, we can now state our goal: Given a set of triplestores LOD =
{T1, . . . , TN} with monotone and consistent policies and an analytical query
α, find a set of queries Q = {q1, . . . , qk} such that Q |= PLOD and
limk→+∞ ||F (q1(T ), . . . , qk(T )) − α(T )||2 = 0, where F is a query aggregator
and T = T1 ∪ · · · ∪ TN .

4 Our Approach

In Sect. 4.1, we show how to rewrite an analytical query to satisfy a fair use
policy. In Sect. 4.2, we will use this rewriting strategy to develop an algorithm
that scales to the LOD cloud.

4.1 Analytical Query Rewriting

Partitioning. In the following, we will first treat analytical queries on a single
triplestore. The key idea of our approach is to partition the input triplestore
so that the analytical query can be executed on each part. Of course, the size
of each part of the partition has to be small enough for the query to satisfy
the fair use policy of the triplestore (policy constraint). At the same time, the
partitioning must not corrupt the reconstruction of the correct result of the
query on the entire triplestore (validity constraint). In our running example, it
is possible to partition the triplestore according to the subject (shown on the
left-hand side of Table 5) to calculate the number of subjects per cardinality
and property with αcard. On the other hand, it is not possible to partition it
according to the objects (shown on the right-hand side of Table 5), because it
would not be feasible to reconstruct the number of objects associated with each
subject: The three children of Gaius would be in separate groups, and we would
wrongly count 3 times that Gaius had only one child.
The notion of α-partition attributes formalizes this compromise on the partition:

Definition 4 (α-partition). Given an analytical query of the form α(T ) ≡
γA1,...,An,AGG(B)(q(T )), a set of attributes {P1, . . . , Pm} ⊆ sch(T ) is an α-
partition if it satisfies the following two constraints:

1. Validity constraint:
α(T ) = γA1,...,An,AGG(B)(

⋃

〈p1,...,pm〉∈γP1,...,Pm (T ) q(σP1=p1∧···∧Pm=pm
(T )))

2. Policy constraint:
q(σP1=p1∧···∧Pm=pm

(T )) |= P for all 〈p1, . . . , pm〉 ∈ γP1,...,Pm
(T ).
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Table 5. Examples of partitions on TCaesar

Partition on subj

subj prop obj
Gaius parentOf Julius
Gaius parentOf JuliaTheE.
Gaius parentOf JuliaTheY.
Gaius gender male
Marcus parentOf Atia
Marcus gender male
JuliaTheY. parentOf Atia
JuliaTheY. gender female
Julius gender male
JuliaTheE. gender female
Atia gender female

Partition on obj

subj prop obj
Gaius parentOf Julius
Gaius parentOf JuliaTheE.
Gaius parentOf JuliaTheY.
Marcus parentOf Atia
JuliaTheY. parentOf Atia
Marcus gender male
Julius gender male
Gaius gender male
JuliaTheY. gender female
JuliaTheE. gender female
Atia gender female

In our running example, the partitioning by subjects γsubj(TCaesar) =
{Gaius,Marcus, JuliaTheY., . . . } or by properties γprop(TCaesar) = {parentOf,
gender} are two valid partitions. We can also combine several α-partitions:

Property 1. Given an analytical query of the form α(T )≡ γA1,...,An,AGG(B)(q(T )),
and two α-partitions P ⊆ sch(T ) and Q ⊆ sch(T ), P ∪Q is also an α-partition.

This property follows from the fact that we consider only consistent fair
use policies. The partition P ∪ Q leads to a smaller set of triples in each
group than groups resulting from P or Q. In our running example, as
{subj} and {prop} are two αcard-partitions, {subj, prop} is also an αcard-
partition. It leads to the groups γsubj,prop(TCaesar) = {〈Gaius, parentOf〉,
〈Gaius, gender〉, 〈Marcus, parentOf〉, . . . }.

Rewriting. At this point, we could consider running the inner query q on
each part of an α-partition, and then aggregate the results. However, this
would require a large storage capacity. In our running example, let us con-
sider the α-partition prop: γprop(TCaesar) = {gender, parentOf}. We would
have to store 9 (= 6 + 3) rows materializing the result from the query
q = γsubj,prop,COUNT(obj)→card(R) applied on each part σprop=gender(TCaesar) and
σprop=parentOf (TCaesar). The following property shows that it is possible to apply
the analytical query directly on each part instead:

Property 2 (Partition rewriting). An analytical query of the form α(T ) ≡
γA1,...,An,AGG(B)(q(T )) with an α-partition {P1, . . . , Pm} ⊆ sch(T ) can be com-
puted as follows:

α(T ) ≡ α̃

⎛

⎝

⋃

〈p1,...,pm〉∈γP1,...,Pm (T )

α(σP1=p1∧···∧Pm=pm
(T ))

⎞

⎠
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This property follows from Definition 1 with the following rewriting rule (for an
α-partition): α(T ∪T ′) = α̃(α(T )∪α(T ′)). With the above example, we obtained
three rows (instead of 9), split into 2 parts: αcard(σprop=gender(TCaesar)) =
{〈gender, 1, 6〉} and αcard(σprop=parentOf(TCaesar)) = {〈parentOf, 1, 2〉, 〈parentOf,
3, 1〉}. The query α̃card merges them into one result.

Approximating. Property 2 gives us an exact method for answering an analyt-
ical query. This method can be parallelized by running the queries corresponding
to different parts in parallel. However, the computation risks being slow if the
number of parts is high. If one interrupts the query execution, the intermediate
result will be biased by the order in which the parts of T were queried. We pro-
pose to remedy both problems by drawing the parts randomly. For this purpose,
we rely on the sampling operator ψk(R) [28], which randomly draws k tuples
from R (with replacement). We can then reformulate Property 2 as follows:

Property 3 (Sampling approximation). An analytical query of the form
α(T ) ≡ γA1,...,An,AGG(B)(q(T )) can be approximated by sampling k groups resulting
from an α-partition {P1, . . . , Pm} ⊆ sch(T ):

lim
k→+∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α̃

⎛

⎝

⋃

〈p1,...,pm〉∈ψk(γP1,...,Pm (T ))

α(σP1=p1∧···∧Pm=pm
(T ))

⎞

⎠ − α(T )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= 0

This follows from the fact that a uniform random sampling tends to
the original distribution when its size increases. This result is very impor-
tant because it provides an efficient method for approximating an analytical
query. First, the sampling operator avoids materializing the partition, which
would incur a cost of computation that might not satisfy the fair use pol-
icy. Second, because of the replacement, the same part may be drawn sev-
eral times. Interestingly, this does not prevent a correct approximation of
the result. On the contrary, this replacement is interesting because it avoids
the necessity to remember which parts have already been drawn – thus lead-
ing to lower space complexity. In our running example, consider the αcard-
partition {subj}, which leads to γsubj(TCaesar ∪ TdaVinci) = {Gaius, Marcus,
JuliaTheY., Julius, JuliaTheE., Atia, Piero, Caterina, Leonardo}. We can ran-
domly draw 4 groups: Marcus, JuliaTheE., JuliaTheY. and Leonardo. We
obtain αcard(σsubj=Marcus(TCaesar)) = {〈gender, 1, 1〉, 〈parentOf, 1, 1〉} (idem
for JuliaTheY.) and αcard(σsubj=JuliaTheE.(TCaesar)) = {〈gender, 1, 1〉} (idem
for Leonardo). We can then construct the approximation Aαcard

(see Table 4) by
aggregating these four results with α̃card. Even if Property 3 provides no guar-
antee on the convergence speed, we will see in the experimental section that in
practice this convergence is fast.

4.2 Anytime Algorithm

In this section, we show how to algorithmically implement Property 3 efficiently
at LOD scale. For this, we have two main challenges to overcome. First, each
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Algorithm 1. Sample-and-Aggregate

Input: A set of triplestores LOD = {T1, . . . , TN}, an analytical query α and a com-
patible α-partition{P1, . . . , Pm}

Output: An approximate answer of α(T1 ∪ · · · ∪ TN )
1: Ans0 := ∅
2: k := 0
3: Define weights ω(T ) = |γP1,..,Pn(T )| for all T ∈ LOD
4: repeat
5: Draw a triplestore T ∼ ω(LOD)
6: Draw a tuple 〈p1, . . . , pm〉 ∼ u(γP1,..,Pn(T ))
7: Ansk+1 := α̃(Ansk ∪ α(σP1=p1∧···∧Pm=pm(T )))
8: k := k + 1
9: until The user stops the process

10: return Ansk

query q has to be executed on a set of triplestores and not on a single triplestore.
Second, the sampling operator is not natively implemented in SPARQL.

Let us consider the first problem: If we have the set of triplestores LOD =
{T1, . . . , TN}, we have to create T =

⋃

i∈[1..N ] Ti (e.g., TCaesar ∪ TdaVinci in our
example of Table 1). Thus, a single query has to be run on N triplestores, which is
very expensive. In practice, however, a part usually resides in a single triplestore.
We formalize this notion as follows:

Definition 5 (Compatible α-partition). Given a set of triplestores LOD =
{T1, . . . , TN}, an α-partition {P1, . . . , Pm} is compatible with LOD if for all
〈p1, . . . , pm〉 ∈ γP1,...,Pn

(T ), there exists T ∈ LOD such that σP1=p1∧···∧Pm=pm

(T1 ∪ · · · ∪ TN ) ⊆ T .

Let us consider again our running example T = TCaesar ∪ TdaVinci. It is
clear that the partition γsubj(T ) = {Gaius,Marcus, . . . } is compatible with
{TCaesar, TdaVinci} because each part σsubj=x(T ) is entirely contained in the
tuples of one triplestore. In the following, we make the assumption that all
α-partitions are compatible with the LOD cloud. In some cases, α-partitions
are provably compatible with the LOD cloud (see Sects. 5.1 and 5.2), unless two
triplestores contain the same triple. But even if our assumption does not hold
for a small proportion of parts, this does not significantly degrade the overall
quality of the approximation.

We use the idea of compatible partitions in Algorithm 1. It takes as input a
set of triplestores LOD = {T1, . . . , TN}, an analytical query α and a compatible
α-partition {P1, ..., Pn}. It returns an approximation of this analytical query that
can be requested at any time. The main loop (Lines 4–9) is repeated until the
user stops the process in order to obtain the last answer Ansk (Line 10). Each
iteration refines the previous answer using a sampling phase and an aggregation
phase. The sampling phase is implemented as follows: We first compute a weight
for each triplestore corresponding to the partition size (Line 3). If the size of a
partition is not computable, we can use the size of the triplestore as a pessimistic
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estimate. The sampling draws a fragment at random2 by first choosing a triple-
store T in proportion to its number of fragments ω(T ) (Line 5) and then uni-
formly drawing a fragment from this triplestore (Line 6). This uniform drawing
is implemented by using the query γP1,...,Pn

(T ) with LIMIT 1 OFFSET r, where r
is a random number uniformly drawn from [0..ω(T )]. The draw is rejected if the
answer is empty (i.e., r > |γP1,...,Pn

(T )|) due to a pessimistic estimate in Line 3.
Finally, the aggregation phase (Line 7) merges the previous answer Ansk with
the query on the fragment that has just been selected α(σP1=p1∧···∧Pm=pm

(T )).
With Property 3, it is easy to show that our algorithm is correct:

Theorem 1 (Correctness). Given a set of triplestores LOD = {T1, . . . , TN}
with monotone policies, an analytical query α and a compatible α-partition
{P1, . . . , Pm}, Algorithm 1 returns an approximate answer Ansk of α(T1 ∪
· · · ∪ TN ) that aggregates k queries q(σP1=p1∧···∧Pm=pm

(Ti)) |= P such that
limk→+∞ ||Ansk − α(T1 ∪ · · · ∪ TN )||2 = 0.

This theorem means that the user can obtain an approximation with any
desired precision by granting a sufficient time budget. Our method is there-
fore an anytime algorithm [35]. Another advantage of this algorithm is that
it is easily parallelizable. It is possible to execute M sampling phases in par-
allel (to reduce the time complexity linearly). In this case, the aggregation
phase must either group together the results in a unique answer Ansk, or main-
tain M answers Ans

(i)
k in parallel, which will then be merged in the end (i.e.,

Ansk = α̃
(

⋃

i∈[1..M ] Ans
(i)
k

)

). The first solution saves storage space, but the
second solution also has a reasonable space complexity. This is because there is
no intermediate result to store:

Property 4 (Space complexity). Given a set of triplestores LOD =
{T1, . . . , TN}, an analytical query α, and a compatible α-partition, Algorithm 1
requires O(|α(T1 ∪ · · · ∪ TN )|) space.

This property is crucial, because it means that the number of iterations (and
thus the achieved precision) does not influence the required storage space.

5 Experiments

The goal of this experimental section is to answer the following questions: (i)
How fast does our algorithm converge to the exact result? and (ii) How does
the method perform on the LOD to approximate simple and complex analytical
queries? We have implemented our algorithm in Java in a multi-threaded version
to perform multiple parallel samplings. The result of each thread is aggregated
with a relational database. For the time measurements, we did not count the
preprocessing step executed once for all threads (Line 3 of Algorithm 1) because

2 Given a set Ω with a probability distribution P , x ∼ P (Ω) denotes that the element
x ∈ Ω is drawn at random with a probability P (x).
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it does not take longer than a few minutes. All experimental data (the list of
endpoints and the experimental results), as well as the source code, are available
at https://github.com/asoulet/iswc19analytics.

5.1 Efficiency of the Approach

This section evaluates the convergence speed of our algorithm with the query
αprop (Table 3). We ran the experiment on DBpedia, because its triplestore
is small enough (58,333 properties for 438,336,518 triples) to compute the
exact answer to the query. We evaluate our algorithm with the partition
{subj, prop, obj}. We use only 8 threads to avoid overwhelming DBpedia with
too many queries and violating its fair use policy. To estimate the difference
between our approximation and the exact query, we use 3 evaluation measures:
the L1-norm, the L2-norm and the Kullback–Leibler divergence. We compute
the proportion of top-k properties that are truly in the most k ∈ {50, 100} used
properties in the ground truth. We also count the number of sampled queries
and the size of the approximate answer (number of approximated properties).
We repeated the experiments 5 times, and report the arithmetic mean of the
different measurements every minute. We cut off the computation after 100 min.
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Fig. 1. Performance of our algorithm for the query αprop on DBpedia

Figure 1 (left) plots the approximation quality over time (lower is better).
As expected, we observe that the approximation converges to the exact query.
Interestingly, this convergence is very fast (note that y-axis is a logscale). From
the first minutes on, the frequency estimation of the properties is sufficiently
close to the final result to predict the order of the most frequent properties (see
Fig. 1, middle). Figure 1 (right) shows the size of the approximate answer (i.e.,
the number of tuples). Of course, the size increases to tend to the size of the
result of the exact query (which is 58,333). However, during the first 100 min, the
number of rows remains very small (just 415). Indeed, the final approximation
has been calculated with a very low communication cost of only 3,485 triples
(0.0008% of DBpedia).

https://github.com/asoulet/iswc19analytics


Anytime Large-Scale Analytics of Linked Open Data 589

5.2 Use Case 1: Property and Class Usage on the LOD Cloud

In the following, we tested our algorithm on the scale of the LOD cloud. We used
https://lod-cloud.net/ to retrieve all SPARQL endpoints of the LOD cloud that
contain the property rdf:type (which is required for our queries, see Table 3).
This yielded 114 triplestores that were functional, including LinkedGeoData [4],
DBpedia [2], EMBL-EBI [18] and Bio2RDF [6]. Together, these triplestores con-
tain more than 51.2 billion triples.

Our first experiment evaluates our algorithm on the queries αprop and αclass,
which measure property usage and class usage, respectively (see Table 3 again).
We used again γsubj,prop,obj(T ) as partition, and the algorithm ran with 32 par-
allel sampling threads. To obtain an estimation of the ground truth, we ran the
algorithm for 250 h. After this time, the result does not change much any more,
and we thus believe that we are not too far off the real ground truth. We then
measured the precision of the result after every minute of execution with respect
to our assumed ground truth.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
re

ci
si

on
 T

op
−1

00

Time (hours)

Property usage
Class usage

Fig. 2. Property and class usage (queries αprop and αclass) on the LOD cloud

Figure 2 shows the top-100 precision for both queries. We observe that both
queries have the same behavior: After 25 h, 50% of the 100 most used properties
and classes are found by our algorithm. After 100 h, 90 properties (or classes)
are accurately found with a sample of only 179k triples. These approximations
require less than 3k rows as storage cost and 179k queries as communication cost
– i.e., 0.00035% of the cost of a traditional data centralization approach.

5.3 Use Case 2: Representativeness of the LOD

Our next experiment evaluates our algorithm on a very complex query, αFSD.
This query yields, for each property, a distribution over the frequency of the
first significant digit of the number of objects per subject. We used the method
proposed in [34] to convert this distribution into a score between 0 and 1 that
measures the “representativeness” of the triplestores. A score of 1 means that the

https://lod-cloud.net/
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data is representative of the distribution in the real world (see [34] for details).
We also computed the proportion of the LOD cloud that conforms to Benford’s
law, and the number of distinct properties that are stored, and that are involved
in the calculation of the representativeness. We partitioned by subject, γsubj(T ),
and used again 32 parallel sampling threads during 100 h.
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Fig. 3. Computation of representativeness of Linked Open Data

The results are shown in Fig. 3. We note that the indicators converge rapidly
to a first approximation that evolves only little afterwards. In particular, 60.7%
of the properties needed to calculate the results (see the solid line) are already
known after 20 h of calculation. As a side result, our approach estimates that
the representativeness of the LOD cloud is 48.7%, which concerns 24.2% of the
LOD cloud. From these numbers, we can estimate [34] that at least 13.1 billion
triples are missing from the LOD cloud in order for it to be a representative
sample of reality.

6 Conclusion

In this paper, we have presented a new paradigm for computing analytical queries
on Linked Open Data: Instead of centralizing the data, we aggregate the results
of queries that are fired directly on the SPARQL endpoints. These queries com-
pute only small samples, so that they have short execution times, and thus
respect the fair use policies of the endpoints. Our algorithm is an anytime algo-
rithm, which can deliver approximate results already after a very short execution
time, and which provably converges to the exact result over time. The algorithm
is easily parallelizable, and requires only linear space (in the size of the query
answer). In our experiments, we have shown that our approach scales to the size
of the LOD cloud. We have also seen that it rapidly delivers a good approxi-
mation of the exact query answer. For future work, we aim to investigate how
our approach could be endowed with OWL reasoning capabilities, to respect
equivalences between resources.
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semantic graphs. In: WWW (2014)

12. Costabello, L., Villata, S., Vagliano, I., Gandon, F.: Assisted policy management
for SPARQL endpoints access control. In: ISWC Demo (2013)

13. Cyganiak, R.: A relational algebra for SPARQL. Digital Media Systems Laboratory
HP Laboratories Bristol. HPL-2005-170 35 (2005)

14. Forchhammer, B., Jentzsch, A., Naumann, F.: LODOP - multi-query optimization
for linked data profiling queries. In: PROFILES@ESWC (2014)

15. Franke, C., Morin, S., Chebotko, A., Abraham, J., Brazier, P.: Distributed semantic
web data management in HBase and MySQL cluster. In: CLOUD (2011)
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Abstract. Conjunctive query answering is an important reasoning task
for logic-based knowledge representation formalisms, such as Descrip-
tion Logics, to query for instance data that is related in certain ways.
Although many knowledge bases use language features of more expres-
sive Description Logics, there are hardly any systems that support full
conjunctive query answering for these logics. In fact, existing systems
usually impose restrictions on the queries or only compute incomplete
results.

In this paper, we present a new approach for answering conjunctive
queries that can directly be integrated into existing reasoning systems
for expressive Description Logics. The approach reminds of absorption,
a well-known preprocessing step that rewrites axioms such that they can
be handled more efficiently. In this sense, we rewrite the query such that
entailment can dynamically be checked in the dominantly used tableau
calculi with minor extensions. Our implementation in the reasoning sys-
tem Konclude outperforms existing systems even for queries that are
restricted to the capabilities of these other systems.

1 Introduction

A distinguished feature of logic-based knowledge representation formalisms, such
as Description Logics (DLs), is the ability to use automated reasoning techniques
to access implicit knowledge of explicitly stated information. In particular, a DL
knowledge base can be seen as a collection of explicitly stated information that
describes a domain of interest, i.e., individuals/entities and their features. Roles
are used to state the relationship between individuals, concepts represent sets of
individuals with common characteristics, and axioms relate concepts or roles to
each other, e.g., by specifying sub-concept relationships, or state facts about an
individual/a pair of individuals. Since the DL SROIQ [10] is the logical under-
pinning of the second and current iteration of the well-known Web Ontology
Language (OWL), its language features are often used in practice for modelling
ontologies. Consequently, reasoning systems that support SROIQ are required
to work with these ontologies. So far, most reasoners for expressive DLs, such as

A. Steigmiller—Funded by the German Research Foundation (Deutsche Forschungsge-
meinschaft, DFG) in project number 330492673.

c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 593–611, 2019.
https://doi.org/10.1007/978-3-030-30793-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30793-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-30793-6_34


594 A. Steigmiller and B. Glimm

SROIQ, are based on variants of tableau algorithms since they are easily exten-
sible and adaptable to the expressive language features. Moreover, many devel-
oped optimisation techniques allow these systems to efficiently handle standard
reasoning tasks (e.g., consistency checking, classification, instance retrieval, etc.)
for many real-world ontologies. To satisfy all user demands, more sophisticated
reasoning tasks such as conjunctive query answering are also often required. Such
queries consist of a conjunction of concept and role facts, where variables may be
used in place of individuals. Such variables may be existentially quantified (aka
non-distinguished variables) or answer variables (aka distinguished variables).
For the answer variables, the reasoner has to deliver bindings to named individ-
uals of the knowledge base such that the query, instantiated with the bindings,
is entailed by the knowledge base. For existential variables, it is only required
that there exists a binding to any, possibly anonymous individual in each model.

To the best of our knowledge, current reasoning systems support conjunctive
queries for expressive DLs only with limitations. This is due to several reasons.
First, decidability of conjunctive query entailment, to which query answering is
typically reduced, is still open in SROIQ. Second, while the decidability and the
worst-case complexity has been shown for many sub-languages (e.g., [3,15,18]),
the used techniques are often not directly suitable for practical implementations.
For the DLs SHIQ and SHOQ, approaches have been developed that reduce
conjunctive query answering to instance checking (e.g, [5,7,11]), which is not
goal-directed and often requires many unnecessary entailment checks. Moreover,
some of these reduction techniques require language features (e.g., role conjunc-
tions) which are not available in OWL 2 and, hence, usually not supported by
reasoning systems.

Even for queries with only answer variables (conjunctive instance queries),
existing approaches (e.g., [9,13,19]) are often impractical since they are based
on the above described reduction to instance checking. Moreover, by only using
existing reasoning systems as black-boxes, the possibility to optimise conjunctive
query answering is limited. Recently, query answering has been improved by
lower and upper bound optimisations that utilise model abstractions built by a
reasoner [6] or delegate work to specialised procedures [16,25]. Furthermore, it is
possible to determine for which queries the answers from specialised systems can
be complete although not all used language features are completely handled [23].
However, the specialised procedures are still used as a black-box and delegating
all work to them is not possible in general. Hence, practical conjunctive query
answering techniques for expressive DLs are still needed.

In this paper, we present an approach that encodes the query such that entail-
ment can efficiently be detected in the model construction process with minor
extensions to the tableau calculus. The encoding serves to identify individuals
involved in satisfying the query and guides the search for a model where the query is
not entailed. We refer to this technique as absorption-based query answering since
it reminds of the absorption technique for nominal schemas [21]. The approach is
correct and terminates for DLs for which decidability of conjunctive query answer-
ing is known (e.g., SHIQ, SHOQ). For the challenging combination of nominals,
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Table 1. Core features of SROIQ (#M denotes the cardinality of the set M)

Syntax Semantics

Individuals: Individual a aI ∈ ΔI

Roles: Atomic role r rI ⊆ ΔI × ΔI

inverse role r− {〈γ, δ〉 | 〈δ, γ〉 ∈ rI}
Concepts: Atomic concept A AI ⊆ ΔI

Nominal {a} {aI}
Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI \ CI

Conjunction C 	 D CI ∩ DI

Disjunction C � D CI ∪ DI

Existential restriction ∃R.C {δ | ∃γ ∈ CI : 〈δ, γ〉 ∈ RI}
Universal restriction ∀R.C {δ | 〈δ, γ〉 ∈ RI → γ ∈ CI}
Number restriction, �� ∈ {� , � } �� n R.C {δ | #{〈δ, γ〉 ∈ RI and γ ∈ CI} �� n}

Axioms: General concept inclusion C � D CI ⊆ DI

Role inclusion R � S RI ⊆ SI

Role chains R1 ◦ . . . ◦ Rn � S RI
1 ◦ . . . ◦ RI

n ⊆ SI

Concept assertion C(a) aI ∈ CI

Role assertion R(a, b) 〈aI , bI〉 ∈ RI

Equality assertion a ≈ b aI = bI

inverse roles, and number restrictions, termination is only guaranteed if a limited
number of newnominals is generated.The technique seemswell-suited for practical
implementations since (i) it only requires minor extensions to tableau algorithms,
(ii) can easily be combined with other well-known (query answering) optimisation
techniques, and (iii) real-world ontologies hardly require the generation of (many)
new nominals. In fact, we implemented the proposed technique in the reasoning
system Konclude [22] with encouraging results.

The paper is organised as follows: Sect. 2 gives a brief introduction into DLs
and reasoning. Section 3 describes the absorption-based query entailment check-
ing technique, for which reductions from query answering are sketched in Sect. 4.
Section 5 discusses the implementation and evaluation results. Additional expla-
nations, examples, and evaluation results can be found in an accompanying tech-
nical report [20].

2 Preliminaries

Due to space restrictions, we only give a brief introduction into DLs and reason-
ing techniques (see, e.g., [1], for more details).

2.1 Description Logics and Conjunctive Queries

The syntax of DLs is defined using a vocabulary consisting of countably infinite
pairwise disjointed sets NC of atomic concepts, NR of atomic roles, and NI of
individuals. A role is either atomic or an inverse role r−, r ∈ NR. The syntax
and semantics of complex concepts and axioms are defined in Table 1. Note that
we omit the presentation of some features (e.g., datatypes) and restrictions (e.g.,
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number restrictions may not use “complex roles”, i.e., roles that occur on the
right-hand side of role chains) for brevity. A knowledge base/ontology K is a
finite set of axioms. An interpretation I = (ΔI , ·I) consists of a non-empty
domain ΔI and an interpretation function ·I . We say that I satisfies a general
concept inclusion (GCI) C � D, written I |= C � D, if CI ⊆ DI (analogously
for other axioms as shown in Table 1). If I satisfies all axioms of a knowledge
base K, I is a model of K and K is consistent/satisfiable if it has a model.

A conjunctive query Q(X,Y ) consists of a set of query terms q1, . . . , qk, where
X denotes the tuple of answer variables, Y the tuple of existential variables
(disjoint to X), and each qi is either a concept term C(z) or a role term r(z1, z2)
with z, z1, z2 ∈ vars(Q), where vars(Q) is the set of variable names occurring in
Q(X,Y ). A Boolean query Q(〈〉, Y ), short Q, is a query without answer variables.
To simplify the handling of inverse roles, we consider r(x, y) as equivalent to
r−(y, x). For an interpretation I = (ΔI , ·I) and a total function π : vars(Q) �→
ΔI , we say that π is a match for I and Q if, for every C(z) ∈ Q, π(z) ∈
CI and, for every r(z1, z2) ∈ Q, 〈π(z1), π(z2)〉 ∈ rI . We say that an n-ary
tuple of the form 〈a1, . . . , an〉 with a1, . . . , an individuals of K is an answer for
Q(〈x1, . . . , xn〉, Y ) w.r.t. K if, for every model I = (ΔI , ·I) of K, there exists
a match π for I and Q with π(xi) = aI

i for 1 ≤ i ≤ n. If a query Q(X,Y )
(Q(〈〉, Y )) has an answer (the empty answer 〈〉) w.r.t. K, then we say that K
entails Q and with query answering (query entailment checking) we refer to the
reasoning task that computes all answers (the entailment of the empty answer).
W.l.o.g. we use individual names only in nominal concepts and we assume that
all variables are connected via role terms.

2.2 Tableau Algorithm

A tableau algorithm decides the consistency of a knowledge base K by trying
to construct an abstraction of a model for K, a so-called completion graph. A
completion graph G is a tuple (V,E,L, ˙
=), where each node v ∈ V (edge 〈v, w〉 ∈
E) represents one or more (pairs of) individuals. Each node v (edge 〈v, w〉) is
labelled with a set of concepts (roles), L(v) (L(〈v, w〉)), which the individuals
represented by v (〈v, w〉) are instances of. The relation ˙
= records inequalities
between nodes. We call C ∈ L(v) (r ∈ L(〈v, w〉)) a concept (role) fact, which
we write as C(v) (r(v, w)). A node v is a nominal node if {a} ∈ L(v) for some
individual a and a blockable node otherwise.

A completion graph is initialised with one node for each individual in the
input knowledge base. Concepts and roles are added to the node and edge labels
as specified by concept and role assertions. Complex concepts are then decom-
posed using expansion rules, where each rule application can add new concepts
to node labels and/or new nodes and edges, thereby explicating the structure
of a model. The rules are applied until either the graph is fully expanded (no
more rules are applicable), in which case the graph can be used to construct
a model that is a witness to the consistency of K, or an obvious contradiction
(called a clash) is discovered (e.g., a node v with C,¬C ∈ L(v)), proving that
the completion graph does not correspond to a model. K is consistent if the
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Fig. 1. Visualisation of the query of Example 1 and two possible foldings

rules (some of which are non-deterministic) can be applied such that they build
a fully expanded, clash-free completion graph. Cycle detection techniques such
as pairwise blocking [10] prevent the infinite generation of new nodes.

For handling axioms of the form A � C, where A is atomic, one typically
uses special lazy unfolding rules in the tableau algorithm, which add C to a node
label if it contains the concept A. Axioms of the form C � D, where C is not
atomic, cannot directly be handled with lazy unfolding rules. Instead, they are
internalised to � � ¬C�D. Given that � is satisfied at each node, the disjunction
is then present in all node labels. To avoid the non-determinism introduced
by internalisation, one typically uses a preprocessing step called absorption to
rewrite axioms into (possibly several) simpler concept inclusion axioms that can
be handled by lazy unfolding. Binary absorption [12] utilises axioms of the form
A1A2 � C for absorbing more complex axioms. This requires a binary unfolding
rule that adds C to node labels if A1 and A2 are present.

3 Absorption-Based Query Entailment Checking

Since query answering is typically reduced to query entailment checking, we
first focus on a decision procedure for the latter. With the exception of role
relationships between nominals/individuals, DLs allow only for expressing tree-
shaped structures [8,24]. Even with nominals/individuals, forest-shaped models
exists [18]. Hence, we can check query entailment by “folding” the relational
structure of (parts of) the query into a tree-shaped form by identifying variables.
The resulting queries (query parts), called foldings, can then be expressed as DL
concepts (possibly using role conjunctions). Such query concepts can be used to
check query entailment: we have that a query (part) is not entailed if a completion
graph exists that satisfies none of its foldings.

Example 1. Consider the cyclic Boolean query Q1 = {t(w, x), r(x, y), s(y, z),
s(z, w)} (cf. Fig. 1, left-hand side). There are different (tree-shaped) foldings
of the query, e.g., by identifying x and z or w and y (cf. Fig. 1, middle and
right-hand side). The foldings can be expressed as ∃(t  s−).∃(r  s−).� and
∃(t−  r).∃(s−  s).�, respectively.

If we add, for each concept C that represents a folding of the query, the axiom
C�⊥ to the knowledge base, then consistency checking reveals query entailment.
Note that the tableau algorithm decides for each node whether (sub-)concepts
of the foldings are satisfied (due to the internalisation to � � ¬C � ⊥) and adds
corresponding (sub-)concepts or their negations to the node labels and, hence,
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Fig. 2. The axioms for absorbing the query Q1 of Example 2

the expansion of nodes is not blocked too early w.r.t. deciding query entailment.
Unfortunately, state-of-the-art reasoners do not support role conjunctions and
there can be many foldings of a query (especially if the query has several nested
cycles or uses role terms with complex roles).

Here we propose to dynamically match and fold the query onto the comple-
tion graph. This is achieved by ‘absorbing’ a query into several simple axioms
that can efficiently be processed, where intermediate states encode the parts
of the query that are already satisfied. The intermediate states are tracked in
the form of so-called query state concepts (written S, possibly with sub-/super-
scripts), which can be seen as fresh atomic concepts with a set of associated
bindings of query variables to nodes in the completion graph. To realise this, we
extend the tableau algorithm to create variable bindings (to match a variable to
a node in the completion graph), to propagate variable bindings in the process of
folding the query onto the completion graph, and to join variable bindings. Cre-
ating and propagating variable bindings according to the role terms of a query
ultimately allows us to detect when cycles are closed.

For the creation of variable bindings, we borrow the ↓ binders from Hybrid Log-
ics [2]. Informally, a concept of the form ↓x.C in the label of a node v instructs the
tableau algorithm to create a binding {x �→ v}, which binds x to the node v, and
to store the binding for the sub-concept C. For the propagation of bindings, we
extend the ∀-rule of the tableau algorithm. For example, if ∀r.C is in the label of
a node v and the variable binding {x �→ v} is associated with it, then the tableau
algorithm associates {x �→ v} with C for all r-successors of v. Additionally, propa-
gation can happen within node labels, e.g., if S ∈ L(v) with the associated binding
{x �→ v} and the knowledge base contains S � C, we add C to L(v) and associate
it with {x �→ v}. Finally, for joining bindings, we extend the binary unfolding
rule. For example, for an axiom S1  S2 � C and S1, S2 ∈ L(v) associated with
{x �→ v, y �→ w} and {x �→ v, z �→ w}, respectively, we add C associated with the
joined bindings {x �→ v, y �→ w, z �→ w} to L(v). With these basic adaptations, we
can capture the query in several simple types of axioms: S1 � ↓x.S2 for creating
bindings, S1 � S2 and S1 � ∀r.S2 for propagating bindings, and S1  S2 � S3 for
joining bindings, where S(i) are query state concepts and r is a role. The resulting
axioms can usually be processed quite efficiently.

3.1 Query Absorption

Before presenting a formal algorithm, we demonstrate how the concepts and
axioms for a query are obtained by means of an example. We call this process
absorbing a query.
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Algorithm 1. absorbQ(Q,K)

Input: A query Q and a knowledge base K that

is extended via side effects

1: z ← choose one variable from vars(Q)

2: Sz ← fresh query state concept

3: K ← K ∪ {� � ↓z.Sz}
4: VLS(z) ← Sz

5: for each q ∈ Q do

6: if q = C(x) or q = r(x, y), z 	= x then

7: choose q1, q2, . . . , qn ∈ Q with

q1 = r1(z, y1), q2 = r2(y1, y2),

. . . , qn = rn(yn−1, x)

8: for 1 ≤ i ≤ n do

9: absorbRT(qi, VLS ,K)

10: end for

11: end if

12: if q = C(x) then

13: absorbCT(C(x), VLS ,K)

14: z ← x

15: end if

16: if q = r(x, y) then

17: absorbRT(r(x, y), VLS ,K)

18: z ← y

19: end if

20: end for

21: Sz1...zmz ← VLS(z)

22: K ← K ∪ {Sz1...zmz � ⊥}

Algorithm 2. absorbCT(C(x), VLS ,K)

1: Sx1...xnx ← VLS(x)

2: Fx
C ← fresh atomic concept

3: S
x1...xnx

C ← fresh query state concept

4: K ← K ∪ {Sx1...xnx � ¬C � Fx
C}

5: K ← K ∪ {Sx1...xnx  Fx
C � S

x1...xnx

C }
6: VLS(x) ← S

x1...xnx

C

Algorithm 3. absorbRT(r(x, y), VLS ,K)

1: Sx1...xnx ← VLS(x)

2: Sx1...xnx
r ← fresh query state concept

3: K ← K ∪ {Sx1...xnx � ∀r.Sx1...xnx
r }

4: if VLS(y) is undefined then

5: Sy ← fresh query state concept

6: K ← K ∪ {Sx1...xnx
r � ↓y.Sy}

7: VLS(y) ← Sy

8: end if

9: Sy1...ymy ← VLS(y)

10: Sz1...zk ← fresh query state concept with

z1 . . . zk = x1 . . . xnx y1 . . . ymy

11: K ← K∪
{Sx1...xnx

r  Sy1...ymy � Sz1...zk}
12: VLS(y) ← Sz1...zk

Example 2 (Example 1 cont.). Consider again Q1 = {t(w, x), r(x, y),
s(y, z), s(z, w)}. We first pick a starting variable, say w, and introduce the axiom
��↓w.Sw, which triggers, for all nodes, that a binding for w is created. We use
the (fresh) query state concept Sw to indicate that w is bound. Since it is conve-
nient to continue with a role term containing w, we choose t(w, x) and propagate
the bindings for w to t-successors using the axiom Sw �∀t.Sw

t (again Sw
t is fresh

and indicates the state that bindings for w have been propagated via t). Nodes
to which Sw

t (with the bindings for w) is propagated are suitable bindings for x.
This is captured by the axiom Sw

t � ↓x.Sx. Since Sw
t may be propagated from

different nodes, we join the propagated bindings for w and the newly created
bindings for x using the axiom Sw

t  Sx � Swx, for which the extended tableau
algorithm attaches the joined bindings to the fresh concept Swx. We proceed
analogously for r(x, y), s(y, z), and s(z, w) (see Fig. 2 for all created axioms).
Nodes to which the concept Swxyz

s is propagated, potentially close the cycle in
the query. The axiom Swxyz

s  Sw � Swxyzw checks whether a join is possible. In
case it is, the query is satisfied and a clash is triggered by the axiom Swxyzw �⊥.
In this case, backtracking is potentially triggered to try other non-deterministic
choices which might yield a complete and clash-free completion graph that is a
counter example for the query entailment.

The next example demonstrates how concept terms in the query are handled.
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Table 2. Tableau rule extensions for creating and propagating variable mappings

↓-rule: if ↓x.C ∈ L(v), v not indirectly blocked, and C /∈ L(v) or
{x �→ v} /∈ M(C, v)

then L(v) = L(v) ∪ {C} and M(C, v) = M(C, v) ∪ {{x �→ v}}
∀-rule: if ∀r.C ∈ L(v), v not indirectly blocked, there is an r-neighbour w of

v with C /∈ L(w) or M(∀r.C, v) �⊆ M(C,w)

then L(w) = L(w) ∪ {C} and M(C,w) = M(C,w) ∪ M(∀r.C, v)


1-rule: if Sx1...xn 
 C ∈ K, Sx1...xn ∈ L(v), v not indirectly blocked, and
C /∈ L(v) or M(Sx1...xn , v) �⊆ M(C, v)

then L(v) = L(v) ∪ {C} and M(C, v) = M(C, v) ∪ M(Sx1...xn , v)


2-rule: if Sx1...xn � A 
 C ∈ K, {Sx1...xn , A} ⊆ L(v), v not indirectly
blocked, and M(Sx1...xn , v) �⊆ M(C, v)

then L(v) = L(v) ∪ {C} and M(C, v) = M(C, v) ∪ M(Sx1...xn , v)


3-rule: if Sx1...xn
1 � Sy1...ym

2 
 C ∈ K, {Sx1...xn
1 , Sy1...ym

2 } ⊆ L(v), v not
indirectly blocked, and
(M(Sx1...xn

1 , v) �� M(Sy1...ym
2 , v)) �⊆ M(C, v)

then L(v) = L(v) ∪ {C} and
M(C, v) = M(C, v) ∪ (M(Sx1...xn

1 , v) �� M(Sy1...ym
2 , v))

Example 3 (Example 2 cont.). Let Q2 = Q1∪{C(x)}. We again pick w as starting
node and then process t(w, x), which (again) yields the first four axioms in Fig. 2.
Assume we next process C(x). At the state Swx, the tableau algorithm can either
satisfy ¬C (which indicates that the query is not satisfied with the bindings for
w and x) or we have to assume a query state where also C(x) is satisfied. This
is achieved by adding the axiom Swx � ¬C � F x

C , where F x
C is a fresh concept.

Note that we want to keep the number of modified tableau rules minimal. Hence,
when applied to ¬C � F x

C , the �-rule does not propagate bindings. In case, the
disjunct F x

C is chosen, we join its empty set of variable bindings with those for
Swx using the axiom Swx  F x

C � Swx
C , which is handled by the extended binary

unfolding rule. For the next role term r(x, y), we then add Swx
C � ∀r.Swx

r and
continue as in Example 2.

Algorithm 1 formalizes the query absorption process and extends the given
knowledge base K via side effects. The functions absorbCT (Algorithm 2) and
absorbRT (Algorithm 3) handle concept and role terms, respectively. The func-
tions use a mapping VLS from variables to the last query state concepts, i.e.,
each variable in the query is mapped to the last introduced query state concept
for that variable such that we can later continue or incorporate the propagation
for that variable. In the examples, we always chose an adjacent next query term
that contained the current variable z. In case a non-adjacent term is chosen,
Lines 6–11 ensure the connection to the current variable (which exists as we
consider connected queries, see Sect. 2). In our example, if we were to choose
s(y, z) as first term in Line 5 (with w as starting variable), Lines 6–11 ensure



Absorption-Based Query Answering for Expressive Description Logics 601

Fig. 3. Clashed completion graph for Example 4 with propagated variable mappings

that we process, for example, t(w, x) and r(x, y) before we process s(y, z) in
Line 17. Clearly, the presented algorithm can further be optimised, e.g., by not
creating binder concepts for variables that are not required in joins, but it is
already quite convenient to show the principle of the approach.

3.2 Tableau Rules and Blocking Extensions

As outlined in the previous sections, minor extensions and adaptations of the
tableau algorithm are required for creating, propagating, and joining bindings
as well as for ensuring a correct blocking. First, we discuss the required rule
extensions and define the notion of variable mappings:

Definition 1 (Variable Mapping). A variable mapping μ is a (partial) func-
tion from variable names to nodes and we refer to the set of elements on which
μ is defined as the domain, written dom(μ), of μ. We say that two variable map-
pings μ1 and μ2 are compatible if μ1(x) = μ2(x) for all x ∈ dom(μ1)∩dom(μ2).

For an extended completion graph G = (V,E,L, ˙
=,M) and v ∈ V , we denote
with M(C, v) the sets of variable mappings that are associated with a concept C
in L(v).

The ↓-rule creates and associates variable mappings with concept facts in
the completion graph, which we then propagate to other concept facts w.r.t. the
axioms from the query absorption by using the extensions of expansion rules
depicted in Table 2. In particular, the application of the ∀-rule to a concept fact
∀r.C(v) now also propagates mappings that are associated with ∀r.C(v) to the
concept C in the labels of the r-neighbours. If complex roles have to be handled,
one can, for example, use an unfolding of the universal restriction according to
the automata for role inclusion axioms [10].

The remaining rules of Table 2 handle the (lazy) unfolding of the new query
state concepts in node labels. Please note that the standard unfolding rules for
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simple atomic concepts are still necessary, i.e., C has to be added to a node label
for axioms of the form A � C and A1  A2 � C if A or A1 and A2 are present.
In contrast, the new unfolding rules are only applied if at least one concept on
the left-hand side is a query state concept and they additionally also propagate
associated variable mappings to C. More precisely, for a query state concept
Sx1...xn ∈ L(v) with M(Sx1...xn , v) = M and an axiom Sx1...xn � C ∈ K, the
�1-rule adds C to L(v) and associates it with M . For an axiom of the form
Sx1...xn  A � C, we only add C and propagate the mappings to C if also
the atomic concept A is in the label (cf. �2-rule). Finally, the �3-rule handles
binary inclusion axioms, where both concepts on the left-hand side are query
state concepts, by propagating the join of the associated variable mappings to
the implied concept.

Definition 2 (Variable Mapping Join). A variable mapping μ1 ∪ μ2 is
defined by setting (μ1 ∪μ2)(x) = μ1(x) if x ∈ dom(μ1), and (μ1 ∪μ2)(x) = μ2(x)
otherwise. The join M1 �� M2 between the sets of variable mappings M1 and
M2 is defined as follows:

M1 �� M2 = {μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2 and μ1 is compatible with μ2}.

By applying the rules of Table 2 (in addition to the standard tableau rules)
for a knowledge base that is extended by the axioms from the query absorption,
we get associations of variable mappings with query state concepts such that
they indicate which parts of a query (and how these parts) are satisfied in the
completion graph.

Example 4 (Example 2 cont.). Assume we extend K1 = {A(a), A � ∃t.B,B �
∃r.A, t � s−, r � s−} with the axioms from absorbing Q1 in Fig. 2 and test the
consistency with a tableau algorithm extended by the rules of Table 2. We observe
that the constructed completion graph contains a clash and, consequently, Q1 is
entailed (cf. Fig. 3). More precisely, we create a node for the individual a and add
A to its node label (due to A(a)). Now, we alternately create t- and r-successors
(due to A � ∃t.B and B � ∃r.A), where the t-successors are labelled with B and
the r-successors with A. Due to t�s− and r �s−, we add s− to each edge label.
It is obvious to see that the folding ∃(t  s−).∃(r  s−).� of Q1 (cf. Example 1
and Fig. 1) is satisfied for each node that instantiates A.

Due to � � ↓w.Sw from the absorption, we add Sw to each node label
and associate Sw with a mapping from w to the node. In particular, for va
representing the individual a, we associate {w �→ va} with Sw. Note that
{w �→ va} ∈ M(Sw, va) is shown as in Fig. 3, i.e., we list the set
of associated mappings as a second super-script highlighted in grey. To satisfy
the axiom Sw � ∀t.Sw

t , we unfold Sw to ∀t.Sw
t and we also keep the variable

mappings, i.e., we have {w �→ va} ∈ M(∀t.Sw
t , va). Now, the application of

the ∀-rule propagates {w �→ va} to Sw
t ∈ L(v1). There, we unfold Sw

t to the
binder concept for x, i.e., ↓x.Sx. Note that the unfolding would propagate the
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Fig. 4. Expansion blocked completion graph for Example 5 with variable mappings

associated variable mapping(s) to the binder concept, but they are not depicted
in the figures since they are not further used by the ↓-rule. In fact, the ↓-rule just
creates a new variable mapping {x �→ v1} that is then joined by the �3-rule with
{w �→ va} such that we have {w �→ va, x �→ v1} ∈ M(Swx, v1). These steps are
repeated until we have {w �→ va, x �→ v1, y �→ v2, z �→ v1} ∈ M(Swxyz

s , va). Since
{w �→ va} is compatible with {w �→ va, x �→ v1, y �→ v2, z �→ v1}, the �3-rule
adds the latter variable mapping to M(Swxyzw, va). Finally, the �1-rule adds
⊥ to L(va). (In the figures, we again omit the variable mappings that would be
associated with ⊥ due to the unfolding since they are not relevant.) Since all
facts and variable mappings are derived deterministically, no non-deterministic
alternatives have to be evaluated and entailment of Q1 is correctly determined.

As one can see from the example, the variable mappings associated with
query state concepts directly correspond to foldings of the query. In particular,
variables that are mapped to the same node correspond to the folding where
the corresponding variables are identified. In addition, if a variable is mapped
to a nominal node, then the mapping basically represents the “folding” that is
obtained by replacing the variable with the associated nominal/individual (and
folding up the remaining terms).

Without further optimisations, we create new bindings for every node and,
due to complex roles and/or nominals, variable mappings might be propagated
arbitrarily far through a completion graph. At first sight, this seems problem-
atic for blocking. The correspondence with foldings, however, helps us to find a
suitable extension of the typically used pairwise blocking technique [10] defined
as follows:

Definition 3 (Pairwise Blocking). Let G = (V,E,L, ˙
=,M) be a completion
graph. We say that a node v with predecessor v′ is directly blocked if there
exists an ancestor node w of v with predecessor w′ such that (1) v, v′, w, w′ are
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all blockable, (2) w,w′ are not blocked, (3) L(v) = L(w) and L(v′) = L(w′), and
(4) L(〈v′, v〉) = L(〈w′, w〉). A node is indirectly blocked if it has an ancestor
node that is directly blocked, and a node is blocked if it is directly or indirectly
blocked.

The query state concepts, which track how much of the query is satisfied, are
already part of the node labels. Hence, it remains to check whether the query
is analogously satisfied (i.e., same foldings must exist) by, roughly speaking,
checking whether the variable mappings have been propagated in the same way
between the blocking node, its predecessor and (related) nominal nodes and
between the blocked node, its predecessor and (related) nominal nodes. Note that
a mapping μ and the query state concepts with which μ is associated capture
which query parts are already satisfied. Query state concepts that are associated
with mappings that are compatible with μ correspond to states where fewer or
additional query parts are satisfied. The following notion captures such related
query state concepts for a mapping μ and a node v of a completion graph:

Definition 4. Let G = (V,E,L, ˙
=,M) be a completion graph. For v ∈ V and
a mapping μ, we set states(v, μ) = {C ∈ L(v) | μv ∈ M(C, v) is compatible
with μ}.
Note that we do not limit states to query state concepts only to enable more
absorption optimisations (see [20] for details). We formally capture (query state)
concepts associated with a mapping and their relation to blocking with the notion
of analogous propagation blocking and witness mappings:

Definition 5 (Analogous Propagation Blocking). Let G = (V,E,L, ˙
=,M)
be a completion graph and o1, ..., on ∈ V all the nominal nodes in G. We say
that a node v with predecessor v′ is directly blocked by w with predecessor w′

if v is pairwise blocked by w and, for each mapping μ ∈ M(C, v) ∪ M(C, v′) ∪
M(C, o1)∪...∪M(C, on), C ∈ L(v)∪L(v′)∪L(o1)∪...∪L(on), there exists a wit-
ness mapping μ′ ∈ M(D,w)∪M(D,w′)∪M(D, o1)∪...∪M(D, on),D ∈ L(w)∪
L(w′) ∪ L(o1) ∪ ... ∪ L(on) and vice versa such that states(v, μ) = states(w, μ′),
states(v′, μ) = states(w′, μ′), and states(oi, μ) = states(oi, μ′) for 1 ≤ i ≤ n.

Example 5. (Example 2 cont.). For testing entailment of Q1 over K2 =
{A(a), A � ∃t.A, t ◦ t � t}, we can capture the transitivity of t by extend-
ing the axioms of Fig. 2 with Sw

t �∀t.Sw
t (cf. [10]). For the resulting axioms, the

tableau algorithm creates a completion graph as depicted in Fig. 4, where the
query is not entailed. Due to the cyclic axiom A � ∃t.A, the tableau algorithm
successively builds t-successors until blocking is established. Note that new vari-
able mappings are created for all nodes and all mappings are propagated to
all descendants due to the transitive role t. Hence, we not only have mappings
with new bindings for each new successor, but also an increasing number of
mappings. Nevertheless, v3 is already directly blocked by v2 using analogous
propagation blocking since all pairwise blocking conditions are satisfied (e.g.,
L(v3) = L(v2), L(v2) = L(v1)) and we have for each variable mapping a witness
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Table 3. Witness mappings for testing analogous propagation blocking for Example 5

μ μ′ states(v3, μ) = states(v2, μ′) states(v2, μ) = states(v1, μ′)
{w �→ v3} {w �→ v2} {Sw, ∀t.Sw

t , Sx} {Sx}
{w �→ v2} {w �→ v1} {∀t.Sw

t , Sw
t , Sx, Swx, ∀r.Swx

r } {Sw, ∀t.Sw
t , Sx}

{w �→ v1}, {w �→ va} {w �→ va} {∀t.Sw
t , Sw

t , Sx, Swx, ∀r.Swx
r } {∀t.Sw

t , Sw
t , Sx, Swx, ∀r.Swx

r }
{x �→ v3} {x �→ v2} {Sw, ∀t.Sw

t , Sw
t , Sx, Swx, ∀r.Swx

r } {Sw, ∀t.Sw
t , Sw

t }
{w �→ va, x �→ v3},
{w �→ v1, x �→ v3}

{w �→ va,

x �→ v2}
{∀t.Sw

t , Sw
t , Sx, Swx, ∀r.Swx

r } {∀t.Sw
t , Sw

t }

{w �→ v2, x �→ v3} {w �→ v1,

x �→ v2}
{∀t.Sw

t , Sw
t , Sx, Swx, ∀r.Swx

r } {Sw, ∀t.Sw
t }

{x �→ v2} {x �→ v1} {Sw, ∀t.Sw
t , Sw

t } {Sw, ∀t.Sw
t , Sw

t , Sx, Swx, ∀r.Swx
r }

{w �→ va, x �→ v2},

{w �→ v1, x �→ v2}
{w �→ va,

x �→ v1}
{∀t.Sw

t , Sw
t } {∀t.Sw

t , Sw
t , Sx, Swx, ∀r.Swx

r }

mapping as shown in Table 3. For example, for the mapping {w �→ v3}, we have
states(v3, {w �→ v3}) = {Sw,∀t.Sw

t , Sx} and states(v2, {w �→ v3}) = {Sx} due
to the compatible mappings {x �→ v3} and {x �→ v2}, respectively (cf. first row
of Table 3). A witness for {w �→ v3} is {w �→ v2} since states(v2, {w �→ v2}) =
{Sw,∀t.Sw

t , Sx} and states(v1, {w �→ v2}) = {Sx}.

To avoid considering all nominal nodes in blocking tests, one could obtain
restricted sets of relevant nominal nodes by “remembering” nominal nodes over
which variable mappings have been propagated, by tracking the usage of nomi-
nals for descendants or by indexing variable mappings propagated over nominal
nodes.

3.3 Correctness and Termination Sketches

As long as no new nominals are generated, a tableau algorithm with the pre-
sented extensions terminates since the sets of (query state) concepts that are
used by analogous propagation blocking are bounded by the number of concepts
occurring in the knowledge base and in the query absorption. Hence, we eventu-
ally have variable mappings that are associated with the same set of concepts for
the nodes relevant for determining blocking. At the same time, analogous prop-
agation blocking delays blocking sufficiently to guarantee that the completion
graph is expanded enough to show (non-)entailment of the query. In addition,
we observe that the query state concepts with their associated variable map-
pings correspond to concepts that represent satisfied (parts of) foldings of the
query. Hence, correctness of the algorithm can be shown by transforming a fully
expanded and clash-free completion graph with propagated variable mappings
to a fully expanded and clash-free completion graph, where instead the corre-
spondingly satisfied (sub-)concepts of folding are in the node labels and vice
versa. Further details are provided in the accompanying technical report [20].

4 Optimized Query Answering Reduction

Instead of naively grounding conjunctive queries with answer variables (e.g., by
adding nominal concept terms), leading to (exponentially) many query entail-
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ment checks, we can modify the presented absorption algorithm such that it
delivers (candidates for) answers. For this, we extend the knowledge base by
assertions of the form O(a) for each individual a, where O is a fresh atomic con-
cept that allows for distinguishing known and anonymous individuals. We then
extend the query with concept terms of the form O(x) for each answer variable x
and absorb the query as presented in Sect. 3, but omit the implication of ⊥ from
the last query state concept. If the tableau algorithm succeeds to construct a fully
expanded and clash-free completion graph, then the variable mappings that are
propagated to and associated with the last query state concept in node labels
encode the answer candidates. Moreover, by analysing whether variable map-
pings have been propagated deterministically, i.e., mappings that do not depend
on non-deterministic decisions, we can already identify which of the candidates
are certain answers. For the non-deterministically derived/propagated variable
mappings, we have to verify the obtained answer candidates with corresponding
query entailment checks. If most consequences of the knowledge base can be
derived deterministically, then we often also get the answers by only extract-
ing them from the propagated variable mappings, i.e., the approach mimics a
one-pass behaviour for “relatively simple and mostly deterministic” ontologies.

The presented query answering approach can further be extended to exploit
realisation results. In fact, query terms with only answer variables (and only
atomic concepts) correspond to (atomic) concept and role instance retrieval
queries, which are typically answered by the realisation service. Hence, we resolve
these parts of a query via realisation and interpret the answers as an upper bound
for the entire query. Then, we absorb the remaining part of the query by using
restricted binder concepts for answer variables such that the ↓-rule only creates
a binding if the binder concept is in the label of a node that represents an indi-
vidual from the determined upper bound of the corresponding variable. This
reduces the propagation work in completion graphs since only the remaining
query terms have to be considered and only certain bindings are created.

5 Implementation and Experiments

We implemented the presented query answering approach into the tableau-based
reasoning system Konclude [22], which supports the DL SROIQ with nominal
schemas, i.e., an extension of the nominal constructor by variables for natively
representing rule-based knowledge in ontologies. Axioms with nominal schemas
are also absorbed in Konclude such that variable bindings are appropriately
propagated through the completion graph [21], which we reuse to some extent
for the query answering extension. A major difference is, however, that bind-
ings for variables are now also created/allowed for anonymous individuals, i.e.,
blockable nodes in completion graphs, which requires the more sophisticated
blocking technique. In addition, specialised binder concepts are used to be able
to restrict the creation of bindings to determined candidates as described in
Sect. 4. Furthermore, Konclude uses variants of completion graph caching tech-
niques such that only those parts of completion graphs have to be constructed
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Table 4. Statistics for evaluated ontologies with query entailment checking (EC) times
in seconds

Ontology DL #Axioms #C #P #I #Assertions #Q EC avg/max [s]

DMKB SROIQ 4,945 697 177 653 1,500 50 0.30 / 1.08

Family SROIQ(D) 317 61 87 405 1,523 50 180.32 / ≥ 300.00

Finance\D ALCROIQ 1,391 323 247 2,466 2,809 50 0.15 / 0.33

FMA3.1\D ALCOIN 86,898 83,284 122 232,647 501,220 50 0.10 / 0.83

GeoSkills\D ALCHOIN 738 603 23 2,592 5,985 50 0.13 / 0.25

OBI SROIQ(D) 6,216 2,826 116 167 235 50 0.06 / 0.34

UOBM(1) SHOIN (D) 206 69 44 24,858 257,658 50 0.77 / 7.12

Wine SHOIN (D) 643 214 31 367 903 50 0.08 / 0.29

that are (potentially) relevant for satisfiability tests, which has been adapted
for query answering. The cached graphs are also indexed to quickly resolve can-
didates for answer variables. We further collect approximative statistics of how
(often) concept and role facts are derived in the consistency test (e.g., whether
they are derived (non-)deterministically and/or only for nominal nodes) in order
to absorb the query terms in an order that ideally leads to few and cheap prop-
agations (e.g., by preferring propagations over role terms with few and mostly
deterministically derived instances).

At the moment, Konclude may not terminate for SROIQ ontologies if the
absorption of the query leads to propagations over new nominal nodes. However,
this does not seem problematic in practice. For example, the ORE2015 dataset
[17] contains 1920 ontologies (with trivial ontologies already filtered out), but
only 399 use all problematic language features (36 with unqualified, 281 with
qualified, and 82 with functional number restrictions). Konclude never applied
the new nominal rule in the consistency checks for these 399 ontologies, but we
terminated the reasoner (and, hence, the analysis of the new nominal generation)
for 4 ontologies after reaching the time limit of 5 min. Even if new nominals have
to be generated repeatedly by the tableau algorithm, it would further be required
that the query propagates differently over new nominal and blockable nodes such
that blocking cannot be established.

For evaluating (the limits of) the presented query entailment checking app-
roach,1 we generated and/or hand-crafted 400 cyclic and non-trivial queries for
interesting ontologies, such as DMKB, FMA, OBI, UOBM [14], i.e., ontologies
from well-known repositories that use many features of SROIQ and have at
least 100 individuals. Table 4 shows some metrics for these ontologies as well as
the average and maximum query entailment checking times (last column). Note
that the columns #C, #P, #I, and #Q denote the number of classes, properties,
individuals, and queries and that the assertions are not counted to the number of
axioms. In summary (see [20] for details), the entailment for most queries (90%)
can be decided in under one second by using one core of a Dell PowerEdge R420

1 Source code, evaluation data, all results, and a Docker image (koncludeeval/abqa)
for easily reproducing the evaluations are available online, e.g., at https://zenodo.
org/record/3266160.

https://zenodo.org/record/3266160
https://zenodo.org/record/3266160
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Table 5. Ontologies with evaluated query answering times in seconds

Ontology DL #Axioms #Assertions #Q Konclude OWL BGP PAGOdA Pellet

ChEMBL1% SRIQ(D) 3,171 2,884,896 6 0.3 1800.0 0.7 17.7

FLY SRI 20,715 1,606 11 4.7 3300.0 20.3 3300.0

LUBM(1) ALEHI+(D) 93 100,543 35 1.2 16.8 5.4 11.2

Reactome10% SHIN (D) 600 1,314,640 7 0.4 2100.0 14.4 33.8

Uniprot1% ALCHOIQ(D) 608 1,112,441 13 0.3 3900.0 2.7 307.8

UOBM(1) SHIN (D) 246 257,658 20 6.6 6000.0 22.7 972.7

ALL 92 13.6 17116.8 66.1 4643.2

server with two Intel Xeon E5-2440 CPUs at 2.4 GHz and 144 GB RAM under
a 64bit Ubuntu 16.04.5 LTS. However, Konclude reached the time limit of 5
min for several queries of the Family ontology since complex roles caused prop-
agations to many nodes such that blocking tests became quite involved. Due to
the fact that many state-of-the-art reasoners such as HermiT [4] and Pellet [19]
cannot even classify the Family ontology within 5 min, it can be seen as partic-
ularly difficult. It also has to be considered that typical real-world queries are
often not Boolean and it is usually possible to identify individuals that could be
affected by the query (e.g., from answer variables) such that only certain parts
of completion graphs have to be considered for the remaining (entailment) com-
putations (with appropriate completion graph caching techniques). To further
improve the performance, one could, however, also use a representative propaga-
tion of variable mappings [21] for entailment checks and/or index more precisely
which nodes constitute blocker candidates.

To further compare our query answering approach with existing systems,
we used the ontologies and (non-trivial) queries from the PAGOdA evaluation
[25] (cf. Table 5). (See footnote 1). Note that we excluded trivial concept and
role instance retrieval queries since they can be handled by (concept and role)
realisation, for which already corresponding evaluations exist (see, e.g., [17]).
Since these expressive ontologies easily become problematic for several reasoning
systems, we used the smallest versions of the available datasets.

We compared the absorption-based query answering approach with OWL
BGP [6], PAGOdA, and Pellet, which are systems that are based on fully-fledged
SROIQ reasoners and, hence, principally capable of answering (restricted) con-
junctive queries w.r.t. knowledge bases that are formulated with more expressive
DLs. Note that OWL BGP as well as PAGOdA use a fully-fledged reasoner (usu-
ally HermiT) in form of a black-box, but try to reduce the calls to the reasoner
with different (lower and upper bound) optimisations. OWL BGP can mostly
be considered as an adapter that enables to answer conjunctive instance queries,
whereas PAGOdA tries to delegate most of the workload to a more efficient
datalog engine. We tried to separate the preprocessing (i.e., loading, consistency
checking, classification, etc.) from the actual query answering time. Since we
could not find a simple way to realise this for Pellet, we interpreted the fastest
query answering response as preprocessing/preparation time. As far it has been
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configurable, we used only one core of the Dell PowerEdge R420 server for each
reasoner to facilitate the comparison. Moreover, we used for each query a new
instance of the reasoner with a time limit of 5 min. If a reasoner did not finish
the preprocessing within the time limit, then we also interpreted the response
time for the query answering task as a timeout, i.e., as 5 min.

The query answering times accumulated per ontology are depicted in Table 5.
By considering the accumulated times over all ontologies (last row), one can
say that Konclude outperforms the other systems for the evaluated ontologies
and queries. In fact, Konclude is faster than the other systems for all ontolo-
gies. Although PAGOdA can answer all queries for all evaluated ontologies, it
is clearly slower than Konclude for Reactome10% and the FLY ontology. For
FLY, PAGOdA had to fall back to the fully-fledged reasoner, i.e., HermiT, for
one query and these calls consumed most of the time. PAGOdA and Konclude
returned the same answers for all queries,2 whereas some answers are incom-
plete for OWL BGP and Pellet due to their restrictions w.r.t. existential vari-
ables. Pellet and especially OWL BGP are significantly slower than Konclude
and PAGOdA. On the one hand, this is due to the fact that Pellet and HermiT
cannot handle these ontologies as easily as Konclude and they do not have opti-
misations to delegate parts of the reasoning to more specialised systems (such
as PAGOdA). On the other hand, our query answering is much “deeper inte-
grated” into the reasoning system and, hence, it can better utilise the internal
data structures and can profit more from corresponding (reduction) optimisa-
tions. Also preprocessing (i.e., loading, consistency checking, etc.) is significantly
faster for Konclude than for the other systems (it required at most half of their
time).

6 Conclusions

We presented a new query answering approach based on the well-known absorp-
tion optimisation that works well for several more expressive Description Logics
and can nicely be integrated into state-of-the-art tableau-based reasoning sys-
tems. More precisely, the approach rewrites/absorbs a conjunctive query into
several simple axioms such that minor extensions of the tableau algorithm appro-
priately create and propagate bindings for variables through completion graphs,
which then basically encode the satisfied foldings of a query. Soundness, com-
pleteness, and termination is guaranteed as long as only a limited number of new
nominals has to be introduced in the reasoning process, which seems always the
case in practice.

The deep integration facilitates special optimisations that closely interact
with other reasoning services and utilise the internal data structures of the rea-
soner, which results in a good performance. In fact, we integrated the presented
query answering approach into the reasoning system Konclude and evaluated it
with several real-world as well as benchmark ontologies. The comparison with
2 PAGOdA ignores the cardinality of answers by evaluating all SPARQL queries as

they have the DISTINCT modifier.
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state-of-the-art, but restricted query answering systems shows that our approach
often achieves competitive performance or even outperforms these other systems.
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Abstract. Learning knowledge graph (KG) embeddings has received
increasing attention in recent years. Most embedding models in litera-
ture interpret relations as linear or bilinear mapping functions to operate
on entity embeddings. However, we find that such relation-level model-
ing cannot capture the diverse relational structures of KGs well. In this
paper, we propose a novel edge-centric embedding model TransEdge,
which contextualizes relation representations in terms of specific head-
tail entity pairs. We refer to such contextualized representations of a
relation as edge embeddings and interpret them as translations between
entity embeddings. TransEdge achieves promising performance on differ-
ent prediction tasks. Our experiments on benchmark datasets indicate
that it obtains the state-of-the-art results on embedding-based entity
alignment. We also show that TransEdge is complementary with conven-
tional entity alignment methods. Moreover, it shows very competitive
performance on link prediction.

Keywords: Knowledge graphs · Contextualized embeddings ·
Entity alignment · Link prediction

1 Introduction

A knowledge graph (KG) is a multi-relational graph, whose nodes correspond to
entities and directed edges indicate the specific relations between entities. For
example, Fig. 1(a) shows a snapshot of the graph-structured relational triples in
DBpedia. In KGs, each labeled edge is usually represented by a relational triple
in the form of (head, relation, tail)1, meaning that the two entities head and

1 In the following, (head, relation, tail) is abbreviated as (h, r, t).
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tail hold a specific relation. So, a typical KG can be defined as a triple
K = (E ,R, T ), where E is the set of entities (i.e., nodes), R is the set of relations
(i.e., edge labels), and T = E × R × E denotes the set of relational triples
(i.e., labeled edges). Each entity or relation is usually denoted by a URI. For
example, the URI of New Zealand in DBpedia is dbr : New Zealand2. However,
such discrete and symbolic representations of KGs fall short of supporting the
efficient knowledge inference [31]. Thus, learning continuous and low-dimensional
embedding representations for KGs has drawn much attention in recent years and
facilitated many KG-related tasks, such as link prediction [2,8,14,17,27,29,32,
34,35], entity alignment [3,4,9,25,26,33] and entity classification tasks [5,15,22].

Fig. 1. (a) A snapshot of the relational facts of “From Dusk Till Dawn” in DBpedia.
Circles represent entities and directed edges have labels. (b) Illustration of the relation-
level translation between entity embeddings, where circles represent entity embeddings,
and bold gray arrows denote the translation vectors of relations. (c) Illustration of the
proposed edge-centric translation, where the dotted arrows denote the contextualized
representations, i.e., edge embeddings. For example, starring’ 1 and starring’ 2 are two
contextualized representations of the relation starring.

KG embedding seeks to encode the entities and relations into vector spaces,
and capture semantics by the geometric properties of embeddings. To model
the relational structures of KGs, most embedding models in literature interpret
relations as linear or bilinear mapping functions operating on entity embeddings,
such as the relation translation in TransE [2], the relation matrix factorization
in DistMult [34], and the relation rotation in RotatE [27]. We refer to this kind
of models as relation-level embedding. However, such relation-level models rep-
resent each relation with one embedding representation for all related head-tail
entity pairs, which cannot well reflect the complex relational structures of KGs.
As shown in Fig. 1(a), different entity pairs may share the same relation while
one entity pair may hold different relations. The relation-level embedding cannot
distinguish the different contexts of relations, which would lead to indistinguish-
able embeddings and incorrect relation inference.

Specifically, we take the translational KG embedding model TransE [2] as
an example to explicate the aforementioned issue. TransE interprets relations
as translation vectors between entity embeddings. For example, given a rela-
tional triple (h, r, t), TransE expects h + r ≈ t to hold, where the boldfaced
2 http://dbpedia.org/resource/New Zealand.

http://dbpedia.org/resource/New_Zealand
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letters denote the embeddings of entities and relations. The relation embedding
r serves as a translation vector from h to t. However, such relation translation
encounters issues when facing more complex relations. For example, consider-
ing the relational triples in Fig. 1(a): (From Dusk Till Dawn, starring, Quentin
Tarantino) and (From Dusk Till Dawn, starring, Cheech Marin), translational
KG embeddings would have Quentin Tarantino ≈ Cheech Marin, as shown
in Fig. 1(b). In other words, the different entities getting involved in the same
relation would be embedded very closely by the same relation translation. Such
indistinguishable entity embeddings go against accurate embedding-based entity
alignment. Quentin Tarantino and Cheech Marin would be mistaken for an
aligned entity pair due to the high similarity of their embeddings. Besides, the
similar relation embeddings, such as starring ≈ writer, would lead to the incor-
rect link prediction such as (From Dusk Till Dawn, writer, Cheech Marin). This
problem has been noticed in the link prediction scenario [12,17,32]. Towards link
prediction that predicts the missing entities for relational triples, they propose to
distinguish entity embeddings with relation-specific projections. However, such
projections divest KG embeddings of relational structures by injecting ambiguity
into entity embeddings.

In this paper, we introduce an edge-centric translational embedding model
TransEdge, which differentiates the representations of a relation between differ-
ent entity-specific contexts. This idea is motivated by the graph structures of
KGs. Let us see Fig. 1(a). One head-tail entity pair can hold different relations,
i.e, one edge can have different labels. Also, different edges can have the same
label, indicating that there are multiple head-tail entity pairs having the same
relation. Thus, it is intuitive that entities should have explicit embeddings while
relations should have different contextualized representations when translating
between different head-tail entity pairs. Thus, we propose to contextualize rela-
tions as different edge embeddings. The context of a relation is specified by its
head and tail entities. We study two different methods, i.e., context compression
and context projection, for computing edge embeddings given the edge direc-
tion (head and tail entity embeddings) and edge label (relation embeddings). To
capture the KG structures, we follow the idea of translational KG embeddings
and build translations between entity embeddings with edge embeddings. This
modeling is simple but has appropriate geometric interpretations as shown in
Fig. 1(c). Our main contributions are listed as follows:

(1) We propose a novel KG embedding model TransEdge. Different from exist-
ing models that learn one simple embedding per relation, TransEdge learns
KG embeddings by contextualizing relation representations in terms of the
specific head-tail entity pairs. We refer to such contextualized representa-
tions of a relation as edge embeddings and build edge translations between
entity embeddings to capture the relational structures of KGs. TransEdge
provides a novel perspective for KG embedding (Sect. 3).

(2) We evaluate TransEdge on two tasks: entity alignment between two KGs
and link prediction in a single KG. Experimental results on five datasets
show that TransEdge obtains the state-of-the-art results on entity align-
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ment. It also achieves very competitive performance (even the best Hits@1)
on link prediction with low computational complexity. These experiments
verify the good generalization of TransEdge. To the best of our knowledge,
TransEdge is the first KG embedding model that achieves the best Hits@1
performance on both embedding-based entity alignment and link prediction
(Sect. 4).

2 Related Work

In recent years, various KG embedding models have been proposed. The most
popular task to evaluate KG embeddings is link prediction. Besides, embedding-
based entity alignment also draws much attention recently. In this section, we
discuss these two lines of related work.

2.1 KG Embeddings Evaluated by Link Prediction

We divide existing KG embedding models evaluated by link prediction into
three categories, i.e., translational, bilinear and neural models. TransE [2] intro-
duces the translational KG embeddings. It interprets relations as translation
vectors operating on entity embeddings. Given a relational triple (h, r, t), TransE
defines the following energy function to measure the error of relation translation:
fTransE(h, r, t) = ||h+r−t||, where || · || denotes either the L1 or L2 vector norm.
To resolve the issues of TransE on modeling complex relations, some improved
translational models have been put forward, including TransH [32], TransR [17]
and TransD [12]. Their key idea is to let entities have relation-specific embed-
dings by transformations operating on entity embeddings, such as the hyper-
plane projection in TransH and the space projection in TransR and TransD.
We argue that such transformations introduce ambiguity to entity embeddings
as they separate the original entity embedding into many dispersive relation-
specific representations. For example, for each relation r, entity h would hold
a representation hr. These dispersive representations compromise the semantic
integrity in KGs as each relation is modeled separately in the relation-specific
hyperplane or space. The general entity embeddings h and t are not explic-
itly translated by relation vectors. Although our model can also be viewed as a
kind of translational KG embedding, we introduce the edge-centric model that
contextualizes relations with edge embeddings.

Besides, there are some bilinear models that exploit similarity-based func-
tions to compute the energy of relational triples. DistMult [34] and ComplEx [29]
use the bilinear Hadamard product to compute energy. HolE [20] substitutes the
Hadamard product with circular correlation. Analogy [18] imposes analogical
properties on embeddings. SimplE [14] proposes an enhancement of Canonical
Polyadic (CP) decomposition to compute energy. CrossE [35] exploits to simu-
late the crossover interactions between entities and relations. RotatE [27] defines
each relation as a rotation from the head entity to the tail in the complex-valued
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embedding space. Recently, there are also some neural embedding models includ-
ing ProjE [24], ConvE [8], R-GCN [23] and ConvKB [19]. These bilinear and
neural models achieve superior results on link prediction at the cost of much
higher model complexity. Besides, many of these embedding models also have
the identified shortcomings, such as HolE and ProjE.

2.2 KG Embeddings for Entity Alignment

Recently, several embedding-based entity alignment models have been proposed.
MTransE [4] captures two KG-specific vector spaces and jointly learns a trans-
formation between them. IPTransE [36] employs PTransE [16] to embed two
KGs into a unified vector space. It iteratively updates alignment information
through a self-training technique. JAPE [25] incorporates attribute embeddings
for entity alignment. BootEA [26] solves the entity alignment problem in a boot-
strapping manner. KDCoE [3] co-trains description embeddings and structure
embeddings to incorporate both the literal and structural information of KGs for
entity alignment. GCN-Align [33] employs graph convolutional networks to learn
KG embeddings for entity alignment. AttrE [30] regards literal values as “virtual
entities” and uses TransE to embed the attribute triples for entity alignment.
Note that, some of these models exploit additional resources in KGs for entity
alignment, such as relation paths (IPTransE), textual descriptions (KDCoE) and
literal values (AttrE). By contrast, the proposed TransEdge leverages the basic
relational structures for KG embedding, without using additional resources.

3 Edge-Centric Knowledge Graph Embedding

TransEdge embeds the entities and relations of KGs in a d-dimensional vector
space. Unlike the conventional relation-level models, for a relational triple, the
head and tail entity embeddings in TransEdge hold an edge translation. Figure 2
illustrates the main idea. The contextualization operator ψ takes as input the
combined embeddings of the head and tail entities (edge direction) as well as
the relation embedding (edge label) to compute edge embeddings.

Fig. 2. Illustration of the key idea of relation-contextualized KG embeddings. The
white boxes denote the general embeddings of entities and relations, and the gray boxes
denote the contextualized representation for this relation, i.e., the edge embedding. hc

and tc are the interaction embeddings for entities. ψ is a contextualization operator.
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3.1 Formulation of Energy Function

Like TransE, we define an energy function to measure the error of edge transla-
tion between entity embeddings. For simplicity, the energy of a relational triple
(h, r, t) in TransEdge is written as follows:

f(h, r, t) = ||h + ψ(hc, tc, r) − t||. (1)

The edge embedding ψ(hc, tc, r) corresponds to a translation vector between the
head to tail entity embeddings. In TransEdge, we learn a general embedding for
each entity, such as h for h. General embeddings capture the geometric positions
and relational semantics of entities in the vector space. We also introduce inter-
action embeddings for entities, such as hc for h, which are used to encode their
participation in the calculation of edge embeddings. Separating the interaction
embeddings from general ones can avoid the interference of such two different
information.

3.2 Contextualization Operation

The calculation of edge embeddings ψ(hc, tc, r) should involve the information
of both the head and tail entities (edge direction), as well as the relations (edge
label). We study two different methods shown in Fig. 3, which are discussed in
detail below.

projectionprojection

(b) Context projection(a) Context compression

MLP

MLP

MLP

Fig. 3. Illustration of the proposed contextualization operations.

Context Compression. This method uses multilayer perceptrons (MLPs) to
compress the embeddings of the edge direction and label. Specifically, given a
MLP with one hidden layer (i.e., two layers in total plus the output layer) and
the input vector v(0), each layer is calculated with a set of weight matrices W
and vectors b:

v(1) = σ
(
W(1) v(0) + b(1)

)
, v(2) = σ

(
W(2) v(1) + b(2)

)
, (2)
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where σ() is the activation function like tanh(). Finally, mlp(v(0)) = v(2). As
illustrated in Fig. 3(a), given a relational triple (h, r, t), we concatenate hc and
r as input and feed it to a MLP to get a combined representation. tc and r are
encoded in the same way. Finally, we employ another MLP to combine them. The
three MLPs capture the non-linear combination of the representations of edge
direction and label. Let mlp() denote a MLP. The edge embedding is calculated
as follows:

ψ(hc, tc, r) = mlp1(mlp2([hc; r]) + mlp3([r; tc])), (3)

where [hc; r] = concat(hc, r) ∈ R
2d, which concatenates the given vectors.

Context Projection. Projecting embeddings onto hyperplanes [7,32] has
shown promising effects on the processing of disparate feature representations.
Here, we regard the edge direction and label representations as orthogonal
features and project the label representation onto the hyperplane of the edge
direction representations, as illustrated in Fig. 3(b). Given two relational triples
(h, r, t1) and (h, r, t2), r′ and r′′ are two edge embeddings for r projected on
hyperplanes. Let w(h,t) be the normal vector of such hyperplane. The edge
embedding for (h, r, t) is calculated by vector projection as follows:

ψ(hc, tc, r) = r − w�
(h,t)rw(h,t). (4)

We use a MLP to compute the normal vector based on the concatenated embed-
dings of head and tail entities. Formally, w(h,t) = mlp([hc; tc]), s.t. ||w(h,t)|| = 1.

3.3 Loss Function

Following the conventional training strategy of previous models [31], we train
TransEdge based on the local-closed world assumption. In this case, we regard
the observed relational triples in KGs as positive examples while the unobserved
ones as negative samples (either false or missing triples). In our model, positive
relational triples are expected to fulfill such relation-contextualized translation
with low energy. Negative relational triples are supposed to hold higher energy as
they are more invalid than positive ones. To this end, we minimize the following
limit-based loss [26], which can create more distinguishable embedding structures
than the conventional marginal ranking loss:

L =
∑

(h,r,t)∈T
[f(h, r, t) − γ1]+ +

∑

(h′,r′,t′)∈T −
α [γ2 − f(h′, r′, t′)]+, (5)

where [x]+ = max(0, x). γ1, γ2 are the hyper-parameters to control the energy of
triples, s.t. γ1 < γ2. α is a hyper-parameter to balance the positive and negative
samples. T − denotes the set of negative triples, which can be generated by some
heuristic strategies. Here, we choose the truncated negative sampling [26], which
generates negative triples by replacing either the head or tail entities of positive
relational triples with some random neighbors of these entities.
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3.4 Implementation for Entity Alignment

Given a source KG K1 = (E1,R1, T1) and a target KG K2 = (E2,R2, T2), entity
alignment seeks to find entities from different KGs that refer to the same real-
world object. Embedding-based entity alignment helps overcome the semantic
heterogeneity in different KGs and receives increasing attention recently.

For entity alignment, we let each entity pair in seed alignment (i.e., train-
ing data) share the same embedding (called parameter sharing), to reconcile
K1 and K2. In this way, the two KGs are merged into one and we can use
TransEdge to learn entity embeddings from this “combined KG”. For training,
semi-supervised strategies, such as self-training and co-training, have been widely
used for embedding-based entity alignment [3,26,36]. This is because the size of
seed alignment is usually small. For example, as investigated in [4], in Wikipedia,
the inter-lingual links cover less than 15% entity alignment. To cope with this
problem, we use the bootstrapping strategy [26] to iteratively select the likely-
aligned entity pairs, which we denote by D = {(e1, e2) ∈ E1×E2| cos(e1, e2) > s},
where s is the similarity threshold. As errors in the newly-found entity alignment
are unavoidable, we do not make each newly-found entity pair share the same
embedding. Instead, we minimize the following loss to let the proposed entity
alignment has a small embedding distance (i.e., high similarity):

Lsemi =
∑

(e1,e2)∈D
||e1 − e2||. (6)

In the test phase, given an entity to be aligned in K1, we rank entities in K2 as
its counterpart candidates in descending order based on the cosine similarity of
entity embeddings. The right counterpart is expected to have a top rank.

The parameters of TransEdge are initialized using the Xavier initializer [10].
The embedding loss L on T1 ∪ T2 and the semi-supervised training loss Lsemi

are jointly optimized using a stochastic gradient descent algorithm AdaGrad.
We enforce the L2 norm of KG embeddings to 1 to reduce the trivial learning
by artificially increasing the embedding norms [2]. The variants of TransEdge
that use context compression (CC) and context projection (CP) are denoted
by TransEdge-CC and TransEdge-CP, respectively. For ablation study, we also
develop the degraded variants of TransEdge without using semi-supervised train-
ing, which are marked by the suffix (w/o semi).

3.5 Implementation for Link Prediction

Link prediction is the task of inferring the missing head or tail entities when given
incomplete relational triples. For example, given ( , capitalOf, New Zealand),
the link prediction models are expected to rank the right head entity Wellington
at the first place. Link prediction is a key task for KG completion and has been
widely used as an evaluation task by many previous KG embedding models.

The embeddings are learned by minimizing L. The parameters are initialized
using the Xavier initializer and the loss is also optimized using AdaGrad. In the
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test phrase, for head prediction ( , r, t), we create a set of candidate triples
by replacing with all possible entities. The candidate triples can be ranked
in ascending order according to their energy calculated using Eq. (1). The right
candidate triple is expected to have a top rank. Tail prediction (h, r, ) can be
done in the same way.

3.6 Complexity Analysis

In general, TransEdge learns two embeddings for each entity. We provide a
complexity comparison in Table 1, where ne and nr denote the numbers of
entities and relations, respectively, and d is the embedding dimension. As our
model introduces additional parameters for embedding entities. its complexity
is O(2ned + nrd), which is more than that of TransE. However, it is less than
the complexity of TransD. Note that, the parameter complexity of TransEdge
grows linearly with the number of entities and the embedding dimension.

Table 1. Complexity comparison of translational embedding models

Model #Embeddings

TransE [2] O(ned + nrd)

TransH [32] O(ned + 2nrd)

TransR [17] O(ned + nrd
2)

TransD [12] O(2ned + 2nrd)

TransEdge (this paper) O(2ned + nrd)

4 Experiments

We assess TransEdge on two popular embedding-based tasks: entity alignment
between two KGs and link prediction in one KG. The source code of TransEdge
is available online3.

4.1 Task 1: Embedding-Based Entity Alignment

Datasets. To evaluate TransEdge on various scenarios of entity alignment, we
choose the following datasets: (1) DBP15K [25] is extracted from the multilingual
DBpedia. It contains three cross-lingual entity alignment datasets: DBPZH−EN

(Chinese to English), DBPJA−EN (Japanese to English) and DBPFR−EN

(French to English). Each dataset has 15 thousand aligned entity pairs. (2)
DWY100K [26] has two large-scale monolingual datasets, DBP-WD and DBP-
YG, sampled from DBpedia, Wikidata and YAGO3. Each dataset has 100 thou-
sand aligned entity pairs. For a fair comparison, we reuse their original dataset
splits in evaluation.
3 https://github.com/nju-websoft/TransEdge.

https://github.com/nju-websoft/TransEdge
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Competitive Models. For comparison, we choose the following state-of-the-
art embedding-based entity alignment models: MTransE [4], IPTransE [36],
JAPE [25], BootEA [26] and its non-bootstrapping version AlignE, as well as
GCN-Align [33]. We do not compare with some other models like KDCoE [3]
and AttrE [30], since they require additional resources (e.g., textual descrip-
tions and attribute values) that do not present in our problem setting as well as
other competitors’. Furthermore, the character-based literal embedding used in
AttrE [30] is unsuited to cross-lingual entity alignment as the characters of dif-
ferent languages (such as Chinese and English) can be very heterogeneous. Our
goal is to exploit the basic relational structures of KGs for entity alignment.

To further understand the benefits and limitations of KG embeddings for
entity alignment, we extend several representative embedding models that are
used for link prediction as the competitors, including: three translational models
TransH [32], TransR [17] and TransD [12]; two bilinear models HolE [20] and
SimplE [14]; and two neural models ProjE [24] and ConvE [8]. Note that Com-
plEx [29] is very similar to HolE [27]. So, we pick HolE as the representative. We
do not include Analogy [18] and ConvKB [19], because we find that these meth-
ods do not perform well on the datasets. Similar to TransEdge, we merge two
KGs into one via parameter sharing and use these models to learn embeddings.
We refer the open-source KG embedding framework OpenKE [11] to implement
TransH, TransR, TransD and HolE, while SimplE, ProjE and ConvE are imple-
mented based on their code.

Experimental Settings. We have tuned a series of hyper-parameters. For
example, we select the learning rate among {0.001, 0.005, 0.01, 0.02} and the
positive margin γ1 among {0.1, 0.2, · · · , 0.5}. The selected setting of hyper-
parameters is reported as follows. For TransEdge-CC, γ1 = 0.3, γ2 = 2.0, α =
0.3, s = 0.75, d = 75. For TransEdge-CP, γ1 = 0.2, γ2 = 2.0, α = 0.8, s = 0.7,
d = 75. The activation function is tanh() for MLPs. For DBP15K, we generate
20 negative samples for each relational triple and the batch size is 2, 000. For
DWY100K, we generate 25 negative samples for each relational triple and the
batch size is 20, 000. We adopt L2-norm in the energy function. The learning
rate is 0.01 and the training is terminated using early stop based on the Hits@1
performance to avoid overfitting. We use CSLS [6] as similarity measure. We
choose three widely-used metrics: Hits@k, mean rank (MR) and mean reciprocal
rank (MRR). Higher Hits@k and MRR values, and lower MR values indicate
better performance. Note that, Hits@1 is equivalent to precision, and MRR is
more robust than MR since MRR is more able to tolerate a few poorly-ranked
correct candidates.

Entity Alignment Results. The results of entity alignment are depicted in
Tables 2 and 3. We can see that TransEdge consistently achieves the best for
all the metrics on the five datasets. For example, on DBPZH−EN, TransEdge-
CP (w/o semi) achieves an improvement of 0.187 on Hits@1 against AlignE.
If compared with its bootstrapping version BootEA, TransEdge-CP (w/o semi)
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Table 2. Entity alignment results on DBP15K

DBPZH−EN DBPJA−EN DBPFR−EN

Hits@1 Hits@10 MRR MR Hits@1 Hits@10 MRR MR Hits@1 Hits@10 MRR MR

MTransE [4] † 0.308 0.614 0.364 154 0.279 0.575 0.349 159 0.244 0.556 0.335 139

IPTransE [36] ‡ 0.406 0.735 0.516 – 0.367 0.693 0.474 – 0.333 0.685 0.451 –

JAPE [25] † 0.412 0.745 0.490 64 0.363 0.685 0.476 99 0.324 0.667 0.430 92

AlignE [26] 0.472 0.792 0.581 – 0.448 0.789 0.563 – 0.481 0.824 0.599 –

BootEA [26] 0.629 0.848 0.703 – 0.622 0.854 0.701 – 0.653 0.874 0.731 –

GCN-Align [33] 0.413 0.744 – – 0.399 0.745 – – 0.373 0.745 – –

TransH [32] � 0.377 0.711 0.490 52 0.339 0.681 0.462 59 0.313 0.668 0.433 47

TransR [17] � 0.259 0.529 0.349 299 0.222 0.440 0.295 315 0.059 0.225 0.116 502

TransD [12] � 0.392 0.729 0.505 48 0.356 0.695 0.468 58 0.323 0.694 0.447 43

HolE [20] � 0.250 0.535 0.346 488 0.256 0.517 0.343 560 0.149 0.465 0.251 1133

SimplE [14] ♦ 0.317 0.575 0.405 453 0.255 0.525 0.346 409 0.147 0.438 0.241 397

ProjE [24] ♦ 0.290 0.527 0.374 705 0.273 0.475 0.345 919 0.283 0.527 0.368 659

ConvE [8] ♦ 0.169 0.329 0.224 1123 0.192 0.343 0.246 1081 0.240 0.459 0.316 694

TransEdge-CC

(w/o semi)

0.622 0.868 0.711 65 0.601 0.863 0.696 56 0.617 0.891 0.716 38

TransEdge-CP

(w/o semi)

0.659 0.903 0.748 50 0.646 0.907 0.741 36 0.649 0.921 0.746 25

TransEdge-CC 0.669 0.871 0.744 66 0.645 0.859 0.722 67 0.666 0.893 0.749 40

TransEdge-CP 0.735 0.919 0.801 32 0.719 0.932 0.795 25 0.710 0.941 0.796 12
† Hits@k and MR results are taken from [25] while MRR results are taken from [26]. ‡ Results are taken

from [26]. � Results are produced by ourselves using OpenKE [11]. ♦ Results are produced by ourselves

using their source code. − denotes unreported results in their papers. Unmarked results are taken from

their own papers. Best results are marked in boldface, and same in the following tables.

still achieves a gain of 0.030 while the improvement of TransEdge-CP reaches
0.106. We can see that BootEA is a very competitive model due to its powerful
bootstrapping strategy. However, our semi-supervised variants TransEdge-CC
and TransEdge-CP significantly outperform BootEA on DBP15K. This is due
to the ability of TransEdge on preserving KG structures.

On DBP15K, both TransEdge-CC and TransEdge-CP show good perfor-
mance. TransEdge-CC (w/o semi) still obtains superior results than AlignE and
TransEdge-CC also outperforms BootEA. Furthermore, we find that TransEdge-
CP achieves better results than TransEdge-CC. We think that this is because the
context projection has a good geometric interpretation, as shown in Fig. 2(b),
which helps capture better and more solid relational structures of KGs for
entity alignment. We can also see that the proposed semi-supervised training for
entity alignment brings remarkable improvement. For example, on DBPZH−EN,
it increases the Hits@1 scores of TransEdge-CP from 0.659 (w/o semi) to 0.735.
These results indicate that the proposed context compression and projection can
both accurately compute the edge embeddings. The proposed semi-supervised
training also contributes to the performance improvement.

We notice that, on DWY100K, the improvement of TransEdge is not so large
as that on DBP15K. For example, on DBP-WD, TransEdge-CP only achieves
an improvement of 0.040 on Hits@1 against BootEA. We think this is because
the two KGs in DBP-WD or DBP-YG have aligned relational structures and
their entities are one to one aligned. But in DBP15K, there are many noisy



Translating Relation-Contextualized Embeddings for Knowledge Graphs 623

Table 3. Entity alignment results on DWY100K

DBP-WD DBP-YG

Hits@1 Hits@10 MRR MR Hits@1 Hits@10 MRR MR

MTransE [4] ‡ 0.281 0.520 0.363 – 0.252 0.493 0.334 –

IPTransE [36] ‡ 0.349 0.638 0.447 – 0.297 0.558 0.386 –

JAPE [25] ‡ 0.318 0.589 0.411 – 0.236 0.484 0.320 –

AlignE [26] ‡ 0.566 0.827 0.655 – 0.633 0.848 0.707 –

BootEA [26] ‡ 0.748 0.898 0.801 – 0.761 0.894 0.808 –

GCN-Align [33] ∇ 0.479 0.760 0.578 1988 0.601 0.841 0.686 299

TransH [32] � 0.351 0.641 0.450 117 0.314 0.574 0.402 90

TransR [17] � 0.013 0.062 0.031 2773 0.010 0.052 0.026 2852

TransD [12] � 0.362 0.651 0.456 152 0.335 0.597 0.421 90

HolE [20] � 0.223 0.452 0.289 811 0.250 0.484 0.327 437

SimplE [14] ♦ 0.169 0.328 0.223 3278 0.131 0.282 0.183 3282

ProjE [24] ♦ 0.312 0.504 0.382 2518 0.366 0.573 0.436 1672

ConvE [8] ♦ 0.403 0.628 0.483 1428 0.503 0.736 0.582 837

TransEdge-CC (w/o semi) 0.687 0.910 0.767 70 0.759 0.935 0.822 24

TransEdge-CP (w/o semi) 0.692 0.898 0.770 106 0.726 0.909 0.792 46

TransEdge-CC 0.732 0.926 0.803 65 0.784 0.948 0.844 22

TransEdge-CP 0.788 0.938 0.824 72 0.792 0.936 0.832 43

∇: Results are produced using its code. Other marks mean the same in Table 2.

entities that have no counterparts. Thus, DWY100K is relatively simple for entity
alignment. On datasets with noisy entities, TransEdge gives a big advantage to
others, which indicates the robustness of TransEdge.

It is interesting to see that some modified models also demonstrate competi-
tive performance on entity alignment. ConvE even outperforms some alignment-
oriented embedding models such as MTransE, IPTransE and JAPE on the
DWY100K datasets, which indicates the potential of deep learning techniques.
We also notice that the performance of TransR is very unstable. It achieves
promising results on DBPZH−EN and DBPJA−EN but fails on the other three
datasets. We take a closer look at the five datasets and discover that DBPZH−EN

and DBPJA−EN contain some relation alignment. When TransR performs
relation-specific projections on entities, the relation alignment would pass some
alignment information to entities. The requirement of relation alignment limits
the applicability of TransR to entity alignment. We can conclude that not all
embedding models designed for link prediction are suitable for entity alignment.

4.2 Task 2: Embedding-Based Link Prediction

Datasets. We use two benchmark datasets FB15K-237 [28] and WN18RR [8]
for link prediction. They are the improved versions of FB15K [2] and WN18 [2],
respectively. As found in [8,28], FB15K and WN18 contain many symmetric
triples that are easy to infer by learning some trivial patterns. Thus, the work
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in [8,28] creates FB15K-237 and WN18RR by removing inverse relations from
the testing sets. So, FB15K-237 and WN18RR are more difficult, and both of
them have gradually become the most popular benchmark datasets for link pre-
diction in recent studies [8,19,27,35]. FB15K-237 contains 14, 541 entities, 237
relations and 310, 116 relational triples. WN18RR has 40, 943 entities, 11 rela-
tions and 93, 003 relational triples. For a fair comparison, we reuse the original
training/validation/test splits of the two datasets in evaluation.

Competitive Models. For comparison, we choose a wide range of embedding
models for link prediction as the competitors, including five translational models,
seven bilinear models and five neural models, as listed in Table 4. For the sake
of fairness and objectivity, we report the published results of them as many as
possible. But there still exist some results unavailable in the reference papers. If
some models have not been evaluated on FB15K-237 or WN18RR, we use their
released code to produce the results by ourselves.

Experimental Settings. We have tuned hyper-parameter values by a careful
grid search. The selected setting for hyper-parameters is as follows. For FB15K-
237, γ1 = 0.4, γ2 = 0.9, α = 0.4, d = 200. The batch size is 200 and the
learning rate is 0.005. We generate 10 negative samples for each triple. For
WN18RR, γ1 = 0.2, γ2 = 2.7, α = 0.8, d = 500. The batch size is 2, 000 and
the learning rate is 0.01. We sample 30 negatives for each triple. The activation
function is still tanh() for MLPs. We use L2-norm in our energy function. When
evaluating the ranking lists, we use the filtered setting [2], i.e., given a candidate
triple list, we remove from the list all other positive triples that appear in the
training/validation/test data. Then, we get a new filtered ranking list and the
right triple is expected to have a high rank. By convention, we report the average
results of head prediction and tail prediction. Same as embedding-based entity
alignment, we use Hits@k, MR and MRR.

Link Prediction Results. Table 4 gives the link prediction results on FB15K-
237 and WN18RR. We can see that TransEdge significantly outperforms the
translational models TransE, TransH, TransR and PTransE. This is because
the proposed edge-centric translation can distinguish the different contexts of
relations, while the relation translation of the aforementioned models usually
leads to indistinguishable relation embeddings when modeling complex relational
structures. When compared with the bilinear and neural models, especially with
the very latest model RotatE [27], TransEdge-CP still achieves the best Hits@1
scores on both datasets. The best Hits@1 performance shows that TransEdge-CP
can precisely capture the relational structures of KGs for link prediction, rather
than put all possible candidates with similar and ambiguous ranks. We can also
see that TransEdge-CC obtains the best MR result on WN18RR. Considering
that WN18RR only has 11 relations but 40, 943 entities, we think this is because
the MLPs can well fit such complex relational structures. Although the scores of
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Table 4. Link prediction results on FB15K-237 and WN18RR

Model Type FB15K-237 WN18RR

Hits@1 Hits@10 MRR MR Hits@1 Hits@10 MRR MR

TransE [2] † Trans. – 0.436 0.269 285 – 0.453 0.412 5429

TransH [32] † Trans. – 0.453 0.281 292 – 0.429 0.435 5102

TransR [17] ‡∇ Trans. – 0.429 0.162 337 0.017 0.257 0.094 3708

TransD [12] ‡∇ Trans. – 0.428 0.162 305 0.015 0.139 0.060 6644

PTransE [16] � Trans. 0.210 0.501 0.314 299 0.272 0.424 0.337 5686

DistMult [34] § Bilinear 0.155 0.419 0.241 254 0.390 0.490 0.430 5110

HolE [20] �∇ Bilinear 0.133 0.391 0.222 – 0.284 0.346 0.308 4874

ComplEx [29] § Bilinear 0.158 0.428 0.247 339 0.410 0.510 0.440 5261

Analogy [18] �∇ Bilinear 0.131 0.405 0.219 – 0.389 0.441 0.407 3836

ProjE [24] Neural – 0.461 0.294 246 – 0.474 0.453 4407

ConvE [8] Neural 0.239 0.491 0.316 246 0.390 0.480 0.460 5277

R-GCN [23] Neural 0.153 0.414 0.248 – – – – –

ConvKB [19] Neural – 0.517 0.396 257 – 0.525 0.248 2554

CACL [21] Neural – 0.487 0.349 235 – 0.543 0.472 3154

SimplE [14] � Bilinear 0.225 0.461 0.230 – – – – –

CrossE [35] ♦ Bilinear 0.211 0.474 0.299 – 0.373 0.394 0.374 6091

RotatE [27] Bilinear 0.241 0.533 0.338 177 0.428 0.571 0.476 3340

TransEdge-CC Trans. 0.227 0.482 0.310 305 0.411 0.516 0.439 2452

TransEdge-CP Trans. 0.243 0.512 0.333 219 0.433 0.487 0.451 4866

†: Results are taken from [21]. ‡: Results of FB15K-237 are taken from [1]. ∇:
Results on WN18RR are produced using OpenKE [11]. �: Results are produced
using its source code. §: Results are taken from [8]. �: Results are taken from [23].
�: Results are taken from [35]. �: Results are produced using the published source
code. We do not include its results of WN18RR because we find them not promising.
♦: Results of WN18RR are produced using its source code.

TransEdge by other metrics such as Hits@10 and MRR fall behind ConvKB and
RotatE, the model complexity of TransEdge is lower than them. For example,
the convolution operation of ConvE and ConvKB is more complicated than the
matrix multiplication used in the MLPs of TransEdge. Besides, the Euclidean
vector space of real numbers generated by TransEdge is simpler than the complex
vector space of ComplEx and RotatE.

4.3 Analysis on Complex Relational Structures in KGs

One Entity Pair with Multiple Relations. For further comparison, we eval-
uate TransEdge on KGs with double relations. We create a dummy relation r′

for each relation r and add a dummy triple (h, r′, t) for (h, r, t). The dummy
relations and triples would not change the relational structures of KGs, but they
would exacerbate the effects of the cases of one entity pair with multiple relations.
We compare TransEdge (w/o semi) with the relation-level translational model
MTransE [4]. Due to space limitation, we report the Hits@1 results on DBP15K
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Table 5. Entity alignment results on DBP15K with double relations

DBPZH−EN (double) DBPJA−EN (double) DBPFR−EN (double)

Hits@1 Hits@1↓ Hits@1 Hits@1↓ Hits@1 Hits@1↓
MTransE [4] 0.230 25.32% 0.232 16.85% 0.208 14.75%

TransEdge-CC (w/o semi) 0.601 3.38% 0.578 3.82% 0.585 5.18%

TransEdge-CP (w/o semi) 0.652 1.06% 0.623 3.56% 0.641 1.23%

and the decrease rates (marked as Hits@1↓) compared with their performance
in Table 2. The results are listed in Table 5. We can see that the performance
of TransEdge shows less variation than MTransE. This indicates that the com-
plex relational structures can indeed hinder entity alignment performance while
TransEdge has superior performance on modeling such structures.

Multiple Entity Pairs with One Relation. Figure 4 shows the 2D visual-
ization for the embeddings of some entity pairs with the same relation capital in
DBP-WD. We project these embeddings into two dimensions using PCA. We can
see that the embeddings of TransEdge show flexible and robust relational struc-
tures. The translation vectors of capital are different in directions when involved
in different contexts. For the embeddings of MTransE, the translation vectors
are almost parallel. This means that, if several entities get involved in the same
relational triple, they would be embedded very similarly by the same relational
translation, which hinders the entity alignment performance. This experiment
bears out the intuition of TransEdge illustrated by Fig. 1.

Greece

Athens

Vienna

Austria

Honolulu

Hawaii

Tallahassee

Florida

(a) Embeddings of TransEdge (b) Embeddings of MTransE

Florida

Tallahassee

Hawaii

Honolulu

Greece

Athens

Austria

Vienna

Fig. 4. 2D embedding projection of some countries (or states) and their capital cities.
The green arrows denote the translation vectors between entities. (Color figure online)
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Fig. 5. Results of TransEdge, LogMap [13] and their combination on DWY100K.

4.4 Comparison with Conventional Entity Alignment Method

Conventional entity alignment methods usually exploit literal attributes like
names and comments, or OWL logics, to identify similar entities, which are quite
different from TransEdge. We further compare TransEdge-CP with LogMap [13],
a popular and accessible conventional entity alignment method. We use its web
front-end system4 to obtain its performance on the monolingual datasets DBP-
WD and DBP-YG. We also design a strategy to combine TransEdge-CP and
LogMap, which combines their produced entity alignment (i.e., Hits@1 align-
ment for TransEdge) by voting based on the predicted similarity. We report
the conventional precision, recall and F1-score results in Fig. 5. Note that, for
embedding-based entity alignment, recall and F1-score are equal to precision,
because we can always get a candidate list for each input entity based on their
embeddings. We can see that LogMap shows very competitive performance and
it outperforms TransEdge and the other embedding-based models. However, we
find that the combined results achieve the best. This shows that TransEdge is
complementary with conventional entity alignment methods.

5 Conclusion and Future Work

In this paper, we proposed a relation-contextualized KG embedding model. It
represents relations with context-specific embeddings and builds edge transla-
tions between entities to preserve KG structures. We proposed context compres-
sion and projection to compute edge embeddings. Our experiments on standard
datasets demonstrated its effectiveness on entity alignment and link prediction.
For future work, we plan to study techniques like language models to represent
multi-hop relation contexts. We also want to incorporate other proximity mea-
sures into the preserved KG structures, such as attribute similarity.

Acknowledgments. This work is funded by the National Natural Science Foundation
of China (No. 61872172), and the Key R&D Program of Jiangsu Science and Technology
Department (No. BE2018131).
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Abstract. Any data publisher can make RDF knowledge graphs avail-
able for consumption on the Web. This is a direct consequence of the
decentralized publishing paradigm underlying the Data Web, which has
led to more than 150 billion facts on more than 3 billion things being pub-
lished on the Web in more than 10,000 RDF knowledge graphs over the
last decade. However, the success of this publishing paradigm also means
that the validation of the facts contained in RDF knowledge graphs has
become more important than ever before. Several families of fact valida-
tion algorithms have been developed over the last years to address several
settings of the fact validation problems. In this paper, we consider the
following fact validation setting: Given an RDF knowledge graph, com-
pute the likelihood that a given (novel) fact is true. None of the current
solutions to this problem exploits RDFS semantics—especially domain,
range and class subsumption information. We address this research gap
by presenting an unsupervised approach dubbed COPAAL, that extracts
paths from knowledge graphs to corroborate (novel) input facts. Our
approach relies on a mutual information measure that takes the RDFS
semantics underlying the knowledge graph into consideration. In partic-
ular, we use the information shared by predicates and paths within the
knowledge graph to compute the likelihood of a fact being corroborated
by the knowledge graph. We evaluate our approach extensively using 17
publicly available datasets. Our results indicate that our approach out-
performs the state of the art unsupervised approaches significantly by
up to 0.15 AUC-ROC. We even outperform supervised approaches by
up to 0.07 AUC-ROC. The source code of COPAAL is open-source and
is available at https://github.com/dice-group/COPAAL.

1 Introduction

The participatory paradigm underlying the Data Web has led to more than 150
billion facts on more than 3 billion things being published on the Web in more
than 10,000 RDF knowledge graphs.1 For example, DBpedia [2], YAGO [20] and
WikiData [13] contain information about millions of entities and comprise bil-
lions of facts about these entities. These facts are used in the backend of a growing
number of applications including in-flight applications [13], community-support
1 http://lodstats.aksw.org/.
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systems [1] and even personal assistants such as Apple’s Siri [13]. Ensuring the
veracity of the facts contained in knowledge graphs is hence of critical impor-
tance for an increasing number of end users and applications. Manual solutions
to the computation of the veracity of facts are clearly an impractical feat due
to the volume and the velocity of the data of the Data Web.2 Consequently,
automated solutions to this computation, dubbed fact validation [11,17] (also
called fact checking in some of the literature, e.g., [8]) have been devised over
the last years.

The goal of fact validation can be summarized as follows: Given a fact, com-
pute the likelihood that the given fact is true. Two main families of approaches
have been devised to address this problem (see Sect. 2 for more details). The
first family of approaches encompasses solutions which verbalize the input fact
and use textual evidence (e.g., large corpora such as the Web or Web crawls)
to find statements which support or refute the input fact [8,22,24]. We focus
on the second family of approaches. These approaches use a knowledge graph
G as background knowledge and use the facts contained therein to evaluate
the likelihood that the given fact is true [5,9,18]. These approaches use sets
of facts as evidence to compute the likelihood of a given fact. For example,
when using DBpedia version 2016-10 as background knowledge, they might
use facts such as (Barack Obama, birthPlace, Hawaii) and (Hawaii, country,
United States of America) to conclude that (Barack Obama, nationality,
United States of America) holds—a fact which is not to be found in the back-
ground knowledge base.

Our work is based on the following observation: While most approaches
which use a knowledge graph as background knowledge have been deployed on
RDF knowledge graphs, none has made use of the semantics of the accompa-
nying schema in RDFS to the full. In particular, none of the state-of-the-art
approaches makes use of the combination of domain, range and subsumption
hierarchy expressed in the schema of most RDF datasets in RDFS. However, the
RDFS schema contains crucial information (e.g., type information) necessary to
detect facts which can be used to validate or invalidate other facts.

In this paper, we address this research gap by presenting an unsupervised
fact validation approach for RDF knowledge graphs which identifies paths that
support a given fact (s, p, o). This approach is based on the insight that the
predicate p (e.g., nationality) carries mutual information with a set of other
paths (e.g., paths pertaining to birthPlace and country) in the background
knowledge graph G. Hence, the presence of certain sets of paths in G that begin
in s and end in o can be regarded as evidence which corroborates the veracity
of (s, p, o). Our approach is the first to take the domain and range information
of p, the type of s and o as well as the subsumption relations between types
in the RDFS schema of G into consideration while identifying these paths. Our
results show conclusively that using this information leads to significantly higher
AUC-ROC results on 17 benchmark datasets.

Our approach has several advantages over the state of the art: (i) It uses
data which can be directly queried via SPARQL from G, i.e., there is no need to

2 See https://lod-cloud.net/ for data on the growth of the Linked Open Data Cloud.

https://lod-cloud.net/
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alter the representation mechanism of G or to use an internal representation of
G in our implementation. Moreover, our approach can exploit the large body of
work on scaling up triple stores to competitive runtimes. (ii) The proposed co-
occurrence measure for the similarity calculation between predicates and paths
is not bound to path lengths and can hence be exploited to detect paths of any
finite length. (iii) Our approach is completely unsupervised and neither training
nor labeled data is required.

The rest of the paper is organized as follows: Sect. 2 present details pertaining
to related fact validation approaches. In Sect. 3, we present a brief overview of
the formal notation used in this paper. We also introduce the formal specification
we use throughout this work. Section 4 details the formal model underlying our
approach. In particular, it gives a formal specification of corroborative paths and
how they can be used to measure the likelihood of a fact being true. Section 5
provides the details of our implementation. We present our experimental setup
in Sect. 6 and discuss our results in Sect. 7. Finally, we conclude in Sect. 8.

2 Related Work

Approaches to fact validation can be broadly classified into two categories: (i)
approaches that use unstructured textual sources [8,22,24] and (ii) approaches
that use structured information sources [3,17–19]. The latter—in particular
approaches that use a given knowledge graph for fact validation—are more rel-
evant to the work presented herein. Several approaches view a given knowledge
graph as labeled graph connecting nodes (entities) and edges (relations). Given
an input triple (s, p, o), the goal is then to search for paths of length up to a
given threshold k and use them to validate/invalidate the given input triple.
For instance, in [5,18] a knowledge graph is viewed as undirected network of
paths. The task is then to find shortest paths that connect s and o and are
semantically related to p. These approaches are unsupervised and do not require
prior training data. However, these approaches do not take into consideration the
terminological information (in particular the semantics of RDFS) of the input
knowledge graph while defining semantic proximity metrics. Other approaches
view KBs as graphs and search for metapaths to extract features [9,21,25]. These
features are then used to train a classification model to label unseen facts as true
or false. However, these approaches require training data in the form of labeled
metapaths and hence required significantly more human effort that the approach
presented herein. In PredPath [17], the authors propose a novel method to auto-
matically extract metapaths—called anchored predicate paths—given a set of
labeled examples. To achieves this goal, PredPath uses the rdf:type informa-
tion contained in the input knowledge graph. However, the anchored predicate
paths used for learning features are selected based on the type information of
subject and object irrespective of the predicate connecting them. This means
that they do not consider the domain, range and class subsumption provided by
the RDFS schema of the given knowledge graph. Consequently, their ability to
generalize over paths is limited as shown in Sect. 7 of this paper. Additionally,
PredPath requires labeled training data. Hence, porting it to previously unseen
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predicates is significantly more demanding that porting our approach, which is
fully unsupervised.

Alternative to graph models, several approaches encode the entities and rela-
tions in a KB using vector embeddings [3,12,19,23]. The fact validation problem
is then formulated as calculating the similarity between the entities and predicate
of a given input triple. Embedding-based methods for link prediction address a
related but different problem. Given a KG G, they compute a score function,
which expresses how likely it is that any triple whose subject, predicate and
object belong to the input graph G should belong to G [14]. Fact validation
approaches addresses a different but related goal: Given a graph G and a triple
t, they aim to compute the likelihood that t is true [8,18,22]. A core repercussion
of these two different problem formulations are the runtimes and the applications
of link prediction and fact checking. While fact validation algorithms are used in
online scenarios embedding-based algorithms are often used offline. Approaches
such as [6,7] mine Horn rules that can be used for knowledge base completion
tasks. However, they often fail to scale to large knowledge graphs.

Our approach, is inspired by approaches that discover metapaths. We propose
a novel approach for finding paths which corroborate a given triple (s, p, o). In
addition, we present a novel measure to calculate association strength these paths
and the input triple. In contrast to approaches based on metapaths, our approach
does not need training examples and does not require any supplementary effort
to deployed to previously unseen relations.

3 Preliminaries

Throughout this paper, we consider RDF knowledge graphs with RDFS seman-
tics. We use the notation presented in Table 1.

Table 1. List of symbols

Notation Description

G A knowledge graph

B,C,E,L, P Set of all blank nodes, RDFS classes, RDF resources, Literals and

RDF predicates, respectively

πk(v0, vk) Directed path of length k between nodes v0 and vk in G
μk(v0, vk) Undirected path of length k between nodes v0 and vk in G
Πk(p) Set of corroborative paths for a predicate p

Πk
(tx,ty) Set of typed directed paths of length k between nodes v0 and vk in G

Mk
(tx,ty) Set of typed undirected paths of length k between nodes v0 and vk in G

�q Vector of k predicates in G
Πk

(tx,ty),�q Set of �q-restricted typed directed paths of length k between nodes v0 and vk in G
Mk

(tx,ty),�q Set of �q-restricted typed undirected paths of length k between nodes v0 and vk in G
γ(x) Function mapping each element of E ∪ P ∪ B ∪ L to its type

λ(tx) Function mapping the type tx to a set of resources that are instances of this type

D(p) The domain of the predicate p

R(p) The range of the predicate p
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3.1 Knowledge Graph

Definition 1. An RDF knowledge graph G is a set of RDF triples, i.e.,

G = {(s, p, o)|s ∈ E ∪ B, p ∈ P, o ∈ E ∪ B ∪ L}, (1)

where E is the set of all RDF resources, B is the set of all blank nodes, P ⊆ E is
the set of all RDF predicates and L represents the set of all literals.

Intuitively, an RDF knowledge graph can be understood as an edge-labeled
directed graph in which the node s is connected to the node o via an edge
with the label p iff the triple (s, p, o) ∈ G. This is the approach we use to dis-
play knowledge graphs graphically (see, e.g., Fig. 1). We use the notation s

p−→ o
to denote that (s, p, o) ∈ G. We denote the set of all RDFS classes as C (with
C ⊆ E). For A ∈ C and B ∈ C, we write A � B to signify that AI ⊆ BI for any
interpretation ·I .

Example 1. An excerpt of an example RDF knowledge graph—which we will
use as a running example—is displayed in Fig. 1. The example shows a sub-
graph extracted from DBpedia3 consisting of nodes (resources) (e.g., Barack
Obama and United States) and edges (relations) connecting these entities either
directly or via intermediate nodes (e.g., birthplace).

nationality

alumni country

party

country

birthPlace
country

Barack_Obama

Democratic_Party 
_(United_States)

Hawaii

East_Greenwich 
_High_School

United_States

Honolulu

birth
Place

isPartOf

Facts missing in DBpedia

Facts present in DBpedia

Fig. 1. A subgraph of DBpedia version 10-2016.

Definition 2. Path: A path of length k in a knowledge graph G is a cycle-free
sequence of triples from G of the form (v0, p1, v1), (v1, p2, v2), ..., (vk−1, pk, vk).

This means in particular that ∀i, j ∈ [0, k], i �= j → vi �= vj . We use πk(v0, vk)
to denote paths between v0 and vk. For the sake of legibility, we use the nota-
tion v0

p1−→ . . .
pk−1−−−→ vk to denote paths. Note that several paths can exist

between v0 and vk. For example, BarackObama birthPlace−−−−−−−→ Hawaii
country−−−−−→ USA

and BarackObama
party−−−→ DemocraticParty

country−−−−−→ USA are both paths of length
2 between the resources BarackObama and USA in our running example.
3 http://downloads.dbpedia.org/2016-10/.

http://downloads.dbpedia.org/2016-10/
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Definition 3. Undirected path: An undirected path of length k in a graph G is a
cycle-free sequence of triples of the form (v0, p1, v1), (v1, p2, v2), ..., (vk−1, pk, vk)
where ∀i ∈ [0, k − 1] (vi, pi+1, vi+1) ∈ G ∨ (vi+1, pi+1, vi) ∈ G.
Again, this means that ∀i, j ∈ [0, k], i �= j → vi �= vj . We denote undirected
paths with μk(v0, vk). For example, BarackObama alumni←−−−− GreenwichHighSchool
country−−−−−→ USA is an undirected path of length 2 between BarackObama and USA in
our example.

4 Corroborative Paths

4.1 Intuition

In this paper, we address the following problem: Given an RDF knowledge graph
G and a triple (s, p, o), compute the likelihood that (s, p, o) is true. For example,
we would have good reasons to believe that BarackObama is a citizen of the
USA given that BarackObama was born in Hawaii and Hawaii is located in the
USA. Clearly, we cannot formally infer that x is a national of z by virtue of the
existence of x

birthplace−−−−−−−→ y
country−−−−−→ z. Still, this path is a strong indicator (i.e.,

strongly corroborates) triples of the form x
nationality−−−−−−−→ z. The basic intuition

behind our work is correspondingly that the existence of certain paths πk(s, o)
between s and o is a strong indicator for the correctness (i.e., corroborate the
existence) of (s, p, o) and can hence be used to compute its likelihood.

4.2 Formal Model

Let γ be a function which maps each element of E ∪ P ∪ B ∪ L to its type. For
example, γ(BarackObama) = Person � Agent � Politician � President and
γ(UnitedStates) = Place � Location � Country � PopulatedPlace in our
running example.4 Further, let λ be a function which maps a given type tx to a
set of resources that are instances of tx by virtue of RDFS semantics. Extending
the formal model in [17], we now define the set Πk

(tx,ty)
of typed paths of length

k between pairs of resources of type tx and ty in a knowledge graph G as follows:

Πk
(tx,ty)

= {πk(v0, vk) | γ(v0) � tx ∧ γ(vk) � ty}. (2)

For tx = {Person} and ty = {Place}, the path BarackObama
birthPlace−−−−−−−→ Hawaii

country−−−−−→ USA is an element of the set Π2
(tx,ty)

in our running example. We define
the set Mk

(tx,ty)
of typed undirected paths analogously.

4 We use � to denote the conjunction of classes. Note that given that President

� Person � Agent, we could write the type BarackObama in an abbreviated form.
Similar considerations holds for the type of UnitedStates. We chose to write the
types out to remain consistent with the output of our example knowledge graph,
DBpedia 2016-10.
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Let �q = q1, . . . , qk be a vector of properties of length k. We define the set of
�q-restricted typed paths Πk

(tx,ty),�q
⊆ Πk

(tx,ty)
as follows:

Πk
(tx,ty),�q

=
{
πk(v0, vk)

∣
∣ πk(v0, vk) ∈ Πk

(tx,ty)
,

∀i ∈ [0, k − 1] : (vi, pi+1, vi+1) ∈ πk(v0, vk) → pi+1 = qi+1

}
.

(3)

Put simply, this is the set of typed paths such that the sequence of properties in
each path is exactly �q. For example, let tx={Person}, ty = {Place} and �q = (
birthPlace, country). Then the path BarackObama

birthPlace−−−−−−−→ Hawaii
country−−−−−→

USA is the only element of Π2
(tx,ty),�q

in our running example. We call the elements
of Πk

(tx,ty),�q
similar as they share a sequence of predicates (i.e., �q). We define

sets of �q-restricted undirected typed paths Mk
(tx,ty),�q

analogously to Πk
(tx,ty),�q

.
We can now use restricted typed paths to compute how well a predicate is

corroborated in a knowledge graphs as follows: Let D(p) be the domain of p and
R(p) be its range. Given that we assume RDF knowledge graphs, we can safely
assume the existence of an RDFS class hierarchy for the said graph (defined via
the rdf:type predicate). Consequently, we can derive the following important
condition on paths πk(s, o) which are to corroborate the correctness of (s, p, o):
Only typed paths in Πk

(D(p),R(p)) can corroborate facts with the predicate p. This
particular insight is one of the major differences between this and previous works
(see Sect. 2), in which the consequences of RDFS semantics were not taken into
consideration. In particular, while previous approaches [17] used at most γ(s)
and γ(o) to measure the strength of the association between paths and predi-
cates, we use D(p) and R(p) as well as the RDFS class hierarchy in the input
knowledge graph G to determine the degree to which a path πk(s, o) corroborates
a predicate p.

Given an RDF knowledge graph G, we hence define the corroborative paths
for a predicate p formally as follows:

Πk(p) =
k⋃

j=1

Πj
(D(p),R(p)). (4)

Simply put, corroborative paths in Πk(p) are paths of length at most k that
carry similar information to p.

4.3 Association Strength

We base our computation of the strength of the association between Πj
(tx,ty),�q

and
p on their normalized pointwise mutual information [4]. To this end, we define
probability P(Πj

(tx,ty),�q
) of pairs of instances of tx resp. ty being connected via

a �q-restricted path of length j is as follows:
∣
∣
∣{(a, b) : γ(a) � tx ∧ γ(b) � ty ∧ (∃πj(a, b) ∈ Πj

(tx,ty),�q
)}

∣
∣
∣

|λ(tx)| · |λ(ty)| . (5)
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The probability P(p) of the predicate p linking resources of type tx and ty is

|{(a, p, b) : γ(x) � tx ∧ γ(y) � ty ∧ (a, p, b) ∈ G}|
|λ(tx)| · |λ(ty)| (6)

Finally, the joint probability P(Πj
(tx,ty),�q

, p) is defined as
∣
∣
∣{(a, b) : γ(a) � tx ∧ γ(b) � ty ∧ (∃πj(a, b) ∈ Πj

(tx,ty),�q
) ∧ (a, p, b) ∈ G}

∣
∣
∣

|λ(tx)| · |λ(ty)| . (7)

We could now compute the NPMI of Πj
(tx,ty),�q

and p as defined in [4]. How-
ever, a direct implementation of the original definition of the NPMI would be
expensive as it would require deduplicating the sets of pairs (a, b) connected by
the paths in Πj

(tx,ty)
.5 Hence, our approach implements an approximation of the

NPMI based on counting the number of paths which connect pairs (a, b) instead
of the pairs themselves. We hence end up with the following approximations
(note that these values are not probabilities):

P̂(Πj
(tx,ty),�q

) =
|Πj

(tx,ty),�q
|

|λ(tx)| · |λ(ty)| (8)

P̂(Πj
(tx,ty),�q

, p) =
|{πj(a, b) ∈ Πj

(tx,ty),�q
: (a, p, b) ∈ G}|

|λ(tx)| · |λ(ty)| . (9)

These approximations can be computed by using SPARQL queries without
DISTINCT clause, which makes the computation an order of magnitude faster
(see Table 7 for some of the scores returned by this function). Note that P(p)
remains unchanged and the number of paths a

p−→ b is exactly equal to the num-
ber of pairs (a, b) connected by p. Based on these approximations we can now
approximate the NPMI of Πj

(tx,ty),�q
and p as follows:

N̂PMI(Πj
(tx,ty),�q

, p) =

log

(
̂P

(

Πj
(tx,ty),�q

,p
)

̂P
(

Πj
(tx,ty)

)

·P(p)

)

− log
(

P̂
(
Πj

(tx,ty),�q
, p

) ) (10)

5 Method and Implementation

This section presents our implementation of the formal model presented above
in detail. In particular, we show how some of the core computations of our model
can be implemented using SPARQL queries, ensuring practicable runtimes for
our approach. As above, we explain the approach using directed paths for the
sake of legibility. The approach was also implemented using undirected paths.
An evaluation of the performance of the approach with directed and undirected
paths is presented in Sect. 7.
5 Preliminary experiments suggest a 20-fold increase in runtime without any significant

increase in AUC-ROC.
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5.1 Algorithm

Given an input triple t = (s, p, o), a knowledge graph G and a maximum path
length k, our implementation begins by identifying a set of paths of varying
lengths connecting s and o, respectively. For each path, it calculates a score,
which explicates the degree to which the path corroborate t. Finally, the scores
are amalgamated to a single score τ which expresses the veracity of t. The
complete algorithm is shown in Algorithm 1 and can be separated into the 4
steps (i) Initialization, (ii) Path discovery, (iii) Path scoring and (iv) Veracity
calculation.

Algorithm 1. COPAAL - Corroborative Fact Validation
Input : The input triple t = (s, p, o), the knowledge graph G and

the maximum path length k
Output: A veracity score τ for t
// Initialization

1 prune(G)

2 cD(p) ←− countInstances(D(p))
3 cR(p) ←− countInstances(R(p))
4 cp ←− countTriples(p)
5 List Z ←−{}; List Q ←−{}

// Path Discovery

6 for j = 1 to k do
7 QT ←− generateQueryTemplates(j)
8 for qt ∈ QT do
9 sq ←− qt(vo = s, vk = o)

10 Q ←− execute(sq)
11 prune(Q)

12 for �q ∈ Q do
13 Q.add((qt, �q))

14 end

15 end

16 end
// Path scoring

17 for (qt, �q) ∈ Q do
18 sq ←− generatePathCountQuery (qt, πj(s, o), D(p), R(p))
19 cΠ ←− execute(sq)
20 sq ←− generateCoocCountQuery (sq, t)
21 cΠ,p ←− execute(sq)
22 Z.add(calcNPMI(cΠ,p, cΠ , cp, cD(p), cR(p)))

23 end
// Veracity calculation

24 τ ←− 1
25 for ζ ∈ Z do
26 τ ←− τ × (1 − ζ)
27 end
28 return 1 − τ
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Initialization. Firstly, we prune G by removing all nodes from domain outside
the union of (i) base namespace(s) of G, (ii) the namespace for RDF, RDFS and
OWL. We carry out this preprocessing because we are interested in relations
(edges) that are defined by the ontology of the given G (line 1). Thereafter, the
domain D(p) and range R(p) of the given triple’s predicate p are determined.6

The number of instances of these two types as well as the number of triples
containing p as predicate are retrieved via SPARQL count queries (lines 2–4).

Path Discovery. In the second step, the properties of all paths πj(s, o) (i.e.,
their �q restrictions) of length j ∈ [1, k] between s and o are retrieved. To this
end, we generate SPARQL7 query templates (line 7). The query template which
retrieves directed paths of length j = 2 between ?v0 and ?v2 from an RDF
graph is:

SELECT ?p1 ?p2

WHERE {

?v0 ?p1 ?v1 .

?v1 ?p2 ?v2 .

}

Note that the query has to be modified with UNION to cover undirected paths.
Still, a single query can be used to detect paths of any length. Hence, our app-
roach generates k queries in this step.

After generating all necessary query templates up to the given length k, we
replace the variables ?v0 and ?vj with s and o respectively in the query (line 9).
We prune the results of the query (line 11) by removing results containing pred-
icates which define the terminology (e.g., class membership through rdf:type,
class hierarchy through rdfs:subClassOf).8 The remaining �q-restrictions are
stored as pairs together with the template which was used to retrieve them in
the list Q (line 12–14). We store the template to ensure that we can reconstruct
the direction of the predicates in case undirected paths are used.

Path Scoring. Pairs in Q are used to define the �q-restricted typed path sets
Πj

(D(p),R(p)),�q. For each of these pairs, a score ζ is calculated based on the NPMI
approximation in Eq. 10 (lines 16–23). For the sake of efficiency, we use SPARQL
queries to obtain the necessary counts of typed paths which are generated based
on the query template and �q (line 18). However, as pointed out in [7], a direct
translation of the needed counts into queries leads to time-consuming computa-

6 If D(p) or R(p) are not available, the types of the given subject or object will be
used, respectively.

7 https://www.w3.org/TR/rdf-sparql-query/.
8 We are aware that the terminology (especially concept similarity scores) used in G

can potentially inform the fact validation process further. Studying the integration
of assertional and terminological information will be the object of future work and
is out of the scope of this paper.

https://www.w3.org/TR/rdf-sparql-query/
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tions9 which require optimization. Therefore, we generate the SPARQL queries
needed for our counts with a recursive structure. Listing 1.1 shows a sample query
used to count the number of paths ?vo birthP lace−−−−−−−→ ?v1

country−−−−−→ ?v2 between enti-
ties with the types Person and Country, respectively.

Listing 1.1. SPARQL query to count all paths of an example �q

SELECT SUM(?b1*?b2) as ?sum WHERE {

SELECT COUNT (?v1) as ?b2, ?b1 WHERE {

?v0 <http :// dbpedia.org/ontology/birthPlace > ?v1 .

?v0 a <http :// dbpedia.org/ontology/Person > .

{

SELECT COUNT(?v2) as ?b1 , ?v1 WHERE {

?v1 <http :// dbpedia.org/ontology/country > ?v2 .

?v2 a <http :// dbpedia.org/ontology/Country > .

} GROUP BY ?v1

}

} GROUP BY ?v0 ?b1

}

Veracity Calculation. We treat the association strength of each �q-restricted
typed path as the confidence with which the path supports the existence of the
input predicate p. We hence combine the ζ values by checking whether at least
one path supports p. Let Z be the set of scores of all single paths, the veracity
score τ can be calculated with the following equation (see lines 23–28):

qτ = 1 −
∏

ζ∈Z

(1 − ζ) . (11)

6 Experiments and Results

In this section, we provide details of the data and hardware we used in our
experiments. We compare the results of our approach with those achieve by
state-of-the-art approaches in the subsequent section.

6.1 Setup

Knowledge Graph. For our experiments, we chose DBpedia version 2016-
10 as background knowledge. We chose this dataset because it is the reference
dataset of a large number of fact validation benchmarks. We used the latest
dumps10 of ontology, instance types, mapping-based objects and infobox
properties. We filtered out triples that (i) contain literals and datatypes or

9 We used Virtuoso and Fuseki for our experiments and our runtime findings sup-
port [7].

10 http://downloads.dbpedia.org/2016-10/.

http://downloads.dbpedia.org/2016-10/


Unsupervised Discovery of Corroborative Paths for Fact Validation 641

(ii) link the entities in DBpedia to external sources. The final graph contains 44
million triples, which we stored using an instance of Openlink Virtuoso v7.2.5.1
hosted on VM with 16GB memory and 256GB disk space. To ensure the com-
parability of our results, we ran our evaluation using GERBIL [16]—a bench-
marking platform that facilitates the evaluation of fact validation systems across
different datasets.11 We used the AUC-ROC as an evaluation metric and set
k = 2 for the sake of comparability with previous works.

Competing Approaches. We compare our approach (COPAAL) to three
state-of-the-art graph-based fact validation approaches: (i) Knowledge Stream
(KS), (ii) its variant Relational Knowledge Linker (KL-REL) [18] and (iii) Dis-
criminative Path Mining (PredPath) [17]. For all these approaches, we use the
implementation provided by the authors [18].12 We considered the configuration
suggested in the original paper: (i) PredPath [17] uses the top-100 features while
learning positive and negative facts. (ii) KS [18] and KL-REL [18] use the top-5
paths and single best path, respectively, for validating input triples.

6.2 Benchmarks

We evaluated all the approaches using two publicly available sets of benchmarks:
(i) the Real-World and (ii) Synthetic datasets13 made available by the authors
of the literature [18]. In addition, we generated a new set of benchmarks dubbed
FactBench-DBpedia from the FactBench14 dataset. All the facts in FactBench
are automatically extracted from DBpedia and Freebase for 10 different rela-
tions15 and stored in the form of RDF models. In FactBench, the positive facts
are generated by querying DBpedia and Freebase and selecting top 150 results
returned for each relation. The negative facts are generated by modifying the
positive facts while still following domain and range restrictions. The positive and
negative facts are collected into 6 different benchmarks dubbed Domain, Range,
Domain-Range, Mix, Random, Property. FactBench-DBpedia restricts the gen-
eration process of FactBench to DBpedia by extracting all facts belonging to
DBpedia and facts from Freebase whose resources can be mapped to resources
in DBpedia. Table 2 shows the stats for the different datasets.

7 Results

7.1 Comparison of Directed and Undirected Paths

We first aimed to determine the type of paths for which our approach performs
best. We hence compared the AUC achieved by both variations of our approach
11 All the datasets and result files can be found at https://hobbitdata.informatik.uni-

leipzig.de/COPAAL/.
12 https://github.com/shiralkarprashant/knowledgestream.
13 https://github.com/shiralkarprashant/knowledgestream/tree/master/datasets.
14 https://github.com/DeFacto/FactBench.
15 award, birthPlace, deathPlace, foundationPlace, leader, team, author, spouse, starring,

subsidiary.

https://hobbitdata.informatik.uni-leipzig.de/COPAAL/
https://hobbitdata.informatik.uni-leipzig.de/COPAAL/
https://github.com/shiralkarprashant/knowledgestream
https://github.com/shiralkarprashant/knowledgestream/tree/master/datasets
https://github.com/DeFacto/FactBench
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Table 2. Summary of benchmark datasets

Dataset FactBench-DBpedia Real-World Synthetic
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Positive 1,124 1,124 1,124 1,124 1,124 1,124 273 126 466 50 50 41 78 201 126 47 16
Negative 1,119 1,006 1,123 1,014 1,153 511 819 378 1,395 150 250 123 4,602 1,007 584 227 240
Total 2,243 2,130 2,247 2,138 2,277 1,635 1,092 504 1,861 200 300 164 4,680 1,208 710 274 256

Table 3. Comparison of AUC-ROC achieved using directed and undirected paths

Domain Domain-Range Range Mix Random Property

Undirected paths 0.9348 0.9389 0.8937 0.8561 0.9411 0.7307

Directed paths 0.7741 0.7824 0.7416 0.5914 0.6411 0.4713

on FactBench-DBpedia (see Table 3). The results are clear: Using undirected
paths (average AUC-ROC = 0.87) always outperforms using directed paths (avg.
AUC-ROC = 0.66) and are 0.21 better on average w.r.t. the AUC-ROC they
achieve. We studied the results achieved using the two types of paths. It became
quickly evident that using undirected paths allows to detect significantly more
corroborative evidence. Therewith, undirected paths achieve a better approxi-
mation of the probability of a triple being true (see Table 7 for examples). Con-
sequently, we only consider our approach with undirected paths in the following.

7.2 Comparison with Other Approaches

Tables 4 and 5 show the AUC-ROC results of all the approaches on the bench-
marks contained in the Real-World and Synthetic datasets, respectively. Our
approach outperforms other approaches on most of these datasets. In the best
case, we are roughly 4.5% (absolute value, Birth Place benchmark) better than
PredPath and more than 20% (absolute value, Birth Place benchmark) better
than KS on real data. A careful study of our results reveals that the anchored
predicate paths used by PredPath for learning features are restricted by the types
of subject and object irrespective of predicate of the input triple. Hence they

Table 4. AUC-ROC results of all approaches on Real-World datasets

Birth place Death place Education Nationality

COPAAL 0.9441 0.8997 0.8731 0.9831

PredPath 0.8997 0.8054 0.8644 0.9520

KL-REL 0.9254 0.9095 0.8547 0.9692

KS 0.7197 0.8002 0.8651 0.9789
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Table 5. ROC-AUC results of all approaches on Synthetic datasets

US-CAP NBA-Team Oscars CEO US-WAR US-VP FLOTUS

COPAAL 1.000 0.999 0.995 0.912 0.999 0.953 1.000

PredPath 0.996 0.923 0.999 0.897 0.995 0.944 1.000

KL-REL 1.000 0.999 0.976 0.898 0.873 0.891 0.983

KS 1.000 0.999 0.950 0.811 0.865 0.798 0.980

someetimes fail to generalize well. On the other hand, KL-REL uses single best
paths, which sometimes limits its ability to validate facts if it is not able to rank
the path which conveys the most evidence for the input triple to the first posi-
tion. This is made evident by the examples shown in Table 7: We computed the
union of the top-3 paths identified by our approach and all other approaches on
the three datasets for which the difference in AUC values were the largest. We
also computed the weights assigned by each of the approaches (i.e., N̂PMI for
our approach, average flow values of paths for KS and KL-REL [18] and weights
learned by the classifier for PredPath [17]). While our approach finds all paths
and allocated them weights, the other approach sometimes fail to detect relevant
paths (marked by dashes in Table 7) and are hence not able to use them in their
evidence computation. Having a large number of paths available however also
means that our scores are (even if rarely) overoptimistic w.r.t. evidence for a
triple, which explain the marginally lower scores we achieve on Death Place and
Oscars.

The results on FactBench-DBpedia (see Table 6) confirm the insight we
gained on the previous two datasets. Our approach outperforms the state of
the art and achieve a better AUC-ROC on most datasets. We ran a Wilcoxon
signed ranked test (significance = 99%) on all results we collected. The results
state that our approach is significantly better than the state of the art.

One could assume that our approach is slower than the state of the art due
to the larger amount of evidence it collects. Hence, we measured the average
throughput of all the approaches including all phases of the processing. The
average throughput of our approach was 21.02 triples/min. KS, which follows an
approach similar to ours, achieves an average throughput of 10.05 triples/min
while its counterpart KL-REL achieves 29.78 triples/min. PredPath’s average
throughput was 21.67 triples/min. Overall, our results show that our approach
scales as well as the state of the art while achieving significantly better results.

Table 6. ROC-AUC results of all approaches on FactBench-DBpedia datasets

Domain DomainRange Mix Property Random Range

COPAAL 0.9348 0.9389 0.8561 0.7307 0.9411 0.8937

PredPath 0.9301 0.9447 0.8408 0.7154 0.9354 0.8992

KL-REL 0.8453 0.8619 0.7721 0.6154 0.8547 0.8219

KS 0.8019 0.8124 0.7215 0.6047 0.7911 0.8047
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Table 7. Union of the top-3 paths identified by the different approaches and their
weighting. The weights allocated by each of the approaches are given in the corre-
sponding column. A dash (-) means that the approach was not able to find the said
path.

Dataset Path COPAAL KS/KL-REL PredPath

BirthPlace
hometown−−−−−→ 0.65 0.28 –
birthPlace−−−−−−→ isPartOf←−−−−− 0.65 0.23 26
highSchool−−−−−−→ city−−→ 0.62 0.21 –
parent−−−−→ birthPlace−−−−−−→ 0.63 0.08 29
child−−−→ birthPlace−−−−−−→ 0.60 0.04 21

CEO
foundedBy−−−−−→ 0.72 0.28 3
owningCompany−−−−−−−−→ 0.70 – –
owner−−−→ 0.70 – –
parentCompany←−−−−−−−− keyPerson−−−−−→ 0.70 0.08 7
employer−−−−−→ 0.64 0.23 9

US-VP
successor←−−−−− 0.62 0.19 5
predecessor−−−−−−−→ 0.61 0.12 7
vicePresident←−−−−−−−− president−−−−−→ 0.55 – –
associate−−−−−→ president−−−−−→ 0.49 – 2
predecessor−−−−−−−→ successor←−−−−− 0.48 0.02 13

8 Conclusion and Future Work

In this paper, we present a novel unsupervised approach for the validation of
facts using an RDF knowledge graph G as background knowledge. Our approach
uses domain, range and class subsumption information found in the schema of G
to outperform both supervised and unsupervised fact validation approaches. We
evaluated our results on 17 datasets against three state-of-the-art approaches.
Our results show that our approach outperforms the state of the art significantly
(Wilcoxon signed ranked test, p < 0.01). We studied the difference between the
approaches and concluded that our approach performs better because it is able
to score corroborative paths more accurately as it uses more information from
the schema of G. These results point to the importance of using the semantics
of the data contained in RDF knowledge graphs when aiming to validate them.
Another advantage of our approach is that it allows to verbalize the evidence
found to support a given input triple.

The main limitation of our approach lies in its relying on the existence of type
information. Well-defined ontologies are not always given in real world datasets
and therefore our approach cannot be applied on them. Previous works have
aimed at improving type information in noisy knowledge graphs [15]. We will
evaluate whether combining our approach with such algorithms leads to bet-
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ter corroborative paths in future works. Additionally, the approaches evaluated
herein are limited to evidence found in one RDF graph. In future work, we will
consider performing fact validation at a larger scale. In particular, we will use
the linked nature of Linked Data sets to detect paths across several knowledge
graphs. We will focus on the scalability and the distributed execution of this novel
solution. Moreover, we will consider relaxing the requirements to types used in
the definition of Πk

(tx,ty),�q
by using well-defined semantic similarities [10].
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(project no. 19F2029C) and OPAL (project no. 19F20284), the BMBF project SOLIDE
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In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00668-6 23

14. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for
linked data. In: Proceedings of the 21st International Conference on World Wide
Web, pp. 271–280. ACM (2012)

15. Paulheim, H., Bizer, C.: Type Inference on noisy RDF data. In: Alani, H., et al.
(eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41335-3 32
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Abstract. Despite the growing popularity of knowledge graphs for man-
aging diverse data at large scale, users who wish to pose expressive
queries against such graphs are often expected to know (i) how to for-
mulate queries in a language such as SPARQL, and (ii) how entities of
interest are described in the graph. In this paper we propose a language
that relaxes these expectations; the language’s operators are based on
an interactive graph-based exploration that allows non-expert users to
simultaneously navigate and query knowledge graphs; we compare the
expressivity of this language with SPARQL. We then discuss an imple-
mentation of this language that we call RDF Explorer and discuss var-
ious desirable properties it has, such as avoiding interactions that lead
to empty results. Through a user study over the Wikidata knowledge-
graph, we show that users successfully complete more tasks with RDF

Explorer than with the existing Wikidata Query Helper, while a usabil-
ity questionnaire demonstrates that users generally prefer our tool and
self-report lower levels of frustration and mental effort.

1 Introduction

Over the past decade, hundreds of datasets have been published using the
Semantic Web standards covering a variety of domains [30]. These datasets
are described using the RDF data model, which is based on graphs. Beyond
the Semantic Web community, the idea of using graphs to model and manage
diverse data at large-scale has also become increasingly popular, marked by the
recent announcements of various knowledge graphs [12]. Some of these knowl-
edge graphs are proprietary, maintained internally by companies such as Google,
Microsoft, Apple, etc.; while others are open to the public via the Web, main-
tained by dedicated international communities, like DBpedia [22], Wikidata [36],
etc.

A number of query languages have then been proposed specifically for graphs,
including SPARQL for RDF graphs, Cypher for property graphs, etc. [3]. How-
ever, querying graphs using these languages can be challenging. First, users are
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 647–663, 2019.
https://doi.org/10.1007/978-3-030-30793-6_37
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required to have technical knowledge of such query languages and the semantics
of their operators. Second, graphs are often used to represent diverse data that
may not correspond to a particular domain-specific schema, meaning that the
users may not be easily able to conceptualize the data that they are querying,
particularly for domain-agnostic knowledge graphs. Despite these limitations,
query services for DBpedia and Wikidata are receiving in the order of millions
of queries per day [23,28]; although many such queries are from “bots”, tens of
thousands are not [23], where such statistics indicate the value of being able to
query graphs for many users and applications.

Several interfaces have been proposed to allow lay users to visualize, search,
browse and query knowledge graphs, with varying goals, emphases and assump-
tions [15]. Some key approaches adopted by such interfaces (discussed further
in Sect. 2) involve keyword search, faceted browsing, graph-based browsing,
query building, graph summarization, visualization techniques, and combina-
tions thereof. In general however, many proposed systems trade expressivity – the
types of operators and interactions supported, and thus the types of queries that
can ultimately be captured through the interface – for usability and efficiency.
Few interfaces have been proposed, for example, that can handle graph-patterns
with cycles, such as to find siblings who have directed movies together, drugs
indicated and contraindicated for pairs of comorbid illnesses, pairs of binary stars
of the same classification, and so forth. Interfaces that can capture such graph
patterns often assume some technical expertise of the query language and/or
knowledge of how data are modeled.

This work proposes a language and associated interface that enables lay users
to build and execute graph-pattern queries on knowledge graphs, where the user
navigates a visual representation of a sub-graph, and in so doing, incremen-
tally builds a potentially complex (cyclical) graph pattern. More specifically, we
first propose a set of operators, forming a language that allows users to build
SPARQL graph patterns by interactively exploring an RDF graph; we further
study the expressivity of this language. We then discuss the design of a user
interface around this language, and the additional practical features it incorpo-
rates to improve usability, such as auto-completion, result previews, generalizing
examples, etc.; we further describe how this interface can be implemented on top
of an existing query service (SPARQL endpoint). Our claim is that the resulting
interface allows lay users to express graph-pattern queries over knowledge graphs
better than existing interfaces that support similar expressivity. To evaluate this
claim, we present a task-based user study comparing the usability of our inter-
face with the Wikidata Query Helper; the results indicate that users achieve a
higher successful completion rate of tasks with our system.

2 Related Work

A wide variety of interfaces have been proposed in recent years to help lay
users visualize and explore RDF graphs [11,15]. Amongst these works, we can
first highlight search and browsing systems that allow users to find entities by
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keyword and potentially filter or modify results by selecting facets or following
paths (e.g., Tabulator [9], Explorator [4], VisiNav [19], amongst others); these
approaches are limited in terms of the types of queries that they can express,
not allowing (for example) to express cycles. Other types of interfaces focus on
providing visualisations to summarise data, be they domain-independent (e.g.,
Sgvizler [31], or domain-specific (e.g., DBpedia Atlas [35], DBpedia Mobile [8],
LinkedGeoData Browser [34]) visualisations; such systems focus on providing
overviews of data rather than exploring or querying for specific nodes/entities.
Other systems combine browsing/exploration and visualisation, often following a
graph-based navigation paradigm (e.g., RDF Visualiser [29], Fenfire [20], etc.);
these systems allow to focus on a specific node and explore its neighborhood in
the graph, but do not allow to generalize these explorations into queries.

To help users express more complex forms of queries over graphs, var-
ious query editors and builders have been proposed for languages such as
SPARQL [16]. We provide an overview of such systems with publications in
Table 1. For space reasons we focus on features that relate to the present contri-
bution, omitting, for example, discussion of reasoning support in systems such
as QueryVOWL [17] and OptiqueVQS [33], or the schema-based notation used
by SPARQLing [7]. Such interfaces must deal with two antagonistic goals: sup-
porting complex queries while assuming as little technical expertise on the part
of the user as possible. Towards the more expressive end of the scale are query
editing interfaces – such as SPARQL Assist [24], YASGUI [27], etc. – which offer
users some helpful features when formulating SPARQL queries in a text field,
but still assume knowledge of SPARQL. On the other hand, query builders aim
to abstract away from SPARQL syntax, allowing to formulate queries in a more
visual way, based on form fields or graphs. From Table 1, we conclude that the
closest system to ours is Smeagol [14], which also supports key features such as
autocompletion, example-based querying (where users explore a graph and then
generalise some constants as variables), dynamic results (where query results are
generated on the fly and used to guide query construction), and non-emptiness
guarantees (to avoid users generating queries with zero results); furthermore,
Smeagol offers a task-driven user evaluation against a baseline Pubby system
with a substantial number of users and significance testing. Our proposal is dis-
tinguished from Smeagol in key aspects; most importantly, while Smeagol [14]
focuses on supporting tree-shaped queries generated during user exploration, our
proposal also has general support for graph patterns.

Research on usable interfaces for querying graphs can not only have impact
beyond the Semantic Web community, it can also benefit from expertise in other
communities. In particular, the area of Human Computer Interaction (HCI) can
offer insights not only in terms of the challenges faced in such research, but also
in the design of user studies to evaluate the claims made of such research. Along
these lines, Bhowmick et al. [10] reflect on recent advances in what they refer to
as the visual graph querying paradigm from the HCI perspective, characterizing
the challenges in the area and the research directions that should be followed.
The authors define the challenges as follows: (1) the development of graph queries
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Table 1. Comparison of query interfaces for SPARQL, incidating the year of the associ-
ated publication, the mode of interaction, the features supported (AC = Autocomplete;
EX = Example-based Querying; DY = Dynamic Results, NE = Non-Empty Results),
details of user evaluation conducted, if any (B = Baseline, Q = Questionnaire, T =
Tasks) and details of availability

System Year Mode Features User Eval. Expressivity

AC EX DY NE

NIGHTLIGHT [32] 2008 graph – – – – – SPARQL 1.0−

Konduit [2] 2010 form � – – – – BGPs+

RDF-GL [21] 2010 graph – – – – BQT (5 users) SPARQL 1.0−

Smeagol [14] 2011 graph � � � � BQT (43 users) Trees

SPARQL Assist [24] 2012 text � – – – – BGPs+

QUaTRO2 [6] 2013 form � – � � no details Trees+

QueryVOWL [17] 2015 graph � – – – QT (6 users) BGPs

YASGUI [27] 2017 text � – – – – SPARQL 1.1

OptiqueVQS [33] 2018 graph � – – – T (10 users) Trees

SPARQLing [7] 2018 graph – – – – – Trees

ViziQuer [13] 2018 graph – – – – BT (14 users) Trees+

WQH [23] 2018 form � – � – – BGPs

RDF Explorer 2019 graph � � � � BQT (28 users) BGPs−

requires a considerable cognitive effort; (2) users need to be able to express their
goal in a systematic and correct manner, which is antagonistic with the goal of
catering to lay users; (3) it is more intuitive to “draw” graph queries than to
write them, which implies the need for intuitive visual interfaces. Regarding the
latter point, the authors claim that current visual querying tools suffer from poor
aesthetics. They further indicate important primitives that such tools should
support to cater to diverse users and support diverse queries: edge creation,
pattern creation and example-based querying. Aside from this, they emphasize
action-aware query processing in which the system is able to deliver partial
information and immediate feedback while the user is developing the query, based
on dynamic result exploration and visualization. They acknowledge, however,
that these goals, when taken together, are challenging to address given large-
scale graphs and complex queries.

In this paper, we propose (yet another) visual query builder for SPARQL. In
so doing, we are particularly inspired by the discussion of Bhowmick et al. [10] in
terms of the main interactions and features that are key to making such systems
usable for non-experts, and by the “specific-to-general” paradigm adopted by
Smeagol [14]; however, we adopt various extensions to improve usability and
expressivity, key among which is support for graph patterns with cycles.
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3 RDF Explorer

In this section, we propose our RDF Explorer system, whose goal is to enable lay
users to query and explore RDF graphs. We first discuss the operators that form
the basis of a visual query language in which users can express queries over graphs
through simple interactions; we characterize the expressivity of the language in
relation to SPARQL. Thereafter, we discuss how this query language is supported
by the RDF Explorer interface, and how the overall system is implemented.

3.1 Visual Query Graph

The visual query language we propose is formulated with respect to a visual
query graph. Let I denote the set of IRIs, L denote the set of literals and V
denote the set of query variables. We define the visual query graph as follows.

Definition 1. A visual query graph (VQG) is defined as a directed, edge-labelled
graph G = (N,E), with nodes N and edges E. The nodes of the VQG are a finite
set of IRIs, literals and/or variables: N ⊂ I∪L∪V. The edges of the VQG are a
finite set of triples, where each triple indicates a directed edge between two nodes
with a label taken from the set of IRIs or variables: E ⊂ N × (I ∪ V) × N.

We denote by var(G) the set of variables appearing in G = (N,E), either as
nodes or edge labels: var(G) := {v ∈ V | v ∈ N or ∃n1, n2 : (n1, v, n2) ∈ E}.

We say that the VQG is constructed through a visual query language, consist-
ing of four algebraic operators that will correspond to atomic user interactions:
adding a variable node, adding a constant node, adding an edge between two
existing nodes with a variable label, and adding an edge between two exist-
ing nodes with an IRI label. More specifically, the VQG is initially empty:
G0 = (∅, ∅). Thereafter, a VQG can be constructed through the visual query
language (VQL), defined straightforwardly as follows.

Definition 2. Letting G = (N,E) denote the current VQG; the visual query
language (VQL) is defined through the following four atomic operations:

– Initialize a new variable node: η(G) := (N ∪ {v},E) where v �∈ var(G).
– Add a new constant node: η(G, x) := (N ∪ {x},E) where x ∈ (I ∪ L).
– Initialize a new edge between two nodes with a variable edge-label:

ε(G, n1, n2) := (N,E ∪ {(n1, v, n2)}) where {n1, n2} ⊆ N and v �∈ var(G).
– Add a new edge between two nodes with an IRI edge-label: ε(G, n1, x, n2) :=

(N,E ∪ {(n1, x, n2)}) where {n1, n2} ⊆ N and x ∈ I.

Note that for the VQL operators η(G) and ε(G, n1, n2), the variable is not
specified, where rather an arbitrary fresh variable can be automatically gener-
ated. No matter what variables are chosen, since the variables added are always
fresh, the resulting VQG will be unique modulo isomorphism; in practice, the
system can thus take care of generating fresh names for each variable.
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Though VQGs are a straightforward way to represent queries against graphs,
since VQGs allow for representing cycles, they already go beyond the expressivity
of many user interfaces for graphs (entity search, facets, etc.), and even many of
the related visual query languages proposed in the literature, which are based on
trees (see Table 1). On the other hand, we choose not to support query operators
that go beyond simple graph patterns as covered by similar graph-based inter-
faces – such as NIGHTLIGHT [32] and RDF-GL [21], which support unions,
optional, etc. – as we consider such systems to be aimed at users with some
knowledge of query languages and do not know of an intuitive way to represent
such operators in a manner that would be accessible to a lay user. On the other
hand, VQGs will be converted to concrete SPARQL syntax, where a more expert
user can modify the resulting query as required.

3.2 Translating VQGs to SPARQL

VQGs are designed as a visual metaphor for SPARQL basic graph patterns
(BGPs), where the translation is thus mostly direct and natural; however there
are BGPs that cannot be expressed as VQGs, and indeed, there are minor aspects
of VQGs that cannot be translated to BGPs. Before we discuss such issues, we
must first introduce some notation for RDF and SPARQL BGPs [26].

An RDF triple uses terms from the set of IRIs (I), literals (L) and blank
nodes (B); more specifically a triple t = (s, p, o) is an RDF triple iff s ∈ I ∪ B
(called the subject), p ∈ I (called the predicate) and o ∈ I ∪ B ∪ L (called the
object). A finite set of RDF triples is called an RDF graph.

SPARQL basic graph patterns (BGPs) correspond to RDF graphs, but where
variable terms (V) can also be used. Along these lines, a triple q = (s, p, o) is a
SPARQL triple pattern iff s ∈ I∪L∪V, p ∈ I∪V and o ∈ I∪L∪V.1 A SPARQL
BGP is then a finite set of SPARQL triple patterns. The semantics of a BGP
is defined in terms of its evaluation over an RDF graph, which returns a set of
mappings. A mapping μ : V → (I∪B∪L) is a partial map from variables to RDF
terms; the set of variables for which μ is defined is called the domain of μ, denoted
dom(μ). Given a query Q, we denote the set of variables it mentions by var(Q);
furthermore, we denote by μ(Q) the image of Q under μ: the result of replacing
every occurrence in Q of every variable v ∈ var(Q) by μ(v) (or v if v �∈ dom(v)).
The evaluation of a BGP Q with respect to an RDF graph G, denoted Q(G), is
then defined as the set of mappings {μ | dom(μ) = var(Q) and μ(Q) ⊆ G} (note
that this is equivalent to – but more succinct than – defining the evaluation of
a BGP as a join of the evaluation of its constituent triple patterns).

In terms of translating VQGs to BGPs, given a VQG G = (N,E), we observe
that by design, the set E is already a BGP, and we are done. However, first we
must remark that this translation is agnostic to orphan nodes – nodes with no
incident edges – in G; thus for example, G and η(G) will give the same BGP.
Second, while VQGs are BGPs have equivalent definitions, not all VQGs/BGPs

1 We do not consider blank nodes in triple patterns, which can be modeled as unpro-
jected (aka. non-distinguished) query variables.
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can be constructed by the four operators in the visual query language described
earlier. In particular, we cannot construct VQGs/BGPs where a join variable
– a variable appearing in more than one edge/triple pattern – appears as an
edge-label/predicate (since the ε(N) operation is defined only for fresh variables,
while ε(G, n1, x, n2) is defined only where x is constant); we do not consider this
to be an important limitation in practice since analysis of real-world SPARQL
query logs suggests that joins on the predicate position are rare [5].

The VQG can then be serialized in concrete SPARQL syntax: the correspond-
ing basic graph pattern is written as the WHERE clause of a SPARQL query, where
all variables are projected with SELECT *; at this point, a more expert user may
wish to modify the query, e.g., adding query operators.

With respect to complexity, we remark that for the evaluation decision prob-
lem – which asks: given a mapping μ, a query Q and an RDF graph G, is
μ ∈ Q(G)? – the queries generated by a VQG are tractable for this problem as
they do not feature projection (a trivial upper bound is given by O(|Q|·|G|) [26]).
However, in the interface we implement a number of features for usability, where
one such feature is to suggest possible groundings of variables that will not lead
to non-empty results. The corresponding decision problem for this autocomple-
tion feature asks, given μ (where dom(μ) ⊆ var(Q)), a query Q and an RDF
graph G, is μ(Q)(G) non-empty? This problem is NP-complete in combined
complexity (considering the size of G and Q in the input) since μ(Q)(G) can
represent a graph, and one can reduce from the graph homomorphism problem;
however, in data complexity (considering the query Q as fixed) the problem is
tractable. In summary, the autocompletion task may become challenging as the
VQG grows more complex; currently we rely on a SPARQL query to generate
these suggestions, where we leave further optimizations for future work.

3.3 The RDF Explorer Interface

While the visual query graph offers a visual metaphor for basic graph patterns
and the visual query language describes the interactions by which a visual query
graph can be constructed incrementally by the user, these concepts leave many
questions open regarding usability. One key issue, for example, is how the VQG
should be visualized. Another practical issue we glossed over is that while η(G)
and ε(G, n1, n2) do not require any specific knowledge (in the latter, the user
can select two nodes displayed in the visualization, for example), the opera-
tions η(G, x) and ε(G, n1, n2, x) require the user to give a specific (IRI or literal)
term x, which assumes domain knowledge. Furthermore, we have yet to address
the usability features discussed by Bhowmick et al. [10], such as example-based
querying, action-aware query processing, or dynamic result exploration and visu-
alization. Addressing such issues is key to achieving our goal of enabling lay users
to formulate expressive queries over graphs. Along these lines, we now describe
the RDF Explorer interface, which we propose to address these concerns.

The RDF Explorer interface is composed of six main components displayed
in three panes. Figure 1 provides a screenshot of the interface for querying Wiki-
data, where we can see three components: a search panel (left pane), a visual



654 H. Vargas et al.

Fig. 1. Example visual query finding siblings who have directed movies together

query editor (center pane), and a node detail view (right pane); in the top right
corner are buttons to switch the right pane to display one of the three other
components: a node editor (allowing to add restrictions to a highlighted node),
a SPARQL query editor (showing the current query), and a help panel.

The process starts with a blank visual query editor. The user must then start
by adding a new node, be it a variable node (η(G)) or a constant node (η(G, x));
for selecting x, the user can type a keyword phrase into the search pane on the
left, which will generate autosuggestions, where any of the results shown can be
dragged into the central query editor pane. The user may then proceed to add
a second node by the same means. With two or more nodes available, the user
can now click and drag between two nodes to generate an edge with a variable
edge-label (shown as a box nested inside the source node); a list of potential
IRIs will be suggested for replacing the variable, where only IRIs that generate
non-empty results for the underlying query will be offered.

Figure 2 illustrates some further features of the interface. Following conven-
tions used in the case of property graphs [3], we display datatype properties
within a given node to avoid clutter; this can be seen for the number of children
property in Fig. 2. At any point, the user may click on a node to view further
details: if the node is variable (see Fig. 1), they will be shown a sample of current
results for that variable (generated by mapping the current VQG to SPARQL
and projecting that variable); if the node is constant (see Fig. 2), they will be
shown the data available for that node, organized by datatype properties (which
take a literal value) and object properties (which take an IRI value). In this way,
per the discussion of Bhowmick et al. [10], the user can explore the graph and
receive feedback on the results generated thus far, guiding next steps. Constant
nodes can be converted to variables nodes, enabling the user to start with a spe-
cific example and then generalize the graph [14]. We claim that these features
improve the usability of the system for lay users.



RDF Explorer: A Visual SPARQL Query Builder 655

Fig. 2. Example visual query finding politicians born in Auckland

4 User Study

We now describe a user study that we conducted to evaluate our interface. We
first make explicit our hypotheses and then describe the dataset, baseline system
and user-study design that we selected to test these hypotheses. We then give
details on the participants of the study and the metrics we collect.

Hypotheses. The goal of our work is to enable users without prior knowledge
of the Semantic Web to explore an RDF database and correctly build SPARQL
queries encoding a specific information need. Our hypotheses are as follows,
where each hypothesis relates to user success at different levels of granularity:

H1: Non-expert users are able to correctly formulate more SPARQL queries with
our visual query builder than a baseline system. For a query to be considered
correct, it must return the same results as the reference query for the task.

H2: Non-expert users are able to correctly formulate more triple patterns with
our visual query builder than a baseline system. For a triple pattern to be con-
sidered correct in the generated query, it must be contained in the reference
query (modulo variable names).

H3: Non-expert users are able to generate more correct query graphs with our
visual query builder than a baseline system. For a query graph to be considered
correct, its “shape” must be the same as that of the reference query graph,
irrespective of edge labels or node types/values. More formally, given a visual
query graph G = (N,E), let shape(G) denote a directed graph S = (VS , ES)
such that VS = N and (x, y) ∈ S if and only if there exists an edge-label
l such that (x, l, y, ) ∈ E; now given the reference query graph G′, a user’s
query graph G′′, and their corresponding shapes S′ = shape(G′) and S′′ =
shape(G′′), the user’s query graph G′′ is considered correct if and only if there
exists an isomorphism h : V ′′

S → V ′
S such that h(S′′) = S′.
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Table 2. Two sets of five increasingly-complex tasks

№ Set 1 (S1) Set 2 (S2)

1 Find all dogs Find all actors

2 Find all popes who are female Find all German soccer players
who participated in FIFA 2014

3 Find all mountains located in
European countries

Find all container ships located
in European countries

4 Find all emperors whose father
is also an emperor

Find all physicists whose
spouse is also a physicist

5 Find all Nobel prize winners
with a student who won the
same Nobel prize

Find all participants of an
Olympic sport with a relative
who participates in the same
sport

Dataset and Baseline. According to statistics recently published by Malyshev
et al. [23], the Wikidata Query Service 2 receives millions of SPARQL queries per
day, where tens of thousands of these queries are “organic” (written and posed
by humans rather than bots). The Wikidata knowledge graph itself is a large,
diverse graph, where at the time of writing it described 56,097,884 items and was
being collaboratively edited by 21,049 active users; such a graph is unfeasible for
any user to conceptualize in its entirety. We thus view Wikidata as a potentially
challenging use-case for our visual query builder and adopt it for our study.

In fact, Wikidata already has a default query builder deployed to help users
query the knowledge graph: the Wikidata Query Helper (WQH) [23]. The WQH
visual interface accompanies a text field displaying the current SPARQL query;
changes in WQH are reflected in the query and vice versa. WQH is based on two
main functionalities: the ability to define a filter that allows to select a property
p and an object o, and the ability to show more data than what is being filtered
by fixing a property value and adding a variable to its associated o. To help users
select a given value for p and/or o, a search field is provided that autocompletes
a keyword query and provides ranked suggestions to the user.

Study Design. To test the hypotheses, we design a task-based user study to
compare the subjects’ ability to solve tasks on the proposed interface versus the
baseline interface [25]. This comparison focuses on the users’ ability to perform
query-based tasks, including aspects such as the users’ performance overall, their
perceived cognitive load, and usability aspects. Given limitations to how many
subjects we could recruit, we use a within-subject design where each participant
completes five tasks using our query builder and five similar tasks with the
baseline. Each task consists of answering a question (given in natural language)
that requires formulating a query to retrieve answer(s) from the Wikidata graph.

2 http://query.wikidata.org/.

http://query.wikidata.org/
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Table 3. Basic graph patterns corresponding to tasks listed in Table 2

№ Set 1 (S1) Set 2 (S2)

1 ?dog wdt:P31 wd:Q144 . ?actor wdt:P106 wd:Q33999.

2 ?pope wdt:P21 wd:Q6581072 . ?ppl wdt:P1344 wd:Q79859.

?pope wdt:P39 wd:Q19546 . ?ppl wdt:P27 wd:Q298.

3 ?mount wdt:P31 wd:Q8502 . ?ship wdt:P31 wd:Q17210 .

?mount wdt:P17 ?country . ?ship wdt:P17 ?country .

?country wdt:P30 wd:Q18 . ?country wdt:P30 wd:Q46 .

4 ?emp1 wdt:P39 wd:Q39018 . ?phy1 wdt:P106 wd:Q169470 .

?emp2 wdt:P39 wd:Q39018 . ?phy2 wdt:P106 wd:Q169470 .

?emp1 wdt:P22 ?emp2 . ?phy1 wdt:P26 ?phy2 .

5 ?winner wdt:P166 ?novel . ?ppl1 wdt:P641 ?sp .

?student wdt:P166 ?novel . ?ppl2 wdt:P641 ?sp .

?student wdt:P802 ?winner . ?ppl1 wdt:P1038 ?ppl2 .

?novel wdt:P31 wd:Q7191 . ?sp wdt:P279 wd:Q212434 .

(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5

Fig. 3. Expected query shapes for each pair of tasks shown in Table 2 where constant
(IRI or literal) nodes are shaded and variable nodes are unshaded

We divide the subjects into two groups. The first group is asked to build a
set of five queries (S1) using the proposed interface; afterwards they are asked to
build a different set of five queries (S2) using the baseline. Conversely, the second
group is asked to build the first set of queries (S1) using the baseline and the
second set (S2) with the proposed interface. This design controls for individual
differences with participants using both interfaces. Counterbalancing the order
of interfaces helps control for carry-over effects, such as learning or fatigue.

Table 2 list the tasks in sets S1 and S2. The queries in both sets are designed
to be of increasingly difficulty to follow a learning curve and also to avoid users
being discouraged early on. We further aim to keep the nth query of both sets
of tasks comparable in terms of difficulty. Along these lines, as shown in Fig. 3,
each pair of tasks corresponds to the same abstract visual query graph, and
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each successive pair incrementally adds more complexity. Table 3 lists the target
SPARQL basic graph patterns corresponding to each task in Table 2.

Before presenting each set of five tasks, we provide some brief training for
the participants on how to use the interface they are about to see. Our training
involves a description of the system’s main functionalities and formulating an
example query using these functionalities. For example, we pose the task “Find
all Clint Eastwood movies in which any of his children participated” and show
how to build the query in the corresponding interface. A web page with other
example queries for the interface is also provided to the participants.

Study Participants. The study was conducted with 28 students enrolled in
the undergraduate course “User interface design”. The students were in the
fourth year of a Computer Science undergraduate program in a Spanish-speaking
university. They have no previous knowledge of SPARQL nor the Semantic Web.
Their native language was Spanish; the text of tasks was presented in Spanish
and while both interfaces were offered in English, a tooltip was added that
automatically translates an English word to Spanish when the user hovers the
mouse over a word. Participants were given up to 40 min to solve each of the sets
of five tasks using each interface; adding two 5 min tutorials before both sets of
tasks, the total study time was thus 90 min.

Metrics. To compare our visual query builder and the the baseline WQH query
builder, we measure diverse aspects of the users’ ability to perform a set of
requested five tasks using each interface. We collect metrics for the users’ task
performance such as task completion rate and time for task completion. In terms
of level of completion, we check the correctness of the query, the triple patterns,
and the query graph (as previously described for our hypotheses). We also use
the NASA Task Load Index [18] (NASA-TLX) to allow users to self-report the
level of workload perceived by the user in a scale from 0 to 100. We use Likert
scales from 1 to 5 to ask for usability aspects. We also include open questions to
describe the data structure that the users believe to be behind each interface.
We ask users to answer such questions using simple natural language that avoids
technical jargon where we restrict the words they can use to the 1,000 most
common words in their native language; we also ask them to illustrate (draw)
how they understand the data structure.

5 Results

We begin by presenting the ratio of correct responses broken down by three
levels of granularity: queries, triple patterns and shapes. Next we evaluate our
hypotheses with respect to these data. We then present analysis of the subjective
impressions of the interfaces.
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Ratio of Correct Responses. Figure 4 shows the mean ratios of correct
responses for the proposed interface (RDF Explorer = re) and the baseline
interface (Wikidata Query Helper = wqh) at three different levels of granular-
ity: queries, triple patterns, and shapes. Note that while queries and shapes are
binary – either correct or not – in the case of triple patterns, we take the ratio
of correct triple patterns versus total triple patterns provided in the response,
where the presented results are then the mean of these ratios across all users.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Task

R
at

io
co

rr
ec

t

re
wqh

(a) Queries

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Task

R
at

io
co

rr
ec

t
re
wqh

(b) Triple patterns
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(c) Shapes

Fig. 4. Mean ratios of correct results at three levels of granularity

Though we note a relatively high correctness ratio for earlier tasks, most
users still struggled with later tasks; not only were earlier tasks easier, given
the fixed time period for the study, some users did not reach the final task(s).
Contrasting the two systems, in the first task, although all users of both systems
got the query shape correct in both systems (which is trivially a single edge),
they had more success correctly finding the terms of the triple pattern in wqh

than re; we believe that this is because wqh offers autocomplete forms that
directly correspond to triple patterns whereas re is more complex to use at first.3

However, as tasks progress and queries become more “graph-like”, users have
more correct responses using the re interface than the wqh interface; another
possible interpretation is that users learn more about re as the task progresses.
Comparing the three levels of granularity, in the re system, users generally have
more success defining the correct query graph shape than identifying the terms
(constants) in the query graph; the opposite trend is true for wqh, where users
can more easily find the correct query terms, but not the correct query shape;
we attribute this to two possible factors: the fact that wqh is form-based while
re is graph-based, and also based on the fact that re blocks users from creating
query shapes that give empty results while wqh does not.

Hypothesis Testing. To test our hypotheses, we assess the difference between
completion rates of participants using both tools (whose mean values are
depicted in Fig. 4). We use paired-t tests to assess differences in the users’ ability
3 Given that the first task results in a query with a single triple pattern, the results

for queries and triple patterns are the same.
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to perform the requested tasks; this test is appropriate because we are compar-
ing the same participants using two different tools. We use α = 0.05 to reject
the null hypothesis and thus interpret that we have obtained a significant result
when t∗ is greater than tcrit = 2.052 (t∗ ≥ tcrit).4 For our three hypotheses (see
Sect. 4) the null hypotheses are that there is no difference between the tools or
wqh performs better. The alternative hypothesis is that re performs better. We
denote the completion rates for re as x̄ and those for wqh as ȳ; the average
distances we denote by d̄ = (x̄ − ȳ), and the standard deviation by sd. We can
then test the three hypotheses:

H1: Non-expert users are able to correctly formulate more SPARQL queries with
our visual query builder than a baseline interface. We use the data summarized
in Fig. 4a. With d̄ = (x̄ − ȳ) = 0, 1714 y sd = 0, 2813 we obtain t∗ = 3, 22 >
tcrit = 2, 052 rejecting the null hypothesis; that is, we validate H1 by obtaining
a statistically significant result in favor of our user interface.5

H2: Non-expert users are able to correctly formulate more triple patterns with our
visual query builder than a baseline interface. We use the data summarized
in Fig. 4b. With d̄ = 0, 06 and sd = 0, 2609 we obtain t∗ = 1, 1947 < tcrit =
2, 052: the results are not statistically significant.

H3: Non-expert users are able to generate more correct query graphs with our
visual query builder than a baseline interface. Here we use the data summa-
rized in Fig. 4c. With d̄ = 0, 1928 and sd = 0, 2801 we obtain t∗ = 3, 6431 >
tcrit = 2, 052 rejecting the null hypothesis; that is, we validate H3 by obtain-
ing a statistically significant result in favor of our user interface.

Our user study is thus conclusive regarding the claim that our proposed
interface is better than the baseline at helping non-expert users formulate their
queries as graphs, but is not conclusive regarding the claim of our interface being
better at helping users to correctly generate triple patterns.

Time Results. For space reasons, we present the results regarding task comple-
tion time as online reference data [1]. In summary, the average time needed for
completing all ten tasks was 65 min while the fastest participant needed 50 min
to complete all tasks.

Subjective Results. Figure 5 shows the results of the NASA-TLX question-
naire, where lower scores are deemed better. We see that for both systems, users
still expressed concerns about both systems, where they found wqh particularly
frustrating and demanding of mental effort; on the other hand, they found the

4 The value for tcrit is given by α and the number of participants (n = 28, giving n−1 =
27 degrees of freedom). See http://www.numeracy-bank.net/?q=t/stt/ptt/3.

5 The data were found to be normally distributed and there were no clear outliers;
hence use of the paired t-test is considered valid. We also conducted a non-parametric
Wilcoxon test to compare the users’ ability to perform the requested tasks using the
different interfaces; the results indicate a p-value of 0.001647 < 0.05.

http://www.numeracy-bank.net/?q=t/stt/ptt/3


RDF Explorer: A Visual SPARQL Query Builder 661

0 20 40 60 80 100

Mental Effort

Physical Effort

Temporal Effort

Performance

Effort

Frustration

55

25

65

65

60

60

80

15

65

60

65

80

NASA TLX

wqh re

Fig. 5. NASA-TLX results

1 2 3 4 5

Confidence

Satisfaction

Recommendable

4.21

4.39

4.32

3.54

3.57

3.32

Likert

wqh re

Fig. 6. Likert results

the physical effort required to use wqh to be lower (perhaps because re requires
more clicks, drags, etc.). Figure 6 shows the usability results, where higher scores
are better; the users express a preference across all dimensions for re when com-
pared with wqh.

6 Conclusions

We present a language and its visual implementation (re) to support non-expert
users in generating graph queries. Our results indicate that our re interface
is more effective at supporting non-expert users in creating correct SPARQL
queries than the baseline wqh system. The data suggest that this difference
could be attributed to better support for generating the correct graph patterns
rather than the correct triple patterns, as well as usability features such as
non-empty suggestions. Even though these benefits come at the cost of higher
physical effort, they require lower mental effort and generate less frustration.

Future work can be followed along several lines. First, additional user studies
may reveal further insights into the RDF Explorer system, where it would be of
interest to compare with other baseline systems (such as Smeagol), with other
endpoints, with other types of questions, and with a more diverse set of users.
More generally, we could explore the potential reasons behind these usability
differences, including whether or not our graph-like visualization leads users to
develop more productive mental representations of the data structures. Aside
from evaluation, the system could be improved along a number of lines, most
importantly in terms of approximations for non-empty suggestions to improve
performance for more complex visual query graphs, and support for features
such as optionals, unions, etc. (while maintaining the usability of the system) .

A demo of RDF Explorer is available at https://www.rdfexplorer.org/ oper-
ating over the Wikidata SPARQL Query Service.
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Abstract. Link prediction has recently been a major focus of knowl-
edge graphs (KGs). It aims at predicting missing links between entities
to complement KGs. Most previous works only consider the triples, but
the triples provide less information than the paths. Although some works
consider the semantic information (i.e. similar entities get similar repre-
sentations) of the paths using the Word2Vec models, they ignore the syn-
tactic information (i.e. the order of entities and relations) of the paths.
In this paper, we propose RW-LMLM, a novel approach for link pre-
diction. RW-LMLM consists of a random walk algorithm for KG (RW)
and a language model-based link prediction model (LMLM). The paths
generated by RW are viewed as pseudo-sentences for LMLM training.
RW-LMLM can capture the semantic and syntactic information in KGs
by considering entities, relations, and order information of the paths.
Experimental results show that our method outperforms several state-
of-the-art models on benchmark datasets. Further analysis shows that
our model is highly parameter efficient.

Keywords: Knowledge graph embedding · Link prediction ·
Random walk · Language model

1 Introduction

Knowledge graphs (KGs) are databases that contain facts about the world. Each
fact in KGs is represented as a triple 〈head entity, relation, tail entity〉 denoted
as 〈h, r, t〉, e.g., 〈Washington, capitalOf, USA〉. Recent years, several KGs such
as YAGO [35], Freebase [3], NELL [5], and DBpedia [16] have been constructed.
These KGs are extremely useful resources for many real-world applications such
as question answering, information extraction, recommendation, etc. However,
KGs are usually far from complete, i.e., missing links between entities, which
hinders their usefulness in the above applications. Therefore, link prediction or
knowledge base completion is proposed to solve this problem.
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 664–679, 2019.
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Recently, many methods have been proposed for link prediction. The most
successful models are embedding-based, such as TorusE [8], SimplE [14], and
ConvE [6]. In these models, entities are represented as vectors while relations are
represented as vectors or matrices. By using the scoring function which is defined
on the representation of each triple, these models can measure the likelihood of
each candidate triple being a fact. However, these models only consider the
triples, so the information they can use is limited.

Compared with the triples, the paths that are connected by multiple triples
provide more information. Similar to DeepWalk [27], some works [10,11,21] treat
the paths as context information and use the Word2Vec [22] models to learn the
latent representations of entities or relations on KGs. Since Word2Vec models
discard the word order information, these methods discard the order information
of the paths either. If we treat the paths as natural language sentences, these
methods can capture the semantic information (similar entities get similar rep-
resentations) but cannot capture the syntactic information (the order of entities
and relations) of the paths.

However, the syntactic information is very useful, it can tell us what the
next word is given previous words, which is exactly the goal of link prediction
(predicting the next entity given previous entity and relation). For example,

given a path A
sonOf−−−−→ B

wifeOf−−−−−→ C, if we capture the semantic information (B
and C have similar representations) and the syntactic information (B is the next
entity of A and sonOf), there is a high probability that 〈A, sonOf,C〉 is a fact.

To capture the semantic information and the syntactic information simulta-
neously, we propose RW-LMLM, a novel approach for link prediction. Figure 1
shows the overview of our method. The first part of our method is a random walk
algorithm for KG (RW) and the second part is a language model-based link pre-
diction model (LMLM) which is constructed by the Transformer Decoder [20,40].
In order to obtain the paths more conveniently, the triples in KG are converted
to a graph. RW generates a set of paths by performing random walks along the
outgoing direction of entities on the graph. The paths generated by RW con-
sist of entities and relations while maintaining their order. These paths will be
viewed as pseudo-sentences to train LMLM like the standard language model.
Benefitting from the masked self-attention mechanism and the positional encod-
ing of LMLM, the previous entities, relations and their order are considered
when predicting the next entity, which makes LMLM have the ability to capture
both the semantic and syntactic information. We evaluate our method on four
benchmark datasets: WN18 [4], FB15k [4], WN18RR [6], and FB15k-237 [38].
Experimental results show that our method outperforms several state-of-the-art
models.

In summary, our contributions are as follows:

– We propose RW-LMLM— a novel approach for link prediction. RW-LMLM
can capture the semantic and the syntactic information in KGs.

– We analyze the parameter sensitivity of RW and find that we do not need
too many walk steps to get the best performance, for FB15k-237, 5 steps is
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enough. This may guide some works to choose a more reasonable path length
to improve their performance.

– LMLM that utilizes the path information is more parameter efficient than
some methods that only use the triples information. Compared with two state-
of-the-art models ConvE and DistMult, LMLM is 2x parameter efficient than
ConvE and at least 4x than DistMult.

<e1, r1, e2>
<e2, r2, e3>
<e2, r3, e4>

e1 e2

e3

e4
r1

r2

r3

r1-1
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r3r1e1          e2           e4
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random walks

Step 2 

LMLM

e1; r1 e2; r3

e2 e4

LMLM

e3; r1

?

as input

Step 3 

evalua on

Step 4 

Fig. 1. Overview of our method. Step 1 converts triples to a graph; step 2 performs
random walks on the graph to generate the paths; step 3 uses each path to train LMLM

(taking e1
r1−→ e2

r3−→ e4 as an example); step 4 uses the trained LMLM to do link
prediction task (taking 〈e3, r1, ?〉 as an example).

2 Related Work

Embedding models for link prediction have been quite popular in recent years.
They usually use the triples to get the representations of entities and rela-
tions. We roughly divide them into three categories: translation-based, bilinear,
and neural network-based. TransE [4] is the first translation-based model. It
model the relation as a translational vector to correlate the head and tail entity
embeddings. Many works extend TransE by projecting the head and tail embed-
dings into the relation vector space using projection vectors or matrices, such as
TransH [42], and TransR [18]. Using the same principle as TransE, TorusE [8]
embeds entities and relations on a torus. Unlike translation-based models, bilin-
ear models represent the relation as a matrix. RESCAL [26] has no restrictions
on the relation matrix. DistMult [43] restricts relations to diagonal matrices, and
ComplEx [39] is DistMult’s extension in complex space. SimplE [14] is a sim-
ple interpretable fully expressive bilinear model. The first two types of models
are simple, efficient, and easy to expand, but they are less expressive than neu-
ral network-based models. NTN [33] has a neural network architecture, which
allows mediated interaction of entity vectors via a tensor. MLP [7] is a simpli-
fied version of NTN where each relation is associated with one vector and then a



Capturing Semantic and Syntactic Information for Link Prediction in KGs 667

standard multi layer perceptron is used to capture interaction terms. ConvE [6]
is a highly parameter efficient model which uses 2D convolution over embeddings
and multiple layers of non-linear features to model KGs.

The information provided by the triples is limited. Many works try to exploit
richer context information. Some utilize neighbor information of entitie, such as
GAKE [10], TransE-NMM [24], and R-GCN [32]. Relation paths between two
entities are more deep information for link prediction. PRA [15] is an early work.
Recent research usually combines the relation path into a new relation between
two entities by addition, multiplication, or RNN, such as PTransE [17], TransE-
COMP [12], and Bilinear-COMP [12]. Our method also uses the relation paths.
Instead of treating them as new relations, we treat them as pseudo-sentences
together with the entity paths, which can make full use of the intermediate
information of the paths.

Our work is closely related to DeepWalk [27] which uses Skip-gram [22] on
the information generated by random walks to get the latent representations of
vertices on social graphs. Luo et al. [21], Goikoetxea et al. [11], and GAKE [10]
use the similar idea on KGs. Our method differs from these in several aspects.
(1) DeepWalk and Goikoetxea et al. only consider the entities, and they all do
not consider the order information. Our method considers all three aspects of
the path: entities, relations, and order information. (2) All these works use the
Word2Vec models (CBOW or Skip-gram), but we use the multi-layer Trans-
former Decoder language model, which is more expressive, more suitable for
ordered data, and better at capturing high-level information especially the syn-
tactic information. (3) They are just embedding models which aim at obtaining
the latent representations of entities or relations. Our model is not only an
embedding model, but also a link prediction model which can be used directly
for link prediction task.

3 Problem Definition

A KG is represented as a set of triples (facts) O = {〈h, r, t〉} ⊆ E × R × E .
Each triple 〈h, r, t〉 denotes a relation r ∈ R between head entity h ∈ E and tail
entity t ∈ E , where E and R are the sets of entities and relations respectively.
We convert KG O to a directed graph G = (V,E) where V is the set of vertices
and E is the set of edges. We treat each entity e as a vertex, each relation r as a
directed edge from h to t. We also add a directed edge from t to h to represent
the inverse relation r−1, which is widely used to make full use of the structural
information of KG [10].

Link prediction usually refers to the task of predicting another entity for a
given entity and relation, i.e., predicting t given h and r (〈h, r, ?〉) or h given
r and t (〈?, r, t〉). For example, 〈Washington, capitalOf, ?〉 means to predict
which country’s capital is Washington, and 〈?, capitalOf, USA〉 means to pre-
dict which city is the capital of the USA. We unify the two tasks by convert-
ing the latter to the former, i.e., predicting head entity given tail entity and
inverse relation (〈t, r−1, ?〉). Unlike other methods which learn the scoring func-
tion fr(h, t), we directly learn the conditional probability distribution of the
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target entity P (T |I,R;Θ) where I and R denote h and t or t and r−1, and Θ
denotes parameters which learned by LMLM.

4 Methodology

In this section, we will describe the two parts of our method (RW and LMLM)
in detail. The purpose of RW is to obtain the paths in KGs. These paths will
be viewed as pseudo-sentences to train LMLM. Just like the standard language
model, the objective of LMLM is to maximize the probability of the entities in
the paths.

4.1 RW: Random Walks on KG

We perform random walks on G to get a set of paths PER for training. For the
sake of convenience, we fix the length l of a path PER. Random walks are along
the outgoing direction of entities, so the entities in the paths are in the form of
head-to-tail and the relations are in the middle, such as e0

r0−→ e1
r1−→ · · · rl−1−→ el.

A path PER in PER contains l + 1 entities and l relations

Algorithm 1. Random Walks on KG
Input: graph G = (V,E)

number of iterations t
walk length l

Output: a set of paths PER
1: for i = 1 to t do
2: V = Shuffle(V )
3: for each v ∈ V do
4: add v to path PER

5: for j = 1 to l do
6: randomly choose an outgoing adjacent vertex e of v
7: randomly choose an edge r between v and e
8: add r and e to PER

9: v = e
10: end for
11: add PER to PER
12: end for
13: end for
14: return PER

Algorithm 1 shows our approach. We perform t iterations on V . At the start
of each iteration, we generate a random ordering V of V . Random walks are
performed staring from each vertex in V. A random walk walks l steps along the
outgoing direction of a start vertex to get a path PER. For each step, we randomly
choose an outgoing adjacent vertex firstly, then choose the edge between the two
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vertices. If there are multiple edges between the two vertices, we will randomly
choose one. Finally, we will get a set of paths PER.

This algorithm is similar to the algorithm proposed by [27]. The main differ-
ence is that our random walks are performed on directed graphs with relation
information. Instead of randomly choosing an adjacent edge and the vertex on
the edge, we first choose an adjacent vertex and then randomly choose an edge
between the two vertices. Since there may be multiple edges (relations) between
two vertices (entities), the former method may break the balance of the number
of entities in the paths.

4.2 LMLM: Language Model-Based Link Prediction Model

Inspired by the ability of the standard language model to capture the semantic
and syntactic information of natural language sentences as well as the ability
to predict the next word given previous words, we construct the link prediction
model LMLM based on the standard language model.

The standard language model usually defines a probability distribution over
a sequence of tokens: P (w1, w2, . . . , wn) =

∏
i P (wi|w1, . . . , wi−1) . The goal of

language modeling is to maximize this probability. The conditional probabilities
P (wi|w1, . . . , wi−1) can be learned by neural networks [2,23]. Recent years, the
Transformer Decoder (TD) [20], the decoder part of Transformer [40], has been
widely used for language modeling [20,30,31]. Our model is also constructed
using the TD.

TD. Figure 2 shows the architecture of TD. The TD is mainly composed of
two parts: masked Multi-Head Attention layer and Feed-Forward layer. The
masked Multi-Head Attention consists of multiple scaled dot-product attention
[40] which is a commonly used attention function [9,37,41]. The self-attention
in this layer is masked to computes the hidden representation of each position
by considering the representations of previous positions and itself. The Feed-
Forward layer is a fully connected position-wise Feed-Forward Network (FFN)
which consists of two linear transformations. It is applied to each position sep-
arately and identically. In addition, the TD uses residual connection [13] and
layer normalization [1] between every two layers.

LMLM. We treat a path as a pseudo-sentence, and the set of paths is a cor-
pus. We use the corpus to train our model. Formally, given a path PER =
e0

r0−→ e1
r1−→ · · · rl−1−→ el where ei ∈ E and ri ∈ R, the input of our model is

((e0, r0) , (e1, r1) , . . . , (el−1, rl−1)) and the target is (e1, e2, . . . , el). Similar to the
standard language model, our objective is to maximize the following probability:

P (e1, e2, . . . , el) =
l∏

i=1

P (ei| (e0, r0) , . . . , (ei−1, ri−1)) . (1)
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Masked Multi-
Head Attention

Feed Forward

Add & Norm

Add & Norm

Input

Output

Fig. 2. TD architecture

We divide the input into two parts, the entities input (e0, e2, . . . , el−1) and
the relations input (r0, r1, . . . , rl−1). They are represented as the one-hot matri-
ces ME ∈ R

l×|E| and MR ∈ R
l×|R| respectively. Each position of the input

has a positional encoding, which is represented as a position embedding matrix
Wp ∈ R

l×(dE+dR) where dE and dR are the embedding dimension of entities and
relations respectively. We use the fixed position embedding matrix proposed
by [40]:

Wp (i, j) =
{

sin
(
i/10000j/(dE+dR)

)
if j mod 2 = 0

cos
(
i/10000(j−1)/(dE+dR)

)
if j mod 2 = 1.

(2)

We use the TD to get the conditional probability distribution of the i-th
target entity yi = P̂ (T | (e0, r0) , . . . , (ei−1, ri−1)):

h0 = [MEWE ;MRWR] + Wp, (3)

hk = TD(hk−1), k ∈ [1, n] , (4)

yi = softmax(hi
nWhWT

E ), i ∈ [1, l] , (5)

where WE ∈ R
|E|×|dE | and WR ∈ R

|R|×|dR| are the entity embedding matrix and
the relation embedding matrix respectively; [; ] is a concatenation operator on
row vector of two matrices; hi

k is the i-th hidden representation of k-th TD layer;
n is the number of layers of the TD; Wh ∈ R

(dE+dR)×dE is a linear transformation
matrix.

Figure 3 shows the architecture of LMLM. Firstly, the model obtains the
dE-dimensional (dR-dimensional) representations of entities (relations) by WE

(WR). Then the model concatenates the representations of entities and relations.
After adding the positional encoding, the representations are used as the initial
input of the TD. After the multi-layer TD, the representations are projected
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Fig. 3. LMLM architecture

to dE-dimensional space using a linear transformation matrix Wh. The model
then projects the representations to |E|-dimensional space using WT

E (i.e. output
embedding [28]) and gets the probability distribution of the next entity using the
softmax function. Since the positional encoding and the masked self-attention
of TD, the previous i-1 entities, relations and their order are considered when
predicting the i-th entity.

We train our model by minimizing the following loss function:

L = −
l∑

i=1

log P̂ (T = ei| (e0, r0) , . . . , (ei−1, ri−1)) . (6)

We adopt stochastic gradient descent to train our model. To reduce overfit-
ting, we regularise our model by using label smoothing [36] and dropout [34]. In
particular, we use dropout on the embeddings and the FFN layers of TD.

5 Experiments

5.1 Datasets

We evaluate our method on four benchmark datasets: WN18 [4], FB15k [4],
WN18RR [6], and FB15k-237 [38]. WN18 is a subset of Wordnet. FB15k is a
subset of Freebase. WN18RR and FB15k-237 are subsets of WN18 and FB15k
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respectively. WN18RR and FB15k-237 are created by removing inverse relations
to form more challenging, realistic datasets. All these datasets consist of three
parts: training set, validation set, and testing set. Table 1 presents the statistics
of the four datasets.

Table 1. Statistics of the experimental datasets. #train, #valid, and #test represent
the number of triples in training set, validation set, and testing set, respectively.

Dataset |E| |R| #train #valid #test

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

5.2 Evaluation Protocol

The purpose of link prediction is to predict the target entity given an input entity
I and relation R. We can get the probability distribution of the target entity
P (T |I,R) by the trained LMLM. We rank the probability values in descending
order. The top ranked entity is more likely to be the target entity which we want
to predict.

Given an entity e1 and a relation r1, if the predicted entity e′
2 ranks higher

than the target entity e2, but 〈e1, r1, e′
2〉 is a fact in KG, this is not wrong. In

order to avoid this misleading behavior, we remove such type entities that exist
in training, validation, or testing set before ranking. We call the original one
raw, the filtered one filt. [4].

To measure the performance of different methods in link prediction, we
employ several common evaluation metrics: Hits@N, Mean Rank (MR), and
Mean Reciprocal Rank (MRR). Hits@N denotes the proportion of the target
entities that are ranked within top N. MR is the mean of the target entities’
rankings. MRR is the mean of multiplicative inverse of the target entities’ rank-
ings. Higher Hits@N, lower MR, and higher MRR indicate better performance.

5.3 Experimental Setup

We first utilize RW on the training sets to generate the paths for model training.
For WN18 and WN18RR, the number of iterations is 50 and walk length is 10.
For FB15k and FB15k-237, the number of iterations is 200 and walk length are
10 and 5 respectively.

We use grid search to select the hyperparameters of LMLM. The ranges of
hyperparameters are as follows: entity embedding dimension dE in {50, 100,
200}, relation embedding dimension dR in {10, 30, 50}, FFN layer dimension df
in {500, 800, 1000}, the number of TD layers n in {1, 2, 4, 5}, embedding dropout
dpe in {0.1, 0.2, 0.3}, batch size bs in {64, 128}. We fix some parameters: learning
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Table 2. Link prediction results on WN18 and FB15k (raw)

Method WN18 FB15k

MR MRR Hits@10 MR MRR Hits@10

TransE [4] 263 — 0.754 243 — 0.349

STransE [25] 217 0.469 0.809 219 0.252 0.516

GAKE [10] — — — 228 — 0.445

ANALOGY [19] — 0.657 — — 0.253 —

R-GCN [32] — 0.553 — — 0.251 —

TransAt(asy,bern) [29] 169 — 0.814 185 — 0.529

TorusE [8] — 0.619 — — 0.256 —

RW-LMLM 318 0.664 0.852 211 0.322 0.572

rate is 0.01, label smoothing is 0.2, attention heads is 4, and FFN layer dropout
is 0.1. We find the following hyperparameters work well on the four datasets:
dE = 100, dR = 10, df = 500, n = 2, dpe = 0.1, bs = 128 on WN18; dE = 100,
dR = 30, df = 500, n = 4, dpe = 0.2, bs = 128 on WN18RR; dE = 100, dR = 30,
df = 800, n = 2, dpe = 0.1, bs = 128 on FB15k; dE = 100, dR = 30, df = 500,
n = 4, dpe = 0.3, bs = 64 on FB15k-237. Best models are selected by using early
stopping according to Hits@10 on the validation sets, with up to 30 epochs over
the set of paths. Our code is available online1.

5.4 Results

Table 2 shows the results of several methods on WN18 and FB15k under the raw
setting. Our method achieves the best MRR and Hits@10 on the both datasets.
Table 3 shows the results of several methods on the two datasets under the
filt. setting. We evaluate methods on Hits@N in more detail, including Hits@1,
Hits@3, and Hits@10. The results show that our method obtains the best MRR
and all Hits@N. Compared with GAKE which is a work similar to ours but
does not consider the order information (i.e. missing syntactic information), our
method achieves the relative improvement of 7%/29% in MR/Hits@10 on FB15k
(raw) and 37%/35% in MR/Hits@10 on FB15k (filt.)

It has been noted by [38] that many testing triples are inverse triples of
training triples in WN18 and FB15k, which makes these triples easy to learn. Our
method may benefit from it on the two datasets. To demonstrate the superiority
of our method, we evaluate our method on more challenging datasets: WN18RR
and FB15k-237 which remove inverse relations in WN18 and FB15k. Table 4
shows the results. We achieve the best MR and all Hits@N on WN18RR and
the best MRR, Hits@3, and Hits@10 on FB15k-237. The results of MRR on
WN18RR and Hits@1 on FB15k-237 are close to the best.

1 https://github.com/chjianw/RW-LMLM.

https://github.com/chjianw/RW-LMLM
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Table 3. Link prediction results on WN18 and FB15k (filt.)

Method WN18 FB15k

MR MRR Hits@N MR MRR Hits@N

1 3 10 1 3 10

TransE [4] 251 — — — 0.892 125 — — — 0.471

ComplEx [39] — 0.941 0.936 0.945 0.947 — 0.692 0.599 0.759 0.840

GAKE [10] — — — — — 119 — — — 0.648

ANALOGY [19] — 0.942 0.939 0.944 0.947 — 0.725 0.646 0.785 0.854

R-GCN [32] — 0.814 0.686 0.928 0.955 — 0.651 0.541 0.736 0.825

SimplE [14] — 0.942 0.939 0.944 0.947 — 0.727 0.660 0.773 0.838

ConvE [6] 504 0.942 0.935 0.947 0.955 64 0.745 0.670 0.801 0.873

RW-LMLM 308 0.949 0.944 0.951 0.957 75 0.762 0.694 0.809 0.877

Table 4. Link prediction results on WN18RR and FB15k-237 (filt.). Results marked
* are taken from [6].

Method WN18RR FB15k-237

MR MRR Hits@N MR MRR Hits@N

1 3 10 1 3 10

DistMult [43]∗ 5110 0.43 0.39 0.44 0.49 254 0.241 0.155 0.263 0.419

Node+LinkFeat [38] — — — — — — 0.226 — — 0.347

Neural LP [44] — — — — — — 0.24 — — 0.362

R-GCN [32] — — — — — — 0.248 0.153 0.258 0.414

ConvE [6] 5277 0.46 0.39 0.43 0.48 246 0.316 0.239 0.350 0.491

RW-LMLM 4286 0.45 0.42 0.47 0.51 358 0.321 0.231 0.352 0.507

We note that our method performs well on most metrics except MR. One
explanation for this is that our method targets the most accurate entities given
previous entities and relations, while MR reflects the average performance of
methods, and a single bad ranking of target entity can greatly affect MR even
the others perform well. Compared with MR, MRR is more reasonable and
robust. It uses the mean of multiplicative inverse of the target entities’ rank-
ings, so the effect of bad triples is reduced, and the rankings of target entities
can be distinguished, i.e., lower rankings will have higher scores. Our method
achieves the best MRR on three of the four datasets and is on par with ConvE
on WN18RR.

6 Analysis

We analyze our method on FB15k-237 in several aspects, including parameter
sensitivity of RW, parameter efficiency of LMLM, and ablation studies. The
experimental setup is the same as in Sect. 5.3 unless otherwise specified.
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6.1 Parameter Sensitivity of RW

We investigate the effect of the two parameters (i.e. the number of iterations t
and the walk length l) of RW on Hits@10. We experiment on the FB15k-237
dataset.

Figure 4 shows the results. We note that Hits@10 increases as t increases, and
the trend slows down. This is intuitive. More iterations can get more information
to help the improvement of performance. l = 5 has an improvement on Hits@10
compared to l = 3, but from l = 5 to l = 10 Hits@10 has almost no change. This
means that we do not need too many walk steps to get the best performance on
FB15k-237.

Fig. 4. Results of different parameters in RW. t is the number of iterations and l is the
walk length.

6.2 Parameter Efficiency of LMLM

We compare the number of parameters with a bilinear model DistMult and a
neural network-based model ConvE to demonstrate the parameter efficiency of
LMLM.

Table 5 shows the results on FB15k-237. We can see that LMLM performs
better than DistMult and ConvE with the same number of parameters. LMLM
with 0.95M parameters performs better than ConvE with 1.89M parameters on
Hits@10 and is the same on MRR. Similar results are also reported on LMLM
with 0.46M parameters and ConvE with 0.95M parameters. LMLM with 0.46M
parameters still performs better than DistMult with 1.89M parameters on both
Hits@10 and MRR. Overall, LMLM is 2x parameter efficient than ConvE, at
least 4x than DistMult.
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LMLM is more parameter efficient than ConvE and DistMult, probably
because LMLM utilizes the path information while the other two only utilize the
triples, so even with fewer parameters, LMLM can still capture enough informa-
tion.

Table 5. Parameter comparison on FB15k-237. Results of DistMult and ConvE are
taken from [6].The embedding size refers to the entity embedding size and the numbers
in brackets are the relation embedding sizes. For DistMult and ConvE, their relation
embedding size and entity embedding size are the same.

Model Parameter count Embedding size MRR Hits@10

DistMult 1.89M 128 0.23 0.41

0.95M 64 0.22 0.39

ConvE 1.89M 96 0.32 0.49

0.95M 54 0.30 0.46

0.46M 28 0.28 0.43

LMLM 1.89M 83(30) 0.32 0.50

0.95M 43(20) 0.32 0.50

0.46M 21(12) 0.29 0.46

6.3 Ablation Studies

We perform two ablation studies on FB15k-237 and the results are shown in
Table 6.

First, we investigate the effect of missing the relation information on perfor-
mance by removing relation embedding in LMLM. The model without relation
information has a dramatic decline in performance compared to the full model.
This is in line with expectations, since the relation information is one of the most
important information in KGs and it is critical to performance. Second, we inves-
tigate the effect of missing the order information on performance by removing the
position embedding and disordering the triples in LMLM. Compared with the
full model, the performance of the model without the order information declines
on all metrics, up to 8% relative decrease on Hits@1. The results demonstrate
that the order information (i.e. the syntactic information) contributes to the
performance improvement of link prediction.

Table 6. Ablation studies on FB15k-237

Model MRR Hits@1 His@3 Hits@10

Full model 0.321 0.231 0.352 0.507

w/o relation 0.035(↓ 0.286) 0.007(↓ 0.224) 0.017(↓ 0.335) 0.061(↓ 0.446)

w/o order 0.301(↓ 0.020) 0.212(↓ 0.019) 0.329(↓ 0.023) 0.484(↓ 0.023)
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7 Conclusion and Future Work

This paper proposes a novel method RW-LMLM for link prediction in KGs.
RW-LMLM consists of two parts, including RW—a random walk algorithm for
KG, and LMLM—a language model-based link prediction model. The paths
generated by RW are treated as pseudo-sentences and they are used to train
LMLM like the standard language model. RW-LMLM has the ability to capture
the semantic and syntactic information in KGs since it considers entities, rela-
tions, and order information of the paths. Experimental results on four datasets
show that our method outperforms previous state-of-the-art models. Compared
to some methods that only utilize the triples, our method that utilizes the path
information is more parameter efficient. We also analyze the parameter sensi-
tivity of RW and we find that more walk steps may not always necessary. This
may help other works to choose a reasonable path length when they want to
improve link prediction performance by the path information. Our work is an
attempt to solve the problem in KGs using natural language processing method.
Experimental results show the competitiveness of this way.

In the future, we plan to explore the following directions: (1) although the
effect of the dimensions of entities and relations on performance is reflected in
Sect. 6.2, more specific study is necessary. (2) We plan to study the relationship
between the optimal path length and the number of entities or relations on more
datasets.
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Abstract. Reusing existing datasets is of considerable significance to
researchers and developers. Dataset search engines help a user find rel-
evant datasets for reuse. They can present a snippet for each retrieved
dataset to explain its relevance to the user’s data needs. This emerging
problem of snippet generation for dataset search has not received much
research attention. To provide a basis for future research, we introduce a
framework for quantitatively evaluating the quality of a dataset snippet.
The proposed metrics assess the extent to which a snippet matches the
query intent and covers the main content of the dataset. To establish a
baseline, we adapt four state-of-the-art methods from related fields to
our problem, and perform an empirical evaluation based on real-world
datasets and queries. We also conduct a user study to verify our findings.
The results demonstrate the effectiveness of our evaluation framework,
and suggest directions for future research.

Keywords: Snippet generation · Dataset search · Evaluation metric

1 Introduction

We are witnessing the rapid growth of open data on the Web, notably RDF,
Linked Data and Knowledge Graphs [30]. Today, to develop a Web application,
reusing existing datasets not only brings about productivity improvements and
cost reductions, but also makes interoperability with other applications more
achievable. However, there is a lack of tool support for conveniently finding
datasets that match a developer’s data needs. To address it, recent research
efforts yielded dataset search engines like LODAtlas [32] and Google Dataset
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Search [2]. They retrieve a list of datasets that are relevant to a keyword query
by matching the query with the description in the metadata of each dataset.

These systems have made a promising start. Furthermore, a helpful dataset
search engine should also explain why a retrieved dataset is relevant. A concise
piece of information presented for each dataset in a search results page is broadly
referred to as a dataset summary. It may help the user quickly identify a rele-
vant dataset. Summaries presented in current dataset search engines, however,
are mainly composed of some metadata about a dataset, such as provenance
and license. Their utility in relevance judgment is limited, with users having to
analyze each dataset in the search results to assess its relevance, which would
be a time-consuming process.

To overcome the shortcoming of metadata, we study an emerging type of
dataset summary called dataset snippet. For an RDF dataset retrieved by a
keyword query, a dataset snippet is a size-constrained subset of RDF triples
extracted from the dataset, being intended to exemplify the content of the
dataset and to explain its relevance to the query. It differs from a dataset profile
which represents a set of features describing attributes of the dataset [13]. It is
also complementary to an abstractive summary which aggregates data into pat-
terns and provides a high-level overview [4,8,38,39,45]. It is conceptually more
similar to a snippet extracted from a webpage and presented in traditional Web
search. However, little research attention has focused on this perspective.

As a preliminary effort along this way, we work towards establishing a frame-
work for evaluating snippets generated for dataset search. That would provide
a basis for future research, in terms of providing quantitative evaluation met-
rics and advising algorithm design. Existing evaluation metrics used in related
fields such as snippet generation for ontologies [28] and documents [16] are
mainly based on a human-created ground truth. However, an RDF dataset
may contain millions of RDF triples, e.g., when it wrapped from a large
database [18,19,23,33], or streaming data [24,25], or comes from a manufac-
turing environment [22,26,37] being much larger than an ontology schema or
a document. It would be difficult, if not impossible, to manually identify the
optimum snippet as the ground truth. Therefore, new evaluation metrics are
needed.

To demonstrate the use of our evaluation framework, considering the lack
of dedicated solutions to dataset snippets, we explore research efforts in related
fields and adapt their methods to our problem. Using our framework, we analyze
these methods and empirically evaluate them based on real-world datasets. We
also carry out a user study to verify our findings and solicit comments to motivate
future research.

To summarize, our contributions in this paper include

– a framework for evaluating snippets in dataset search, consisting of four met-
rics regarding how well a snippet covers a query and a dataset,

– an adaptation of four state-of-the-art methods selected from related fields to
generate snippets for dataset search, as a baseline for future research, and
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– an evaluation of the adapted methods using the proposed evaluation frame-
work based on real-world datasets and queries, as well as a user study.

The remainder of the paper is organized as follows. Section 2 reviews related
research. Section 3 describes our evaluation framework. Section 4 reports evalu-
ation results. Section 5 presents a user study. Section 6 concludes the paper.

2 Related Work

Very little research attention has been given to the problem of snippet generation
for dataset search. Therefore, in this section, we also review research efforts in
related fields that can be adapted to the problem we study.

2.1 Snippets for RDF Datasets

In an early work [1], a snippet for an RDF document is generated to show
how the document is relevant to a keyword query. Preference is given to RDF
triples that describe central entities or contain query keywords. The proposed
algorithm relies on manually defined ranking of predicates. In [12,36], an RDF
dataset is compressed by keeping only a sample of triples in order to improve
the performance of query processing while still serve query results as complete
as possible. To this end, [36] samples triples that are central in the RDF graph
and hence are likely to appear in the answers of typical SPARQL queries. By
contrast, [12] iteratively expands the sample as needed to make it more precise.
Completeness preserving summaries [15] help optimise distributed reasoning and
querying.

In a recent work [7], an illustrative snippet is generated to exemplify the
content of an RDF dataset. Snippet generation is formulated as a combinatorial
optimization problem, aiming to find an optimum connected RDF subgraph such
that it contains instantiation of the most frequently used classes and properties
in the dataset and contains entities having the highest PageRank scores. An
approximation algorithm is presented to solve this NP-hard problem. This kind
of snippet can be used in dataset search, although it is not query-biased.

2.2 Snippets for Ontology Schemas

An ontology snippet distills the most important information from an ontology
schema and forms an abridged version [42,43]. Existing methods often represent
an ontology schema as a graph, and apply some centrality-based measures to
identify the most important terms or axioms as an ontology snippet [34,35].
It is possible to adapt these methods to generate snippets for an RDF dataset
because it can be viewed as an RDF graph to process.

We give particular attention to methods that are capable of generating query-
biased snippets for ontology search [3,5,6,17,31]. An ontology schema is often
represented as a graph where nodes represent terms and edges represent axioms
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associating terms [17,44]. In a state-of-the-art approach [17], such a graph is
decomposed into a set of maximal radius-bounded connected subgraphs, which
in turn are reduced to tree-structured sub-snippets. A greedy algorithm is per-
formed to select and merge an optimum set of sub-snippets, in terms of com-
pactness and query relevance.

2.3 Keyword Search on Graphs

Keyword search on a graph is to find an optimum connected subgraph that con-
tains all the keywords in a query [9,41]. An optimum subgraph has the smallest
total edge weight [11,21,29], or a variant of this property [27]. As each keyword
can match a set of nodes in a graph, the problem is formulated as a group Steiner
tree (GST) problem. This kind of subgraph can be used as a query-biased snippet
for an RDF dataset viewed as an RDF graph. However, the problem is NP-hard
and is difficult to solve. Many algorithms perform not well on large graphs [10].

A state-of-the-art algorithm for the GST problem is PrunedDP++ [29]. The
algorithm progressively refines feasible solutions based on dynamic programming
with an A*-search strategy. In dynamic programming, optimal-tree decomposi-
tion and conditional tree merging techniques are proposed to prune unpromising
states. For A*-search, several lower-bounding techniques are used.

2.4 Snippets for Documents

A document snippet consists of salient sentences selected from the original doc-
ument [16]. To adapt such a method to our problem, we could replace the three
elements of an RDF triple with their textual forms. The triple becomes a pseudo
sentence, and an RDF dataset is transformed into a set of sentences to process.

Among existing solutions, unsupervised query-biased methods [40] are closer
to our problem setting because, at this stage, training data for dataset search is
not available. The CES method [14] is among the state-of-the-art in this line of
work. It formulates sentence selection as an optimization problem and solves it
using the cross-entropy method. Preference is given to diversified long sentences
that are relevant to a query.

3 Evaluation Framework

In this section, we firstly define some terms used in the paper, and then propose a
framework for evaluating snippets generated for dataset search. Our framework,
consisting of four metrics characterizing different aspects of a dataset snippet,
will be used in later sections to evaluate selected methods reviewed in Sect. 2.

3.1 Preliminaries

Datasets vary in their formats. Search queries have various types. This paper
is focused on keyword queries over RDF datasets because this combination is
common. We will consider other data formats and query types in future work.
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Fig. 1. (a) An example dataset and (b)(c)(d) three of its snippets generated by different
methods w.r.t. the query munich europe.

Definition 1 (RDF Dataset). An RDF dataset, or a dataset for short, is a
set of n RDF triples denoted by T = {t1, . . . , tn}. Each ti ∈ T is a subject-
predicate-object triple denoted by 〈tsi , tpi , toi 〉.
In RDF, tsi , t

p
i , and toi can be IRIs, blank nodes, or literals, which are collectively

known as RDF terms. An “RDF term” and the “resource” it denotes are used
interchangeably in the paper.

Definition 2 (Keyword Query). A keyword query, or a query for short, is a
set of m keywords denoted by Q = {q1, . . . , qm}.

A snippet of a dataset is a size-constrained subset of triples extracted from
the dataset. The extraction should consider the query.

Definition 3 (Dataset Snippet). Given a positive integer k, a snippet of a
dataset T is denoted by S subject to S ⊆ T and |S| ≤ k.

An RDF dataset T can be viewed as an RDF graph denoted by G(T ). Each
triple 〈ts, tp, to〉 ∈ T is represented as a directed edge labeled with tp from node ts

to node to in G(T ). Analogously, a snippet S is a subgraph denoted by G(S). In
Fig. 1 we illustrate three snippets for an example dataset w.r.t. a query.

3.2 Evaluation Metrics

To assess the quality of a snippet w.r.t. a query, we propose four quantitative
metrics: coKyw, coCnx, coSkm, and coDat. Recall that a snippet is generated to
exemplify the content of a dataset and to explain its relevance to the query. So
a good snippet should, on the one hand, match the query intent (coKyw, coCnx)
and, on the other hand, cover the main content of the dataset (coSkm, coDat).
Our metrics are open source1.

1 http://ws.nju.edu.cn/datasetsearch/evaluation-iswc2019/metrics.zip.

http://ws.nju.edu.cn/datasetsearch/evaluation-iswc2019/metrics.zip
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Coverage of Query Keywords (coKyw). Keywords in a query express a user’s
data needs. A good snippet should cover as many keywords as possible, to show
how a dataset is plainly relevant to the query.

Specifically, let Text(r) be a set of textual forms of a resource r. For r denoted
by an IRI, Text(r) include

– the lexical forms of r’s human-readable names (if any), i.e., literal values of
r’s rdfs:label property, and

– r’s local name, i.e., the fragment component of r’s IRI (if its exists) or the
last segment of the path component of the IRI.

For r denoted by a blank node, Text(r) only include the lexical forms of r’s
human-readable names (if any). For r denoted by a literal, Text(r) only include
the lexical form of the literal.

A resource r covers a keyword q if any textual form in Text(r) contains a
match for q. Our implementation considers keyword matching, which can be
extended to semantic matching in future work. A triple t covers a keyword q,
denoted by t ≺ q, if r covers q for any r ∈ {ts, tp, to}. For a snippet S, its coverage
of keywords in a query Q is the proportion of covered keywords:

coKyw(S) =
1

|Q| · |{q ∈ Q : ∃t ∈ S, t ≺ q}| . (1)

For example, Fig. 1(c) and (d) cover all the query keywords, so coKyw = 1.
None of the keywords are covered by Fig. 1(b), so coKyw = 0.

Coverage of Connections between Query Keywords (coCnx). Keywords
in a query are not independent but often refer to a set of related concepts which
collectively represent a query intent. To show how a dataset is relevant to the
query and its underlying intent, a good snippet should cover not only query
keywords but also their connections captured by the dataset.

Specifically, for a snippet S, consider its RDF graph G(S). Query keywords
can be covered by nodes or edges of G(S). For convenience, we obtain a sub-
division of G(S), by subdividing every edge labeled with tp from node ts to
node to into two unlabeled undirected edges: one between ts and tp, and the
other between tp and to. The resulting graph is denoted by SD(G(S)). A snippet S
covers the connection between two keywords qi, qj ∈ Q, denoted by S ≺ (qi, qj),
if there is a path in SD(G(S)) that connects two nodes: one covering qi and the
other covering qj . For S, its coverage of connections between keywords in Q is
the proportion of covered connections between unordered pairs of keywords:

coCnx(S) =

{
1

(|Q|
2 ) · |{{qi, qj} ⊆ Q : qi 	= qj and S ≺ (qi, qj)}| if |Q| > 1 ,

coKyw(S) if |Q| = 1 .
(2)

When there is only one keyword, coCnx is meaningless and we set it to coKyw.
For example, Fig. 1(c) covers the connection between the two query keywords,

so coCnx = 1. By contrast, although Fig. 1(d) covers all the keywords, it fails to
cover their connections, so coCnx = 0.
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Coverage of Data Schema (coSkm). Snippets are expected to not only inter-
pret query relevance but also offer a representative preview of a dataset. In
particular, the RDF schema of a dataset is important to users. A good snippet
should cover as many classes and properties used in the dataset as possible, to
exemplify which types of things and facts a user can obtain from the dataset.

Specifically, a snippet S covers a class or a property if S contains its instan-
tiation. Let Cls(S) and Prp(S) be the set of classes and the set of properties
instantiated in S, respectively:

Cls(S) = {c : ∃t ∈ S, tp = rdf:type and to = c} ,
Prp(S) = {p : ∃t ∈ S, tp = p} . (3)

Classes and properties that are used more often in a dataset are more repre-
sentative. The relative frequency of a class c observed in a dataset T is

frqCls(c) =
|{t ∈ T : tp = rdf:type and to = c}|

|{t ∈ T : tp = rdf:type}| . (4)

Analogously, the relative frequency of a property p observed in T is

frqPrp(p) =
|{t ∈ T : tp = p}|

|T | . (5)

For a snippet S, its coverage of the schema of T is related to: (a) the total
relative frequency of the covered classes, and (b) the total relative frequency of
the covered properties. We calculate the harmonic mean (hm) of the two:

coSkm(S) = hm(
∑

c∈Cls(S)

frqCls(c),
∑

p∈Prp(S)

frqPrp(p)) ,

hm(x, y) =
2xy
x + y

.

(6)

For example, Fig. 1(b) covers a frequent class (City) and a frequent property
(locatedIn) in the dataset, so its coSkm score is higher than that of Fig. 1(c)
which covers only properties but not classes.

Coverage of Data (coDat). Classes and properties high relative frequency are
central elements in the schema used in a dataset. Complementary to them, a
good snippet should also cover central elements at the data level (i.e., central
entities), to show the key content of the dataset.

Specifically, let d+(r) and d−(r) be the out-degree and in-degree of a
resource r in an RDF graph G(T ), respectively:

d+(r) = |{t ∈ T : ts = r}| ,
d−(r) = |{t ∈ T : to = r}| . (7)

Out-degree characterizes the richness of the description of a resource, and in-
degree characterizes popularity. They suggest the centrality of a resource from
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Table 1. Overview of selected methods and their alignment with evaluation metrics.

coKyw coCnx coSkm coDat

IlluSnip [7] (illustrative dataset snippet) � �
TA+C [17] (query-biased ontology snippet) � �
PrunedDP++ [29] (GST for keyword search) � �
CES [14] (query-biased document snippet) � � �

different aspects. For a snippet S, its coverage of a dataset T at the data level is
related to: (a) the mean normalized out-degree of the constituent entities, and
(b) the mean normalized in-degree of the constituent entities. We calculate the
harmonic mean of the two:

coDat(S) = hm(
1

|Ent(S)| ·
∑

e∈Ent(S)

log(d+(e) + 1)
maxe′∈Ent(T ) log(d+(e′) + 1)

,

1
|Ent(S)| ·

∑
e∈Ent(S)

log(d−(e) + 1)
maxe′∈Ent(T ) log(d−(e′) + 1)

) ,

Ent(X) = {r : ∃t ∈ X, r ∈ {ts, to}, r /∈ Cls(T ), and r is not a literal.} ,

(8)

where Cls(T ) is the set of all classes instantiated in T defined in Eq. (3), Ent(S) is
the set of all entities (i.e., non-literal resources at the data level) that appear in S,
and Ent(T ) is the set of all entities that appear in T . Degree is normalized by the
maximum value observed in the dataset. Considering that degree usually follows
a highly skewed power-law distribution in practice, normalization is performed
on a logarithmic scale.

For example, Fig. 1(b) is focused on Germany, which is a central entity in the
dataset, so its coDat score is higher than that of Fig. 1(c) and (d) which contain
more of subordinate entities.

4 Evaluation

In Sect. 2, each subsection reviews methods in a related research field that can be
adapted to generate snippets for dataset search. The second paragraph of each
subsection identifies a state-of-the-art method from each field that is suitable for
our context: [7,17,29] and [14]. In this section, we evaluate these methods using
the evaluation framework proposed in Sect. 3. We first analyze whether and how
the components of these methods are aligned with each evaluation metric. Then
we perform an extensive empirical evaluation based on real-world datasets.

4.1 Analysis of Selected Methods

Table 1 presents an overview of the selected methods and whether they have
components that are conceptually similar to each evaluation metric. All the
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methods have been detailed in Sect. 2. In the following we focus on how their
components are aligned with each evaluation metric.

Illustrative Dataset Snippet. Dataset snippets generated by existing meth-
ods reviewed in Sect. 2.1 can be used in dataset search without adaptation. The
method we choose, IlluSnip [7], generates an illustrative snippet for an RDF
dataset by extracting a connected subgraph to exemplify the content of the
dataset. This intended use is very close to our problem.

IlluSnip explicitly considers a snippet’s coverage of a dataset. Giving priority
to the most frequent classes and properties, a snippet is likely to show a high
coverage of data schema (coSkm). Besides, IlluSnip computes the centrality of
an entity by PageRank, which positively correlates with in-degree. Therefore, a
snippet containing such central entities may also have a reasonably high coverage
of data (coDat), which is jointly measured by in-degree and out-degree.

However, IlluSnip is not query biased. A snippet it generates may not contain
any keyword in a query, and hence its coverage of query keywords (coKyw) and
the connections thereof (coCnx) can be very low.

For example, Fig. 1(b) illustrates a snippet generated by IlluSnip.

Query-Biased Ontology Snippet. Query-biased snippets for ontology search
reviewed in Sect. 2.2 are useful for deciding the relevance of an ontology schema
to a query. It is similar to our intent to support judging the relevance of a dataset.
The method we choose, TA+C [17], extracts a query-biased subgraph from the
RDF graph representation of an ontology schema. This method can be directly
used to generate snippets for RDF datasets without adaptation.

TA+C explicitly considers a snippet’s coverage of a query. It greedily adds
query-biased sub-snippets into a snippet, giving preference to those containing
more query keywords. A sub-snippet is a radius-bounded connected subgraph.
Therefore, the resulting snippet has the potential to establish a high coverage
of query keywords (coKyw) and their connections (coCnx), especially when key-
words are closely located in the dataset.

On the other hand, coverage of dataset (coSkm and coDat) is not of concern
to this query-centered method.

For example, Fig. 1(c) illustrates a snippet generated by TA+C.

GST for Keyword Search. Methods for keyword search on graphs reviewed
in Sect. 2.3 find a GST, which is a connected subgraph where nodes contain all
the query keywords. These methods can be straightforwardly applied to gener-
ate snippets for RDF datasets by computing a GST. The method we choose,
PrunedDP++ [29], is one of the most efficient algorithms for the GST problem.

PrunedDP++ has two possible outputs. Either it finds a GST that covers all
the query keywords (coKyw) and connections between all pairs of them (coCnx),
or such a GST does not exist. In the latter case, PrunedDP++ returns empty
results. So it is conceptually similar to TA+C but appears more “aggressive”.
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Coverage of dataset (coSkm and coDat) is not the focus of PrunedDP++.
Nevertheless, these factors may be partially addressed by properly defining edge
weights. Weighting is orthogonal to the design of PrunedDP++.

For example, Fig. 1(c) illustrates a snippet generated by PrunedDP++.

Query-Biased Document Snippet. Query-biased methods for generating
document snippets reviewed in Sect. 2.4 can be adapted to generate snippets for
RDF datasets, by replacing resources in a triple with their textual forms (e.g.,
labels of IRI-identified resources, lexical forms of literals) to obtain a pseudo
sentence. The method we choose, CES [14], generates a query-biased snippet by
selecting a subset of sentences (i.e., triples in our context). This unsupervised
method fits current dataset search, for which training data is in shortage.

CES tends to select diversified triples that are relevant to a query, so it is
likely to achieve a high coverage of query keywords (coKyw). CES also computes
the cosine similarity between the term frequency—inverse document frequency
(TF-IDF) vectors of the document (i.e., RDF dataset) and a snippet. This feature
measures to what extent the snippet covers the main content of the dataset. It
increases the possibility of including frequent classes, properties, and entities,
and hence may improve a snippet’s coverage of dataset (coSkm and coDat).

As a side effect of diversification, triples in a snippet are usually disparate.
Connections between query keywords (coCnx) can hardly be observed.

For example, Fig. 1(d) illustrates a snippet generated by CES.

4.2 Empirical Evaluation

We used the proposed framework to evaluate the above selected methods. All the
experiments were performed on an Intel Xeon E7-4820 (2.00 GHz) with 80GB
memory for the JVM. Our implementation of these methods is open source2.

Datasets and Queries. We retrieved the metadata of 11,462 datasets from
DataHub3 using CKAN’s API. Among 1,262 RDF datasets that provided Turtle,
RDF/XML, or N-Triples dump files, we downloaded and parsed 311 datasets
using Apache Jena. The others were excluded due to download or parse errors.

We used two kinds of queries: real queries and artificial queries.
Real Queries. We used crowdsourced natural language queries4 that were

originally submitted to data.gov.uk for datasets [20]. They were transformed
into keyword queries by removing stop words using Apache Lucene.

Artificial Queries. To have more queries, we leveraged the DMOZ open direc-
tory5 to imitate possible data needs. For each i = 1 . . . 4, we constructed a group
of queries denoted by DMOZ-i. A query in DMOZ-i consisted of the names of

2 http://ws.nju.edu.cn/datasetsearch/evaluation-iswc2019/baselines.zip.
3 https://old.datahub.io/.
4 https://github.com/chabrowa/data-requests-query-dataset.
5 http://dmoz-odp.org/.

https://data.gov.uk/
http://ws.nju.edu.cn/datasetsearch/evaluation-iswc2019/baselines.zip
https://old.datahub.io/
https://github.com/chabrowa/data-requests-query-dataset
http://dmoz-odp.org/
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Table 2. Statistics about query-dataset (Q-D) pairs.

#Q-D
pairs

#keywords in Q #triples in D #classes in D #properties in D

mean max mean max mean max mean max

data.gov.uk 42 2.88 8 116,822 2,203,699 13 129 47 357

DMOZ-1 88 1.25 3 137,257 2,203,699 30 2,030 66 3,982

DMOZ-2 84 2.33 5 151,104 2,203,699 10 129 34 357

DMOZ-3 87 3.66 6 164,714 2,203,699 13 153 43 357

DMOZ-4 86 5.02 8 219,844 2,203,699 13 129 46 357

i random sub-categories of a random top-level category in DMOZ. Such closely
related concepts had a reasonable chance to be fully covered by some dataset.

To conclude, we had five groups of queries: data.gov.uk, DMOZ-1, DMOZ-2,
DMOZ-3, and DMOZ-4. For each group, we randomly retained 100 queries such
that each query could be paired with a dataset that covered all the query key-
words. These 500 query-dataset pairs were used in our evaluation. We required a
dataset to cover all the query keywords in order to make sense of the experiment
results. Otherwise, a low score of coKyw would be ambiguous: reflecting the poor
quality of the snippet, and/or the irrelevance of the dataset.

Configuration of Methods. We detail their configuration in the following.
Size of Snippet. Following [7], we configured IlluSnip and CES to generate a

snippet containing at most 20 RDF triples (i.e., k = 20). For TA+C, it would be
inappropriate to bound the number of triples because the snippets it generated
could contain isolated nodes. So we bounded it to output a snippet whose graph
representation contained at most 20 nodes. For PrunedDP++, the size of its
output was automatically determined but not configurable.

Weights and Parameters. For TA+C [17], edge weights were defined as in
the original paper. For PrunedDP++ [29], its authors did not specify how to
weight edges. Our weighting followed [11]—the predecessor of PrunedDP++.
For CES [14], it had several parameters. Most of them were set to the values
used in the original paper. However, due to the large size of RDF dataset, the
sampling step in CES was performed 1,000 times (instead of 10,000 times in [14])
in consideration of memory use.

Preprocessing. We built inverted indexes for efficient keyword mapping in
TA+C, PrunedDP++, and CES. For TA+C, following its original implementa-
tion [17], we precomputed and materialized all the maximal 1-radius subgraphs.

Timeout. After preprocessing, we set a timeout of one hour for each method to
generate a snippet. The generating process would be terminated when reaching
timeout. In that case, the runtime would be defined to be one hour. For IlluSnip
and CES which iteratively found better snippets, the best snippet at timeout
would be returned. For TA+C and PrunedDP++, timeout indicated failure.
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Table 3. Average scores of evaluation metrics
on all the query-dataset pairs.

coKyw coCnx coSkm coDat

IlluSnip 0.1000 0.0540 0.6820 0.3850

TA+C 0.9590 0.4703 0.0425 0.0915

PrunedDP++ 1 1 0.0898 0.2133

CES 0.9006 0.3926 0.3668 0.2684
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Fig. 2. Runtime on each query-data
set pair, in ascending order.
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Fig. 3. Average scores of evaluation metrics on each group of query-dataset pairs.

Evaluation Results. Out of the 500 query-dataset pairs, 113 pairs were not
included in our results for one of the following reasons.

– PrunedDP++ did not find any GST to connect all the query keywords, and
hence generated an empty snippet.

– TA+C and PrunedDP++ were forced to terminate due to timeout.
– TA+C did not complete preprocessing after twelve hours.

We reported evaluation results on the remaining 387 pairs where every method
successfully generated a non-empty snippet before timeout. Table 2 characterizes
these queries and datasets. They are available online6.

Note that IlluSnip and CES were configured to generate a snippet containing
at most 20 triples, and they selected 19.68 and 19.89 triples on average, respec-
tively. By comparison, for PrunedDP++ the size of its output was automatically
determined, and the mean number of triples in the experiment was only 4.60.
This may affect the evaluation results. Besides, TA+C and PrunedDP++ some-
times produced isolated nodes instead of triples. The query keywords covered by
these nodes were considered in the computation of coKyw and coCnx.

Table 3 presents the average score of each evaluation metric achieved by each
method on all the query-dataset pairs. Compared with Table 1, a higher score was
generally observed when a metric was conceptually considered in the components
of a method. We concluded that the results of our empirical evaluation were
basically consistent with our analysis in Sect. 4.1. Figure 3 depicts the scores on
each group of query-dataset pairs using radar charts.

IlluSnip achieved much higher scores of coSkm and coDat than other methods.
It was not surprising because covering the schema and data of a dataset was

6 http://ws.nju.edu.cn/datasetsearch/evaluation-iswc2019/query-dataset-pairs.zip.

http://ws.nju.edu.cn/datasetsearch/evaluation-iswc2019/query-dataset-pairs.zip
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central to the design of IlluSnip. However, there were still notable gaps between
the achieved scores (coSkm = 0.6820 and coDat = 0.3850) and their upper bound
(i.e., 1), because IlluSnip was constrained to output a size-bounded connected
subgraph. The coverage of such a subgraph was limited. On the other hand, all
the other three methods were query-biased, whereas IlluSnip was not. Its very
low scores of coKyw = 0.1000 and coCnx = 0.0540 suggested that the snippets
generated by IlluSnip usually failed to cover queries.

TA+C was opposite in scores to IlluSnip. Coverage of dataset was not the
focus of its design. The lowest scores of coSkm = 0.0425 and coDat = 0.0915
were observed on this method. By contrast, opting for connected subgraphs con-
taining more query keywords, it achieved a fairly high score of coKyw = 0.9590.
However, connections between query keywords were not captured well, because
radius-bounded connected subgraph was incapable of covering long-distance con-
nections. As shown in Fig. 3, actually the overall score of coCnx = 0.4703 was
even exaggerated by the case of DMOZ-1, where most queries comprised only
one keyword and hence coCnx was trivially defined to be coKyw according to
Eq. (2). In other cases, coCnx was not high.

PrunedDP++ could not find any GST to connect all the query keywords
on 86 query-dataset pairs, which had been excluded from our results. On the
remaining pairs, not surprisingly, its coverage of query keywords (coKyw = 1) and
their connections (coCnx = 1) was perfect. In a GST, query keywords were often
connected via paths that passed through hub nodes in a dataset. Involving such
high-degree nodes, a GST’s coverage of data (coDat = 0.2133) was considerably
higher than that of TA+C (coDat = 0.0915). However, similar to TA+C, a
GST’s coverage of data schema was limited (coSkm = 0.0898).

CES appeared to be a more balanced method, as visualized in Fig. 3. Towards
generating a query-biased and diversified snippet, its coverage of query keywords
(coKyw = 0.9006) was close to TA+C and PrunedDP++, and its coverage of
dataset (coSkm = 0.3668 and coDat = 0.2684) was notably better. However,
similar to TA+C, its coverage of connections between query keywords was not
satisfying because selecting diversified triples usually led to a fragmented snippet.
The overall score of coCnx = 0.3926 was exaggerated by the case of DMOZ-1.

Runtime. We also evaluated the runtime of each method because fast genera-
tion of snippets is an expectation of search engine users. Figure 2 depicts, on a
logarithmic scale, the runtime of each method used for generating a snippet for
each of the 387 query-dataset pairs. Runtime was mainly related to the number
of triples in a dataset.

PrunedDP++ was generally the fastest method, with a median runtime of
0.16 s. It rarely reached timeout, and it completed computation in less than
one second in 68% of the cases. TA+C was also reasonably fast, with a median
runtime of 0.43 s. These two methods showed promising performance for practical
use. By contrast, IlluSnip and CES reached timeout in 22% and 18% of the cases,
respectively. They often spent tens or hundreds of seconds generating a snippet.
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Fortunately, IlluSnip was not query-biased, and hence could be used to generate
snippets offline.

5 User Study

We recruited 20 students majoring in computer science to assess the quality of
snippets generated by different methods. All the participants had the experience
in working with RDF datasets. The results could be compared with the above
evaluation results, to verify the effectiveness of our proposed evaluation metrics.

Design. From fifty random candidates, each participant chose 5 datasets with
interest according to their metadata. For each dataset, the participant had access
to a list of classes and properties used in the dataset to help understanding. The
participant was required to describe some data needs that could be fulfilled by
the dataset, and then repeatedly rephrase the needs as a keyword query until
all of IlluSnip, TA+C, and PrunedDP++ could generate a non-empty snippet.
For reasonable response time, CES was excluded from user study, and datasets
containing more than one million triples were not used. Following [7,17], we
visualized a snippet (which was an RDF graph) as a node-link diagram. The
participant rated its usefulness in relevance judgment on a scale of 1–5, and
commented its strengths and weaknesses.

Results. Table 4 summarizes the responses from participants about snippets
for a total of 20 · 5 = 100 datasets. IlluSnip received a higher mean rating than
TA+C and PrunedDP++. Repeated measures ANOVA (rANOVA) indicated
that their differences were statistically significant (p < 0.01). LSD post-hoc
tests (p < 0.01) suggested that IlluSnip was more helpful to users than TA+C
and PrunedDP++, whereas the difference between TA+C and PrunedDP++
was not statistically significant.

Figure 4 shows the mean score of each evaluation metric, grouped by user rat-
ings. For each evaluation metric we excluded the results of some methods when
their scores were hardly distinguishable (all close to 1) because those methods
had components that were conceptually similar to the metrics (cf. Table 1). The
scores of all the four metrics generally increased as user ratings increased. The
observed positive correlation demonstrated the effectiveness of our evaluation
framework. Exceptions were the notable falls of coSkm and coDat at the end,
where very few (<10) snippets were rated 5 so that the scores at this point might
not be significant.

We analyzed participants’ comments. For IlluSnip, 15 participants (75%)
complimented the connectivity of its results which facilitated understanding,
and 13 participants (65%) referred to the richness and diversity of the content,
which accorded well with its high coverage of data schema. Not surprisingly,
16 participants (80%) criticized its weak relevance to the query. For TA+C,
15 participants (75%) appreciated its query relevance, but 19 participants (95%)
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Table 4. Human-rated usefulness of snip-
pets (1–5) in relevance judgment.

Mean ± standard deviation

IlluSnip TA+C PrunedDP++
3.10± 1.28 2.36± 1.29 1.92± 1.19

rANOVA (p-value): 0.00264

LSD post-hoc (p < 0.01):
IlluSnip > TA+C, PrunedDP++

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 3 4 5

coKyw of IlluSnip coSkm of TA+C and PrunedDP++
coCnx of IlluSnip coDat of TA+C and PrunedDP++

User rating:

Fig. 4. Correlation between evaluation
metrics and user ratings.

complained that its results sometimes contained many isolated nodes. It hap-
pened frequently when a query contained only one keyword. Although these
nodes covered the query keyword, they were not associated with any further
description, which dissatisfied 12 participants (60%). For PrunedDP++, similar
feedback was received from 17 participants (85%) for some cases, but in other
cases, 15 participants (75%) commented its high coverage of query keywords and
the paths between them, which facilitated the comprehension of their connec-
tions. Besides, 8 participants (40%) favored the conciseness of its results.

Participants were invited to a post-experiment interview. Whereas they con-
firmed the usefulness of snippets, they generally believed that snippet could not
replace but complement abstractive summary with statistics. Some participants
suggested implementing interactive (e.g., hierarchical and zoomable) snippets
for user exploration, which could be a future direction of research.

Discussion. Participants’ ratings, comments, and the results of our proposed
evaluation metrics were generally consistent with each other. The results justified
the appropriateness of our framework to evaluating snippets in dataset search.

From the participants’ comments, we concluded that a good dataset snippet
should, on the one hand, cover query keywords and their connections to make
sense of the underlying query intent. TA+C and PrunedDP++ were focused
on this aspect. On the other hand, it should provide rich and diverse descrip-
tion about matched resources and triples to make sense of the dataset content.
This was overlooked by TA+C and PrunedDP++, and it suggested a differ-
ence between snippet generation and keyword search. A trade-off between infor-
mativeness and compactness should be considered. IlluSnip showed promising
results along this way. However, none of the three methods fulfilled these require-
ments completely, and hence their usefulness scores were far from perfection.

6 Conclusion

To promote research on the emerging problem of snippet generation for dataset
search, we have proposed an evaluation framework for assessing the quality of
dataset snippets. With our metrics, methods proposed in the future can be eval-
uated more easily. Our framework relies on neither ground-truth snippets which
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are difficult to create, nor human efforts in user study which are inefficient and
expensive. Evaluation can be automated offline. This in turn will be beneficial
to the rapid development and deployment of snippets for dataset search engines.

Our evaluation results reveal the shortcomings of state-of-the-art methods
adapted from related fields, which are also verified by a user study. None of
the evaluated methods address all the considered aspects. It inspires us to put
forward new methods for generating dataset snippets with more comprehensive
features. Efficiency and scalability of methods are also important factors. Storage
will also be a concern because a dataset search engine may have to store and
index each dataset for snippet generation.

Our work has the following limitations. First, our evaluation framework may
not be comprehensive. It can partially assess the quality of a dataset snippet,
but still is not ready to completely replace user study. There may be other
useful metrics, such as distinctiveness, readability, and coherence, which we will
study in future work. Second, our evaluation metrics are implemented specifically
for RDF datasets. To extend the range of application of our framework, more
generalized implementation for other data formats needs to be explored.
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Abstract. The launch of the new Google News in 2018 (https://www.
blog.google/products/news/new-google-news-ai-meets-human-intelligen
ce/.) introduced the Frequently asked questions feature to structurally
summarize the news story in its full coverage page. While news summa-
rization has been a research topic for decades, this new feature is poised
to usher in a new line of news summarization techniques. There are two
fundamental approaches: mining the questions from data associated with
the news story and learning the questions from the content of the story
directly. This paper provides the first study, to the best of our knowledge,
of a learning based approach to generate a structured summary of news
articles with question and answer pairs to capture salient and interest-
ing aspects of the news story. Specifically, this learning-based approach
reads a news article, predicts its attention map (i.e., important snippets
in the article), and generates multiple natural language questions corre-
sponding to each snippet. Furthermore, we describe a mining-based app-
roach as the mechanism to generate weak supervision data for training
the learning based approach. We evaluate our approach on the existing
SQuAD dataset (https://rajpurkar.github.io/SQuAD-explorer/.) and a
large dataset with 91K news articles we constructed. We show that our
proposed system can achieve an AUC of 0.734 for document attention
map prediction, a BLEU-4 score of 12.46 for natural question genera-
tion and a BLEU-4 score of 24.4 for question summarization, beating
state-of-art baselines.

Keywords: Structured summarization · Question answering

1 Introduction

News summarization has been an important topic of natural language research
for decades [20]. While there are many approaches, the end result has always been
natural sentences that summarize the articles. The launch of the new Google
News in 2018 [28] with its Frequently asked questions feature showed that struc-
tured summaries such as question-and-answer (Q/A) pairs can be beneficial to
the news consumption experience1. Compared with natural language summaries,
1 Private communication with Google’s news team: FAQ is shown to improve users’

understanding of the news stories in user studies, which is an important launch
criteria.
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C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 698–715, 2019.
https://doi.org/10.1007/978-3-030-30793-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30793-6_40&domain=pdf
https://www.blog.google/products/news/new-google-news-ai-meets-human-intelligence/
https://www.blog.google/products/news/new-google-news-ai-meets-human-intelligence/
https://www.blog.google/products/news/new-google-news-ai-meets-human-intelligence/
https://rajpurkar.github.io/SQuAD-explorer/
https://doi.org/10.1007/978-3-030-30793-6_40


Summarizing News Articles Using Question-and-Answer Pairs via Learning 699

Q/A pairs offer low cognitive overload because, being very short, questions are
easy to digest and users can easily skip those they do not care and read the
answer snippets for only those they are interested in. Furthermore, structured
summary often does not try to capture an overview of the story, but rather
highlights salient aspects that the users would like to know about, making them
complementary to the conventional news summaries.

Question answering has been an important research topic for semantic
web [11] and information retrieval [15], with the goal of answering users’ ques-
tions based on the knowledge base or the documents in the corpus. Lately, major
search engines have begun to leverage Q/A in more proactive ways. For example,
Google search has been using an Q/A feature, People also ask, to proactively
highlight the most salient aspects of the search results for the users. The success
of Q/A features in search no doubt has played a role in the introduction of Q/A
features into the various news consumption platforms such as Google News.

For a news article that has been published for a little while and queried
by lots of users, many questions would have been asked about it. Thus, the
intuitive first approach for generating Q/A pairs for a news article is to mine
the query log for questions, cluster them into groups, identify a representative
question for each group, and extract relevant answer snippets from the article for
the representative questions. Indeed, this is the technique behind the Frequently
asked questions feature of Google News full coverage2. The approach works well
because the most salient aspects of a news article are reflected in commonly
asked questions from the users (see Table 1):

Table 1. News stories and their top questions mined from anonymized query logs.

News story Top asked questions

Starbucks closed for anti-bias
training

- What time will starbucks close on may 29

- Why are all starbucks closed

- When are starbucks closing

Belgium beat England to
secure third place at the 2018
FIFA world cup

- What time is the England game today

- What channel is England vs Belgium

- Who won 3rd place in world cup 2018

Audubon zoo closed after
Jaguar escapes

- How did audubon zoo jaguar escape

- Where is audubon zoo

- What animals were killed at the audubon
zoo

However, for the latest articles that have just been published or long-tail
articles that have not been queried by many users, this mining-based approach
does not work due to the lack of historical queries. To address this challenge,

2 Private communication.
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we propose a learning-based approach that first predicts important snippets
from the article and then generates natural language questions with those snip-
pets as answers. The resulting Q/A pairs can achieve the same summarization
effect on latest and long-tail articles as those mined from the query logs for pop-
ular news articles. To make this learning-based approach work, it is crucial to
be able to generate training examples at scale. In fact, we employ the mining-
based approach to generate weak supervision data that we then leverage in the
learning-based approach as training examples.

To the best of our knowledge, this is the first study to develop a learning-
based approach to generate Q/A pairs as structured summaries for news articles.
The rest of the paper is organized as follows. Section 2 discusses related works.
Section 3 describes how we obtain Q/A pairs using a mining approach to generate
large scale weak training examples. In Sect. 4, we tackle the core challenge of
structured summarization in the absence of associated queries with two steps.
First, we propose a deep learning model to predict the attention maps given
a news article, Second, we propose a natural question generation model that
generates questions given the snippets from the attended article. Together, this
generates salient Q/A pairs for the given article. In Sect. 5, we compare our
proposed learning approach with baselines on both an academic dataset, SQuAD
[24], and a large-scale news article dataset we collected. Finally, Sect. 6 concludes
our work.

2 Related Work

Document summarization is a major focus of NLP research and follows two
main approaches: first, extractive or abstractive summarization of the article
using a few natural language sentences [5,6,10,13,25], and second, extracting
salient entities and relational triples from the article [1,7,21]. As discussed in
Sect. 1, the first approach focuses on providing an overview of the article instead
of capturing aspects of the story that is salient to the users and is thus compli-
mentary to the structured summary approach we study here. The relationship
extraction approach focuses on concrete attributes. For example, it will likely
extract “date of closing” for the Starbucks anti-bias training story (Table 1), but
it will not capture abstract notions such as “why is Starbucks closed”, which is
in fact central to the story. Our proposed structured summary approach aims
to capture all salient aspects, both concrete and abstract. News event summa-
rization is a line of document summarization work that is specialized to news
events [9,13,16,22,27,29]. To the best of our knowledge, we are the first study to
propose a mechanism for capturing salient aspects using abstractive Q/A pairs
as summaries for news stories.

Open information extraction is another related area [1,7,21], where the goal
is to extract relation tuples from plain text. Similarly, methods proposed here
are more likely to extract “is-CEO (Kevin Johnson, Starbucks)”, rather than
the reason why Starbucks is closed for the whole day. The latter will be much
more salient to the users for understanding the story.
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Table 2. Question clusters and summaries for the story “Starbucks closed for anti-bias
training”

Question cluster Question summary

- When is starbucks closed for training Starbucks training day closing time

- What day is starbucks closed for training

- Why is starbucks closed today Starbucks closed reason

- Why is starbucks closing

- What is anti bias training Anti bias training meaning

Answering questions based on a given corpus has been studied quite exten-
sively. For example, [3] tackles open-domain question answering using Wikipedia
as the unique knowledge source. It shows that open-domain Q/A is a very chal-
lenging problem and the performance of most state-of-the-art systems drops
drastically when the passage that contains the answer is not already given. In
[8], the authors propose to utilize question paraphrases from the WikiAnswers
corpus to improve the performance of question answering. [26] proposes a bi-
directional attention flow framework for question answering, by representing the
context at different levels of granularity and generating query-aware context
using attention. Our work took the opposite direction, namely we identify the
important answer snippets first and attempt to phrase the questions afterwards.

Generating natural questions given a text passage only recently got some
attention. [31] proposes a neural encoder-decoder model that reads a text passage
and generates an answer-focused question, while [4] proposes to first identify
question-worthy sentences in a input text passage, and then incorporates the
prediction into an existing natural question generation system. The questions
our work aims to generate is much more diverse and unpredictable (Sect. 5.2)
than those works due to the nature of news domain.

3 Structured Summarization via Mining

Document queries [12] have long been used in various search tasks to improve
quality. For news articles that have been published for a while (thus enough
user-issued queries have been accumulated), mining the query log for salient
questions for the article is an intuitive approach that works well.

While the idea is intuitive, there are two main challenges. First, identifica-
tion of representative questions from the query log. For a single question intent,
there are often many semantically identical but syntactically different queries
the users may have issued. It is important to avoid semantically duplicate ques-
tions in the structured summary. Second, extraction of relevant answer snippets
for the representative questions, which is akin to the traditional question-and-
answering task, namely given a question and a document, identifying answers
from the document. The difference for structured summary, however, is that
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Table 3. Question summary and corresponding answer snippet for the news story
“Starbucks closed for anti-bias training”

Question summary Answer snippet

Starbucks training day closing time Starbucks is closing more than 8,000 stores
Tuesday afternoon for anti-bias training
...

Starbucks closed reason ... Tuesday afternoon for anti-bias
training, a strategy some believe can keep
racism at bay ...

Anti bias training meaning ... which offers training on unconscious
bias and gave Starbucks input on its
program

each representative question is backed by a group of similar queries, which can
be leveraged collectively to identify the best answer snippet.

In this section, we describe how we leverage existing techniques to design a
mining approach for structured summarization. Throughout the section, we will
follow the examples in Tables 2 and 3, which illustrate the two main tasks for
the mining approach, question summarization and answer snippet extraction,
respectively.

3.1 Question Clustering and Summarization

There are many benefits of leveraging documents queries for structured sum-
marization. For example, document queries can counter the bias inherent in the
article content: while the article author often injects their bias into the arti-
cle (especially when they have a strong opinion on the underlying news story),
queries issued by a large number of users, in an aggregated fashion, are less prone
to any individual’s bias. However, document queries are also challenging to work
with because of their inherent noise and the multiple ways for users to express
the same semantic intent.

The first challenge is that most document queries are single entities or short
phrases and only ∼1% of any article’s accumulated document queries are in
question format. When they are present, however, those questions are more
specific and thus more useful in capturing important aspects in a story. For
example, for the story “Starbucks closed for anti-bias training” in Table 2, the
top (single-entity) queries are “starbucks” and “anti-bias”, which are useful for
knowing what is being talked about but difficult for users to understand what
exactly happened. On the other hand, the top question queries are “when is
starbucks closed” and “why is starbucks closed”, which represent the aspects
that are most interesting to the users. We extract question queries from all
queries associated with a news article using a simple pattern, i.e., any query
starting with what, when, how, why, who, where, which, etc.
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Table 4. Extracted question summary from queries for some example question clusters.

Question summary Question cluster

Blockbuster last location - Where is the last blockbuster store located

- Where is the last open blockbuster

mlb trading deadline - When is mlb trade deadline

- When is trading deadline in mlb

Winner of pacquiao fight - Who won the pacquiao fight last night

- Who won pacquiao fight

The second challenge is that document queries contain many near duplicates
since different users phrase the same question in different ways. We address this
challenge by using hierarchical agglomerative clustering to cluster the question
queries as shown, again, in Table 2. For the similarity measure between each
pair of question queries sim(qi, qj), we take a weighted average of the word
embeddings to derive a single vector for each query qi, qj and the weights are
the inverted word frequency. The similarity between two queries are computed
using cosine similarity. The word embedding is a 300-dimension vector we borrow
from fastText [19].

The third challenge is readability. Question clusters are great for identifying
salient aspects that users collectively consider as important, but a list of ques-
tions are not easily consumable by the readers. To improve the readability, we
further generate question summary. Intuitively, for each question-query cluster,
we pick a non-question query that is most similar to all question queries within
the cluster. Anecdotally, as shown in Table 2, most of the “when ...” questions
are summarized using “... time/date”, and the “why ...” questions are summa-
rized using “... reason.” Note that we can also pick a representative query that
is itself a question—we choose to have a non-question representative because the
pool of non-question queries is bigger and a summary that is not a question can
be used in more product features than a summary that is itself a question.

Specifically, for each question cluster Cq and question queries q1,
q2, . . . , qk ∈ Cq, we find the closest non-question query q∗ by: q∗ =
arg maxq∈Cnq

∑k
i=1 sim(q, qi), where Cnq is the set of non-question queries, and

sim(q, qi) is the cosine similarity between the weighted average word embeddings
of q, qi as described in the clustering stage. In Table 4, we list examples of the
question summary we automatically identified using this approach. In practice
we found this approach can summarize the question clusters fairly well.

3.2 Answer Snippets Extraction

Identifying questions only partially fulfills the structured summary—it is also
important to pair the questions with the correct answer snippets from the article
so the users can grasp the whole story. We accomplish this in two stages. First,
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Fig. 1. Overview of the learning based structured summarization system.

for each question in the question cluster, we apply a state-of-the-art question-
and-answering model, QANet [30], to extract the corresponding answer snippet
from the article. While QANet achieved an 84.5% Exact Match score on SQuAD
v1.1 dataset3, it has a much lower accuracy in our open domain scenario: ∼60%
based on our evaluation over a random sample of 100 (question-query, news-
article) pairs.

The main challenge we encounter, is that in some cases the questions are
not directly answerable from the article content. This is expected because com-
pared to datasets where the provided passage (or context) is known to contain
the answer, our question queries have a weaker association with the document
content: users might have clicked on a document without knowing whether their
questions can be answered. Fortunately, we have many paraphrased questions for
each question cluster. Instead of using QANet to identify answer snippets just
for one representative question, we can apply QANet on all paraphrasing ques-
tions in the cluster and pick the answer snippet that have the highest aggregated
confidence score for all question queries in the cluster. We found this extra step
improves the answer snippet accuracy by a large margin for the mining approach
(from 60% to 75%+), enabling us to leverage the data for learning.

3.3 Results from the Mining Approach as Weak Supervision Data

While the mining approach can be quite effective for articles with accumulated
document queries, it does not address the challenge of producing structured
summary for news articles in practice. The reason is that most news articles are
consumed when they are just published and not enough document queries have
been accumulated for the mining approach to be effective. Furthermore, long
tail news articles, i.e., ones that do not have a large audience, also have very few
accumulated document queries for the mining approach to be effective.

As a result, we do not consider our technical contributions on the mining
approach as main contributions to the paper. Instead, we designed this mining
approach with the main goal of using the results from this approach as weak

3 https://rajpurkar.github.io/SQuAD-explorer/.

https://rajpurkar.github.io/SQuAD-explorer/
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it may come as no surprise that for the second year in a
row , vancouver has been ranked one of the world 's
most livable cities . the economist intelligence unit 's annual 
global liveability report was released this week , ranking 
global cities on the concept of " liveability . "....
and their weighting in the overall ranking rating between 1 - 
100 , is as follows : stability ( weighted at 25 % of total ) 
healthcare ( weighted at 20 % of total ) culture &
environment ( weighted at 25 % of total ) ....

it may come as no surprise that for the second year in a row , 
vancouver has been ranked one of the world 's most livable 
cities . the economist intelligence unit 's annual global 
liveability report was released this week , ranking global 
cities on the concept of " liveability . "....
and their weighting in the overall ranking rating between 1 - 
100 , is as follows : stability ( weighted at 25 % of total ) 
healthcare ( weighted at 20 % of total ) culture & environment 
( weighted at 25 % of total ) ....

Attention map 
from query

Top question-queries: 
● which city is most livable?
● what criteria is used for ranking?

Fig. 2. Example document attention map built on a news article from its question-
query clusters.

supervision data, which we can subsequently use for a learning based approach
that requires a substantial amount of the training data. We describe this learning
based approach next.

4 Structured Summarization via Learning

As motivated in Sect. 3.3, for structured summary to work in practice (i.e., on
fresh and long tail news articles), a more general approach is to summarize
the document from its content only, without using any document queries. In
this section, we describe a weakly-supervised system that utilizes the training
data generated in Sect. 3 to produce structured summary for documents without
associated document queries.

Figure 1 shows an overview of the system. Given a news article, the system
predicts the document attention map (i.e., important answer snippets) using a
model trained from prior associations of popular news articles, their question-
query clusters and corresponding answer snippets. Intuitively, this can be consid-
ered as the reverse process of answer snippet extraction as described in Sect. 3.2.
The attention map specifies the attended positions (i.e., answer snippets), for
which a natural question generation (NQG) model is then used to automatically
generate questions to form the question-and-answer pairs. Finally, a question
summarizer, which is trained using the question cluster data (Sect. 3.1), consol-
idates the questions and summarizes the resulting representative questions into
readable format.

4.1 Document Attention Map Prediction

A document attention map model predicts which parts of a document the
users are paying attention. The answer snippet extraction process (Sect. 3.2)
we described earlier enables us to generate the training corpus of (document,
attention map) pairs at scale. We further improve the attention map quality by
being very selective on choosing the answer position—for the set of all answers
A to each question cluster, an answer position p is chosen only if:

S(A, p) =

∑
ai∈A,p∈ai

s(ai)
∑

aj∈A s(aj)
> 0.5
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Fig. 3. Model architecture for predicting attention maps.

Intuitively, the aggregation score simulates majority voting, i.e., an answer posi-
tion will be counted only if at least half of the paraphrased questions point to an
answer that contains that position. Here s(ai) indicates the confidence score for
answer ai as computed by QANet [30]. Figure 2 illustrates an example document
attention map.

Model. The overall architecture of the model is illustrated in Fig. 3. We take
word embeddings from fastText [19] and Part-Of-Speech Tags4 as input features
to the model and use layers described below to obtain predictions for positive
(attended places) and negative (unattended places) classes.

Context Layer. We place a bi-directional LSTM on top of the feature
vectors, and concatenate the hidden states in both directions for each word
i: hi = [

−→
hi ,

←−
hi ] ∈ R

2d, i ∈ 1, ..., N , where N is the total number of words in the
context, and d is the dimension of the one-directional hidden state

−→
hi .

Self-attention Layer. To augment the weights of important words in a con-
text, we use a self-attention layer to attend the context to itself. The attention
weight aij between each pair of hidden state representations (hi, hj) is com-
puted using: aij = w�

h [hi;hj ;hi � hj ], where hi � hj is the element-wise prod-
uct between two vectors. hi, hj , hi � hj are concatenated together, and wh is a
trainable weight vector. The resulting attention matrix is denoted as A ∈ R

N×N .
We mask the diagonal elements in A using a very large negative number (since
the attention between a word and itself is not useful) and compute the softmax
over the attention weights in each row, we denote the resulting matrix as Â. The
attended-context is then given by: Ha = ÂH, where H ∈ R

N×2d is a matrix

4 https://nlp.stanford.edu/software/tagger.html.

https://nlp.stanford.edu/software/tagger.html


Summarizing News Articles Using Question-and-Answer Pairs via Learning 707

with row i being the hidden state representation hi. We concatenate the context
matrix H and the attended-context Ha as the augmented context representa-
tion [H;Ha] ∈ R

N×4d, i.e., each hidden state representation hi is augmented as
[hi;

∑N
j=1 âijhj ].

Output Layers. Finally, we place a two-hidden-layer feed-forward network
with ReLU activations on top of the augmented context representation to get
the logits p̂i, which is a two-dimension vector representing the prediction for
negative and positive classes, respectively.

Weighted Cross-Entropy Loss. We apply a weighted cross-entropy loss
function to balance positive and negative classes since attended places are usually
a small fraction of the whole document context:

loss = −(1 − wp)y log(p) − wp(1 − y) log(1 − p),

where p = softmax(p̂i), and wp is automatically set based on the fraction of
positive classes in the data.

4.2 Natural Question Generator

Given an answer position learned from the attention map model and the context
surrounding it, we further train a sequence-to-sequence model to generate natu-
ral questions. As an example, for the answer “1724” in passage The Old Truman
Brewery, then known as the Black Eagle Brewery, was founded in 1724 , we can
generate the following question: When was the Black Eagle Brewery founded?
The answer position is crucial here, namely, if the answer is “The Old Truman
Brewery”, then the question should be Which brewery was founded in 1724? 5

Training Data. We use the SQuAD [24] dataset as the training data. For
each annotated passage, we generate the training pairs by first processing the
passage using the PTBTokenizer6 and obtaining the sentence segmentations. For
each question-and-answer pair within the passage, we then generate (sentences,
question) pairs by taking the sentence that contains the answer, the entire answer
and answer start position annotated in the dataset.

Model. The overall model architecture is described in Fig. 4. We take word
embeddings, POS tags (categorical), and answer positions (binary indicator of
1 or 0) as input features to the model, for each word in the input sentences.
We use the conventional encoder/decoder framework to generate the questions,
where the encoder layer is a bi-directional LSTM similar to the context layer in
the attention map model. We concatenate the hidden states in both directions
as hidden-state representation hs

i ∈ R
ds for each source token i. The decoder

layer is much more sophisticated and we describe that in details next.

5 Note there can be multiple questions with the same answer snippet, for example,
another question candidate could be: Under which name is the Black Eagle Brewery
also known? Our learning based approach can learn those diverse questions provided
that the training data captures the same diversity.

6 https://nlp.stanford.edu/software/tokenizer.shtml.

https://nlp.stanford.edu/software/tokenizer.shtml
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Fig. 4. Model architecture for natural question generation.

Decoder: We use an attention-based decoder [2,18] with the copy mech-
anism [10,25]. For a target state ht

j , the attention weights over source hidden
states hs

i are computed by aij = softmax(hs
iWs,th

t
j), where Ws,t is a trainable

matrix placed between source hidden states and target hidden states. The atten-
tional hidden state h̃t

j , which is used for generating the current token given a
sequence of previously generated tokens and inputs, is given by:

h̃t
j = tanh(Wc[contextj ;ht

j ]),

where Wc is a trainable matrix, and contextj represents the current context for
ht
j , i.e., the attention-weighted source hidden states, contextj =

∑
i aijh

s
i .

We further project h̃t
j to a D-dimension vector g with D being the size of the

generation vocabulary G, the attention-decoder gives a probability distribution
on the generation vocabulary:

g = H̃tWg + bg,

where H̃t is a matrix with each row being h̃t
j ∈ R

dt , Wg ∈ R
dt×D,bg ∈ R

D

are trainable weights in the projection layer, and dt is the dimension of the
attentional target hidden states from the decoder.

We augment the score by adding another probability distribution indicating
whether a token in the target sequence should be copied from the tokens in the
source sequence:

c = tanh(HsWc
s,t)h̃

t
j ,

where Hs ∈ R
N×ds is a matrix with row i being the hidden state representation

hs
i from the encoder. Wc

s,t ∈ R
ds×dt is again a trainable matrix as the weights for

copying a source token to the current target state, and ds, dt are the dimension
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Table 5. Dataset statistics for SQuAD and News

Dataset # Articles # QA pairs # Question clusters

SQuAD 536 107,785 NA

News 91,675 3,096,289 458,375

of the hidden states from the encoder and decoder, respectively. The resulting
vector c ∈ R

N is a copy-score vector with each element ci being the weight of
copying source token i to the current target state h̃t

j , i ∈ 1, . . . , N where N is
the total number of words in the input context.

Finally, we extend the vocabulary to be G ∪ C, where C denotes the copy
vocabulary (i.e., all the tokens from the each input sentence). The augmented
score for each token i is then given by ĝi+ĉi, where ĝ and ĉ are vectors produced
by projecting g, c to the extended vocabulary, i.e., ĝi = gi if token i ∈ G and
ĝi = 0 otherwise. Similarly, ĉi = ci if token i ∈ C, and ĉi = 0 otherwise. Note
for some tokens the score will be augmented as gi + ci if token i is in both
vocabularies.

4.3 Question Summarizer

Intuitively, in document attention map prediction and natural question gen-
eration, the learning based approach is a reverse process to the mining based
approach: instead of mapping existing questions to snippets in the articles as
answers, we learn where the important answers are and generate the questions
from the answers and the context they are in. The two approaches, however,
share the same direction in question summarizer, both aim to consolidate the
semantically equivalent questions and produce a readable summary of the ques-
tions. In the mining based approach, the summary comes from the non-question
query q∗ that is closest to all the question queries {q1, q2, . . . , qk} in the question
cluster Cq (Sect. 3.1). This is the process we leverage to generate training data for
the learning based question summarizer at scale. Specifically, we construct each
training pair as 〈{q1, q2, . . . , qk}, q∗〉, where {q1, q2, . . . , qk} is the concatenation
of all questions in cluster Cq, with an delimiter symbol 〈s〉.

The model architecture is similar to the sequence-to-sequence model we used
for natural question generation as described in Fig. 4, where the input sequence is
now multiple question queries concatenated via 〈s〉. Furthermore, augmentations
that are specific to question generation are removed, e.g., answer positions. We
skip the detailed model description due to lack of space. Section 5.3 will show
examples of the question summarization.

5 Experiments

We conduct extensive experiments on all three components/models of the learn-
ing based approach, namely document attention map prediction, natural ques-
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Table 6. Performance of document attention map prediction on the News data (test).

Method Precision Recall AUC

Random 49.43 50.08 0.500

All-positive 50.00 100.00 0.500

MLP-only 57.44 67.17 0.590

+Bi-LSTM 68.94 78.07 0.731

+Self-attended context 70.15 74.22 0.734

Ablation experiments

w/o pre-trained embedding 67.36 65.03 0.701

w/o POS tags 69.74 74.88 0.731

tion generation, and question summarization. Table 5 lists the characteristics of
the two datasets.

SQuAD v1.1 [24]: The Stanford Question Answering Dataset is a read-
ing comprehension dataset consisting of 107, 785 question-answer pairs posed by
crowd workers on 536 Wikipedia articles. One limitation of this dataset is that
the number of articles is relatively small and most of the questions posed by
crowd workers are trivia questions and do not necessarily capture the impor-
tant aspects presented in the article. As a result, this dataset can be used for
learning natural question generation but is not very useful for learning document
attention maps.

News. We collected a large set of news articles with their associated
anonymized question queries from the Google search engine repository. We per-
formed several filtering tasks: (1) removing articles that are too short (<50
words) or too long (>500 words, for efficiency consideration); (2) removing ques-
tion queries that are too long (>20 words) or too infrequently issued by the users
(<5 impressions); (3) for query clusters, only those have at least 3 valid ques-
tion queries are considered; (4) removing articles with <5 valid query clusters.
Eventually we collected 91, 675 news articles as the input to our system, paired
with ∼3M question-and-answer pairs and ∼460K query clusters.

The two datasets vary greatly in the number of articles and average number of
Q/A pairs per article. SQuAD is specifically designed for question-and-answering
task and the number of pairs per article is large. As a result, the answer positions
in the article are more “question-worthy” rather than important or interesting
to the users. The News dataset, on the other hand, has a much smaller average
number of question clusters per article (∼5), most of which correspond to the
most important aspects in the article since they are mined from actual user
queries after proper anonymization.

5.1 Document Attention Map Prediction

We use the News dataset to evaluate the performance of our document attention
map prediction model (Sect. 4.1). The evaluation data is generated as described
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in Sect. 4.1. In total we have 91, 675 (news-article, attention-map) pairs and we
split the entire dataset into 90% training (82,501), 5% development (4,587), and
5% test (4,587). The input texts are lower-cased and tokenized7 for processing.
The word embeddings are the 300-dimension vectors from fastText [19] and
the vocabulary size is 134K, which consists of the most frequent words in our
corpus, plus an 〈unk〉 token for all unknown words. In the experiments we use
a 2-layer bidirectional LSTMs with 512 hidden units, and a dropout probability
of 0.2 is applied to all LSTM cells. The two hidden layers in the output layer are
set to size 512, 512, respectively. A mini-batch size of 256 examples is used and
during training we use the Adam optimizer [14] with a learning rate of 0.001. An
exponential decay of 0.95 is also applied to the learning rate for each epoch. The
hyper-parameters are chosen based on the best performance on the development
set.

Results. The results on the test set are listed in Table 6. Since the class
probability is imbalanced we use the Area Under the ROC Curve (AUC) to
evaluate the proposed methods. Because the problem is really new, we design our
own baseline methods. As naive baselines, Random (by randomly highlighting a
word) and All-positive (by predicting positive for all positions) both achieve an
AUC score around 0.5. The MLP-only method is a stronger baseline that lays a
multi-layer perceptron output layer directly on top of the input feature vectors
and it achieves an AUC of 0.590.

Our proposed model, with additional layers for bi-directional LSTM, self-
attended context, and augmented contexts, achieves the best performance of
0.734 AUC, significantly higher than the baselines. Results from two ablation
experiments demonstrate that the pre-trained embedding improves the perfor-
mance substantially (AUC increases from 0.701 to 0.734) and the POS-tag fea-
ture improves the performance slightly (AUC increases from 0.731 to 0.734).

5.2 Natural Question Generation

We use the SQuAD dataset to demonstrate the performance of natural question
generation (Sect. 4.2). The SQuAD dataset (which is randomly split into 90%
for training, 5% for development, and 5% for test in our experimental setting)

Table 7. Performance comparison on the SQuAD dataset (test set).

Method BLEU-4 ROUGE-L

Seq2seq with attention decoder [18] 6.87 30.42

Seq2seq + copy 8.31 32.92

Seq2seq + copy + ans pos 11.79 38.96

Seq2seq + copy + ans pos + POS tags 12.46 39.79

Neural generation model from [4] 11.50 n/a

7 https://nlp.stanford.edu/software/tokenizer.shtml.

https://nlp.stanford.edu/software/tokenizer.shtml
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Table 8. Example generated questions on the News dataset.

Input sentence Generated question

PC James Dixon, 39, who starred in
Sky TV’s road wars...

How old was James Dixon?

By tuesday, it was downgraded to
a post-tropical cyclone

What happened to the
cyclone?

Wilson is also a partner in a venture
to bring the NBA back to Seattle

Who is a partner to bring the
NBA back to Seattle?

Major tourists attractions, including
the Toronto Zoo, Ripley’s
aquarium of Canada, the CN
Tower...

What are some of the top
attractions?

has the ground truth questions as well as the correct answer positions annotated
for each passage. We employ n-gram matching score (BLEU-4 [23] and ROUGE-
L [17]) as the metrics. We use beam search with beam width 10 for generating
questions from the decoder. We use a generation vocabulary size of 30 K, and a
copy vocabulary including all the source tokens. The combined vocabulary size
is 80K. We also experimented with different generation vocabulary sizes and
the results were similar. The hidden unit sizes for the encoder and the decoder
are set to 512 and 256, respectively. A dropout probability of 0.2 is applied to
all LSTM cells. The training examples are sorted by input sequence length and
divided into mini-batches of 128 examples each.

Results. Table 7 shows the results. The prior state-of-art model, which we
adapt from the machine translation community to our problem as baseline, uses a
sequence-to-sequence model with the attention decoder [18]. It achieves a BLEU-
4 score of 6.83 and ROUGE-L score of 30.42. By incorporating the copy mech-
anism and answer positions into our model, the BLEU-4 and ROUGE-L scores
can be improved significantly, reaching 11.79 and 38.96, respectively. The big
improvements from adding the answer positions shows the importance of high-
lighting the right answers and demonstrates the value of our idea, namely using
the mining-based approach to generate large scale training data for the learning-
based approach. Finally, adding the POS tags leads to additional slight improve-
ments, reaching BLEU-4 and ROUGE-L scores of 12.46 and 39.79, respectively.
For completeness, we include the BLUE-4 result from [4] in the last row, even
though it is focused on read comprehension, not news summary.

We do not have golden labels from the News dataset for this task. As anec-
dotal evidences of how well the natural question generation model works on
news given predicted document attention maps, Table 8 shows some examples.
In general, we observe that the topics on the News dataset are more diverse
and the answer types are more open-ended. For example, there are a few “what
happened” (2nd example) questions and answers with long-spans (2nd and 5th
examples), compared to answers from the SQuAD dataset which are usually
shorter and in most cases single entities.
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5.3 Question Summarizer

We use the News dataset to evaluate the performance of question summarizer
(Sect. 4.3). Similar to Sect. 5.1, we split the data into 90% training, 5% develop-
ment and 5% test. As described in Sect. 4.3, the reference summaries used for
evaluation come from the non-question queries that are closest to all the question
queries in the question cluster.

Table 9. Performance of question summarizer on the News dataset (test set).

Method BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Seq2seq with attention decoder [18] 34.7 25.3 19.1 45.5

Seq2seq + copy + POS tags 41.8 31.5 24.4 52.3

Results. Table 9 shows the performance of our model compared against the
same state-of-art sequence-to-sequence with attention decoder model as we used
in Sect. 5.2 but adapted for this task. Our proposed model improves the per-
formance substantially through the copy mechanism, achieving BLEU-4 and
ROUGE-L scores of 24.4 and 52.3, respectively. Note that for question summa-
rizer, the output is usually much shorter than the output of natural question
generator, thus both BLEU-4 and ROUGE-L scores are higher than the results
in Table 7. For comparison we also attached the BLEU-2 and BLEU-3 scores in
the table. Table 10 shows a few example generated summaries. By training from
large amount of samples, the model is able to summarize question clusters in
a more concise way, and is sometimes capable of correcting the reference sum-
mary (top non-question query), e.g., in the last example, “winner” is a better
summary than “score”.

Table 10. Example question summaries on the News dataset. The input to the model
are all question queries in the same cluster, concatenated using the 〈s〉 symbol.

Input query cluster Generated summary Reference summary

How can i watch the golden
knights game 〈s〉 where to
watch golden knights 〈s〉 how
to watch the golden knights
game tonight 〈s〉

Watch golden knights
game

Bars to watch golden
knights

Which bishop offered to
resign 〈s〉 bishops who
resigned 〈s〉 bishops who
resign 〈s〉 chile bishops who
resigned 〈s〉

Bishops that resigned Bishops that resigned

Who won stanley cup 2018
〈s〉 who won the stanley cup
2018 〈s〉

Winner of stanley cup
2018

Stanley cup 2018 score
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6 Conclusion

In this paper, we propose to summarize news articles in a structured way by using
question-and-answer pairs. We propose an unsupervised approach by clustering
question queries of historical popular news articles, extracting answer snippets of
each question query in the cluster, and consolidating the questions into readable
summaries, to produce the structured summary. This mining based approach
enables us to generate training corpus for a learning based approach that allows
us to perform structured summarization for cases where document queries are
not present or scarce (e.g., newly published or long-tail articles). We proposed
three predictive models. First, a model to predict the document attention map
given a news article. Second, a model to generate natural language questions
given the attended positions as answer positions in the article. Finally, a question
summarizer to provide readable and succinct query summary. We show that this
learning based approach produces meaningful structured summaries to capture
important aspects of news articles.
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Abstract. Markup languages such as RDFa and Microdata have been
widely used by e-shops to embed structured product data, as evidence has
shown that they improve click-through rates for e-shops and potentially
increases their sales. While e-shops often embed certain categorisation
information in their product data in order to improve their products’ vis-
ibility to product search and aggregator services, such site-specific prod-
uct category labels are highly inconsistent and unusable across websites.
This work studies the task of automatically classifying products into a
universal categorisation taxonomy, using their markup data published
on the Web. Using three new neural network models adapted based on
previous work, we analyse the effect of different kinds of product markup
data on this task, and show that: (1) despite the highly heterogeneous
nature of the site-specific categories, they can be used as very effective
features - even only by themselves - for the classification task; and (2)
our best performing model can significantly improve state of the art on
this task by up to 9.6% points in macro-average F1.

Keywords: Linked data · Product classification · Neural networks ·
CNN · LSTM · HAN · Machine learning

1 Introduction

Recent years have seen significant growth of semantically annotated data on the
Web using markup languages such as RDFa and Microdata. Particularly in e-
commerce, statistics from the WDC project1 show that between 2017 and 2018,
the number of URLs that use schema.org to embed structured product data has
more than doubled; and the number of hosts has increased by over 40%.

Semantically annotated product data improve the visibility and accessibility
of product information from e-shops. While different websites may sell the same
products, the information about the products often differ significantly across
different websites. Although product aggregator services such as Google Product
Search2 are created to integrate product information from disparate sources
into a single representation, one of the first challenges they face is organising
1 http://webdatacommons.org/structureddata/.
2 https://www.google.com/shopping?hl=en.
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all the products according to a universal product categorisation taxonomy. In
practice, many e-shops embed category information as structured data within
their web pages (to be called ‘site-specific product labels’), it is known that the
categorisation schemes vary dramatically across different e-shops, even if they
sell the same products [11,16].

A large number of research has emerged over the years to study the very
problem of product categorisation or classification on the Web [3,5,6,9,11,12,14,
19]. However, our work is different in two ways. First, a large number of previous
work [1,3,4,7,9,11,12,14,19] looked at product classification within a single e-
shop, that is assigning class labels defined by the e-shop to products listed on the
same e-shop. In contrast, we explore the task in the context of product Microdata
harvested from a wide range of e-shops. This is arguably more challenging as
different e-shops may adopt different writing styles when publishing product
information. While [16,17] also studied the task in the Microdata context, we
propose new methods that obtain much better results.

Second, although it is widely recognised that site-specific product labels are
hardly useful as universal categories beyond their source websites, little effort has
been made to study how such heterogeneous information can assist in the task
of product classification. While [16] used such information in an unsupervised
approach, we carry out further studies to understand the impact of such highly
heterogeneous information on supervised product classification.

Our contributions are three-fold. First, inspired by the deep artificial neural
network (DNN) model ‘DeepCN’ used in product classification [7], we generalise
and adapt it to three popular DNN architectures for a comparative analysis
in this task: Convolutional Neural Networks (CNN), bidirectional Long-Short
Term Memory (bi-LSTM), and Hierarchical Attention Network (HAN). We share
our lessons of when different architectures work better than others in different
settings. Second, we carry out in-depth analysis to understand the impact of the
highly heteregenous site-specific product labels on the product classification task.
This includes two methods of ‘pre-processing’ such labels in the hope to obtain
better quality features for the task. Third, we empirically show a surprising
insight that, despite the high level of heterogeneity in the site-specific product
labels, they prove to be very useful features for the classification task, as they
are more effective than traditional features widely used by previous research,
as well as their ‘pre-processed’ versions. Compared to state of the art on the
same dataset used for evaluation, our best peforming model obtains much better
results with the highest improvement of 9.6% in macro-average F1.

The remainder of this paper is organised as follows. Section 2 discusses related
work; Sect. 3 describes our methodology in details; Sect. 4 presents experiments,
followed by a discussion of results in Sect. 5; finally Sect. 6 concludes this work.
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2 Related Work

2.1 Text Classification

Text categorisation or classification aims to assign categories or classes to a given
text according to its contents [2,18]. While early methods were largely based on
manually crafted rules, current methods however, are predominantly based on
statistical machine learning [18]. These methods involve a feature engineering
process that represents each text by feature vectors (e.g., words, N-grams), fol-
lowed by a training process where a machine learning algorithm is applied to
instances labelled with appropriate classes to learn patterns for classification.

Many classic machine learning algorithms have been used in this task, such as
Naive Bayes, Logistic Regression, Random Forest, and Support Vector Machines
(SVM) [4,18]. Recent years have seen increasing interests in DNN models, due to
their ability in automatic feature learning, which not only eliminates the feature
engineering process, but also discovers very effective abstract features that tradi-
tional machine learning algorithms are unable to capture. Popular DNN models
include, for example, CNN [8], LSTM [21], and HAN [20]. Using sentence-level
classification for example, CNN scans a fixed-length consecutive sequences of
words and transforms those into abstract features. It can be considered as a
process of aggregating the meaning of the composing lexical sequences (e.g.,
phrases) in text reading. LSTM is a type of Recurrent Neural Network (RNN),
and it captures long distance dependencies between words and simulates our
reading of ordered words to incrementally develop a meaning for the sentence.
HAN is based on the intuition that not all parts of a sentence are equally relevant
for representing its meaning. Instead, certain sections (e.g., keywords) should be
given more attention. Different adaptations of such models have been widely
used in a range of text classification tasks, such as sentiment analysis [8,21],
review classification [8,20], and question answering [8].

2.2 Product Classification

Product classification is typically treated as a text classification task, as the pro-
cess involves assigning category labels (i.e., classes) to product instances based
on their attributes - which we refer to as metadata - that are typically text-based
(e.g., name, description, brands). Such labels usually reside in a categorisation
taxonomy, therefore the task usually requires assigning multiple labels, one from
each level of the taxonomy [14]. Below we summarise related work from different
perspectives and highlight the similarity and difference in this research.

Metadata and Features. To classify products, features must be extracted
from certain product metadata. Rich, structured metadata are often not avail-
able. Therefore, the majority of literature have only used product names, such as
[1,4,9,11,19] and all of those participated in the 2018 Rakuten Data Challenge
[14]. Several studies used both names and product descriptions [3,5,6,12,13],
while a few also used other metadata such as model, brand, maker, etc., which
need to be extracted from product web pages by an Information Extraction
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process [7,9,17]. In addition, [17] also used product images. The work by [16]
used site-specific product labels found in product Microdata in an unsupervised
approach based on the similarity between target class labels and other prod-
uct metadata including site-specific product labels. While the authors argued
that such heterogeneous labels may prove unusable for supervised learning, we
specifically study the usage of such information in supervised setting and aim to
understand if they need to be cleaned to support the classification task.

Generally speaking, for text-based metadata, there are three types of feature
representation. The first is based on Bag-of-Words (BoW) or N-gram models,
where texts are represented based on the presence of vocabulary in the dataset
using either 1-hot encoding or some weighting scheme such as TF-IDF [1,3–5,7].
The second uses an aggregation of the word embeddings from the input text. For
example, [11] averaged the embedding vectors of composing words from product
titles, [12] summed them, while work in [8] joins word embedding vectors to
create a 2D tensor to represent the text. The third applies a separate learning
process to learn a continuous distributional representation of the text directly.
This includes adaptation of the well-known Paragraph2Vec model such as in
[6,12,17]. Our work represents input texts following the approach by [8].

Algorithms. The large majority of work has used supervised machine learn-
ing methods using popular algorithms mentioned before. These include those
that use traditional machine learning algorithms [3–6,9,12,16,17], and those
that apply DNN-based algorithms [7,14,19]. All DNN-based methods have used
some adaptations of CNN or RNN. These include the majority of the participat-
ing systems in the 2018 Rakuten Data Challenge. Besides, [5,16] also explored
unsupervised methods based on the similarity between the feature representa-
tions of a product and target classes. [1] studied product clustering, which does
not label the resulting product groups. These represent unsupervised methods.
Further, [13] also studied the problem as a machine translation task.

While the majority of literature either use a single type of metadata (typically
product name) or concatenate several to merge into a single source of metadata,
[7] argued to treat different types of metadata separately. The intuition can be
that they may contribute different weights to the task. Thus they introduced the
Deep Categorisation Network (DeepCN), which consists of i RNN models each
taking text input from one of the i types of metadata. For example, using product
name, description, brand and maker as product metadata, DeepCN combines 4
RNN models each applied to one of these input. Our work adapts DeepCN to
generalise to three DNN structures including bi-LSTM, CNN and HAN, thus
offers as a comparison of these popular DNN structures in this task.

Datasets. As mentioned before, the majority of methods are evaluated using
datasets created within a single e-shop [3,5,6,9,11,12,14,19]. This typically
involves classifying listed products on the e-shop using its own categorisation
systems (i.e., their site-specific product labels). To the best of our knowledge, the
work by [5,16,17] are the only ones that explored classification of products from
multiple sources into a universal categorisation taxonomy, while [16,17] used the
only dataset built on product Microdata. Furthermore, while the majority of
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datasets are proprietary, the only publicly available ones include that released in
[14] and [16]. Among the two, [14] only contains product names (no site-specific
product labels as the data were harvested from a single website), while [16] con-
tains names, descriptions, and site-specific product labels. Our work uses the
dataset by [16].

3 Methodology

We firstly describe the DNN models proposed for the task and the set of features
to be used with them (Sect. 3.1). We then introduce two methods aimed at
‘standardising’ the heterogenous site-specific product labels. One uses clustering
(Sect. 3.2), while the other is based on a set of heuristics (Sect. 3.3).

3.1 Models and Features

We propose to adapt the DNN architecture ‘DeepCN’ in [7]. DeepCN uses mul-
tiple RNNs each dedicated to a different type of product metadata for generat-
ing features. These then feed into fully connected layers that learn to integrate
these features for the classification task. We generalise DeepCN (to be called
‘GN-DeepCN’) by replacing the RNNs with any kind of DNN structures. An
adapted model is illustrated in Fig. 1.

Fig. 1. Architecture of the proposed GN-DeepCN.

Adaptations. We introduce three adaptations to the original model. First,
the authors used 1-hot encoding to represent each type of input metadata. We
instead use the approach by [8] to use an embedding layer to represent input text
as a 2D-tensor in the shape of [words, dimensions], where words is the number
of tokens expected in the input text and will depend on the type of metadata (see
below in ‘Features’); and dimensions is the dimension of the continuous vector
representation of each word. In this work, we use the GloVe word embedding
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vectors pre-trained on the Common Crawl corpus3 with 300 dimensions. Since
we are dealing with content from e-commerce web pages, we consider GloVe
vectors a better option than, e.g., Word2Vec that is trained on news corpora.

Second, for the internal DNN structure, the authors used a stack of two
RNN layers to process each type of input metadata. We propose to compare
three popular architecture in text classification, including bi-LSTM, CNN and
HAN. We detail their parameter settings below.

Third, the original model consists of two hidden layers, one stacked on
another. We use only one as the authors showed in their results that the contribu-
tion of an additional hidden layer to learning accuracy was rather insignificant.
The hidden layer has 600 neurons, same as the best performing setting in [7].

DNN Structures. For the bi-LSTM structure, we use a single bi-directional
LSTM layer with 100 neurons. For the CNN structure, we concatenate three
convolutional layers each of which has 100 filters and uses a window size of 2, 3,
and 4 respectively. Their concatenated output is then pooled by a max pooling
layer with a pool size of 4. For the HAN architecture, we adapt the model
by [20]. The original work has a two-level attention mechanism that simulates
attention to particular sentences within a document, and then particular words
within sentences. We simplify this structure to a one-level attention network that
only encodes word-level attention. This is because product metadata are usually
short-text. All other implementations remain the same as [20].

Features. We use three types of product metadata that are more available
than the rest in the product Microdata, these include product name, description,
and site-specific product labels. When product labels are not available, we use
the breadcrumbs instead (if available). Breadcrumbs records the navigational
path of the current web page, and in the context of e-shops, may indicate the
site-specific category path. Texts of these metadata are then normalised by low-
ercasing, removal of non-alphanumeric characters, and lemmatisation. They are
then passed into the internal DNN branches for feature extraction. We constrain
product name or labels to a maximum of 20 words and product description to
100 words, truncating longer texts and pad shorter texts with zeros.

In order to study the impact of different metadata on the classification task,
we evaluate different combinations of input metadata. Therefore, in some set-
tings, the model may not take all three input metadata. In particular, we test
each type of input metadata separately (i.e., using only name, description or
site-specific product label). To the best of our knowledge, all previous work have
used either name alone, or some combinations of name and other metadata. No
work has studied how the highly heterogenous site-specific product labels alone
can be used in the product classification task.

Also, for site-specific product labels, we test three different ways of using
them in order to study the impact of the heterogeneity in the metadata. These
include: (1) using the normalised labels as-is (to be referred to as the ‘original’
site-specific product labels); (2) clustering normalised labels and then using the
cluster membership associated with a product’s label as feature (Sect. 3.2, to

3 http://nlp.stanford.edu/data/glove.840B.300d.zip.

http://nlp.stanford.edu/data/glove.840B.300d.zip
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be referred to as ‘product label clusters’); and (3) ‘standardised’ labels by a
‘cleaning’ processs that aims to reduce the level of heterogeneity (Sect. 3.3, to
be referred to as ‘cleaned product labels’).

Parameter Optimisation. We use the categorical cross entropy loss func-
tion and the Adam optimiser to train all models with an epoch of 20 using a
batch size of 100. The categorical cross entropy loss function is empirically found
to be more effective on classification tasks than other loss functions [15]. The
Adam optimiser is designed to improve the classic stochastic gradient descent
(SGD) optimiser and in theory combines the advantages of two other common
extensions of SGD (AdaGrad and RMSProp) [10].

3.2 Clustering Site-Specific Product Labels

While different e-shops may categorise their products using different labels, we
expect their labels to be semantically similar for products that belong to the same
categories. For example, given ‘USA Curling > USA Curling Sweatshirts &
Fleece’ from an e-shop and ‘Apparel & Accessories > Clothing > Shirts
& Tops > T-Shirts’, from another, we can anticipate both products to belong
to the category of ‘clothing’, or ‘top clothing’. While this category may not match
those in the gold standard per se, they may be useful features for classification.

To capture this information, we propose to apply clustering to split all unique
site-specific product labels in a dataset into groups. Thus given a set of unique
site-specific product labels, we firstly represent each product label as a fixed-
length feature vector. To do so, we treat each label as a document and calculate
the TF-IDF weights of its composing words. Next, given a product label, we
find the pre-trained GloVe embedding vectors of its composing words. Then we
represent each product label as the TF-IDF weighted sum of its composing word
embedding vectors. A similar approach is used in [11] with product descriptions.

Finally, we apply agglomerative clustering to the feature vectors of product
labels to split them into k groups (settings of k to be detailed in Sect. 4). Each
product is then assigned a cluster number associated with its site-specific product
label. This cluster number is used as a feature for product classification.

3.3 Cleaning Site-Specific Product Labels

As discussed before, site-specific product labels vary widely as e-shops adopt
categorisation systems that use different vocabulary and granularity. For exam-
ple, some items may be categorised based on their types (e.g., ‘Audio & Video
> Cables & Adapters’), while others (e.g., clothing items) can be categorised
based on the brands they represent (e.g., ‘NFL > New Orleans Saints > New
Orleans Saints Sweatshirts & Fleece’), or by their prices (e.g., ‘Dallas
Mavericks > Dallas Mavericks Ladies > less than $10’). Some of these
labels are not informative of the types of products and we expect them to be
unuseful in the product classification task. Therefore, we propose to clean site-
specific product labels to reduce the level of heterogeneity.
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Table 1. Different separators between category levels

Example of categories/breadcrumbs Separators

Hardware > hardware accessories > cabinet

hardware > ...

>

Clothing, dresses, sale, the LBD, clothing,

mini dress

,

Beeswax products|beeswax polish |
Combination\|acne-prone\|sensitive\|normal\
|clinicians\|...

\|

Home hunting wildlife feed & feeders deer

feeders ...

[multi-spaces]

Women/clothing/leggings /

Home/gear/accessories/books/videos/stickers/

books

[space]/[space]

Toe rings >> double toe rings >>

Note: This is not an exhaustive list of possible separators.

We firstly pre-process the site-specific product labels by normalising the dif-
ferent separators that are used in the category/breadcrumbs values across dif-
ferent sites (shown in Table 1) by replacing them with ‘>’4. We refer to each
segment separated by ‘>’ a product label at a different level. We also filter out
meaningless category values by regular expression (e.g., blank nodes such as
‘node35ea8dc879ed1d78...’ and URIs). Next, we follow the steps below to
further clean the labels:

1. Divide the label values using the ‘>’ to result in different levels.
2. If the top (parent) level label is written in all capital letters, remove it. This

is because the top level labels written as uppercase are rare (about 4% in
our experimental dataset) and are often generic (e.g., ‘HOME’) or non-product
related (e.g., ‘NBA’, ‘NFL’). As an example: ‘NFL > Carolina Panthers >
Carolina Panthers Shoes &
Socks > Carolina Panthers Shoes & Socks
Ladies > $20 to $40’.

3. If the parent label exists as part of sub-level labels, remove the parent
label from all these levels. E.g., ‘Carolina Panthers > Carolina Panthers
Shoes & Socks > Carolina Panthers Shoes & Socks Ladies > $20 to
$40’.

4. Remove labels that include the word ‘Sale’, ‘Deals’ or contain prices, using
regular expression. E.g., ‘Shoes & Socks > Shoes & Socks Ladies > $20
to $40’.

4 This separator is chosen as it is the most commonly used in the dataset (described
in Sect. 4).
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5. For the remaining labels at each level, compute their TF-IDF scores and keep
only the one with the highest TF-IDF score (i.e., ‘cleaned product labels’).
The idea is to find the most specific label that’s likely to be relevant. Specif-
ically, we group the original, uncleaned labels by their source websites, then
treat each label as a document. Next we calculate the TF-IDF scores of words
from these ‘documents’ within the context of each website. The TF-IDF score
of the remaining labels at each level is the average TF-IDF score of their com-
posing words. E.g., as a result of this process, we may obtain ‘Shoes & Socks
> Shoes & Socks Ladies’.

4 Experiment

4.1 Dataset

Currently, the only publicly available product classification dataset containing
site-specific product labels and based on Microdata is that created by [16]. The
dataset5 contains 8,361 product instances randomly sampled from 702 hosts. It is
annotated using the GS1 Global Product Classification system6. Categories from
the top three levels of the classification taxonomy are used to label each product
instance. We refer to these annotations as level 1, 2, and 3 GS1 annotations. The
number of target classes for level 1, 2, and 3 are 37, 76, and 289. The distribution
of instances over these classes are largely imbalanced. For example, the largest
class all three levels has over 3,000 instances; and in extreme cases, some small
classes have only a handful of instances.

As mentioned before, we use three types of product metadata found in the
dataset, including name (sg7:Product/name), description (sg:Product/
descri-ption), and original site-specific product labels (sg:Product/
category). When product labels are not available, we use the breadcrumbs
instead (sg:breadcrumb). Overall, all instances have name, 8,072 instances have
description, 7,181 instances have site-specific label, and 1,200 instances have
breadcrumbs. When both site-specific product labels and breadcrumbs are con-
sidered, there are in total 4,111 (or 2,866 after lemmatisation, which is also
used to standardise input text to all models) unique values distributed over all
instances, indicating the extreme high level of heterogeneity in the categorisation
systems used by different websites.

4.2 Model Variants

To compare the contribution of different product metadata on this task, par-
ticularly the impact of the highly heterogenous site-specific product labels, we
create models that use different combination of product metadata as input.

5 http://webdatacommons.org/structureddata/2014-12/products/data/goldstandard
eng v1.csv.

6 https://www.gs1.org/standards/gpc.
7 sg: http://schema.org/.

http://webdatacommons.org/structureddata/2014-12/products/data/goldstandard_eng_v1.csv
http://webdatacommons.org/structureddata/2014-12/products/data/goldstandard_eng_v1.csv
https://www.gs1.org/standards/gpc
http://schema.org/


Product Classification Using Microdata Annotations 725

Let n , d , c denote product name, description and original site-specific labels
respectively, we firstly test our models using each of these input metadata only.
We then use combined inputs of n+c, n+d , and n+d+c8. Further, we replace
the original site-specific labels with cleaned product labels (c.clean) and prod-
uct label clusters (c.cluster) respectively, to create n+c.clean , n+c.cluster ,
n+d+c.clean and n+d+c.cluster . We experiment with a range of cluster
numbers including k ∈ {25, 50, 100, 200}.

Each type of the input metadata combination is then used on each of the
three GN-DeepCN networks described before. As an example, we use CNNn+c

to denote the CNN version of our GN-DeepCN network using product names
and original site-specific labels as input. All models are evaluated in a 10-fold
cross validation experiment. We measure classification accuracy (Acc), precision
(P), recall (R), and F1. For P, R, and F1, we compute micro-average, macro-
average, as well as weighted macro-average. Our results are fully reproducible as
our datasets and code (implemented in Python) are shared online9.

4.3 Methods for Comparison

We compare our methods against those reported in [16] and [17], both of which
used the same datasets. [16] used an unsupervised approach based on similarities
between the target categories and product metadata. Their best performing
model uses the combination of product name, description, site-specific product
label and/or breadcrumbs, as well as distributional statistics computed using an
external corpus. Results are reported in classification accuracy, macro-average
precision and F1.

[17] evaluated a large number of different methods. In terms of machine
learning algorithms, they used SVM, Naive Bayes (NB), Random Forest (RF)
and K-Nearest Neighbour (KNN). Each of these models are then used with
several different types of features. These include: (1) a TF-IDF weighted Bag-of-
Words representation of the concatenated product names and description (bow);
(2) product attribute-value pairs extracted from their name and descriptions
using a separate Information Extraction process (dict as these can be consider
a ‘dictionary’ of product attributes); (3) product embedding vectors trained
using the Paragraph2Vec model applied to the concatenated product names
and descriptions (Par2Vec); (4) two variants of product image vectors (ImgEmb
and ImageNet); and (5) the concatenated vectors of Par2Vec and ImageNet.
Results are reported in classification accuracy, macro-average precision, recall

8 The literature has mostly used name + other features, which we also do in this work.
Also, as we shall show in the results, among n, d, and c alone, d generally performs
the worst. So we do not report results based on description + other features.

9 https://github.com/ziqizhang/wop.

https://github.com/ziqizhang/wop
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and F110. For each GS1 level of annotation, we only compare against the best
result obtained from all of their models.

5 Results and Discussion

We firstly present our results in Sect. 5.1 and show (1) surprisingly, the original
site-specific product labels can be very effective for the classification task, while
the ‘processed’ features based on cleaning or clustering are not; (2) when different
GN-DeepCN architectures perform better depending on availability of metadata;
(3) our proposed methods outperforms state of the art significantly. We then
present our analyses to understand the product label clustering and cleaning
quality and why they did not help the task (Sects. 5.2 and 5.3).

5.1 Detailed Results

Due to space limitations, in Tables 2 and 3 we only show our results in macro-
average F1 and classification accuracy, as they are used in [16,17]. Further,
for our experiments on product label clusters, we only include the best results
obtained with k = 50. The full results however, can be found online11. We ran
statistical significance test on every pair of configurations using the K-fold cross-
validated paired t-test, and we are able to confirm that the results obtained by
different configurations are statistically significant.

Table 2. Macro-average F1 of the proposed model variants. The best result on each
level are highlighted in bold.

Input metadata Lvl.1 Lvl.2 Lvl.3

bi-LSTM CNN HAN bi-LSTM CNN HAN bi-LSTM CNN HAN

n 53.3 54.3 53.2 41.9 40.7 40.9 28.1 27.2 28.5

c 57.6 59.3 56.6 42.4 43.0 43.2 27.1 27.9 28.5

d 52.4 51.0 51.5 39.6 38.4 38.4 25.3 23.3 24.7

n+c 65.7 66.3 64.9 50.8 52.3 51.2 34.8 35.1 34.8

n+d 61.8 61.1 59.5 48.9 48.0 45.2 30.8 29.2 31.1

n+d+c 67.4 67.3 65.4 52.9 51.2 51.4 35.2 33.5 35.4

n+c.clean 61.9 61.7 59.5 50.0 49.2 47.8 32.4 33.7 33.3

n+d+c.clean 66.4 64.4 64.3 53.7 50.2 50.7 34.4 31.9 34.5

n+c.cluster= 50 54.1 53.6 52.6 41.0 41.9 39.8 26.9 27.5 28.6

n+d+c.cluster= 50 61.7 60.7 59.8 46.7 46.4 46.7 30.8 29.0 32.2

10 This is an assumption based on our observation, as we have been unable to confirm
this with the authors despite our efforts. However, we assume this is the truth as our
macro-average results are the closest, while our micro-and weighted macro-average
results are significantly higher (in the range between 70 and 90).

11 https://github.com/ziqizhang/wop/tree/master/iswc2019 results.

https://github.com/ziqizhang/wop/tree/master/iswc2019_results
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Table 3. Classification accuracy of the proposed model variants. The best results on
each level are highlighted in bold.

Input metadata Lvl.1 Lvl.2 Lvl.3

bi-LSTM CNN HAN bi-LSTM CNN HAN bi-LSTM CNN HAN

n 80.6 81.6 81.3 79.4 80.0 79.5 72.7 73.2 72.6

c 80.7 80.9 79.9 79.3 79.0 78.5 70.0 68.5 69.1

d 80.4 79.8 79.7 79.0 77.9 77.9 70.0 68.7 70.0

n+c 87.3 88.0 87.2 85.7 86.4 85.8 78.9 79.9 78.8

n+d 85.4 85.7 85.3 84.0 84.0 83.5 76.6 76.5 76.4

n+d+c 89.0 88.6 88.0 86.8 86.6 86.6 80.3 79.5 79.6

n+c.clean 85.6 86.2 85.5 84.8 84.7 84.1 77.1 78.1 77.8

n+d+c.clean 87.8 87.5 87.3 86.7 85.9 85.9 79.2 78.2 79.0

n+c.cluster= 50 81.1 81.4 81.1 79.5 80.4 79.7 72.6 73.6 73.1

n+d+c.cluster= 50 85.9 85.3 85.2 83.3 84.0 84.0 76.9 76.1 76.7

Effect of Different Product Metadata. Looking at each of three kinds of
metadata lone, Table 2 upper section shows that we obtain the best F1 using the
original site-specific product labels c, regardless of the DNN models or categori-
sation levels. In many cases, the difference from model variants that use only n
or d is quite significant (e.g., CNNc outperforms CNNn by 5% points at Lvl. 1).
It is also worth to note that product descriptions d appear to be the least useful
metadata. This is rather surprising as no previous work has considered using
site-specific product labels alone in this task, but has all exclusively focused on
product names and descriptions. Yet we show c to be the most useful for this
task, despite the high level of heterogeneity in the metadata.

Again inspecting the three kinds of metadata separately, Table 3 upper
section shows that generally n contributes to the best classification accuracy.
However, the difference from c or d alone is rather small.

For both F1 and accuracy, we can see that c can consistently improve per-
formance when it is combined with any other metadata (e.g., n + c against n),
regardless of model variants or categorisation levels. The improvements are in
many cases, quite significant. For example, HANn+c improves HANn by 10.3
points in F1 at Lvl. 2; CNNn+c improves CNNn by 7.4 points in accuracy at
Lvl. 1. The majority of DNN models achieved their best results with n + d + c
(except CNN which works better more often with n+c instead), but also achieved
comparable results with n+ c only. This is a useful finding, as n and c are much
shorter than d and therefore, models using them as input can be more efficient.

Effect of Different GN-DeepCN Structures. Overall, the best F1 and
accuracy scores are obtained by bi-LSTM in 5/6 cases, with the sixth case (i.e.,
F1 on n + d + c at Lvl.3) being an extreme close-call. There is also a notable
tendency for bi-LSTM to work better than CNN or HAN (in terms of either F1
or accuracy) when d is included in the input metadata. This could be because
bi-LSTM captures more useful dependency information when long text input is
used. Therefore, when product description is available, it may be beneficial to
use recurrent network based models. Otherwise, CNN or HAN may suffice.



728 Z. Zhang and M. Paramita

Effect of Pre-processing Site-Specific Product Labels. Neither prod-
uct label clusters or cleaned labels help with the task, as shown in the lower
sections of both Tables 2 and 3. In fact, when compared against the corre-
sponding model variants using the original site-specific product labels (e.g.
bi-LSTMn+c.clean v.s. bi-LSTMn+c), the cleaned labels damage performance
slightly, while the clusters harm performance quite signficantly. This may suggest
that the original site-specific product labels could have provided useful contex-
tual information which the supervised models have managed to capture. Either
cleaning or clustering will cause this information to be lost instead. We carry
out further analysis on this and discuss them in Sects. 5.2 and 5.3.

Comparison Against State of the Art. In Table 4 we compare our results
obtained using the following input metadata against those reported in [16,17]:
n + c as this is more efficient than using d and led to very competitive results;
n+ d which is used in [17]; and n+ d+ c which is used in [16]. Overall, in terms
of F1, our methods perform much better at Lvl.2 and Lvl.3, which are arguably
more difficult because of the increasing sparsity in data. Using F1 as example,
at Lvl.2, our best F1 is 9.6 points higher than the best state of the art result
[17] when using n + d + c with the bi-LSTM model (i.e., Lvl.2 in Table 4, 52.9
v.s. 43.3), or 5.6 points (i.e., 48.9 v.s. 43.3) higher when using the same n + d
input metadata as [17]. Correspondingly at Lvl.3, the highest F1 improvements
are 8.5 and 4.2 (by HAN). Notice that the results cited from [17] at Lvl.2 and
3 are based on a model that uses both text and image inputs. Our models use
only texts, but prove to be more effective. Our best F1 at Lvl.1 is comparable to
that in [17], which however, requires a separate Information Extraction process
to pre-process the data. Again it is worth to mention that our more efficient
models variants using only n + c have achieved very competitive results (better
than our n + d variants), which are much better than state of the art at Lvl.2
and 3, in both accuracy and F1.

Table 4. Comparison against results reported in the state of the art. The highest
accuracy and macro-average F1 on each level are highlighted in bold. 1 - best results
were obtained by their SVM model with dict features; 2 - best results were obtained
by their KNN model with Par2vec+ImageNet features. Recall is not reported in [16]

Lvl.1 Lvl.2 Lvl.3

Acc. P R F1 Acc. P R F1 Acc. P R F1

bi-LSTMn+c 87.3 67.0 64.8 65.7 85.7 52.5 49.8 50.8 78.9 36.2 34.7 34.8

CNNn+c 88.0 69.4 64.1 66.3 86.4 54.7 51.1 52.3 79.9 36.8 34.9 35.1

HANn+c 87.2 67.8 63.0 64.9 85.8 52.2 50.9 51.2 78.8 36.3 34.6 34.8

bi-LSTMn+d 85.4 64.2 60.3 61.8 84.0 51.1 48.1 48.9 76.6 32.1 30.8 30.8

CNNn+d 85.7 65.8 58.5 61.1 84.0 53.0 46.1 48.0 76.5 30.6 29.1 29.2

HANn+d 85.3 60.5 58.7 59.5 83.5 47.3 44.7 45.2 76.4 32.7 31.0 31.1

bi-LSTMn+d+c 89.0 70.4 65.8 67.4 86.8 54.4 52.3 52.9 80.3 36.5 35.2 35.2

CNNn+d+c 88.6 70.4 65.1 67.3 86.6 54.8 49.6 51.2 79.5 35.8 33.0 33.5

HANn+d+c 88.0 66.2 64.9 65.4 86.6 53.1 50.3 51.4 79.6 36.4 35.7 35.4

[17], using n+d 88.31 74.1 64.8 69.1 83.82 43.9 42.8 43.3 77.82 26.6 27.2 26.9

[16], using n+d+c 47.9 49.9 - 48.9 38.0 39.5 - 38.7 25.8 26.9 - 26.3
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5.2 Analysis of Product Label Clusters

We undertake further analysis to investigate why clustering did not work. Essen-
tially, we would like an ideal clustering algorithm to place as many instances
belonging to the same category as possible within the same cluster, and not
include instances of too many different categories. We refer to such an ideal
cluster as a ‘high purity cluster’. Thus using the 50 clusters created before as
example, for each cluster, we map its instances to their category labels at each
of the three levels in the gold standard, and count the number of unique labels
within each cluster. Figure 2 ranks these clusters by the number of unique labels
for the three levels. Apparently, clustering generated too many clusters (over
50%) of very low purity (over 10 different labels) at all levels. As a result, it does
not create useful features for classification, but loses contextual information that
can be otherwise useful to the classifiers.

Fig. 2. Distribution of gold standard labels across each cluster (cluster number = 50)
for the three classification levels. y-axis: number of unique gold standard labels. Each
bar represents a separate cluster.

5.3 Analysis of Cleaned Product Labels

The cleaning process described before reduced the number of unique site-specific
product labels from 4,111 to 2,394. Some examples of the different labels that
were merged are shown in Table 5 (the number of different labels merged into
the particular cleaned label is shown in the brackets). Although this process was
shown to produce less heterogenous category labels, the cleaned labels were not
shown to help with the product classification task. This might be due to a few
reasons.

First, different websites may have used different names to refer to the same
categories that our cleaning process failed to capture, e.g., ‘Lawn & Garden’,
‘Lawn & Patio’ and ‘Lawn Ornaments’. Second, similar items (e.g., a ladies’
jacket) may be assigned labels of different granularities across different sites (e.g.,
‘Ladies’, ‘Jackets’ or ‘Ladies Jackets and Coats’). Since they do not nec-
essarily contain lexical overlap, further method is therefore required to identify
that these labels are related. Third, whilst a manual inspection seems to suggest
that the cleaning process worked well with clothing items (e.g., in Table 5), in
many other cases, this resulted in producing labels that are rather too specific,
or less relevant. For example:
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Table 5. Category cleaning results

Site-specific product labels

Original Cleaned

NHL > New York rangers > New York rangers

mens

Mens (126)

College > Boston college eagles > Boston

college eagles mens

San Jose sabercats > San Jose sabercats mens

> sale items > $10 to $20
Chicago bulls > Chicago bulls mens > $20 to

$40

ACC gear > ACC gear t-shirts T-shirts

(114)

Duke blue devils > duke blue devils t-shirts

College > Florida gators > Florida gators

t-shirts

Dallas mavericks > Dallas mavericks home

office & school

Home office

& school (16)

Auburn tigers > Auburn tigers home office &

school > $40 to $60
NFL > Tampa bay buccaneers > Tampa bay

buccaneers home office & school > NFL

accessories

1. ‘Hardware > Tools > Carving Tools > Chisels’ was cleaned into
‘Chisels’

2. ‘Home > Ammunition > Pistol > Rifle Ammo > Shop Centerfire Ammo
by Caliber > 5 mm - 7 mm > 6.5 X 55 SWEDISH’ was cleaned into ‘6.5 X
55 SWEDISH’

3. ‘Electronics > Audio > Car was cleaned into ‘Car’

These examples also confirmed our thoughts that the cleaning process might
have caused useful contextual information from higher level labels to be lost
(e.g., example 1 and 2). And it has been very challenging to identify the level
of labels potentially most appropriate for classification. In certain cases, it may
be beneficial to keep labels from more than one levels (e.g., example 1). We
also found that 2,146 cleaned labels (89.64%) only contained one product each,
which indicates that the cleaning process does not efficiently reduce the number
of unique labels for most products in the dataset. One way to address this is to
discard step 5 from the cleaning process, or revise it to allow multiple levels of
labels to be selected (e.g., based on the ranked TF-IDF score). We will investigate
this in the future.

To summarise, our current cleaning method might help with reducing the
heterogeneity in the different categorisation systems used by some websites, but
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does not appear to be generalisable. Especially with websites that use very spe-
cific categorisation systems (which may be indicated by a larger number of levels
of labels), it may produce labels too specific to be useful for classification. More
work needs to be done to study if and how we can better clean the labels into
an appropriate level of specificity. For example, can we use external knowledge
resources (e.g., WordNet) to determine the relative level of specificity of labels
at different levels? Could the target classification taxonomy be used to ‘guide’
the cleaning in an unsupervised way (e.g., by measuring similarity between ele-
ments in the taxonomy and labels at different levels)? If so, can and how can this
information improve the cleaning process to be useful for product classification?

6 Conclusion and Future Work

This work studied product classification using product linked data on the Web.
In particular, we investigated the effect of different kinds of product metadata on
the classification performance. We showed that, although site-specific categorisa-
tion labels are highly inconsistent across different e-shops and therefore, cannot
be directly used as product categories beyond the e-shops themselves, they can be
very effective features when used for automated product classification tasks; even
more so than other metadata widely used in the previous methods. By comparing
three popular DNN architectures for classification tasks, we showed that when
long product descriptions are available, RNN-based architectures work better;
otherwise, CNN-or HAN-based architectures are more effective. Our new DNN
architectures also significantly outperformed state of art on the same datasets.
As future work, we will explore other strategies for cleaning the site-specific
labels and their effect on the product classification task. In addition, we will
also investigate two directions. First, site-specific product labels are not always
available in the product linked data. Therefore, we will investigate if it is possi-
ble to generate ‘fuzzy’ labels based on product names or descriptions when they
are absent. Second, we will look into research on mining product taxonomy from
such highly heterogenous site-specific labels.
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Abstract. In the distributed ontology alignment construction problem,
two agents agree upon a meaningful subset of correspondences that map
between their respective ontologies. However, an agent may be tempted
to manipulate the negotiation in favour of a preferred alignment by mis-
representing the weight or confidence of the exchanged correspondences.
Therefore such an agreement can only be meaningful if the agents can be
incentivised to be honest when revealing information. We examine this
problem and model it as a novel mechanism design problem on an edge-
weighted bipartite graph, where each side of the graph represents each
agent’s private entities, and where each agent maintains a private set of
valuations associated with its candidate correspondences. The objective
is to find a matching (i.e. injective or one-to-one correspondences) that
maximises the agents’ social welfare. We study implementations in domi-
nant strategies, and show that they should be solved optimally if truthful
mechanisms are required. A decentralised version of the greedy alloca-
tion algorithm is then studied with a first-price payment rule, proving
tight bounds on the Price of Anarchy and Stability.

Keywords: Decentralised Ontology Alignment · Multi-agent systems

1 Introduction

Within open, distributed environments, agents may differ in the way they model
a domain, and may assume different logical theories or ontologies [13]. This can
result in the existence of numerous models that, despite modelling a similar
domain, are themselves semantically heterogeneous, and thus not interoperable.
These ontological models can be reconciled by computing an alignment : i.e. a set
of correspondences (mappings) stating logical relationships between the entities
in the different ontologies [10]. Two agents may be able to communicate and
thus transact if their individual ontologies cover the same domains, and if a
meaningful alignment can be found.

Various static (single-shot) and dynamic approaches [15,19] have explored
how agents can propose, and exchange candidate correspondences with the goal
c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 733–750, 2019.
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of aligning their respective ontologies. In many cases, agents acquire knowledge
of different candidate correspondences from a variety of sources, or through
negotiation with other agents. These candidate correspondences may have an
associated weight, which may reflect the utility, significance, or simply the con-
fidence that an agent has in the correspondence. Furthermore, in adversarial
scenarios, the agents may not wish to disclose their private weights, and may lie
when stating their preferences.

As the composition of different subsets of correspondences can result in dif-
ferent alignments, the challenge in negotiating a mutually acceptable alignment
is that of selecting and proposing correspondences that result in a preferred
alignment that satisfies the aims of both agents. Furthermore, some correspon-
dences may map a single entity in one ontology to different entities in other
ontologies (which can compromise the integrity of the resulting logical model),
and therefore the outcome should ideally be injective (i.e. a matching).

In this paper, we take a mechanism design based approach to investigate
and analyse theoretically the problem from a centralised perspective (Dominant
Strategies), where the problem is characterised as a social welfare maximising
matching setting with an additive valuation function. To model this from a mech-
anism design perspective, we use the term “payment” to refer to the agent’s
view of the correspondence’s weight. We show that for a deterministic mecha-
nism with payment, the only truthful mechanism is maximal-in-range (defined
within Sect. 4), and any truthful mechanism which is not optimal can do no bet-
ter than an approximation ratio of 2. Given our results on truthful centralised
mechanisms, either the problem should be solved optimally (though costly) or
strong lower bounds should be found for the approximation ratios of truthful
mechanisms. We have also explored an implementation in Nash Equilibria [25]
to efficiently approximate mechanisms for matching using the greedy allocation
mechanism.

In Sect. 2, the challenges of selecting correspondences for injective align-
ments are discussed from a centralised and decentralised standpoint. In Sect. 3,
the Ontology Alignment Selection problem is formalised, and examined from a
decentralised (two agent) perspective. The problem is then analysed as a Mech-
anism Design game with payment in Sect. 4. A Greedy Algorithm is studied as
a means of finding an approximate Nash Equilibria solution, and its properties
are formally proved (Sect. 5). This is followed by a discussion and related work
in Sect. 6, before concluding in Sect. 7.

2 Background

To date, the ontology alignment community has proposed many diverse
approaches that align ontologies in order to find sets of correspondences between
the ontology pairs.1 However, most approaches rely on the ontologies being fully

1 For a comprehensive overview of the different approaches, we refer the reader to the
Ontology Alignment Evaluation Initiative - http://oaei.ontologymatching.org.

http://oaei.ontologymatching.org
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shared with some alignment algorithm [10,27] which attempts to find correspon-
dences between entities. Alignment approaches usually initiate the process of
identifying correspondences (mappings) by computing a similarity matrix (lex-
ical, structural or a combination of these) between all the entities in the two
ontologies that are being aligned [10,22]. This produces a number of different
mappings involving the same entities from which an injective (one-to-one) align-
ment needs to be extracted (i.e. correspondences for which to each entity from
the source ontology corresponds only one entity in the target ontology).

e1 v = 1

e2 v = 1+

e3 v = 1

writer

contributor

editor

author

Fig. 1. Centralised example with
two solutions: {e1, e3} and {e2}.

Typically, most alignment approaches
model the alignment as a bipartite graph, and
thus select an injective alignment alignment
by finding a matching or independent edge set
in the graph, such that the set of edges (i.e.
correspondences) have no common vertices (i.e
no entity in one ontology is mapped to more
than one entity in the other ontology, and vice
versa). This assumes that each edge (or cor-
respondence) is weighted such that the weight
represents the quality or desirability of the cor-
respondence. The two most common methods used to select a matching are: (1)
to find a global optimal solution (which is equivalent to the Assignment Problem)
using algorithms such as the Hungarian method [18]; or to find a sub-optimal, but
stable solution using algorithms such as Gale & Shapley’s Stable Marriage algo-
rithm [14]. Solutions to the assignment problem identify correspondences that
maximise the sum of the weights (i.e. they assume some objective function that
maximises social welfare), as opposed to the similarity of each pair of entities.
This is illustrated in Fig. 1, where two correspondences are selected by maximis-
ing the weights; in this case the weights associated to the two correspondences
{e1, e3} are 1 + 1 = 2. As ontologies can vary greatly in size, with several in
the Bio-Medical domain possessing tens of thousands of entities [16], techniques
such as the Hungarian method can become computationally costly (O(n3) for its
most efficient implementation). Thus, sub-optimal approximate algorithms such
as a greedy matching algorithm [22] or a variant from the family of Stable Mar-
riage algorithms [14] are used that select a sub-optimal set of correspondences
in those cases when a stable solution is sufficient. This can result in a different
alignment that emphasises the weights of individual correspondences; given the
example in Fig. 1, a greedy algorithm would generate an alignment with a single
correspondence, e2, as its weight is greater than either e1 or e3, resulting in a
sub-optimal total weight of 1 + ε.

A similar problem arises in decentralised settings, where agents negotiate
over a set of (partially observable) correspondences to agree upon a mutually
acceptable alignment [3,6,9,15,19,26], often based on the aims or goals of the
agents that may own or utilise them. As no single alignment approach can pro-
vide a panacea for all ontology pairs, agents are left with the problem of either:
(1) selecting a suitable alignment approach from the plethora that exist; or (2)
assembling alignments from a subset of relevant, candidate correspondences;
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for example using an ensemble approach. This latter case occurs if agents have
access to correspondences from shared repositories [19] or garnered from pre-
vious transactions with other agents. Furthermore, alignments with different
constituent correspondences may be semantically equivalent with respect to one
of the agent’s ontologies and aims (due to the logical theory underlying each
agent’s ontology) but may have a different meaning to another.2 As the agent
may have preferences over the choice of correspondences used (e.g. due to pri-
vacy concerns [12,23]), agents can have a preference order over the resulting
alignments within the same equivalence class. Hence, for self-interested agents,
this task becomes one of selecting a mutually acceptable subset of preferred
ontological correspondences.

The resulting alignment will typically be dependent on the value that each
agent associates to each correspondence. Whilst this is uncontroversial in cen-
tralised systems, approaches that are decentralised (i.e. where agents may differ
in the value they ascribe to a correspondence) are subject to strategic manip-
ulation; i.e. agents may lie about the true value of a correspondence to ensure
that the final alignment includes their preferred correspondences. The value that
each agent assigns to each correspondence (i.e. its private valuation) relates to
how useful this edge is in resolving a query or achieving a task, and in turn,
the potential payoff the agent can obtain from performing a task. Note that
this is not the same as the confidence the agent has in the edge (based, for
example from some form of linguistic similarity metric over the concept labels).
For example, an agent may know of two correspondences in the publishing
domain {writer, editor} and {writer, author}. Both are viable correspon-
dences, depending on the task (e.g. for a conference proceedings and monograph
respectively), but an agent may assign different valuations to each correspon-
dence based on some preference; for example the agent can increase its payoff
by resolving queries or performing tasks (by providing a service to its peers)
pertaining to monographs. Conversely, it may have a low valuation for other
correspondences for which it has little preference (e.g. {writer, publisher}).
However, within a service landscape where several agents (providing services)
may compete to perform a task for a requesting agent, they may not wish to
disclose the true value of this payoff. This can potentially lead to agents strate-
gically manipulating the combined value of sets of correspondences, in order
to maximise their individual payoffs; potentially resulting in semantically com-
promised correspondences being selected, which may then prevent the query or
task from successfully completing. Thus, in an ideal setting, the agents should
be incentivised to adopt strategies that result in alignments that benefit both
agents; i.e. find solutions that lie within a Nash Equilibrium [25].

3 The Decentralised Alignment Construction Problem

We consider the Alignment Construction Problem given the following setting in
which there are two agents i ∈ {L,R} (the left agent and right agent), where each
2 A classic example of terminological difference exists with the term “football”, which

has a different meaning depending on whether the reader is from the US or the UK.
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Ontology for Agent L

Publication

Proofreader

Writer

Contributor

Ontology for Agent R
Monograph

 Editor 
Author

Periodical

Publisher

Manuscript

Fig. 2. Ontology fragments OL (left) and OR (right). The solid line denotes the isa
class hierarchy relation, whereas the dashed line indicates property relations between
classes (note that property names are not given).

agent i possesses a private ontology Oi that includes the named concepts (i.e.
entities)3 NC

i ∈ Oi to be aligned. The alignment is modelled as an edge-weighted
bipartite graph G = (U ∪V,E), where the vertices of U and V correspond to the
entities in the agents’ individual ontologies U = NC

L and V = NC
R respectively,

and the edges e ∈ E correspond to the candidate correspondences. A matching
M is a subset of E such that e ∩ e′ = ∅ for all e, e′ ∈ M with e �= e′; i.e. no two
edges have a common vertex. Each agent i ∈ {L,R} has a non-negative valuation
function for different matchings M , denoted vi(M), where vi : M(G) → R

+,
which is additive; i.e. v(S) + v(T ) = v(S ∪ T ) such that S ∩ T = ∅ for all
S, T ⊆ M , and M(G) is the set of all matchings in a graph G. Each agent i also
has a valuation function vi : E → R

+ to represent the value vi(e) it privately
ascribes to the edge e. The combined value for an edge e is therefore given as
v(e) = vL(e)+vR(e). Note that vi(M) =

∑
e∈M vi(e) for every agent i ∈ {L,R},

and v(M) =
∑

i∈{L,R} vi(M) is the combined value for the matching M .
The goal is to establish an alignment which is equivalent to a matching

M that maximises
∑

e∈M v(e); i.e find a set of edges whose sum of weight is
maximal. This problem, known as the Assignment Problem, is typically solved
optimally using Kuhn’s Hungarian Algorithm [18]. In a distributed negotiation
setting, the valuation function vi can be regarded as the agents’ true valuation,
or type that it attributes to each matching. Furthermore, we use v to represent
the combined type profile for both agents, such that v = {vL, vR}, where vi is
the type profile for agent i, and similarly, b denotes the combined bid profile
for both agents (see Sect. 3.1 below for details on bids), such that b = {bL, bR},
where bi is the bid profile for agent i. We will also introduce the following useful
notation: be

i = bi(e) and ve
i = vi(e) for any i ∈ {L,R} and e ∈ E.

Consider the Bookseller scenario illustrated in Fig. 2 for agents L and R,
where each agent possesses a simple ontology fragment within the publishing
domain. Agent L models the class entity Publication in OL with three property
relations (unnamed in this example) to three other entities: Proofreader, Writer

3 We follow the standard practice of restricting ourselves to correspondences between
named concepts within the respective ontologies [10], and omit the discussion of the
property relations between entities within each ontology.
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Correspondence e vL(e) vR(e) v(e)
〈Proofreader,Publisher〉 e1 3 3 6
〈Proofreader,Editor〉 e2 5 6 11

〈Writer,Editor〉 e3 4 4 8
〈Writer,Author〉 e4 5 5 10

〈Contributor,Author〉 e5 3 6 9

Publisher

Editor

AuthorContributor

Writer

Proofreader
e1

e2
e3

e4

e5

3

4

3

5

5

3

4 6

6 5

Fig. 3. The individual weights for different correspondences (left) that map entities
from OL to those in OR. The combined edges v(e) appear in the final column. The result-
ing graph (right) has two possible matchings: an optimal matching Mopt = {e1, e3, e5}
where v(Mopt) = 23, and a stable matching Mstable = {e2, e4}, where v(Mstable) = 21.

and Contributor. The other agent models the same domain but with entities from
OR. The class Manuscript has two subclasses in particular: Monographs (i.e. a
specialist work by a single or small number of authors) and Periodicals which are
edited volumes containing numerous articles (written by different authors). Both
subclasses have properties to the concepts Author and Editor (inherited from
Manuscript), whereas Periodical also has a property to the concept Publisher.
The table in Fig. 3 (left) lists candidate correspondences between entities in L’s
ontology, and those in the ontologies of agents R, complete with each agents
private valuation function for each correspondence e, and a label ei.

3.1 Alignment Construction with Payment

To model this problem from a mechanism design perspective (or a game, where
two agents cooperate with each other to find a resulting alignment), we con-
sider the notion of agents declaring a value for each correspondence. As this
value could differ from their private value (because each agent may be behaving
strategically to manipulate the outcome), we refer to the declarations as bids.
For this reason, we consider a mechanism with payments. We define a direct
revelation mechanism M(A,P), which is composed of an allocation rule A to
determine the outcome of the mechanism (i.e. this determines which of the cor-
respondences are selected for the resulting alignment), and a payment scheme
P which assigns a vector of payments to each declared valuation profile. The
mechanism proceeds by eliciting a bid profile bi from each agent i, and then
applies the allocation and payment rules to the combined bid profiles to obtain
an outcome and payment for each agent. As an agent may not want to reveal its
type (i.e. its true value), we assume that b does not need to be equal to v.

The utility ui(b) for agent i given a bid profile b = (bL, bR) and mecha-
nism M is based on the allocation rule A and the payment scheme P over the
outcome of A(v) (i.e. a matching or allocated set M), and can be written as
ui(A(b)) = vi(A(b)) − Pi(b). For an implementation in Nash Equilibria (see
Sect. 5), we assume a first-price payment rule, such that an agent is charged its
declared bid bi(M) for any allocated set M . Our objective function maximises the
social welfare SW given both agents’ bids (generating either optimal or approx-
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imately optimal solutions); i.e. SW (A(b), v) =
∑

e∈A(b) v(e). A (deterministic)
mechanism M is called truthful in dominant strategies or incentive compatible
if, for any agent i ∈ {L,R}, we have ui(A(vi, b−i)) ≥ ui(A(bi, b−i)) for any bid
profile bi of agent i and any bid profiles b−i of the other agents.4

3.2 Nash Equilibria

Different types of Nash Equilibria may exist, depending on the strategy adopted
by the agents. The bid profile b forms a Pure Nash equilibrium if, for both agents,
there exists no other bid profile b′

i achieving a higher utility, i.e., ∀b′
i, ui(bi, b−i) ≥

ui(b′
i, b−i). As no agent can obtain a higher utility by deviating from b; they can

do no better than to select alignments that result in a Nash Equilibrium [25].
We also permit a randomised strategy function which can result in a Mixed

Nash equilibrium. Given the probability distribution ω1, · · · , ωn over the decla-
rations, and any function f over the space of declaration profiles, we can state
Eb∼ω[f(b)] for the expected value of f over declarations chosen according to the
product distribution ω = ω1 × · · · × ωn. Thus, ω is a Mixed Nash Equilibrium if,
for any agent and distribution ω′

i, we have: Eb∼ω[ui(b)] ≥ Eb∼(ω′
i,ω−i)[ui(b)].

3.3 The Prices of Stability and Anarchy

As our aim is to maximise the social welfare, we state that the allocation algorithm
A is a c-approximation algorithm if we have SW (A(v), v) ≥ 1

cSWopt(v), where
we denote SW (A(v), v) to represent the social welfare of the matching resulting
from the allocation algorithm A, and SWopt(v) for maxM∈M(G) SW (M,v) to rep-
resent the value of an optimal matching (and hence an optimal alignment) that
maximises social welfare given the declaration vector v.

The trade-off between approximate (i.e. non-optimal) solutions and the opti-
mal solution when identifying a matching is quantified as the Price of Anarchy
[2]; i.e the ratio of the maximal possible social welfare and the social welfare
emerging from an approximate solution. It is important to characterise this ratio
as it provides a bound on how close an approximate algorithm can be to the opti-
mal solution. The Price of Anarchy of the mechanism M(A,P) in mixed (and
pure, respectively) strategies can thus be defined as:

PoAmixed = sup
v,ω

SWopt(v)
Eb∼ω[SW (A(b), v)]

PoApure = sup
v,b

SWopt(v)
SW (A(b), v)

where the supremum is over all valuations v and all mixed Nash Equilibria
ω (likewise, all pure Nash Equilibria b) for v. Here, A(ω) denotes a random
matching with respect to ω.
4 The notion of a bid profile across a set of agents that omits the bid of agent i,

represented as b−i originates from the definition of the Vickrey Clarke Groves (VCG)
mechanism [25], used extensively in mechanism design.
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The Price of Stability is the ratio of the best stable matching with respect
to the optimal matching. A bipartite graph may generate a number of sub-
optimal but stable solutions; for example the classic Stable Marriage algorithm
[14] typically generated matchings where the initial solution was optimal for
one agent and yet pessimal for the other. The Price of Stability is important
from a Mechanism Design perspective, as a mechanism (such as that discussion
in Sect. 5) may compute the best stable solution and suggest it to the agents,
who would implement this solution since it is stable. Thus, the price of stability
captures this notion of optimisation subject to the stability constraint [2]. The
price of stability for pure strategy games defined by mechanism M(A,P) is the
ratio between the best objective function value of one of its equilibria and that
of the optimum:

PoSpure = inf
v,b

SWopt(v)
SW (A(b), v)

where the infimum is over all type valuations v, and all pure Nash equilibria b.

4 Analysis of Alignment Selection with Payment

In this setting, we model the scenario as if both agents have to pay money to
establish a matching (or ontological alignment), where the total cost is based
on the bids declared for each correspondence. An agent may be incentivised to
falsely lower the value of a correspondence, although this could result in it being
rejected. Conversely, it may artificially inflate the value of the correspondence in
the hope of it being selected; this however could result in a weaker, or inaccurate
alignment. The aim here is to devise a mechanism that incentivises agents to be
truthful when proposing correspondences, and to understand its properties.

The first observation is that this problem can be solved optimally using the
Vickrey Clarke Groves (VCG) mechanism with Clarke payment [25]; which has
the property that bidders can do no better than to bid their true valuations.
In this analysis, we show that it is not possible to have a faster, non-optimal,
approximate and truthful mechanism for our problem. This can be proved using
the following lemma from classic mechanism design theory [25]:

Lemma 1. An allocation rule of mechanism A satisfies weak monotonicity if
for all i and all v−i, A(vi, v−i) = a �= b = A(v′

i, v−i) implies that vi(a) − vi(b) ≥
v′

i(a) − v′
i(b). If a mechanism M(A,P) is incentive compatible, then A satisfies

weak monotonicity [25].

Fig. 4. Disjoint edges

The aim of Theorem 1 (below) is to determine if there
is a mechanism that is not equivalent to VCG, yet is
truthful, and to examine the quality of its solution. This
theorem states that if any mechanism is not VCG, then:
(1) it is not truthful; or (2) it is truthful but cannot
achieve a solution whose approximation factor is smaller
than 2.
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Theorem 1. For the alignment problem with payment, any mechanism which
does not adopt an optimal solution when agents declare their true valuations is
either non-truthful, or if truthful, the non-optimal solution has an approximation
ratio of at least 2.

Proof. Let M(A,P) be a mechanism, and recall that A(v) denotes the outcome
generated by M, when the input is a bid v (which may not be the true valuation).

Consider a bipartite graph of arbitrary size, where for two positive integers
�, k, let the bipartite graph G = (U ∪ V,E) have � nodes on the left side of
bipartite graph (|U | = �) and k nodes on the right side (|V | = k). We assume the
existence of two special edges e1, e2 ∈ E that are disjoint (i.e e1 ∩ e2 = ∅), such
that their true valuations are vL(e1) = vL(e2) = 0 and vR(e1) = vR(e2) = ω
(as illustrated in Fig. 4). As the valuations of all other edges in G are zero
for both agents (and thus do not appear in the Figure), the optimal solution
should contain both edges e1 and e2. As we only consider the problem from the
perspective of the right agent in the discussion below, we omit the agent index
when referring to valuations for simplicity.

Consider some mechanism M(A,P) that generates a non-optimal solution
which contains at most one of these edges. If neither e1 and e2 appear within
the solution, the approximation ratio will be unbounded. Therefore, we assume
that solution includes one of these two edges; w.l.o.g., assume that M will accept
e1 ∈ A(v) when the right agent declares its true valuation v. If the right agent
deviates from its valuation v to some other valuation v′, the mechanism has two
options:

Case-1. The mechanism changes the current outcome to include both edges,
such that original solution, A(v) ⊇ {e1}, is replaced with the solution,
A(v′) ⊇ {e1, e2}. If we make the alternative valuation v′(e1) = v′(e2) = 0,
this implies that v′(A(v′)) ≤ v′(A(v)). We also know that v(A(v)) <
v(A(v′)). By adding the left and right hand sides of these two inequalities,
we obtain:

v′(A(v′)) + v(A(v)) < v′(A(v)) + v(A(v′))

v(A(v)) − v(A(v′)) < v′(A(v)) − v′(A(v′))

As this violates the weak monotonicity condition in Lemma 1, it follows that
M is not a truthful mechanism.

Case-2. The outcome is not changed, i.e., A(v′) = A(v) when the agent deviates
its valuation to v′. The approximation ratio (i.e the ratio of the approximate
optimal solution to the optimal one) is at least v(e1)+ v(e2)

v(e1)
. Since we consider

the worst case, the ratio is at least 2 (i.e. the optimal solution is guaranteed
to be within a factor of 2 of the returned solution).

If the outcome changes from e1 ∈ A(v) to e2 ∈ A(v′) and e1 �∈ A(v′), then this
case is symmetric to Case 2, and thus will also lead to a ratio of at least 2. Fur-
thermore, if the right agent has only one non-zero value edge, and the valuation
on the remaining edges is 0, then the approximation ratio is unbounded, and all
such cases also lead to the lower bound on the approximation ratio. �
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The motivation for the next theorem (Theorem 2) is that if a mechanism is not
VCG but is truthful, then it must be maximal-in-range [8], defined below:

Definition 1. A mechanism is called maximal in range (MIR) if there exists
a fixed subset R of all allocations (the range of the mechanism), such that for
every possible input v, the mechanism outputs the allocation that maximizes the
social welfare in R with respect to v [8].

If a mechanism selects an edge such that the resulting solution (or alloca-
tion) is not one that is maximal with respect to the bids, then an agent will be
incentivised to declare a lower (untruthful) valuation for an edge that they want
in the solution, as this dishonest strategy will result in a higher utility than one
that relies on being honest for the same solution.

Theorem 2. For the alignment problem with payment, any deterministic mech-
anism which does not adopt an optimal solution when agents declare their true
valuation is either non-truthful, or is a maximal-in-range mechanism.

Proof. Consider a bipartite graph G = (U ∪V,E) which contains � nodes on the
left side (|U | = �), and a single node on the right (|V | = 1), and where there
are � edges, such that each node on the left is connected to the single node on
the right. Thus, any solution will contain only a single edge. Furthermore, we
assume that the optimal solution is {e1}. If a deterministic mechanism A does
not adopt the optimal solution; then the solution generated by A will be a single
edge in {e2, · · · e�}, where the optimal solution is e2 (i.e. v(e1) > v(e2)). If the
agents deviate from bidding their true value, the mechanism has three options:

Case-1. The solution adopted by mechanism A does not change as a result of the
changed bid. Thus, if A is truthful then it is equivalent to a maximal-in-range
mechanism, whose range is R = {e2}.

Case-2. The solution adopted by mechanism A changes to {e1} (the optional
solution for E) for some bid v′: A(v′) = {e1}. Therefore, given Lemma 1, the
mechanism A cannot be truthful.
To show this, suppose w.l.o.g. that the mechanism adopts e2 for the bid v:
A(v) = {e2}, and that one agent deviates from its valuation v to v′ such that
v′(e1) < v′(e2). Given that we have v(e1) > v(e2); by adding the left and
right hand sides of these two inequalities, we have:

v(e2) − v(e1) < v′(e2) − v′(e1)

As we have A(v) = {e2} and A(v′) = {e1}, this contradicts the monotonicity
condition from Lemma 1, which states that: v(e2) − v(e1) ≥ v′(e2) − v′(e1).

Case-3. The solution adopted by mechanism A changes to a single edge from
{e3, · · · , el}. In such a case, by Lemma 1, the same argument for Case-2 also
applies for this case where the mechanism is not truthful as it violates the
monotonicity condition. �

By combining the two Theorems 1 and 2, we have the following theorem:
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Fig. 5. Edge weights for the lower bound Price of Anarchy example

Theorem 3. For the alignment problem with payment, the only truthful mech-
anisms are those that are maximal-in-range with an approximation ratio of at
least 2.

5 Nash Equilibria Implementation

Having analysed the Alignment Construction problem from a mechanism design
perspective, we now explore the properties of a decentralised algorithm whereby
two agents propose bids on candidate correspondences (not necessarily honestly)
in order the determine a final alignment. In this section we explore a computa-
tionally efficient, yet sub-optimal setting using a first price greedy matching algo-
rithm. This is a decentralised variant of the NaiveDescending algorithm given
by Meilicke and Stuckenschmidt [22], and is presented in Algorithm 1. In this
setting, the agents provide their declarations to the mechanism, which computes
an outcome. The agents then measure their utility by subtracting their true
valuation of this outcome by the payment. The payment scheme used models
the notion that each agent would pay its own bid, i.e., pi = bi(A(b)). The next
two theorems provide a characterisation of the Price of Anarchy for a first-price
greedy matching game. The proofs provide simple instances of the mechanism
(from a game perspective) to give some intuition of pure Nash Equilibria.

Algorithm 1. Greedy algorithm
Require: Bipartite graph G = (V ∪ U,E), bL, bR are bids of the left & right agent.
Ensure: A matching M

Let M = ∅
if E �= ∅ then

Find the edge e ∈ E that maximises beL + beR
Let M := M ∪ {e}
Remove from E edge e and edges incident to edge e

end if
M is the outcome
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Theorem 4. The price of anarchy (PoA) of the first price greedy matching game
is at least 4.

Proof. Consider a bipartite graph (Fig. 5a), where the valuation for e2 and e6 are
the same for both agents (ve2

L = ve6
L = ve2

R = ve6
R = 1); the valuation assigned to

e4 by the left agent is ve4
L = 1+ε (where ε is a small positive number), whilst the

right agent assigns this the value 0, and the remaining edges (i.e. e1, e3, e5, e7)
have the valuation of 0 for both agents. Furthermore, assume a bid strategy
profile (Fig. 5b) for the left agent: be4

L = 1+ε, be3
L = be7

L = 1; for the right agent it
is: be1

R = be5
R = 1; and bids on the remaining edges being 0. Denote this strategy

profile for both agents as b.
The greedy algorithm’s solution given this profile b is {e4} (the sum of bids

for e4 is 1 + ε, whereas the sum for each of the other edges is either 0 or 1). The
utility for the left agent given this solution is 0 (it would pay 1+ ε because of its
successful bid, but it’s valuation is 1 + ε), whereas the utility for the right agent
is 0, as it’s bid and valuation for this edge are both 0.

The left agent could not unilaterally increase its utility; only one other solu-
tion {e2, e6} has a positive utility, but to obtain this, new bids are necessary.
If it chose two new bids (i.e. b̃e2

L and b̃e6
L ) on these edges such that b̃e2

L > be1
R ,

which would result in the combined bids on e2 being greater than that on e1
(i.e. v(e2) > v(e1)) and b̃e6

L > be5
R (such that v(e6) > v(e5)), this solution would

change to {e2, e6} resulting in a negative utility for the left agent (Fig. 5c). This
is because its combined bid would be 2 + 4ε, whereas its payoff would be 2. The
left agent will also not decrease its bid on e4, as the solution would be changed
to another matching that is not {e2, e6}.

The right agent’s behaviour is the same as the left, as this scenario is sym-
metric. It only has a positive valuation on e2 and e6. By changing its bids for
either edge, a new bid (e.g. b̃e2

R > 1+2ε) would be required, thus again reducing
the utility. Therefore in this case we have a Nash equilibrium, as neither agent
can do better than adopt the current strategy.

The optimal solution is {e2, e6}, due to the joint valuation of 1 + 1 = 2 for
e2, and the same for e6, resulting in a total valuation of 4 for that solution. As
stated above, the greedy algorithm instead finds the solution {e4}, resulting in
a total valuation of 1 + ε. Therefore, the Price of Anarchy is 4

1+ ε , or at least 4.
�

Theorem 4 provides a lower bound on the price of anarchy for our mechanism.
For the upper bound (Theorem 5), we first need the following two lemmas:

Lemma 2. Suppose that the current bid profile (bL, bR) produces outcome M
using a greedy mechanism. The necessary condition for (bL, bR) to be a Nash
equilibrium is that bM

L ≤ vM
L and bM

R ≤ vM
R .

Proof. Assume that for outcome M , some agent’s bid satisfies bM
i > vM

i (i.e.
the bid is greater than the valuation). The utility would then be ui(bL, bR) =
vM

i − bM
i < 0; i.e. it would be negative. Therefore, agent i would change its bid

to a new one which increases its utility to a value that is at least 0. �
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Lemma 3. Suppose that the current bid profile (bL, bR) produces an outcome
M using a greedy mechanism, and bM

L ≤ vM
L , bM

R ≤ vM
R . There exists a bid

for one agent, for example the left agent, b̃L, that satisfies the condition b̃M ′
L <

2(vM
R + vM

L ) + ε. This would result in b̃L changing the outcome to M ′.

Proof. Let {e1, · · · , ek} be the set of edges in a matching M , indexed in decreas-
ing order with respect to be

L + be
R. Denote e′ as an edge in a different outcome

M ′. We assign each new bid b̃e′
L by the following procedure: ∀j ∈ {1, . . . , k} (in

this order), if the left side vertex of edge ej has an adjacent edge e′ in M ′, then
let the sum of the new bid (left) and the corresponding original bid (right) for
M ′ take a slightly higher value than the corresponding edge bids for ej in the
outcome M ; i.e. b̃e′

L + be′
R > b

ej

R + b
ej

L . Do the same for the right side vertex
adjacent edge, i.e., for right side vertex adjacent edge e′ ∈ M ′ of ej , let b̃e′

L + be′
R

take a slightly higher value than b
ej

R + b
ej

L .
At any step of this procedure, if we need to reassign the bid be′

L for some
edge e′, then the bid of the larger value is retained (in fact, the declaration
will remain unchanged as this procedure is conducted in decreasing order with
respect to be

L + be
R). This distribution of bids is valid, as it can be done such that

b̃M ′
L > 2(bM

R + bM
L ), which always results in a change of outcome to M ′. It can

also be easily argued that b̃M ′
L < 2(vM

R + vM
L ) + ε. �

Theorem 5. The price of anarchy (PoA) of a first price greedy matching game
is at most 4.

Proof. Let M be any matching whose total valuation is strictly smaller than
a quarter of the optimum, i.e., vM

L + vM
R < 1

4Opt. At least one of the follow-
ing statements will hold on some other outcome M ′ given a different profile of
valuations (either for the left or right agents respectively): ∃M ′vM ′

L ≥ 1
2Opt or

∃M ′vM ′
R ≥ 1

2Opt. If M ′ is the optimal solution, then this will result in a contra-
diction. As they are symmetric, we assume the first statement is true. Assume
b = (bL, bR) is a fixed bid profile. If the outcome under b is M , then the agents
will either have positive utilities; i.e. bM

L ≤ vM
L and bM

R ≤ vM
R , or negative ones.

We want to show that the left agent would be incentivised to bid for the
outcome M ′. Let b̃M ′

L be the bid that can achieve this change (i.e. from M

to M ′). Lemma 3 states that there exists some bid b̃L that will achieve this
change to outcome M ′. Thus, we want to show that the utility of M ′ for the
left agent is greater than for M ; i.e. vM ′

L − b̃M ′
L > vM

L − bM
L . By Lemma 3, since

b̃M ′
L < 2(vM

R + bM
L ) + ε, we have:

vM ′
L − b̃M ′

L ≥ vM ′
L − 2(vM

R + bM
L ) − ε

Since vM ′
L ≥ 1

2Opt and vM
L + vM

R < 1
4Opt, we can show that:

vM ′
L − 2(vM

R + bM
L ) − ε ≥ vM ′

L − (vM
R + vM

L ) − vM
R − bM

L

vM ′
L − (vM

R + vM
L ) − vM

R − bM
L > vM

L − bM
L
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As ε can be arbitrarily small, it can be removed. The last inequality shows
that the left agent can change its bid from bL to b̃L and get M ′ with a higher
utility. This completes the argument as it shows that b cannot result in a Nash
equilibrium. �
Theorem 6. The price of anarchy (PoA) of the first price greedy matching game
is precisely 4.

e1

e2

e4

e5

e3

0

1

1+3

0

1
0

0

0

1+

1+

Fig. 6. Edge valuations
for the PoS lower bound

This theorem is the logical consequence of the Theorems
4 and 5 that provide an upper and lower bound for the
Price of Anarchy, so requires no further proof.

To conclude our analysis of the first-price greedy
matching game, we investigate a lower bound for the
Price of Stability through Theorem7 (below).

Theorem 7. The price of stability (PoS) of a first
price greedy matching game is at least 2.

Proof. Consider a bipartite graph (Fig. 6), where the
valuation assignment for both agents are: ve1

L = ve5
L = 1,

ve2
R = ve4

R = 1 + ε, ve3
L = 1 + 3ε. The valuations on the remaining edges are 0 for

both agents. The mechanism has three options:

Case-1. Suppose the outcome of the mechanism is {e1, e5}. The current bid
cannot result in a Nash equilibrium, as the right agent would improve its
utility by changing the current outcome to {e2, e4}, when b̃e2

R > be1
L , b̃e4

R > be5
L .

Case-2. Suppose the current outcome is {e2, e4}. It also does not admit any
Nash equilibrium. If max{be2

R , be4
R } < ve3

L , then the left agent could improve
its utility by changing to e3, when b̃e3

R > max{be2
R , be4

R }. If max{be2
R , be4

R } > ve3
L ,

then let be2
R be a smaller bid, such that the left agent would then bid b̃e1

L > be2
R

changing the outcome to {e1, e4}. This case is symmetric.
Case-3. Suppose the current outcome is {e1, e4} (or {e2, e5}). The right agent

would bid b̃e2
R > be1

L to improve its utility, and change the outcome to {e2, e4}.

To complete the proof, we provide a Nash equilibrium: be1
L = be5

L = 1, be2
R =

be4
R = 1 + ε, be3

L = 1 + 2ε. We can see in such a bid profile, the outcome would
be e3, and it is easy to check that no agent can increase its utility. �

It is usual in the literature to study the Price of Anarchy even if there might
be instances without pure Nash equilibria [21]. Thus, Theorem 5 can be read
as: if there exists pure Nash equilibria, then their social welfare is at least 25%
of the optimum. We can also show that mixed Nash equilibria always exist, by
transforming the problem into a new one in which each agent only has a finite
number of strategies, where a strategy is for bids on edges. We define a small
ε > 0 as the minimum increment that any two bids can differ by. This leads to a
finite number of strategies of any agent i as i will not bid more than

∑
e∈E vi(e).

In particular, be
i ∈ {0, ε, 2ε, · · · ,

∑
e∈E vi(e)}.
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Corollary 1. The mixed Nash equilibrium exists for all instances of the discre-
tised first price greedy matching game.

This corollary is deduced directly from Nash’s theorem [25] which proves that if
agents can use mixed strategies, then every game with a finite number of players
in which each player can choose from finitely many pure strategies has at least
one mixed Nash equilibrium.

Corollary 2. The price of anarchy of the discretised first price greedy matching
game for mixed strategy is 4.

This proof can be found by extending that for Theorem 7.

6 Related Work

Approaches for resolving semantic heterogeneity have traditionally been cen-
tralised (i.e. with full access to the ontologies), resulting in the formation of a
weighted bipartite graph representing the possible correspondences [22,27], and
a matching (alignment) found by either maximising social welfare or utilising
a greedy search. However, these approaches were generally task agnostic, and
thus varied in the way they utilised the weights. The lack of strategy or means
to restrict what was revealed (due to knowledge encoded within an ontology
being confidential or commercially sensitive) [12,26] has resulted in an increased
interest in decentralised, strategic approaches. Matchings have also been found
through the use of Argumentation, based on private preferences over the cor-
respondence properties (e.g., whether their construction was based on struc-
tural or linguistic similarities) [19], and public weights. More recently, dialogical
approaches have been used to selectively exchange correspondences based on pri-
vate weights for each agent [26]. Although polynomial approaches were used to
determine the matching, the selection of revelations at each step was naive, and
the resulting alignment failed represent the agents initial goals, whilst revealing
the agents’ private weights.

Several studies have explored the problem of finding matchings from a mech-
anism design perspective, and have studied deterministic and randomise approx-
imate mechanisms for bipartite matching problems where agents have one-
sided preferences [1,17]. Furthermore, there are a number of studies of truthful
approximate mechanisms for combinatorial auctions, e.g., [5,8,20,24], and vari-
ous mechanisms [7,11,21] have studied Bayesian Nash Equilibrium settings. In
[7], the problem of selling m items to n selfish bidders with combinatorial prefer-
ences, in m independent second-price auctions was studied. The authors showed
that given submodular valuation functions, every Bayesian Nash equilibrium of
the resulting game provided a 2-approximation to the optimal social welfare.
The efficiency of Bayesian Nash equilibrium outcomes of simultaneous first- and
second-price auctions was also studied [11], where bidders had complement-free
(a.k.a. subadditive) valuations. They showed that the expected social welfare of
any Bayesian Nash Equilibrium was at least 1

2 of the optimal social welfare in the
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case of first-price auctions, and at least 1
4 in the case of second-price auctions.

Lucier and Borodin [21] studied the general setting of combinatorial actions and
proved that the Bayesian Price of Anarchy of the greedy algorithm is constant. A
study of simultaneous second-price auctions [4] showed that the price of anarchy
for pure Nash equilibrium was 2, and focused on Bayesian Nash equilibrium.

7 Conclusions

In this paper, we present, from a Mechanism Design perspective, the decen-
tralised Ontology Alignment negotiation problem, whereby correspondences are
selected for inclusion in an alignment (between two ontologies), and we provide
a theoretical analysis of its properties. By demonstrating that different align-
ments can be generated depending on the selection process (e.g. by determining
an optimal or sub-optimal solution), we characterise the problem analytically
as a Mechanism Design problem, characterised as a Social Welfare maximising
matching setting, where the valuation function is additive. We provide a com-
plete picture of the complexity of this mechanism by showing that when coupled
with a first-price payment scheme, it implements Nash equilibria which are very
close (within a factor of 4) to the optimal matching. Furthermore, the Price of
Anarchy of this mechanism is characterised completely and shown to be pre-
cisely 4 (this bound also holds for Mixed Nash equilibria), and when a pure
Nash Equilibrium exists, we show that the Price of Stability is at least 2. Thus,
decentralised agents can reach a Nash equilibrium, which produces a solution
close to optimum within a factor of 4.

This analysis demonstrates that the type of alignment generated when select-
ing correspondences is sensitive to the algorithm used. However, by ensuring that
the mechanism used is truth incentive, this ensures that agents will always do
better by adopting strategies that accurately report the weights of their corre-
spondences in decentralised settings.
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